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Abstract 
 
 Stroke is the second leading cause of mortality worldwide and a major cause of 

long-term disability. Clinically, stroke can be classified as either ischemic or haemorrhagic. 

Ischemic stroke is the most common type of stroke and accounts for approximately 80% of 

all stroke cases. The pathophysiological processes following stroke are complex and 

extensive, and include bioenergetic failure, excitotoxicity, oxidative stress and 

inflammation, which leads to necrotic and apoptotic cell death. Recent findings have 

provided insight into a newly described inflammatory mechanism that may contribute to 

neuronal and glial cell death during cerebral ischemia known as sterile inflammation 

involving intracellular multi-protein complexes termed inflammasomes.  

 
 Despite neuroprotective agents decreasing neuronal cell death and infarct size 

under in vitro and in vivo stroke models, respectively, all such agents tested in stroke 

patients have failed in clinical trials. Novel potential therapies envisaged to target multiple 

cell injury mechanisms in the brain following cerebral ischemia include – intravenous 

immunoglobulin (IVIg) and intermittent fasting (IF). IVIg is a purified polyclonal 

immunoglobulin preparation obtained from the plasma of several thousand healthy donors. 

Numerous experimental studies by our laboratory demonstrated that administration of IVIg 

was able to significantly attenuate brain injury in mice subjected to experimental stroke. 

Moreover, IF is a form of dietary energy restriction and encompasses alternate periods of 

ad libitum feeding and fasting, which have been proven to decrease the development of 

age-related diseases. Previous experimental studies demonstrated that IF was able to 

significantly attenuate brain injury outcome in mice subjected to experimental stroke. 

However, the precise mechanism(s) in how IVIg and IF directly protect neurons and 

cerebral tissue from inflammasome-mediated sterile inflammation following ischemic 

stroke remains to be determined and is a major focus of this research thesis.  

 
 In the first study of this research thesis, we performed a comprehensive 

investigation into the expression patterns of NLRP1 and NLRP3 inflammasome proteins 

and both IL-1β and IL-18 in mouse primary cortical neurons subjected to simulated 

ischemia and in a model of focal ischemic stroke in C57BL/6J mice. In addition, 

determined whether the NLRP1 and NLRP3 inflammasome could be targeted with a 

Caspase-1 inhibitor and IVIg for therapeutic intervention. The study demonstrated that 

ischemia-like conditions increased the levels of NLRP1 and NLRP3 inflammasome 

proteins and both IL-1β and IL-18 in neurons and brain tissues. Moreover, Caspase-1 
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inhibitor and IVIg treatment protected neurons and brain tissue by a mechanism(s) 

involving Caspase-1 inhibition and suppression of NLRP1 and NLRP3 inflammasome 

activity, respectively, under in vitro and in vivo ischemic conditions. 

 
 In the second study of this research thesis, we provide evidence that the NF-κB and 

MAPK(s) signaling pathways are involved in regulating the expression and activation of 

NLRP1 and NLRP3 inflammasomes in neurons subjected to simulated ischemic 

conditions. This study established that activation of either the NF-κB and MAPK(s) 

signaling pathways are responsible for inducing the expression and activation of NLRP1 

and NLRP3 inflammasomes in neurons under ischemic conditions. In addition, the present 

study demonstrated that pharmacological inhibition of both the NF-κB and MAPKs 

signaling pathways was able to directly attenuate activation of NLRP inflammasomes in 

neurons under ischemic conditions. Furthermore, this study provided supporting evidence 

that IVIg treatment was able to significantly decrease NF-κB and MAPK(s) signaling 

pathway activation, which decreased the expression of NLRP inflammasomes, and 

subsequently attenuate inflammasome activity; in addition to increasing the expression of 

anti-apoptotic proteins, Bcl-2 and Bcl-xL, in cortical neurons following ischemic conditions. 

 
 In the third study of this research thesis, we investigated the impact of prophylactic 

IF on NLRP1 and NLRP3 inflammasome activity in a model of focal ischemic stroke in 

C57BL/6J mice. This study demonstrated that prophylactic IF was able to significantly 

decrease apoptotic tissue damage by attenuating the activation of the NF-κB and MAPK(s) 

signaling pathways, and the expression of NLRP inflammasome proteins, and both IL-1β 

and IL-18; in addition to increasing the expression of anti-apoptotic proteins, Bcl-2 and Bcl-

xL in ischemic brain tissues.  

 
 In summary, the findings from this research thesis provided evidence of expression 

and a functional role for the NLRP inflammasomes in neuronal apoptosis and cerebral 

tissue damage under in vitro and in vivo ischemic conditions. It was demonstrated that 

activation of the NF-κB and MAPK(s) signaling pathways are responsible for inducing the 

expression and activation of NLRP inflammasomes. Furthermore, we established that a 

neuroprotective effect of IVIg and IF involved suppressing NLRP inflammasome activity 

through a mechanism(s) associated with decreasing the NF-κB and MAPK(s) signaling 

pathway in ischemic conditions. Finally, it was demonstrated that another neuroprotective 

effect of IVIg and IF involved increasing the expression of anti-apoptotic proteins, Bcl-2 

and Bcl-xL, through an unknown mechanism(s). Collectively, our findings identified 
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inflammasome inhibition as a novel mechanism by which IVIg and IF can protect brain 

cells against ischemic damage, suggesting a potential clinical benefit of therapeutic 

interventions that can target inflammasome activation in ischemic stroke. 
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CHAPTER 1:  
 

Pathogenesis of Acute Stroke and the Role of Inflammasomes –  
A Systematic Review 

 
 
1.1 Introduction:  
 
1.1.1 Definition 
 
 In accordance with the World Health Organization (WHO), stroke or cerebrovascular 

accidents is an acute condition characterized by a sudden decrease in blood flow to brain tissue 

resulting in impairment or loss of neurological function with symptoms persisting for more then 24 

hours, which can either be initiated by transient or permanent loss of cerebral blood flow (World 

Health Organization, 2010). The condition typically involves an immediate deprivation of both 

glucose and oxygen, which are needed to maintain the metabolic demands of the brain as it holds no 

energy reserves that can be drawn upon (Ahmad & Graham, 2010). 

 
1.1.2 Epidemiology 
 
 According to the World Health Organization (WHO), stroke is the second leading cause of 

mortality worldwide resulting in approximately 6.2 million deaths each year, which accounted for 

9.7% of all deaths in 2004 (World Health Organization, 2011). In Australia, stroke is considered 

one of the leading contributors to adult-related deaths and long-term permanent disability. 

According to the Australian Bureau of Statistics an estimated 12,000 people are affected by stroke 

annually, where 73% were first-time stroke patients. Of these patients, approximately 30% died 

within the first year of occurrence. Since stroke is a leading cause of permanent disability in 

Australia, it is recognised as a major economic health burden accounting for a total healthcare 

expenditure cost of $2.14 billion each year (Australian Bureau of Statistics).  

 
 Numerous lifestyle risk factors such as obesity, diabetes mellitus, hypertension, 

hyperlipidemia, cigarette smoking, physical inactivity and excessive consumption of alcohol have 

been associated with increasing the likelihood of stroke. Furthermore, it is recognized that ageing, a 

non-modifiable risk factor, is associated with increasing the incidence of stroke each year. 

Accordingly, it is predicted from statistical models that the incidence of stroke will increase from 

1.6-2.7 per 1000 people in the general population to 14.3 per 1000 people from 45 years of age and 

subsequently double with each decade to approximately 120 per 1000 people amongst individuals 

over 75 years of age (Mukherjee & Patil, 2012; Strong et al., 2007). The emergence of an ageing 

population in developed countries will inevitably increase the incidence of stroke annually where it 
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is predicted that worldwide mortality from stroke will be 12.1% by the year 2030 (Mukherjee & 

Patil, 2012; Strong et al., 2007). These alarming statistics only reinforces the notion that stroke is 

indeed a major public health concern with enormous financial implications to the healthcare system 

in developed countries in treating these patients. Hence, the need for comprehensive research in the 

field of stroke is warranted, which will incite an improved understanding of stroke pathophysiology 

and subsequently develop improved future treatments for stroke patients. 

 
1.1.3 Classification of Stroke: 
 
 Stroke can be classified into two major subtypes such as ischemic stroke or haemorrhagic 

stroke.	
  Ischemic stroke commonly accounts for approximately 80-87% of all stroke cases, and can 

be instigated by an embolic or thrombotic occlusion of a cerebral artery, whereas haemorrhagic 

stroke accounts for approximately 13-20% of all stroke cases and is initiated by the rupture of a 

cerebral blood vessel (Amarenco et al., 2009; Gilgun-Sherki et al., 2002). Haemorrhagic stroke can 

be further divided into sub-arachnoid haemorrhage and intra-cerebral haemorrhage (Strandgaard, 

1996; Wang, 2010). Since ischemic stroke is the major focus of this research thesis further 

discussions will be in the context of ischemic stroke. 

 
Classification of Ischemic Stroke 
 
 Depending on the involvement of both the affected brain area and pathophysiological 

mechanisms, ischemic stroke can be further categorized into: global and focal ischemia 

(Bacigaluppi et al., 2010; Durukan & Tatlisumak, 2007). 

 
a. Global ischemic stroke 
 
 Global ischemic stroke occurs when blood flow to the entire brain or a majority part of the 

brain is stopped or severely reduced due to hemodynamic changes in the peripheral circulatory 

system (Bottiger et al., 1999; Yonekura et al., 2004). For example, this commonly occurs during a 

cardiac arrest associated with myocardial infarction (i.e. heart attack) where blood flow to the brain 

immediately ceases within seconds (Bottiger et al., 1999; Yonekura et al., 2004). In addition, other 

major causes include carotid stenosis and hypotensive shock where a decrease in mean peripheral 

arterial blood pressure reduces cerebral blood flow and subsequent perfusion pressure in the brain 

(Jovicevic et al., 2010). During a global ischemic stroke, the brain area commonly affected will be 

the regions between the major cerebral and cerebellar arteries, known as the “boundary zone” or 

“watershed areas”, which accounts for approximately 10% of all ischemic stroke cases 

(Demaerschalk et al., 2010). 
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b. Focal ischemic stroke 
 
 Focal ischemic stroke occurs when cerebral blood flow is attenuated in a specific brain 

region (Hata et al., 2000; McAuley, 1995). Dependent on the nature of the occlusion in the cerebral 

artery, focal ischemic stroke can be further subdivided into thrombotic or embolic stroke (Adams et 

al., 1993; Amarenco et al., 2009). 

 
 Thrombotic stroke occurs when a blood clot is formed within a cerebral artery, which is 

commonly caused by atherosclerosis where the vascular endothelium is constantly damaged 

resulting in the activation of numerous vasoactive enzymes that leads to the formation of an 

atherosclerotic plaque within the cerebral artery (Fukusumi, 2010). Furthermore, additional 

pathological changes in atherosclerosis such as thrombosis, ulceration and calcification increases 

the risk of blood clot formation (Andrade-Machado, et al., 2001). Other pathological conditions 

such as hypercoagulable states, fibromuscular dysplasia, arteritis and arterial trauma can 

comparably lead to thrombotic strokes (Broussalis et al., 2012).  

 
 Embolic strokes occurs when a blood clot or atherosclerotic plaque fragment that is formed 

elsewhere in the circulatory system detaches and is mobilized through the blood stream and 

occludes a cerebral artery (Donnan, 2009). The two major causes of embolic strokes are large 

arterial emboli and left cardioembolic emboli. Moreover, additional sources of emboli that may 

occlude the cerebral vasculature are fat, bacterial clumps, metastatic tumours and foreign bodies 

(Dudney & Elliot, 1994; Jovicevic et al., 2010). The most common artery to be occluded by an 

embolus are the left and right middle cerebral arteries since 80% of blood volume that travels 

through the arteries in the neck eventually flows through the middle cerebral artery (Demaerschalk 

et al., 2010). 

 

1.1.4 Cerebral Blood Supply and Flow Parameters 
 
 There are 4 major types of arteries responsible for supplying blood to cerebral tissue, which 

include the vertebral arteries (left and right) and internal carotid arteries (left and right). The 

internal carotid arteries further subdivide into the anterior and middle cerebral arteries (Purves et 

al., 2001). The middle cerebral artery is anatomically the largest cerebral artery and supplies blood 

to the cortical surface of the brain, and is the site where most cerebrovascular accidents occur in 

humans (Becker, 2009). Normal physiological cerebral blood flow (mL/100g of brain 

tissue/minute) and cerebral perfusion pressure (mmHg) to the brain is approximately 50-60mL/100g 

of brain tissue/minute and 60-130mmHg, respectively (Astrup et al., 1981). 
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1.2 Pathophysiology of Focal Ischemic Stroke – An Overview 
 
 Focal ischemic stroke occurs when cerebral blood flow is transiently or permanently 

attenuated, which initiates ischemic changes in a specific brain region caused by an embolic or 

thrombotic occlusion to a major cerebral artery. It is characterized by the formation of two regions 

within the ischemic territory, a central ischemic core surrounded by an ischemic penumbra (or peri-

infarct zone) due to focal hypoperfusion (Kumar et al., 2010; Lo, 2008). The size of the ischemic 

core and penumbra region will usually depend on the severity and duration of the cerebral artery 

occlusion, the affected brain region and vulnerability of certain populations of neurons and glial 

cells to ischemia (e.g. CA1 pyramidal neurons in the hippocampus are more susceptible to ischemic 

damage than dentate granule neurons) (Brouns & De Deyn, 2009; Mattson et al., 2001).  

 
 An important consideration to recognize in the formation of the ischemic core and ischemic 

penumbra region during ischemic stroke is limited by the level of cerebral blood flow that continues 

to perfuse the affected tissue (Mehta et al., 2007). Under physiological conditions, cerebral tissue 

requires continuous blood flow of at least 50mL/100g/min to sustain an adequate supply of both 

glucose and oxygen, which are utilized to maintain neurological function through energy (i.e. 

adenosine triphosphate; ATP) production by glycolysis and oxidative phosphorylation (Bisdas et 

al., 2004; Mehta et al., 2007).	
   Conversely, if cerebral blood flow is reduced to less then 

10mL/100g/min during ischemic stroke, an ischemic core region will develop (Astrup et al., 1981; 

Bisdas et al., 2004; Mehta et al., 2007). This ischemic core region will then undergo rapid, 

irreversible, necrotic cell death, resulting in an infarcted region of cerebral tissue that is 

metabolically, electrically and functionally inactive (Mehta et al., 2007). However, if cerebral blood 

flow remains between 10 and 50mL/100g/min, an ischemic penumbra may form between the 

ischemic core and normal healthy tissue (Astrup et al., 1981; Hossmann, 1994). This may generate 

a heterogeneous, meta-stable region of cerebral tissue that is metabolically active but electrically 

and functionally impaired (Astrup et al., 1981; Moskowitz et al., 2010). The availability of glucose 

and oxygen in the ischemic penumbra from collateral blood vessels will usually lead to a slower 

energy-dependent mode of cell death, known as apoptosis (Figure 1.1) (Broughton et al., 2009). If 

normal levels of perfusion are not restored in sufficient time, the penumbra will effectively merge 

with the ischemic core and increase infarct size (Baron, 1999; Weinstein et al., 2004). Since salvage 

of the ischemic penumbra may be associated with improved neurological outcome and recovery, 

this region is currently considered to be the most clinically relevant target for acute stroke therapy. 

 
 
 
 



	
   5 

 
Figure 1.1: Schematic diagram of the regions defined in the ischemic territory following occlusion of 
the middle cerebral artery in ischemic stroke. The level of cerebral blood flow that continues to perfuse 
the affected tissue following an ischemic stroke determines the formation of the ischemic core and 
penumbra. This figure is adapted and modified from Molecular targets in cerebral ischemia for developing 
novel therapeutics. Mehta et al., (2007). Brain Resarch Reviews; 4: p-34-66.      
 

1.3 The Ischemic Cascade 
 
 The ischemic cascade is a complex biochemical process of interlinked molecular and 

cellular reactions that are initiated in the brain following cerebral ischemia (Brouns & De Deyn, 

2009). The pathological effects of the ischemic cascade are highly dependent on a number of 

factors such as the severity and duration of the process, which can usually last from hours to days 

following blood restoration, whereby blood restoration alone can contribute significantly to the 

propagation of the ischemic cascade known as reperfusion injury (Brouns & De Deyn, 2009; 

Suwanwela & Koroshetz, 2007). In addition, the amount of damage inflicted upon cerebral tissue 

can be dependant on the brain region and cell type affected, where neurons are the most sensitive 

followed by microglia and endothelial cells to ischemia during an ischemic stroke (Mattson et al., 

2000; Mehta et al., 2007). In general, the ischemic cascade is characterized by the following 

biochemical events – bioenergetic failure, ionic imbalance, acidotoxicity, excitotoxicity, oxidative 

stress, inflammation and ultimately cell death via necrosis or apoptosis (Figure 1.2). 
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Figure 1.2: A schematic diagram of the major cell injury mechanisms involved in causing neuronal 
and glial cell death in cerebral ischemia. These cell injury mechanisms include bioenergetic failure, 
acidotoxicity, excitotoxicity, oxidative stress and inflammation. During cerebral ischemia there is decreased 
blood flow, and accordingly, insufficient delivery of both glucose and oxygen to the brain, which will induce 
bioenergetic failure by stopping or slowing ATP production via glycolysis and oxidative phosphorylation. In 
addition, reduced oxygen availability will initiate anaerobic glycolysis, which leads to increased production 
and accumulation of lactate within the ischemic tissue decreasing intracellular pH (acidosis) causing 
acidotoxicity and necrotic cell death in the brain. During cerebral ischemia there is a decreased production of 
ATP, which causes ATP-dependent ion pumps (e.g. Na+/K+-ATPase pumps) to fail causing widespread 
anoxic depolarization in neurons. This causes voltage-gated Ca2+ channels to open at the pre-synaptic 
terminals and allows an influx of Ca2+ ions, inducing uncontrolled release of glutamate into the synaptic 
cleft. In addition, the energy failure will impair the re-uptake of glutamate by glutamate transporters. The 
resultant build-up of glutamate at synapses will then overstimulate glutamate receptors on neighboring 
neurons, driving a further influx of Na+ and Ca2+ ions through channels gated by these receptors. The 
increased influx of Na+ ions into neurons will cause an osmotic movement of water into the cell, leading to 
cell swelling and brain edema. If energy supply is not restored in time, these changes will result in rapid 
necrotic cellular lysis of neurons. Concurrently, the increased concentration of Ca2+ ions within neurons can 
initiate a series of nuclear and cytoplasmic events that lead to lethal or non-lethal metabolic derangements 
known as excitotoxicity by activating catabolic enzymes, NO and ROS generating enzymes, and causing 
mitochondrial failure, which increases the production of ROS (oxidative stress) that degrade key cellular 
components inducing necrotic or apoptotic cell death depending on severity. ROS can damage organelles 
such as the endoplasmic reticulum and mitochondria, which can facilitate the release of additional Ca2+ ions 
and pro-apoptotic proteins into the cytosol, leading to local amplification of the initial ischemic insult by 
Ca2+ ions, and both endoplasmic reticulum stress and apoptosis through the intrinsic and extrinsic pathway. 
Finally, ROS can activate resident brain cells to increase the production and release of pro-inflammatory 
cytokines, which can cause cell damage and induce the expression of cell adhesion molecules on endothelial 
cells and leukocytes to facilitate leukocyte infiltration into the ischemic territory during reperfusion releasing 
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additional pro-inflammatory cytokines and ROS. In addition, chemokines can be released by activated brain 
cells and contribute to guiding leukocyte migration toward the ischemic tissue (ATP, adenosine triphosphate; 
I, intracellular; NO, nitric oxide; ROS, reactive oxygen species; Pro, pro-inflammatory). 
 

1.3.1 Bioenergetic Failure and Ionic Imbalance 
 
 The primary insult caused by cerebral ischemia is hypoperfusion, and accordingly, 

insufficient delivery of both glucose and oxygen to the brain, which will induce bioenergetic failure 

by stopping or slowing ATP production in the mitochondria (Hertz, 2008; Hertz & Dienel, 2002; 

Hertz et al., 2007; Rossi et al., 2007). The loss of ATP results in dysfunction of all ATP-dependent 

ion pumps, thus rendering neurons and glial cells highly susceptible to cerebral ischemia. A major 

consequence of ATP loss that occurs within minutes of ischemic insult is inhibition of both the 

Ca2+-ATPase and Na+/K+-ATPase pumps, which commonly elicits rapid deterioration of ionic 

gradients across the plasma membrane, resulting in an abnormal influx of Ca2+ and Na+ ions, and 

efflux of K+ ions (Kaplan, 2002; Khanna et al., 2014; Lipton, 1999; Mongin, 2007; Song & Yu, 

2014) across the plasma membrane. The increased influx of Na+ ions into neurons and glial cells 

can cause an osmotic movement of water through aquaporins into the cell, leading to cytotoxic 

swelling and/or cell lysis in the ischemic core (Khanna et al., 2014; Song & Yu, 2014). In addition, 

this ionic imbalance across the plasma membrane will induce widespread anoxic depolarization in 

neurons and glial cells (Higuchi et al., 2002; Jarvis et al., 2001; Khanna et al., 2014; Leichsenring 

et al., 2013; Mongin, 2007; Song & Yu, 2014; White et al., 2012). 

 

1.3.2 Acidotoxicity 

 
 During an ischemic stroke, the reduced delivery and availability of oxygen within cerebral 

tissue will initiate anaerobic glycolysis, which will lead to an increased production of lactate within 

ischemic tissue (Brouns & De Deyn, 2009). Consequently, the accumulation of lactate within the 

ischemic tissue decreases intracellular pH (acidosis) and causes acidotoxicity, which is mediated by 

acid sensing ion channels (ASICs) that are abnormally more permeable to Na+ and Ca2+ ions across 

the plasma membrane (Brouns et al., 2008; Ding et al., 2000; Katsura et al., 1994; Park et al., 1999; 

Sherwood et al., 2011; Xiang et al., 2004; Xiong et al., 2004). The increased influx of Na+ and Ca2+ 

ions can induce glutamate excitotoxicity, enhance pro-oxidant production and antioxidant 

inactivation leading to neuronal and glial cell death by necrosis or apoptosis depending on the 

severity of acidosis (Lewerenz et al., 2010; Ying et al., 1999). The damage inflicted upon ischemic 

tissue from acidotoxicity is known as the lactate-acidosis-hypothesis, which can induce metabolic 

stress and secondary damage in ischemic stroke (Brouns et al., 2008; Ding et al., 2000; Sherwood 

et al., 2011). 
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1.3.3 Excitoxicity 
 
 Excitoxicity is a pathological process where neurons are damaged by excessive stimulation 

by excitatory neurotransmitters such as glutamate during an ischemic stroke (Lai et al., 2014). 

Anoxic depolarization in neurons causes opening of voltage-gated Ca2+ channels at the pre-synaptic 

terminal and allows an influx of Ca2+ ions, inducing uncontrolled release of glutamate into the 

synaptic cleft, which is the major excitatory neurotransmitter in the mammalian brain (Arundine & 

Tymianski, 2003; Zhang et al., 2006). Energy failure will also impair the re-uptake of glutamate by 

glutamate transporters (EAAT2; excitatory amino acid transporter 2) located on pre-synaptic 

neurons and surrounding astrocytes (Camacho & Massieu, 2006; Rossi et al., 2000). The resultant 

accumulation of glutamate at synapses will then overstimulate AMPA  (α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid), kainate and NMDA (N-methyl-d-aspartic acid)-type glutamate 

receptors on neighbouring neurons, driving a further influx of Na+ ions and Ca2+ ions through 

channels gated by these receptors (Arias et al., 1999; Arundine & Tymianski, 2003; Lai et al., 2014; 

Li et al., 2007; Seo et al., 2001; Suzuki et al., 2012; Zhang et al., 2006). Depolarization of 

additional neurons causes further Ca2+ ion influx and glutamate release, leading to local 

amplification of the initial ischemic insult. In addition, the increased influx of Na+ ions into neurons 

causes an osmotic movement of water through aquaporins into the cell, leading to cytotoxic 

swelling and brain oedema (Ayata & Ropper, 2002; Breder et al., 2000; Khanna et al., 2014; 

Mongin, 2007; Simard et al., 2007; Song & Yu, 2014). If energy supply is not restored in time, 

these changes will result in rapid necrotic cellular lysis, especially in the ischemic core (Khanna et 

al., 2014; Sattler & Tymianski, 2000; Song & Yu, 2014). Concurrently, the increased Ca2+ ion 

influx mediated by the combined effects of activation of voltage-gated Ca2+ channels, ASICs, 

glutamate receptors and reverse operation of the Na+/Ca2+ exchanger, and the decreased Ca2+ ion 

efflux due to inhibition of the Na+/Ca2+ exchanger and plasma membrane Ca2+-ATPase pump, will 

initiate a series of nuclear and cytoplasmic events that lead to lethal or non-lethal metabolic 

derangements known as excitotoxicity (Bano et al., 2005; Jeffs et al., 2007; Li et al., 2007; Schwab 

et al., 2002). 

 
 When calcium homeostasis is disrupted during cerebral ischemia, Ca2+ ions can become a 

powerful activator of multiple damaging mechanisms, including activation of catabolic enzymes, 

especially endonuclease and calpain, ultimately leading to necrotic or apoptotic cell death 

depending on the degree of damage. The increased concentration of intracellular Ca2+ ions can 

activate nuclear and cytosolic proteases such as endonuclease and calpains, i.e. calpain I (µ-calpain) 

and II (m-calpain), respectively (Lee et al., 2005; Neumar et al., 2001). It has been shown that 

endonuclease can cleave DNA to cause apoptosis, while activated calpain can hydrolyse 
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cytoskeletal proteins, including spectrin, fodrin, actin and tubulin; anti-apoptotic proteins, including 

Bcl-2 (B-cell lymphoma 2) and Bcl-xL (B-cell lymphoma-extra large); membrane proteins, 

including glutamate and ryanodine receptors; and regulatory and signalling proteins, including 

calmodulin-binding protein, protein kinase C and G-proteins (Aki et al., 2002; Buddle et al., 2003; 

Ling et al., 2002; Liu et al., 2004b; Nakagawa & Yuan, 2000; Neumar et al., 2001; Roberts-Lewis 

et al., 1994; Xu et al., 2009). In addition, through an unknown mechanism(s), calpain can induce 

the rupture of lysosomes, releasing cathepsins (i.e. cathepsin B, D and L) into the cytosol, which 

can hydrolyse similar calpain targets (Yamashima et al., 1998; Yamashima, 2004; Yamashima & 

Oikawa, 2009). Such a process is known as the calpain-cathepsin hypothesis. The uncontrolled 

proteolysis of these cellular proteins in neurons and glial cells is an important component of 

neurodegeneration detected in necrosis that is observed primarily in the ischemic core (Yamashima, 

2004; Yamashima & Oikawa, 2009). 

 
1.3.4 Oxidative Stress 
 
 Oxidative stress occurs when there is an imbalance between the production of reactive 

oxygen species (ROS) and/or a decreased ability of the cellular antioxidant defence system to 

neutralize these reactive intermediates, which inflicts cerebral tissue damage during an ischemic 

stroke. Disruption of calcium homeostasis is a major contributor towards the production of ROS. In 

neurons and glial cells, the primary mechanism of Ca2+ ion uptake into the mitochondrial matrix is 

through the calcium uniporter during an ischemic stroke (Kirichok et al., 2004; Triantafilou et al., 

2013). Consequently, abnormal accumulation of Ca2+ ions within the mitochondrial matrix will 

decrease the mitochondrial transmembrane potential to facilitate the formation of the mitochondrial 

transition pore, and induce the formation of calcium precipitates (i.e. calcium phosphate and 

calcium hydroxyapatite) within the inner mitochondrial membrane, perturbing the electron transport 

chain and causing electron leakage that can react with oxygen to produce superoxide (O2
.-) (Green 

& Kroemer, 2004; Nieminen, 2003; Triantafilou et al., 2013). The increase in cytosolic Ca2+ can 

activate protein kinase C, which in turn activates NADPH (nicotinamide adenine dinucleotide 

phosphate) oxidase, producing O2
.- (Brennan et al., 2009; Kahles et al., 2010; Yoshioka et al., 

2011). Accumulation of Ca2+ within neurons can induce the translocation of cytosolic 

phospholipase A2 (PLA2) into the plasma membrane, catalyzing the formation of arachidonic acid, 

which is utilized by cyclooxygenase and lipoxygenase to produce prostaglandins and leukotrienes, 

respectively, with a concomitant production of O2
.- (Kishimoto et al., 2010; Tomimoto et al., 2002). 

In addition, conversion of xanthine dehydrogenase to xanthine oxidase by Ca2+-activated proteases 

can result in an increased output of O2
.- (Abramov et al., 2007; Al-Gonaiah et al., 2009; Ono et al., 

2009). Increased production of O2
.- from numerous sources can lead to the formation of additional 
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free radicals, such as hydrogen peroxide (H2O2), hydroxyl radical (OH−), and peroxynitrite 

(ONOO−) by reacting with nitric oxide (NO) produced from Ca2+-activated neuronal and 

endothelial NO synthase (n/eNOS) (Chan, 2001; Heeba & El-Hanafy, 2012; Nanetti et al., 2007).	
    

 
 The increased production of reactive oxygen species (ROS) induces oxidative stress, a major 

cause of tissue damage that can impact multiple cellular components, including nucleic acids, 

proteins, carbohydrates and lipids via oxidation reactions (Allen & Bayraktutan, 2009). In addition, 

ROS can stimulate transcription factors such as nuclear factor kappa B (NF-κB) directly, and 

activator protein-1 (AP-1) indirectly by activating mitogen activated protein kinases (MAPKs) (in 

particular p38 MAPK and c-Jun-N-terminal kinase; JNK) to cause neuronal and glial damage by 

modulating caspase-mediated apoptosis (Barone et al., 2001; Chen et al., 2011; Kratsovnik et al., 

2005; Ridder & Schwaninger, 2009; Suzuki et al., 1997). Furthermore, oxidative stress can damage 

organelles such as the endoplasmic reticulum (i.e. the major site of calcium storage) and 

mitochondria, which can facilitate the release of additional Ca2+ ions and pro-apoptotic proteins 

(such as cytochrome c and apoptosis inducing factor) into the cytosol, leading to local amplification 

of the initial ischemic insult by Ca2+ ions, and both endoplasmic reticulum stress and apoptosis 

through the intrinsic and extrinsic pathway (Cao et al., 2004; Hayashi et al., 2005; Malhotra & 

Kaufman, 2007; Nieminen, 2003). In general, severe oxidative stress can cause cell death through 

necrosis, while moderate oxidative stress can elicit apoptosis that is observed primarily in the 

ischemic penumbra (Chen et al., 2011). 

 
1.3.5 Ischemic Inflammation 
 
 Inflammation plays a significant role in the overall pathogenesis of ischemic stroke. The 

inflammatory response is a double-edged sword, initially contributing to ischemic brain injury and 

then to tissue regeneration (Chamorro & Hallenbeck, 2006). It is characterized by the production 

and release of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β 

(IL-1β), IL-6 and IL-18 from activated cells in the brain parenchyma including neurons, astrocytes, 

microglia and endothelial cells by initiating various pro-death signalling pathways, resulting in 

neuronal and glial cell death during cerebral ischemia (Allan & Rothwell, 2001; Vila et al., 2000). 

Pro-inflammatory cytokines can also induce the expression of adhesion molecules, such as 

intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecules (VCAMs), selectins (e.g. 

E-selectin, P-selectin) and integrins (e.g. Mac-1, LFA-1) on endothelial cells, leukocytes and 

platelets (Arumugam et al., 2004a; Ehrensperger et al., 2005; Huang et al., 2000; Yilmaz & 

Granger, 2008; Zhang et al., 1998).	
  These adhesion molecules are crucial for the infiltration of 

leukocytes (e.g. neutrophils and monocytes/macrophages) whereby both E and P-selectins mediate 
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leukocyte recruitment and rolling, and ICAM-1 and VCAM assist in leukocyte adherence to the 

endothelium to facilitate transmigration into the ischemic territory during reperfusion, which 

paradoxically, often leads to secondary damage known as ischemic reperfusion injury (Buck et al., 

2008; Iadecola & Alexander, 2001; Tang et al., 2006; Wang et al., 2007). In addition, monocyte 

chemoattractant protein 1 (MCP-1/CCL2), the major chemokine in mammalian systems, and other 

chemokines such as macrophage inflammatory protein 1-α and fractalkine are released by activated 

neurons and glial cells, which is important in guiding leukocyte migration toward the damaged 

tissue (Dimitrijevic et al., 2006; Lakhan et al., 2009; Stamatovic et al., 2003). The infiltration of 

leukocytes usually occurs within 4-6 hours after the onset of ischemia with neutrophils being the 

first immune cells to infiltrate the ischemic penumbra followed by monocytes, macrophages and T-

lymphocytes (Buck et al., 2008; Campanella et al., 2002; Tang et al., 2006; Wang et al., 2007). In 

particular, CD4+ and CD8+ T-lymphocytes have been shown to induce ischemic injury while 

regulatory T-lymphocytes demonstrate a protective role in post-ischemic inflammation (Hurn et al., 

2007; Iadecola & Alexander, 2001; Liesz et al., 2009; Planas & Chamorro, 2009; Shichita et al., 

2009; Yilmaz et al., 2006). However, a recent study suggested that neurovascular leukocyte 

accumulation showed no spatial correlation with increased vessel permeability and enhanced 

expression of endothelial cell adhesion molecules. These observations may indicate that the 

neurovascular endothelium rather than the brain parenchyma is the site of leukocyte action after 

stroke (Enzmann et al., 2013).	
   	
  Despite the mechanisms of ischemic reperfusion injury remaining 

incompletely understood, it has been shown that infiltrating leukocytes can release a variety of 

cytotoxic agents, including additional pro-inflammatory cytokines (i.e. TNF-α, IL-1β, IL-6, IL-12 

and IL-18), NADPH oxidase-derived ROS, NO from inducible nitric oxide synthase (iNOS), and 

matrix metalloproteinases (MMPs, particularly MMP-2 and MMP-9). These MMPs can cause 

damage to the extracellular matrix and blood brain barrier (BBB), exacerbating brain oedema, 

haemorrhage, and ultimately, neuronal and glial cell death (Amantea et al., 2009; Asashi et al., 

2001; Kriz, 2006; Yang et al., 2007a). In addition, the complement cascade has been shown to be 

involved in ischemic reperfusion injury through the production of several inflammatory mediators, 

including C1, C3a and C5a anaphylatoxins, that are involved in leukocyte recruitment and 

formation of the membrane attack complex (MAC) in neurons and glial cells, which causes cell 

lysis and further tissue damage (Arumugam et al., 2004b; Barnum et al., 2002; Gesuete et al., 2009; 

Leinhase et al., 2006; Van Beek et al., 2000). 

 

1.4 Cell Death Pathways in Ischemic Stroke – Necrosis and Apoptosis 
  
 There are two main types of cell death pathways evident during an ischemic stroke - 

necrosis and apoptosis. Necrosis is primarily seen in the ischemic core as it receives the least 
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amount of blood flow where neurons and glial cells will undergo an unregulated, rapid and 

irreversible form of cell death that results in cellular lysis causing an inflammatory response in 

surrounding tissue (Astrup et al., 1981; Bisdas et al., 2004; Mehta et al., 2007). The cell death 

mechanisms responsible for inducing necrotic cell death are extensive and severe, and include 

biochemical events associated with the ischemic cascade such as bioenergetic failure, acidotoxicity, 

excitotoxicity and oxidative stress previously discussed in detail in Section 1.3.1-1.3.4. Conversely, 

apoptosis is observed primarily in the ischemic penumbra as it receives more blood flow in 

comparison to the ischemic core where neurons and glial cells will undergo a delayed programmed 

form of cell death that is potentially reversible following immediate treatment (Astrup et al., 1981; 

Broughton et al., 2009; Hossmann, 1994; Sairanen et al., 2006). The cell death mechanisms 

responsible for inducing apoptotic cell death are the same aforementioned biochemical events 

associated with the ischemic cascade, although less severe, and is responsible for activating the 

extrinsic and intrinsic apoptotic pathways. 

 
1.4.1 Extrinsic Apoptotic Pathway 
 
 The extrinsic apoptotic pathway involves activation of death receptors on the plasma 

membrane of neurons and glial cells during an ischemic stroke (Broughton et al., 2009; Sairanen et 

al., 2006). Death receptors belong to the tumor necrosis factor receptor (TNFR) superfamily, and 

include death receptors 3,4,5, TNFR-1 (p55 or CD120a) and Fas receptor (CD95 or Apo1), which 

all possesses an intracellular death domain (DD) that is able to interact with two adaptor proteins 

such as the TNF receptor associated death domain (TRADD) or the Fas-associated death domain 

(FADD) to facilitate downstream signalling (Choi & Benveniste, 2004; Mehta et al., 2007; Nakka 

et al., 2008; Sessler et al., 2013; Wilson et al., 2009). The recruitment of FADD is regarded as the 

canonical pathway for mediating extrinsic apoptosis (Wilson et al., 2009). During an ischemic 

stroke, a member of the forkhead family of transcription factors, forkhead1, stimulates the 

expression of target genes such as Fas ligand (FasL), which is released into the extracellular 

environment (Fukunaga et al., 2005; Kavurma & Khachigian, 2003; Sugawara et al., 2004). When 

FasL binds onto the Fas receptor on the plasma membrane, both FADD and procaspase-8 interact 

and are recruited to the Fas receptor to form a FasL-Fas-receptor-FADD-procaspase-8 complex 

known as a death-inducing signalling complex (DISC) (Sessler et al., 2013). The formation of 

DISC catalyses the conversion of pro-caspase-8 into biologically active caspase-8, which is released 

into the cytoplasm (Fu et al., 2012; Sessler et al., 2013). Once activated, caspase-8 can induce 

apoptotic cell death through two pathways: Firstly, caspase-8 can directly cleave pro-caspase-3 into 

active cleaved caspase-3, which enters the nucleus, and cleaves poly (ADP-ribose) polymerase 

(PARP) and cytoskeletal proteins (e.g. spectrin and gesolin) causing nuclear DNA and cytoskeletal 
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damage, respectively, ultimately leading to apoptosis (Badiola et al., 2009; Lee et al., 2004; Pike et 

al., 2004; Sairanen et al., 2009). Secondly, caspase-8 can directly cleave Bcl-2 interacting domain 

(BID) into its truncated form (tBID), which translocates to the outer mitochondrial membrane and 

interacts with other pro-apoptotic proteins, such as Bad, Bax, Bak or Bcl-XS (Broughton et al., 

2009; Ferrer & Planas, 2003; Lovell et al., 2008; Plesnila et al., 2001). Interaction of tBID with 

either pro-apoptotic protein is thought to induce the formation of mitochondria transition pores 

(MTPs) through an unknown mechanism to facilitate the release of cytochrome c from the 

mitochondria intermembrane space into the cytoplasm (Gillick & Crompton, 2008; Jemmerson et 

al., 2009; Kim et al., 2000; Wei et al., 2000; Zhai et al., 2000). Cytochrome c can bind with Apaf-1 

and pro-caspase-9 to form a complex known as an apoptosome (Hu et al., 2014). The formation of 

the apoptosome will catalyse the conversion of pro-caspase-9 into active caspase-9, which 

subsequently converts pro-caspase-3 into active caspase-3 that causes nuclear DNA and 

cytoskeletal damage, ultimately leading to apoptosis (Lee et al., 2004; McStay & Green, 2014; Pike 

et al., 2004; Sairanen et al., 2009; Yuan et al., 2011). 

 
1.4.2 Intrinsic Apoptotic Pathway 
 
 The intrinsic apoptotic pathway involves the release of several pro-apoptotic proteins such 

as cytochrome c, apoptosis inducing factor (AIF), second mitochondria-derived activator of 

caspases/direct IAP-binding protein with low pl (Smac/DIABLO), endonuclease G and pro-

caspases 2,3,8,9 from the mitochondria (Arnoult et al., 2003; Broughton et al., 2009; Chan, 2005; 

Sugawara et al., 2004). During an ischemic stroke, the ischemic cascade induces the release of 

cytochrome c from the mitochondria into the cytoplasm often regarded as the most crucial pro-

apoptotic protein in initiating the intrinsic apoptotic pathway (Jemmerson et al., 2009; Lin et al., 

2005). Specifically, an increased concentration of Ca2+ ions in the cytoplasm activates calpain 

enzymes, which cleaves BID into tBID that translocates to the outer mitochondrial membrane and 

interacts with other pro-apoptotic proteins, such as Bad, Bax, Bak or Bcl-XS (D’Orsi et al., 2012; 

Krajewska et al., 2004; Lovell et al., 2008). Interaction of tBID with either pro-apoptotic protein is 

thought to induce the formation of MTPs through an unknown mechanism to facilitate the release of 

AIF and cytochrome c from the inner mitochondrial membrane space into the cytoplasm (Gillick & 

Crompton, 2008; Jemmerson et al., 2009; Kim et al., 2000; Wei et al., 2000; Zhai et al., 2000). AIF 

rapidly translocates into the nucleus to induce large-scale DNA fragmentation and apoptosis via a 

caspase-independent mechanism (Plesnila et al., 2004). Conversely, cytochrome c binds with Apaf-

1 and pro-caspase-9 to form a complex known as an apoptosome (Hu et al., 2014). Consequently, 

the formation of the apoptosome will catalyse the conversion of pro-caspase-9 into active caspase-

9, which subsequently converts pro-caspase-3 into active caspase-3 that causes nuclear DNA and 
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cytoskeletal damage, ultimately leading to apoptosis (Lee et al., 2004; McStay & Green, 2014; Pike 

et al., 2004; Sairanen et al., 2009; Yuan et al., 2011). 

 
1.4.3 Caspase-Independent Apoptosis 
 
 Despite the extrinsic and intrinsic apoptotic pathways, there are a number of caspase-

independent mechanisms responsible for inducing apoptosis during an ischemic stroke (Cho & 

Toledo-Pereyra, 2008). The release of AIF from the inner mitochondrial space into the cytoplasm 

mediated by the formation of MTPs is a prime example where AIF rapidly translocates into the 

nucleus to induce large-scale DNA fragmentation causing apoptosis (Culmsee et al., 2005; Galluzzi 

et al., 2009; Moroni, 2008; Plesnila et al., 2004; Zhu et al., 2003). PARP-1 is an important 

regulator of this particular caspase-independent pathway where it is a key regulatory protein that 

initiates nuclear signaling to the mitochondria to release AIF during the apoptotic process through 

mechanism(s) involving interactions with receptor interacting protein 1 (RIP1), TNFR-associated 

protein 2 (TRAF2) and c-Jun N-Terminal kinase, especially JNK1, although, it remains to be fully 

established (Culmsee et al., 2005; Gao et al., 2005; Komjati et al., 2004; Xu et al., 2006). 

Furthermore, the increased production and accumulation of ROS in the cytoplasm can directly 

cause irreversible nuclear DNA damage via oxidation reactions inducing apoptosis (Allen & 

Bayraktutan, 2009; ArunaDevi et al., 2010; Olmez & Ozyurt, 2012). Finally, in response to DNA 

damage, phosphorylation and activation of p53, a tumor-suppressor transcription factor, initiates 

apoptosis by promoting pro-apoptotic protein expression (i.e. Bax and Bak) and suppresses anti-

apoptotic protein regulation (i.e. Bcl-2) by increasing p53-mediated expression of BH3-only 

proteins, such as p53-upregulated modulator of apoptosis (PUMA) and NOXA in the brain under 

ischemic conditions (Culmsee & Mattson, 2005; Hong et al., 2010; Kim et al., 2004; Kuroki et al., 

2009; Luo et al., 2009; Niizuma et al., 2009; Steckley et al., 2007). 

 
1.4.4 Regulators of Apoptosis  
 
 The interaction between pro-apoptotic and anti-apoptotic proteins is a constantly regulated 

process, which ensures apoptosis is tightly regulated. Normally, anti-apoptotic proteins, Bcl-2 and 

Bcl-xL, are located on the outer mitochondrial membrane, whereby neutralization of pro-apoptotic 

proteins (Bad, Bax, Bak and Bcl-XS) from interacting with tBID occurs (Billen et al., 2008; 

Ganesan et al., 2012; Garcia-Saez et al., 2004; Gonzalvez et al., 2005; Howells et al., 2011; Liu et 

al., 2004c; Lovell et al., 2008; Luo et al., 2014; Shamas-Din et al., 2014; Webster et al., 2006; Yao 

et al., 2009). Hence, neutralization of pro-apoptotic proteins from interacting with tBID prevents 

the formation of MTPs and inhibits the release of pro-apoptotic proteins, AIF and cytochrome c into 

the cytoplasm during cerebral ischemia (Dubal et al., 1999; Gal et al., 2008; Hata et al., 1999; Kilic 
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et al., 2002; Martinou et al., 1994; Shamas-Din et al., 2014; Webster et al., 2006; Wiessner et al., 

1999; Zhao et al., 2003). 

 

1.5 Experimental Animal Models in Ischemic Stroke 
 
 Research into understanding the molecular and cellular biochemical events associated with 

the pathophysiology of ischemic stroke has been made possible by the use of experimental animal 

stroke models. Since the 1970s, the development of animal models of ischemic stroke has vastly 

improved stroke research by providing new avenues of therapeutic targets and strategies towards 

the prevention, treatment and rehabilitation of stroke-induced brain injury and functional deficits in 

stroke patients (Canazza et al., 2014; Van der Worp et al., 2010). 

 
 An important criterion concerning the development of experimental stroke models in 

animals is that the underlying pathophysiology and clinical features must be accurately represented 

in human ischemic stroke patients. At present, most experimental stroke models are performed on 

mammals and include the use of mice, rats, gerbils, rabbits, pigs, cats, dogs and non-human 

primates such as monkeys (Jeon et al., 2014; Kim et al., 2014; Lapchak et al., 2015; Lee et al., 

2015a; Liu et al., 2014a; Mattingly et al., 2015; Zhang et al., 2015a; Zhang et al., 2015b). There are 

a number of advantages in the use of animals in stroke research. Firstly, possessing a similar 

cerebrovascular anatomy and physiology between animals and humans will often produce a 

comparable biological response to potential pharmacological stroke treatments (Durukan & 

Tatlisumak, 2007; Durukan et al., 2008; Graham et al., 2004; Leker & Constantini, 2002). 

Secondly, the pathophysiology and severity of stroke is equivalent following experimental stroke 

induction between animals and humans; and finally, from an experimental outlook the ability to 

induce reproducible stroke infarcts with minimal invasive surgery is ideal and achievable in animals 

(Ahmed et al., 2000a; Durukan et al., 2008; Graham et al., 2004; Leker & Constantini, 2002). 

Despite the recognition that no single animal stroke model is able to accurately represent all the 

clinical heterogeneous features associated in human ischemic stroke, which still needs to be 

addressed, the outcome from current models are extrapolated in order to successfully translate new 

pathophysiological concepts and pre-clinical treatments from bench to beside. 

 
 In relation to animal size there are several advantages and disadvantages in the use of small 

and large animals in ischemic stroke models. The advantages of using large animals in ischemic 

stroke models is that the brain is anatomically and physiologically similar to humans as both brains 

are gyrencephalic and possess a high white matter to grey matter ratio (Dirnagl et al., 1999; 

Howells et al., 2010; Krafft et al., 2012; Macrae, 2011). In addition, the use of large animals allows 
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you to perform a number of experiments simultaneously and at multiple time-points such as 

measuring physiological, neurobehavioral and sensorimotor parameters (Traystman, 2003). 

Conversely, the disadvantage of using larger animals in ischemic stroke models is that it is labour 

intensive and financially expensive as it involves complicated invasive surgery, which often 

increases the risk of haemorrhage and mortality rates (Canazza et al., 2014). 

 
 The advantage of using small animals in ischemic stroke models is that it is financially 

feasible to purchase and maintain small animals for a sustained period of time, especially rodents, 

due to low husbandry costs (Durukan & Tatlisumak, 2007). From an experimental outlook, it is 

easier to achieve reproducible ischemic infarcts in small animals, which is ideal for the success of 

each experiment (Krafft et al., 2012). In addition, small animals are genetically homogenous, which 

allows you to generate transgenic or knockout animals (Liang et al., 2004). Conversely, the 

disadvantage of using small animals is that the brain is anatomically dissimilar to humans as small 

animals, such as rodents, have lissencephalic brains and have a higher grey matter to white matter 

ratio, and thus functionally different (Dirnagl et al., 1999; Liu et al., 2011). In addition, the use of 

small animals often does not allow you to perform concurrent experiments at multiple times points 

(Traystman, 2003). 

 
 Experimental animal models in ischemic stroke can be divided into two categories – global 

and focal ischemia. 

 
1.5.1 Global Ischemic Stroke Models 
 
 The global ischemic stroke model was developed to investigate the effect of a widespread 

disruption of blood flow to a majority or the whole brain due to hemodynamic changes in the 

peripheral circulatory system following clinical events such as asphyxiation or cardiac arrest (Allen 

& Buckberg, 2012; Krafft et al., 2012; Kristian & Hu, 2013). The global ischemic stroke model is 

primarily conducted in small animals such as rodents (i.e. mice and rats) as larger animals require 

the induction of ventricular fibrillation to produce a cardiac arrest and cardio-pulmonary 

resuscitation, which is often labour intensive and expensive (Kristian & Hu, 2013; Traystman, 

2003). The global ischemic stroke model is divided into two types: 2-vessel occlusion model (2-

VO) or 4-vessel occlusion model (4-VO). 

  
 The 2-vessel occlusion model (2-VO) involves the temporary bilateral occlusion of the 

common carotid arteries combined with systemic hypotension to produce reversible forebrain 

ischemia (Atlasi et al., 2013; Clark et al., 2007; Kenny et al., 2013; Onken et al., 2012; Sanderson 

& Wider, 2013; Smith et al., 1984; Traystman, 2003). This model induces cerebral tissue damage 
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within two minutes of global ischemic onset and causes damage to primarily CA1 pyramidal 

neurons in the hippocampus, neocortex and caudoputamen that progress over the course of 6-24 

hours of reperfusion (Traystman, 2003). A major limitation towards the use of the 2-VO model is 

inconsistency in achieving the same degree of damage between experimental animals due to 

variations in collateral blood flow, especially at the Circle of Willis, whilst maintaining a high 

survival rate (Kitagawa et al., 1998; Martinez et al., 2012; Murakami et al., 1998; Yang et al., 

1997; Zhen & Dore, 2007). Subsequently, the three-vessel occlusion model was developed in an 

attempt to overcome this problem where the basilar artery was additionally occluded, however, 

similar problems were encountered due to anatomical and experimental difficulties to locate, isolate 

and occlude the basilar artery (Panahian et al., 1996; Thal et al., 2010; Yonekura et al., 2004). 

 
 The 4-vessel occlusion model is the most common method to induce global ischemia in the 

forebrain via a two-stage process (Atlasi et al., 2013; Pegorini et al., 2005; Yamaguchi et al., 2005; 

Yonekura et al., 2004). The first stage involves the location and isolation of both common carotid 

arteries, and an atraumatic clasp loosely attached to each common carotid artery followed by 

electro-cauterization of both vertebral arteries (Traystman, 2003; Yamaguchi et al., 2005). On the 

following day, the second stage involves occluding both the common carotid arteries by narrowing 

both atraumatic clasps to induce forebrain ischemia (Pegorini et al., 2005; Traystman, 2003). This 

model induces cerebral tissue damage within 30 minutes of ischemic onset and causes damage to 

primarily striatal neurons in the hippocampus and neocortex following 3-6 hours and 1-3 days after 

reperfusion, respectively (Yamaguchi et al., 2005; Yonekura et al., 2004). A major limitation 

towards the use of the 4-VO model is that it is surgically challenging in comparison to the 2-VO 

model to achieve global ischemia (Kristian & Hu, 2013). 

 
1.5.2 Focal Ischemic Stroke Models 
 
 The focal ischemic stroke model was developed to investigate the effect of a local disruption 

of blood flow in a specific brain region due to an embolic or thrombotic occlusion in the middle 

cerebral artery (MCA), the most clinically relevant site where a majority of focal ischemic strokes 

occur in humans (Canazza et al., 2014; Howells et al., 2010). This model is primarily conducted in 

small mammals such as rodents but has been applied to larger mammals such as cats, dogs and non-

human primates (Jeon et al., 2014; Kim et al., 2014; Zhang et al., 2015b). It should be recognized 

that there are two important pathological differences between focal and global ischemic stroke 

models. Firstly, the amount of blood flow will be greater in the ischemic core region in a focal 

ischemic stroke model in comparison to the global ischemic stroke model, and hence a longer time 

period will be required to induce cerebral tissue damage during focal ischemia (Bandera et al., 
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2006). Secondly, a gradient of ischemia will be observed from the ischemic core to the surrounding 

ischemic penumbra in a focal ischemic stroke model but absent in comparison to a global ischemic 

model, and hence an increasing concentric gradient of metabolic damage will be observed from the 

ischemic penumbra to the ischemic core within the ischemic territory during focal ischemia 

(Bonova et al., 2013; Heiss, 2012; Iwabuchi et al., 2013). Currently, the focal ischemic stroke 

model is the most widely accepted and accurate representation of ischemic stroke in terms of 

occlusion site, pathophysiology and symptoms that occur in human patients making it a clinically 

relevant model (Braeuninger et al., 2012; Macrae, 2011). There are two types of focal ischemic 

stroke models – the transient ischemic stroke model and permanent ischemic stroke model. 

 
 The most common transient ischemic stroke model involves the occlusion of the middle 

cerebral artery (MCA) where a nylon suture is inserted into the common carotid artery (CCA) and 

advanced past the bifurcation point between the internal carotid artery (ICA) and pterygopalatine 

artery so that the origin of the MCA is occluded (Ansari et al., 2011; Chiang et al., 2011; Engel et 

al., 2011; Liu & McCullough, 2011; Rousselet et al., 2012). In detail, the procedure begins with a 

midline incision in the neck where the left external carotid artery (ECA) and pterygopalatine artery 

are isolated and ligated with silk thread (Chen et al., 2008a). The ICA is occluded at the bifurcation 

point between the ICA and pterygopalatine artery with a small clip and the CCA ligated with a silk 

thread (Chen et al., 2008a; Chu et al., 2008). A small incision is made into the ECA and a nylon 

intraluminal monofilament with a blunted tip (0.2-0.22mm) with a coagulator is inserted into ECA 

(Chiang et al., 2011; Rousselet et al., 2012). The ECA and inserted nylon monofilament is ligated 

and tightened with a silk thread to prevent bleeding from rotational displacement of the nylon 

monofilament during advancement into the ICA and removal at the time of reperfusion (Ansari et 

al., 2011; Engel et al., 2011). Following removal of the clip from the ICA, the nylon monofilament 

is advanced into the ICA until light resistance is felt where the origin of the MCA is occluded for 30 

minutes to 2 hours depending on the severity intended (Chinag et al., 2011; Rousselet et al., 2012). 

Occlusion of the MCA is deemed successful when Laser Doppler Flowmetry measurements on the 

affected parietal bone show a 20% decrease in blood flow from baseline (Ansari et al., 2011; 

Arumugam et al., 2007; Taninishi et al., 2015). In order for reperfusion to occur, the ligation on the 

CCA and inserted monofilament is removed allowing blood flow through the ICA (Engel et al., 

2011). This focal ischemic stroke model induces damage to the frontal, temporal and parietal 

occipital cortex and striatum including the thalamus, hypothalamus and substantia nigra 

(Traystman, 2003).     

 
 The permanent ischemic stroke model commonly involves occlusion of the MCA with a silk 

thread for 24 hours (Mdzinarishvili et al., 2005; Xi et al., 2004). Alternatively, the permanent 
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ischemic stroke model can be achieved by the trans-temporal approach. This involves retraction of 

the temporalis muscle followed by a 2-3mm burr hole made rostral to the fusion of the zygomatic 

and squamosal bones to locate and isolate the MCA (Taguchi et al., 2010). Using a steel hook and 

micromanipulator, the MCA is elevated and occluded by electrocoagulation for 24 hours (Taguchi 

et al., 2010). 

 

1.6 DAMPs and Inflammasomes: An Overview in Stroke 
 

Inflammation is an innate immune response to infection and tissue damage designed to limit 

harm to the host (Medzhitov, 2008). However, as mentioned, the inflammatory response in cerebral 

tissue damaged following ischemic stroke contributes to the progression of ischemic brain injury 

and exacerbation of neurological deficits (Chamorro & Hallenbeck, 2006). The inflammatory 

response is initiated by the detection of acute damage via extracellular and intracellular pattern 

recognition receptors (PRRs), which respond to conserved microbial structures, termed pathogen-

associated molecular patterns (PAMPs) and/or host-derived danger signals termed damage-

associated molecular patterns (DAMPs). PAMPs and DAMPs may be released from stressed or 

damaged cells following either microbial or non-microbial insults (Akira et al., 2006; Kono & 

Rock, 2008; Kono et al., 2014; Maslanik et al., 2013; Matzinger, 2002a; Matzinger, 2002b; 

Matzinger, 2012; Medzhitov, 2008; Medzhitov & Janeway, 1997; Meylan et al., 2006; Rock & 

Kono, 2008). Hence, the initiation of an inflammatory response requires sensors to detect any 

noxious agent or irregularity within the cellular microenvironment, and molecular platforms such as 

the NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and Pyrin 

inflammasomes, that process this signal to trigger an appropriate effector response (Agostini et al., 

2004; Chae et al., 2011; Fernandes-Alnemri et al., 2009; Kempster et al., 2011; Khare et al., 2012; 

Martinon et al., 2002; Miao et al., 2010; Minkiewicz et al., 2013; Vladimer et al., 2012). 

 
 Recent findings have provided insight into new inflammatory mechanisms that may 

contribute to neuronal and glial cell death during cerebral ischemia. There is emerging evidence to 

suggest that plasma membrane PRRs on neurons and glial cells can play an important role in 

activating NF-κB and MAPK(s) signalling pathways. This is in response to endogenous DAMPs 

released by necrotic cells in the ischemic core, leading to increased production of pro-inflammatory 

cytokines, and neuronal and glial cell death mediated by large intracellular multi-protein complexes 

(approximately 700 kDa) termed inflammasomes (Abulafia et al., 2009; Denes et al., 2015; Deroide 

et al., 2013; Ito et al., 2015; Iyer et al., 2009; Kono & Rock, 2008; Kono et al., 2014; Legos et al., 

2001; Li et al., 2009; Martinon et al., 2002; Savage et al., 2012; Tamatani et al., 2000; Zhang et al., 

2014). 
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At present, it is thought that the NLRP1 and NLRP3 inflammasome in neurons and glial 

cells may play an important role in detecting cellular damage and mediating inflammatory 

responses to aseptic tissue injury during ischemic stroke (Abulafia et al., 2009; Deroide et al., 2013; 

Ito et al., 2015; Savage et al., 2012; Zhang et al., 2014). In humans, the NLRP1 inflammasome is 

composed of four cytoplasmic components: the NLRP1 (NOD (nucleotide-binding oligomerization 

domain)-like receptor (NLR) Pyrin domain containing 1) receptor; ASC (apoptosis-associated 

speck-like protein containing a caspase recruitment domain); precursor caspase-1 and precursor 

caspase-4 or 5 (Lamkanfi et al., 2002; Martinon et al., 2002). However, in mice, the NLRP1 

inflammasome is composed of the NLRP1 receptor, ASC, precursor caspase-1, precursor caspase-

11 (homologs to precursor caspase-4 or 5 in humans) and XIAP (X-linked inhibitor of apoptosis) 

(De Rivero Vaccari et al., 2008; De Rivero Vaccari et al., 2009; Mawhinney et al., 2011; Silverman 

et al., 2009). The NLRP3 inflammasome is composed of three cytoplasmic components: the 

NLRP3 (NOD (nucleotide-binding oligomerization domain)-like receptor (NLR) Pyrin domain 

containing 3) receptor, ASC and precursor caspase-1 in both mice and humans (Agostini et al., 

2004; Schroder & Tschopp, 2010). 

 

 Activation and subsequent homo-oligomerization of the NLRP1 and NLRP3 receptors 

independently will lead to the formation of the NLRP1 and NLRP3 inflammasomes, respectively, 

which converts precursor caspase-1 into cleaved caspase-1 (Agostini et al., 2004; Martinon et al., 

2002). Following activation, cleaved caspase-1 will cleave precursor IL-1β and precursor IL-18 into 

biologically active pro-inflammatory cytokines – mature IL-1β and mature IL-18, which are then 

released into the extracellular environment (Bauernfeind et al., 2011a). In addition, cleaved capase-

1 may induce apoptosis and a particular type of cell death known as pyroptosis (Bergsbaken et al., 

2009; Erener et al., 2012; Fink et al., 2008; Fink & Cookson, 2006; Lamkanfi, 2011; Sagulenko et 

al., 2013; Walsh et al., 2011; Zhang et al., 2003). The production and maturation of precursor IL-1β 

and precursor IL-18 is a tightly regulated process, and involves two distinct regulatory signals 

(Bauernfeind et al., 2011a; Khare et al., 2010; Martinon et al., 2009; Medzhitov, 2008; Yu & 

Finlay, 2008) (Figure 1.3). The first signal (Priming) involves the activation of plasma membrane 

PRRs (e.g. toll-like receptors, TLRs; TLR-2 and TLR-4), receptor for advanced glycation end 

products (RAGE), and IL-1 receptor 1 (IL-1R1), by DAMPs (e.g. HMGB1, High mobility group 

box 1; and IL-1α) released from necrotic cells in the ischemic core (Alfonso-Loeches et al., 2014; 

Burm et al., 2015; Caso et al., 2007a; Caso et al., 2008; Codolo et al., 2013; Eigenbrod et al., 2008; 

Frank et al., 2015; Lee et al., 2013; Lippai et al., 2013; Lok et al., 2015; Nagyoszi et al., 2015; 

Nystrom et al., 2013; Tang et al., 2007; Tang et al., 2013; Weber et al., 2015; Zhao et al., 2014; 

Zheng et al., 2013). This up-regulates gene transcription of inflammasome proteins, and both 
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precursor IL-1β and precursor IL-18 mediated by NF-κB and MAPK(s) signalling pathways 

(Bauernfeind et al., 2011b; Bauernfeind et al., 2009; Budai et al., 2013; Burm et al., 2015; 

Frederick Lo et al., 2008; Ghonime et al., 2014; Hara et al., 2013; He et al., 2012; Juliana et al., 

2010; Kang et al., 2000; Legos et al., 2001; Liao et al., 2012; Liu et al., 2004a; Liu et al., 2013; 

Mariathasan & Monack, 2007; Okada et al., 2014; Qiao et al., 2012; Savage et al., 2012; Schroder 

et al., 2012; Tamatani et al., 2000; Weber et al., 2015; Zhao et al., 2013). The second signal 

involves activation and consequent homo-oligomerization of the NLRP1 and NLRP3 receptors 

individually by either DAMPs, or irregularities within the cellular microenvironment from cellular 

stress, resulting in the formation of the NLRP1 and NLRP3 inflammasome, which then activates 

precursor caspase-1 to produce cleaved caspase-1 (Faustin et al., 2007; Li et al., 2009; Martinon et 

al., 2002; Maslanik et al., 2013; Savage et al., 2012). 

 

 
 
Figure 1.3: Mechanisms involved in the production and maturation of both precursor IL-1β  and IL-
18. DAMPs encoded by PRRs such as TLRs, RAGE and IL-1R1 allow the activation of NF-κB and 
MAPK(s)-dependent transcription of NLRP1 and NLRP3 inflammasome proteins, and precursor IL-1β and 
precursor IL-18 – known as Signal 1 (Priming). The second signal involves the activation and homo-
oligomerization of the NLRP1 and NLRP3 receptors independently, resulting in the formation of the NLRP1 
and NLRP3 inflammasome. Inflammasome formation is responsible for activating precursor caspase-1 into 
cleaved caspase-1, which then cleaves both precursor IL-1β and precursor IL-18 into mature 
proinflammatory cytokines that are released from the cell. These mature proinflammatory cytokines – mature 
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IL-1β and mature IL-18 can then initiate autocrine, paracrine and endocrine effects by binding onto their 
respective receptors on the same cell, neighboring neurons, astrocytes or microglia and/or peripheral 
leukocytes indicated by the “dashed line”. In addition, cleaved caspase-1 can initiate cell death through 
apoptosis and pyroptosis (DAMPs, damage-associated molecular patterns; TLR, toll-like receptor; RAGE, 
receptor for advanced glycation end products; IL-1R1, interleukin-1 receptor 1; IL-18R, interleukin-18 
receptor; NF-κB, nuclear factor kappa-B; MAPK, mitogen activated protein kinase; AP-1, activator protein-
1; NLRP, (NOD (nucleotide-binding oligomerization domain)-like receptor (NLR) Pyrin domain containing 
1 and 3); ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; XIAP, X-
linked inhibitor of apoptosis; Cl, Cleaved; IL, interleukin; Pre, Precursor). 
 

1.6.1 Molecular Structure of NLRP1 and NLRP3 Receptors 

	
  
 The NLRP1 receptor in humans is characterised by five structural domains: an N-terminal 

PYD (pyrin) domain, a central NACHT (NAIP, CIITA, HET-E and TP1) domain, LRRs (leucine 

rich repeats), FIIND (function to find) and C-terminal CARD (caspase recruitment domain) domain 

(Letunic et al., 2009; Lechtenberg et al., 2014; Martinon et al., 2009; Schultz et al., 1998). 

However, in mice the N-terminal PYD domain is absent (Faustin et al., 2007; Hsu et al., 2008; Jha 

& Ting, 2009). The NLRP3 receptor is characterised by three structural domains: an N-terminal 

PYD domain, a central NACHT domain and a C-terminal LRR domain (Bae & Park, 2011; 

Lechtenberg et al., 2014) (Figure 1.4). The functions of the following domains are as follows: the 

N-terminal PYD domain facilitates downstream homotypic PYD-PYD protein interactions with the 

adaptor protein ASC (Masumoto et al., 1999; Sahillioglu et al., 2014; Srinivasula et al., 2002). The 

NACHT domain is responsible for both the NLRP1 and NLRP3 receptor, once activated, to 

oligomerize and form the central core of the inflammasome, which is an ATP-dependent process 

(Duncan et al., 2007; Faustin et al., 2007; Koonin & Aravind, 2000; Levinsohn et al., 2012; 

Martinon et al., 2002). The LRR domain is considered to be implicated in ligand sensing and 

autoregulation due to reports that deletion of the LRR domain results in a constitutively active 

receptor by removing a possible autoinhibitory role of the LRR (Liao & Mogridge, 2009; Truhlar & 

Komives, 2008). The FIIND domain is autolytically cleaved upon NLRP1 receptor activation, 

which is necessary for NLRP1 inflammasome activity (Finger et al., 2012; D’Osualdo et al., 2011). 

The C-terminal CARD domain facilitates downstream homotypic CARD-CARD protein 

interactions with the effector protein precursor caspase-1 (Srinivasula et al., 2002). 
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Figure 1.4: Structural domains in the NLRP1 and NLRP3 receptors and associated inflammasome 
proteins in human and mice. The NLRP1 receptor is characterized by five structural domains in humans – 
a PYD, NACHT, LRRs, FIIND and CARD domain. However, in mice, the PYD domain is absent. The 
NLRP3 receptor is characterized by three structural domains in humans and mice – a PYD, NACHT and 
LRRs. The adaptor – ASC, is characterized by two structural domains – a PYD and CARD domain. 
Inflammatory caspases from humans and mice are characterized by a CARD domain (NLRP, (NOD 
(nucleotide-binding oligomerization domain)-like receptor (NLR) Pyrin domain containing 1 and 3); ASC, 
apoptosis-associated speck-like protein containing a caspase recruitment domain; PYD, pyrin domain; 
NACHT, NAIP, CIITA, HET-E and TP1 domain; LRR, leucine rich repeats; FIIND, function to find; 
CARD, caspase recruitment domain). 
 

1.6.2 Potential Stimuli(s) of NLRP1 and NLRP3 Receptor Activation in Stroke 
 
 The precise molecular and cellular stimuli(s) for NLRP1 and NLRP3 receptor activation 

during cerebral ischemia are unknown. Despite the extensive list of stimuli(s) described to be 

capable of activating the NLRP1 and NLRP3 receptor, there is no evidence of direct ligand binding 

(Petrilli et al., 2007a). Hence, it is now proposed that the NLRP1 and NLRP3 receptor is a sensor 

for abnormal changes in the intracellular environment in times of cellular stress (Davis et al., 2011; 

Kersse et al., 2011; Schroder & Tschopp, 2010). Although a fully defined mechanism leading to 

NLRP1 and NLRP3 receptor activation has not been elucidated during cerebral ischemia, numerous 

contributing cellular events are considered plausible, including energy depletion, acidosis, cathepsin 

release, decreased intracellular potassium (K+) concentration, increased ROS production, oxidized 

mitochondrial DNA, increased intracellular calcium (Ca2+) concentration, cell swelling, and protein 

kinase R (PKR) activation (Compan et al., 2012; Lee et al., 2012; Liao & Mogridge, 2012; 

Lindestam Arlehamn et al., 2010; Lu et al., 2012; Munoz-Planillo et al., 2013; Nakahira et al., 



	
   24 

2011; Petrilli et al., 2007b; Rajamaki et al., 2013; Rossol et al., 2012; Shimada et al., 2012; Zhou et 

al., 2010a; Zhou et al., 2011) (Figure 1.5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5: Potential stimulus involved in NLRP1 and NLRP3 receptor activation in cerebral 
ischemia. The precise molecular and cellular stimuli of NLRP1 and NLRP3 receptor activation during 
cerebral ischemia are unknown. However, several cellular events are considered plausible during cerebral 
ischemia including – energy depletion, acidosis, cathepsin release, decreased intracellular K+ concentration, 
increased ROS production, oxidized mitochondrial DNA, increased intracellular Ca2+ concentration, cell 
swelling and PKR activation. During cerebral ischemia there is decreased levels of cytosolic ATP, thereby 
lowering the ratio of ATP/AMP in the cytoplasm, which activates AMPK to promote NLRP1 receptor 
activation. Extracellular and intracellular acidosis may activate the NLRP3 receptor. Extracellular acidosis 
caused by passive release of H+ ions from necrotic cells in the ischemic core or secretion from metabolically 
active leukocytes may activate the NLRP3 receptor by H+ ions binding onto ASIC1a on neurons and glial 
cells resulting in the influx of Ca2+ ions into the cytoplasm. Consequently, increasing the concentration of 
Ca2+ ions in the intracellular environment, which has recently been suggested to activate the NLRP3 
receptor. However, intracellular acidosis caused by a reduction in oxygen availability under ischemic 
conditions, initiates anaerobic glycolysis in the mitochondria resulting in the production and accumulation of 
lactic acid within the cell leading to a decrease in intracellular pH (acidosis) that appears to activate the 
NLRP3 receptor in synergy with a decreased intracellular K+ concentration. The NLRP1 and NLRP3 
receptor can be activated by cathepsins caused by lysosomal membrane permeabilization, destabilization, 
and rupture releasing cathepsins into the cytoplasm induced by particulate crystals. The NLRP1 and NLRP3 
receptor can be activated by a decrease in K+ levels in the cytoplasm caused by dysfunction of the Na+/K+-
ATPase pump due to a decreased production of ATP resulting in both an increased influx and efflux of Na+ 
and K+ ions, respectively. The increased influx of Na+ ions will promote an osmotic movement of water 
through aquaporins into the cell diluting the concentration of K+ ions in the cytoplasm; together with an 
increased efflux of K+ ions into the extracellular environment by dysfunctional Na+/K+-ATPase pumps will 
both decrease the concentration of K+ ions inside the cell. Alternatively, the passive release of ATP from 
necrotic cells in the ischemic core may bind onto plasma membrane P2X4 receptors on neurons, astrocytes 
or microglia, which can cause P2X4 receptors to open allowing an efflux of K+ ions along its concentration 
gradient out of the cell decreasing the concentration of K+ ions in the cytoplasm. In addition, necrotic cells in 
the ischemic core will passively release K+ ions into the extracellular environment. Collectively these 
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mechanisms increase the amount of K+ ions in the extracellular environment and activate Pannexin 1 
channels on the plasma membrane. Opening of Pannexin 1 channels will lead to the release of more ATP, 
which can further activate more P2X4 and now P2X7 receptors on the same cell causing additional K+ efflux 
creating a positive feedback loop. The NLRP3 receptor can be activated by localized increases in ROS levels 
in the cytoplasm. This may occur through perturbation of the electron transport chain in the mitochondria or 
impaired mitophagy during cerebral ischemia causing TXNIP to bind with the NLRP3 receptor leading to its 
activation. The NLRP3 receptor can be activated by oxidized mitochondrial DNA released by the 
mitochondria due to an increase in K+ efflux and ROS. The NLRP3 receptor can be activated by an increased 
intracellular Ca2+ concentration. The passive release of Ca2+ ions from necrotic cells in the ischemic core can 
bind to and activate CaSRs and GPR6CA receptors on neighboring cells. Consequently, activation of CaSRs 
and GPR6CA receptors can interact with Gαq and activate PLC, which cleaves PIP2 into DAG and InsP3. 
InsP3 will bind onto InsP3-R on the endoplasmic reticulum to stimulate the release of Ca2+ ions into the 
cytoplasm. A reduced concentration of cAMP in the cytoplasm could promote NLRP3 receptor activation 
caused by passive release of Ca2+ ions from necrotic cells in the ischemic core binding to and activating 
CaSRs but interacting with Gαi to inhibit adenylate cyclase, which converts ATP to cAMP. Therefore, 
inhibition of adenylate cyclase will decrease the formation and concentration of cAMP in the cytoplasm, 
which is suggested to inhibit the NLRP3 receptor. The NLRP3 receptor is activated by cell swelling caused 
by an increased influx of Na+ ions into neurons, which causes an osmotic movement of water through 
aquaporins into the cell. The NLRP1 and NLRP3 receptor can be activated by PKR, which is activated by 
cellular stress, including a decreased intracellular K+ concentration, increased intracellular ROS production 
and increased intracellular Ca2+ concentration, which all occur during cerebral ischemia (ATP, adenosine 
triphosphate; AMP, adenosine monophosphate; cAMP, cyclic adenosine monophosphate; AMPK, adenosine 
monophosphate-activated protein kinase; CaSR, calcium-sensing receptor; AC, adenylate cyclase; ASIC, 
acid sensing ion channel; PIP2, phosphatidylinositol-4,5-bisphosphate; PLC, phospholipase C; DAG, 
diacylglycerol; InsP3, inositol triphosphate; InsP3R, inositol triphosphate receptor; ROS, reactive oxygen 
species; Ox, oxidized; TXNIP, thioredoxin-interacting protein; PKR, protein kinase R; NLRP, (NOD 
(nucleotide-binding oligomerization domain)-like receptor (NLR) Pyrin domain containing 1 and 3); ASC, 
apoptosis-associated speck-like protein containing a caspase recruitment domain; Cl, cleaved; Ex, 
extracellular; IL, interleukin; In, intracellular; Pre, precursor). 
 

1.6.2.1 Adenosine Triphoshate (ATP)-mediated NLRP Activation 
 
 The NLRP1 receptor was recently demonstrated to be activated by energy depletion under in 

vitro conditions in human fibroblast cells subjected to oxygen and glucose deprivation (Liao & 

Mogridge, 2012). It was shown that ischemic conditions could decrease the levels of cytosolic ATP, 

thereby lowering the ratio of ATP to AMP (adenosine monophosphate) in the cytoplasm, to activate 

the main cellular energy sensor, AMPK (AMP-activated protein kinase), and promote NLRP1 

receptor activation through an unknown mechanism. Importantly, although AMPK promotes 

NLRP1 receptor activation, activation of AMPK in the absence of ATP depletion in the cytoplasm 

was not sufficient to activate the NLRP1 receptor (Liao & Mogridge, 2012). Lastly, it was shown 

that mutation of the ATPase binding motif in the NLRP1 receptor caused constitutive activation, 

suggesting that ATP might normally inhibit the NLRP1 receptor instead of being required for 

assembly, which is redundant under ischemic conditions due to decreased levels of cytosolic ATP. 

This is in direct contrast to the abolition of activity seen when the same mutation is introduced into 

the NLRP3 receptor (Liao & Mogridge, 2012). 
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1.6.2.2 Acidosis-mediated NLRP Activation 
 
 The NLRP3 receptor was recently shown to be activated by extracellular and intracellular 

acidosis under in vitro conditions in human macrophages (Rajamaki et al., 2013). During cerebral 

ischemia, extracellular acidosis may be caused by either passive release of hydrogen (H+) ions from 

necrotic cells in the ischemic core or post-ischemic inflammation. Infiltration and activation of 

resident inflammatory cells in damaged tissue leads to an increase in metabolic activity due to 

increased energy and oxygen consumption through anaerobic glycolysis, resulting in the production 

and secretion of lactic acid, which decreases pH in the extracellular environment (acidosis) 

(Krawczyk et al., 2010; Rajamaki et al., 2013; Roiniotis et al., 2009; Tannahill & O'Neill, 2011; 

Xiong et al., 2004). However, intracellular acidosis under ischemic conditions is usually caused by 

a reduction in oxygen availability, which initiates anaerobic glycolysis resulting in the production 

and accumulation of lactic acid within the cell (Brouns et al., 2008; Ding et al., 2000; Katsura et al., 

1994; Park et al., 1999; Rossi et al., 2007; Xiang et al., 2004). An acidic extracellular environment 

may activate the NLRP3 receptor by H+ ions binding to ASICs, in particular ASIC1a on neurons 

and glial cells resulting in Ca2+ influx (Li et al., 2010; Pignataro et al., 2007; Sherwood et al., 2011; 

Xiong et al., 2004). Increased cytosolic Ca2+ concentration has recently been suggested to activate 

the NLRP3 receptor, and is discussed in more detail in Section 1.6.2.7. Nevertheless, an acidic 

intracellular environment appears to activate the NLRP3 receptor in synergy with a decreased 

intracellular K+ concentration seen in ischemia through a mechanism that remains to be fully 

determined (Rajamaki et al., 2013). 

 
1.6.2.3 Edema-mediated NLRP Activation 
 
 The NLRP3 receptor was recently shown to be activated by cell swelling under in vitro 

conditions in immune cells (Compan et al., 2012; Rabolli et al., 2014; Schorn et al., 2011). This 

may occur during cerebral ischemia, as a major consequence of ATP loss is the inhibition of the 

Na+/K+-ATPase pumps, which will commonly elicit rapid deterioration of ionic gradients across the 

plasma membrane resulting in increased Na+ influx and K+ efflux (Kaplan, 2002; Khanna et al., 

2014; Lipton, 1999; Mongin, 2007). The influx of Na+ into neurons will result in osmotic 

movement of water through aquaporins into the cell so that the cell swells, causing brain edema in 

the ischemic penumbra (Ayata & Ropper, 2002; Breder et al., 2000; Khanna et al., 2014; Rabolli et 

al., 2014; Schorn et al., 2011; Simard et al., 2007). A recent study provided insight into the 

molecular events potentially driving volume-dependent NLRP3 receptor activation (Compan et al., 

2012). It was shown that the NLRP3 receptor was oligomerized into inactive complexes in a resting 

state in macrophages. However, in a hypotonic environment the NLRP3 receptor was activated and 

underwent a conformational change dependent on decreased intracellular K+ levels (Compan et al., 
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2012). Hence, inhibition of K+ efflux during hypotonic shock was sufficient to block NLRP3 

receptor activation. In addition, chloride (Cl-) ion efflux through swell-sensing Cl- channels reduced 

NLRP3 receptor activation, although K+ efflux was unaffected (Compan et al., 2012). Moreover, in 

a hypotonic environment, transient receptor potential (TRP) channels have been implicated in cell 

swelling and NLRP3 receptor activation as they respond to membrane stretch, especially TRPV2 in 

macrophages, which was demonstrated when NLRP3 receptor activation was inhibited during 

TRPV2 blockade. Furthermore, a hypotonic environment caused TRP channel activation, which 

induced changes to intracellular Ca2+ levels and promoted TGFβ-activated kinase 1 (TAK1) 

phosphorylation, which was required for NLRP3 receptor activation (Compan et al., 2012). Thus, it 

appears that cell swelling may activate the NLRP3 receptor through a pathway that involves K+ and 

Cl– ion efflux, TRP channel activation and TAK1 phosphorylation, suggesting a complicated role 

for cell swelling in activating the NLRP3 receptor during cerebral ischemia. 

 
1.6.2.4 Cathepsin-mediated NLRP Activation 
 
 The NLRP1 and NLRP3 receptor may be activated by cathepsins released into the 

cytoplasm due to lysosomal membrane permeabilization, destabilization and rupture induced by 

particulate crystals (Averette et al., 2009; Hari et al., 2014; Hornung et al., 2008; Hoegen et al., 

2011; Newman et al., 2009; Newman et al., 2010; Savage et al., 2012; Shi et al., 2013; Terada et 

al., 2010). During cerebral ischemia, this could be caused by the passive release of cholesterol 

crystals from atherosclerotic plaques at the site of occlusion, or the release of soluble uric acid and 

Ca2+ ions from necrotic cells in the ischemic core undergoing crystallization to produce 

monosodium urate (MSU) and calcium phosphate (i.e. calcium pyrophosphate dihydrate and 

octacalcium phosphate) crystals, respectively, in the extracellular environment. These particulate 

crystals may then be taken up by resident cells such as astrocytes, microglia and infiltrating 

leukocytes via endocytosis, phagocytosis or membrane-bound scavenger receptors (i.e. CD36) to be 

degraded by lysosomes in the cell (Duewell et al., 2010; Denoble et al., 2011; Ea et al., 2011; 

Freigang et al., 2011; Freigang et al., 2013; Gasse et al., 2009; Ghaemi-Oskouie & Shi, 2011; 

Grebe & Latz, 2013; Hari et al., 2014; Hoffman et al., 2010; Jin et al., 2011; Martinon et al., 2006; 

Narayan et al., 2011; Pazar et al., 2011; Peng et al., 2015; Rajamaki et al., 2010; Rock et al., 2013; 

Sheedy et al., 2013; Zhang et al., 2015c). Consequently, the uptake of certain particulate crystals by 

endosomes that fuse with acidic lysosomes downstream induces lysosomal membrane 

permeabilization, destabilization and rupture through an unknown mechanism. This releases 

proteases such as cathepsins (e.g. cathepsin B & L) into the cytoplasm, which are proposed to either 

stimulate the receptor itself, its receptor activators, or cleave either inhibitory domains within the 

receptor or inhibitory proteins associated with the receptor. Such a sequence is thought to release 
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the NLRP1 and NLRP3 receptor from an inactive conformation to an activated state during cerebral 

ischemia (Benchoua et al., 2004; Fukuda et al., 2004; Kilinc et al., 2010; Qin et al., 2008; Seyfried 

et al., 2001; Wen et al., 2008). Despite a recent study demonstrating liposomes as a new type of 

particulate matter that can activate the NLRP3 receptor, an alternative mechanism was observed 

whereby liposomes induced the production of ROS from the mitochondria, which subsequently 

activated transient receptor potential melastatin 2 (i.e. TRPM2) channels to induce calcium influx in 

neurons and glial cells, to activate the NLRP3 receptor (Zhong et al., 2013). 

 
1.6.2.5 Potassium (K+)-mediated NLRP Activation 
 
 The NLRP1 and NLRP3 receptor can be activated by a decrease in K+ levels (<90 mM) in 

the cytoplasm under in vitro conditions in immune cells (Franchi et al., 2014; Katsnelson et al., 

2015; Lindestam Arlehamn et al., 2010; Munoz-Planillo et al., 2013; Petrilli et al., 2007b). During 

cerebral ischemia, this may result from a number of mechanisms including dysfunction of the 

Na+/K+-ATPase pump due to a decreased production of ATP (Kaplan, 2002; Lipton, 1999; Mongin, 

2007). Consequently, the increased influx of Na+ ions will promote an osmotic movement of water 

through aquaporins into the intracellular environment diluting the concentration of K+ ions in the 

cytoplasm (Schorn et al., 2011), together with an increased efflux of K+ ions (Kaplan, 2002; Lipton, 

1999; Mongin, 2007). Alternatively, the passive release of ATP from cell stress and/or necrotic 

cells in the ischemic core may bind to plasma membrane P2X4 receptors on neighbouring neurons 

and glial cells to cause receptor opening and K+ efflux (Carta et al., 2015; De Rivero Vaccari et al., 

2012; Iyer et al., 2009; Mariathasan et al., 2006; Schwab et al., 2005; Wilhelm et al., 2010). In 

addition, necrotic cells in the ischemic core will passively release K+ ions into the extracellular 

environment. Therefore, these mechanisms will collectively increase K+ ions in the extracellular 

environment and activate Pannexin 1 channels on the plasma membrane (Silverman et al., 2009). 

Opening of Pannexin 1 channels will lead to further release of ATP and activation of P2X4 and 

P2X7 receptors, creating a positive feedback loop by leading to additional K+ efflux (De Rivero 

Vaccari et al., 2012; Ferrari et al., 2006; Franchi et al., 2007; Hung et al., 2013; Kahlenberg et al., 

2005; Le Feuvre et al., 2003; Locovei et al., 2007; Pelegrin & Surprenant, 2006). The later 

activation of P2X7 receptors is due to P2X4 receptors being more sensitive (approximately 100 

times) to ATP than P2X7 receptors in the CNS (North & Surprenant, 2000; Raouf et al., 2007). In 

addition, the Pannexin 1 channel can be activated by other stimuli, including hypoxia, mechanical 

stress, increased cytosolic Ca2+ and increased extracellular concentrations of ATP and glutamate 

that occur in cerebral ischemia (Bao et al., 2004; Locovei et al., 2006; Thompson et al., 2006; 

Thompson et al., 2008). Consequently, the decreased concentration of K+ ions in the cytoplasm will 

create an environment that is favourable for activating the NLRP1 and NLRP3 receptor 
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(Kahlenberg & Dubyak, 2004; Lindestam Arlehamn et al., 2010; Munoz-Planillo et al., 2013; 

Petrilli et al., 2007b; Yu, 2003). 

 
1.6.2.6 Reactive Oxygen Species (ROS)-mediated NLRP Activation 
 
 The NLRP3 receptor may be activated by localised increases in ROS levels in the cytoplasm 

(Meissner et al., 2008; Nakahira et al., 2011; Zhou et al., 2010a; Zhou et al., 2011) although this 

remains controversial (Meissner et al., 2010). During cerebral ischemia, ROS elevation may occur 

through perturbation of the electron transport chain in the mitochondria or by an increased 

activation of NADPH oxidase, phospholipase A2, xanthine dehydrogenase and/or nitric oxide 

synthase, all of which are driven by an increased cytosolic Ca2+ level (Abramov et al., 2007; Al-

Gonaiah et al., 2009; Brennan et al., 2009; Green & Kroemer, 2004; Heeba & El-Hanafy, 2012; 

Kahles et al., 2010; Kishimoto et al., 2010; Nanetti et al., 2007; Nieminen, 2003; Ono et al., 2009; 

Tomimoto et al., 2002; Yoshioka et al., 2011). All known activators of the NLRP3 receptor can 

trigger the production of ROS, and furthermore, treatment with various ROS inhibitors and 

scavengers can block NLRP3 receptor activation (Bauernfeind et al., 2011b; Cassel et al., 2008; 

Cruz et al., 2007; Dostert et al., 2008; Gross et al., 2009; Meissner et al., 2008; Petrilli et al., 

2007b; Shio et al., 2009). 

 
Recent evidence suggests that the mitochondria could be a central source of ROS involved 

in NLRP3 receptor activation (Nakahira et al., 2011; Zhou et al., 2010a; Zhou et al., 2011). Using 

various experimental techniques to manipulate mitochondrial function and uncouple the respiratory 

chain, it has been demonstrated that mitochondrial dysfunction increases ROS production and leads 

to NLRP3 receptor activation, as would be expected to occur following cerebral ischemia (Nakahira 

et al., 2011; Zhou et al., 2010a; Zhou et al., 2011). Upon NLRP3 receptor activation and 

oligomerization on the endoplasmic reticulum, ASC on mitochondria is moved into the perinuclear 

space towards the endoplasmic reticulum via the motor protein dynein, which binds to polymerized 

microtubules through acetylated α-tubulin (induced by inflammasome activators). This brings ASC 

on the mitochondria into close proximity to the NLRP3 receptor on the endoplasmic reticulum via 

its N-terminal PYD binding with a mitochondria-associated adaptor protein, MAVS (mitochondrial 

antiviral signaling protein) on the mitochondrial outer membrane. This places the NLRP3 receptor 

in a position to receive mitochondria-derived signals such as ROS, which may cause continued 

receptor activation (Park et al., 2013; Misawa et al., 2013; Subramanian et al., 2013; Zhou et al., 

2011). 

 
Mitochondrial function is equally sensitive to elevated ROS levels due to disturbances to the 

respiratory chain. This results in a decrease in the mitochondrial membrane potential (MMP) during 
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apoptosis, which may further enhance ROS production and create a chain reaction with 

neighbouring mitochondria, ultimately augmenting total ROS levels (Zhou et al., 2010b). In order 

to protect the cell, ROS-generating mitochondria are removed by autophagy (i.e. mitophagy) but 

this may not occur efficiently due to depletion of autophagic proteins such as microtubule-

associated protein 1 light chain 3B (LC3B) and beclin 1 in the presence of cellular stress and 

damage during cerebral ischemia (Nakahira et al., 2011). Hence, impaired autophagy will promote 

the accumulation of damaged mitochondria in the cytoplasm and thus enhance the levels of ROS 

produced activating the NLRP3 receptor (Nakahira et al., 2011; Yang et al., 2014; Zhou et al., 

2011). Nevertheless, although dysfunctional mitochondria and autophagy may provide the source of 

ROS for NLRP3 receptor activation, it remains unclear as to how ROS activates the NLRP3 

receptor. However, a recent study provided insight into the molecular events potentially driving 

ROS-dependent NLRP3 receptor activation (Zhou et al., 2010a). In unstimulated cells, thioredoxin-

interacting protein (TXNIP) is constitutively bound to and inhibited by oxidoreductase thioredoxin. 

Following an increase in cytoplasmic ROS, this complex dissociates and allows TXNIP to bind 

with the NLRP3 receptor (mainly in the LRR), leading to NLRP3 receptor activation during 

cerebral ischemia (Ishrat et al., 2015; Lane et al., 2013; Zhou et al., 2010a).  

 
 Recent studies elegantly connected both an increase in K+ efflux and generation of ROS 

with the production of oxidized mitochondrial DNA, and demonstrated that once released into the 

cytosol, oxidized mitochondrial DNA acts as a danger signal and activates the NLRP3 receptor 

(Mathew et al., 2012; Shimada et al., 2012). The study showed that K+ efflux-induced 

mitochondrial dysfunction, demonstrated by a decreased MMP (a marker of mitochondrial damage 

during apoptosis), which released oxidized mitochondrial DNA into the cytosol through the 

mitochondrial permeability transition (MPT) pore that forms across the inner mitochondrial 

membrane during ischemic conditions. This occurs because mitochondrial DNA that is normally 

attached to the inner mitochondrial membrane will be prone to oxidation due to its close proximity 

to a major source of ROS during cerebral ischemia (Shimada et al., 2012). Consequently, this report 

demonstrated that oxidized mitochondrial DNA can bind to and activate the NLRP3 receptor, 

consistent with the mitochondria playing a key role in NLRP3 inflammasome signaling (Shimada et 

al., 2012). Overall, the study has provided evidence for a potentially unified mechanism by which 

K+ efflux and ROS may activate the NLRP3 receptor during cerebral ischemia. 

 
1.6.2.7 Calcium (Ca2+)-mediated NLRP Activation 
 

The NLRP3 receptor was recently shown to be activated by an increased intracellular Ca2+ 

concentration under in vitro and in vivo conditions (Chae et al., 2015; Lee et al., 2012; Murakami et 
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al., 2012; Rada et al., 2014; Rossol et al., 2012; Triantafilou et al., 2013). As mentioned, during 

cerebral ischemia this may occur by an increased calcium influx, a decreased calcium efflux and/or 

an increased release of calcium from intracellular stores (mediated primarily by oxidative damage 

and formation of MAC on Ca2+ storing organelles such as the endoplasmic reticulum) in neurons 

and glial cells (Bano et al., 2005; Jeffs et al., 2007; Li et al., 2007; Murakami et al., 2012; Schwab 

et al., 2002; Triantafilou et al., 2013). In addition, recent studies have shown that an increased 

extracellular concentration of Ca2+ ions can indirectly mediate NLRP3 receptor activation through 

both plasma membrane calcium-sensing receptors (CaSRs) and GPR6CA receptors, together with a 

decreased concentration of intracellular cAMP (Lee et al., 2012; Rossol et al., 2012). During 

cerebral ischemia, this may be achieved by passive release of Ca2+ from necrotic cells in the 

ischemic core binding to and activating CaSRs and GPR6CA receptors on neighbouring neurons 

and glial cells (Korff et al., 2006; Lee et al., 2012; Rossol et al., 2012; Tzimas et al., 2004). CaSRs 

and GPR6CA receptors are both G-protein coupled receptors that can interact with Gαq and Gαi 

proteins in the plasma membrane (Christiansen et al., 2007; Faure et al., 2009; Hofer & Brown, 

2003; Khan & Conigrave, 2010; Pi et al., 2005; Riccardi & Kemp, 2012). Consequently, Ca2+-

mediated activation of CaSRs and GPR6CA receptors can interact with Gαq and activate 

membrane-bound phospholipase C, which cleaves phosphatidylinositol-4,5-bisphosphate (PIP2) into 

diacylglycerol (DAG) and inositol triphosphate (InsP3) (Chae et al., 2015; Hofer & Brown, 2003; 

Khan & Conigrave, 2010; Lee et al., 2012; Rossol et al., 2012). The main effect of DAG is to 

activate PKC, which catalyses the phosphorylation of a variety of intracellular proteins. Whether 

PKC has any effect on the activation of the NLRP3 receptor remains to be determined. Moreover, 

InsP3 that is released into the cytoplasm can bind to InsP3 receptors (InsP3-R) on the endoplasmic 

reticulum to stimulate the release of Ca2+ into the cytoplasm (Lee et al., 2012; Hofer & Brown, 

2003; Khan & Conigrave, 2010; Rossol et al., 2012).  

 
 Lastly, it was shown that a reduced concentration of cAMP in the cytoplasm could promote 

NLRP3 receptor activation (Bos, 2003; Kim et al., 2007; Lee et al., 2012; Peters-Golden, 2009; 

Trophy, 1998). During cerebral ischemia, this may be caused by passive release of Ca2+ from 

necrotic cells in the ischemic core, which then binds to and activates CaSRs on neighbouring 

neurons and glial cells (Korff et al., 2006; Lee et al., 2012; Tzimas et al., 2004). Consequently, 

Ca2+-mediated activation of CaSRs can similarly interact with Gαi and inhibit the membrane-bound 

enzyme adenylate cyclase, which converts ATP to cAMP (Lee et al., 2012). Therefore, inhibition of 

adenylate cyclase will tend to decrease the formation and concentration of cAMP in the cytoplasm, 

which is thought to inhibit the NLRP3 receptor by interfering with the NACHT domain without 

preventing ATP from binding onto the NLRP3 receptor. In contrast, Rossol and colleagues (2012) 
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detected no influence of cAMP on NLRP3 receptor activation. Hence, the mechanism(s) by which 

increased concentrations of Ca2+ in conjunction with a decreased concentration of cAMP in the 

cytoplasm promotes NLRP3 receptor activation in cerebral ischemia remains to be clarified. 

 
1.6.2.8 Protein Kinase R (PKR)-mediated NLRP Activation  
 

The NLRP1 and NLRP3 receptors were recently shown to be activated by protein kinase R 

(PKR) in the cytoplasm under in vitro conditions in lipopolysaccharide (LPS) primed immune cells 

during apoptosis (Lu et al., 2012). PKR is a ubiquitously expressed serine/threonine protein kinase 

activated by double-stranded RNA that was primarily identified as an innate immune anti-viral 

protein induced by interferon (IFN) (Garcia et al., 2006; Nakamura et al., 2010). In addition, PKR 

is involved in inflammation and appears to be activated by cellular stress, including a decreased 

intracellular K+ concentration, increased intracellular ROS production, increased intracellular Ca2+ 

concentration and pro-inflammatory cytokines (TNFα and IFN), all of which occur during cerebral 

ischemia (Lu et al., 2012; Nakamura et al., 2010). However, the ability of PKR to act as a danger-

sensing molecule to detect these stimuli remains to be determined. Nevertheless, upon activation by 

a stimulus, PKR will undergo dimerization and auto-phosphorylation reactions in order to 

phosphorylate the target protein – in this case NLRP1 or NLRP3 receptors – to induce activation 

(Dey et al., 2005; Garcia et al., 2006; Lu et al., 2012; Peng et al., 2015). The 2012 study by Lu et 

al. provides evidence for a broader role for PKR as a danger-sensing molecule that is integral to 

inflammasome assembly and activation. Major findings were that overexpression of PKR 

substantially enhanced caspase-1 activation and IL-1β cleavage, whereas knockdown of PKR by 

short hairpin RNA (shRNA) inhibited caspase-1 activation and IL-1β cleavage in different cell 

types including macrophages, dendritic cells and embryonic kidney cells (Lu et al., 2012). In 

addition, the study demonstrated that PKR physically interacted with the NLRP1, NLRP3, NLRC4 

and AIM2 receptors, which was mediated by auto-phosphorylation of PKR, while a kinase-

defective PKR protein failed to bind to or activate the NLRP3 receptor.  

 
 A recent study demonstrated that PKR kinase activity is not needed for ASC 

oligomerization and caspase-1 activation in the NLRP1 and NLRP3 inflammasome in non-primed 

anthrax lethal toxin infected macrophages undergoing pyroptosis (Hett et al., 2013). This 

demonstrates that PKR has an uncharacterized role in caspase-1 activation and pyroptosis that is 

distinct from its kinase-dependent role in inflammasome formation during apoptosis in LPS-primed 

cells. This might possibly occur through PKR protein interactions with the IκK complex, which 

causes IκB phosphorylation and proteasomal degradation activating the NF-κB signaling pathway 

(Hett et al., 2013). In other words, PKR kinase activity is present in a primed apoptotic and 
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pyroptotic cell death model, while PKR kinase activity is absent (i.e. PKR protein interaction is 

present) in a non-primed apoptotic and pyroptotic cell death model. Therefore, this study establishes 

a different role for PKR in two distinct cell death pathways during apoptosis and pyroptosis (Hett et 

al., 2013). Moreover, PKR failed to interact with other cytosolic receptors or inflammasome family 

members, including NOD2, NLRP12 and NLRX1 (Lu et al., 2012). Hence, the authors concluded 

that PKR selectively and directly interacted with the NLRP1, NLRP3, NLRC4 and AIM2 receptors 

to induce their activation. This proposal was recently challenged, however, as stimulus known to 

activate the NLRP3, NLRC4 and AIM2 receptors were also able to activate precursor caspase-1, 

and process both precursor IL-1β and IL-18 into their mature forms in PKR deficient macrophages, 

demonstrating that PKR is not required for inflammasome activation in macrophages (He et al., 

2013). Hence, additional studies are needed to clarify the precise role of PKR in inflammasome 

activation. 

 

1.6.3 Mechanism(s) of Nod Like-Receptor (NLR) Activation: NLRP1 and NLRP3 
 
 There are two proposed models of NLR activation suggested in the literature (Kadota et al., 

2009; Mayor et al., 2007; Shirasu, 2009). The principal difference between the two models is the 

implementation of the activation signal. The first hypothetical mechanism is based upon the 

assumption that the NLR is present in the cell in a closed inactive form (i.e. an ‘off’ state), whereby 

the regulatory LRR domain is folded onto the NACHT domain and thus preventing ATP from 

binding and initiating a structural rearrangement that would promote an ‘open’ active state (Jha & 

Ting, 2009; Riedl et al., 2005; Yuan et al., 2010). However, direct binding of a PAMP/DAMP 

individually, or their associated complex with adaptor molecules, to the regulatory LRR domain on 

the NLR, would cause the regulatory LRR domain to be released from the NACHT domain, leading 

to the formation of an ‘open’ active NLR that is able to oliogomerize upon activation (Faustin et al., 

2007; Kadota et al., 2009). The second hypothetical mechanism is based on the assumption that the 

NLR is present in a ‘off’ state bound to a host guard complex, which protects the NLR from 

proteasomal degradation and keeps the NLR in an inactive conformation (Boyer et al., 2011; Dangl 

& Jones, 2001; Fontana et al., 2011; Kadota et al., 2009; Mayor et al., 2007). However, direct or 

indirect activation of the guard complex by a PAMP/DAMP would lead to complete or partial 

dissociation from the NLR, producing an ‘open’ and active NLR that is able to oligomerize upon 

activation (Boyer et al., 2011; Dangl & Jones, 2001; Fontana et al., 2011; Kadota et al., 2009; 

Mayor et al., 2007). Clearly, more experimental evidence is needed before either model of NLR 

activation can be confirmed. 
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1.6.4 Formation of the NLRP1 and NLRP3 Inflammasome Complex 
 

At present, there are three proposed models of NLRP1 inflammasome assembly in humans. 

The first model suggests that the C-terminal CARD domains of NLRP1 receptors are able to 

directly interact with the CARD domains in pro-caspase-1 in the absence of the adaptor protein 

ASC (Martinon et al., 2002) (Figure 1.6A). However, the second model suggests that the N-

terminal PYD domains of NLRP1 receptors facilitate downstream homotypic protein-protein 

interactions with the adaptor protein ASC, as it contains two sub-domains: a PYD and CARD 

domain (Bauernfeind et al., 2011a; Faustin et al., 2007; Martinon et al., 2009; Srinivasula et al., 

2002). Effectively, this would allow the PYD and CARD domain of ASC to bind with the PYD 

domain and CARD domain in the NLRP1 receptor and precursor caspase-1, respectively, through 

PYD-PYD or CARD-CARD homotypic protein interactions (Bauernfeind et al., 2011; Faustin et 

al., 2007; Martinon et al., 2009; Srinivasula et al., 2002) (Figure 1.6B). However, it was recently 

proven that the N-terminal PYD domain of the NLRP1 receptor is not required for NLRP1 

inflammasome activity but the dependence upon ASC and the requirement of the C-terminal CARD 

domain of the NLRP1 receptor suggested an alternative model (Finger et al., 2012). The third 

model suggests that ASC dimers and/or ASC polymers in the form of filamentous structures known 

as ASC specks are arranged via PYD-PYD association leaving two “free” CARD domains at either 

end, which can bind with the C-terminal CARD domain on the NLRP1 receptor and the CARD 

domain of precursor caspase-1 in order to form the NLRP1 inflammasome (Cai et al., 2014; Finger 

et al., 2012; Franklin et al., 2014) (Figure 1.6C). In addition, it was recently confirmed that the 

FIIND domain on the NLRP1 receptor is autolytically cleaved, demonstrating that NLRP1 

inflammasome activity is strictly dependent upon this cleavage following NLRP1 receptor 

activation (Finger et al., 2012; D’Osualdo et al., 2011). 

 
 Regarding NLRP3 inflammasome assembly – the N-terminal PYD domains of the NLRP3 

receptor facilitates downstream homotypic PYD-PYD protein interactions with the PYD domains of 

ASC polymers in the form of filamentous structures known as ASC specks (Bauernfeind et al., 

2011; Cai et al., 2014; Franklin et al., 2014; Martinon et al., 2009; Srinivasula et al., 2002). 

Effectively, this allows the CARD domains of ASC polymers to bind with the CARD domains in 

precursor caspase-1 through homotypic CARD-CARD protein interactions (Bauernfeind et al., Cai 

et al., 2014; Franklin et al., 2014; 2011; Martinon et al., 2009; Srinivasula et al., 2002) (Figure 

1.7). 
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Figure 1.6: Three proposed models for NLRP1 inflammasome assembly in humans. (A). The first 
model suggest that the C-terminal CARD domain of the NLRP1 receptor is able to directly interect with the 
CARD domain in precursor caspase-1 through CARD-CARD homotypic protein interactions in the absence 
of the adaptor protein ASC. However, the second model (B) suggests that the N-terminal PYD domain of the 
NLRP1 receptor is able to facilitate downstream homotypic protein interactions with the adaptor protein 
ASC as it contains two sub-domains: a PYD and CARD domain. This allows the PYD and CARD domain of 
ASC to bind with the PYD domain and CARD domain in the NLRP1 receptor and precursor caspase-1, 
respectively, through PYD-PYD or CARD-CARD homotypic protein interactions. Recently, it was proven 
that the N-terminal PYD domain of the NLRP1 receptor is not required for NLRP1 inflammasome activity 
but the dependence upon ASC and the requirement of the C-terminal CARD domain of the NLRP1 receptor 
suggests an alternative model. (C). The third model suggests that ASC dimers form via PYD-PYD 
association leaving two “free” CARD domains at either end, which can bind with the C-terminal CARD 
domain on the NLRP1 receptor and the CARD domain of precursor caspase-1 in order to form the NLRP1 
inflammasome (NLRP1, (NOD (nucleotide-binding oligomerization domain)-like receptor (NLR) Pyrin 
domain contain 1); ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; 
PYD, pyrin domain; NACHT, NAIP, CIITA, HET-E and TP1 domain; LRR, leucine rich repeats; FIIND, 
function to find; CARD, caspase recruitment domain; Pre, Precursor).             
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Figure 1.7: NLRP3 inflammasome assembly in humans and mice. The N-terminal PYD domain of the 
NLRP3 receptor facilitates downstream homotypic PYD-PYD protein interactions with the PYD domain of 
ASC. This effectively allows the CARD domain of ASC to bind with the CARD domain in precursor 
caspase-1 through homotypic CARD-CARD protein interactions (NLRP3, NOD (nucleotide-binding 
oligomerization domain)-like receptor (NLR) Pyrin domain containing 3); ASC, apoptosis-associated speck-
like protein containing a caspase recruitment domain; PYD, pyrin domain; NACHT, NAIP, CIITA, HET-E, 
and TP1 domain; LRR, leucine rich repeat; CARD, caspase recruitment domain; Pre, Precursor). 
 

 The activation and subsequent oligomerization of the NLRP1 and NLRP3 receptors 

individually via their NACHT domain will subsequently recruit ASC polymers and precursor 

caspase-1 molecules, leading to the formation of the NLRP1 and NLRP3 inflammasome. 

Consequently, this will activate precursor caspase-1 into cleaved caspase-1 in an “all-or-none 

fashion” via proximity-induced auto-activation, which is a process where two or more precursor 

caspase-1 proteins are brought sufficiently close together to induce their autocatalytic activation 

(Boatright et al., 2003; Liu et al., 2014b; Salvesen & Dixit, 1999). 

 
 It should be recognised that the interaction between human precursor caspase-4/5 or murine 

precursor caspase-11 to precursor caspase-1 is essential for caspase-1 activation in both NLRP1 and 

NLRP3 inflammasomes (Kang et al., 2000; Kang et al., 2002; Kang et al., 2003; Martinon et al., 

2002; Rathinam et al., 2012; Salskov-Iversen et al., 2011; Sollberger et al., 2012; Wang et al., 

1998). However, the timing when human precursor caspase-4/5 or murine precursor caspase-11 

binds to the inflammasome remains to be clarified. In addition, the precise location, time of binding 

and role of XIAP in murine NLRP1 and NLRP3 inflammasome remains to be established. 

However, it is suggested that full-length XIAP may serve to inhibit the NLRP1 and NLRP3 

inflammasome by inhibiting precursor caspase-1 activation, although once XIAP becomes cleaved 

it is unable to inhibit precursor caspase-1 effectively due to the production of an XIAP fragment 

(BIR1-2) with an attenuated capacity to inhibit precursor caspase-1 (Katz et al., 2001; Keane et al., 

2001; Lotocki & Keane, 2002; Mawhinney et al., 2011; Vince et al., 2012). Therefore, stroke-

induced XIAP cleavage may reduce the threshold for activation of precursor caspase-1, allowing 
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unrestrained maturation of both precursor IL-1β and IL-18 (De Rivero Vaccari et al., 2008). 

Additional studies with XIAP-deficient animals are needed to determine the consequences of XIAP 

cleavage in stroke-induced inflammasome signaling. 

 

1.6.5 NLRP1 and NLRP3 Inflammasome-mediated Cell Death in Stroke 
 

The NLRP1 and NLRP3 inflammasome can mediate neuronal and glial cell death in 

ischemic stroke through a number of mechanisms by increasing the production and secretion of pro-

inflammatory cytokines IL-1β and IL-18, and via pleiotropic effects of cleaved caspase-1 in 

mediating apoptosis and pyroptosis. While most studies suggest that IL-1β binding to the IL-1 

receptor 1 (IL-1R1) on neurons and glial cells is harmful to the injured cerebral tissue during 

ischemic stroke, some studies report neuroprotective effects that seem to be dependent on the 

concentration of IL-1β, and on the timing of the response relative to the ischemic stroke insult 

(Bernardino et al., 2005; Jones et al., 2005; Lu et al., 2005; Shaftel et al., 2007a). Importantly, IL-

1β alone, in the absence of cerebral tissue injury, is not neurotoxic (Lawrence et al., 1998, 

Rothwell, 1999; Shaftel et al., 2007b). It is thus proposed that the increase in IL-1β production after 

ischemic stroke is part of a protective response that goes wrong. A number of neurological 

disorders share common cell injury mechanisms and could provide indications to the mechanisms 

underlying the harmful effects of IL-1β. For example, evidence has emerged on the relationship 

between glutamate excitotoxicity and oxidative stress with IL-1β. Hence, it is proposed that 

glutamate excitotoxicity and oxidative stress with IL-1β are linked in causing neuronal and glial 

cell death during ischemic stroke. 

 
1.6.5.1 IL-1β and Glutamate Excitotoxicity 
 

There is evidence to suggest that glutamate excitotoxicity and IL-1β actions are not 

mutually exclusive. This was demonstrated in an experimental study that intracerebroventricular 

injection of an NMDA agonist (i.e. cis-2,4-methanoglutamate) increased protein expression of IL-

1β in neurons, astrocytes and microglia in the parietal cortex and striatum of rats following 30 

minutes to 7 days of NMDA-induced excitotoxicity (Pearson et al., 1999). In addition, the study 

revealed an early temporal expression of IL-1β in microglia localised to the site of cerebral tissue 

damage and a delayed, widespread expression of IL-1β in astrocytes suggesting a diverse role for 

IL-1β following NMDA-induced excitotoxicity. Similiarly, an experimental study demonstrated 

that pre-treatment with MK-801, a non-competitive NMDA receptor antagonist decreased gene 

expression of TNF-α and IL-1β in the parietal cortex following 4, 16 and 24 hours of ischemia in a 

photothrombosis model of focal ischemic stroke (Jander et al., 2000). This study was the first to 
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suggest that NMDA-induced excitotoxicity can activate inflammatory gene expression 

independently from neuronal and glial cell death induced by cerebral ischemia and may provide a 

mechanistic link as to how IL-1β mediates cell injury by regulating excitoxicity. This concept was 

supported by a number of experimental studies. A study demonstrated that intracerebroventricular 

injection of a recombinant IL-1 receptor antagonist decreased neuronal cell death and infarct size 

following 24 hours of focal ischemia and NMDA-induced excitotoxicity suggesting that IL-1β is a 

mediator for ischemic and excitotoxic damage (Relton and Rothwell, 1992). In addition, a number 

of experimental studies demonstrated that intracerebroventricular injection of IL-1β into the cortex 

failed to increase infarct volume in either the striatum or cortex, but increased excitotoxic damage 

in the striatum and cortex suggesting a link between excitotoxicity and IL-1β, although the 

mechanism(s) by which they converge may be diverse (Lawrence et al., 1998; Stroemer and 

Rothwell, 1998; Allan et al., 2000). This was elegantly demonstrated in an experimental study 

where administration of IL-1β was able to increase activation of Src tyrosine kinase, which bound 

and phosphorylated the NMDA receptor subunits (i.e. NR2A/B) to increase Ca2+ influx through 

NMDA receptors inducing excitotoxic cell death in primary hippocampal neurons in rats (Viviani et 

al., 2003). Moreover, an experimental study demonstrated that administration of IL-1β decreased 

gene expression of glutamate transporter subtype-1, which decreased the re-uptake of glutamate and 

increased excitotoxicity in primary human astroyctes in a dose-dependent manner after 24 hours 

(Hu et al., 2000). Finally, an experimental study demonstrated that administration of IL-1β 

activated the cystine/glutamate antiporter (i.e. System x(c)-) to increase intracellular cystine levels 

and extracellular glutamate levels inducing glutamate excitoxicity in mixed neuron-astrocyte co-

cultures under ischemic conditions (Fogal et al., 2007). Hence, it appears that IL-1β stimulates a 

variety of pathways to induce glutamate excitotoxicity. 

 
1.6.5.2 IL-1β and Oxidative Stress 
 
 There is evidence to suggest that oxidative stress and IL-1β are not mutually exclusive. A 

number of studies have demonstrated that ROS can induce the expression of precursor IL-1β in 

mixed hippocampal cultures and attenuated by antioxidants such as N-acetyl-cysteine (Brabers & 

Nottet, 2006; Min et al., 2003). In addition, an experimental study demonstrated that administration 

of NMDA increased intracellular Ca2+ concentrations, which uncoupled the mitochondrial electron 

transport chain increasing the production of ROS and inducing oxidative stress in mouse cortical 

neurons under glutamate excitotoxic conditions (Dugan et al., 1995). Similiarly, an experimental 

study demonstrated that intraperitoneal administration of a lipid peroxidation inhibitor (IRFI 042) 

decreased malondialdehyde (MDA) levels, prevented loss of glutathione-reduced (GSH) levels and 
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gene expression of IL-1β in the cortex and hippocampus of kainic-acid induced brain injury in mice 

(Marini et al., 2004; Reynolds & Hastings, 1995). Hence, these studies propose that excitotoxicity 

can cause oxidative stress, and that oxidative stress can induce precursor IL-1β expression 

suggesting a possible mechanistic link. 

 
1.6.5.3 IL-1β, IL-18 and IL-12 
 
 Although IL-18 is structurally homologous to IL-1β, and its receptor (IL-18R) belongs to 

the same IL-1R/TLR superfamily, its function is quite different from IL-1β (Boraschi & Dinarello, 

2006; Felderhoff-Mueser et al., 2005). In synergy with IL-12, IL-18 promotes T helper 1 (TH1)-

mediated immune responses, which play a critical role in the host defence against infection by 

inducing the production of interferon-γ (IFN-γ) from activated TH1, natural killer (NK) and B cells 

(Nakahira et al., 2002; Yoshimoto et al., 1998). However, the overproduction of IL-12 from 

infiltrating macrophages and IL-18 from neuronal and glial cells in ischemic cerebral tissue induces 

a pro-inflammatory state via an increased production of IFN-γ. Consequently, this stimulates 

parenchymal macrophages to produce additional pro-inflammatory cytokines such as TNFα and IL-

6, and neurotoxic mediators such as ROS and NO, leading to severe cerebral tissue damage 

(Monteforte et al., 2000; Nakanishi et al., 2001; Ohkusu et al., 2000; Wei et al., 1999). In addition, 

IL-18 stimulates NK cells and cytotoxic T cells (CD8+) to show cytotoxic activity by utilizing 

perforin, which is a potent pore-forming molecule that can lyse target neurons and glial cells, and 

FasL, which can induce neuronal and glial apoptosis (Dao et al., 1998; Tsutsui et al., 1996; Yilmaz 

et al., 2006). In addition, IL-18 up-regulates perforin-dependent cytotoxic activity and FasL 

expression (Nakanishi et al., 2001). This suggests that IL-18 is a potent pro-inflammatory cytokine 

that may have pathophysiological roles in inflammatory conditions such as ischemic stroke. 

 
 Both IL-1β and IL-18 released from neurons and glial cells can have an autocrine, paracrine 

and endocrine effect by binding to their respective receptors on the same cell, neighbouring 

neurons, astrocytes, microglia or endothelial cells, and/or peripheral leukocytes triggering a 

complex series of signaling events in the target cell that can result in the activation of NF-κB and 

MAPK(s) signaling pathways (Dinarello, 1998; Dinarello, 2002; Dinarello, 2009; Gracie et al., 

2003; Sedimbi et al., 2013). Consequently, this will lead to secondary transcription of multiple 

inflammation-associated genes, including: pro-inflammatory cytokines (e.g. TNFα, IL-1β, IL-6 and 

IL-18); chemokines (e.g. CXC-chemokine ligand 8, CXCL8 aka IL-8, CX3C-chemokine ligand 1, 

CX3CL1 aka fractalkine); and adhesion molecules (e.g. E-selectin and ICAM-1), all contributing to 

ischemic reperfusion injury resulting in neuronal and glial cell death (Allan et al., 2005; Allan & 
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Rothwell, 2001; Arumugam et al., 2004a; Ehrensperger et al., 2005; Huang et al., 2000; Vila et al., 

2000; Yilmaz & Granger, 2008; Zhang et al., 1998). 

 
1.6.5.4 Pleiotropic Effects of Cleaved Caspase-1 
 
 A major pleiotropic effect of cleaved caspase-1 is that it is able to induce pyroptosis. 

Pyroptosis is morphologically and mechanistically distinct from other forms of cell death such as 

necrosis and apoptosis. It is a programmed form of cell death that is highly inflammatory and 

exclusively mediated by cleaved caspase-1 (Bergsbaken et al., 2009). At present, pyroptosis has 

only been described in neurons, astrocytes, endothelial cells, muller cells, monocytes, macrophages 

and dendritic cells in experimental models of infection, traumatic brain injury, diabetic retinopathy, 

epilepsy, Alzheimer’s disease, hypercholesterolemia, hyperlipidemia and alcohol intoxication  

(Adamczak et al., 2014; Alfonso-Loeches et al., 2014; Edgeworth et al., 2002; Feenstra et al., 2013; 

Fink et al., 2008; Lamkanfi, 2011; Tan et al., 2014; Tan et al., 2015; Yin et al., 2015, Zhang et al., 

2015c). Whether neurons and glial cells undergo pyroptosis during cerebral ischemia remains to be 

determined. Pyroptosis is characterised by rapid plasma membrane rupture and release of pro-

inflammatory contents into the extracellular environment due to the development of pores on the 

plasma membrane (diameter of 1.1-2.4 nm) mediated by cleaved capase-1 through an unknown 

mechanism(s) (Fink et al., 2008; Fink & Cookson, 2006). Consequently, these pores will dissipate 

cellular ionic gradients (such as Na+ and K+), allowing an osmotic movement of water through 

aquaporins into the cell causing swelling and lysis (Bergsbaken et al., 2009; Fink & Cookson, 2006; 

Fink et al., 2008). In addition, DNA damage can occur during pyroptosis, where cleaved capase-1 

can mediate cleavage of chromosomal DNA by an unidentified endonuclease that does not produce 

the oligonucleosomal DNA fragmentation observed in apoptosis (Brennan & Cookson, 2000; Fink 

& Cookson, 2006). Hence, cell lysis and DNA cleavage are cleaved caspase-1-dependent features 

of pyroptosis that remain to be established in ischemic stroke.  

 
 Despite cleaved caspase-1 being responsible for inducing pyroptosis, additional pleiotropic 

effects of cleaved caspase-1 were shown to cause cell death through a number of alternative 

mechanisms by cleaving and inactivating a number of enzymes involved in glycolysis such as 

fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, α-enolase and 

pyruvate kinase, linking inactivation of bioenergetic pathways to cell death (Shao et al., 2007). In 

addition, cleaved caspase-1 was shown to initiate rapid mitochondrial disassembly and subsequent 

irreversible mitochondrial damage demonstrated by an increased production of mitochondrial ROS, 

mitochondrial swelling, dissipation of mitochondrial membrane potential, increased mitochondrial 

permeabilization and fragmentation of the mitochondrial network in immune cells (Yu et al., 2014). 
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Moreover, cleaved caspase-1 was shown to inhibit the clearance of dysfunctional mitochondria 

through a process known as mitophagy, which subsequently accumulates mitochondrial-derived 

DAMPs (e.g. mitochondrial DNA and ROS) that amplifies mitochondrial and cellular damage 

mediated in part by cleaving a key mitophagy pro-regulator – Parkin (Kahns et al., 2003; Yu et al., 

2014). Furthermore, cleaved caspase-1 was shown to directly cleave and activate both executioner 

caspase-3 and 7, and Bid into its truncated form, inducing intrinsic and extrinsic apoptotic cell 

death, respectively (Erener et al., 2012; Frederick Lo et al., 2008; Guegan et al., 2002; Liu et al., 

2004a; Walsh et al., 2011; Zhang et al., 2003). In addition, a pleiotropic effect of caspase-11 alone 

was shown to cleave and activate executioner caspase-3 inducing apoptotic cell death (Kang et al., 

2000; Kang et al., 2002; Kang et al., 2003). Hence, these pleiotropic effects of cleaved caspase-1 

and caspase-11 may contribute to neuronal and glial cell death in ischemic stroke. 

 

1.6.6 Evidence of Inflammasome Activity in Cerebral Ischemia 
 
 An increase in inflammasome activity is associated with neuronal and glial cell death in 

cerebral ischemia. The following section will describe evidence for the role of the inflammasome in 

such pathology by highlighting the relationship between an increase in inflammasome activity with 

an increased production of IL-1β and IL-18 in cerebral ischemia. 

 
 IL-1β and IL-18 mRNA and protein expression is increased in the brains of rodents 

following cerebral ischemia (Pearson et al., 1999; Sairanen et al., 1997; Skifter et al., 2002). In 

addition, upregulation of both IL-1R1 and IL-18R can be observed in the cortex, hippocampus and 

striatum following cerebral ischemia in rats (Sairanen et al., 1997; Wang et al., 1997). Importantly, 

the ischemic injury induced elevations in IL-1β and IL-18, and both IL-1R1 and IL-18R levels 

contribute to neuronal and glial cell death that occurs subsequent to cerebral ischemia (Boutin et al., 

2001; Loddick et al., 1997; Mizushima et al., 2002). The administration of either an IL-1β 

neutralizing antibody or pharmacological IL-1 receptor antagonist (IL-1ra) markedly reduced 

infract volume, blood brain barrier disruption, microglial activation, neutrophil infiltration and 

cytokines in the brain, in addition to reversing peripheral immune suppression following cerebral 

ischemia (Mulcahy et al., 2003; Pradillo et al., 2012; Smith et al., 2012; Yamasaki et al., 1995; 

Yang et al., 1999). Rodents deficient in caspase-1 or caspase-1 inhibition showed a reduction in IL-

1β and IL-18 levels associated with diminished infarct volumes  (Fann et al., 2013; Hara et al., 

1997; Liu et al., 1999; Rabuffetti et al., 2000; Ross et al., 2007; Schielke et al., 1998). Immuno-

neutralization of endogenous IL-1ra markedly enhanced ischemic damage, indicating that IL-1ra 

plays an important role in controlling endogenous IL-1β levels (Loddick et al., 1997). A study 

demonstrated that loss of IL-1R1 signaling was neuroprotective in a hypoxic-ischemic model with 
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an associated decrease in cytotoxic edema (Basu et al., 2005; Lazovic et al., 2005). In agreement, 

IL-1R1 null mice are less susceptible than wild-type control mice to focal cerebral ischemic damage 

induced by reversible middle cerebral artery occlusion (Fogal et al., 2007). 

 
 The important discovery of the NLRP1 inflammasome finally conveyed a mechanism as to 

how precursor caspase-1 was activated, by providing a molecular platform for activation (Martinon 

et al., 2002). In addition, a study stipulated evidence for the first time that stroke could induce the 

formation of the NLRP1 inflammasome in neurons and glial cells, and activate precursor caspase-1 

to produce both mature IL-1β and IL-18 to mediate neuronal and glial cell death (Abulafia et al., 

2009). Similiarly, another recent study showed that milk fat globule-EGF 8 (MFGE8) inhibited 

necrotic cell-induced and ATP-dependent IL-1β production in macrophages (Deroide et al., 2013). 

MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size following 

cerebral ischemia, whereas MFGE8 supplementation significantly dampened caspase-1 activation 

and IL-1β production, and reduced infarct size, in wild-type mice, indicating that MFGE8 can 

inhibit NLRP3 inflammasome-induced IL-1β production and attenuate post-ischemic cerebral 

injury (Deroide et al., 2013). Furthermore, a recent experimental study demonstrated that 

intravenous administration of a caspase-1 inhibitor and intravenous immunoglobulin significantly 

decreased caspase-1 activation, maturation of IL-1β and IL-18, and infarct size by suppressing 

NLRP1 and NLRP3 inflammasome activity following 24 hrs of reperfusion in a transient mouse 

model of focal ischemic stroke (Fann et al., 2013). In addition, another recent experimental study 

elegantly demonstrated that the AIM2 and NLRC4 inflammasomes contribute with ASC to acute 

brain injury by increasing infarct size and neurological deficits in a mouse model of focal ischemic 

stroke (Denes et al., 2015). Moreover, the concentration of IL-1β and IL-18 was increased in the 

cerebrospinal fluid of stroke patients and significantly attenuated following intravenous 

administration of recombinant human IL-1ra in stroke patients in a Phase II placebo-controlled 

study (Emsley et al., 2005; Tarkowski et al., 1999). Thus, the totality of experimental and now 

human data provide compelling evidence that in brain cells the AIM2, NLRP1, NLRP3 and NLRC4 

inflammasome may be responsible for activating precursor caspase-1 to produce mature IL-1β and 

IL-18, which are contributing factors in brain injury following cerebral ischemia. 

 

1.6.7 Current Treatments in Stroke 
 
 Current therapeutic approaches for ischemic stroke can be categorised into two major 

strategies – vessel recanalization and neuroprotection. Vessel recanalization can be achieved 

surgically by mechanical removal of the blood clot using intracranial clot removers (MERCI device 

and Penumbra system), or pharmacologically by thrombolysis using recombinant tissue 
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plasminogen activator (r-tPA) (NINDS, 1995; Smith et al., 2008; Taschner et al., 2011). At present, 

the only pharmacological treatment for acute ischemic stroke approved by the US Food and Drug 

Administration (FDA) continues to be intravenous r-tPA (alteplase) (NINDS, 1995). However, 

there are limitations towards the use of r-tPA in the treatment of acute ischemic stroke, such as a 

narrow therapeutic window of 3-4.5 hours due to an increased risk of intracerebral hemorrhage 

(ascribed to r-tPA increasing the activation and expression levels of MMP-9), neuronal 

excitotoxicity (attributed to r-tPA increasing NMDA receptor-evoked calcium influx through 

cleavage of the NR1 subunit), and an inability to rescue dying neurons, thus precluding the use of r-

tPA beyond this time frame (Hacke et al., 2008; Kelly et al., 2006; Nicole et al., 2001; Ning et al., 

2006). Hence, due to safety concerns and the restrictive timeframe, only a small percentage (5-10%) 

of eligible patients are treated with r-tPA (Kleindorfer et al., 2008). 

  
 An alternative approach for treating acute ischemic stroke is neuroprotection. The basic 

concept underlying the use of neuroprotective agents evolved in response to the idea that 

pharmaceutical drugs could interfere with the ischemic cascade in an attempt to save neurons in the 

ischemic penumbra from irreversible injury. In the past decade, a number of neuroprotective agents 

have undergone clinical trials including ion channel modulators such as Na+ channel 

(Fosphenytoin), Ca2+ channel blockers (Nimodipine), glutamate receptor modulators (NMDA-

glutamate receptor antagonists, e.g. Selfotel), free radical scavengers (Trilizad) and anti-

inflammatory therapies (Enlimomab) (Ahmed et al., 2000b; Chan et al., 1998; Davis et al., 2000; 

Fosphenytoin - Internet Stroke Centre, 2007; Furuya et al., 2001; Van der Worp et al., 2002). 

Despite neuroprotective agents decreasing neuronal cell death and infarct size in animal stroke 

models, each of these agents have failed in clinical trials due to deleterious side effects and/or low 

efficacy (Cheng et al., 2004; Green, 2002). The discrepancy between outcomes of such therapies in 

animal stroke studies and clinical trials may be due to several reasons. Firstly, anatomical and 

physiological differences in the brains of animals and humans may be an issue as animal brains are 

smaller and less gyrated (Dirnagl et al., 1999). Hence, neuronal and glial densities will be smaller in 

rodents in comparison to humans. Cerebral energy metabolism and blood flow is inversely related 

to body mass (Dirnagl et al., 1999). Hence, glucose and oxygen metabolism, in addition to blood 

flow, will generally be higher in animals in comparison to humans. Accordingly, the size and 

development of the ischemic core will vary between species while characterization of the ischemic 

penumbra in rodents is well established in comparison to humans (Tagaya et al., 1997). Therefore, 

greater emphasis should be placed on conducting experimental stroke and neuroprotection in 

species that are related closer to humans. Secondly, age and associated illness or comorbidities may 

be an issue as most experimental studies have been conducted on relatively young and healthy 
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animals (Howells et al., 2010; O’Collins et al., 2011; Schaller, 2007; Wang et al., 2003). However, 

stroke patients are typically elderly and afflicted with numerous risk factors and complicating 

diseases such as hypertension and diabetes. Therefore, developing animal stroke models with 

appropriate comorbidities should better reflect human stroke pathology. Thirdly, the administration 

of neuroprotective agents has often occurred beyond the period of efficacy for the drug being tested 

(De Keyser, et al., 1999; Dirnagl et al., 1999; Ginsberg, 2008; O’Collins et al., 2011). In animal 

stroke models, the onset of ischemia and reperfusion, and the administration of treatment are 

precisely defined: generally at the onset of ischemia, immediately after reperfusion or at various 

times after reperfusion. However, in human stroke patients this is not always possible, as the onset 

of symptoms does not always coincide with the onset of ischemia, and neuroprotective agents were 

thus likely often administered many hours after the stroke began (Ginsberg, 2008). Finally, 

neuroprotective agents only target a particular cell injury mechanism in the ischemic cascade, and 

in either single or multiple cell types (Woodruff et al., 2011). Hence, development of 

neuroprotective agents that can target multiple cell injury mechanisms in different cell types is 

warranted. Thus, intracellular complexes known as inflammasomes that can target diverse 

pathogenic events in multiple cell types could provide an attractive target for superior approaches in 

the treatment of stroke and should be further investigated. 

 

1.6.8 Future Treatments in Stroke – Targeting Inflammasome Signalling 
 
 In recent years the inflammasome has emerged as a key mediator in inflammation, via 

activation of precursor caspase-1 into cleaved caspase-1, which is responsible in initiating and 

amplifying the production of pro-inflammatory cytokines IL-1β and IL-18, and ultimately causing 

apoptotic neuronal and glial cell death following cerebral ischemia (Abulafia et al., 2009; Denes et 

al., 2015; Deroide et al., 2013; Fann et al., 2013; Savage et al., 2012; Zhang et al., 2014). Hence, 

targeting pathways upstream and downstream of inflammasome signaling, in particular to its 

expression, assembly, activity and products, may offer substantial promise in developing new 

therapeutics for stroke. These potential targets include signaling pathways (i.e. NF-κB and 

MAPKs), inflammasome components (i.e. NLRPs, ASC and Caspase-1), plasma membrane 

receptors/channels (i.e. P2X7 receptors, Pannexin 1 and K+ channels), secondary messengers (i.e. 

ROS, PKR and β-arrestin-2), cytokines (i.e. IL-1β and IL-18) and cytokine receptors (i.e. IL-1R1 

and IL-18R) involved in inflammasome signaling. 
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1.6.8.1 Targeting Signalling Pathways – NF-κB and MAPK(s) Pathway 
 
 The rationale behind targeting the NF-κB and MAPK(s) signaling pathways have emerged 

from observations that both pathways are involved in increasing the expression of inflammasome 

proteins and both precursor IL-1β and precursor IL-18 in the cytoplasm following cerebral ischemia 

(Bauernfeind et al., 2011b; Bauernfeind et al., 2009; Budai et al., 2013; Burm et al., 2015; 

Frederick Lo et al., 2008; Ghonime et al., 2014; Hara et al., 2013; He et al., 2012; Juliana et al., 

2010; Kang et al., 2000; Legos et al., 2001; Liao et al., 2012; Liu et al., 2004a; Liu et al., 2013; 

Mariathasan & Monack, 2007; Okada et al., 2014; Qiao et al., 2012; Savage et al., 2012; Schroder 

et al., 2012; Tamatani et al., 2000; Weber et al., 2015; Zhao et al., 2013). Accordingly, this would 

“prime” cells to be able to form more inflammasome complexes and activate precursor caspase-1 to 

cleave precursor IL-1β and precursor IL-18 into their active forms – mature IL-1β and mature IL-

18. Recently, a number of experimental studies have demonstrated that administration of 

intravenous immunoglobulin (IVIg); a highly purified blood preparation containing 

immunoglobulin G (IgG) was able to decrease the expression of NLRP1 and NLRP3 inflammasome 

proteins, and both precursor IL-1β and precursor IL-18, and thus inflammasome activity by 

conceivably attenuating the activation of the NF-κB (i.e. p-p65) and MAPK(s) (i.e. p-P38 and p-

JNK) pathway via an unknown mechanism(s) in mouse primary cortical neurons and brain tissue 

under in vitro and in vivo ischemic conditions (Fann et al., 2013; Lok et al., 2015; Widiapradja et 

al., 2012). In addition, IVIg was shown to increase the expression levels of anti-apoptotic protein 

Bcl-2 in primary cortical neurons and brain tissue following ischemia, which have been shown to 

bind and inhibit the NLRP1 and NLRP3 receptor in macrophages by preventing ATP from binding 

onto the NACHT domain in the NLRP1 and NLRP3 receptor (Bruey et al., 2007; Fann et al., 2013; 

Faustin et al., 2009; Lok et al., 2015; Shimada et al., 2012; Widiapradja et al., 2012). Therefore, 

inhibiting the oligomerization of the NLRP1 and NLRP3 receptors is expected to attenuate caspase-

1 activation and maturation of IL-1β and IL-18. Similiarly, a recent experimental study 

demonstrated that thymoquinone, a major ingredient in the seed of the Nigella sativa plant revealed 

an ability to inhibit the NF-κB pathway decreasing expression of the NLRP3 receptor, maturation 

of precursor caspase-1 and secretion of mature IL-1β and IL-18 into the extracellular environment 

in human (A375) and mouse (B16F10) melanoma cell lines (Ahmad et al., 2013). Moreover, 

another recent study demonstrated that administration of Aloe vera, an immunomodulatory agent, 

was able to decrease expression of the P2X7 receptor, NLRP3 receptor, precursor caspase-1 and 

precursor IL-1β, and thus attenuate secretion of IL-1β, TNF-α, IL-6 and IL-8 in a dose dependent 

manner by inhibiting the NF-κB, p38, JNK and ERK signaling pathways in LPS-activated primary 

macrophages and human THP-1 cells (Budai et al., 2013). This suggests that targeting the NF-κB 
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and MAPK(s) pathway may provide a clinical benefit of therapeutic interventions that target 

inflammasome expression and activity during cerebral ischemia. At present, NF-κB and MAPK(s) 

inhibition is not used in clinical trials to treat stroke patients. 

 
1.6.8.2 Targeting Inflammasome Components: NLRPs, ASC and Caspase-1 
 
 During cerebral tissue injury there is an increased expression of inflammasome components 

such as NLRP1, NLRP3, ASC, and precursor caspase-1 and 11 (Bauernfeind et al., 2011b; 

Bauernfeind et al., 2009; Budai et al., 2013; Burm et al., 2015; Frederick Lo et al., 2008; Ghonime 

et al., 2014; Hara et al., 2013; He et al., 2012; Juliana et al., 2010; Kang et al., 2000; Legos et al., 

2001; Liao et al., 2012; Liu et al., 2004a; Liu et al., 2013; Mariathasan & Monack, 2007; Okada et 

al., 2014; Qiao et al., 2012; Savage et al., 2012; Schroder et al., 2012; Tamatani et al., 2000; Weber 

et al., 2015; Zhao et al., 2013). Therefore, targeting these inflammasome components is predicted 

to attenuate the formation of the inflammasome complex and activation of caspase-1 following 

cerebral ischemia. This concept was demonstrated in a number of experimental studies using 

antibodies (e.g. NLRP1 and ASC antibody), inhibitors (e.g. Bay-11-7082, Parthenolide, Ac-

YVAD.cmk and VX-765/VRT-018858) and other blockers (e.g. CRID3) that target components of 

the inflammasome complex (Abulafia et al., 2009; Coll & O’Neill, 2011; De Rivero Vaccari et al., 

2009; Fann et al., 2013; Juliana et al., 2010; Laliberte et al., 2003; Perregaux et al., 2001; 

Rabuffetti et al., 2000; Ray et al., 2000; Ross et al., 2007). A recent study showed that 

intracerebroventricular injection of a neutralizing antibody against the NLRP1 receptor was able to 

cross the BBB and interfere with the assembly of the NLRP1 inflammasome complex in neuronal 

and glial cells, producing a decreased activation of caspase-1, maturation of IL-1β and IL-18, and 

reduced infarct size after 24 hours in a thromboembolic mouse model of ischemic stroke (Abulafia 

et al., 2009). Similiarly, another study showed that intracerebroventricular and intraperitoneal 

injection of a neutralizing antibody against the adaptor protein ASC was able to cross the BBB and 

interfere with the assembly of the NLRP1 inflammasome complex in cortical neurons producing a 

decreased activation of caspase-1 and XIAP, maturation of IL-1β and IL-18, and contusion volume 

after 3 days in a fluid-percussion injury rat model of traumatic brain injury (De Rivero Vaccari et 

al., 2009). Currently, antibodies against inflammasome components have not been used in clinical 

trials to treat cerebral ischemia. Besides using antibodies against inflammasome components a 

recent study showed that Bay-11-7082 and Parthenolide, both NF-κB pathway inhibitors were able 

to inhibit NLRP3 receptor ATPase activity, which is required to recruit and oligomerize ASC in 

order to form the NLRP3 inflammasome and activate precursor caspase-1 to cleave precursor IL-1β 

and precursor IL-18 in mouse NG5 macrophages independent of NF-κB inhibition (Juliana et al., 

2010). Furthermore, an experimental study demonstrated that pre-treatment with a selective 
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precursor caspase-1 inhibitior (e.g. Ac-YVAD.cmk) was able to decrease DNA fragmentation, 

which attenuated apoptotic neuronal cell death and preserved synaptic function in organotypic 

hippocampal slices from rat pups after 24 hours of oxygen and glucose deprivation in vitro (Ray et 

al., 2000). Similiarly, a number of experimental studies have established that 

intracerebroventricular injection of a selective precursor caspase-1 inhibitor (e.g. Ac-YVAD.cmk & 

VX-765/VRT-018858) can inhibit the activation of caspase-1 and 3, and decrease the production of 

IL-1β and TNF-α, and neuronal apoptotic cell death, respectively, and also infarct size after 24 

hours and 7 days in two rat models of ischemic stroke, demonstrating long-term neuroprotection 

from ischemic insult (Fann et al., 2013; Rabuffetti et al., 2000; Ross et al., 2007).  

 
 Other reasons for caspase-1 inhibition may also arise from pleiotropic effects of cleaved 

capase-1 in potentially stimulating pyroptotic cell death; mitochondrial dysfunction; direct cleavage 

and activation of both executioner caspase-3 and 7; and pro-apoptotic Bid into its truncated form 

can mediate intrinsic and extrinsic apoptotic cell death, respectively, contributing to the progression 

of ischemic brain injury and to the exacerbation of focal neurological deficits (Fink & Cookson, 

2006; Guegan et al., 2002; Walsh et al., 2011; Yu et al., 2014; Zhang et al., 2003). Despite 

precursor caspase-1 inhibition by conventional caspase-1 inhibitors, alternative therapeutic drugs 

indicated for other targets and disorders have been shown to inhibit precursor caspase-1. This was 

previously demonstrated from a number of experimental studies that ritonavir, an orally active HIV 

protease inhibitor used to treat HIV infection; disulfiram, an orally active acetalaldehyde 

dehydrogenase inhibitor used to treat recovering alcoholics abstain from alcohol consumption; and 

captopril, an angiotensin converting enzyme inhibitor used to treat high blood pressure have all 

shown to inhibit precursor caspase-1 and therefore potentially decrease maturation of IL-1β and IL-

18 (Nobel et al., 1997; Sloand et al., 2000; Uhal et al., 1998). Similiarly, it was recently 

demonstrated that thalidomide, an anti-inflammatory and anti-angiogenic drug used to treat 

inflammatory skin diseases and certain types of cancers at pharmacological doses can decrease 

precursor caspase-1 activation and subsequently decrease maturation and secretion of IL-1β and 

fibroblast growth factor 2 (FGF2) without affecting the expression of inflammasome proteins, 

mediated by a metabolite of the drug in human primary keratinocytes and fibroblast cells (Keller et 

al., 2009). In addition, it was shown that parthenolide, a herbal NF-κB inhibitor was able to directly 

inhibit precursor caspase-1 activity by alkylating the active site of the enzyme following ASC 

oligomerization at low concentrations (µM) and subsequently decrease maturation of IL-1β in 

human THP-1 macrophages (Juliana et al., 2010).  At present, caspase-1 inhibitors are not approved 

for clinical use, but they have been used in clinical trials (i.e. VX-765/VRT-043198; Vertex 

Pharmaceuticals) for treating seizures in epileptic patients (Bialer et al., 2013; Maroso et al., 2011). 
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Moreover, a number of experimental studies have identified that cytokine release inhibitory drugs 

(CRIDs) are able to inhibit glutathione-S-transferase omega 1 (GSTO1), which was found to 

associate with ASC and inhibit ASC oligomerization, and consequently caspase-1 activation in 

NLRP3 and AIM2 inflammasomes, suggesting that GSTO1 might play a role in inflammasome 

formation in murine bone marrow derived macrophages (Coll & O’Neill, 2011; Laliberte et al., 

2003; Perregaux et al., 2001). To date, antibodies, inhibitors or blockers of inflammasome 

components have not been tested in clinical trials to treat cerebral ischemia. 

 
1.6.8.3 Targeting Receptors and Ion Channels: P2X7 Receptor, Pannexin 1 and Potassium (K+) 
Channels 
 
 The rationale behind targeting P2X7 receptors and Pannexin 1 channels has emerged from 

observations that during cerebral ischemia both are involved in decreasing the intracellular 

concentration of K+, which is responsible in activating the NLRP1 and NLRP3 receptors in neurons 

and glial cells. Numerous experimental studies have shown that both P2X7 receptor antagonism 

(e.g. using Brilliant Blue G) and Pannexin 1 inhibition (e.g. using Carbenoxolone & Brilliant Blue 

FCF) can decrease the production and secretion of proinflammatory cytokines such as IL-1β, TNF-

α and IL-6, and attenuate neuronal and glial apoptotic cell death, infarct size, neurological 

impairment and improve survival rate in in vitro and in vivo models of cerebral ischemia (Arbeloa 

et al., 2012; Chu et al., 2012; Eyo et al., 2013; Iglesias et al., 2008; Poornima et al., 2012; 

Thompson et al., 2006; Thompson et al., 2008; Wang et al., 2013). Currently, P2X7 receptor 

antagonists (i.e. AZD9056, AstraZeneca; CE-224,535, Pfizer; EVT-401, Evotec; GSK1482160, 

GlaxoSmithKline) are not approved for clinical use, but have been used in clinical trials for treating 

chronic inflammatory diseases such as rheumatoid arthritis (Ali et al., 2013; Arulkumaran et al., 

2011; Keystone et al., 2012; Stock et al., 2012). To date, P2X7 receptor antagonists have not been 

used in clinical trials to treat cerebral ischemia. A Pannexin 1 channel inhibitor (Probenecid) has 

long been used to treat hyperuricemia in gout by decreasing urate levels through increased urine 

excretion in pateints with normal renal function (Reinders et al., 2009; Stocker et al., 2011). 

However, its rationale in targeting inflammasome signaling has come under question due to a recent 

study demonstrating that Pannexin 1 channels could be dispensable for P2X7 receptor-induced 

inflammasome activation in murine macrophages, and furthermore the lack of selective Pannexin 1 

channel inhibitors available for clinical use have made Pannexin 1 an unfavourable therapeutic 

target (Qu et al., 2011). Downstream from P2X7 receptor and Pannexin 1 activation, K+ efflux is a 

powerful activator of NLRP1 and NLRP3 receptors. Therefore, inhibiting K+ efflux or increasing 

K+ concentrations in the extracellular environment may provide a strategy to inhibit NLRP1 and 

NLRP3 receptor activation. An experimental study provided evidence that inhibiting voltage-gated 
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K+ channels (using Idebenone) prevented NLRP1 receptor activation following anthrax lethal toxin 

treatment in mouse macrophages (Newman et al., 2011). In addition, an experimental study showed 

that glibenclamide, an orally active sulfonylurea receptor 1 (SUR1) inhibitor towards the regulatory 

subunit of ATP-sensitive K+ channels (K+
ATP) used to treat Type 2 diabetes have shown a 

remarkable ability to inhibit caspase-1 activation, and processing and secretion of IL-1β from 

murine and human macrophages through an unknown mechanism independent of SUR1 inhibition  

(Lamkanfi et al., 2009). Hence, more work is needed to elucidate glibenclamide’s unique ability to 

inhibit NLRP3 inflammasome activity. 

 
1.6.8.4 Targeting Secondary Messengers: ROS, PKR and β-arrestin-2 
 
 Production of ROS and activation of PKR are increased in the cytoplasm during cerebral 

ischemia, which may be responsible for activating the NLRP1 and/or NLRP3 receptor in neurons 

and glial cells. A number of experimental studies have shown a more general therapeutic approach 

by neutralizing ROS via the use of antioxidants (e.g. N-acetyl-L-cysteine, diphenyleneiodonium 

chloride, epigallocatechin-3-gallate) and by eliminating ROS via the use of free radical scavengers 

(e.g. Ebselen), have shown a decrease in caspase-1 activation and production and secretion of IL-1β 

and IL-18 during mitochondrial dysfunction and apoptosis (Dostert et al., 2008; Jabaut et al., 2013; 

Shimada et al., 2012; Tassi et al., 2010; Tsai et al., 2011). However, the use of antioxidants must be 

used with caution as inhibiting the production of ROS may instead stimulate inflammasome activity 

(Van de Veerdonk et al., 2010). Antioxidants (e.g. Vitamin C) and free radical scavengers (e.g. 

NXY-059; AstraZeneca) have not been approved for clinical use due to poor efficacy in clinical 

trials in treating cerebral ischemia (Diener et al., 2008; Lagowska-Lenard et al., 2010).  

 
 A new free radical scavenger (Edaravone; Mitsubishi Pharma) has recently shown promise 

by enhancing early recanalization during t-PA infusion, suppressing serum MMP-9 levels, 

alleviating BBB disruption, decreasing infarct size and improving neurological deficits in stroke 

patients during the subacute period of stroke (Isahaya et al., 2012; Kimura et al., 2012; Nakase et 

al., 2011). Alternative approaches to using antioxidants and free radical scavengers may involve 

decreasing the expression of TXNIP, an NLRP3 receptor activator, by inducing the production of 

TXNIP-destabilizing miRNA (miRNA-17) to downregulate TXNIP activity (Lerner et al., 2012). 

Despite avenues to regulate TXNIP expression and function, attempts to inhibit inflammasome 

signaling by this approach are still preliminary (Watanabe et al., 2010). Moreover, a recent 

experimental study demonstrated that PKR inhibition through its kinase activity (using 2-

Aminopurine and C16) was able to decrease caspase-1 activation and cleavage of precursor IL-1β 

by inhibiting auto-phosphorylation interactions of PKR with the NLRP1 and NLRP3 receptor, 
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hence preventing its activation (Lu et al., 2012). However, PKR inhibition through its kinase-

independent activity (using 7DG) was able to decrease caspase-1 activation by reducing precursor 

caspase-1 expression via inhibiting protein interactions with the IκK complex in NF-κB signaling 

during pyroptosis (Hett et al., 2013). To date, PKR inhibitors have not been used in clinical trials to 

treat cerebral ischemia. In addition, the rationale behind targeting β-arrestin-2 was demonstrated in 

a recent experimental study that Omega-3 fatty acids (ω-3 FAs) such as docosahexaenoic acid 

(DHA) and eicosapentaenoic acid (EPA) could activate G-protein-coupled receptor 40 (GPR40) and 

GPR120, which caused the downstream scaffold protein, β-arrestin-2, to specifically bind and 

inhibit NLRP1 and NLRP3 receptor activation (Yan et al., 2013). Therefore, inhibiting the 

oligomerization of the NLRP1 and NLRP3 receptor is expected to attenuate NLRP1 and NLRP3 

inflammasome formation, caspase-1 activation, and maturation and secretion of IL-1β and IL-18 in 

LPS-primed mouse macrophages (Yan et al., 2013). At present, activation of β-arrestin-2 has not 

been used in clinical trials to treat cerebral ischemia. 

 
1.6.8.5 Targeting Cytokines and Cytokine Receptors: IL-1β, IL-18, IL-1R1 and IL-18R. 
 
 An increased expression and secretion of IL-1β and IL-18 into the extracellular environment 

(i.e. cerebrospinal fluid and blood plasma), which bind to elevated numbers of IL-1R1 and IL-18Rs, 

respectively, on neurons and glial cells contributes to cerebral tissue damage and neurological 

impairment (Abulafia et al., 2009; Denes et al., 2015; Deroide et al., 2013; Fann et al., 2013; Mallat 

et al., 2001; Wang et al., 1997; Yuen et al., 2007). Therefore, targeting IL-1β and IL-18 and their 

corresponding receptors (IL-1R1 and IL-18R) may attenuate receptor activation following cerebral 

ischemia. This concept was demonstrated in a number of experimental or clinical studies utilizing 

antibodies, antagonists or soluble decoy receptors that target the downstream pathway of 

inflammasome signaling. Experimental studies have shown that intracerebroventricular injection of 

an anti-mouse IL-1β neutralizing polyclonal antibody decreased infiltration of leukocytes (i.e. 

neutrophils, monocytes and lymphocytes) into the perivascular and middle cerebral artery areas, 

oedema, infarct volume and neurological and behavioural deficits in a dose-dependent manner 6 

hours before or 24 hours after reperfusion in rat models of focal ischemic stroke (Caso et al., 2007b; 

Yamasaki et al., 1995). Currently, a human IL-1β monoclonal antibody (i.e. Canakinumab; 

Novartis) that selectively neutralizes IL-1β activity with high affinity over a long half-life (21-28 

days) has been approved for clinical use to treat inherited chronic inflammatory diseases such as 

cryopyrin-associated periodic syndrome in particular Muckle-Wells syndrome (Chakraborty et al., 

2012; Lachmann et al., 2009). Canakinumab has not been used in clinical trials for the treatment of 

cerebral ischemia. However, it is being used in an ongoing clinical trial (CANTOS) to determine 
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whether IL-1β inhibition can decrease the risk of recurrent myocardial infarction, stroke, and 

cardiovascular death among high risk pateints who persistently have high levels of C-reactive 

protein, an inflammatory biomarker, despite secondary treatment (Ridker et al., 2011). 

 
 A number of experimental studies have shown that intravenous injection of an anti-mouse 

IL-18 neutralizing antibody 30 to 60 min prior to ischemia decreased NF-κB and AP-1 activation, 

serum levels of pro-inflammatory TNF-α, suppression of anti-inflammatory IL-4 and IL-10, CXC 

chemokine expression, neutrophil infiltration, pulmonary extravasation of Evans Blue dye, 

apoptosis, and hepatic, pulmonary and myocardial infarct size at 3-24 hours following reperfusion 

in mouse models of ischemia/reperfusion injury (Takeuchi et al., 2004; Venkatachalam et al., 2009; 

Yang et al., 2007b). Similarly experimental studies have shown that intravenous or intramyocardial 

injection of exogenous IL-18 binding protein or mesenchymal stem cells overexpressing IL-18 

binding protein, a naturally occurring inhibitor, selectively neutralized IL-18, and decreased 

expression of proinflammatory mediators (TNF-α, IL-1β, IL-6, IL-18, MCP-1 and ICAM-1), 

macrophage infiltration, renal tubule epithelium apoptosis, infarct size and increased vascular 

endothelial growth factor (VEGF) expression, proliferation of renal tubule epithelium and left-

ventricular ejection fraction at 6-72 hours after reperfusion in rat models of renal 

ischemia/reperfusion injury and myocardial infarction (Wang et al., 2009; Wang et al., 2012a). 

Furthermore, a clinical study showed that subcutaneous injections of recombinant human IL-18 

binding protein selectively neutralized IL-18 activity with high affinity and proved to be safe in 

patients with rheumatoid arthritis and psoriasis (Tak et al., 2006). However, the use and efficacy of 

anti-IL-18 neutralizing antibodies and IL-18 binding proteins remains to be tested in experimental 

and clinical studies following cerebral ischemia. 

 
 Numerous experimental studies have also shown that subcutaneous injection (25-100 

mg/kg) or overexpression of human IL-1 receptor antagonist was able to cross the BBB and 

decrease BBB disruption, infiltration of neutrophils, proinflammatory mediators (i.e. IL-6 and 

CXCL1), microglial activation, infarct volume, neurological (i.e. sensory and motor function) and 

behavioural deficits in a dose-dependent manner following experimental stroke (Banwell et al., 

2009; Greenhalgh et al., 2010; Pradillo et al., 2012; Yang et al., 1999). At present, a human 

recombinant IL-1 receptor antagonist (Anakinra; BioVitrum) that selectively blocks IL-1 (i.e. IL-1α 

and IL-1β) from binding to the IL-1Rs (i.e. IL-1R1 and IL-1R2) with high affinity over a short half-

life (4 hours) has been approved for clinical use to treat rheumatoid arthritis (Dinarello, 2011; 

Cunnane et al., 2001). Anakinra is not used in clinical practice to treat cerebral ischemia but was 

tested in a randomised, double blind, placebo-controlled, Phase II clinical trial in patients with acute 
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ischemic stroke (Emsley et al., 2005). Numerous clinical studies have demonstrated that 

intravenous administration of human recombinant IL-1 receptor antagonist is able to cross the BBB 

and achieve therapeutic concentrations in the cerebrospinal fluid to decrease serum levels of IL-6, 

C-reactive protein, neutrophilia, infarct volume, and improve cognitive function within 4-6 hours of 

stroke onset following 7 days to 3 months of treatment suggesting that human recombinant IL-1 

receptor antagonist is efficacious, safe and well tolerated in subarachnoid haemorrhage and acute 

ischemic stroke patients (Emsley et al., 2005; Galea et al., 2011). The efficacy of an IL-18 receptor 

antagonist is yet to be determined in experimental and clinical stroke studies. Currently, a human 

recombinant dimeric protein containing the extracellular component of IL-1R1 and the IL-1R 

assessory protein (Rilonacept; Regeneron) that acts as a soluble IL-1 “decoy” receptor that 

selectively binds IL-1α and IL-1β with high affinity over a moderate half-life (67 hours) has been 

approved for clinical use to treat cryopyrin-associated periodic syndromes in particular familial cold 

autoinflammatory and Muckle-Wells syndrome (Goldbach-Mansky et al., 2008; Hoffman et al., 

2008; Moll & Kuemmerie-Deschner, 2013). Rilonacept has not been used in experimental or 

clinical studies for the treatment of cerebral ischemia. 

 

1.7 Novel Treatments in Stroke: Intravenous Immunoglobulin (IVIg) and Intermittent 
Fasting (IF) – An Overview  
 

 Development of novel neuroprotective agents and treatment strategies that can target a 

number of cell injury mechanisms and cell types is warranted in the prospective treatment of 

cerebral ischemia. Innovative potential therapies envisaged to target multiple cell injury 

mechanisms in multiple cell types in the brain during an ischemic stroke includes - intravenous 

immunoglobulin (IVIg) and intermittent fasting (IF). 

 
 IVIg is a sterile blood preparation of natural antibodies that was initially indicated as a 

replacement therapy to treat immunocompromised individuals, such as those with primary 

immunodeficiency diseases (Rezaei et al., 2011; Wasserman et al., 2012). Since the 1950s, the 

improved clinical outcome evident in the treatment of primary immunodeficiency diseases with 

IVIg inspired experimental and clinical research into understanding the molecular and cellular 

mechanism(s) of action of IVIg and other potential clinical indications of IVIg for decades 

(Gelfand, 2012; Rezaei et al., 2011). Currently, IVIg is a therapeutic modality that is approved by 

the US Food and Drug Administration (FDA) to treat a number of autoimmune and inflammatory 

conditions such as primary immune deficiency diseases, immune (idiopathic) thrombocytopenic 

purpura (ITP) and Kawasaki syndrome, and neurological conditions such as Guillain-Barre 

syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor 
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neuropathy (Arumugam et al., 2008; Dash et al., 2014; Hahn et al., 2013; Kuitwaard et al., 2009; 

Leger et al., 2013; Rezaei et al., 2011; Sakata et al., 2007; Wasserman et al., 2012). In addition, 

off-label use of IVIg treatment following randomized controlled trials of efficacy included 

dermatomyositis, Lambert-Eaton syndrome, Myasthenia Gravis and Stiff-Person syndrome 

(Dalakas, 2005; Katz et al., 2011; Miyasaka et al., 2012; Rezaei et al., 2011; Rich et al., 1997; 

Zinman et al., 2007). 

 
 Commercial IVIg is a purified polyclonal preparation of natural antibodies that is extracted 

from the plasma of several thousand (3000-10,000) healthy human donors in order to ensure the 

preparation is consistent and functionally heterogeneous (Arumugam et al., 2008; Saeedian & 

Randhawa, 2014; Simon & Spath, 2003). The primary component of IVIg preparations is 

immunoglobulin G (IgG; >95%), with low amounts of IgA, and minor traces of IgM (Lemieux et 

al., 2005; Negi et al., 2007; Prins et al., 2007; Rezaei et al., 2011, Schwab & Nimmerjahn, 2013). 

Despite the normal physiological functions of IgG antibodies directed against a broad range of 

pathogens, as well as a number of foreign and self antigens, IgG autoantibodies have been found to 

be responsible for inducing a number of autoimmune diseases such as rheumatoid arthritis, systemic 

lupus erythematosus (SLE) and autoimmune hemolytic anemia (AIHA) (Hogarth & Pietersz, 2012; 

Takai, 2002). This unique and contradictory phenomenon is referred to as the IgG paradox, 

whereby the same class of IgG is able to induce both pathological symptoms and possess anti-

inflammatory properties to the same disease as indicated by the successful treatment of ITP and 

CIPD with IVIg (Nimmerjahn & Ravetch, 2007). A major limitation towards the use of IVIg in 

clinical practice is the shortage in supply of IVIg due to a number of factors such as the high dose 

(1-2g/kg) required over 2-5 days on a monthly basis to promote an anti-inflammatory effect 

combined with an increased demand for IVIg in treating additional pathological disorders have 

made IVIg an expensive (US$100/g) therapeutic agent (Gelfand, 2005; Saeedian & Randhawa, 

2014; Stiehm, 2013). Hence, a clearer understanding of the molecular structure and mechanism(s) 

of IgG will develop cheaper substitutes with equal efficacy to fulfill the clinical demand and reduce 

the cost of IVIg, and understanding the ability of IgG to attain its anti-inflammatory properties at 

higher doses will be important in order to maximize its full potential perhaps in the future treatment 

of ischemic stroke. 

 
 In conjunction to using pharmacological interventions, an alternative approach is to perhaps 

implement lifestyle modification regimens as a prophylactic treatment to improve an individual’s 

health benefits ideally demonstrated by intermittent fasting (IF). IF is a form of dietary energy 

restriction and involves alternate periods of ad libitum feeding and fasting, which have been proven 

to extend lifespan and decrease the development and severity of age-related diseases such as 
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cardiovascular (e.g. Type 2 diabetes mellitus, myocardial infarction and stroke) and 

neurodegenerative diseases (e.g. Alzheimer’s disease, Parkinson’s disease and Huntington’s 

disease) demonstrated in a number of animal models (Belkacemi et al., 2011; Halagappa et al., 

2007; Katare et al., 2009; Longo & Mattson, 2014; Manzanero et al., 2011; Manzanero et al., 2014; 

Mattson et al., 2003; Mattson, 2005; Mattson, 2014; Mattson & Wan, 2005; Pedersen et al., 1999; 

Wan et al., 2010). The efficacy of prophylactic IF treatment appears to precondition and protect 

neurons and glial cells against brain injury by increasing their cellular resistance against 

excitotoxicity, oxidative stress and inflammation via coordinating an upregulation of multiple 

neuroprotective proteins such as neurotrophic factors, protein chaperones and antioxidant enzymes, 

and down regulation of pro-inflammatory cytokines at the site of injury (Arumugam et al., 2010; 

Duan et al., 2001a; Duan et al., 2001b; Faris et al., 2012; Guo et al., 2000; Liu et al., 2006; Sanz et 

al., 2005; Sohal et al., 1994; Weindruch et al., 2001). Despite numerous experimental studies 

suggesting that prophylactic IF treatment may be beneficial for overall health, a major limitation 

towards the practice of IF is due to the shortage of clinical studies to formulate evidence-based 

practice recommendations (Skaznik-Wikiel & Polotsky, 2014). Hence, more clinical research into 

understanding the molecular mechanism(s) of prophylactic IF treatment increasing cellular 

resistance to excitotoxicity, oxidative stress and inflammation in the brain may provide new 

opportunities in the future treatment of ischemic stroke. 

 

1.7.1 Intravenous Immunoglobulin (IVIg): Preparation and Composition 
 
a). Preparation of Intravenous Immunoglobulin 
 
 IVIg is extracted from healthy human plasma by using a precipitation process such as cold 

ethanol fractionation (Dichtelmuller et al., 2012; Radosevich & Burnouf, 2010). Despite the process 

extracting immunoglobulins (i.e. IgG, IgA and IgM), highly reactive aggregates and contaminants 

(prekallikrein activator, prekallikrein, activated coagulation factors) often remain in the preparation, 

which can activate the immune system such as the complement system causing a significant allergic 

reaction (Nesterova et al., 2009; Radosevich & Burnouf, 2010). Hence, IVIg preparations undergo a 

second processing step such as anion exchange diethylaminoethanol (DEAE)-sepharose 

chromatography to separate IgG from contaminants to ensure the preparation primarily contains 

immunoglobulins (Laursen et al., 2014; Martin, 2006). 

 
 Since IVIg is a blood-derived product several steps are undertaken to ensure the preparation 

is safe for commercial use. Firstly, the plasma is bacterial and viral tested for all known human 

bacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bordetella pertussis, 

Klebsiella pneumoniae, Group B streptococcus, diphtheria and tetanus toxin) and viral (Epstein-
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Barr, measles, mumps, myxovirus influenza, adenovirus, herpes simplex, human immunodeficiency 

virus (HIV), hepatitis B and C, human T cell lymphotropic retrovirus (HTLV), varicella-zona, 

coxsackie and rubella) diseases (Kaveri, 2013; Kempf et al., 2007). Secondly, the preparation is 

made safe by removing bacterial toxins and viral particles through several sophisticated treatment 

strategies such as detergent treatment, trypsinization, pasteurization, nano-filtration and low pH 

treatment to eliminate all known and unknown human transmissible bacterial and viral pathogens 

(Boros et al., 2005; Bridonneau et al., 1996; Caballero et al., 2010; Dichtelmuller et al., 2009; 

Dichtelmuller et al., 2012; Kempf et al., 2007; Radosevich & Burnouf, 2010; Soluk et al., 2008). 

 
 An important consideration that needs to be understood is that the different processing 

modifications conducted on IVIg preparations can affect the integrity and activity of the final 

product by changing the chemical structure, antibody content, electrophoretic profile and subclass 

distribution of IgG, which can potentially lead to biological variations amongst IVIg batches in 

relation to both Fc receptor and opsonization activity, and complement fixation (Bridonneau et al., 

1996; Radosevich & Burnouf, 2010). Hence, clinical physicians need to be vigilant that these 

changes can negatively or positively influence the anti-inflammatory properties of IVIg and affect 

patient outcome. 

 
b). Composition of Intravenous Immunoglobulin 
 
 IVIg preparations primarily contain IgG (>95%) with low amounts of IgA, and minor traces 

of IgM, in addition to stabilizers such as sucrose, maltose, mannitol and sorbitol (Lemieux et al., 

2005; Negi et al., 2007; Prins et al., 2007; Rezaei et al., 2011; Stein, 2010). Commercial IVIg 

preparations come in two forms: a liquid and lypophilized form, whereby the latter is reconstituted 

with sterile water into a liquid at time of infusion. Two important product parameters of IVIg are 

important at time of infusion – osmolality and pH (Shah, 2005; Stangel & Pul, 2006; Stein, 2010). 

 
 The final osmolality of IVIg at time of infusion ranges between physiological values of 280-

296 mOsm to values greater then 1 Osm, which is primarily determined by the sugar (sucrose, 

maltose, mannitol and sorbitol) and sodium content of the preparation (Dantal, 2013; Hooper, 2008; 

Radosevich & Burnouf, 2010; Shah, 2005; Stein, 2010). This is an important consideration as 

hyperosmotic preparations of IVIg can increase osmotic pressure resulting in adverse 

compartmental fluid-shifts in the body (Ahsan et al., 1994). The sugar content contained in IVIg 

preparations is designed to prevent IgG dimer (1-10%) aggregate formation within individual IVIg 

preparations, although complications may occur such as acute renal failure where the patient has to 

undergo emergency renal haemodialysis with mortality occurring at 10-15% of cases (Dantal, 2013; 

Graumann & Zawada, 2010; Itkin & Trujillo, 2005; Renjen et al., 2004; Stein, 2010). The sodium 



	
   56 

content contained in IVIg preparations is approximately 0.9%, which similarly contributes to the 

final osmolality, tolerability and adverse effects of IVIg (Lemm, 2002; Stein, 2010; Vo et al., 

2006). The final pH of IVIg at time of infusion is approximately neutral between 6-7, which is 

ultimately determined by the physiological buffering capacity of the plasma in the recipient 

(Roberts et al., 2014; Szenczi et al., 2006). However, this is problematic as a low pH is often 

required to prevent IVIg aggregate formation and hence additional medical agents to lower pH are 

often needed to maintain the products stability and prevent aggregate formation (Solano et al., 

2012; Stein, 2010; Szenczi et al., 2006). 

 
 In general, the adverse effects associated with IVIg administration ranges in both severity 

(mild to severe) and on-set of symptoms (immediate to late). Examples of some of the most 

common and immediate symptoms experienced by patients include headache, fever, fatigue, nausea 

and tachycardia in approximately 5-10% of recipients primarily due to high osmolality of IVIg 

preparations, which can be diluted by sterile water at time of infusion, while some of the less 

common and delayed symptoms encountered by patients include persistent headache, aseptic 

meningitis, hemolytic anemia and dermatological complications (Hamrock, 2006; Katz et al., 2007; 

Stiehm, 2013; Vo et al., 2006). An immediate and severe complication that can occur following the 

administration of IVIg is often observed in IgA deficient patients where recipients have developed 

immunity against IgA, which can cause anaphylactic reactions due to the presence of IgA3 in some 

batches of IVIg preparations (Rachid & Bonilla, 2012). Hence, the administration of IVIg is often 

contraindicated in IgA deficient patients, despite several strategies implemented to prevent this 

occurrence such as pre-treating IVIg preparations with autologous plasma or subcutaneously 

injecting IVIg preparations in order to limit the risk of an allergic reaction in high anti-IgA patients 

(Rachid & Bonilla, 2012; Salama et al., 2004). 

 

1.7.2 Immunoglobulin G (IgG): Subclass, Structure and Half-Life 
 
 The IgG family is composed of four different subclasses such as IgG1-IgG4 in humans and 

IgG1, IgG2a, IgG2b and IgG3 in rodents, with IgG1 being the most abundant and primarily 

responsible for most of the immunomodulatory effects observed due to its high binding affinity and 

efficacy on immune receptors in both species (Kapur et al., 2014; Nimmerjahn & Ravetch, 2011; 

Vidarsson et al., 2014). However, the remaining subclasses of IgG all vary in their ability to 

activate downstream effector pathways due to different levels in abundance and binding affinity to 

their respective receptors (Saeedian & Randhawa, 2014). 
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 Monomeric IgG is a protein complex composed of four peptide chains with two identical 

light chains and two identical heavy chains arranged in a Y-shaped configuration that forms two 

important structural domains, which are functionally distinct – the constant or fragment 

crystallizable (Fc) region, and the variable antigen binding fragment F(ab’)2 region (Liu & May, 

2012; Vidarsson et al., 2014). The F(ab’)2 region is the amino terminal end of the IgG structure and 

contains two identical light and heavy chains, whereas the Fc region is the carboxy-terminal end of 

the IgG structure and contains only two identical heavy chains (Figure 1.8) (Lunemann et al., 2015; 

Vidarsson et al., 2014). 

 
 The average serum half-life of IgG is approximately 2-3 weeks where monthly 

administration of IVIg is required to maintain its therapeutic effect (Lunemann et al., 2015). The 

long serum half-life of IgG is dependent on neonatal Fc receptor (FcRn), which is responsible for 

binding to serum IgG in endosomes following endocytosis and protects it from catabolism by 

lysosomes in endothelial cells and macrophages under low pH conditions and recycles it back to the 

cell surface (Schwab & Nimmerjahn, 2013). Hence, in the absence of FcRn, the half-life of IgG is 

significantly attenuated (Garg & Balthasar, 2007; Tam et al., 2013; Xiao, 2012). 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 1.8. A schematic structure of monomeric immunoglobulin G (IgG). IgG is composed of four 
peptide chains with two identical light and heavy chains arranged in a Y-shaped configuration that forms two 
structural domains – the antigen binding fragment F(ab)2 region and the fragment crystallisable (Fc) region. 
Each IgG is composed of two F(ab)2 regions and one Fc region at the amino terminal and carboxy terminal 
end of the IgG structure, respectively. 
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1.7.3 Mechanisms of Action of Intravenous Immunoglobulin (IVIg) Preparations 
 
 Despite the widespread use and therapeutic success of IVIg preparations in the treatment of 

autoimmune and anti-inflammatory diseases for over half a century, the therapeutic mode of action 

of IVIg remains to be fully understood, although it appears to involve numerous 

immunomodulatory processes (Nagelkerke & Kuijpers, 2015). Intravenous administration of IVIg 

preparations can exert both pro-inflammatory and anti-inflammatory properties depending on the 

concentration administered (Schwab & Nimmerjahn, 2013). At low concentrations, IVIg is pro-

inflammatory where activation of the complement system and innate immune cells is induced, 

whilst a high concentration of IVIg exerts an anti-inflammatory response (Nimmerjahn & Ravetch, 

2007). Although the precise anti-inflammatory mechanisms of IVIg remain to be fully elucidated, a 

number of models have been proposed that are based on two general types of mechanisms mediated 

independently by either the F(ab’)2 region, which is responsible for antigen recognition; and the Fc 

region, which is critical for modulating the activity of the innate immune system (Lunemann et al., 

2015; Schwab & Nimmerjahn, 2013). In essence, both regions are suggested to be responsible for 

the anti-inflammatory and immunomodulatory properties of IVIg at high concentrations. 

 
1.7.3.1 F(ab)2 site mediated mechanisms 
 
 The anti-inflammatory F(ab)2-dependent mechanisms of IVIg is determined by the ability of 

autoreactive antibodies contained within IVIg preparations to be directed against a number of self-

antigens such as sialic acid-binding immunoglobulin-like lectin (SIGLEC), FasL (CD95L) or Fas 

(CD95), the variable domains of IgG, pro-inflammatory cytokines and anaphylatoxins (Arumugam 

et al., 2007; Basta et al., 2003; Kalay et al., 2014; Murakami et al., 2014; Prasad et al., 1998; 

Schaub et al., 2011; Seite et al., 2014; Tawfik et al., 2012; Viard et al., 1998; Von Gunten et al., 

2006; Von Gunten et al., 2007). The natural antibodies that are directed against each self antigen 

mentioned above represents a potential model of a different F(ab)2 site mediated mechanism of 

IVIg including - cell depletion, cellular signaling blockade, pro-inflammatory cytokine 

neutralization, and anaphylatoxin scavenging (Figure 1.9). 

 
 IVIg preparations contain autoreactive antibodies directed against SIGLEC, especially 

SIGLEC8 and SIGLEC9 expressed on eosinophils and neutrophils, respectively (Schaub et al., 

2011; Von Gunten et al., 2006; Von Gunten et al., 2007). As both immune cells are responsible for 

driving inflammation, it is suggested that eliminating these cells by SIGLEC8 and SIGLEC9-

specific antibodies will decrease inflammation. Despite promising in vitro data, experimental and 

clinical studies have established that IVIg did not attenuate these cell types in mice and humans 

possibly indicating that the amount of SIGLEC8 and SIGLEC9-specific antibodies in IVIg 
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preparations was not sufficient enough to deplete these cell types at therapeutic doses (Schaub et 

al., 2011; Von Gunten & Simon, 2008). Hence, the following example is a potetial model whereby 

IVIg eliminates and depletes target cells by antibody-dependent cytotoxicity (ADCC) (Schwab & 

Nimmerjahn, 2013). 

 
 Despite containing SIGLEC antibodies, IVIg preparations contain autoreactive antibodies 

against self-antigens such as FasL (CD95L) expressed on cytotoxic T lymphocytes and the FasL 

receptor (CD95) that is ubiquitously expressed on all cell types, which blocks FasL from binding 

onto the FasL receptor preventing signal transduction and apoptosis (Prasad et al., 1998; Reipert et 

al., 2008; Viard et al., 1998). However, it was demonstrated from a number of experimental studies 

that IVIg was able to induce apoptosis in leukemic lymphocytes and monocytes mediated in part via 

anti-FasL receptor antibodies present in IVIg preparations supporting the notion that IVIg possesses 

anti-inflammatory properties by inducing apoptosis in activated leukocytes (Prasad et al., 1998; 

Viard et al., 1998). In addition, IVIg preparations contain autoreactive antibodies directed against 

self-antigens such as the variable domains of IgG - including the hinge region and the constant light 

or heavy chains (Spath & Lutz, 2012). This unique natural antibody is known as an anti-idiotype 

antibody, which can bind to either the antigen specific binding region of the immunoglobulin 

antibody (i.e. autoantibody) or the T cell receptor, and subsequently compete with the antigen for 

binding (Lemieux & Bazin, 2006). Observations from numerous experimental studies have 

demonstrated that anti-idiotype antibodies found in IVIg preparations include autoantibodies 

against the variable region of the T cell receptors and antigen receptors, which prevents 

autoantigen-mediated T cell activation, resulting in long-term T cell downregulation and prevention 

of autoantigen-mediated B and T cell activation, respectively (Macias et al., 1999; Seite et al., 

2014; Tawfik et al., 2012). Hence, both examples above is a potential model whereby IVIg is able 

to block cellular signaling and communication by antagonizing either the ligand or receptor 

(Schwab & Nimmerjahn, 2013). 

 
 IVIg preparations contain autoreactive antibodies directed against pro-inflammatory 

cytokines, in particular, interleukin-1β (IL-1β), IL-6 and TNF-α, which bind and inactivates 

circulating pro-inflammatory cytokines with a high degree of affinity and efficacy, subsequently 

decreasing the concentration of circulating pro-inflammatory cytokines in the plasma (Kalay et al., 

2014; Murakami et al., 2014; Panacek et al., 2004; Terenghi et al., 2006). Hence, the following 

example is a potential model whereby IVIg is able to prevent pro-inflammatory cytokines from 

binding to their respective receptors by neutralization (Ballow, 2011). 
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 Numerous experimental studies have shown that the F(ab)2 region of IgG was able to bind 

and sequester active complement components including anaphylatoxins such as C3a and C5a from 

binding onto the C3a and C5a receptors, respectively (Arumugam et al., 2007; Basta, 2008; Basta et 

al., 2003; Lutz et al., 2004; Vivanco et al., 1999). This interaction prevents binding of complement 

fragments to their receptors on target cells, which inhibits downstream effector functions such as 

enhanced phagocytosis of antigens, leukocyte recruitment and formation of the membrane attack 

complex reducing complement-mediated tissue damage (Arumugam et al., 2009). The following 

example is a potential model whereby IVIg is able to scavenge activated complement components 

from binding onto their respective receptors on target cells (Schwab & Nimmerjahn, 2013). 

 
 In summary, some of the potential F(ab)2 site mediated mechanisms of IVIg include 

eliminating target cells by antibody-dependent cytotoxicity (ADCC), blocking cellular signalling by 

ligand or receptor antagonism, pro-inflammatory cytokine neutralization and complement 

scavenging. 

 

 
Figure 1.9: Mechanisms of action of intravenous immunoglobulin (IVIg) preparations. An overview of 
different pathways implicated in the anti-inflammatory and immunomodulatory properties of IVIg. The 
F(ab)2-dependent mechanisms include - eliminating target cells by antibody-dependent cytotoxicity (ADCC), 
blocking cellular signalling by ligand or receptor antagonism, pro-inflammatory cytokine and autoantibody 
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neutralization, and complement scavenging. The Fc-dependent mechanisms include - blocking activating 
FcγRs, increasing the expression of inhibitory FcγRIIB, saturating FcRn, and modulating the expression and 
activity of immune cells such as dendritic and T cells. This figure is adapted from Intravenous 
immunoglobulin therapy: how does IgG modulate the immune system? Schwab and Nimmerjahn, (2013). 
Nature Reviews; 13: p.176-189. 
 

1.7.3.2 Fc site mediated mechanisms 
 
 The anti-inflammatory Fc-dependent mechanisms of IVIg is determined by the Fc region of 

IgG from IVIg preparations binding onto and affecting three different types of cognate immune 

receptors such as the activating family of Fcγ receptors (FcγRs), the inhibitory FcγR (FcγRIIB), and 

the neonatal Fc receptor (FcRn); in addition to modulating the expression and activity of immune 

cells (Figure 1.9) (Nimmerjahn & Ravetch, 2007). 

  
 The activating FcγRs are a conserved family of glycoproteins that initiates activating 

signaling pathways via adaptor proteins containing immunoreceptor tyrosine based activation 

motifs (ITAM) (Nimmerjahn & Ravetch, 2011). There are five activating FcγRs in humans 

including - FcγRIA, FcγRIIA, FcγRIIC, FcγRIIIA and FcγRIIIB whereas three receptors are found 

in rodents including - FcγRI, FcγRIII and FcγRIV, which are all widely expressed on the surface of 

innate immune cells such as monocytes, macrophages, basophils, neutrophils, eosinophils, mast 

cells, natural killer cells, and platelets (Hogarth & Pietersz, 2012; Nimmerjahn & Ravetch, 2008; 

Nimmerjahn & Ravetch, 2011). In both humans and mice, the FcγRI class has the highest binding 

affinity towards the Fc region to different IgG subtypes such as IgG1, IgG3 and IgG4 in humans 

and IgG2a in rodents while the binding affinity of other classes is considered low to medium as 

their binding affinity to monomeric IgG is poor and can only be activated by multimeric IgG 

molecules, especially present in immune complexes (Nimmerjahn & Ravetch, 2011). Hence, it is 

suggested that the FcγRI class will become saturated as IVIg preparations primarily contain 

monomeric IgGs, which will competitively prevent pathological autoantibodies from binding onto 

activating FcγRs on immune effector cells, thereby blocking cell activation and their pathogenic 

potential (Nimmerjahn & Ravetch, 2007). The first evidence of this mechanism was provided by a 

clinical trial in patients with ITP where opsonized platelets remained in the peripheral circulation 

due to Fc-mediated inhibition of the phagocytic system in the liver and spleen (Bussel, 2000; Debre 

et al., 1993; Ibanez et al., 2003). Furthermore, infusion of monoclonal antibodies against the Fc 

fragment of IgG or purified IVIg preparations without the Fc fragment demonstrated no 

immunomodulatory effect on ITP (Anthony et al., 2008; Erickson et al., 1996; Kaneko et al., 

2006a). Other autoimmune diseases demonstrating this mechanism of action were observed in 

Guillain-Barre syndrome, Myastenia Gravis and multiple sclerosis (Fokkink et al., 2014; Roades et 
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al., 2000; Thiruppathi et al., 2014; Vedeler et al., 2001). Despite monomeric IgG primarily binding 

onto the FcγRI class, this model fails to take into account the limited ability of low or medium 

binding FcγRs to bind to monomeric IgG contained in IVIg preparations and suggests direct 

blockade of IVIg to activating FcγRs is only one component of its anti-inflammatory properties 

mediated by the Fc region of IgG (Lunemann et al., 2015). 

 
 The inhibitory FcγR (FcγRIIB) is a low affinity binding glycoprotein that initiates inhibitory 

signaling pathways via adaptor proteins containing immunoreceptor tyrosine based inhibitory 

motifs (ITIM) (Nimmerjahn & Ravetch, 2011). The inhibitory FcγR (FcγRIIB) is found in both 

humans and rodents, which is often co-expressed with activating FcγRs on the surface of innate 

immune cells such as monocytes, macrophages, basophils, neutrophils, eosinophils, mast cells, 

natural killer cells, and platelets in order to establish a threshold level for the initiation of activating 

FcγR-dependent effector responses (Hogarth & Pietersz, 2012; Nimmerjahn & Ravetch, 2008; 

Nimmerjahn & Ravetch, 2011). Hence, it is suggested that IVIg preparations are able to upregulate 

the surface expression of inhibitory FcγRIIB on immune effector cells, which increases the 

threshold level required to initiate the activating FcγRs by pathogenic immune complexes and 

subsequently inhibits the release of destructive and cytotoxic mediators from effector immune cells 

(Nimmerjahn & Ravetch, 2007). This mechanism was elegantly demonstrated in experimental 

studies where FcγRIIB expression on human and mouse myeloid cells and B lymphocytes were 

increased following IVIg administration and the therapeutic effects of IVIg was attenuated via the 

disruption of FcγRIIB by monoclonal antibody blockade and genetic deletion in a number of 

autoimmune animal models of ITP, lupus erythematosus, rheumatoid arthritis and nephrotoxic 

nephritis (Brownlie et al., 2008; Bruhns et al., 2003; Kaneko et al., 2006b; Leontyev et al., 2012; 

Mackay et al., 2006; McGaha et al., 2005; Samuelsson et al., 2001; Siragam et al., 2006; 

Tackenberg et al., 2009). However, the mechanism(s) by which IVIg preparations are able to 

increase the surface expression of FcγRIIB on immune effector cells remains to be determined. 

 
 The neonatal Fc receptor (FcRn) is a member of the major histocompatibility class I 

molecule (MHCI) located in the endosomal compartment of intestinal epithelial and vascular 

endothelial cells, and immune cells such as macrophages in humans and rodents (Abdiche et al., 

2015; Nimmerjahn & Ravetch, 2011; Sockolosky & Szoka, 2015). The FcRn is responsible for 

binding to serum IgG in endosomes following endocytosis and protects it from catabolism by 

lysosomes in endothelial cells and macrophages under low pH conditions and recycles it back to the 

cell surface (Borrok et al., 2015; Lunemann et al., 2015; Schwab & Nimmerjahn, 2013). Hence, it 

is suggested that the administration of a therapeutic high dose of IVIg will increase the 
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concentration of exogenous IgG in the plasma and saturate FcRn, which can no longer protect 

serum IgG and pathological autoantibodies from catabolism causing both serum IgG and 

pathological autoantibodies to be degraded and cleared more rapidly due to saturation and shortage 

of available FcRn (Abdiche et al., 2015; Nimmerjahn & Ravetch, 2011). This mechanism was 

demonstrated in experimental studies where administration of a high dose of IVIg decreased 

autoantibody half-life by approximately 50% in a rat model of ITP and neonatal mouse model of 

bullous pemphigoid (Hansen & Balthasar, 2002ab; Li et al., 2005). However, a recent study has 

argued against a role of FcRn in contributing to the anti-inflammatory properties of IVIg where 

administration of IVIg did not demonstrate any amelioration of ITP in FcRn-deficient mice (Crow 

et al., 2011). 

 
 Further Fc-mediated mechanisms of IgG include increasing the expression and activation of 

forkhead box P3 (FOXP3), which is an important transcription factor responsible for increasing the 

development and suppressive properties of regulatory T (TReg) cells through mechanism(s) that 

remains to be fully established (Kessel et al., 2007; Olivito et al., 2010; Tjon et al., 2013). Hence, 

by increasing the number of TReg cells the ratio between T helper cells and T suppressor cells will 

shift in favor of the suppressor phenotype where cytotoxic T cell-mediated immunity is suppressed 

in autoimmune diseases demonstrated by experimental and clinical studies in rheumatoid arthritis, 

Kawasaki disease, EAE, SLE, eosinophilic granulomatosis and Gullain-Barre syndrome following 

the administration of IVIg (Figure 1.9) (Costa et al., 2013; Ephrem et al., 2008; Guo et al., 2015; 

Jia et al., 2010; Lee et al., 2014; Maddur et al., 2014; Okuda et al., 2012; Olivito et al., 2010; 

Tselios et al., 2015; Tsurikisawa et al., 2012). It is interesting to indicate that IVIg can bind to both 

CD4+CD25+ TReg cells and conventional CD4+CD25+ T cells, however, preferentially binds TReg 

cells suggesting that most of the direct effects of IVIg on T cells is mediated by the activation of 

TReg cells despite not identifying the TReg cell surface molecule(s) responsible for binding to IVIg 

(Ephrem et al., 2008). 

 
1.7.3.3 Both F(ab’)2 and Fc-mediated mechanisms 
 
 Other anti-inflammatory mechanisms of IgG can sometimes involve both the F(ab’)2 and Fc 

regions of IgG, whereby the differentiation, maturation and activation of dendritic cells are 

inhibited possibly due to suppression in the upregulation of co-stimulatory molecules such as CD80 

and CD86, which is important in mediating dendritic cell and T cell communications; in addition to 

decreasing the production and secretion of pro-inflammatory cytokines such as IL-12 associated 

with mature dendritic cell differentiation, while simultaneously increasing the production and 

secretion of anti-inflammatory cytokines such as IL-10 from dendritic cells through mechanism(s) 
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that remain to be fully established following IVIg administration (Figure 1.9) (Aubin et al., 2010; 

Bayry et al., 2003; Bayry et al., 2005; Press et al., 2005; Qian et al., 2014). This mechanism was 

demonstrated in clinical studies where the number of dendritic cells was decreased and both pro- 

and anti-inflammatory cytokine profile modulated in the cerebrospinal fluid in patients with CIDP 

and Guillain-Barre syndrome (Press et al., 2005). However, a recent study controversially argued 

against the aforementioned anti-inflammatory effects of IVIg on dendritic cells, in fact, suggesting 

that IVIg stimulated the differentiation and maturation of human dendritic cells while leaving both 

pro- and anti-inflammatory cytokine production unaffected (Tjon et al., 2014). Hence, more 

research is warranted in order to confirm the precise immunomodulatory effects of IVIg on 

dendritic cells. 

 
 In summary, some of the potential Fc site-mediated mechanisms of IVIg include blocking 

activating FcγRs, increasing the expression of inhibitory FcγRIIB, saturating FcRn, and modulating 

the expression and activity of immune cells such as T cells and dendritic cells. 

 

1.7.4 Intravenous Immunoglobulin (IVIg) Treatment in Stroke 
 
 As recombinant tissue plasminogen activator (r-tPA) is recognized as the only 

pharmacological agent approved for the treatment of ischemic stroke, there remains major 

limitations towards its use such as its narrow therapeutic window (3-4.5 hours) and increased risk of 

intracerebral hemorrhage (NINDS, 1995). An alternative approach for treating acute ischemic 

stroke is neuroprotection. Despite neuroprotective agents decreasing neuronal cell death and infarct 

size in cell culture and animal stroke models, respectively, all such agents tested in stroke patients 

have failed in clinical trials (Cheng et al., 2004; Green, 2002). Although there a number of reasons 

contributing to the failure, a common underlying feature is that neuroprotective agents only target a 

particular cell injury mechanism in the ischemic cascade, and in either single or multiple cell types 

(Woodruff et al., 2011). Hence, development and application of neuroprotective agents that can 

target multiple cell injury mechanisms in multiple cell types is warranted in the future treatment of 

ischemic stroke. 

 
 A novel potential candidate envisaged to target multiple cell injury mechanisms in multiple 

cell types in the brain following cerebral ischemia is intravenous immunoglobulin (IVIg). Recent 

experimental studies by our laboratory were able to demonstrate that administration of IVIg was 

able to significantly attenuate brain infarct size (50-60%) and mortality, and improve functional 

outcome in mice subjected to experimental ischemic stroke (Arumugam et al., 2007). The efficacy 

of IVIg is attributed to a number of mechanisms including its ability to neutralise active 
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complement fragments (C3b) in ischemic brain tissue, which accordingly reduced endothelial cell 

adhesion molecule (i.e. ICAM-1) production, and activation (i.e. microglia) and infiltration of 

inflammatory cells (i.e. neurtrophils), subsequently reducing inflammation and caspase-mediated 

neuronal apoptosis at the site of injury (Arumugam et al., 2007). In addition, IVIg was 

demonstrated to decrease NF-κB and MAPK(s) signalling pathway activity and increase anti-

apoptotic proteins (i.e. Bcl-2) in primary cortical neurons under ischemic conditions, which reduced 

neuronal apoptosis through unknown mechanism(s) (Widiapradja et al., 2012). Finally, IVIg was 

demonstrated to protect the endothelium in the brain, a key component of the neurovascular unit 

and blood brain barrier (BBB) by preventing the down-regulation of tight junctions (i.e. claudin 5 

and occludin) and anti-apoptotic proteins (i.e. Bcl-2 and Bcl-xL) in endothelial cells under 

simulated ischemic conditions (Widiapradja et al., 2014). However, the precise mechanism(s) in 

how IVIg directly protect neurons and cerebral tissue from inflammasome-mediated sterile 

inflammation following ischemic stroke remains to be determined and is a major focus of this PhD 

Thesis. 

 

1.7.5 Intermittent Fasting (IF): Definition 
 
 Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate 

periods of ad libitum feeding and fasting, which have been proven to extend lifespan and decrease 

the development and severity of age-related diseases such as cardiovascular (e.g. Type 2 diabetes 

mellitus, myocardial infarction and stroke) and neurodegenerative diseases (e.g. Alzheimer’s 

disease, Parkinson’s disease and Huntington’s disease) demonstrated in a number of animal models 

(Belkacemi et al., 2011; Bruce-Keller et al., 1999; Duan et al., 2003; Halagappa et al., 2007; Katare 

et al., 2009; Longo & Mattson, 2014; Manzanero et al., 2011; Manzanero et al., 2014; Mattson et 

al., 2003; Mattson, 2005; Mattson, 2014; Mattson & Wan, 2005; Patterson et al., 2015; Pedersen et 

al., 1999; Wan et al., 2010). 

 

1.7.6 Protective Mechanisms of Intermittent Fasting (IF) in the Brain 
 
 The protective effects of prophylactic intermittent fasting (IF) treatment have been shown to 

prevent and attenuate cellular dysfunction and degeneration in the brain by preconditioning neurons 

and glial cells with energy restriction, which acts as a mild metabolic stressor that effectively 

upregulates the expression of several key neuroprotective proteins including - neurotrophic factors, 

such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF); stress 

response proteins including, protein chaperones, such as heat shock protein 70 (Hsp70) and glucose 

regulated protein 78 (GRP78); regulatory proteins, such as peroxisome proliferator-activated 
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receptor gamma coactivator 1-alpha (PGC-1α); antioxidant enzymes, such as heme oxygenase-1 

(HO-1); and uncoupling proteins, such as UCP2 and UCP4; in addition to down regulation of 

mammalian target of rapamycin (mTOR) activity (Akerfelt et al., 2010; Arumugam et al., 2010; 

Chu et al., 2009; Fontana & Partridge, 2015; Kouda & Iki, 2010; Liu et al., 2006; Mattson & Wan, 

2005; Tajes et al., 2010; Vasconcelos et al., 2014). However, the precise mechanism(s) by which 

prophylactic IF treatment induces the expression of these neuroprotective proteins remains to be 

fully established. Nevertheless, it is known that energy depletion in cells will activate energy sensor 

proteins such as adenosine monophosphate (AMP)-activated protein kinase (AMPK) and silent 

information regulator-1 (SIRT1) through their respective phosphorylation and deacetylation 

reactions in response to increases in the AMP/ATP, and nicotinamide adenine 

dinucleotide/nicotinamide adenine dinucleotide hydrogenated (NAD+/NADH) ratio, respectively 

(Figure 1.10) (Braidy et al., 2014; Burkewitz et al., 2014; Canto & Auwerx, 2011; Chen et al., 

2008b; Fontana & Partridge, 2015; Graff et al., 2013; Mouchiroud et al., 2013; Tajes et al., 2010; 

Yuen & Sander, 2014; Zhang et al., 2011). Hence, it is suggested that the protective effects of 

prophylactic IF treatment are primarily mediated by the activation of AMPK and SIRT1, and their 

downstream upregulation of several key neuroprotective protein targets that synergistically interact 

to increase cellular resistance against a number of molecular and cellular pathological processes that 

occur during brain injury, especially in ischemic stroke such as excitotoxicity, oxidative stress and 

inflammation, in addition to regulating neurogenesis and angiogenesis. 

 
Figure 1.10: Protective mechanisms of prophylactic intermittent fasting (IF) treatment against 
cerebral tissue damage in stroke. Stroke induces cerebral tissue damage through different mechanisms 
including excitotoxicity, oxidative stress and inflammation. The efficacy of prophylatic IF treatment appears 
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to precondition and protect neurons and glial cells against brain injury by increasing their cellular resistance 
against excitotoxicity, oxidative stress and inflammation via coordinating an upregulation of multiple 
neuroprotective proteins including - neurotrophic factors, such as brain-derived neurotrohic factor (BDNF); 
protein chaperones such as heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); 
regulatory proteins, such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α); antioxidant enzymes, such as heme oxygenase-1 (HO-1); and uncoupling proteins (UCPs), such as 
UCP2 and UCP4; in addition to down regulation of mammalian target of rapamycin (mTOR) activity at the 
site of injury following stroke. The precise mechanism(s) by which prophylatic IF treatment induces 
expression of these neuroprotective proteins remains to be fully established. Nevertheless, it is known that 
energy depletion in cells will activate energy sensor proteins such as adenosine monophosphate (AMP)-
activated protein kinase (AMPK) and silent information regulator-1 (SIRT1) through their respective 
phosphorylation and deacetylation reactions, respectively. This figure is adapted from Calorie restriction and 
stroke. Manzanero et al (2011). Experimental & Translational Stroke Medicine; 3: p.8. 
 

1.7.6.1 Neuroprotective Effects of Intermittent Fasting (IF) on Excitotoxicity 
 
 Numerous lines of evidence have shown that prophylatic IF treatment is able to protect and 

improve neuronal survival from glutamate excitotoxicity in rodent models of epilepsy and focal 

cerebral ischemia through a number of mechanisms by increasing neuroprotective proteins; in 

particular, neurotrophic factors such as BDNF and bFGF; and protein chaperones, including Hsp70 

and GRP78 in the brain (Brandoli et al., 1998; Mokrushin et al., 2005; Ribeiro et al., 2009; Sharma 

& Kaur, 2005; Sommer et al., 2003; Yu & Mattson, 1999; Yu et al., 1999). 

 
 Neurotrophic factors such as BDNF is both widely expressed and is responsible for a 

number of physiological functions in the brain by promoting the survival of existing neurons, the 

growth and development of dendrites and synapses (synaptic plasticity), and differentiation of new 

neurons from neural stem cells (neurogenesis), whereas bFGF is expressed in blood vessels and is 

responsible for promoting the formation of new blood vessels (angiogenesis) (Abe & Saito, 2001; 

Adachi et al., 2014; Chen et al., 2013; Rose et al., 2007). Both BDNF and bFGF mediate its 

neuroprotective effects by binding onto membrane bound tyrosine kinase receptor B (TrkB) and 

fibroblast growth factor receptor 1 (FGFR1), respectively, which activate the same 

phosphoinositide 3-kinase (PI3-kinase)/Akt (protein kinase B) and mitogen activated protein kinase 

(MAPK), in particular, the extracellular signal-regulated kinase (ERK) signaling pathway resulting 

in the activation of transcription factor cyclic AMP response element binding protein (CREB) 

(Almeida et al., 2005; Longo & Mattson, 2014; Nguyen et al., 2010; Wang et al., 2012b; Zheng & 

Quirion, 2004). The genes induced by CREB include the DNA repair enzyme, APE1; the master 

regulator of mitochondrial biogenesis, PGC-1α and the anti-apoptotic protein, Bcl-2, which can all 

provide neuroprotective functions during an ischemic stroke (Longo & Mattson, 2014). 

 
 Moreover, BDNF was demonstrated to possess neuroprotective pleiotropic effects where the 

administration of exogenous BDNF to an experimental focal ischemic rodent model was shown to 
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reduce infarct size in the penumbra by modulating the expression and function of neurotransmitter 

receptors in the brain; mediated in part by reducing both the binding affinity of glutamate to NMDA 

and AMPA receptors, the expression of NMDA and AMPA receptors, and by preventing the 

decrease in number of GABA receptors in the penumbra so that the inhibitory function of GABA 

receptors are maintained in order to inhibit excitatory NMDA and AMPA receptors to reduce 

glutamate excitotoxicity under ischemic conditions (Brandoli et al., 1998; Sommer et al., 2003). In 

addition, another mechanism(s) prophylactic IF treatment could protect cerebral tissue from 

glutamate excitotoxicity is by modulating the function of astrocytes in the brain; mediated firstly by 

increasing glutamate uptake into astrocytes, and secondly by increasing glutamine synthetase 

activity in astrocytes, which is responsible for catalyzing the reaction between glutamate and 

ammonia to produce glutamine, therefore decreasing the concentration of glutamate in the 

extracellular environment; suggesting prophylactic IF treatment might exert its neuroprotective 

effects by modulating the function of astrocytes (Ribeiro et al., 2009). However, the precise 

mechanism(s) involved in modulating the aforementioned functions induced by prophylactic IF 

treatment in astrocytes remains to be determined. 

 
 Protein chaperones such as Hsp70 is ubiquitously expressed and is responsible for a number 

of physiological functions in the brain by folding, stabilizing and transporting newly synthesized 

proteins in the cytosol, protecting cells by binding onto damaged and defective proteins from 

aggregation induced by oxidative stress and subsequently eliminating them through ubiquitination 

and proteolysis pathways, and inhibiting apoptosis by blocking the interaction of pro-caspase-9 with 

Apaf-1 and cytochrome c to form the apoptosome complex; whereas GRP78 is abundantly 

expressed in the endoplasmic reticulum and is primarily responsible for binding onto newly 

synthesized proteins and maintains them in a state that allows them to be correctly folded and 

assembled in the endoplasmic reticulum, especially under pathological conditions where the 

accumulation of misfolded and unfolded proteins occur; known as endoplasmic reticulum stress that 

commonly develops during an ischemic stroke (Franklin et al., 2005; Giffard & Yenari, 2004; 

Giffard et al., 2004; Gonzalez-Gronow et al., 2009; Kim et al. 2012; Luo et al., 2013; Ni et al., 

2011; Niforou et al., 2014; Quinones et al., 2008; Sharp et al., 2013; Yenari et al., 2005). Both 

Hsp70 and GRP78 mediate its neuroprotective effects through the same ATP-dependent mechanism 

whereby ATP is used to bind onto the nucleotide binding domain on Hsp70 and GRP78, which 

subsequently allows the substrate binding domain of Hsp70 and GRP78 to interact with unfolded or 

misfolded proteins in order to maintain the structural integrity and function of the protein 

(Gonzalez-Gronow et al., 2009; Luo et al., 2013; Ni et al., 2011; Sharp et al., 2013). 

 
 Moreover, Hsp70 was demonstrated to possess neuroprotective pleiotropic effects where 
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pre-incubation of exogenous Hsp70 was able to increase neuronal resistance to excitotoxic damage 

by protecting the conformational structure of both AMPA and NMDA-glutamate receptors and pre-

synaptic ion channels in order to maintain presynaptic and postsynaptic functions of glutamate 

transmission in cultured rat brain slices of the cortex in an in vitro model of glutamate 

excitotoxicity (Mokrushin et al., 2005; Sharma & Kaur, 2005). In addition, GRP78 was also 

demonstrated to possess neuroprotective pleiotropic effects where siRNA knockdown of GRP78 

was seen to increase the concentration of Ca2+ ions in cultured hippocampal neurons and 

subsequently induce apoptotic cell death in comparison to untreated hippocampal neurons following 

glutamate treatment; indicating that GRP78 is responsible for maintaining low intracellular Ca2+ ion 

concentrations (Yu et al., 1999). Furthermore, the administration of a neuroprotective agent such as 

2-deoxy-d-glucose, a potent inducer of GRP78 expression with similar effects to IF was shown to 

protect hippocampal neurons against glutamate excitotoxicity suggesting that GRP78 serves a 

neuroprotective function (Yu & Mattson, 1999). 

 
1.7.6.2 Neuroprotective Effects of Intermittent Fasting (IF) on Oxidative Stress 
 
 Numerous lines of evidence have demonstrated that prophylatic IF treatment is able to 

protect and improve neuronal survival from oxidative stress in rodent models of focal cerebral 

ischemia through a number of potential mechanisms by either decreasing the production and release 

of reactive oxygen species (ROS) or increasing antioxidant defenses in the brain (Amigo & 

Kowaltowski, 2014; Bevilacqua et al., 2005; Chu et al., 2009; Goffart & Wiesner, 2003; Gouspillou 

& Hepple, 2013; Haines et al., 2010; Hancock et al., 2011; Liu et al., 2006; Mattiasson et al., 2003; 

Wareski et al., 2009; Wu et al., 1999). 

 
 Recent experimental studies have shown that prophylactic IF treatment is able to decrease 

the production and release of ROS by counter intuitively increasing the metabolic respiratory rate of 

the mitochondria, which is achieved by a combination of two mechanisms in terms of increasing 

both the expression of uncoupling proteins (UCP) such as UCP2 and UCP4 in the mitochondria, 

and the number and activity of the mitochondria in the brain (Amigo & Kowaltowski, 2014; 

Caldeira da Silva et al., 2008; Chu et al., 2009; Haines et al., 2010; Hancock et al., 2011; Liu et al., 

2006; Mattiasson et al., 2003; Nakase et al., 2007; Sanz et al., 2005; Wareski et al., 2009; Wu et 

al., 1999). A central mediator of these effects appear to be driven by PGC-1α, which is activated by 

increased levels and activity of AMPK and SIRT1 induced by prophylactic IF treatment through 

phosphorylation and deacetylation reactions, respectively (Canto & Auwerx, 2009). The activation 

of PGC-1α increases the expression of electron transport chain proteins such as UCP2 and UCP4 

through an undefined mechanism(s) that mildly uncouples the passage of protons through the inner 
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mitochondrial membrane during oxidative phosphorylation resulting in increased electron transport 

and oxygen consumption in the mitochondria (Bevilacqua et al., 2005; Chu et al., 2009; Haines et 

al., 2010; Liu et al., 2006; Mattiasson et al., 2003). Currently, there are many proposed mechanisms 

behind mild uncoupling that decreases the production and release of ROS. Firstly, an increase in 

respiratory rate will increase the consumption of oxygen, which is suggested to lower oxygen 

tension and decrease the probability of oxygen being chemically reduced into superoxide in the 

mitochondria (Balaban et al., 2005). Secondly, an increase in respiratory rate will cause protein 

complexes I and III in the electron transport chain to be maintained in an oxidized state, which 

subsequently prevents electron transfer to chemically reduce oxygen into superoxide in the 

mitochondria (Sanz et al., 2005; Turrens, 2003). Finally, an increase in respiratory rate will increase 

the availability of NAD+, which will in turn decrease the production of ROS by pyruvate and α-

ketoglutarate in the mitochondria (Starkov et al., 2004; Tahara et al., 2007). Hence, it appears that 

IF will induce mild chronic uncoupling in the mitochondria in order to decrease the production of 

ROS through a number of mechanisms in the brain (Caldeira da Silva et al., 2008; Chu et al., 2009; 

Kwok et al., 2010; Liu et al., 2006; Mattiasson et al., 2003). In addition, PGC-1α have been shown 

to activate nuclear respiratory factor 1 and 2 (NRF-1 and NRF-2), which are transcription factors 

responsible for activating nuclear genes involved in stimulating mitochondrial biogenesis, in 

addition to NRF-2 independently activating mitochondrial transcription factor A (mtTFA) that is 

responsible for inducing the replication and transcription of the mitochondrial genome required in 

mitochondrial biogenesis (Goffart & Wiesner, 2003; Gouspillou & Hepple, 2013; Hancock et al., 

2011; Wareski et al., 2009; Wu et al., 1999) In general, the aforementioned changes will ultimately 

increase the metabolic respiratory activity of the mitochondria, which in contradiction increases its 

oxidative buffering capacity and cellular resistance through mechanism(s) that remains to be fully 

determined highlighting the complex neuroprotective effects of prophylactic IF treatment towards 

oxidative stress. 

 
 Numerous experimental studies have shown that prophylactic IF treatment is unable to 

consistently increase the expression or activity of commonly measured antioxidant enzymes such as 

superoxide dismutase (SOD), glutathione peroxidase or catalase, but is able to increase the 

expression of HO-1 in the brain that is activated by hypoxia and oxidative stress following cerebral 

ischemia (Walsh et al., 2014). The physiological effects of HO-1 is that it is a rate-limiting enzyme 

responsible for catalyzing the degradation of heme into diverse neuroprotective by products such as 

carbon monoxide and biliverdin, whereby the latter is further processed into bilirubin by biliverdin 

reductase, which can be converted back into biliverdin when oxidized by ROS demonstrating that 

HO-1 activity is able to be regulated by oxidative stress levels (Idriss et al., 2008; Kim et al., 2011). 
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The neuroprotective property of carbon monoxide is that it is able to activate cGMP in vascular 

smooth muscle cells in the vasculature causing vasodilatation, which increases blood flow to 

ischemic tissues, in addition to biliverdin and bilirubin possessing antioxidant properties by 

potently scavenging and neutralizing ROS in the brain to decrease oxidative damage and improve 

functional outcome in rodent models of ischemic stroke (Beschorner et al., 2000; Chao et al., 2013; 

Deguchi et al., 2008; Hanafy et al., 2013; Leffler et al., 2011; Namiranian et al., 2005). 

 
 Moreover, a number of experimental studies demonstrated HO-1 to possess neuroprotective 

pleiotropic effects where overexpression of HO-1 was able to protect neurons from apoptosis by 

either decreasing nuclear localization of p53 and/or increase the expression of Bcl-2, an anti-

apoptotic protein or BDNF, which mediates its protective effects by activating the TrkB-PI3K/Akt 

pathway, in addition to decreasing infarct volume and neurological deficits by preserving NO 

bioavailability mediated by increasing eNOS phosphorylation and activity in rodent models of 

ischemic stroke (Chao et al., 2013; Panahian et al., 1999; Qi et al., 2014). However, the precise 

mechanism(s) behind HO-1 overexpression decreasing nuclear localization of p53 and increasing 

the expression of Bcl-2, BDNF, and eNOS phosphorylation and activity in the brain following 

ischemic stroke remains to be fully established. 

 
1.7.6.3 Neuroprotective Effects of Intermittent Fasting (IF) on Inflammation 
 
 Numerous lines of evidence have demonstrated that prophylactic IF treatment is able to 

protect and improve neuronal survival from inflammation in rodent models of focal cerebral 

ischemia through a number of mechanisms by either decreasing the expression of pro-inflammatory 

genes or eliminating inflammatory causing stimuli in the brain (Desai et al., 2010; Nijboer et al., 

2008; Yeung et al., 2004; Zhang et al., 2005). 

 
 Experimental studies have shown that prophylactic IF treatment is able to decrease the NF-

κB signaling pathway by attenuating the activity of NF-κB, which have been implicated in inducing 

the expression of pro-inflammatory genes such as pro-inflammatory cytokines (TNF-α, IL-1β and 

IL-6), chemokines (CCL2/MCP-1 and CXCL2/MIP2) and endothelial cell adhesion molecules (E-

selectin, ICAM-1 and VCAM-1) in the brain following cerebral ischemia (Aljada et al., 2006; 

Harari & Liao, 2010; Howard et al., 1998; Lee et al., 2015b; Nam et al., 2009; Sanacora et al., 

2014; Schwaninger et al., 2006; Son et al., 2008; Supanc et al., 2011; Xing & Remick, 2007; 

Yilmaz & Granger, 2010; Zampetaki et al., 2004). The mechanism(s) behind prophylactic IF 

treatment decreasing the activity of the NF-κB signaling pathway is mediated by an increase in 

SIRT1 activity induced by IF through an undefined mechanism(s), which physically deacetylates 
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the RelA/p65 subunit of NF-κB inhibiting its transactivation potential and rendering it inactive 

(Yeung et al., 2004). Hence, inhibiting the ability of NF-κB to initiate transcription of pro-

inflammatory genes and subsequently the inflammatory response will improve infarct size and 

neurological deficits from brain injury during cerebral ischemia (Desai et al., 2010; Nijboer et al., 

2008; Zhang et al., 2005). Moreover, experimental studies have shown that prophylactic IF 

treatment is able to increase autophagy, an indispensable cellular process where unnecessary or 

dysfunctional cellular components that are capable in causing an inflammatory response are 

degraded by lysosomes in the brain following cerebral ischemia (Alirezaei et al., 2010; Chen et al., 

2014; Michalsen & Li, 2013). The mechanism(s) behind prophylactic IF increasing autophagy is 

mediated by the diet itself where cellular components are broken down to maintain cellular energy 

levels in order to promote cell survival during dietary restriction and/or by inhibiting the activity of 

mammalian target of rapamycin (mTOR) (Alirezaei et al., 2010). mTOR is an endogenous protein 

kinase activated by oxidative stress via the PI3K/Akt pathway, which is responsible for promoting 

cell growth and proliferation, and pro-inflammatory cytokine production in order to initiate an 

immune response (Chong et al., 2013; Maiese, 2014; Xie et al., 2014). Hence, the neuroprotective 

rationale behind prophylactic IF increasing autophagy by inhibiting mTOR activity will function to 

remove inflammatory causing stimuli such as toxins or damaged organelles, in particular, 

mitochondria (i.e. mitophagy) in order to suppress an inflammatory response induced from brain 

injury following cerebral ischemia (Baek et al., 2014; Li et al., 2014; Viscomi et al., 2012). 

 
1.7.6.4 Other Neuroprotective Effects of Intermittent Fasting (IF) in Stroke 
 
 Other beneficial effects of prophylactic IF treatment include increasing neurogenesis and 

angiogenesis mediated by BDNF and vascular endothelial growth factor (VEGF), respectively, in 

an attempt to reconstruct brain tissue following brain injury, especially during an ischemic stroke 

(Arumugam et al., 2010; Kernie and Parent, 2010; Marti et al., 2000; Mattson and Wan, 2005; 

Rothman et al., 2012; Sonanez-Organis et al., 2013). Numerous experimental studies have shown 

that prophylactic IF treatment was able to increase BDNF levels and activate the TrkB-PI3K/Akt 

pathway, which subsequently enhanced the production rate of new neurons from neural progenitor 

cells contained within the subventricular zone (SVZ)-olfactory bulb pathway in the brain following 

cerebral ischemia (Arumugam et al., 2010; Lee et al., 2002; Longo and Mattson, 2014; Pikula et al., 

2013; Schabitz et al., 2007; Tajes et al., 2010; Vasconcelos et al., 2014). In addition, experimental 

studies have shown that prophylactic IF treatment was able to increase the hypoxia inducible factor 

(HIF) signaling pathway by increasing the activity of HIF-1α, in particular, which is a transcription 

factor responsible for increasing gene expression of VEGF-A under hypoxic conditions in the brain 

following cerebral ischemia (Harms et al., 2010; Reischi et al., 2014; Sonanez-Organis et al., 2013; 



	
   73 

Yan et al., 2011). Evidence demonstrates that VEGF-A was able to decrease infarct size and 

improve neurological function through a number of mechanisms such as stimulating angiogenesis 

mediated by VEGF receptor 2 in the striatum; but interestingly was also able to enhance 

neurogenesis in the dentate gyrus and SVZ mediated possibly via the PI3-AkT pathway in the 

ischemic penumbra, however, more experimental studies are needed to confirm the precise 

mechanism(s) (Chiba et al., 2008; Harms et al., 2010; Kaya et al., 2005; Marti et al., 2000; Stowe 

et al., 2008; Sun et al., 2003; Zhang et al., 2000). 

 

1.7.7 Intermittent Fasting (IF) Treatment in Stroke 
 
 In conjunction to using pharmacological interventions, an alternative approach is to 

implement prophylactic lifestyle modification regimens such as dietary energy restriction in the 

form of intermittent fasting (IF) to target multiple cell injury mechanisms in multiple cell types in 

the brain following cerebral ischemia. Recent experimental studies by our laboratory were able to 

demonstrate that prophylactic IF treatment significantly attenuated brain infarct size and mortality, 

and improved functional outcome in young (3 months) and middle-aged (9 months) male mice 

subjected to experimental focal ischemic stroke (Arumugam et al., 2010; Manzanero et al., 2014). 

The efficacy of prophylactic IF to protect brain tissue against ischemic injury involved the 

coordinate upregulation of multiple neuroprotective proteins including neurotrophic factors, such as 

BDNF and bFGF; protein chaperones, including Hsp70 and GRP78; antioxidant enzymes, such as 

SOD and HO-1; and downregulation of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) at the 

site of injury (Arumugam et al., 2010). However, the precise mechanism(s) in how prophylactic IF 

treatment directly protect neurons and cerebral tissue from inflammasome-mediated sterile 

inflammation following ischemic stroke remains to be determined and is a major focus of this PhD 

Thesis. 

 

1.8 Summary 

 
 Recent findings have provided insight into a new inflammatory mechanism in the innate 

immune system that may contribute to neuronal and glial cell death during cerebral ischemia. There 

is emerging evidence to suggest that endogenous DAMPs (e.g. IL-1α and HMGB1) released by 

necrotic cells in the ischemic core will bind to plasma membrane PRRs (e.g. TLR-2, TLR-4, IL-

1R1 and RAGE), activating the NF-κB and MAPK(s) signaling pathways to increase expression 

levels of inflammasome proteins, precursor IL-1β and precursor IL-18, in the cytoplasm of 

surrounding neurons and glial cells in the ischemic penumbra. This is followed by the activation 

and homo-oligomerization of NLRP1 and NLRP3 receptors by either DAMPs or irregularities 
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within the cellular microenvironment, such as energy depletion, acidosis, cathepsin release, 

decreased intracellular K+ concentration, increased ROS production, oxidized mitochondrial DNA, 

increased intracellular Ca2+ concentrations, cell swelling, and protein kinase R (PKR) activation. 

These changes induce the formation of the NLRP1 and NLRP3 inflamamsome complex, which then 

activates precursor caspase-1 to produce cleaved capase-1 in the cytoplasm of neurons and glial 

cells during cerebral ischemia. Following activation, cleaved caspase-1 cleaves precursor IL-1β and 

precursor IL-18 into biologically active pro-inflammatory cytokines – mature IL-1β and mature IL-

18, which are then released into the extracellular environment, and induce cell death through 

apoptosis and/or pyroptosis. Multiple potential targets upstream and downstream of inflammasome 

signaling, targeting its expression, assembly, activity and products, may therefore offer substantial 

promise in developing and incorporating novel treatments such as IVIg and IF that may salvage 

penumbral tissue and attenuate neurological deficits following cerebral ischemia. However, its 

important to note that while certain aspects of the inflammatory response will not only exacerbate 

brain injury, it is also likely that other components provide a beneficial contribution to brain 

recovery, and it is the task of future research to distinguish these components. Unquestionably, 

there is still a great deal to be done to clarify the role of inflammasome signalling during the 

recovery phase following ischemic stroke. 

 

1.9: Rationale and Objectives of the Project 
 
 Recent findings have provided insight into a newly described inflammatory mechanism(s) 

that may contribute to neuronal and glial cell death during cerebral ischemia known as sterile 

inflammation involving intracellular multi-protein complexes termed inflammasomes. There is 

emerging evidence to suggest that both NF-κB and MAPK(s) signalling pathways are able to 

modulate the expression and activation of NLRP inflammasomes in peripheral immune cells under 

inflammatory conditions. However, the connection between both the NF-κB and MAPK(s) 

signalling pathways with inflammasome protein expression and activation in neurons and cerebral 

tissue under ischemic conditions remains unclear. This may occur in response to endogenous 

danger signals initiated by substances released from necrotic cells at the site of injury, leading to an 

increased production of pro-inflammatory cytokines and to neuronal and glial cell death mediated 

by NLRP inflammasomes. Overall, this research thesis will investigate the pathogenic role of 

inflammasomes and therapeutic efficacy of a caspase-1 inhibitor (Ac-YVAD.cmk), intravenous 

immunoglobulin (IVIg) and intermittent fasting (IF) on neuronal cell death and cerebral tissue 

damage under in vitro and in vivo models of ischemic stroke.  

 
The specific aims of the project are: 
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Specific Aim 1 - To determine the cellular location and temporal expression levels of the NLRP1 

and NLRP3 inflammasome proteins and both IL-1β and IL-18 in neurons and cerebral tissue under 

in vitro and in vivo ischemic conditions. 

 
Specific Aim 2 - To determine the effect of a caspase-1 inhibitor (Ac-YVAD.cmk), IVIg and IF on 

the cellular location and expression levels of the NLRP1 and NLRP3 inflammasome proteins and 

both IL-1β and IL-18 in neurons and cerebral tissue under in vitro and/or in vivo ischemic 

conditions. 

 
Specific Aim 3 - To determine whether a caspase-1 inhibitor (Ac-YVAD.cmk), IVIg and IF will 

prevent or attenuate neuronal cell death and cerebral tissue damage under in vitro and/or in vivo 

ischemic conditions. 

	
  
Specific Aim 4 - To determine whether a caspase-1 inhibitor (Ac-YVAD.cmk), IVIg and IF will 

prevent or attenuate inflammasome activity and its mechanism(s) of action in neurons and cerebral 

tissue under in vitro and/or in vivo ischemic conditions. 
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CHAPTER 2: 
 

Intravenous Immunoglobulin (IVIg) Suppresses NLRP1 and NLRP3 
Inflammasome-Mediated Neuronal Death in Ischemic Stroke 

 
 
2.1 Introduction: 
 
 Stroke is the second leading cause of death worldwide and a major cause of permanent 

disability. The molecular and cellular mechanisms responsible for the degeneration of neurons 

affected by stroke are complex and poorly understood, but involve bioenergetic failure, ionic 

imbalance, acidosis, excitotoxicity, oxidative stress and inflammation, resulting in necrotic or 

apoptotic cell death (Broughton et al., 2009; Dirnagl, 2012; Hou & MacManus, 2002; Sims & 

Muyderman, 2010). Post-stroke inflammation is a complex process involving activation of innate 

local immune responses in glial cells and recruitment of circulating leukocytes into the affected 

brain tissue (Gelderblom et al., 2009; Iadecola & Anrather, 2011). Activated glia and leukocytes 

produce multiple pro-inflammatory mediators including complement anaphylatoxins, cytokines, 

chemokines and prostaglandins (Gelderblom et al., 2009; Iadecola & Anrather, 2011). Recent 

findings have provided insight into a newly discovered inflammatory mechanism that contributes to 

neuronal and glial cell death in cerebral ischemia mediated by multi-protein complexes called 

inflammasomes. Studies of the inflammasome complex in peripheral tissues have shown that it 

amplifies the production and secretion of pro-inflammatory cytokines, and apoptotic and pyroptotic 

cell death (Lamkanfi & Dixit, 2012). It was recently reported that the nucleotide-binding 

oligomerization domain (NOD)-like receptor (NLR) pyrin domain-containing (NLRP) 

inflammasomes play a role in the inflammatory response during ischemic stroke (Abulafia et al., 

2009; Deroide et al., 2013; Savage et al., 2012; Zhang et al., 2014). 

 
 The NLRP1 and NLRP3 inflammasomes are cytosolic macromolecular complexes 

composed of the NLRP1/3 receptor, ASC (apoptosis-associated speck-like protein containing a 

caspase recruitment domain), precursor caspase-1, precursor caspase-11 (homologous to precursor 

caspase-4 or 5 in humans) and/or XIAP (X-linked inhibitor of apoptosis) (Agostini et al., 2004; 

Boyden & Dietrich, 2006; De Rivero Vaccari et al., 2009; Martinon et al., 2002). Activation and 

homo-oligomerization of NLRP1 and NLRP3 receptors induces formation of the NLRP1 and 

NLRP3 inflammasomes, respectively, which convert precursor caspase-1 into cleaved caspase-1 via 

proximity-induced auto-activation (Lamkanfi & Dixit, 2012; Lu et al., 2014; Martinon et al., 2002; 

Salvesen & Dixit, 1999). Cleaved caspase-1 converts precursors of both IL-1β and IL-18 into 

biologically active mature pro-inflammatory cytokines that are then released into the extracellular 

environment (Abulafia et al., 2009; Andrei et al., 2004; Brough & Rothwell, 2007). Moreover, 
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increased cleaved caspase-1 can initiate cell death directly via apoptosis or pyroptosis (Fink et al., 

2008; Sagulenko et al., 2013). In stroke-related studies, reduced brain expression of mature IL-1β 

and IL-18 was shown in mice following cerebral ischemia, using an anti-NLRP1 antibody (Abulafia 

et al., 2009). Moreover, in caspase-1 knockout mice there was a reduction in mature IL-1β and IL-

18 levels in association with a smaller infarct size (Mastronardi et al., 2007). Furthermore, 

administration of an IL-1β neutralizing antibody or IL-1 receptor antagonist reduced subarachnoid 

hemorrhagic injury (Jedrzejowska-Szypułka et al., 2009). However, the specific pathophysiologic 

role of the NLRP1 and NLRP3 inflammasome in neuronal cell death following ischemic stroke 

remains to be established. 

 
 Intravenous immunoglobulin (IVIg) is an FDA-approved therapeutic modality used for 

various inflammatory and autoimmune diseases such as Kawasaki’s disease, immune 

thrombocytopenia (ITP) and humoral immunodeficiency (Gelfand, 2012; Schwab & Nimmerjahn, 

2013). Thus, IVIg has potential for diminishing inappropriate inflammatory and immune activation 

that may offer neuroprotection (Arumugam et al., 2008; Arumugam et al., 2009).  IVIg can inhibit 

complement activation and infiltration of leukocytes, modulate the cytokine network and inhibit 

endothelial dysfunction and neuronal apoptosis under in vitro and in vivo models of ischemic stroke 

(Arumugam et al., 2007; Widiapradja et al., 2014). The pleiotropic effects of IVIg in inhibiting 

multiple components of inflammation in different cell types make it an attractive candidate for use 

in stroke therapy (Arumugam et al., 2007; Lux et al., 2010; Walberer et al., 2010; Widiapradja et 

al., 2012; Widiapradja et al., 2014). Potential effects and underlying mechanism(s) of IVIg on 

inflammasome activation in ischemic stroke-induced neuronal cell death have not been reported. In 

the present study, we performed a comprehensive investigation into the dynamic expression 

patterns of the NLRP1 and NLRP3 inflammasome in primary cortical neurons subjected to 

simulated ischemia, in a mouse model of focal ischemic stroke, and in brain tissue samples from 

stroke patients. In addition, we demonstrate expression and a functional role for the NLRP1 and 

NLRP3 inflammasome in neuronal cell death, and show that the neuroprotective effect of IVIg in 

experimental stroke involves suppression of inflammasome activity. Collectively, our findings 

reveal IVIg as a potential therapeutic modality for targeting ischemic stroke-induced inflammasome 

expression and activity. 

 

2.2 Material & Methods: 
 
Focal Cerebral Ischemia/Reperfusion (I/R) Stroke Model 
 
 Three-month-old C57BL6/J male mice were subjected to transient middle cerebral artery 

ischemia and reperfusion (I/R) injury, as described previously (Arumugam et al., 2004). Briefly, 
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after making a midline incision in the neck, the left external carotid and pterygopalatine arteries 

were isolated and ligated with 6-0 silk thread. The internal carotid artery (ICA) was occluded at the 

peripheral site of the bifurcation with a small clip and the common carotid artery (CCA) was ligated 

with 5-0 silk thread. The external carotid artery (ECA) was cut, and a 6-0 nylon monofilament with 

a tip that was blunted (0.20-0.22 mm) with a coagulator was inserted into the ECA. After the clip at 

the ICA was removed, the nylon thread was advanced to the origin of the middle cerebral artery 

(MCA) until light resistance was evident. The nylon thread and the CCA ligature were removed 

after 1hr to initiate reperfusion. In the Sham group, surgery was performed until the arteries were 

visualized but not disturbed for a period of 1hr under isofluorane-induced anaesthesia. Mice were 

administered with either 10 or 20mg/kg of a Caspase-1 inhibitor (20µl; Ac-YVAD-CMK, Cayman 

Chemical, Ann Arbor, MI, USA), 1g/kg of IVIg (250µl; Privigen, CSL Behring, King of Prussia, 

PA, USA, CSL) or vehicle by infusion into the femoral vein 3hr after the start of reperfusion. In a 

separate set of experiments, anesthetized animals from all groups (5-6 mice per group) underwent 

cerebral blood flow (CBF) measurements using a laser Doppler perfusion monitor (Moor Lab, 

Moor Instruments, Axminster, UK). 

 
 The functional consequences of I/R injury were evaluated using a five-point neurological 

deficit score (0, no deficit; 1, failure to extend right paw; 2, circling to the right; 3, falling to the right; 

and 4, unable to walk spontaneously) and were assessed in a blinded fashion (Bederson et al., 1986). 

At 72hr of reperfusion, the mice were euthanized with a lethal dose of isoflurane. Brains were 

immediately removed and placed into phosphate-buffered saline (PBS; Sigma-Aldrich, Castle Hill, 

NSW, Australia) at 4°C for 15 min, and four 2-mm coronal sections were made from the olfactory bulb 

to the cerebellum using an Acrylic Mouse Brain Slicer Matrix (Zivic Instruments, Pittsburgh, PA, 

USA). The brain sections were stained with 2% 2,3,5-triphenyltetrazolium chloride (TTC) (Sigma-

Aldrich, St. Louis, MO, USA) in PBS at 37°C for 15 min. The stained sections were photographed and 

the digitized images used for analysis. Borders of the infarct in the image of each brain slice were 

outlined and the area quantified using ImageJ v1.46 software	
  (National Institute of Health, Bethesda, 

MD, USA). To correct for brain swelling, the infarct area was determined by subtracting the area of 

undamaged tissue in the left hemisphere from that of the intact contralateral hemisphere. The infarct 

volume was determined by calculating the percentage of infarct area in each brain slice, and then 

integrating the infarct area for all slices of each brain. All in vivo experimental procedures were 

approved by The University of Queensland Animal Care and Use Committee. 
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Primary Cortical Neuronal Cultures 
 
 Dissociated neuron-enriched cell cultures of cerebral cortex were established from Day 16 

C57BL6/J mouse embryos, as described (Okun et al., 2007). Experiments were performed in 7 to 9 

day-old cultures. Approximately 95% of the cells in such cultures were neurons, and the remaining 

cells were astrocytes. For glucose-deprivation studies, glucose-free Locke's buffer containing: 154 mM 

NaCl, 5.6 mM KCl, 2.3 mM CaCl2, 1 mM MgCl2, 3.6 mM NaHCO3, 5 mM HEPES, pH 7.2, 

supplemented with gentamicin (5 mg/L) was used. The cultured neurons were incubated in glucose-

free Locke's buffer for 1-24hr. Controls were incubated in Neurobasal medium. For combined oxygen 

and glucose deprivation (OGD), neurons were incubated in glucose-free Locke's buffer in an oxygen-

free chamber for 3, 6 or 12 hr. For simulated I/R experiments, neurons were incubated in glucose-free 

Locke’s medium in an oxygen-free chamber for 3hr and then the medium replaced with Neurobasal 

medium for 3, 6, 12 or 24 hr. To observe the effect of a caspase-1 inhibitor (Ac-YVAD-CMK) or IVIg, 

either drug were added to cultures during and after GD, OGD or simulated I/R. Control conditions 

included exposure to vehicle or a negative control protein (bovine serum albumin (BSA) (Sigma-

Aldrich, St. Louis, MO, USA). 

 
Cell Viability 
 
 Neuronal cell viability was determined by trypan blue exclusion assay. The assay is based on 

the principle that live cells possess intact cell membranes, which will exclude the dye trypan blue, 

while the membrane of injured or dead cells is permeable to trypan blue. Hence, injured or dead cells 

are stained blue whereas live cells will show no staining. Following incubation with trypan blue, the 

plates were emptied and the cells fixed with 4% paraformaldehyde for 20 min at room temperature. 

The cells were then washed with PBS three times and stored in PBS for latter observation under a light 

microscope to quantify the percentage of cells that were trypan-blue positive in each culture. 

 
Cell/Tissue Lysis and Protein Quantitation 
 
 In order to extract protein, primary cortical neurons and ipsilateral (damaged) brain tissues 

were homogenized separately in either cell lysis buffer (Radio-Immunoprecipitation Assay (RIPA)) 

or tissue lysis buffer (Tissue Protein Extraction Reagent (TPER)) containing protease and 

phosphatase inhibitor (Thermo Scientific, Rockford, IL, USA) in 1:100 ratio, respectively, using a 

cell disruptor or a Tissue-Tearer (Biospec Products, Inc., Bartlesville, OK, USA). Samples were 

centrifuged at 15,000 rpm at 4°C for 15 minutes and the supernatant collected. Total protein 

concentration of each sample was measured in a microplate using the Pierce Bicinchoninic Acid 

(BCA) Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). Bovine serum albumin (BSA) 

standards (20-2,000µg/mL) were prepared as per the manufacturer’s instructions to generate a 
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standard curve with known concentrations. Absorbance was measured at 562nm using the Tecan 26 

Sunrise Microplate Reader (Tecan Group Ltd., Männedorf, Switzerland) and data was analyzed 

using Graphpad Prism 5 software (Graphpad Software, San Diego, CA, USA) by comparing 

samples to the standard curve to determine the concentration and volume of protein required to be 

loaded for separation by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 

 
Western Blot Analysis 
 
 Protein samples were subjected to sodium dodecyl sulfate–polyacrylamide (10%) gel 

electrophoresis using a Tris-glycine running buffer. Gels were then electro-blotted using a transfer 

apparatus (Bio-Rad Laboratories, Inc., Hercules, CA, USA) in transfer buffer containing 0.025 mol/L 

Tris base, 0.15 mol/L glycine, and 10% (v/v) methanol for 2 hr at 80V onto a nitrocellulose membrane 

(Bio-Rad Laboratories, Inc., Hercules, CA, USA). The membrane was then incubated in blocking 

buffer (5% non-fat milk in 20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.2 % Tween-20) for 1hr at 23°C. 

The membrane was then incubated overnight at 4°C with primary antibodies including those that 

selectively bind NLRP1 (Novus Biologicals, Littleton, CO, USA), NLRP3 (Novus Biologicals), ASC 

(Abcam, Cambridge, UK), Caspase-1 (Abcam), Caspase-11 (Abcam), XIAP (Novus Biologicals), IL-

1β (Abcam), IL-18 (Abcam), Bcl-2 (Cell Signaling Technology, Danvers, MA, USA), cleaved 

Caspase-3 (Cell Signaling) and β-actin (Sigma-Aldrich, St. Louis, MO, USA). After washing three 

times (10 min per wash) with Tris-buffered saline-T (20 mM Tris-HCL, pH 7.5, 137 mM NaCl, 0.2 % 

Tween-20), the membrane was incubated with secondary antibodies against the primary antibody and 

β-actin for 1hr at room temperature. The membrane was washed with Tris-Buffered saline-T and 

scanned using the Odyssey® Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA). 

Quantification of protein levels was achieved by densitometry analysis using Image J v1.46 software 

(National Institute of Health, Bethesda, MD, USA). 

 
Immunocytochemistry and Immunohistochemistry 
 
 Coverslips containing primary cortical neurons subjected to either control Neurobasal medium 

or GD medium were fixed in 4% buffered paraformaldehyde in PBS. Fixed cells were permeabilized 

and incubated in blocking solution (1% BSA and 0.1% Triton-X in PBS) at room temperature for 1hr 

before overnight incubation at 4°C with microtubule-associated protein 2 antibody (MAP2, mouse 

monoclonal, Millipore, Temecula, CA, USA) along with primary antibodies that selectively bind 

NLRP1 (Novus Biologicals), ASC (Abcam), Caspase-1 (Abcam), Caspase-11 (Abcam), IL-

1β (Abcam) or IL-18 (Abcam) diluted in blocking solution. Following incubation with primary 

antibodies, the cells were incubated with the appropriate Alexa Fluor-Conjugated secondary antibodies 

(Invitrogen) for 1hr at room temperature. The nuclei were counterstained with DAPI (AbD Setotec, 
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Oxford, UK) for 10 min at room temperature. Following secondary antibody incubation, coverslips 

were sealed with Vectashield Fluorescent Mounting Medium (Vector Laboratories, Burlingame, CA, 

USA) on glass slides. For immunohistochemistry, frozen cryostat brain sections were obtained from 

Sham and focal ischemic stroke mice following trans-cardiac perfusion with 4% paraformaldehyde and 

immunostained with primary antibodies against NLRP1 (Novus Biologicals), ASC (Abcam), Caspase-

1 (Abcam), Caspase-11 (Abcam), IL-1β (Abcam) or MAP2 (Abcam). Images were acquired using an 

Olympus BX61 confocal laser-scanning microscope (Olympus, Tokyo, Japan) with a X100 oil 

immersion objective. Single confocal images were converted to 512 x 512 pixel 12 bit TIFF images. 

 
Patient Brain Tissue Sample 
 
 Human brain tissues were obtained from autopsy patients from files of the Institute of 

Neuropathology at the University Medical Centre Hamburg-Eppendorf and National Taiwan 

University Hospital, as approved by the University Medical Centre Hamburg-Eppendorf and National 

Taiwan University Hospital ethics committees, respectively. Brain specimens had been fixed in 4% 

buffered formalin for at least 3 weeks before paraffin-embedding. Brain sections (3µm) were stained 

according to standard immunohistochemistry procedures with primary antibodies against NLRP1 

(Novus Biologicals), NLRP3 (Abcam), ASC (Abcam), IL-1β (Abcam) and IL-18 (Novus Biologicals). 

 
Statistical Analysis 
 
 All experimental data obtained are expressed as mean ± standard error of the mean (SEM). 

Statistical analysis of all data except the behavioural score data were performed using one-way 

analysis of variance (ANOVA) followed by a Bonferroni post-hoc analysis to determine between-

group differences. Statistical difference was taken as p<0.05. Neurological behaviour scores were 

analyzed using a non-parametric Kruskal-Wallis Test and Dunn’s Multiple Comparison Test. 

Statistical analyses were performed using GraphPad Prism 5.02 software. 

 

2.3 Results: 
 
Ischemia induces increased expression of inflammasome proteins, and both IL-1β  and IL-18, 

in primary cortical neurons in simulated ischemia 

 
 To determine whether ischemia-like conditions activate the inflammasome in primary 

cortical neurons, we evaluated the temporal expression of all NLRP1 and NLRP3 inflammasome 

components in neurons subjected to simulated ischemia-reperfusion (I/R). The levels of all major 

inflammasome components and effectors were increased in primary cortical neurons in response to 

glucose deprivation (GD), oxygen-glucose deprivation (OGD) and simulated I/R conditions 
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including NLRP1, NLRP3, ASC, XIAP, and precursor caspase-1 and -11 (Figure 2.1A-F, 

Supplementary Figure 2.1-2.3). Levels of the latter proteins increased within 1 hour of exposure 

to simulated ischemia and remained elevated for 12–24 hours. Activation and homo-

oligomerization of the NLRP1 and NLRP3 receptors individually induced the formation of the 

NLRP1 and NLRP3 inflammasome, respectively, which then activated both precursor caspase-1 

and -11 into biologically active cleaved caspase-1 and -11 (Martinon et al., 2002; Wang et al., 

1998). Following activation, caspase-1 cleaves both precursors IL-1β and IL-18 into biologically 

active mature pro-inflammatory cytokines, which are released into the extracellular environment 

(Bauernfeind et al., 2011). Consistent with the notion that ischemic conditions increase NLRP1 and 

NLRP3 inflammasome activation, we observed significantly increased levels of both cleaved 

caspase-1 and -11 and both mature IL-1β and IL-18 in primary cortical neurons following GD, 

OGD or simulated I/R conditions over 24 hours in comparison to control (Figure 2.1A-F; 

Supplementary Figure 2.1-2.3). 

 

 
Figure 2.1: Simulated ischemia increases the levels of multiple inflammasome proteins and both IL-1β  
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and IL-18 in primary cortical neurons. (A and B). Representative immunoblots and quantification of 
inflammasome proteins and both IL-1β and IL-18 in lysates of cortical neurons at the indicated time points 
during GD. (C and D). Representative immunoblots and quantification of inflammasome proteins and both 
IL-1β and IL-18 in lysates of cortical neurons at the indicated time points during OGD. (E and F). 
Representative immunoblots and quantification of inflammasome proteins and both IL-1β and IL-18 in 
lysates of cortical neurons after simulated I/R. β-actin was used as a loading control. Data are represented as 
mean ± S.E.M. n=5 cultures. ***P<0.001 compared with controls. 
 

Ischemia/reperfusion (I/R) induces increased expression of NLRP1 and NLRP3 

inflammasome proteins and both IL-1β  and IL-18 in ipsilateral brain tissues of cerebral I/R 

mice and stroke patients 

 
 The role of the NLRP1 and NLRP3 inflammasomes in ischemic stroke was further 

investigated by measuring the expression levels of NLRP1 and NLRP3 inflammasome proteins in 

ipsilateral (i.e. ischemic) brain tissues of cerebral I/R injured mice. It was shown that I/R 

significantly increased the expression of NLRP1 and NLRP3 inflammasome proteins, including 

NLRP1, NLRP3, ASC, XIAP, precursor caspases-1 and -11 in ipsilateral brain tissues as early as 

1hr, and it remained higher at 12, 24 and 72hr following I/R in comparison to Sham controls 

(Figure 2.2A-C; Supplementary Figure 2.4). An indication of NLRP1 and NLRP3 inflammasome 

activation was demonstrated by increased levels of cleaved caspases 1 and 11, and both mature IL-

1β and IL-18, at all time points following I/R in comparison to Sham controls (Figure 2.2A and B). 

Furthermore, to determine whether increased NLRP1 and NLRP3 inflammasome protein expression 

might occur in the human brain following ischemic stroke, we analysed brain tissues obtained from 

stroke patients at the University Medical Centre Hamburg-Eppendorf and National Taiwan 

University Hospital (Figure 2.3A and B). We found evidence that ischemic stroke increased 

NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18 in comparison to control 

patients (Figure 2.3A and B).  
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Figure 2.2: Evidence that focal ischemic stroke activates the inflammasome in cerebral cortical cells. 
(A and B). Representative immunoblots and quantification of inflammasome proteins and both IL-1β and IL-
18 in ipsilateral brain lysates at indicated post-stroke time points. Data are represented as mean ± S.E.M. 
n=3-6. *P<0.05; **P<0.01; ***P<0.001 compared with SHAM (control). (C). Immunohistochemical 
analysis on caspase-1 and IL-1β show localization within the cytoplasm of cortical neurons. The levels of 
inflammasome proteins and both IL-1β and IL-18 are upregulated in I/R in comparison with SHAM 
(control). Magnification x 1000. Scale bar, 10µm. Images were taken under identical conditions and 
exposures. 

Figure 2.3: Evidence for inflammasome expression and activation in brain tissues affected by stroke in 
human patients. (A and B). Immunohistochemical analysis of NLRP1, NLRP3, ASC, IL-1β, IL-18 show 
localization within the cytoplasm of cortical neurons. The levels of inflammasome proteins and both IL-1β 
and IL-18 are elevated in brain tissues from a stroke patient in comparison with neurologically normal 
control patient. n=3 for each group. H&E stain was used to distinguish cell types. Images were taken under 
identical conditions and exposures. 
 

Caspase-1 inhibitor (Ac-YVAD-CMK) treatment protects primary cortical neurons and 

cerebral tissue under simulated in vitro and in vivo models of ischemic stroke 

  
 In light of the increased expression of NLRP1 and NLRP3 inflammasome proteins and both 

IL-1β and IL-18 in primary cortical neurons, we next determined the functional role of 

inflammasomes in the degeneration of neurons subjected to ischemia-like conditions.  We tested the 

efficacy of a caspase-1 inhibitor in primary cortical neurons under ischemic conditions. Increasing 

concentrations of a caspase-1 inhibitor (Ac-YVAD-CMK) (1-100 µM) were applied and neurons 

were then analysed for cleaved caspase-1, an indicator of inflammasome activation. Caspase-1 

inhibitor (Ac-YVAD-CMK) concentrations above 30 µM were effective in reducing levels of 

cleaved caspase-1, in addition to cleaved caspase-3, a marker of apoptosis (Figure 2.4A and B). 

Mouse primary cortical neurons treated with a caspase-1 inhibitor (30 µM and 100 µM) were less 

vulnerable to apoptotic cell death under GD and OGD conditions (Figure 2.4A and B; Figure 2.4D 

and E).  The results of a cell viability assay showed that caspase-1 inhibitor (30-100 µM) treatment 

reduced neuronal cell death under GD conditions (Figure 2.4A and C). In addition, we investigated 

the effect of the caspase-1 inhibitor Ac-YVAD-CMK (30 µM and 100 µM) on the levels of the 

NLRP1 and NLRP3 inflammasome proteins and both precursor and mature forms of IL-1β and IL-

18 during a 6hr period of OGD. Caspase-1 inhibition downstream had no effect on the expression 

levels of upstream inflammasome proteins such as NLRP1, NLRP3, ASC, XIAP, cleaved XIAP, 
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precursor caspase-1 and caspase-11, and both precursors IL-1β and IL-18 in comparison to vehicle 

controls under OGD conditions (Figure 2.4D). However, caspase-1 inhibitor (30 µM and 100 µM) 

treatment reduced the levels of cleaved caspase-1 and both mature IL-1β and IL-18 (Figure 2.4D 

and E). Furthermore, the levels of cleaved caspase-3 were lower in caspase-1 inhibitor (30 µM and 

100 µM)-treated neurons in comparison to vehicle controls under OGD conditions (Figure 2.4D 

and E). 

 

 
Figure 2.4: Inhibition of caspase-1 reduces inflammasome activation and cell death in primary cortical 
neurons subjected to ischemia-like conditions. (A and B). Representative immunoblots and quantification 
illustrating the effect of increasing concentrations (µM) of Ac-YVAD.CMK on levels of cleaved caspase-1 
and caspase-3 proteins in primary cortical neurons subjected to GD. (C). The effect of Ac-YVAD.CMK 
treatment on cell death (%) in primary cortical neurons subjected to GD. (D and E). Representative 
immunoblots and quantification illustrating the effect of 30µM and 100µM Ac-YVAD.CMK treatment on 
inflammasome proteins, IL-1β, IL-18, and cleaved caspase-3 in primary cortical neurons subjected to OGD. 
β-actin was used as a loading control. Data are represented as mean ± S.E.M. n=5-6 cultures. ***P<0.001 
compared with control. 
 

 We next evaluated the potential therapeutic efficacy of a caspase-1 inhibitor in a mouse 

model of focal ischemic stroke. A dose-response experiment was performed to identify the efficacy 

of a caspase-1 inhibitor on brain infarct size. It was found that whereas intravenous administration 

of the two lower doses of the caspase-1 inhibitor (1 and 6 mg/kg) at 3hr after reperfusion had no 

effect on brain infarct size in comparison to I/R vehicle controls (data not shown), both 10 and 20 

mg/kg reduced brain infarct size (p<0.0001) and improved functional outcome in comparison to I/R 

vehicle controls (Figure 2.5A-C). Cerebral blood flow measurements obtained immediately before 

and after middle cerebral artery occlusion (MCAO), and at 60, 120 and 180 min after reperfusion, 

showed a ~90-95% reduction in blood flow in the cerebral cortex supplied by the middle cerebral 

artery during ischemia, and flow was not significantly different between groups at up to 180 min of 

reperfusion (data not shown). In addition, we investigated the effect of a caspase-1 inhibitor (10 

mg/kg) on the protein expression levels of the NLRP1 and NLRP3 inflammasome components and 

both precursor IL-1β and IL-18 in ipsilateral brain tissues 24hr after I/R.  Caspase-1 inhibition 
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downstream had no effect on the expression levels of upstream inflammasome proteins such as 

NLRP1, NLRP3, ASC, XIAP, cleaved XIAP, precursor caspase-1, caspase-11, and both precursor 

IL-1β and IL-18 in comparison to vehicle controls (Figure 2.5D). However, the caspase-1 inhibitor 

at 10mg/kg significantly reduced the levels of cleaved caspase-1 and both mature IL-1β and IL-18 

at 24hr following I/R (Figure 2.5D and E). Furthermore, levels of cleaved caspase-3 were lower in 

caspase-1 inhibitor (10 mg/kg) – treated groups in comparison to vehicle controls (Figure 2.5D and 

E).   

 

 
Figure 2.5: A caspase-1 inhibitor improves neurological outcome, reduces infarct size and suppresses 
inflammasome activity in a mouse model of focal ischemic stroke. (A). The effect of Ac-YVAD.CMK 
(10mg/kg and 20mg/kg) treatment on neurological scores of C57BL6/J mice following MCAO (1hr) and 
reperfusion at indicated times. *P<0.05. (B). The effect of Ac-YVAD.CMK (10 mg/kg and 20 mg/kg) 
treatment on ipsilateral infarct area (%) of C57BL6/J mice. n=9-11 animals in each group. *P<0.05, 
***P<0.001. (C). Representative images of brains from each treatment group. (D). Representative 
immunoblots illustrating the effect of Ac-YVAD.CMK (10mg/kg) treatment on the levels of activated 
inflammasome proteins such as cleaved caspase-1, maturation of IL-1β and IL-18, and cleaved caspase-3 
following MCAO (1hr) and reperfusion (24hr) in ipsilateral brain tissues of C57BL6/J mice. (E). 
Quantification illustrating Ac-YVAD.CMK significantly reducing the levels of activated inflammasome 
proteins such as cleaved caspase-1, maturation of IL-1β and IL-18, and cleaved caspase-3 in ipsilateral brain 
tissues following MCAO (1hr) and reperfusion (24hr) in C57BL6/J mice Data are represented as mean ± 
S.E.M. n=5-6 animals. ***P<0.001 compared with I/R. 
 

IVIg treatment protects primary cortical neurons and brain tissue by decreasing 

inflammasome activity under in vitro and in vivo ischemic conditions 

 
 We recently identified IVIg as a potent stroke therapy (Arumugam et al., 2007; Widiapradja 

et al., 2012). Specifically, we reported that administration of IVIg to mice subjected to experimental 

stroke significantly reduced brain infarct size and nearly eliminated mortality. Moreover, not only 

was there a reduced volume of infarct, but within the ischemic region neurons were spared and only 

occasional cell loss was observed. Recently, it was demonstrated that IVIg could decrease the 

activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-

activated protein kinases (MAPKs) signalling pathways in neurons under ischemic conditions 

through an unknown mechanism (Widiapradja et al., 2012).  We therefore investigated the effect of 

IVIg (5 mg/mL) on levels of the NLRP1 and NLRP3 inflammasome proteins and both IL-1β and 
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IL-18 in primary cortical neurons under GD conditions over 6, 12 or 24 hrs. Indeed, we found that 

IVIg treatment significantly decreases levels of NLRP1, NLRP3, ASC, XIAP, caspase-1, caspase-

11, IL-1β and IL-18 in comparison to vehicle-treated neurons during GD (Figure 2.6A and B; 

Supplementary Figure 2.5). Furthermore, levels of cleaved caspase-3 were significantly lower in 

IVIg (5 mg/mL)–treated, compared to vehicle-treated neurons during GD (Figure 2.6A and B). In 

addition, immunocytochemical analysis indicated that levels of inflammasome proteins and both 

IL-1β and IL-18 were lower in IVIg-treated neurons compared to vehicle-treated neurons after 12 

hr of GD (Figure 2.6C). In addition, we investigated the effect of IVIg (5 mg/mL) on levels of 

NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18 in primary cortical neurons 

subjected to transient OGD and reperfusion conditions. We found that IVIg treatment inhibited 

OGD-induced elevations of NLRP1, NLRP3, ASC, XIAP, cleaved XIAP, caspase-1, precursor 

caspase-11, IL-18 and cleaved caspase-3 levels (Figure 2.6D and E; Supplementary Figure 2.6). 

Furthermore, IVIg treatment significantly attenuated the simulated I/R-induced increase in levels of 

NLRP1, NLRP3, ASC, XIAP, cleaved XIAP, caspase-1, caspase-11, IL-1β, IL-18 and cleaved 

caspase-3 (Figure 2.6D and E; Supplementary Figure 2.6). 

 
 We also tested the effect of IVIg treatment on inflammasome activity in vivo following 

experimental stroke. Intravenous administration of 1g/kg IVIg at 3hr following reperfusion was 

previously reported to reduce brain infarct size and improve neurological outcome in rodent stroke 

models (Arumugam et al., 2007; Widiapradja et al., 2012). Here, we investigated the effect of IVIg 

(1g/kg) on levels of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18, in 

ipsilateral brain tissue at 6hr and 24hr of I/R. IVIg treatment significantly decreased levels of 

NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18, in comparison to vehicle-

treated mice (Figure 2.6F and G; Supplementary Figure 2.7). Furthermore, levels of cleaved 

caspase-3 were significantly lower in IVIg (1g/kg)-treated groups in comparison to vehicle controls 

(Figure 2.6F and G). 
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Figure 2.6: IVIg treatment inhibits the inflammasome in cultured cortical neurons subjected to 
simulated ischemia, and in a mouse model of focal ischemic stroke. (A and B). Representative 
immunoblots and quantification illustrating increases in the levels of inflammasome proteins, and both IL-1β 
and IL-18 in primary cortical neurons at indicated times during GD. Administration of IVIg (5mg/ml) 
significantly reduces the levels of inflammasome proteins and both IL-1β and IL-18. Data are represented as 
mean ± S.E.M. n=6 cultures. ***P<0.001 in comparison with GD. (C). Immunocytochemical analysis of 
NLRP1, ASC, caspase-1, IL-1β, and IL-18 show localization within the cytoplasm of primary cortical 
neurons. The levels of inflammasome proteins and both IL-1β and IL-18 are elevated in neurons subjected to 
GD. Treatment with IVIg (5mg/ml) significantly reduced the levels of inflammasome proteins and both IL-
1β and IL-18 in neurons subjected to GD. Magnification x1000. Scale bar, 10mm. Images were taken under 
identical conditions and exposures. (D and E). Representative immunoblots and quantification illustrating 
increases in the levels of inflammasome proteins and both IL-1β and IL-18 in primary cortical neurons 
subjected to simulated I/R. Administration of IVIg (5mg/ml) significantly reduces the levels of 
inflammasome proteins and both IL-1β and IL-18. Data are represented as mean ± S.E.M. n=6 cultures. 
*P<0.05; **P<0.01; ***P<0.001 in comparison with cultures not treated with IVIg. (F and G). 
Representative immunoblots and quantification illustrating increase in the levels of inflammasome proteins 
and both IL-1β and IL-18 in ipsilateral brain tissues of C57BL6/J mice following MCAO (1hr) and 
reperfusion (6 and 24hr). β-actin was used as a loading control. Administration of IVIg (1g/kg) significantly 
reduces the levels of inflammasome proteins and both IL-1β and IL-18. Data are represented as mean ± 
S.E.M. n=5-6 animals in each group. ***P<0.001 in comparison with I/R (6 and 24hr). 
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2.4 Discussion: 
  
 Inflammation is a major contributor to the pathogenesis of ischemic stroke. The deleterious 

effects of the inflammatory response following cerebral ischemia are mediated by neurons, glial 

cells, endothelial cells and infiltrating leukocytes in the brain, which secrete numerous cytokines 

and chemokines at the site of injury. Numerous studies have shown that pro-inflammatory 

cytokines such as IL-1β and IL-18 play a significant role in cerebral ischemic damage (Abulafia et 

al., 2009; Caso et al., 2007; Deroide et al., 2013; Fogal et al., 2007; Mallat et al., 2001; Savage et 

al., 2012; Wang et al., 1997; Yuen et al., 2007; Zhang et al., 2014). A macromolecular complex, 

termed the inflammasome, in particular the NLRP1 and NLRP3 inflammasomes, regulate the 

maturation of these pro-inflammatory cytokines - IL-1β and IL-18. The present study provides 

strong evidence that the NLRP1 and NLRP3 inflammasomes play a major role in neuronal cell 

death and cerebral tissue damage in causing neurological and functional deficits following ischemic 

stroke. The second part of the study investigates the effect of IVIg treatment on ischemic stroke-

induced NLRP1 and NLRP3 inflammasome activity. Previous experimental studies have 

demonstrated that high concentrations of IVIg are able to exert protective effects in neurons and 

cerebral tissue under in vitro and in vivo ischemic conditions (Arumugam et al., 2007; Chen et al., 

2014; Tunik et al., 2013; Walberer et al., 2010; Widiapradja et al., 2012). The present study 

demonstrates for the first time that IVIg is able to decrease ischemic stroke-induced inflammasome 

activity by attenuating NLRP1 and NLRP3 inflammasome protein expression, with a corresponding 

down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in neurons and cerebral tissue 

under in vitro and in vivo ischemic conditions. 

 
 It is proposed that an increase in expression of NLRP1 and NLRP3 inflammasome proteins 

and both precursor IL-1β and IL-18 in neurons and cerebral tissue under ischemic conditions may 

involve the activation of plasma membrane pattern recognition receptors (PRRs), such as toll-like 

receptors (TLRs; TLR-2 and-4), the receptor for advanced glycation end products (RAGE), and the 

IL-1 receptor 1 (IL-1R1) present on neighboring neurons, glial cells and infiltrating immune cells in 

the ischemic penumbra, which can detect endogenous danger signals termed damage associated 

molecular patterns (DAMPs) that are released from necrotic tissue within the ischemic core 

(Alfonso-Loeches et al., 2014; Burm et al., 2015; Caso et al., 2007; Caso et al., 2008; Codolo et al., 

2013; Eigenbrod et al., 2008; Frank et al., 2015; Lee et al., 2013; Lippai et al., 2013; Nagyoszi et 

al., 2015; Nystrom et al., 2013; Pradillo et al., 2012; Tang et al., 2007; Tang et al., 2013; Weber et 

al., 2015; Zhao et al., 2014; Zheng et al., 2013). The activation of PRRs subsequently activates the 

NF-κB and MAPK(s) signalling pathways that may result in an increased expression of NLRP1 and 

NLRP3 inflammasome proteins and both precursor IL-1β and IL-18 through a distinct regulatory 
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process called ‘priming’ or Signal 1 (Bauernfeind et al., 2011a; Bauernfeind et al., 2009; Budai et 

al., 2013; Burm et al., 2015; Frederick Lo et al., 2008; Ghonime et al., 2014; Gross et al., 2011; 

Hara et al., 2013; He et al., 2012; Juliana et al., 2010; Kang et al., 2000; Legos et al., 2001; Liao et 

al., 2012; Liu et al., 2004; Liu et al., 2013; Mariathasan & Monack, 2007; Okada et al., 2014; Qiao 

et al., 2012; Savage et al., 2012; Schroder et al., 2012; Tamatani et al., 2000; Taxman et al., 2011; 

Weber et al., 2015; Zhao et al., 2013; Zheng et al., 2011). In addition, another possible explanation 

for an increased expression of NLRP1 and NLRP3 inflammasome proteins in ischemic tissue may 

be associated with the infiltration of peripheral immune cells (i.e. neutrophils, macrophages and T 

cells) to the site of injury, as immune cells also contain inflammasome proteins that can contribute 

to the overall expression profile of NLRP1 and NLRP3 inflammasome proteins in the ischemic 

brain. Following priming, a second regulatory signal may involve the activation and homo-

oligomerization of the NLRP1 and NLRP3 receptors in response to DAMPs, or irregularities within 

the cellular microenvironment from cellular stress, resulting in the formation of the NLRP1 and 

NLRP3 inflammasome, respectively, which then activates precursor caspase-1 into cleaved 

caspase-1 through proximity-induced auto-activation (Agostini et al., 2004; Boatright et al., 2003; 

Faustin et al., 2007; Li et al., 2009; Liu et al., 2014; Martinon et al., 2002; Maslanik et al., 2013; 

Salvesen & Dixit, 1999; Savage et al., 2012). Following auto-activation, cleaved caspase-1 

facilitates the cleavage of both precursor IL-1β and IL-18 into biologically active pro-inflammatory 

cytokines – mature IL-1β and mature IL-18, which are then released into the extracellular 

environment (Bauernfeind et al., 2011b). Despite numerous experimental studies showing that 

priming is required for the expression of NLRP1 and NLRP3 inflammasome proteins and both 

precursor IL-1β and IL-18 proteins in peripheral immune cells (Bauernfeind et al., 2011a,b; 

Bauernfeind et al., 2009; Budai et al., 2013; Burm et al., 2015; Frederick Lo et al., 2008; Ghonime 

et al., 2014; Gross et al., 2011; Hara et al., 2013; He et al., 2012; Juliana et al., 2010; Kang et al., 

2000; Legos et al., 2001; Liao et al., 2012; Liu et al., 2004; Liu et al., 2013; Mariathasan & 

Monack, 2007; Okada et al., 2014; Qiao et al., 2012; Savage et al., 2012; Schroder et al., 2012; 

Tamatani et al., 2000; Taxman et al., 2011; Weber et al., 2015; Zhao et al., 2013; Zheng et al., 

2011), it is not conclusively known whether inflammasome priming occurs similarly in neurons and 

cerebral tissue during ischemic conditions. 

 
 We demonstrated that when primary cortical neurons were subjected to ischemia-like 

conditions (GD, OGD or simulated I/R), NLRP1 and NLRP3 inflammasome proteins were 

increased, which was accompanied by elevated levels of cleaved caspase-1 and 11, and maturation 

of both precursor IL-1β and IL-18 proteins, an indication of inflammasome activation. Furthermore, 

immunofluorescence data showed expression and localization of these proteins in the cytoplasm of 
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neurons following ischemic conditions. The aforementioned findings suggest that the NLRP1 and 

NLRP3 inflammasome complex are formed in the cytoplasm of neurons following cerebral 

ischemic damage. Currently, the precise molecular and cellular stimuli(s) for NLRP1 and NLRP3 

receptor activation during cerebral ischemia are unknown. Despite the extensive list of stimuli(s) 

described to be capable of activating the NLRP1 and NLRP3 receptor, there is no evidence of direct 

ligand binding (Petrilli et al., 2007a). Hence, it is now proposed that the NLRP1 and NLRP3 

receptor is a sensor for abnormal changes in the intracellular environment in times of cellular stress 

(Davis et al., 2011; Kersse et al., 2011; Schroder & Tschopp, 2010). Although a fully defined 

mechanism leading to NLRP1 and NLRP3 receptor activation has not been elucidated during 

cerebral ischemia, numerous contributing cellular events are considered plausible, including energy 

depletion, acidosis, cathepsin release, increased reactive oxygen species (ROS) production, 

oxidized mitochondrial DNA, increased intracellular calcium (Ca2+) concentration, cell swelling, 

and protein kinase R (PKR) activation in neurons and cerebral tissue under ischemic conditions 

(Compan et al., 2012; Lee et al., 2012; Liao & Mogridge, 2012; Lu et al., 2012; Nakahira et al., 

2011; Rajamaki et al., 2013; Rossol et al., 2012; Shimada et al., 2012; Zhou et al., 2010; Zhou et 

al., 2011). However, recent evidence now suggests that adenosine triphosphate (ATP) released from 

both stressed and/or necrotic neurons in culture, and the ischemic core in the brain under in vitro 

and in vivo ischemic conditions, respectively, may be a significant factor in mediating cellular and 

tissue damage by binding onto P2X4 receptors on the plasma membrane of neighboring neurons 

and glial cells to open these ligand-gated ion channels in order to facilitate an increased efflux of 

potassium (K+) ions from the cytoplasm into the extracellular environment (Carta et al., 2015; 

Cauwels et al., 2014; Chen et al., 2013; De Rivero Vaccari et al., 2012; Ferrari et al., 2006; Hung et 

al., 2013; Iyer et al., 2009; Mariathasan et al., 2006; Schwab et al., 2005; Wilhelm et al., 2010). In 

addition, necrotic cells in the ischemic core will passively release potassium (K+) ions into the 

extracellular environment. Therefore, these mechanisms will collectively increase potassium (K+) 

ions in the extracellular environment and activate Pannexin 1 channels on the plasma membrane 

(Silverman et al., 2009). Opening of Pannexin 1 channels will lead to further release of ATP and 

activation of P2X4 and P2X7 receptors, creating a positive feedback loop by leading to additional 

potassium (K+) ion efflux (Adamson & Leitinger, 2014; Ayna et al., 2012; Babelova et al., 2009; 

De Rivero Vaccari et al., 2012; Ferrari et al., 2006; Franchi et al., 2007; Hung et al., 2013; 

Kahlenberg & Dubyak, 2004; Kahlenberg et al., 2005; Le Feuvre et al., 2003; Locovei et al., 2007; 

Pelegrin & Surprenant, 2006; Raouf et al., 2007; Riteau et al., 2012; Shestopalov & Slepak, 2014; 

Stoffels et al., 2015). The latter activation of P2X7 receptors is due to P2X4 receptors being more 

sensitive (approximately 100 times) to ATP than P2X7 receptors in the brain and spinal cord (North 

& Surprenant, 2000; Raouf et al., 2007). Hence, it is subsequently proposed that a decreased 
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intracellular potassium (K+) ion concentration and/or an increased extracellular potassium (K+) ion 

concentration in neurons and glial cells may create an environment that is favourable for activating 

the NLRP1 and NLRP3 receptors, either directly or indirectly through an unknown mechanism(s) 

during ischemic conditions (Franchi et al., 2014; Katsnelson et al., 2015; Lindestam Arlehamn et 

al., 2010; Munoz-Planillo et al., 2013; Petrilli et al., 2007b; Silverman et al., 2009). In addition, 

recent studies have suggested that stimulation of astrocytes with ATP results in activation of the 

NLRP2 inflammasome, and that ATP-induced activation of the NLRP2 inflammasome were 

inhibited by a pannexin 1 inhibitor and a P2X7 receptor antagonist (Minkiewicz et al., 2013; 

Silverman et al., 2009). The ATP-dependent oligomerization of NLRPs and formation of the 

inflammasome complex will then promote cleavage of precursor caspase-1 into cleaved caspase-1, 

which in turn cleaves IL-1β and IL-18 into their mature forms (Duncan et al., 2007; Faustin et al., 

2007; Koonin & Aravind, 2000; Levinsohn et al., 2012; Martinon et al., 2002). 

 
 The current data show an increase in levels of the NLRP1 and NLRP3 inflammasome 

proteins and both precursor IL-1β and IL-18, in addition to effectors of inflammasome activation in 

primary cortical neurons and cerebral tissue subjected to ischemia. However, whether activation of 

the NLRP1 and NLRP3 inflammasome in neurons and cerebral tissue under in vitro and in vivo 

ischemic conditions is a result of ATP release from necrotic neurons and cerebral tissue remains to 

be fully determined. The increase in levels of both mature IL-1β and IL-18 under in vitro ischemia-

like conditions supports findings in which both extracellular IL-1β and IL-18 are implicated in 

causing autocrine, paracrine and endocrine effects by binding to their respective receptors on the 

plasma membrane of neighboring neurons and glial cells, and/or peripheral immune cells, and 

activating NF-κB and MAPK(s) signaling pathways in the target cell (Calkins et al., 2002; 

Dinarello, 1998; Dinarello, 2002; Dinarello, 2009; Dinarello & Van der Meer, 2013; Dinarello et 

al., 2012; Dinarello et al. 2013; Garlanda et al., 2013; Gracie et al., 2003; Lee et al., 2004; Novick 

et al., 2013; Rider et al., 2011; Sedimbi et al., 2013; Srinivasan et al., 2004). Consequently, this 

may lead to increased priming, which would be expected to further increase production of NLRP1 

and NLRP3 inflammasome proteins and both precursor IL-1β and IL-18 in surrounding neurons 

and glial cells, in addition to possibly inducing secondary transcription of multiple inflammation-

associated genes, including: pro-inflammatory cytokines (e.g. TNFα, IL-1β, IL-6 and IL-18); 

chemokines (e.g. CXC-chemokine ligand 8, CXCL8 aka IL-8, CX3C-chemokine ligand 1, CX3CL1 

aka fractalkine); and adhesion molecules (e.g. E-selectin and ICAM-1), all contributing to ischemic 

reperfusion injury resulting in neuronal and glial cell death (Allan et al., 2005; Allan & Rothwell, 

2001; Arumugam et al., 2004; Denes et al., 2008; Ehrensperger et al., 2005; Huang et al., 2000; 

Vila et al., 2000; Yilmaz & Granger, 2008; Zhang et al., 1998). Furthermore, both mature IL-1β 
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and IL-18 may contribute to secondary injuries by inducing leukocyte recruitment, which can in 

turn lead to an increased production and release of ROS and additional pro-inflammatory cytokines 

at the site of injury, thus exacerbating neuronal cell death and tissue damage during cerebral 

ischemia (Calkins et al., 2002; De Rivero Vaccari et al., 2008; Denes et al., 2012; Kong et al., 

2014; McColl et al., 2007; Netea et al., 2000; Sonnino et al., 2014). 

 
 Our findings indicate increased levels of not only cleaved caspase-1 but also cleaved 

caspase-11, in neurons under ischemia-like conditions. Recent evidence suggests that cleaved 

caspase-1 may require the presence of cleaved caspase-11 for the maturation of precursor IL-1β and 

IL-18 proteins (Kayagaki et al., 2011). In addition, cleaved caspase-11 was shown to activate 

caspase-3 and cause apoptotic cell death in neurons and glial cells under ischemic conditions (Kang 

et al., 2000; Kang et al., 2002; Kang et al., 2003). It was previously reported that administration of 

a caspase-1 inhibitor (Ac-YVAD.CMK) induced long-lasting neuroprotection through a decrease in 

pro-inflammatory cytokine production and attenuation of apoptosis in a permanent MCAO stroke 

model (Rabuffetti et al., 2000; Zhang et al., 2003). Our study found that Ac-YVAD.CMK and IVIg 

inhibited activation of caspase-3. This link between the inflammasome and apoptotic cascades 

supports the idea that increased expression levels of cleaved caspase-1 may mediate a number of 

pleiotropic effects (Erener et al., 2012; Frederick Lo et al., 2008; Guegan et al., 2002; Liu et al., 

2004; Walsh et al., 2011; Zhang et al., 2003). A major effect of cleaved caspase-1 is that it is able 

to directly cleave and activate both executioner caspase-3 and 7, and Bid (BH3 Interacting Domain 

Death Agonist) into its truncated form, inducing intrinsic and extrinsic apoptotic cell death, 

respectively (Erener et al., 2012; Frederick Lo et al., 2008; Guegan et al., 2002; Liu et al., 2004; 

Walsh et al., 2011; Zhang et al., 2003). Hence, our data further supports the role of NLRP1 and 

NLRP3 inflammasomes in mediating apoptotic cell death in neurons under ischemic conditions. 

Besides apoptosis, pyroptosis is another form of cell death directly linked to inflammasome 

activation. Numerous studies suggest that pyroptosis is exclusively regulated by cleaved caspase-1, 

which initiates the formation of pores in the plasma membrane of cells through an unknown 

mechanism(s), thereby allowing dissipation of cellular ionic gradients (such as Na+ and K+) and 

subsequently inducing osmotic movement of water through aquaporins into the cell causing lysis, 

which releases its pro-inflammatory contents into the extracellular environment exacerbating the 

inflammatory response (Bergsbaken et al., 2009; Fink & Cookson, 2006; Fink et al., 2008). 

However, it remains to be determined whether neurons undergo pyroptosis during cerebral 

ischemia. 

 
 In a previous study, we demonstrated that treatment of cultured neurons with IVIg reduced 

ischemic neuronal cell death, in part, by inhibiting the complement cascade (Arumugam et al., 
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2007). The present data demonstrates neuroprotective effects of IVIg on ischemia-induced NLRP1 

and NLRP3 inflammasome activity in primary cortical neurons. We found evidence that the 

neuroprotective effects of IVIg are associated with a significant reduction in the levels of NLRP1 

and NLRP3 inflammasome proteins and both precursor IL-1β and IL-18 during simulated ischemia 

under in vitro conditions and in a mouse model of focal ischemic stroke. IVIg was previously 

shown to reduce activation of caspase-3 and to protect neurons from undergoing apoptotic cell 

death under ischemic conditions (Arumugam et al., 2007; Widiapradja et al., 2012). Although the 

molecular and cellular neuroprotective mechanism(s) of IVIg in ischemic stroke-induced NLRP1 

and NLRP3 inflammasome activity in neurons and cerebral tissue remains to be established, the 

present data fits a model in which IVIg inhibits inflammasome priming by decreasing the activity of 

both intracellular NF-κB and MAPK(s) signaling pathways in neurons, a possibility consistent with 

a recent report that IVIg protects neurons from cell death under ischemic conditions by inhibiting 

the phosphorylation levels of NF-κB, p38, and JNK (Widiapradja et al., 2012). This effect would be 

expected to attenuate the production of NLRP1 and NLRP3 inflammasome proteins and both 

precursor IL-1β and IL-18, thereby decreasing the production of both cleaved caspase-1 and 

caspase-11 and hence mature IL-1β and IL-18. Indeed, we found that both a caspase-1 inhibitor and 

IVIg blocked maturation of precursors IL-1β and IL-18. Hence, we speculate that cleaved caspase-

1-dependent apoptosis and pyroptosis would be reduced by IVIg treatment. Consistent with the 

latter possibility, IVIg can increase the expression of the anti-apoptotic protein, Bcl-2, in cultured 

cortical neurons and cerebral tissue under in vitro and in vivo ischemic conditions (Supplementary 

Figure 2.8; Widiapradja et al., 2012). Studies have demonstrated that Bcl-2 can directly bind and 

inhibit the NLRP1 and NLRP3 receptor in macrophages by specifically preventing ATP from 

binding onto the nucleotide-binding domain (NBD) of both receptors (Bruey et al., 2007; Faustin et 

al., 2009; Shimada et al., 2012). Therefore, inhibiting the oligomerization of the NLRP1 and 

NLRP3 receptors is expected to attenuate inflammasome formation and reduce both caspase-1 

activation and maturation of both IL-1β and IL-18 (Bruey et al., 2007; Faustin et al., 2009; 

Shimada et al., 2012). In addition, it was shown that Bcl-xL, another anti-apoptotic protein was able 

to directly bind and inhibit the NLRP1 receptor in macrophages through a similar mechanism but 

whether Bcl-xL is able to inhibit the NLRP3 receptor remains to be established (Bruey et al., 2007; 

Faustin et al., 2009). Accordingly, it appears that Bcl-2 is a tight regulator of NLRP1 and NLRP3 

receptor activation; however, whether Bcl-xL regulates NLRP3 receptor activation, and how and 

whether IVIg increases Bcl-2 and Bcl-xL levels, respectively, in neurons and cerebral tissue under 

in vitro and in vivo ischemic conditions remains to be fully determined.         
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2.5 Conclusion: 
 
 Previous reports have suggested IVIg to be a promising therapeutic modality for targeting a 

number of injury mechanisms in multiple cell types under ischemic conditions (Arumugam et al., 

2007; Arumugam et al., 2008; Widiapradja et al., 2012; Widiapradja et al., 2014). The present 

study demonstrated that ischemia-like conditions increased the levels of NLRP1 and NLRP3 

inflammasome proteins and both IL-1β and IL-18 in primary cortical neurons. Similarly, levels of 

NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18 were elevated in ischemic 

brain tissues of mice subjected to ischemic stroke. In addition, identified a novel mechanism by 

which Ac-YVAD.cmk and IVIg treatment protected primary cortical neurons and brain tissue by a 

mechanism(s) involving Caspase-1 inhibition and suppression of NLRP1 and NLRP3 

inflammasome activity, respectively, under in vitro and in vivo ischemic conditions. These findings 

suggest that therapeutic interventions targeting inflammasome expression and activity during 

cerebral ischemia may offer substantial promise. Hence, continued investigation into the 

mechanism(s) underlying NLRP1 and NLRP3 inflammasome activity in neurons and glial cells in 

settings of brain tissue injury and neurodegeneration is warranted in potential future treatments of 

ischemic stroke. 
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2.6 Supplementary Figures: 
 
 

 
Supplementary Figure 2.1: Glucose deprivation (GD) increases levels of inflammasome 

proteins, IL-1β and IL-18 in primary cortical neurons of C57BL/6J mice. Quantification of 

inflammasome proteins, and IL-1β and IL-18, in cortical lysates of neurons at the indicated times 

periods of GD. β-actin was used as a loading control. Data are represented as mean ± SEM. n= 5 

cultures. **p < 0.01; ***p < 0.001 compared with Control. 
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Supplementary Figure 2.2: Combined oxygen and glucose deprivation (OGD) increases the 

levels of inflammasome proteins, IL-1β and IL-18 in primary cortical neurons of C57BL/6J 

mice. Quantification of inflammasome proteins and IL-1β and IL-18 in cortical lysates of neurons 

at indicated times under OGD. β-actin was used as a loading control. Data are represented as mean 

± SEM. n= 5 cultures. *p < 0.05; ***p < 0.001 compared with Control. 
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Supplementary Figure 2.3: Simulated ischemia/reperfusion increases levels of inflammasome 

proteins and IL-1β and IL-18 in primary cortical neurons of C57BL/6J mice. Quantification of 

inflammasome proteins and both IL-1β and IL-18 in cortical lysates of neurons under OGD3hr with 

neurobasal reperfusion at indicated times. β-actin was used as a loading control. Data are 

represented as mean ± SEM. n= 5-6 cultures. **p < 0.01;  ***p < 0.001 compared with Control. 
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Supplementary Figure 2.4:	
   Levels of inflammasome proteins and IL-1β and IL-18 are 

elevated in response to middle cerebral artery occlusion/reperfusion in ipsilateral brain 

tissues of C57BL/6J mice. Quantification of inflammasome proteins and both IL-1β and IL-18 in 

ipsilateral brain lysates at indicated times. β-actin was used as a loading control. Data are 

represented as mean ± SEM. n= 5-6. *p < 0.05; **p < 0.01; ***p < 0.001 compared with SHAM 

(control). 
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Supplementary Figure 2.5: IVIg treatment suppresses the inflammasome in cultured cortical 

neurons subjected to glucose deprivation (GD). Quantification illustrating increase in the 

expression levels of inflammasome proteins and IL-1β and IL-18 in primary cortical neurons at 

indicated times after subjection to GD. β-actin was used as a loading control. Administration of 

IVIg (5 mg/mL) significantly reduces the expression levels of inflammasome proteins and both IL-

1β and IL-18. Data are represented as mean ± SEM. n= 5-6 cultures. ***p < 0.001 in comparison to 

GD. 
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Supplementary Figure 2.6: IVIg treatment suppresses the inflammasome in cultured cortical 

neurons subjected to oxygen glucose deprivation (OGD) or simulated ischemia/reperfusion 

(IR). Quantification illustrating increase in the expression levels of inflammasome proteins and IL-

1β and IL-18 in neurons subjected to OGD (3 hours) or simulated I (3 hours)/R (24 hours).  β-actin 

was used as a loading control. Administration of IVIg (5mg/mL) significantly reduces the 

expression levels of inflammasome proteins and both IL-1β and IL-18. Data are represented as 

mean ± SEM. n= 5-6 cultures. *p < 0.05; **p < 0.01; ***p < 0.001 in comparison to OGD3hr and 

OGD3hr + neurobasal reperfusion (24hr). 
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Supplementary Figure 2.7: IVIg treatment suppresses the inflammasome in a mouse model of 

focal ischemic stroke. Quantification illustrating increases in the expression levels of 

inflammasome proteins and both IL-1β and IL-18 in ipsilateral brain tissues of mice following 

middle cerebral artery occlusion (1 hour) and reperfusion (6 or 24 hours). β-actin was used as a 

loading control. Administration of IVIg (2g/Kg) significantly reduces the expression levels of 

inflammasome proteins and IL-1β and IL-18. Data are represented as mean ± SEM. n=3-5. ***p < 

0.001; **p < 0.01  in comparison to I/R6hr and I/R24hr. 
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Supplementary Figure 2.8: IVIg treatment increases the levels of BcL-2 in cultured cerebral 

cortical neurons subjected to ischemia-like conditions. (A). Representative immunoblot 

illustrating increase in the expression levels of BcL-2 in primary cortical neurons subjected to GD 

for the indicated time periods. Administration of IVIg (5 mg/mL) significantly increases the 

expression levels of BcL-2 in comparison to GD. n=3-6 (B). Representative immunoblot illustrating 

the expression levels of BcL-2 in primary cortical neurons subjected to OGD for 3 hours, or 

simulated I (3 hours)/R (24 hours. (C). Representative immunoblot illustrating the expression levels 

of BcL-2 in ipsilateral brain tissues of mice following middle cerebral artery occlusion (1 hour) and 

reperfusion (6 or 24 hours). Administration of IVIg (2 g/Kg) significantly increases the expression 

levels of BcL-2 in comparison to vehicle-treated control mice. n=5-6. β-actin was used as a loading 

control. 
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CHAPTER 3: 
 

Evidence that NF-κB and MAPK(s) Signalling Promotes NLRP Inflammasome 
Expression and Activation in Neurons Following Ischemic Stroke 

 
 
3.1 Introduction: 
 
 Stroke is the second leading cause of death worldwide and a major cause of permanent 

disability. The molecular and cellular mechanisms responsible for neuronal cell death following 

stroke are complex and remains to be fully understood, especially during post-stroke inflammation 

involving multi-protein complexes termed inflammasomes. In a previous study, we established that 

ischemia-like conditions increased the levels of NOD (nucleotide-binding oligomerization domain)-

like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasomes in 

primary cortical neurons (Fann et al., 2013). The NLRP inflammasomes are cytosolic 

macromolecular complexes composed of the NLRP1/3 receptor, ASC (apoptosis-associated speck-

like protein containing a caspase recruitment domain), precursor caspase-1 and/or both precursor 

caspase-11 (homologous to precursor caspase-4 or 5 in humans) and XIAP (X-linked inhibitor of 

apoptosis) (Agostini et al., 2004; De Rivero Vaccari et al., 2008; De Rivero Vaccari et al., 2009; De 

Rivero Vaccari et al., 2012; Schroder & Tschopp, 2010; Silverman et al., 2009). The activation and 

homo-oligomerization of NLRP receptors will lead to the formation of NLRP inflammasomes, 

which converts precursor caspase-1 into cleaved caspase-1 (Agostini et al., 2004; Martinon et al., 

2002). Cleaved caspase-1 cleaves precursors interleukin (IL)-1β and IL-18 into biologically active 

mature pro-inflammatory cytokines that are then released into the extracellular environment 

(Bauernfeind et al., 2011a). Furthermore, cleaved caspase-1 may induce apoptosis and a particular 

type of cell death known as pyroptosis (Bergsbaken et al., 2009; Erener et al., 2012; Fink & 

Cookson, 2006; Fink et al., 2008; Lamkanfi, 2011; Sagulenko et al., 2013; Walsh et al., 2011; 

Zhang et al., 2003). The NLRP1 and NLRP3 inflammasomes in neurons and glial cells may play an 

important role in detecting cellular damage and mediating inflammatory responses to sterile tissue 

injury following ischemic stroke (Abulafia et al., 2009; Deroide et al., 2013; Ito et al., 2015; 

Savage et al., 2012; Fann et al., 2013; Zhang et al., 2014). It was established that the levels of 

NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18 were elevated in neurons 

and ipsilateral brain tissues in both cerebral ischemic mice and stroke patients (Fann et al., 2013). 

Furthermore, we have recently shown that caspase-1 inhibitor treatment protected cultured cortical 

neurons and brain cells under simulated in vitro and in vivo experimental stroke models (Fann et al., 

2013). 
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 Despite a fully defined mechanism(s) leading to NLRP1 and NLRP3 receptor activation has 

not been elucidated during cerebral ischemia, numerous contributing cellular events are considered 

plausible, including energy depletion, acidosis, cathepsin release, decreased intracellular potassium 

(K+) concentration, increased reactive oxygen species (ROS) production, cytosolic oxidized 

mitochondrial DNA, increased intracellular calcium (Ca2+) concentration, cell swelling, and protein 

kinase R (PKR) activation (Compan et al., 2012; Lee et al., 2012; Liao & Mogridge, 2012; 

Lindestam Arlehamn et al., 2010; Lu et al., 2012; Munoz-Planillo et al., 2013; Nakahira et al., 

2011; Petrilli et al., 2007; Rajamaki et al., 2013; Rossol et al., 2012; Shimada et al., 2012; Zhou et 

al., 2010; Zhou et al., 2011). In addition, emerging evidences suggest that plasma membrane 

receptors such as toll-like receptors (TLRs) and receptor for advanced glycation products (RAGE) 

may play a role in the expression of NLRP inflammasome proteins and both IL-1β and IL-18 via 

activating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPKs) 

signaling pathways (Alfonso-Loeches et al., 2014; Burm et al., 2015; Caso et al., 2007; Caso et al., 

2008; Codolo et al., 2013; Eigenbrod et al., 2008; Frank et al., 2015; Lee et al., 2013; Lippai et al., 

2013; Lok et al., 2015; Nagyoszi et al., 2015; Nystrom et al., 2013; Tang et al., 2007; Tang et al., 

2013; Weber et al., 2015; Zhao et al., 2014; Zheng et al., 2013). Both NF-κB and MAPK(s) 

signaling pathways are known to modulate the expression of NLRP inflammasome proteins and 

both IL-1β and IL-18 under inflammatory conditions in immune cells (Bauernfeind et al., 2011b; 

Bauernfeind et al., 2009; Budai et al., 2013; Burm et al., 2015; Frederick Lo et al., 2008; Ghonime 

et al., 2014; Hara et al., 2013; He et al., 2012; Juliana et al., 2010; Kang et al., 2000; Legos et al., 

2001; Liao et al., 2012; Liu et al., 2004; Liu et al., 2013; Mariathasan & Monack, 2007; Okada et 

al., 2014; Qiao et al., 2012; Savage et al., 2012; Schroder et al., 2012; Tamatani et al., 2000; Weber 

et al., 2015; Zhao et al., 2013). Recently, we have demonstrated that administration of intravenous 

immunoglobulin (IVIg); a highly purified blood preparation containing immunoglobulin G (IgG) 

was able to decrease the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β 

and IL-18, and thus inflammasome activity by conceivably attenuating the activation of the NF-κB 

(i.e. p-p65) and MAPK(s) (i.e. p-P38 and p-JNK) pathway via an unknown mechanism(s) in 

neurons and brain tissue under ischemic conditions (Fann et al., 2013; Widiapradja et al., 2012). 

Despite numerous experimental evidences in peripheral immune cells, the connection between both 

the NF-κB and MAPK(s) signaling pathways with inflammasome protein expression and activation 

in neurons under simulated ischemic conditions remains unclear. Here we provide evidence that the 

NF-κB and MAPK(s) signaling pathways play an essential role in the regulation of NLRP1 and 

NLRP3 inflammasome expression and activation in neurons following ischemic conditions. 

Furthermore, we provide supporting evidence that suppression of NF-κB and MAPK(s) signaling 
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pathways may be responsible for reducing NLRP inflammasome expression and activation in 

neurons following IVIg treatment under ischemic conditions. 

 

3.2 Material and Methods: 
 
Pharmaceuticals 
 
 NF-κB inhibitor (Bay-11-7082), P38-MAPK inhibitor (SB 203580), JNK inhibitors (SP 

600125 and JNK inhibitor V) and ERK-inhibitor (U-0126), were purchased from Cayman 

Chemical, Ann Arbor, USA. Intravenous immunoglobulin (IVIg; KIOVIG) was purchased from 

Baxter, UK.  

 
Primary Cortical Neuronal Cultures 
 
 Dissociated neuron-enriched cell cultures of cerebral cortex were established from Day 16 

C57BL6/J mouse embryos, as described (Okun et al., 2007). Experiments were performed in 7 to 9 

day-old cultures. Approximately 95% of the cells in such cultures were neurons, and the remaining 

cells were astrocytes. For oxygen and glucose deprivation (OGD), neurons were incubated in 

glucose-free Locke's buffer in an oxygen-free chamber for 6 hours. For simulated ischemic and 

reperfusion (I/R) experiments, neurons were incubated in glucose-free Locke’s medium in an 

oxygen-free chamber for 3 hours followed by the medium being replaced with Neurobasal medium 

for 24 hours. To observe the effect of IVIg (KIOVIG, Baxter, UK), a NF-κB inhibitor (Bay-11-

7082, Cayman Chemical, Ann Arbor, USA), a P38-MAPK inhibitor (SB 203580, Cayman 

Chemical, Ann Arbor, USA), a JNK inhibitor (SP 600125, Cayman Chemical, Ann Arbor, USA), 

and an ERK inhibitor (U-0126, Cayman Chemical, Ann Arbor, USA), each drug were added to 

cultures during and after OGD or simulated I/R. Control conditions included exposure to neurobasal 

medium alone or vehicle. 

 
Cell Viability 
 
 Neuronal cell viability was determined by trypan blue exclusion assay. The assay is based 

on the principle that live cells possess intact cell membranes, which will exclude the dye trypan 

blue, while the membrane of injured or dead cells is permeable to trypan blue. Hence, injured or 

dead cells are stained blue whereas live cells will show no staining. Following incubation with 

trypan blue, the plates were emptied and the cells fixed with 4% paraformaldehyde for 20 min at 

room temperature. The cells were then washed with PBS three times and stored in PBS for latter 

observation under a light microscope to quantify the percentage of cells that were trypan-blue 

positive in each culture. 
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Cell Lysis and Protein Quantitation 
 
 In order to extract protein, primary cortical neurons were homogenized in cell lysis buffer 

(Radio-Immunoprecipitation Assay (RIPA)) containing protease and phosphatase inhibitor in 1:100 

ratio, respectively, (Thermo Scientific, Rockford, IL, USA) using a cell disruptor (Biospec 

Products, Inc., Bartlesville, OK, USA). Samples were centrifuged at 15,000 rpm at 4°C for 15 

minutes and the supernatant collected. Total protein concentration of each sample was measured in 

a microplate using the Pierce Bicinchoninic Acid (BCA) Protein Assay Kit (Thermo Scientific, 

Rockford, IL, USA). Bovine serum albumin (BSA) standards (20-2,000µg/mL) were prepared as 

per the manufacturer’s instructions to generate a standard curve with known concentrations. 

Absorbance was measured at 562nm using the Tecan 26 Sunrise Microplate Reader (Tecan Group 

Ltd., Männedorf, Switzerland) and data was analysed using Graphpad Prism 5 software (Graphpad 

Software, San Diego, CA, USA) by comparing samples to the standard curve to determine the 

concentration and volume of protein required to be loaded for separation by sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 

 
Western Blot Analysis 
 
 Protein samples were subjected to sodium dodecyl sulfate–polyacrylamide (10%) gel 

electrophoresis using a Tris-glycine running buffer. Gels were then electro-blotted using a transfer 

apparatus (Bio-Rad Laboratories, Inc., Hercules, CA, USA) in transfer buffer containing 0.025 

mol/L Tris base, 0.15 mol/L glycine, and 10% (v/v) methanol for 2 hr at 80V onto a nitrocellulose 

membrane (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The membrane was then incubated in 

blocking buffer (5% non-fat milk in 20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.2 % Tween-20) for 

1hr at 23°C. The membrane was then incubated overnight at 4°C with primary antibodies including 

those that selectively bind phosphorylated P-65 (Cell Signaling), total P-65 (Cell Signaling), 

phosphorylated JNK (Cell Signaling), Total JNK (Cell Signaling), phosphorylated P38 (Cell 

Signaling), Total P38 (Cell Signaling), phosphorylated ERK (Cell Signaling), Total ERK (Cell 

Signaling), phosphorylated c-JUN (Cell Signaling), Total c-JUN (Cell Signaling), NLRP1 (Novus 

Biologicals), NLRP3 (Novus Biologicals), ASC (Abcam, Cambridge, UK), Caspase-1 (Abcam), 

Caspase-11 (Abcam), XIAP (Novus Biologicals), IL-1β (Abcam), IL-18 (Abcam), Bcl-2 (Cell 

Signaling), BcL-XL (Cell Signaling), cleaved Caspase-3 (Cell Signaling), Caspase-3 (Cell 

Signaling) and β-actin (Sigma-Aldrich). After washing three times (10 min per wash) with Tris-

buffered saline-T (20 mM Tris-HCL, pH 7.5, 137 mM NaCl, 0.2 % Tween-20), the membrane was 

incubated with secondary antibodies against the primary antibody for 1 hour at room temperature. 

The membrane was washed with Tris-Buffered saline-T and scanned using the Odyssey® Infrared 

Imaging System (LI-COR Biosciences, Lincoln, NE, USA). Quantification of protein levels was 
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achieved by densitometry analysis using Image J v1.46 software (National Institute of Health, 

Bethesda, MD, USA). 

 
Statistical Analysis 
 
 All experimental data obtained are expressed as mean ± standard error of the mean (SEM). 

Statistical analysis of all data were performed using one-way analysis of variance (ANOVA) 

followed by a Bonferroni post-hoc analysis to determine between-group differences. Statistical 

difference was taken as p<0.05. Statistical analyses were performed using GraphPad Prism 5.02 

software. 

 

3.3 Results: 
 
Inhibition of NF-κB and MAPK(s) signaling pathways protects primary cortical neurons 

following simulated ischemic conditions. 

 
 In order to establish the role of the NF-κB and MAPK(s) signaling pathways in neuronal 

inflammasome expression and activation, we tested the effect of NF-κB and MAPK(s) inhibition 

against simulated ischemic conditions such as oxygen and glucose deprivation (OGD) and OGD 

plus reperfusion. We first evaluated the efficacy of NF-κB and MAPK(s) inhibitors in primary 

cortical neurons under OGD conditions. Increasing concentrations (1-100µM) of NF-κB (Bay-11-

7082), JNK (SP 600125), P38 (SB 203580) and ERK (U-0126) inhibitors were administered and 

neurons were then analyzed for phosphorylated-P65-NF-κB, phosphorylated-JNK, phosphorylated-

P38 and phosphorylated-ERK, respectively. In addition, cleaved caspase-3, an indicator of 

apoptosis was analyzed to observe the effect of these inhibitors against OGD-induced cell death. 

NF-κB inhibitor concentrations above 30  µM were significantly effective in reducing levels of 

phosphorylated-P65-NF-κB, in addition to, cleaved caspase-3 following 6 hours of OGD compared 

with the vehicle control group (Figure 3.1A and B).  Similarly, JNK inhibitor (SP 600125) 

concentrations above 30  µM, P38 inhibitor concentrations above 10  µM and ERK inhibitor 

concentrations above 30  µM significantly reduced the levels of phosphorylated-JNK (Figure 3.1C 

and D), phosphorylated-P38 (Figure 3.1E and F) and phosphorylated-ERK, (Figure 3.1G and H) 

respectively, in addition to, cleaved caspase-3 following 6 hours of OGD compared to the vehicle 

control group. 



	
   184 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Inhibition of the NF-κB and MAPK(s) signalling pathway and cell death in primary 
cortical neurons following simulated ischemic-like conditions. (A and B). Representative immunoblots 
and quantification illustrating the effect of increasing concentrations (µM) of a NF-κB inhibitor (Bay-11-
7082) on levels of p-P65 NF-κB and cleaved caspase-3 proteins in primary cortical neurons subjected to 
oxygen and glucose deprivation (OGD6hr). (C and D). Representative immunoblots and quantification 
illustrating the effect of increasing concentrations (µM) of a JNK MAPK inhibitor (SP600125) on levels of 
p-JNK MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose 
deprivation (OGD6hr). (E and F). Representative immunoblots and quantification illustrating the effect of 
increasing concentrations (µM) of a P38 MAPK inhibitor (SB203580) on levels of p-P38 MAPK and 
cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation 
(OGD6hr). (G and H). Representative immunoblots and quantification illustrating the effect of increasing 
concentrations (µM) of an ERK MAPK inhibitor (U-0126) on levels of p-ERK MAPK and cleaved caspase-
3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation (OGD6hr). β-actin was 
used as a loading control. Data are represented as mean + S.E.M. n = 4 cultures. ***P < 0.001 compared with 
control; ##P < 0.01 compared with vehicle; ###P < 0.001 compared with vehicle. 
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Figure 3.2: Inhibition of the NF-κB and MAPK(s) signalling pathway and cell death in primary 
cortical neurons following simulated ischemic/reperfusion (I/R) conditions. (A and B). Representative 
immunoblots and quantification illustrating the effect of increasing concentrations (µM) of a NF-κB 
inhibitor (Bay-11-7082) on levels of p-P65 NF-κB and cleaved caspase-3 proteins in primary cortical 
neurons subjected to oxygen and glucose deprivation (OGD3hr) followed by neurobasal reperfusion (24 
hour). (C and D). Representative immunoblots and quantification illustrating the effect of increasing 
concentrations (µM) of a JNK MAPK inhibitor (SP600125) on levels of p-JNK MAPK and cleaved caspase-
3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation (OGD3hr) followed by 
neurobasal reperfusion (24 hour). (E and F). Representative immunoblots and quantification illustrating the 
effect of increasing concentrations (µM) of a P38 MAPK inhibitor (SB203580) on levels of p-P38 MAPK 
and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation 
(OGD3hr) followed by neurobasal reperfusion (24 hour). (G and H). Representative immunoblots and 
quantification illustrating the effect of increasing concentrations (µM) of a ERK MAPK inhibitor (U-0126) 
on levels of p-ERK MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen 
and glucose deprivation (OGD3hr) followed by neurobasal reperfusion (24 hour).  β-actin was used as a 
loading control. Data are represented as mean + S.E.M. n = 4 cultures. ***P < 0.001 compared with control; 
##P < 0.01 compared with vehicle; ###P < 0.001 compared with vehicle. 
 

 In order to further confirm the efficacy of NF-κB and MAPK(s) inhibitors and to test the 

protective effect against ischemic cell death; we next tested NF-κB and MAPK(s) inhibitors in 

primary cortical neurons under OGD plus reperfusion conditions. The results were similar to OGD 
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conditions obtained in Figure 1. NF-κB inhibitor concentrations above 30  µM were significantly 

effective in reducing levels of phosphorylated-P65-NF-κB, in addition to cleaved caspase-3 

following 3 hours of OGD and 24 hours of reperfusion compared to the vehicle control group 

(Figure 3.2A and B). Similarly, JNK inhibitor concentrations above 30  µM, P38 inhibitor 

concentrations above 10  µM and ERK inhibitor concentrations above 30  µM significantly reduced 

the levels of phosphorylated-JNK (Figure 3.2C and D), phosphorylated-P38 (Figure 3.2E and F) 

and phosphorylated-ERK (Figure 3.2G and H), respectively, in addition to cleaved caspase-3 

following 3 hours of OGD and 24 hours of reperfusion compared to the vehicle control group. 

 

Intravenous immunoglobulin (IVIg) attenuates NF-κB and MAPK(s) signaling and c-Jun in 

primary cortical neurons following ischemic conditions 

 
 Using animal models of ischemic stroke, we recently identified IVIg as a potent stroke 

therapy (Arumugam et al., 2007). Specifically, we reported that administration of IVIg to mice 

subjected to experimental stroke significantly reduced brain infarct size and eliminated mortality. In 

addition, we established that IVIg treatment protects neurons in simulated ischemic conditions by a 

mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity (Fann et al., 

2013). It was also demonstrated that IVIg could decrease the activity of NF-κB and MAPK(s) 

signaling pathways in neurons under ischemic conditions through an unknown mechanism(s) (Lok 

et al., 2015; Widiapradja et al., 2012). In order to investigate whether IVIg-mediated suppression of 

inflammasome expression and activity is due to inhibition of NF-κB and MAPK(s) signaling, we 

next analyzed the expression levels of NF-κB and MAPK(s) and compared them with the effect of 

NF-κB and MAPK(s) inhibitors following both OGD and OGD plus reperfusion conditions. Indeed, 

we confirmed again that IVIg treatment (5mg/mL) significantly decreased levels of phosphorylated-

P65-NF-κB, phosphorylated-P38, phosphorylated-JNK, and phosphorylated-ERK following both 6 

hours OGD and 3 hours OGD plus 24 hours of reperfusion compared to the vehicle control group 

(Figure 3.3 A-D). In addition, we have also found that IVIg treatment (5mg/mL) significantly 

reduced the levels of phosphorylated-c-Jun compared to the vehicle control group (Figure 3.3 A-

D). In order to determine whether NF-κB and MAPK(s) inhibitors are specific to their 

corresponding signaling pathway, we next analyzed the level of all four proteins (P65, P38, JNK 

and ERK) following treatment with NF-κB and MAPK(s) inhibitors in both OGD and OGD plus 

reperfusion conditions. Our data show that pharmacological inhibitors of the NF-κB and MAPK(s) 

signalling pathways utilized were specific to their corresponding pathway by selectively reducing 

the phosphorylation protein expression levels associated with that particular pathway (Figure 3.3 
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A-D). In addition, combined (ALL) administration of NF-κB and MAPKs inhibitors significantly 

reduced the activation levels of NF-κB (p-P65) and MAPKs such as p-P38, p-JNK, p-ERK and p-c-

Jun compared to the vehicle control group. However, there were no additive effects by combining 

all inhibitors (Figure 3.3 A-D). 

 

 
Figure 3.3: Intravenous immunoglobulin (IVIG) and both NF-κB and MAPK(s) inhibitors attenuate 
NF-κB and MAPK(s) signalling pathway activation in primary cortical neurons following simulated 
ischemic conditions. (A and B). Representative immunoblots and quantification illustrating increases in the 
activation levels of NF-κB (p-P65) and MAPKs such as p-P38, p-JNK, p-ERK and p-c-Jun in primary 
cortical neurons subjected to oxygen and glucose deprivation (OGD6hr). The administration of intravenous 
immunoglobulin (IVIG; 5mg/mL) and both NF-κB (30µM) and MAPKs inhibitors (P38 inhibitor, 10µM; 
JNK inhibitor, 30µM; ERK inhibitor, 30µM) significantly reduced the activation levels of NF-κB (p-P65) 
and MAPKs such as p-P38, p-JNK, p-ERK and p-c-Jun. Combined (ALL) administration of NF-κB and 
MAPKs inhibitors significantly reduced the activation levels of NF-κB (p-P65) and MAPKs such as p-P38, 
p-JNK, p-ERK and p-c-Jun. (C and D). Representative immunoblots and quantification illustrating increases 
in the activation levels of NF-κB (p-P65) and MAPKs such as p-P38, p-JNK, p-ERK and p-c-Jun in primary 
cortical neurons subjected to oxygen and glucose deprivation (OGD3hr) followed by neurobasal reperfusion 
(24 hour). The administration of intravenous immunoglobulin (IVIG; 5mg/mL) and both NF-κB (30µM) and 
MAPKs inhibitors (P38 inhibitor, 10µM; JNK inhibitor, 30µM; ERK inhibitor, 30µM) significantly reduced 
the activation levels of NF-κB (p-P65) and MAPKs such as p-P38, p-JNK, p-ERK and p-c-Jun. Combined 
(ALL) administration of NF-κB and MAPKs inhibitors significantly reduced the activation levels of NF-κB 
(p-P65) and MAPKs such as p-P38, p-JNK, p-ERK and p-c-Jun. β-actin was used as a loading control. Data 
are represented as mean + S.E.M. n=5 cultures. ***P < 0.001 compared with control; ###P < 0.001 compared 
with OGD6+VehicleIVIG or OGD3+R24+VehicleIVIG; @@@P < 0.001 compared with OGD6+VehicleInhibitor or 
OGD3+R24+VehicleInhibitor. 
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Inhibition of the NF-κB and MAPK(s) signaling pathway attenuates the expression levels of 

inflammasome proteins and both IL-1β  and IL-18 in primary cortical neurons following 

simulated ischemic conditions 

 
 We have previously shown that IVIg treatment significantly reduced the expression levels of 

NLRP1, NLRP3, ASC, XIAP, precursor-caspase-1, precursor caspase-11, and both precursor-IL-1β 

and IL-18 in comparison with vehicle-treated neurons following in vitro and in vivo ischemic 

conditions (Fann et al., 2013). Here, we have reconfirmed that IVIg treatment significantly reduces 

the expression levels of the above-mentioned inflammasome proteins and both precursor IL-1β and 

IL-18 following OGD for 6 hours (Figure 3.4A and B) or OGD for 3 hours plus 24 hour 

reperfusion conditions compared to the vehicle control group (Figure 3.4C and D). In order to 

establish the molecular mechanism(s) responsible for inflammasome protein expression in neurons 

following ischemic conditions, we analyzed the expression levels of inflammasome proteins such as 

NLRP1, NLRP3, ASC, XIAP, precursor-caspase-1 and 11, and both precursor-IL-1β and IL-18 

following treatment with NF-κB and MAPKs inhibitors. We selected concentrations of inhibitors 

either 10  µM (P38) or 30  µM (NF-κB, JNK and ERK) based on results from Figure 1 and 2. Our 

data shows that all inhibitors significantly reduced the expression levels of NLRP1, NLRP3, ASC, 

XIAP, precursor-caspase-1, precursor caspase-11 and both precursor-IL-1β and IL-18 in both OGD 

and OGD plus reperfusion conditions compared to vehicle control groups (Figure 3.4 A-D). The 

effect of NF-κB and MAPKs inhibitors were similar to the effect of IVIg as no significant 

difference was observed between the IVIg treatment group with either the NF-κB and MAPKs 

inhibitors treatment groups under both OGD and OGD plus reperfusion conditions. Furthermore, 

combined (ALL) administration of NF-κB and MAPKs inhibitors significantly reduced the 

expression levels of NLRP1, NLRP3, ASC, XIAP, precursor-caspase-1, precursor-caspase-11, and 

both precursor-IL-1β and IL-18 compared to the vehicle control group. However, there was no 

additive effect by combining all inhibitors (Figure 3.4 A-D). 
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Figure 3.4: Intravenous immunoglobulin (IVIG) and both NF-κB and MAPK(s) inhibitors attenuate 
the expression of inflammasome proteins and both IL-1β  and IL-18 in primary cortical neurons 
following simulated ischemic conditions. (A and B). Representative immunoblots and quantification 
illustrating an increase in the expression levels of inflammasome proteins and both IL-1β and IL-18 in 
primary cortical neurons subjected to oxygen and glucose deprivation (OGD6hr). The administration of 
intravenous immunoglobulin (IVIG; 5mg/mL) and both NF-κB (30µM) and MAPKs inhibitors (P38 
inhibitor, 10µM; JNK inhibitor, 30µM; ERK inhibitor, 30µM) significantly reduced the expression levels of 
inflammasome proteins and both IL-1β and IL-18. Combined (ALL) administration of NF-κB and MAPKs 
inhibitors significantly reduced the expression levels of inflammasome proteins and both IL-1β and IL-18. 
(C and D). Representative immunoblots and quantification illustrating an increase in the expressions levels 
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of inflammasome proteins and both IL-1β and IL-18 in primary cortical neurons subjected to oxygen and 
glucose deprivation (OGD3hr) followed by neurobasal reperfusion (24 hour). The administration of 
intravenous immunoglobulin (IVIG; 5mg/mL) and both NF-κB (30µM) and MAPKs inhibitors (P38 
inhibitor, 10µM; JNK inhibitor, 30µM; ERK inhibitor, 30µM) significantly reduced the expression levels of 
inflammasome proteins and both IL-1β and IL-18. Combined (ALL) administration of NF-κB and MAPKs 
inhibitors significantly reduced the expression levels of inflammasome proteins and both IL-1β and IL-18. β-
actin was used as a loading control. Data are represented as mean + S.E.M. n=5 cultures. ***P < 0.001 
compared with control; @@@P < 0.001 compared with OGD6+VehicleIVIG or OGD3+R24+VehicleIVIG; ###P < 
0.001 compared with OGD6+VehicleInhibitor or OGD3+R24+VehicleInhibitor. 
 

Inhibition of the NF-κB and MAPK(s) signaling pathway attenuates inflammasome activation 

in primary cortical neurons following simulated ischemic conditions 

 
 Our group has previously established that IVIg treatment significantly decreases NLRP1 and 

NLRP3 inflammasome activation and maturation of both IL-1β and IL-18 in neurons under 

ischemic conditions in comparison to the vehicle control group (Fann et al., 2013). In order to 

support our data that IVIg treatment may mediate this effect by reducing NF-κB and MAPKs 

activation; we have again tested the effect of IVIg treatment against ischemia-induced 

inflammasome activation along with NF-κB and MAPKs inhibitors.  

 
 IVIg treatment significantly reduced the expression levels of cleaved XIAP, cleaved-

caspase-1, cleaved-caspase-11, mature-IL-1β and mature-IL-18 following OGD for 6 hours  

(Figure 3.5A and B) or 3 hours OGD and 24 hours reperfusion conditions (Figure 3.5C and D) 

compared to the vehicle control group. NF-κB and MAPKs inhibitor treatment equally reduced the 

expression levels of cleaved XIAP, cleaved-caspase-1, cleaved-caspase-11, mature-IL-1β and 

mature-IL-18 following 6 hours OGD (Figure 3.5A and B) or 3 hours OGD and 24 hours 

reperfusion conditions (Figure 3.5C and D) compared to the vehicle control group. The effect of 

NF-κB and MAPKs inhibitors were comparable to the effect of IVIg treatment as there was no 

significant difference observed between the IVIg treatment group with either the NF-κB and 

MAPKs inhibitor treatment groups following 6 hours OGD conditions (Figure 3.5A and B) or 3 

hours OGD and 24 hours reperfusion conditions (Figure 3.5C and D). Combined (ALL) 

administration of NF-κB and MAPKs inhibitors significantly reduced the activation levels of 

cleaved XIAP, cleaved-caspase-1, cleaved-caspase-11, mature-IL-1β and mature-IL-18, whereas no 

additive effect was achieved by combining all inhibitors (Figure 3.5A-D).	
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Figure 3.5: Intravenous immunoglobulin (IVIG) and both NF-κB and MAPK(s) inhibitors attenuate 
inflammasome activation in primary cortical neurons following simulated ischemic-like conditions. (A 
and B). Representative immunoblots and quantification illustrating an increased expression level of activated 
inflammasome proteins such as cleaved XIAP, cleaved caspase-1 and -11 and maturation of IL-1β and IL-18 
in primary cortical neurons subjected to oxygen and glucose deprivation (OGD6hr). The administration of 
intravenous immunoglobulin (IVIG; 5mg/mL) and both NF-κB (30µM) and MAPKs inhibitors (P38 
inhibitor, 10µM; JNK inhibitor, 30µM; ERK inhibitor, 30µM) significantly reduced the expression levels of 
cleaved XIAP, cleaved caspase-1 and -11 and maturation of IL-1β and IL-18. Combined (ALL) 
administration of NF-κB and MAPKs inhibitors significantly reduced the expression levels of cleaved XIAP, 
cleaved caspase-1 and -11 and maturation of IL-1β and IL-18. (C and D). Representative immunoblots and 
quantification illustrating an increased expression level of activated inflammasome proteins such as cleaved 
XIAP, cleaved caspase-1 and -11 and maturation of IL-1β and IL-18 in primary cortical neurons subjected to 
oxygen and glucose deprivation (OGD3hr) followed by neurobasal reperfusion (24 hour). The administration 
of intravenous immunoglobulin (IVIG; 5mg/mL) and both NF-κB (30µM) and MAPKs inhibitors (P38 
inhibitor, 10µM; JNK inhibitor, 30µM; ERK inhibitor, 30µM) significantly reduced the expression levels of 
cleaved XIAP, cleaved caspase-1 and -11 and maturation of IL-1β and IL-18. Combined (ALL) 
administration of NF-κB and MAPKs inhibitors significantly reduced the expression levels of cleaved XIAP, 
cleaved caspase-1 and -11 and maturation of IL-1β and IL-18. β-actin was used as a loading control. Data 
are represented as mean + S.E.M. n=5 cultures. ***P < 0.001 compared with control; @@@P < 0.001 compared 



	
   192 

with OGD6+VehicleIVIG or OGD3+R24+VehicleIVIG; ###P < 0.001 compared with OGD6+VehicleInhibitor or 
OGD3+R24+VehicleInhibitor. 
 

Inhibition of the NF-κB and MAPK(s) signaling pathway does not change anti-apoptotic 

protein expression but attenuates cell death in primary cortical neurons following simulated 

ischemic conditions 

 
 We have previously shown that IVIg treatment can increase the expression of anti-apoptotic 

protein BcL-2 in cultured cortical neurons following simulated ischemic conditions and in an 

animal stroke model (Fann et al., 2013; Widiapradja et al., 2012). It was also established that anti-

apoptotic proteins Bcl-2 and Bcl-xL directly bind and inhibit the oligomerization of the NLRP 

receptor (Bruey et al., 2007; Faustin et al., 2009). Thus, BcL-2 and BcL-xL are likely to reduce 

caspase-1 activation and maturation of both IL-1β and IL-18. In order to investigate whether an 

IVIg-dependent increase in BcL-2 and BcL-xL expression are mediated by NF-κB and MAPKs 

signaling, we next analyzed the expression levels of both BcL-2 and BcL-xL following simulated 

ischemic conditions. Treatment with IVIg significantly increased the expression levels of both BcL-

2 and BcL-xL following 6 hours OGD (Figure 3.6A and B) or 3 hours OGD and 24 hours 

reperfusion (Figure 3.6D and E) compared to the vehicle control group. However, treatment with 

either NF-κB and MAPKs inhibitors or Combined (ALL) administration of NF-κB and MAPKs 

inhibitors failed to reverse OGD (Figure 3.6A and B) or OGD plus reperfusion (Figure 3.6D and 

E) induced decline in the expression levels of BcL-2 and BcL-xL. Finally, we investigated whether 

a reduction in cell death following treatment with NF-κB and MAPKs inhibitors was comparable to 

the protection observed with IVIg treatment in ischemic conditions. Both the levels of cleaved 

caspase-3 and cell death (trypan blue exclusion assay) following treatment with NF-κB and MAPKs 

inhibitors were significantly lower compared to vehicle treated groups following both following 6 

hours OGD (Figure 3.6C) or 3 hours OGD and 24 hours reperfusion (Figure 3.6F). The protection 

obtained following treatment with NF-κB and MAPKs inhibitors was equivalent to the levels 

observed following IVIg treatment in OGD or OGD plus reperfusion. 
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Figure 3.6: Intravenous immunoglobulin (IVIG) and both NF-κB and MAPK(s) inhibitors attenuate 
cell death in primary cortical neurons following simulated ischemic conditions. (A-C). Representative 
immunoblots and quantification illustrating increased levels of pro-apoptotic protein cleaved caspase-3 and 
reduced levels of anti-apoptotic proteins Bcl-2 and Bcl-xL in primary cortical neurons subjected to oxygen 
and glucose deprivation (OGD6hr). The administration of intravenous immunoglobulin (IVIG; 5mg/mL) and 
both NF-κB (30µM) and MAPKs inhibitors (P38 inhibitor, 10µM; JNK inhibitor, 30µM; ERK inhibitor, 
30µM) significantly reduced the levels of cleaved caspase-3 and cell death; however, intravenous 
immunoglobulin (IVIG; 5mg/mL) alone increased the levels of Bcl-2 and Bcl-xL. Combined (ALL) 
administration of NF-κB and MAPKs inhibitors significantly reduced the levels of cleaved caspase-3 and 
cell death; however, the levels of Bcl-2 and Bcl-xL remained unchanged. (D-F). Representative immunoblots 
and quantification illustrating increased levels of pro-apoptotic protein cleaved caspase-3 and reduced levels 
of anti-apoptotic proteins Bcl-2 and Bcl-xL in primary cortical neurons subjected to oxygen and glucose 
deprivation (OGD3hr) followed by neurobasal reperfusion (24 hour). The administration of intravenous 
immunoglobulin (IVIG; 5mg/mL) and both NF-κB (30µM) and MAPKs inhibitors (P38 inhibitor, 10µM; 
JNK inhibitor, 30µM; ERK inhibitor, 30µM) significantly reduced the levels of cleaved caspase-3 and cell 
death; however, intravenous immunoglobulin (IVIG; 5mg/mL) alone increased the levels of Bcl-2 and Bcl-
xL. Combined (ALL) administration of NF-κB and MAPKs inhibitors significantly reduced the levels of 
cleaved caspase-3 and cell death; however, the levels of Bcl-2 and Bcl-xL remained unchanged. β-actin was 
used as a loading control. Data are represented as mean + S.E.M. n=5 cultures. ###P < 0.001 compared with 
control; ***P < 0.001 compared with OGD6+VehicleIVIG or OGD3+R24+VehicleIVIG; +++P < 0.001 compared 
with control; @@@P < 0.001 compared with OGD6+VehicleIVIG or OGD3+R24+VehicleIVIG; &&&P < 0.001 
compared with OGD6+VehicleInhibitor or OGD3+R24+VehicleInhibitor. 
 

3.4 Discussion: 
 
 The NLRP inflammasomes are multi-protein complexes that activate and convert precursor 

caspase-1 into cleaved caspase-1, which cleave precursors IL-1β and IL-18 into biologically active 
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mature pro-inflammatory cytokines that are then released into the extracellular environment 

(Bauernfeind et al., 2011a). Both these pro-inflammatory cytokines have been shown to stimulate 

immune responses and mediate active roles in the initiation of neuroinflammation that is 

responsible for inducing neuronal and glial cell death following an ischemic stroke (Abulafia et al., 

2009; Deroide et al., 2013; Fann et al., 2013; Ito et al., 2015; Savage et al., 2012; Zhang et al., 

2014). Despite activating precursors IL-1β and IL-18 into biologically active mature pro-

inflammatory cytokines, a major pleiotropic effect of cleaved caspase-1 is that it is able to induce 

pyroptosis, a highly inflammatory form of cell death characterised by rapid plasma membrane 

rupture and release of pro-inflammatory contents into the extracellular environment due to the 

development of pores in the plasma membrane allowing an osmotic movement of water into the cell 

causing cell lysis mediated by cleaved capase-1 through an unknown mechanism(s) (Bergsbaken et 

al., 2009; Fink & Cookson, 2006; Fink et al., 2008). In addition to inducing pyroptosis, cleaved 

caspase-1 has been shown to directly cleave and activate both executioner caspase-3 and 7, and Bid 

(BH3 interacting death domain agonist), into their active forms inducing intrinsic and extrinsic 

apoptotic cell death, respectively (Erener et al., 2012; Frederick Lo et al., 2008; Guegan et al., 

2002; Liu et al., 2004; Walsh et al., 2011; Zhang et al., 2003). We recently established that the 

levels of NLRP1 and NLRP3 inflammasome proteins and both precursors IL-1β and IL-18 were 

increased in primary cortical neurons under simulated ischemic conditions, and brain tissues in 

response to cerebral ischemic and reperfusion (I/R) injury in mice and humans following ischemic 

stroke (Fann et al., 2013). These inflammasome components included the NLRP1 and NLRP3 

receptors, ASC, XIAP, and precursors caspase-1 and 11. In addition, it was established that both 

NLRP1 and NLRP3 inflammasomes were activated due to elevated levels of cleaved XIAP, cleaved 

caspases-1 and 11, and maturation of both IL-1β and IL-18 found in primary cortical neurons and 

brain tissues following simulated in vitro and in vivo ischemic conditions. Furthermore, we were 

able to demonstrate that caspase-1 inhibitor treatment was able to reduce neuronal cell death and 

brain infarct size, and improve functional outcome by targeting inflammasome activation under 

simulated in vitro and in vivo experimental stroke models (Fann et al., 2013).    

 
 Despite establishing a role for NLRP1 and NLRP3 inflammasomes in stroke-induced 

neuronal cell death and brain tissue injury following in vitro and in vivo ischemic conditions, our 

previous study did not explore the molecular mechanism(s) responsible for ischemia-induced 

NLRP1 and NLRP3 inflammasome expression and activation in neurons (Fann et al., 2013). A 

major finding of this present study is that both NF-κB and MAPK(s) signaling pathways played a 

major role in the expression and activation of NLRP1 and NLRP3 inflammasomes in primary 

cortical neurons, and that the expression and activation of neuronal NLRP1 and NLRP3 
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inflammasomes was able to be attenuated by treatment with either NF-κB and MAPKs inhibitors 

under simulated in vitro ischemic conditions. 

 
 Several previous studies have provided evidence that activation of both NF-κB and 

MAPK(s) signaling pathways occur in neurons following ischemic stroke (Cheng et al., 2014; 

Gladbach et al., 2014; Liang et al., 2014; Liu et al., 2009; Lok et al., 2015; Tang et al., 2007). In 

the present study, we again provide supporting evidence that activation of both NF-κB and 

MAPK(s) signaling pathways are detrimental to neuronal survival and pharmacological inhibition 

of either the NF-κB and MAPK(s) signaling pathways were able to significantly protect neurons 

under ischemic conditions. It was previously established from numerous experimental studies that 

both NF-κB and MAPKs signaling pathways are known to modulate the expression of NLRP 

inflammasome proteins and both precursors IL-1β and IL-18 in immune cells under inflammatory 

conditions (Bauernfeind et al., 2011b; Bauernfeind et al., 2009; Budai et al., 2013; Burm et al., 

2015; Frederick Lo et al., 2008; Ghonime et al., 2014; Hara et al., 2013; He et al., 2012; Juliana et 

al., 2010; Kang et al., 2000; Legos et al., 2001; Liao et al., 2012; Liu et al., 2004; Liu et al., 2013; 

Mariathasan & Monack, 2007; Okada et al., 2014; Qiao et al., 2012; Savage et al., 2012; Schroder 

et al., 2012; Tamatani et al., 2000; Weber et al., 2015; Zhao et al., 2013; Zheng et al., 2011). The 

present study indeed confirms that pharmacological inhibition of either the NF-κB, P38, JNK and 

ERK signaling pathways was able to significantly reduce the expression levels of NLRP 

inflammasome proteins and both precursors IL-1β and IL-18 in neurons, and hence provide 

evidence for the first time that activation of either the NF-κB and MAPKs signaling pathways are 

responsible for inducing the expression of NLRP inflammasome proteins and both precursors IL-1β 

and IL-18 in neurons under simulated ischemic conditions. Furthermore, we demonstrated that 

pharmacological inhibition of both the NF-κB and MAPKs signaling pathways was able to directly 

attenuate NLRP inflammasome activation and maturation of both IL-1β and IL-18 in neurons under 

ischemic conditions. In addition, here we provide supporting evidence for the first time that a novel 

neuroprotective effect of IVIg treatment is associated with a significant reduction in the activation 

of the NF-κB and MAPKs signaling pathways, which is suggested to be responsible for reducing 

the expression and activation of NLRP inflammasome proteins and both precursors IL-1β and IL-18 

in neuronal cells following ischemic conditions. 

 
 Commercial IVIg is a purified polyclonal blood preparation of natural antibodies primarily 

containing immunoglobulin G (IgG) that is derived from the plasma of several thousand healthy 

human individuals in order to ensure the preparation is homogenous but functionally heterogeneous 

(Arumugam et al., 2008; Rezaei et al., 2011; Saeedian & Randhawa, 2014; Schwab & Nimmerjahn, 
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2013). IVIg is a therapeutic modality that is approved by the US Food and Drug Administration 

(FDA) to treat a number of autoimmune and inflammatory conditions such as primary immune 

deficiency diseases, immune (idiopathic) thrombocytopenia purpura (ITP), Kawasaki's disease, and 

neurological conditions such as Guillian-Barre syndrome, chronic inflammatory demyelinating 

polyneuropathy (CIDP) and multifocal motor neuropathy (Arumugam et al., 2008; Dash et al., 

2014; Hahn et al., 2013; Kuitwaard et al., 2009; Leger et al., 2013; Rezaei et al., 2011; Sakata et 

al., 2007; Wasserman et al., 2012). In addition, off-label uses of IVIg treatment following 

randomized controlled trials of efficacy include dermatomyositis, Lambert-Eaton syndrome, 

Myasthenia Gravis and Stiff-Pearson syndrome (Dalakas, 2005; Katz et al., 2011; Miyasaka et al., 

2012; Rezaei et al., 2011; Rich et al., 1997; Zinman et al., 2007). Consequently, IVIg has potential 

to diminish inappropriate inflammatory and immune activation through a number of mechanisms by 

inhibiting complement fragments, pro-inflammatory cytokine production and infiltration of 

leukocytes, which are all useful properties that may offer neuroprotection. Hence, these pleiotropic 

effects of IVIg in inhibiting multiple components of inflammation in different cell types within the 

neurovascular unit make it an attractive candidate for use in stroke therapy (Arumugam et al., 2007; 

Fann et al., 2013; Lok et al., 2015; Lux et al., 2010; Walberer et al., 2010; Widiapradja et al., 2012; 

Widiapradja et al., 2014). This was elegantly confirmed in a previous study from our laboratory for 

the first time that administration of IVIg was able to significantly attenuate brain infarct size (50-

60%) and eliminate mortality, and improve functional outcome in mice subjected to experimental 

ischemic stroke (Arumugam et al., 2007). In a subsequent study, our group investigated the effect 

of IVIg on downstream signaling pathways involved in neuronal cell death under simulated in vitro 

experimental models of stroke and Alzheimer’s disease (Widiapradja et al., 2012). It was shown 

that treatment of cultured primary cortical neurons with IVIg significantly reduced simulated 

ischemic and amyloid β peptide (Aβ)-induced phosphorylation of cell death-associated NF-κB (i.e. 

p-p65) and MAPK(s) (i.e. p-P38 and p-JNK) signaling pathways and activation of pro-apoptotic 

protein caspase-3 under in vitro conditions. In addition, IVIg treatment significantly up-regulated 

the expression of anti-apoptotic protein Bcl-2 in primary cortical neurons under simulated ischemic-

like conditions and exposure to Aβ (Widiapradja et al., 2012). As previously mentioned, we 

recently demonstrated the effect of IVIg on the expression and activation levels of NLRP1 and 

NLRP3 inflammasome proteins and both precursors IL-1β and IL-18 in primary cortical neurons 

and brain tissues under simulated in vitro and in vivo ischemic conditions. It was established that 

administration of IVIg was able to significantly attenuate the expression of NLRP1 and NLRP3 

inflammasome proteins, and both precursors IL-1β and IL-18, and thus inflammasome activity in 

primary cortical neurons and brain tissues under in vitro and in vivo ischemic conditions (Fann et 

al., 2013). While the molecular and cellular mechanism(s) in how IVIg reduces NLRP1 and NLRP3 
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inflammasome expression and activation levels remains to be fully determined in primary cortical 

neurons and brain tissues under in vitro and in vivo ischemic conditions, the present study provides 

compelling evidence to suggest for the first time that a novel neuroprotective mechanism(s) of IVIg 

may be mediating its protective effects through the attenuation of inflammasome priming by 

decreasing the activation of either the NF-κB and MAPK(s) signaling pathway in primary cortical 

neurons under in vitro ischemic conditions. In another recent study, our group investigated the 

effect of IVIg on the expression levels of plasma membrane pattern recognition receptors (PRRs) 

such as TLR-2, TLR-4 and RAGE, and its downstream adaptor proteins such as myeloid 

differentiation primary response gene 88 (MyD88) and tumor necrosis factor receptor-associated 

factor 6 (TRAF6) that are associated in activating major downstream signaling pathways such as 

the NF-κB and MAPK(s) pathways in primary cortical neurons and brain tissues under in vitro and 

in vivo ischemic conditions (Lok et al., 2015). It was shown that IVIg treatment significantly 

reduced the expression levels of TLR-2, TLR-4 and RAGE, and its downstream adaptor proteins, 

MyD88 and TRAF6, in primary cortical neurons and brain tissues subjected to ischemic conditions 

(Lok et al., 2015). Hence, provides supporting evidence that both a decrease in expression of PRRs 

(i.e. TLR-2, TLR-4 and RAGE) and TLR adaptor and signaling proteins (i.e. MyD88 and TRAF6) 

may provide an explanation for IVIg’s ability to decrease activation of either the NF-κB and 

MAPKs signaling pathways in primary cortical neurons and brain tissues under in vitro and in vivo 

ischemic conditions (Fann et al., 2013; Lok et al., 2015; Widiapradja et al., 2012). Consequently, a 

decreased activation of the NF-κB and MAPKs signaling pathways from IVIg and both NF-κB and 

MAPK(s) inhibitors observed in the present study is expected to decrease the expression of NLRP 

inflammasome components (i.e. NLRP1, NLRP3, ASC, precursor caspase-1, precursor caspase-11 

and XIAP) and both precursors IL-1β and IL-18, thereby decrease the number of inflammasome 

complexes formed and subsequent production of activated proteins such as cleaved XIAP, cleaved 

caspase-1 and -11, and both mature IL-1β and IL-18, demonstrating that pharmacological inhibition 

of the NF-κB and MAPK(s) signaling pathway and IVIg may mediate its protective effects through 

the attenuation of inflammasome priming in primary cortical neurons under in vitro ischemic 

conditions. 
 
 Our current data supports findings from previous studies that IVIg can increase the 

expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and cerebral 

tissues under in vitro and in vivo ischemic conditions through an unknown mechanism(s), although 

it is postulated from the present study that IVIg may be increasing the expression of Bcl-2 and Bcl-

xL by activating alternate pathway(s) that is responsible for elevating the expression of Bcl-2 and 

Bcl-xL independent of the NF-κB and MAPKs signaling pathways in neurons under ischemic 
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conditions (Fann et al., 2013; Lok et al., 2015; Widiapradja et al., 2012). It was shown that Bcl-2 

can directly bind and inhibit the NLRP1 and NLRP3 receptors in macrophages by specifically 

preventing ATP from binding onto the nucleotide-binding domain (NBD) of both receptors (Bruey 

et al., 2007; Faustin et al., 2009; Shimada et al., 2012). Therefore, inhibiting the oligomerization of 

the NLRP1 and NLRP3 receptors would be expected to attenuate inflammasome formation and 

reduce both caspase-1 activation and maturation of both IL-1β and IL-18 (Bruey et al., 2007; 

Faustin et al., 2009; Shimada et al., 2012). In addition, it was shown that Bcl-xL, another anti-

apoptotic protein was able to directly bind and inhibit the NLRP1 receptor in macrophages through 

a similar mechanism as Bcl-2, but whether Bcl-xL is able to inhibit the NLRP3 receptor remains to 

be determined (Bruey et al., 2007; Faustin et al., 2009). Hence, it appears that Bcl-2 is a tight 

regulator of NLRP1 and NLRP3 receptor activation; however, whether Bcl-xL regulates NLRP3 

receptor activation, and the precise mechanism(s) behind IVIg increasing Bcl-2 and Bcl-xL levels 

in neurons under in vitro ischemic conditions remains to be established. In this study, we 

demonstrate that IVIg can target NLRP inflammasome expression and activation not only by 

suppressing the activation of the NF-κB and MAPKs signaling pathways, but possibly via the 

aforementioned mechanism by increasing the expression levels of anti-apoptotic proteins, Bcl-2 and 

Bcl-xL, in primary cortical neurons under in vitro ischemic conditions. 

 

3.5 Conclusion: 
 
 In summary, the present findings provide compelling evidence that both the NF-κB and 

MAPKs signaling pathways play a pivotal role in regulating the expression and activation of 

NLRP1 and NLRP3 inflammasome proteins and both precursors IL-1β and IL-18 in primary 

cortical neurons under simulated in vitro ischemic conditions. In addition, it was demonstrated that 

IVIg was able to attenuate the activation of the NF-κB and MAPK(s) signaling pathways, which 

decreased the expression and activation of NLRP1 and NLRP3 inflammasome proteins and both 

precursors IL-1β and IL-18 in neurons under ischemic conditions. Furthermore, it was also 

established that IVIg was able to induce an increased expression of anti-apoptotic proteins, Bcl-2 

and Bcl-xL, possibly providing another mechanism in targeting NLRP inflammasome activation in 

primary cortical neurons under simulated in vitro ischemic conditions. Hence, these findings 

suggest that therapeutic interventions that target inflammasome signaling such as inflammasome 

priming (i.e. the NF-κB and MAPK(s) signaling pathways), and inflammasome activation; may 

provide new opportunities in the future treatment of neuronal cell death in ischemic stroke. 
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CHAPTER 4: 
 

Intermittent Fasting Attenuates Inflammasome Activity in Ischemic Stroke 
 
 
4.1 Introduction: 
 
 Ischemic stroke is the second leading cause of mortality and a major cause of morbidity 

worldwide (Donnan et al., 2008). The molecular and cellular mechanisms responsible for ischemic 

stroke-induced neuronal cell death involve bioenergetic failure, ionic imbalance, excitotoxicity, 

metabolic and oxidative stress, and inflammatory processes, including activation of resident glial 

cells and infiltration of leukocytes (Arumugam et al., 2005; Brouns & De Deyn, 2009; Broughton et 

al., 2009; Dirnagl, 2012; Sims & Muyderman, 2010). Inflammasomes are involved in a newly 

discovered multi-protein complex signaling pathway that contributes to inflammation and cell death 

in various pathological conditions. Nucleotide-binding oligomerization domain (NOD)-like receptor 

(NLR) pyrin domain containing (NLRP) inflammasomes play a role in the inflammatory response 

during ischemic stroke (Abulafia et al., 2009; Deroide et al., 2013; Fann et al., 2013a; Fann et al., 

2013b; Savage et al., 2012; Zhang et al., 2014). The NLRP inflammasomes are cytosolic 

macromolecular complexes composed of the NLRP receptor, ASC (apoptosis-associated speck-like 

protein containing a caspase recruitment domain), precursor caspase-1, precursor caspase-11 and/or 

XIAP (X-linked inhibitor of apoptosis) (Agostini et al., 2004; Boyden & Dietrich, 2006; De Rivero 

Vaccari et al., 2009; Martinon et al., 2002). Activation and homo-oligomerization of NLRP 

receptors induce formation of the NLRP inflammasome, which converts precursor caspase-1 into 

cleaved caspase-1 via proximity-induced auto-activation (Agostini et al., 2004; Boatright et al., 

2003; Liu et al., 2014; Martinon et al., 2002; Salvesen & Dixit, 1999; Schroder & Tschopp, 2010). 

Cleaved caspase-1 converts precursors interleukin (IL)-1β and IL-18 into biologically active mature 

pro-inflammatory cytokines that are released into the extracellular environment (Bauernfeind et al., 

2011a; Schroder & Tschopp, 2010). In addition, cleaved caspase-1 can initiate cell death directly 

via apoptosis or pyroptosis (Aachoui et al., 2013; Adamczak et al., 2014; Alfonso-Loeches et al., 

2014; Sagulenko et al., 2013; Tan et al., 2014; Tan et al., 2015; Yin et al., 2015; Zhang et al., 

2015). Furthermore, we have recently demonstrated that ischemia-like conditions increased the 

levels of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18, in primary cortical 

neurons and cerebral tissue (Fann et al., 2013a). An increase in expression of NLRP1 and NLRP3 

inflammasome proteins and both precursor IL-1β and IL-18 proteins in brain cells under ischemic 

conditions may be induced by the activation of intracellular NF-κB and MAPK(s) signaling 

pathways via a regulatory process called ‘priming’ or Signal 1 that is similarly observed in immune 

cells  (Bauernfeind et al., 2009; Bauernfeind et al., 2011b; Budai et al., 2013; Burm et al., 2015; 
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Frederick Lo et al., 2008; Ghonime et al., 2014; Gross et al., 2011; Hara et al., 2013; He et al., 

2012; Juliana et al., 2010; Kang et al., 2000; Legos et al., 2001; Liao et al., 2012; Liu et al., 2004; 

Liu et al., 2013; Mariathasan & Monack, 2007; Okada et al., 2014; Qiao et al., 2012; Savage et al., 

2012; Schroder et al., 2012; Tamatani et al., 2000; Weber et al., 2015; Zhao et al., 2013a). 

 
 Dietary restriction in the form of daily calorie reduction (CR) or intermittent fasting (IF) are 

dietary protocols, which have been proven to extend lifespan and decrease the development and 

severity of age-related diseases, including cardiovascular (e.g. myocardial infarction and stroke) 

and neurodegenerative (e.g. Alzheimer’s disease, Parkinson’s disease and Huntington’s disease) 

diseases demonstrated in a number of animal models (Belkacemi et al., 2011; Bruce-Keller et al., 

1999; Duan et al., 2003; Halagappa et al., 2007; Katare et al., 2009; Longo & Mattson, 2014; 

Manzanero et al., 2011; Manzanero et al., 2014; Mattson, 2000; Mattson et al., 2003; Mattson, 

2005; Mattson, 2014; Mattson & Wan, 2005; Patterson et al., 2015; Pedersen et al., 1999; Wan et 

al., 2010). CR and IF have been shown to reduce circulating markers of oxidative stress and 

inflammation, and can improve cardiovascular disease risks (Harvie et al., 2011; Johnson et al., 

2007; Mager et al., 2006; Mattison et al., 2012; Weiss & Fontana, 2011). Several studies suggest 

dietary restriction may promote neuronal survival and plasticity in ischemic stroke, by inducing the 

expression of neuroprotective factors and suppressing inflammatory pathways (Arumugam et al., 

2010; Manzanero et al., 2011; Manzanero et al., 2014; Yu & Mattson, 1999). Major pro-

inflammatory cytokines implicated in ischemic brain injury are tumor necrosis factor-α (TNF-α), 

IL-1β and IL-6 (Arumugam et al., 2010; Lambertsen et al., 2012). IF appears to protect the brain 

against ischemic injury by preconditioning neurons and glial cells with energy restriction, which act 

as a mild metabolic stressor that effectively upregulates the expression of several key 

neuroprotective proteins including neurotrophic factors, protein chaperones, and antioxidant 

enzymes, and downregulation of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β 

(Arumugam et al., 2010). Furthermore, we recently reported that levels of NLRP1/3 inflammasome 

proteins, IL-1β and IL-18 were elevated in ipsilateral brain tissues of cerebral I/R mice and stroke 

patients, and that caspase-1 inhibitor treatment protected cultured cortical neurons and cerebral 

tissue under in vitro and in vivo models of ischemic stroke (Fann et al., 2013a). Since IF is 

neuroprotective and reduces pro-inflammatory cytokines in stroke, and inflammasomes are 

involved in the production of pro-inflammatory cytokines such as IL-1β, we tested the hypothesis 

whether IF impairs stroke-induced inflammasome expression and activation. Here we demonstrate 

for the first time that a neuroprotective effect of IF in experimental stroke involves suppression of 

inflammasome activity. 
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4.2 Material & Methods: 
 
Animals and Diets 
 
 Male C57BL/6J mice were obtained from the Animal Resources Centre in Canning Vale, 

Australia, and group housed upon arrival at The University of Queensland Animal Facility. At ten 

weeks of age, mice were randomly assigned to either the ad libitum (AL) or intermittent fasting (IF) 

diet conditions. Mice in the IF condition were fed for 8hrs out of every 24-hour period, with food 

available between 07:00 and 15:00 (lights on at 06:00, lights off at 18:00) for four months. In 

addition, mice on the IF diet were housed using non-edible bedding (Aspen Chips; Tapvei Ltd., 

Kuopio, Finland) to prevent calorie intake during the IF period. Following the dietary protocol, half 

the mice from both the AL and IF diets were randomly selected and subjected to focal cerebral 

ischemia/reperfusion (I/R) injury, while the remaining half of the mice from both the AL and IF 

diets underwent a Sham operation. Following Sham operation or I/R injury, IF mice were no longer 

subjected to the IF diet and had AL access to food and water. The Animal Care and Use Committee 

of The University of Queensland approved all experimental procedures. 

 
Focal Cerebral Ischemia/Reperfusion (I/R) Stroke Model 
 
 Three-month-old C57BL/6J male mice were subjected to transient middle cerebral artery 

ischemia and reperfusion (I/R) injury, as described previously (Arumugam et al., 2004). Briefly, 

after making a midline incision in the neck, the left external carotid and pterygopalatine arteries 

were isolated and ligated with a 6-0 silk thread. The internal carotid artery (ICA) was occluded at 

the peripheral site of the bifurcation with a small clip and the common carotid artery (CCA) was 

ligated with a 5-0 silk thread. The external carotid artery (ECA) was cut, and a 6-0 nylon 

monofilament with a tip that was blunted (0.20-0.22mm) with a coagulator was inserted into the 

ECA. After the clip at the ICA was removed, the nylon thread was advanced to the origin of the 

middle cerebral artery (MCA) until light resistance was evident. The nylon thread and the CCA 

ligature were removed after 1hr to initiate reperfusion. In the Sham group, surgery was performed 

until the arteries were visualized but not disturbed for a period of 1hr under isofluorane-induced 

anaesthesia In a separate set of experiments, anesthetized animals from all groups (5-6 mice per 

group) underwent cerebral blood flow (CBF) measurements using a Laser Doppler Perfusion 

Monitor (Moor Lab, Moor Instruments, Axminster, UK). The University of Queensland Animal 

Care and Use Committee approved all in vivo experimental procedures. 

 
Tissue Lysis and Protein Quantitation 
 
 In order to extract protein, the contralateral (non-damaged) and ipsilateral (damaged) brain 
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tissues were homogenized separately in tissue lysis buffer (Tissue Protein Extraction Reagent 

(TPER) containing protease and phosphatase inhibitor in 1:100 ratio) (Thermo Scientific, Rockford, 

IL, USA) using a Tissue-Tearer (Biospec Products, Inc., Bartlesville, OK, USA). Samples were 

centrifuged at 15,000 rpm at 4°C for 15 minutes and the supernatant collected. Total protein 

concentration of each sample was measured in a microplate using the Pierce Bicinchoninic Acid 

(BCA) Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). Bovine serum albumin (BSA) 

standards (20-2,000µg/mL) were prepared as per the manufacturer’s instructions to generate a 

standard curve with known concentrations. Absorbance was measured at 562nm using the Tecan 26 

Sunrise Microplate Reader (Tecan Group Ltd., Männedorf, Switzerland) and data was analyzed 

using Graphpad Prism 5 software (Graphpad Software, San Diego, CA, USA) by comparing 

samples to the standard curve to determine the concentration and volume of protein required to be 

loaded for separation by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 

 
Western Blot Analysis 
 
 Protein samples from the cerebral cortex were subjected to Tris-HCl polyacrylamide gel 

(7.5%, 10% and 12.5%) electrophoresis and run at 80V using 1X Tris/glycine/sodium dodecyl 

sulphate buffer (Bio-Rad Laboratories, Inc., Hercules, CA, USA) until the proteins and ladder 

(ProSieve Colour Protein Marker ladder; Lonza Rockfield, Inc., Rockfield, ME, USA) were 

optimally spread. Gels were then electro-blotted using a transfer apparatus (Bio-Rad Laboratories, 

Inc., Hercules, CA, USA) in 1X transfer buffer containing 0.025 mol/L Tris base, 0.15 mol/L 

glycine, and 10% (v/v) methanol for 2hrs at 80V onto a nitrocellulose membrane (Bio-Rad 

Laboratories, Inc., Hercules, CA, US). The membrane was then incubated in blocking buffer (5% 

non-fat milk in 20 mM Tris–HCl, pH 7.5, 137mMNaCl, 0.2% Tween-20) for 1hr at 23°C. The 

membrane was then incubated overnight at 4°C with primary antibodies including those that 

selectively bind p-P65 NF-κB (Cell Signaling Technology, Danvers, MA, USA), P65 NF-κB (Cell 

Signaling), p-P38 (Cell Signaling), P38 (Cell Signaling), p-JNK (Cell Signaling), JNK (Cell 

Signaling), p-ERK (Cell Signaling), ERK (Cell Signaling), p–c-Jun (Cell Signaling), c-Jun (Cell 

Signaling), NLRP1 (Novus Biologicals, Littleton, CO, USA), NLRP3 (Novus Biologicals), ASC 

(Abcam, Cambridge, UK), caspase-1 (Abcam), caspase-11 (Abcam), IL-1β (Abcam), IL-18 

(Abcam), caspase-3 (Cell Signaling), Cleaved caspase-3 (Cell Signaling), Bcl-2 (Cell Signaling), 

Bcl-xL (Cell Signaling) and β-actin (Sigma-Aldrich, St. Louis, MO, USA). After washing three 

times (10 min per wash) with Tris-buffered saline-T (20 mM Tris–HCL, pH 7.5, 137 mM NaCl, 

0.2% Tween-20), the membrane was incubated with secondary antibodies against the primary 

antibody and β-actin for 1hr at room temperature. The membrane was washed with Tris-buffered 

saline-T and scanned using the Odyssey® Infrared Imaging System (LI-COR Biosciences, Lincoln, 
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NE, USA). Quantification of protein levels was achieved by densitometry analysis using Image J 

v1.46 software (National Institute of Health, Bethesda, MD, USA). In detail, the densitometry of 

phosphorylated NF-κB and MAPK(s) signaling proteins was determined and divided by the 

densitometry of its corresponding “Total protein” indicating activation. The densitometry of the 

inflammasome proteins, IL-1β and IL-18, and caspase-3, Bcl-2 and Bcl-xL was determined and 

divided by the densitometry of its corresponding β-actin, which was used as a loading control. 

 

4.3 Results: 
 
 In addition to our previously published study (Arumugam et al., 2010), recently, we have 

tested the functional consequences of transient focal stroke in the IF mice that were fed for 8hrs out 

of every 24-hour period. Similar to 24-hour IF mice (Arumugam et al., 2010), these mice also 

exhibited smaller infarcts three days after ischemia and reperfusion injury, relative to mice on the 

ad libitum diet (Manzanero et al., 2014). In this study, we subsequently investigated the effects of 

IF on the activation of intracellular NF-κB and MAPK(s) signaling pathways, and the expression of 

NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18 in ipsilateral brain tissue 

(cerebral cortex) following 24hr of I/R. IF significantly attenuated the ischemia-induced increase in 

levels of phosphorylated-P65-NF-κB and phosphorylated MAPK(s) such as p-P38, p-JNK, p-ERK 

and p–c-Jun compared to the AL group in ipsilateral brain tissue following 24hr of I/R (Figures 

4.1A and B). However, no difference was observed in these proteins under Sham conditions 

between AL and IF groups. Furthermore, levels of total NF-κB and MAPK(s) were similar in AL 

and IF groups under both Sham and I/R conditions (Figure 4.1A). Next, we analyzed the levels of 

NLRP1 and NLRP3 inflammasome components such as NLRP1, NLRP3, ASC, precursor caspase-

1 and 11, as well as the precursors of IL-1β and IL-18 in ipsilateral brain tissues 24hr after I/R. 

Similar to both total NF-κB and MAPK(s) levels, no differences in inflammasome proteins and 

precursors of IL-1β and IL-18 were observed under Sham conditions between AL and IF groups. 

However, ischemia-induced increases in inflammasome proteins and precursors of IL-1β and IL-18 

were significantly reduced in the IF group compared to the AL group in ipsilateral brain tissues 

following 24hr of I/R (Figures 4.1C and D). We further investigated the effect of IF on 

inflammasome activation by measuring the levels of cleaved caspases-1 and 11, and mature forms 

of IL-1β and IL-18, in ipsilateral brain tissue at 24hr of I/R. IF significantly decreased the levels of 

both cleaved caspase-1 and 11, and both mature IL-1β and IL-18 in the ischemic cortex (Figures 

4.2A and B). In addition, the data indicated that inflammasome activity in the contra-lateral brain 

hemisphere was lower in comparison to the ipsilateral brain hemisphere in ad libitum ischemic 

mice. However, no change was evident between the contra-lateral and ipsilateral brain hemispheres 

in IF ischemic mice (Figures 4.2A and B). Furthermore, levels of pro-apoptotic cleaved caspase-3 



	
   212 

was significantly lower and anti-apoptotic protein Bcl-xL was significantly higher in the IF group in 

comparison to AL controls in the ischemic cortical brain tissue at 24hr after I/R. However, no 

significant difference was observed in the levels of precursor caspase-3 and Bcl-2 in the IF group in 

comparison to AL controls in the ischemic cortical brain tissue at 24hr following I/R (Figures 4.2C 

and D). 

 

 
Figure 4.1: Intermittent fasting reduces NF-κB, MAPK(s) and inflammasome expression in a mouse model 
of focal ischemic stroke. (A & B) Representative immunoblots and quantification illustrating increases in the 
activation levels of NF-κB (p-P65) and MAPK(s) such as p-P38, p-JNK and p-ERK and p–c-Jun in 
ipsilateral brain tissues of C57BL6/J mice following middle cerebral artery occlusion (1hr) and reperfusion 
(24hr). Intermittent fasting (IF) significantly reduced the activation levels of NF-κB (p-P65) and MAPK(s) 
such as p-P38, p-JNK and p-ERK and p–c-Jun. Data are represented as mean ± S.D. n=5-6 animals in each 
group. *p < 0.05 in comparison to AL I/R(Ips); **p < 0.01 in comparison to AL I/R(Ips); ***p < 0.001 in 
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comparison to AL I/R(Ips) group. (C & D) Representative immunoblots and quantification illustrating 
increases in the levels of inflammasome proteins such as NLRP1, NLRP3, ASC, pre-caspase-1, pre-caspase-
11, pre-IL-1β and pre-IL-18 in ipsilateral brain tissues of C57BL6/J mice following middle cerebral artery 
occlusion (1hr) and reperfusion (24hr). Intermittent fasting (IF) significantly reduced the levels of all 
inflammasome proteins as well as pre-IL-1β and pre-IL-18. Data are represented as mean ± S.D. n=5–6 
animals in each group. *p < 0.05 in comparison to AL I/R(Ips); **p < 0.01 in comparison to AL I/R(Ips); ***p 
< 0.001 in comparison to AL I/R(Ips) group. β-actin was used as a loading control. 
 
 

 
Figure 4.2: Intermittent fasting reduces inflammasome activity and cell death in a mouse model of focal 
ischemic stroke. (A & B) Representative immunoblots and quantification illustrating increases in the levels 
of activated inflammasome proteins such as Cl.caspase-1 and Cl-caspase-11 and maturation of IL-1β and IL-
18 in ipsilateral brain tissues of C57B6/J mice following middle cerebral artery occlusion (1hr) and 
reperfusion (24hr). Intermittent fasting (IF) significantly reduced the levels of Cl.caspase-1 and Cl-caspase-
11 and maturation of IL-1β and IL-18. Data are represented as mean ± S.D. n=5-6 animals in each group. 
**p < 0.01 in comparison to AL I/R(Ips); ***p < 0.001 in comparison to AL I/R(Ips) group. (C & D) 
Representative immunoblots and quantification illustrating increased levels of pro-apoptotic protein 
Cl.caspase-3 and reduced levels of anti-apoptotic protein Bcl-xL in ipsilateral brain tissues of C57BL6/J 
mice following middle cerebral artery occlusion (1hr) and reperfusion (24hr). Intermittent fasting (IF) 
significantly reduced the levels of Cl.caspase-3 and increased the levels of Bcl-xL. Data are represented as 
mean ± S.D. n = 5-6 animals in each group. **p < 0.01 in comparison to AL I/R(Ips) group. β-actin was used 
as a loading control. 
 

4.4 Discussion: 
 
 A macromolecular complex termed the inflammasome, in particular, the NLRP1 and 

NLRP3 inflammasomes, regulate the maturation of pro-inflammatory cytokines such as IL-1β and 

IL-18. Several lines of evidence suggest that activation of inflammasomes may contribute to cell 

death via apoptosis or pyroptosis following brain injury (Aachoui et al., 2013; Adamczak et al., 

2014; Alfonso-Loeches et al., 2014; Lamkanfi & Dixit, 2012; Sagulenko et al., 2013; Tan et al., 
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2014; Tan et al., 2015; Yin et al., 2015; Zhang et al., 2015). Apoptosis and pyroptosis are both 

programmed cell death mechanisms, with pyroptosis being highly inflammatory and involving 

cytoplasmic swelling and early plasma membrane rupture (Fink & Cookson, 2006; Fink et al., 

2008; Lamkanfi & Dixit, 2012). We have recently demonstrated that the NLRP1 and NLRP3 

inflammasomes play a major role in neuronal cell death and cerebral tissue damage resulting in 

neurological functional deficits in a mouse model of focal ischemic stroke (Fann et al., 2013a). The 

present results demonstrate for the first time that dietary restriction in the form of intermittent 

fasting can attenuate expression levels of NLRP1 and NLRP3 inflammasome proteins and activity, 

together with a corresponding down-regulation of pro-inflammatory cytokines such as IL-1β and 

IL-18, and pro-apoptotic protein cleaved caspase-3 in cerebral tissue following ischemic stroke. 

 
 An increase in expression of NLRP1 and NLRP3 inflammasome proteins and precursors of 

IL-1β and IL-18 in the brain following ischemic stroke may be induced by the activation of pattern 

recognition receptors (PRRs) located on the plasma membrane of neurons, glial and microvascular 

endothelial cells, which can detect endogenous danger signals termed damage associated molecular 

patterns (DAMPs) that are released from necrotic tissue within the infarct core (Alfonso-Loeches et 

al., 2014; Burm et al., 2015; Caso et al., 2007; Caso et al., 2008; Codolo et al., 2013; Eigenbrod et 

al., 2008; Frank et al., 2015; Lee et al., 2013; Lippai et al., 2013; Lok et al., 2015; Nagyoszi et al., 

2015; Nystrom et al., 2013; Pradillo et al., 2012; Tang et al., 2007; Tang et al., 2013; Weber et al., 

2015; Zhao et al., 2014; Zheng et al., 2013). It is proposed that DAMPs stimulate PRRs such as 

toll-like receptors (TLRs; TLR-2 and TLR-4), the receptor for advanced glycation end products 

(RAGE), and the IL-1 receptor 1 (IL-1R1), which activate intracellular NF-κB and MAPK(s) 

signaling pathways resulting in an upregulation of NLRP1 and NLRP3 inflammasome proteins and 

both precursor IL-1β and IL-18 through a distinct regulatory process known as ‘priming’ or Signal 

1 (Bauernfeind et al., 2009; Bauernfeind et al., 2011b; Budai et al., 2013; Burm et al., 2015; Fann 

et al., 2013b; Frederick Lo et al., 2008; Ghonime et al., 2014; Gross et al., 2011; Hara et al., 2013; 

He et al., 2012; Juliana et al., 2010; Kang et al., 2000; Legos et al., 2001; Liao et al., 2012; Liu et 

al., 2004; Liu et al., 2013; Mariathasan & Monack, 2007; Okada et al., 2014; Qiao et al., 2012; 

Savage et al., 2012; Schroder et al., 2012; Tamatani et al., 2000; Weber et al., 2015; Zhao et al., 

2013a). Several studies have provided evidence that activation of NF-κB and MAPK(s) signaling 

pathways occur in neurons and glial cells during ischemic stroke (Arumugam et al., 2011; Cheng et 

al., 2014; Guan et al., 2006; Legos et al., 2001; Lok et al., 2015; Murata et al., 2012; Namura et al., 

2001; Piao et al., 2003; Tang et al., 2007; Wang et al., 2004; Zhang et al., 2005, Zhao et al., 

2013b). Our current data shows that I/R-induced activation of both NF-κB and MAPK(s) signaling 

pathways were significantly down regulated by IF. This was supported by numerous studies that 
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alternate-day fasting is cardioprotective and neuroprotective against age-induced inflammation by 

inhibiting NF-κB and MAPK(s) activation and oxidative damage via inhibition of the DNA binding 

activity of phosphorylated-p65-NF-κB and activator protein 1 (AP-1) (Castello et al., 2010; Jung et 

al., 2009; Tajes et al., 2010). Consequently, the NF-κB and MAPK(s) signaling pathways may 

induce the expression of NLRP1 and NLRP3 inflammasome proteins and the precursors of IL-1β 

and IL-18 in the brain under ischemic conditions (Bauernfeind et al., 2009; He et al., 2012; Kang et 

al., 2000; Liu et al., 2004; Zhao et al., 2013a). Our previous findings indicate that cerebral ischemia 

increased the expression of NLRP1 and NLRP3 inflammasome proteins and precursors of IL-1β 

and IL-18, and increased inflammasome activation demonstrated by an accumulation of cleaved 

caspases-1 and 11, and mature IL-1β and IL-18 (Fann et al., 2013a). Hence, our present findings 

suggest that the neuroprotective effects of IF are associated with a significant reduction in the levels 

of NLRP1 and NLRP3 inflammasome proteins as well as precursors of IL-1β and IL-18 in a mouse 

model of focal ischemic stroke. 

 
 Our data indicate that IF significantly attenuated ischemia-induced activation of caspase-3, 

which was associated with a decreased production of cleaved caspase-1 and 11 and both mature 

pro-inflammatory cytokines, IL-1β and IL-18. Cleaved caspase-1 has been shown to induce 

apoptotic cell death by cleaving and activating both executioner caspases-3 and 7, and Bid (BH3 

interacting death domain agonist) into its truncated form, inducing intrinsic and extrinsic apoptotic 

cell death, respectively (Erener et al., 2012; Frederick Lo et al., 2008; Guégan et al., 2002; Liu et 

al., 2004; Walsh et al., 2011; Zhang et al., 2003). Furthermore, cleaved caspase-11 can activate 

caspase-3 and cause apoptosis in neurons and glial cells under ischemic conditions (Kang et al., 

2000; Kang et al., 2002; Kang et al., 2003; Kayagaki et al., 2011). In addition, it was shown that 

cleaved caspase-1 might require the presence of cleaved caspase-11 for the maturation of precursors 

IL-1β and IL-18 (Kang et al., 2000, Kang et al., 2002; Kayagaki et al., 2011; Wang et al., 1998).  

 
 While the neuroprotective mechanism(s) behind IF reducing inflammasome signaling in the 

brain following ischemic stroke remained to be fully determined, the present data fits a model 

whereby IF may be able to inhibit inflammasome priming by decreasing the activity of both 

intracellular NF-κB and MAPK(s) signaling pathways through the following plausible mechanisms 

including - a down regulation in the expression of PRRs such as TLR-2, TLR-4 and RAGE on 

neurons and glial cells in the ischemic penumbra via an unknown mechanism(s) and/or an increase 

in the expression and activity of silent information regulator-1 (SIRT1) induced by IF, which 

deacetylates key regulatory proteins associated with the NF-κB and MAPK(s) signaling pathway in 

the brain rendering them inactive (Aris et al., 2010; Singh et al., 2015; Sun et al., 2001; Tajes et al., 

2010; Vasconcelos et al., 2014). Hence, these potential mechanisms induced by IF would be 
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expected to reduce the expression of NLRP1 and NLRP3 inflammasome proteins and both 

precursor IL-1β and IL-18, thereby decrease the number of inflammasome complexes formed and 

subsequent production of activated proteins such as cleaved caspase-1 and 11, and maturation of 

precursors IL-1β and IL-18 in cerebral tissue following ischemic stroke. 

 
 Dietary restriction in the form of CR and IF were both shown to substantially increase the 

levels of anti-apoptotic proteins Bcl-2 and Bcl-xL in cardiomyocytes and hepatocytes (Katare et al., 

2009; Niemann et al., 2010; Peart et al., 2012; Sokolovic et al., 2013). Numerous studies have 

demonstrated that Bcl-2 can directly bind and inhibit the NLRP1 and NLRP3 receptors in immune 

cells such as macrophages by specifically preventing ATP from binding onto the nucleotide-binding 

domain (NBD) of both receptors in order to form the central core of the inflammasome complex, 

which is an ATP-dependent process (Bruey et al., 2007; Fann et al., 2013a; Faustin et al., 2009; 

Shimada et al., 2012). Therefore, inhibiting the activation and subsequent oligomerization of the 

NLRP1 and NLRP3 receptors is expected to reduce the number of NLRP1 and NLRP3 

inflammasomes formed and thereby attenuate the activation of caspase-1 and 11, and maturation of 

both precursor IL-1β and IL-18 in the cytosol (Bruey et al., 2007; Fann et al., 2013b; Faustin et al., 

2009; Shimada et al., 2012). In addition, it was shown that Bcl-xL, another anti-apoptotic protein 

was able to directly bind and inhibit the NLRP1 receptor in macrophages through a similar 

mechanism as Bcl-2, but whether Bcl-xL is able to inhibit the NLRP3 receptor remains to be 

established (Bruey et al., 2007; Faustin et al., 2009). Accordingly, it appears that Bcl-2 and Bcl-xL 

are both tight regulators of NLRP1 receptor activation; however, whether Bcl-xL regulates NLRP3 

receptor activation, and how IF increases both Bcl-2 and Bcl-xL expression levels in cerebral tissue 

under in vivo ischemic conditions remains to be fully determined (Bruey et al., 2007; Faustin et al., 

2009; Shimada et al., 2012). 

 
 Additional plausible mechanisms behind IF attenuating inflammasome signaling in the brain 

following ischemic stroke may include IF decreasing inflammasome assembly. This may be 

achieved by an increased expression and activity of SIRT1/2 induced by IF or activators of SIRT1/2 

(e.g. resveratrol) that continuously deacetylate microtubules, in particular, α-tubulin, which in turn 

would prevent an accumulation of acetylated α-tubulin in the cytosol during times of cellular stress 

that was demonstrated to be required for mediating inflammasome assembly by transporting ASC 

on the mitochondria into close proximity to the NLRP3 receptor on the endoplasmic reticulum upon 

activation in order to facilitate the formation of the NLRP3 inflammasome complex (Misawa et al., 

2013; Misawa et al., 2015). However, it remains to be determined whether IF has a similar effect in 

decreasing NLRP1 inflammasome assembly mediated by SIRT1/2. Moreover, it was demonstrated 

in numerous studies that dietary restriction was able to increase the production of ketone bodies, in 



	
   217 

particular, β-hyroxybutyrate, which was elegantly shown in a recent study to inhibit the formation 

of the NLRP3 inflammasome by preventing both potassium (K+) efflux and ASC oligomerization in 

macrophages; critical events that are required for NLRP3 receptor activation and ASC-dependent 

inflammasome formation, respectively (Lin et al., 2015; Maalouf et al., 2009; Mahoney et al., 

2006; Nakamura et al., 2014; Shimazu et al., 2013; Youm et al., 2015). However, it remains to be 

established whether IF has a similar effect in decreasing NLRP1 inflammasome assembly mediated 

by β-hyroxybutyrate. Hence, these potential neuroprotective mechanisms induced by IF would be 

expected to reduce the production of cleaved caspase-1 and 11, and maturation of precursors IL-1β 

and IL-18 in cerebral tissue following ischemic stroke.   

 

4.5 Conclusion: 
 
 The present findings demonstrate for the first time that a neuroprotective effect of IF can 

suppress inflammasome activation in the cerebral cortex in a mouse model of focal ischemic stroke. 

IF was shown to inhibit the activation of the NF-κB and MAPK(s) signaling pathways, which likely 

contributed to a reduction in the expression of NLRP1 and NLRP3 inflammasome proteins and both 

precursor IL-1β and IL-18, thereby decreasing the activation of caspase-1 and 11, and maturation of 

both precursor IL-1β and IL-18, thereby attenuating apoptotic cell death in cerebral tissue following 

ischemic stroke. These findings suggest that therapeutic interventions that target inflammasome 

signaling such as inflammasome priming, assembly or activity in the brain during ischemia may 

provide new opportunities in the future treatment of ischemic stroke. 
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CHAPTER 5: 
 

Conclusion and Future Directions 
 
 
 Stroke is the second leading cause of mortality worldwide resulting in approximately 6 

million deaths every year and is a major cause of long-term disability. Hence, it is without question 

that stroke poses a major economic and health burden globally. Recent findings have provided 

insight into a newly described inflammatory mechanism fundamental to the innate immune system 

that may contribute to neuronal and glial cell death during cerebral ischemia known as sterile 

inflammation. There is emerging evidence to suggest that plasma membrane pattern recognition 

receptors (PRRs) on neurons and glial cells can play an important role in activating nuclear factor-

kappa B (NF-κB) and mitogen activated protein kinase (MAPKs) pathways. This occurs in 

response to endogenous danger signals initiated by substances released from necrotic cells at the 

site of injury, leading to an increased production of pro-inflammatory cytokines and to neuronal and 

glial cell death mediated by intracellular multi-protein complexes termed inflammasomes. Thus, 

understanding the role of inflammasome signalling is indeed critical in order to reveal the novel 

mechanisms that are responsible for inducing neuronal and glial cell death in ischemic stroke.   

 

 Currently, intravenous recombinant tissue plasminogen activator (r-tPA) is the only 

pharmacological agent approved by the US Food and Drug Administration (FDA) for acute stroke 

therapy by inducing thrombolysis following a thrombotic occlusion. However, there are several 

limitations towards the use of r-tPA in stroke patients such as patient age, the presence of co-

morbidities and the use of concurrent medications (like anti-platelet agents) that may increase the 

risk of intracerebral haemorrhage in conjunction with r-tPA treatment. Nevertheless, the most 

limiting exclusion criterion for stroke patients receiving r-tPA is its narrow therapeutic window of 

3-4.5 hours from symptom onset to treatment. Hence, urgent scientific research into finding an 

alternative approach for treating acute ischemic stroke has enabled another dimension of therapeutic 

intervention to develop known as neuroprotection. 

 

 Considerable research has been conducted in the search for an ideal neuroprotective agent 

for over a decade. In spite of neuroprotective agents decreasing neuronal cell death and infarct size 

in cell culture and animal stroke models, respectively, each of these agents failed in clinical trials 

involving stroke patients due to deleterious side effects and/or low efficacy. Despite a number of 

possible reasons contributing to the failure such as anatomical and physiological differences in the 

brains of animals and humans, heterogeneity between animal stroke models and the presence of 
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comorbidities; a common underlying feature is that previous neuroprotective agents only targeted a 

particular cell injury mechanism in the ischemic cascade, and in either single or multiple cell types. 

Hence, development of neuroprotective agents that can target multiple cell injury mechanisms in 

multiples cell types, in particular, the inflammasome signalling pathway may be advantageous as it 

is responsible for causing a number of cell injury mechanisms in multiple cell types in the brain 

during cerebral ischemia, and appropriately, scientific research into this area is warranted in the 

future treatment of ischemic stroke; although it is presently unknown whether any off-target effects 

on the normal physiology of other systems will be effected. 

  

 Novel potential therapies envisaged to target multiple cell injury mechanisms in multiple 

cell types in the brain following cerebral ischemia include - intravenous immunoglobulin (IVIg) and 

intermittent fasting (IF). IVIg is a purified polyclonal immunoglobulin preparation obtained from 

the plasma of several thousand healthy donors, which have been demonstrated to modulate a 

number of inflammatory mechanisms. It is a therapeutic modality approved by the FDA that is used 

to ameliorate various autoimmune and inflammatory conditions. Numerous experimental studies by 

our laboratory for the first time demonstrated that administration of IVIg was able to significantly 

attenuate brain infarct size (50-60%) and mortality, and improve functional outcome in mice 

subjected to experimental stroke. The efficacy of IVIg is attributed to a number of mechanisms 

including its ability to neutralise active complement fragments (C3b) in ischemic brain tissue, 

which accordingly reduced endothelial cell adhesion molecule (i.e. ICAM-1) production and 

infiltration of inflammatory cells (i.e. neutrophils), subsequently reducing inflammation and 

neuronal apoptosis at the site of injury. In addition, IVIg was demonstrated to decrease NF-κB and 

MAPK(s) signalling pathway activity in primary cortical neurons under ischemic conditions, which 

reduced neuronal apoptosis through an unknown mechanism(s). Moreover, IF is a form of dietary 

restriction and encompasses alternate periods of ad libitum feeding and fasting, which have been 

proven to extend lifespan and decrease the development of age-related diseases such as 

cardiovascular disease. Previous experimental studies by our laboratory demonstrated that IF was 

able to significantly attenuate brain infarct size and mortality, and improve functional outcome in 

young (3 months) and middle-aged (9 months) male mice subjected to experimental stroke. The 

efficacy of IF to protect neurons against ischemic injury involved the coordinate upregulation of 

multiple neuroprotective proteins such as neurotrophic factors such as BDNF and bFGF; protein 

chaperones, including Hsp70 and GRP78; antioxidant enzymes, such as SOD and HO-1; and 

downregulation of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) at the site of injury. 

However, the precise mechanism(s) in how IVIg and IF directly protect neurons and cerebral tissue 
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from inflammasome-mediated sterile inflammation following ischemic stroke remains to be 

determined and is a major focus of this research thesis. 

 

 In the first study of this research thesis, we performed a comprehensive investigation into 

the dynamic expression patterns of the NLRP1 and NLRP3 inflammasome proteins and both IL-1β 

and IL-18 in mouse primary cortical neurons subjected to simulated ischemia and in a model of 

focal ischemic stroke in C57BL/6J mice. In addition, determined whether the NLRP1 and NLRP3 

inflammasome could be targeted with a Caspase-1 inhibitor (Ac-YVAD.cmk) and IVIg for 

therapeutic intervention. The study demonstrated that ischemia-like conditions increased the levels 

of NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18 in primary cortical 

neurons. Similarly, levels of NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18 

were elevated in ischemic brain tissues of mice subjected to ischemic stroke. Moreover, Ac-

YVAD.cmk and IVIg treatment protected primary cortical neurons and brain tissue by a 

mechanism(s) involving Caspase-1 inhibition and suppression of NLRP1 and NLRP3 

inflammasome activity, respectively, under in vitro and in vivo ischemic conditions. 

 

 In the second study of this research thesis, we provide evidence that both the NF-κB and 

MAPK(s) signaling pathways are involved in regulating the expression and activation of NLRP1 

and NLRP3 inflammasome proteins and both precursors IL-1β and IL-18 in mouse primary cortical 

neurons subjected to simulated ischemic conditions. This study established that activation of either 

the NF-κB and MAPK(s) signaling pathways are responsible for inducing the expression of NLRP1 

and NLRP3 inflammasome proteins and both precursors IL-1β and IL-18 in neurons under ischemic 

conditions. In addition, the present study demonstrated that pharmacological inhibition of both the 

NF-κB and MAPKs signaling pathways was able to directly attenuate NLRP inflammasome 

activation and maturation of both IL-1β and IL-18 in neurons under ischemic conditions. 

Furthermore, this study provided supporting evidence that IVIg treatment was able to significantly 

decrease NF-κB and MAPK(s) signalling pathway activation, which decreased the production of 

NLRP1 and NLRP3 inflammasome proteins and both IL-1β and IL-18, and subsequently attenuate 

NLRP1 and NLRP3 inflammasome activity; in addition to increasing the expression of anti-

apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons following ischemic conditions. 

 

 In the third study of this research thesis, we investigated the impact of IF on NLRP1 and 

NLRP3 inflammasome activation in a model of focal ischemic stroke in C57BL/6J mice. This study 

demonstrated that IF was able to significantly decrease apoptotic tissue damage by attenuating the 
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activation of the NF-κB and MAPK(s) signaling pathways, which possibly reduced the expression 

and activation of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18; in 

addition to increasing the expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in ischemic brain 

tissues. 

  

 Despite establishing a number of novel findings from the aforementioned studies in this 

research thesis, there are still a number of questions that remain to be addressed, which will require 

considerable research in the future. Nevertheless, these studies have provided a tremendous 

platform to further conduct additional studies in order to fully understand the pathophysiology of 

inflammasome signaling and mechanism(s) behind the protective effects of IVIg and IF in the brain 

following ischemic stroke. Firstly, future research should be conducted into identifying and 

understanding other molecular and cellular targets in inflammasome signaling or other signaling 

pathways modulated by IVIg and IF that can protect neurons; in addition to, other cell types such as 

astrocytes, microglia and endothelial cells individually or in co-cultures with neurons to form the 

neurovascular unit from undergoing cell death under in vitro and in vivo ischemic conditions. 

Secondly, identifying and understanding the potential stimuli(s) and mechanism(s) behind NLRP1 

and NLRP3 receptor activation and inflammasome formation in neurons and glial cells under in 

vitro and in vivo ischemic conditions is a great research potential avenue to explore as data 

pertaining to this issue are needed. Thirdly, determining the degree of cell death or tissue damage 

inflicted by the NLRP1 and NLRP3 inflammasome individually is warranted by either knocking 

down or overexpressing the NLRP1 and NLRP3 receptors in neurons and glial cells, or utilizing 

NLRP1 and NLRP3 knockout mice under in vitro and in vivo ischemic conditions, respectively. 

Lastly, the use of female and aged mice would serve as excellent models to achieve a more 

comprehensive understanding of the pathophysiology of inflammasome signaling and 

mechanism(s) behind the protective effects of IVIg and IF in the brain following ischemic stroke.    

 

 In summary, the findings from this research thesis provided evidence of expression and a 

functional role of the NLRP1 and NLRP3 inflammasome in neuronal apoptosis and cerebral tissue 

damage under in vitro and in vivo ischemic conditions. It was demonstrated for the first time that 

activation of the NF-κB and MAPK(s) signaling pathways are responsible for inducing the 

expression and activation of NLRP1 and NLRP3 inflammasome proteins and both precursors IL-1β 

and IL-18 in primary cortical neurons under ischemic conditions. Furthermore, we established for 

the first time that a neuroprotective effect of IVIg and IF involved suppressing NLRP1 and NLRP3 

inflammasome activity through a mechanism(s) associated with decreasing the NF-κB and 

MAPK(s) signalling pathways, which attenuated production of NLRP1 and NLRP3 inflammasome 
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proteins and both IL-1β and IL-18 in primary cortical neurons and/or brain tissues under ischemic 

conditions. In addition, it was demonstrated for the first time that another neuroprotective effect of 

IVIg and IF involved increasing the expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, 

through an unknown mechanism(s) that remain to be established in primary cortical neurons and/or 

brain tissues under ischemic conditions. Collectively, our findings identified NLRP1 and NLRP3 

inflammasome inhibition as a novel mechanism by which IVIg and IF can protect brain cells 

against ischemic damage, suggesting a potential clinical benefit of therapeutic interventions that can 

target ischemic stroke-induced inflammasome priming, assembly and activation in future treatments 

of ischemic stroke. 
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