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Abstract

Methane in biogas has been proposed to be anaiedtnor to facilitate complete
nitrogen removal using denitrifying anaerobic maethaoxidizing (DAMO)
microorganisms in an anammox reactor, by redudunegnitrate produced. However,
the slow growth and the low activity of DAMO micnganisms cast a serious doubt
about the practical usefulness of such a procedhid study, a previously established
lab-scale membrane biofilm reactor (MBfR), with filims consisting of a coculture
of DAMO and anammox microorganisms, was operate@nswer if the DAMO
reactors can achieve a nitrate reduction rate thaat potentially be applied for
wastewater treatment. Through progressively inangagitrate and ammonium
loading rates to the reactor, a nitrate remova @t 684 + 10 mg-N td’ was
achieved after 453 days of operation. This rateisur knowledge, by far the highest
reported for DAMO reactors, and far exceeds whatredicted to be required for
nitrate removal in a sidestream (5.6 to 135 mg-M't) or mainstream anammox
reactor (3.2 to 124 mg-N 1d?). Mass balance analysis showed that the nitrite
produced by nitrate reduction was jointly reducgdabhammox bacteria at a rate of
354 + 3 mg-N [’d*, accompanied by an ammonium removal rate of 288mg-N L
'd?, and DAMO bacteria at a rate of 330 + 9 mg-NdL'. This study shows that the
nitrate reduction rate achieved by the DAMO proceas be high enough for
removing nitrate produced by anammox process, whichild enable complete

nitrogen removal from wastewater.

Key words. anaerobic methane oxidation; membrane biofilmctaa Candidatus

Methanoperedens nitroreducens; nitrate reductita) nitrogen removal; anammox
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1. Introduction
Throughout most of the twentieth century, both tdwing anaerobic methane
oxidation (DAMO) and anaerobic ammonium oxidati@mgmmox) processes were
thought to be “impossible” (Strous and Jetten, 2004e discovery of DAMO and
anammox microorganisms has not only dramaticalfnged the understanding of the
global carbon and nitrogen cycles, but also opesoadle perspectives to achieve high
levels of nitrogen removal with a minimized carbfmotprint during wastewater
treatment (Guo et al., 2013).

Anammox is an autotrophic process and is able twex ammonium to nitrogen
gas anaerobically with nitrite as the sole electioceptor (van de Graaf et al., 1996,
1997; Kuenen, 2008):

NO; + 1/1.32NH" — 1.02/1.32N + 0.26/1.32N@ (1)

The identification of the responsible chemolith@ddphic bacteria, i.e. anammox
bacteria (Strous et al., 1999), stimulated the egpption of their applied and
ecological significance. Moreover, the anammox pssds an economically attractive
and environmentally friendly alternative to currevdstewater treatment, enabling a
high-level bioenergy recovery and resulting in Iskgige production, oxygen supply
decrease andJ® emissions reduction (Kartal et al., 2010a; Kastal., 2010b; Hu et
al.,, 2013). The partial nitrification-anammox presg has to date attracted
considerable attention for its application to treatious types of wastewaters (e.g.
anaerobic digestion liquor, landfill leachate andustrial wastewaters) (Hippen et al.,
2001; van der Star et al., 2007; Joss et al., 2B0%a et al., 2010). Both the one-
stage processes, e.g. CANON (Completely Autotrogditogen removal Over
Nitrite) (Jetten et al., 2001), OLAND (Oxygen-Limd Autotrophic Nitrification-

Denitrification) (Kuai and Verstraete, 1998), ahe two-stage process known as the
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SHARON (Single reactor system for High activity Amnmum Removal Over
Nitrite)-anammox process (van Dongen et al., 20@1)e been installed and operated
in full-scale. For example, stable sidestream tneatt of anaerobic sludge digestion
liquor with an ammonium concentration higher th&® 3ng-N L* has been widely
applied in full-scale wastewater treatment plantan(Hulle et al., 2010). More
significantly, there is a growing realization abexpanding the sidestream anammox
technology towards mainstream applications (Jedtal., 1997; Kartal et al., 2010a).
Despite the challenges caused by the low nitrogecentration (<100 mg-N1) and
low, ambient temperature associated with mainstreastewater (Hendrickx et al.,
2012), several studies showed that nitrogen remowald be achieved with the
anammox process from mainstream wastewater (Licali ,€2014b; Lotti et al., 2015).

In addition to the relatively long start-up timeusad by the anammox bacteria’s
long doubling time (11-20 days) (Strous et al., 89%etten et al., 2009), which is
being addressed through growing large quantitieseefling cultures, the anammox
process presents some other limitations. Accordmd=quation 1, even with an
optimal ammonium to nitrite molar ratio of 1:1.32the feed, the anammox process
can only remove 89% of the total nitrogen theosadiyc with 11% of the nitrogen
converted to nitrate. The nitrogen removal efficierreported in literatures was
normally around 70%, since the effluent from thetiphnitritation reactor cannot
ensure the ideal ratio of 1:1.32 (van Hulle et2010; Lotti et al., 2014a).

The discovery of the DAMO process, in whichtina@e is oxidized anaerobically
to provide electrons for denitrification (Raghoetiag et al., 2006; Hu et al., 2009;
Ettwig et al., 2010; Haroon et al., 2013), providesy opportunities to achieve
nitrogen removal from wastewater by utilizing metbas the electron donor under

anaerobic conditions (Luesken et al., 2011; Shalet2013). Several recent studies
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confirmed the presence of microorganisms able &g@bically oxidize methane with
nitrite or nitrate as the electron acceptor (Ettwigal., 2010; Haroon et al., 2013).
Ettwig et al. (2010) identified a novel bacteriuhGandidatus Methylomirabilis
oxyfera’, which is able to reduce nitrite to nitevggas with methane as the electron
donor, while Haroon et al. (2013) discovered a hoaschaeon, Candidatus
Methanoperedens nitroreducens’, which is capableooiverting nitrate to nitrite
using methane as the electron donor. These micomgs are collectively called
DAMO microorganisms. The reactions mediated by DAM@haea and DAMO

bacteria are summarized as Equations 2 and 3,atesgg.

NOs + 2/8CH, — NOy +2/8CQ + 4/8H0 )

NO, + 3/8CH, + H" — 1/2N, + 3/8CQ + 10/8H0 (3)

The discovery of Equation 2 provides a possibiifyachieving complete nitrogen
removal in an anammox reactor by supplying biogamtaining methane) as an
electron donor to DAMO organisms. Several recamdiss have indeed demonstrated
that anammox and DAMO organisms can grow in a singdactor fed with
ammonium, nitrate/nitrite and methane (Lueskenlet2811; Haroon et al., 2013;
Ding et al., 2014; Hu et al., 2015). Two bioreastseeded with the same inocula
(DAMO archaea, DAMO bacteria and anammox bactevee operated by feeding
nitrate and nitrite as electron acceptors, respelgti Although fed with different
electron acceptors, DAMO archaea dominated botbtoesawith anammox bacteria
as a flanking partner. However, DAMO bacteria dmzgred when the reactors
reached stable state (Hu et al., 2015). In anathely, ammonium was supplied to a
culture dominated by DAMO bacteria in a sequendiatgh reactor (SBR). After 161

days of enrichment, a coculture dominated by DAMfteria and anammox bacteria
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was established. The nitrite removal rate of theuttare was 100 mgNtd?, and 33%
of which was contributed by DAMO bacteria (Lueskeinal., 2011). These two
studies indicated that DAMO organisms and anammagtdsia could build a
relationship with each other and they were capableonsuming nitrate/nitrite and
ammonium simultaneously. In spite of the feasildexistence of DAMO organisms
and anammox bacteria, the nitrogen removal rat&R@y of the cocultures in these
two studies were only 25 (Hu et al., 2015) and a®pN L'd™ (Luesken et al., 2011),
respectively. Particularly, the nitrate/nitrite vetion rates of DAMO organisms were
only 13 and 33 mg-N td?, respectively, which were orders of magnitude lothan
that required for practical applications (Lueskeanle 2011; Hu et al., 2015).

Recognizing the potential of nitrogen removal vipaatnership between anammox
and DAMO organisms, Shi et al (2013) investigatied possibility of achieving a
higher NRR with the use of a membrane biofilm readMBfR). In this system,
hollow fiber membranes were used to supply metlaankealso to provide a surface
for the growth of the slow-growing DAMO and anammarsganisms. Nitrate and
ammonium were periodically directly fed to the ldjiphase. Simultaneous nitrate
and ammonium removal was achieved in this readtarrate of 190 mg-N td* and
60 mg-N L'd?, respectively. Isotopic studies revealed thatogién removal was
achieved through a partnership of DAMO archaea, [@MAlkcteria and anammox
bacteria. While the rates are an order of magnitugker than those obtained in the
previous studies with suspended culture (Lueskeh. e2011; Kampman et al., 2012,
Kampman et al., 2014; Hu et al., 2015), these ratghout further improvement,
would not enable the practical application of tlmenbined DAMO and anammox
processes for nitrogen removal.

The aim of this work is to reveal if the DAMO orgams can catalyze nitrate
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reduction at a rate that is practically useful Wastewater treatment under optimal
conditions despite their low biomass-specific ativio this end, we progressively
increased the nitrate and ammonium loading ratésedVIBfR reported in Shi et al.

(2013) and subsequently operated the MBfR as aimtamis reactor rather than a
SBR. The nitrate and ammonium removal rates of MMBfR were measured to

evaluate the reactor performance under differemrainal conditions. The data
were then analyzed with a mass balance model tmatst the rates of all relevant

reactions (Equations 1-3 listed above).

2. Methods

2.1 MBfR set-up

The setup of the MBfR system in this work is shownFigure 1. One bundle of
hollow-fiber membrane, consisting of 900 polyacomitrile hollow fibers with a total
surface area of 1 mwas fixed inside a polysulphone tube as the mambmodule
(AIP-2013, Pall, Japan). The length of each holfdyer is 552 mm with an inside
diameter of 0.8 mm. The fiber is made of compositderials. The outer and inner
layers are made up of macroporous material. Betwkese two layers is a dense
porous layer. The total volume of the membrane reod1150 mL, comprising a
working volume of 450 mL for liquid flow and biofii growth, a volume of 300 mL
inside the hollow fibers for gas delivery, and duwoe of 400 ml for fiber material
occupation.

The bottom end of the hollow fibers was linked tgas cylinder, and the feeding
gas was forced to penetrate through the wall dbhofibers by sealing the top end of
the hollow fibers. The gas pressure of interioldwlfibers was monitored by a gas-
pressure gauge (Ross Brown, Australia) and manuwaljysted by the regulator

connected to the gas cylinder.
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A 2.4 L glass bottle was used to store fresh medzontaining nitrate and
ammonium. To prevent air leaking into the vessd,lagas bag containing nitrogen
gas was connected to the bottle. The medium wasgaated to the bulk liquid
through a feeding pump. The medium and bulk liquids quickly mixed and
recirculated by a peristaltic pump (Masterflex, US#m the bottom of the reactor to
the top.

A 330 mL overflow bottle with 180 mL headspace vsa$ up to keep the liquid
volume of the MBfR at the same level. The liquigide the bottle was mixed by a
magnetic stirrer (Labtek, Australia) at 200 rpm ahé pH of which was being
monitored by a pH meter (Oakton, Australia). Liggamples were collected through
the liquid sampling ports on the bottle to evalutdliie performance of the MBfR. A
water seal bottle was connected to the overflowldti release nitrogen gas and £O
produced in the MBfR and residual methane, alsegmed air from getting into the
system. The liquid volume of the overflow bottlesmaot considered during HRT
calculation, since there was no biological actiutyhe bottle.

2.2 Gasand medium

The gas mix supplied to the reactor was composé&Duf CH,, 5% CQ and 5% N
(Coregas, Australia). The fresh medium componepts (iter) were as follows:
KH,PO,, 0.075 to 0.11 g; CagkH,0, 0.3 g; MgSQ@ 7H,0, 0.2 g; NaNG@, 3.643 to
9.107 g; NHCI, 1.146 to 1.529 g; acidic trace element solytbd mL, alkaline trace
element solution, 0.2 mL (Ettwig et al., 2009).

2.3 MBfR operation

The MBfR was operated for about 453 days at 22 & ZPhe pH of MBfR was

maintained at 7-8 by manually dosing 1 M HCI sauatieveryday. Two stages,
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namely SBR stage (Day 0-212) and continuous-feediage (Day 238-453), were
involved in the operation.

In the SBR stage, a 24 hr cycle consisted of 5 afii50 mL medium supply
(recirculation pump stopped running during thisigérand 150 mL effluent was
discharged at the same time) and 1435 min of bicdbgeaction as described
previously (Shi et al., 2013), which resulted ihyalraulic retention time (HRT) of 3
days. At the initial time of the SBR stage (DayZ);3he concentrations of nitrate and
ammonium in influent were 600 mg-N*Land 300 mg-N L, respectively. With the
decrease of nitrate and ammonium concentrationtheneffluent, the nitrate and
ammonium concentrations in the influent were pecalty increased. Since the
nitrate removal rate increased faster than the amumoremoval rate, the influent
nitrate and ammonium concentrations were elevatddb®0 mg-N [* and 400 mg-N
L between days 197 and 212, respectively. With tmerovement of NRR,
continuous-feeding was applied in the second st{@py 238-453) to avoid the
fluctuation of nitrate and ammonium concentrationsthe reactor. The influent
(nitrate: 1000 mg-N &; ammonium: 400 mg-N 1) feeding rate was controlled at
300 mL d*, which led to a decreased HRT of 1.5 days. Theeuatnations of nitrate
and ammonium in the influent was maintained at 1GO® 400 mg-N L,
respectively, resulting in a constant NLR of 933-ld."d™*. The gas pressure of
inner hollow fibers was changed from 1.3 to 1.6 atrthis stage.

2.4 Chemical and microbial analysis

Liquid samples of MBfR were taken regularly to detme the concentrations of
NH,"-N, NO,-N and NQ™-N. The concentrations of nitrogenous compoundthén

influent and effluent were measured by a LachatcKinem8000 Flow Injection

Analyzer (Lachat Instrument, Milwaukee, WI) (Huadt, 2009). Volatile suspended
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solids (VSS) were determined in the effluent to mjilp the biomass loss.
Fluorescencen situ hybridization (FISH) was conducted on Day 453 ascdbed
previously (Shi et al., 2013).
2.5 Biological reaction rates deter mination
The NRR of the MBfR system was determined by thtean@monium oxidation rate
(rNH4") and nitrate reduction rate (rNQ FISH test indicated that DAMO archaea
(50%), DAMO bacteria (20%) and anammox bacterig{R(ointly dominated the
microbial community in the biofilm. Based on thesdhetical yields of the DAMO
and anammox organisms (Chen et al., 2014), biodabifty of yielded biomass
(Lee and Rittmann, 2000) and the amount of biomasshed out within effluent, the
organic matter available for denitrification in tMBfR was calculated as only 0.019
g-VSS L'd? at the final steady stage. lIts contribution te thtal denitrification rate
was estimated to be below 2%, which is negligiblaerefore, three biological
reactions, namely nitrate reduction by DAMO archded, nitrite reduction by
DAMO bacteria (r2) and ammonium oxidation by anamniacteria (r3), were
considered as the dominating nitrogen conversiaati@ns in the MBfR system.
Based on the Equations 1-3, the nitrogen conversates rl, r2 and r3 can be

shown as follows:

r3 = rNH;" (4)
rl =rNQG; + 0.26 INH* (5)
r2 = rNQ; + 0.26 rNH" - 1/1.32 INH" (6)
3. Reaults
3.1 Performance of the M BfR

The MBfR (as shown in Figure 1) was operated in stages over a period of 453

days. The nitrate, nitrite and ammonium concemnatiin the influent and effluent

10



235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

were measured regularly (Figure 2a). These measnts, along with the hydraulic
loading rates, were used to calculate the totabgén loading rates (NLRs), the
nitrate and ammonium removal rates and the totaR&Rvith the results shown in
Figure 2b.

In the SBR stage (Day 0 - 212), the nitrate remoatd, ammonium removal rate
and total NRR remained relatively stable at 1824#rig-N L*d?, 45 + 5 mg-N C'd*
and 228 + 14 mg-N td, respectively, prior to the first change of NLR Bay 53.
By Day 40, the effluent nitrate concentration beeamgligible, indicating complete
nitrate removal. On Day 53, the nitrate concerdrain the influent was increased
from 600 mg-N [*to 700 mg-N [*. Both the nitrate and ammonium removal rates
decreased slightly following the change; howevethlyecovered in the following 35
days, which triggered further increase in the iafiunitrate concentration to 1000
mg-N L™ on Day 137. Indeed, an exponential increase ofittnate, ammonium and
total nitrogen removal rates occurred during ddy$5® to 212, with the progressive
increase in the NLR. The nitrate removal rate redo#85 mg-N [*d* at the end of
this period, while NLR reached 633 mg-N'd* (1500 mg-N@-N L™, 400 mg-
NH,"-N L™). No nitrite accumulation was observed during ¢nére phase, with the
nitrite concentration in the effluent mostly belav® mg-N L (Figure 2a).

In the continuous-feeding mode during days of 28833, the HRT was shortened
to 1.5 days from 3 days with the influent nitrated eammonium concentrations at
1000 and 400 mg-N1, respectively, to further increase the NLR to 83$N L*d™
Unfortunately, accidental pressure losses from ¢jas cylinder due to faulty
connecting tubing occurred on Day 238, 312 and(8B6wn by arrows in Figure 2b),
which caused sharp drops in the reactor performenak cases. Biomass was visible

in the effluent after the accidents, indicatingtpefrthe biomass was detached from
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the hollow fibers. It took approximately two montits each case for the reactor
performance to fully recover, causing relativelygka variations in the performance.
However, the rates returned to similar values aftarh recovery. During Day 433 to
453, during which the reactor performance was stdhke average nitrate, ammonium
and total nitrogen removal rates were 614 + 10 mg’N*, 268 + 2 mg-N [’d*, and
882 + 11 mg-N [’d*?, respectively, representing approximately 92%,%@Gthd 95%
of the respective loading rates. These valuesianiéas to those in other periods when
the reactor fully recovered. Like in the SBR phase, nitrite accumulation was
observed in this phase, with the nitrite concerdrain the effluent mostly below 1.0
mg-N L (Figure 2a).

3.2 Rates of key reactions (Equations 1-3)

FISH measurement revealed that DAMO archaea (50%MO bacteria (20%) and
anammox bacteria (20%) jointly dominated the mi@bbommunity in the biofilm,
which meant that other microorganisms formed a kmalt of the microbial
population. The calculation of the contribution leéterotrophic denitrification to
nitrate and nitrite removal (less than 2%) corraelt@d the microbial data. Both these
results suggested that the three reactions (Equaik3) were the dominant
bioprocesses in this reactor. Hence, the aboveepted (apparent) nitrate and
ammonium removal rates and the absence of nitrieuraulation enable the
calculation of the rates of Equations 1-3 with Bopres 4-6. This subsequently
enables the calculation of the nitrate reductioie & DAMO archaea (catalyzing
Equation 2) and the nitrite reduction rate by anamr(catalyzing Equation 1) and
DAMO bacteria (catalyzing Equation 3). These ratesng the continuous operation
phase are shown in Figure 3. The average ‘normal With data in the disturbed

periods removed) nitrate removal rate by DAMO aeha@s 684 + 10 mg-N1d™,
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while the average ‘normal’ nitrite removal rate BAMO bacteria and anammox
bacteria was 330 + 9 and 354 + 3 mg-NdL, respectively. The nitrate removal rate
by DAMO archaea was approximately 11% higher thenapparent nitrate removal
rate (614 + 10 mg-N td). This may be because that, in addition to renpwiitrate

in the feed, DAMO archaea also removed nitrate pred by the anammox reaction.
The nitrite production rate by DAMO archaea shob#l equivalent to its nitrate
removal rate (i.e. 684 + 10 mg-N't"). DAMO bacteria and anammox bacteria are
estimated to remove approximately 48% and 52%, ectsely, of the nitrite

produced.

4. Discussion

Although methane-supported biological nitrate/tetremoval from wastewater has
been investigated in several lab-scale studiegameval rates achieved were always
too low to be practically applicable. This has beeca major bottleneck for applying
this technology in practice (Kampman et al., 2088 et al., 2013; Kampman et al.,
2014). Table 1 summarizes the DAMO-supported mteatd nitrite reduction rates
reported in literature to date, in comparison witie anammox process. The nitrate
reduction rate achieved in this study was 684 mig"d*, which is 2.3 times higher
than that obtained in Shi et al. (2013) and 7.235.8 times higher than other rates
(Table 1). To the best of our knowledge, this is kiighest nitrate reduction rate by
DAMO organisms to date, indicating that DAMO micrganisms have a great
capacity of removing nitrate.

The NRRs of the anammox process, either in oneestagn two-stage systems, in
sidestream wastewater treatment, were normally éetws0 and 1200 mg-Ng*
(Hu et al., 2013). Thus the nitrate production sabé sidestream anammox process

ranged from 5.6 to 135 mg-N'd™ (i.e. 11% of the anammox NRR). Similarly, the
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NRRs in mainstream anammox process in recent stwadgee generally between 28
and 1100 mg-N tid* (Regmi et al., 2014), which led to the nitratechretion rates
from 3.2 to 124 mg-N td™. It means that complete nitrogen removal can Gely
obtained when the nitrate reduction rate reachds mg-N L*d’ or higher. The
nitrate reduction rate in this study is much higtiean what required as calculated,
demonstrating that the DAMO process is capablesnfaving nitrate completely in
anammox systems. In theory, complete nitrogen ramncan still be achieved when
the NRR of the anammox process is up to 6104 mg:t*|which is much higher
than what acquired in most lab-scale or full-secateogen removal systems involving
anammox.

This high nitrate reduction rate in the MBfR colnld attributed to several factors.
Firstly, biomass retention was recognized as d fataor for good nitrogen removal
by DAMO and anammox microorganisms due to theiwsfpowth rate (Tang et al.,
2011; Kampman et al., 2012; Shi et al., 2013). Theoupling between SRT and
HRT in the MBfR can efficiently prevent the micrganisms from being washed out
of the system (Syron and Casey, 2008), which igiquéarly important for the
proliferation of slow-growing microorganisms sucls ®AMO and anammox
microorganisms. In the proposed MBfR, hollow-filmeembrane was used as a carrier
for microorganism attachment. Biofilm was visible e out-layer of membrane and
biomass in the effluent was hardly visible duringe@ation. The biomass loss rate in
the effluent was only 0.006 g-VSS'ti* in the final steady stage, indicating superior
biomass retention in the MBfR system. Secondlyatked nitrate loading rate might
have stimulated the growth of DAMO archaea, whidmswgupported by the visible
increase of biofilm thickness. Also the percentaf® AMO archaea increased to 50%

of the microbial population compared to 20-30% m & al., (2013). Therefore the
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increase of nitrate removal rate in the reactor in@ymainly due to the increase of
DAMO archaea biomass. Thirdly, the continuous-fegdinode applied during the
operation and the decrease of HRT from 3 days fodhys accelerated liquid
discharge from the MBfR. It was speculated thaueaadation of inhibiting products
might confine the activity of DAMO organisms (Ettvet al., 2008; Kampman et al.,
2012). Decrease of the HRT may have helped waskheypotential inhibitors when
the microbial activity was at a high level.

Although a high nitrate reduction rate was obtaimethis study, the rate decreased
severely after pressure losses in the methaneal@eny line. The losses of pressure
inside the hollow fibers caused biomass detachrfrent the biofilm (biomass was
observed in the effluent). Although the MBfR wasalfly re-pressurized when losses
of pressure were detected, the nitrogen removal kept decreasing for a couple of
weeks. This could be attributed to the fact thaacleed biomass was trapped in the
dense fibers and was only completely washed owt faw weeks. The suspended
biomass was still active, which may explain theasldrop of reactor performance.
The performance could only be completely recovexrféer around two months every
time, revealing that the reactor is sensitive ® fdulure of biomass retention. Thus,
further research is needed to improve the robustoethe MBfR system.

It should be noted that, with the aim of revealihg potentially achievable nitrate
reduction rate by DAMO organisms, nitrate was usedthe feed along with
ammonium. The fact that no nitrite accumulation vediserved during the study
suggests that the activities of anammox and DAMOtéva were limited by the
activity of DAMO archaea. In practice, the feedaim anammox reactor comprises
mainly nitrite and ammonium (preferably at a ratiol.32:1). Hence, the microbial

community in the biofilm would be significantly ¢#rent from that in our reactor.
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However, the DAMO archaea population is expecteddavelop, due to the
simultaneous presence of nitrate and methane, ladilisence of electron donors
supporting the development of ordinary nitrate oeats. Our study suggests that
DAMO archaea population can be retained in theilmofcatalyzing the removal of
nitrate at a satisfactory rate and therefore fatifig a high-level of nitrogen removal
that is otherwise difficult to achieve in an ananxmmeactor. In our system, DAMO
bacteria were present removing 48% of the nitiiée. hypothesize the abundance of
DAMO bacteria may be related to the limited supptyammonium (relative to the
availability of nitrite) in our system. This may tnbe the case in a MBfR fed with
nitrite and ammonium at a proper ratio. Based @ khown kinetics of anammox
bacteria and DAMO bacteria, anammox bacteria apeeed to have a competitive
advantage over DAMO bacteria (Luesken et al., 2Hii et al., 2015). However, a
detailed MBfR study with ammonium and nitrite iretfeed is required to get a full

understanding of the population dynamics and regedormance.

5. Conclusion

This study evaluated the feasibility of improvingget nitrate reduction rate for

complete nitrogen removal in a MBfR system. Themmaonclusions are drawn as

follows:

« A high level of nitrate reduction rate (684 + 1@ L*d>) can be achieved by
DAMO archaea, which is practically useful for botfainstream and sidestream
nitrogen removal.

» Complete nitrogen removal is possible by integatime DAMO and anammox
processes, with methane as the sole electron @oradning nitrate removal.

* A membrane biofilm reactor is a suitable technolémgyintegrating the anammox

and DAMO processes.
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* Both the nitrate reduction rate and the whole memébr biofilm reactor
performance can be elevated by increasing thegdtrdoading rate and applying

a continuous-feeding mode.
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Table 1 Comparison of the DAMO nitrate and nitriéeluction rates and anammox nitrite reduction

rate reported to date

Configuration

Process and (Types of Temperature Microbial Nitrate removal rafe Nitrite removal rate
reference yp (°0) composition (mg-N L'd?) (mg-N L'd?)
aggregates)
Anammox-related (Biofilm/suspended Ammonium
processes (Hu et al.,sludge/granular/hybr 22 - 37 oxidizing bacteria; - 28 — 683
2013) id) anammox bacteria
Synergetic DAMO  SBR (Suspended
- 77 for anammox
and anammox Anammox bacteria; L
30 ; - bacteria; 33 for
processes (Luesken sludge) DAMO bacteria :
DAMO bacteria
etal., 2011)
DAMO process
(Kampman et al., SBRsﬁljJsg)e nded 30 DAMO bacteria - 38
2012) 9
DAMO process Membrane reactor
(Kampman et al., (Suspended sludge 20 DAMO bacteria - 36
2014) and biofilm)
Synergetic DAMO Anammox bacteria;
and anammox SBR (Suspended 4 13 for anammox
22 DAMO archaea 13 .
processes (Haroon sludge) bacterid
etal., 2013)
Synergetic DAMO
and anammox Anammox bacteria;
processes (nitrate- SBR (Suspended 35 DAMO archaea 16 16 for anarmmox
sludge) bacterid
fed reactor) (Hu et
al., 2015)
Synergetic DAMO
and anammox Anammox bacteria;
processes (nitrite- SBR (Suspended 35 DAMO archaea 5 25 for anarnmox
sludge) bacterid
fed reactor) (Hu et
al., 2015)
Sy;r?(;gaer::mDrﬁcl)\ﬁl(O SBR (Suspended Anammox bacteria; 8 for DAMO
. P 35 DAMO bacteria; 83 bacterig; 75 for
processes (Ding et sludge)
DAMO archaea anammox bacterfa
al., 2014)
Sy;r?(;gaer::mDrﬁcl)\ﬁl(O Anammox bacteria; 126 for DAMO
: MBfR (biofilm) 22 DAMO bacteria; 206 bacteri&; 80 for
processes (Shi et
DAMO archaea anammox bacterfa
al., 2013)
Sy;r?(;gaertlg:mDrﬁcl)\?(o Anammox bacteria; 330 for DAMO
MBfR (biofilm) 22 DAMO bacteria; 684 bacteri§; 354 for

processes (this
study)

DAMO archaea

anammox bacterta

a nitrate removal rate of DAMO archaea was caledldty Equation 5.
b nitrite removal rate of anammox bacteria waswudated by Equation 1.
¢ nitrite removal rate of DAMO bacteria was caltethby Equation 6.
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Figure 2 (a) Ammonium and nitrate concentrations in the influent and effluent, and the hydraulic
retention time, and (b) the total nitrogen loading rates, and the ammonium, nitrate and total
nitrogen removal rates, during 453 days of operation. Arrows on Day 238, 312 and 380 indicated
pressure losses in the hollow fibers, leading to reverse permeation of bulk liquid to the interior
space of the hollow fibers. Grey box was the transitional period between SBR and continuous
mode, which operated with the same conditions as applied in the SBR stage but additional
ammonium and nitrate were added to guarantee adequate substrates.



1000

A Nitrite removal rate by anammox bacteria
¢ Nitrate removal rate by DAMO archaea
8004 e Nitrite removal rate by DAMO bacteria

| o~ 2

\ o o ¢ &2

600 Yo ARV
\»‘p F AL RN 4

s

B » 139 4
% 400 - L pove
%o MJ"*" ® _e .'.'

200_. XM; th‘imﬁ“:ﬂ‘fﬁ

240 300 360 420 480
Time (d)
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Highlights
* A coculture of DAMO archaea, DAMO bacteria and anammox bacteria was
enriched.
» High nitrate reduction rate was obtained by DAMO archaea.

 The achieved nitrate reduction rate is practically useful for wastewater

treatment.
* Biogasisapotential electron donor for nitrogen removal from wastewater.

A membrane biofilm reactor is a suitable technology for anammox and

DAMO processes.



