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FOREWORD

Every scientific discipline needs a solid research base on which to build theory and
areas of inquiry. In education, this research base is also crucial in that it provides
a foundation for understanding and improving teaching and learning. Unlike other
disciplines, such as mathematics education or science education, the research related
to statistics spans many areas of scholarship and teaching, such as mathematics, psy-
chology, and science. Synthesizing research from these different areas has been chal-
lenging, due to different terminology, focus, methodology, and target population.

At the Fourth International Conference on Teaching Statistics (ICOTS-4), held
in 1998 in Singapore, it became clear that there was a need to form a coherent re-
search community to allow scholars studying the teaching and learning of statistics
to not only share and discuss their work in detail, but also explore ways to coordinate
their research discourse, questions and methods. At that time there were two major
challenges to these goals. First, it was difficult to gather researchers from around the
world except for ICOTS, which was held only every four years, and even at ICOTS,
there was limited time to present and almost no time to discuss research in a deep
way. The second challenge had to do with the way researchers used terms to describe
important student learning reasoning and outcomes. In particular, there seemed to be
no agreement on the definitions of statistical literacy, reasoning and thinking, de-
spite the growing interest in research studying or assessing each of these learning
outcomes.

xv
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As we recognized this need and tried to come up with possible solutions, the idea
for SRTL was born. We wondered: If we held a small, invitational research forum
and invited our colleagues to come, independent of a professional organization or
conference, but offering the opportunity to share rich segments of video recorded in-
terviews and observations of students, would anyone come? At that time, Dani lived
on Kibbutz Be’eri in the south of Israel, and he offered his kibbutz as a place for us
to host such a gathering. We obtained a type of endorsement from the informal In-
ternational Study Group for the Teaching and Learning of Probability and Statistics,
then chaired by Carmen Batanero, at the University of Granada, Spain. Dani was
also able to get support from the Weizmann Institute of Science, where he had been
working for several years, and Joan was able to secure a small amount of funding
from her department chair (Mary McEvoy) at the University of Minnesota. We sent
out an invitation, and held our breath. Would anyone come?

Luckily, the answer was yes. In the summer of 1999, we had 16 scholars from
Australia, Belgium, Ireland, Israel, the UK, and the US come to the kibbutz to meet
for an intense five days of presentations and discussions. Along with the research we
were immersed in, Dani provided outings to enable us to get to know his country, its
history and diversity. By the end of SRTL-1, we were an enthusiastic group that saw
not only the enormous opportunities and challenges ahead of us, but also the joy of
forming a research community with a shared passion for learning how students come
to understand and learn statistical concepts and methods. Today, the International
Collaboration for Research in Statistical Reasoning, Thinking, and Literacy offers
scientific gatherings for statistics education researchers every two years. The SRTL
research forums, foster collaborative and innovative research studies that examine
the nature and development of statistical literacy, reasoning, and thinking, and to
explore how educators can develop these desired learning goals for students.

The SRTL research forums have led to many publications that present new re-
search, synthesize and build on previous research, and form connections among re-
lated work in other disciplines (see table below).

SRTL Forums and Contributions to Statistics Education

Primary
Forum Theme Host/Venue Date Publication(s)
SRTL-1 Statistical reasoning,

thinking, and literacy
Kibbutz Be’eri, Israel July

18–23,
1999

SRTL-2 The challenges in de-
scribing, teaching, and
assessing statistical
reasoning, thinking,
and literacy

University of New
England, Armidale,
Australia

August
15–20,
2001

Ben-Zvi, D., & Garfield,
J. (Eds.) (2004). Chal-
lenges in developing sta-
tistical reasoning, thinking
and literacy. The Nether-
lands: Kluwer Publishers.
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Table continued from previous page
Forum Theme Host/Venue Date Primary Publication(s)
SRTL-3 Reasoning about vari-

ability
The University of
Nebraska-Lincoln,
USA

July
23–28,
2003

Garfield, J., & Ben-Zvi, D.
(Eds.) (2004). Research on
reasoning about variability
[Special issue]. Statistics
Education Research Jour-
nal, 3(2).
Garfield, J., & Ben-Zvi, D.
(Eds.) (2005). Research on
reasoning about variability
[Special issue]. Statistics
Education Research Jour-
nal, 4(1).

SRTL-4 Reasoning about dis-
tribution

University of Auck-
land, New Zealand

July 2–
7, 2005

Pfannkuch, M., & Read-
ing, C. (Eds.) (2006). Re-
search on reasoning about
distribution [Special issue].
Statistics Education Re-
search Journal, 5(2).

SRTL-5 Reasoning about
statistical inference:
Innovative ways of
connecting chance
and data

University of War-
wick, UK

August
11–17,
2007

Pratt, D., & Ainley, J.
(Eds.) (2008). Informal in-
ferential reasoning [Spe-
cial issue.] Statistics Ed-
ucation Research Journal,
7(2).

SRTL-6 The role of context
and evidence in infor-
mal inferential reason-
ing

The University of
Queensland, Brisbane,
Australia

July
10–16,
2009

Makar, K., & Ben-Zvi, D.
(Eds.) (2011). The role
of context in developing
reasoning about informal
statistical inference. [Spe-
cial issue]. Mathematical
Thinking and Learning,
13(1–2).

SRTL-7 New approaches to
developing reasoning
about samples and
sampling in informal
statistical inference

Utrecht University,
The Netherlands;
Texel Island

July
17–23,
2011

Ben-Zvi, D., Bakker, A., &
Makar, K. (Eds.) (2015).
Statistical reasoning:
Learning to reason from
samples [Special issue].
Educational Studies in
Mathematics, 88(3).

SRTL-8 Reasoning about un-
certainty in the con-
text of making infor-
mal statistical infer-
ences

University of Min-
nesota, USA; Two
Harbors, MN

August
18–24,
2013

Zieffler, A., & Fry, E.
(Eds.). Reasoning about
uncertainty: Learning and
teaching informal inferen-
tial reasoning. Minneapo-
lis, MN: Catalyst Press.

Table compiled by Elizabeth Fry

The SRTL research forums have unique features, such as a small size (no more
than 25 participants) that allows time for in-depth presentation and discussion of re-
search. There is extensive use of videos to present how students solve problems and
reason about statistical information in classrooms or during interviews. Most forums
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have included at least one statistician in addition to the educational researchers in or-
der to provide the perspective of the discipline and to give feedback on the research
presented. Participants present, discuss and argue about research related to these top-
ics in a format that facilitates becoming acquainted with key researchers and viewing
their work in progress. After many SRTL gatherings, since that first one in 1999 in
Israel, we hosted the eighth SRTL forum in Minnesota, in the summer of 2013. The
theme of that gathering, Reasoning about Uncertainty in the Context of Making In-
formal Statistical Inferences, continued the theme of informal inferential reasoning,
but with a special focus on the idea of uncertainty. The papers from that exciting and
productive gathering form the chapters of this book.

The eighth SRTL forum built on and expanded the work discussed at previous
SRTL gatherings. Recent research on informal inferential reasoning (IIR) suggested
it was important to study further ideas and pedagogical approaches related to uncer-
tainty and confidence in the context of reasoning about informal statistical inferences.
Assessing confidence about uncertain phenomena and understanding ideas of uncer-
tainty are essential components in making predictions and making judgments about
the reasonableness of patterns and trends identified in data. This topic is relevant and
important at all levels of schooling, even in the early years. Furthermore, recent de-
velopments in statistics educational technology (e.g., TinkerPlots™) can support not
only exploratory data analysis approaches to learning IIR but also experimentation
with ideas of uncertainty and statistical/probabilistic models as generators of data,
modeling and simulations. These developments provided new stimulus for growth
in the rethinking and study of the role of uncertainty in helping students develop
statistical reasoning.

We are indebted to the co-editors, Andrew Zieffler and Elizabeth Fry, who coor-
dinated the review of the papers, the editing and the formatting of the book. Despite
the tendency of SRTL authors to miss or extend deadlines, we are impressed that this
volume is going to print at about the same time the ninth SRTL begins in Germany,
in 2015. We are also grateful for Dr. Katie Makar, who has taken the reins passed on
by Joan, as she moves into her retirement. We know SRTL will be enriched by the
thoughtfulness, insights, and high standards Katie brings to this role.

JOAN GARFIELD AND DANI BEN-ZVI

June 2015



PREFACE

The research presented in this volume is the culmination of a two-year process that
began in August 2013. That summer, 26 statistics education researchers met in Two
Harbors, Minnesota for the Eighth International Research Forum on Statistical Rea-
soning, Thinking, and Literacy (SRTL-8). The theme for the forum was reasoning
about uncertainty in the context of making informal statistical inferences.

Over a period of seven days, this group of researchers presented, discussed, and
examined research related to the forum’s theme of reasoning about uncertainty in the
context of making informal statistical inferences. The research at SRTL-8 covered
many different facets (e.g., use of technology and students’ classroom articulation)
and explored several different populations of students (primary, secondary, and ter-
tiary levels), adults, and even teachers of statistics. The chapters in this book con-
stitute a subset of that research, and reflect the variation in both the populations and
topics studied.

Chapter 1: Jill Fielding-Wells and Katie Makar investigated 7–8 year-old stu-
dents’ inferential reasoning under uncertainty, using an inquiry-based unit developed
around a game of “addition bingo”.

Chapter 2: Sibel Kazak studied the use of TinkerPlots™ simulation tools and
dialogic talk in small groups to support 10–11 year-old students’ articulation of un-
certainty in making informal inferences.

xix
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Chapter 3: Hana Manor Braham and Dani Ben-Zvi analyzed 13 year old stu-
dents’ articulations of uncertainty during their first steps in exploring sampling dis-
tributions in a TinkerPlots™ inquiry-based learning environment.

Chapter 4: Maxine Pfannkuch, Stephanie Budgett, and Pip Arnold explored uni-
versity students’ and workplace volunteers’ reasoning processes as they drew experiment-
to-causation inferences using the randomization test.

Chapter 5: Rolf Biehler, Daniel Frischemeier, and Susanne Podworny investi-
gated the reasoning of preservice teachers about uncertainty in the context of ran-
domization tests facilitated by TinkerPlots™.

Chapter 6: Lucia Zapata-Cardona studied the ideas of uncertainty held by statis-
tics teachers while they worked on professional development activities designed to
promote informal inferential reasoning.

The creation of a book, especially an edited volume, takes a village, and we would
like to acknowledge the countless hours and volunteers that went into this one. First,
the principal credit goes to, of course, the authors and researchers whose work lie at
the heart of this book. They also all served as reviewers for other chapters, and their
reflections, suggestions, and perspectives were critical during the reviewing process.

We also need to acknowledge the efforts and contributions of both Joan Garfield
and Dani Ben-Zvi. As the progenitors of the International Research Forums on Sta-
tistical Reasoning, Thinking, and Literacy, their experience and encouragement were
instrumental throughout this two-year process. Finally, we want to thank both the
American Statistical Association and Springer for providing some financial assis-
tance to the participants of SRTL-8 where the research appearing in this book was
originally presented.

ANDREW ZIEFFLER AND ELIZABETH FRY

July 2015





CHAPTER 1

INFERRING TO A MODEL: USING
INQUIRY-BASED ARGUMENTATION TO
CHALLENGE YOUNG CHILDREN’S
EXPECTATIONS OF EQUALLY LIKELY
OUTCOMES

Jill Fielding-Wells1 and Katie Makar2

1University of Tasmania, Australia
2The University of Queensland, Australia

Abstract

Children’s informal reasoning about uncertainty can be considered a product of
their beliefs, language, and experiences, much of which is formed outside of formal
schooling. As a result, students can adopt informal intuitions that are incompatible
with formal reasoning. Although the creation of cognitive conflict has been con-
sidered as one means of challenging students’ understandings, prior research in
probability suggests that students may simultaneously hold multiple, incompatible
understandings without conflict arising. Design-based methodology was adopted
to investigate young (7–8 years old) students’ inferential reasoning under uncer-
tainty, using an inquiry-based unit developed around addition bingo. This paper
selectively reports on students’ inferences that initially suggested they were tacitly
working from a uniform distribution (equiprobability bias), but shifted as students
collected empirical data (from a discrete symmetric triangular distribution). Their
inferences were challenged using an argumentation framework, with particular em-
phasis on the need for defensible evidence. Initial findings suggest potential for
argumentation and inferential approaches that make students’ conceptions explicit
through ‘visibilizing’ their knowledge.

Reasoning about Uncertainty: Learning and Teaching Informal Inferential Reasoning.
By A. Zieffler and E. Fry (Eds.) Copyright © 2015 Catalyst Press
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2 INFERRING TO A MODEL

Keywords: Informal statistical inference; Equiprobability; Mathematical inquiry;
Argumentation; Statistical modeling; Early years mathematics

1.1 Overview

Do students envision a model when they make inferences from a probabilistic situa-
tion? While they probably do not “see” a distributional model as a statistician might,
students likely have some implicit model that is used to judge situations. These im-
plicit models are quite limited as students have primarily experienced probabilistic
contexts that have either equally likely outcomes (e.g., dice, that would be modeled
by a uniform distribution) or fixed proportional outcomes based on categorical data
(colored lollies in a jar or spinners, that could be modeled by a bar graph).

In this study, young children (aged 7–8) used inquiry-based argumentation prac-
tices to generate and revise inferences as they were tested against experimental data.
The aim of the research was to use a focus on evidence to challenge and shift their
early inferential models, grounded in a uniform (equiprobability) model, toward a
model which aligned with their empirical data (triangular probability distribution).
In the context of trying to design and provide evidence of the “best” card that could
win at addition bingo, the students encountered conflicts between their expecta-
tions (constructed samples based on inferred models) and the outcomes of the game
(empirically-generated samples). The data in this paper tell a story of how young
children’s inferential models and beliefs about randomness became more sophis-
ticated through a focus on inquiry-based argumentation practices as they wrestled
with the empirical results of the game.

1.2 Problem

Uncertainty is encountered in everyday contexts, and the likelihood of events can of-
ten only be estimated based on previous experiences. For example, prior experience
helps us estimate the likelihood that traffic flow will enable us to get to the store
before it closes, or if a friend will be late for our meeting. Our response to these un-
certainties is to make an inference, or prediction, based on data and expressed with
uncertainty (Makar & Rubin, 2009). However, when the experiences we have had
early in life do not necessarily provide useful probabilistic conceptions on which to
base such experiences, we can develop biases or weakened understanding. Investi-
gating inferential reasoning in relation to probabilistic models may be one way for
researchers (and students) to identify and challenge unproductive reasoning.

Although reasoning about uncertainty at the primary level is typically part of the
probability strand of the Australian curriculum (Australian Curriculum Assessment
and Reporting Authority, 2014), its content focus is often on the language of proba-
bility (impossible, possible, likely, certain) and experience calculating simple prob-
abilities using random devices (e.g., coins, spinners, dice) with known (and know-
able) probabilities that are characterized by equiprobable outcomes. However, most
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experiences in real life are not equiprobable—there are not equal chances of rain or
no rain each day—and very often the theoretical outcomes cannot be clearly deter-
mined. Equiprobability bias, or a bias towards all outcomes being equally likely, can
be very difficult to shift, even in adults with probability training (Lecoutre, Durand, &
Cordier, 1990). Very little research has been conducted into addressing equiprobabil-
ity bias with young students; most research focused on older students and confirmed
the difficulty of assisting students to develop understandings more in alignment with
accepted theoretical understandings. The research described here strives to begin to
fill a gap in such knowledge and explore possibilities for using argumentation prac-
tices and a modeling perspective of inference to initially challenge students’ expec-
tations of equally-distributed outcomes before assisting students to make informal
inferences more attuned to the theoretical distribution representing the outcomes.

1.3 Literature and Background

For young children, probabilistic knowledge of random events is typically informal,
grounded in and shaped by their personal experiences, beliefs and language (Amir
& Williams, 1999). These elements can influence their learning of probabilistic con-
cepts in school. For example, the concept of “fairness”, developed out of familiar
situations involving games and friends, is understood to mean that each person has
an equal chance of winning. This idea aligns with the equal nature of outcomes
when applied to dice and coins, for example, but may be indiscriminately applied
to all possible outcomes (e.g., two heads having the same chance as one head and
one tail when two coins are flipped). Equiprobability bias is the tendency to assign
equal probabilities to all possible outcomes in any event. This is common among
both children and adults, even with instruction and across different ages (Lecoutre et
al., 1990; Li & Pereira-Mendoza, 2002).

Watson (2006) argues that while children may hold strong beliefs around out-
comes being equally likely, they may at the same time hold strong beliefs that out-
comes are determined by “luck” or preference, even though these perspectives are
contradictory. Neither of these perspectives necessarily align with formal probabilis-
tic reasoning. For example, when determining the sum of two dice, students may
believe that all sums are equally likely while at the same time believe that the sum of
three is most likely because it is their lucky number. Even if students are explicitly
shown the compound structure of an event or engage in data modeling from experi-
ments, little progress has been shown in shaking these perspectives (Lecoutre et al.,
1990). If the idea of “chance” is masked in a probability problem (i.e., students are
less aware that the outcome is driven by a random experiment), then some success
has been shown in moving students towards more conventional ways of representing
and solving the problem (Lecoutre et al., 1990).

1.3.1 Informal Inferential Reasoning

In authentic statistical situations, population data are rarely available or “knowable”.
Despite this, young students are often accustomed to working with (and hence de-
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scribing) complete data that do not acknowledge the greater population or mech-
anism from which they were drawn. As a result, children may not be familiar with
thinking beyond the data in front of them (Makar & Rubin, 2009), but rather see them
as fixed. This may be one reason why, when students are initially introduced to sam-
ples and asked to make claims “beyond” their data, there is a reported tendency for
them to express certainty-only (deterministic) or uncertainty-only (relativistic) view-
points (Ben-Zvi, Aridor, Makar, & Bakker, 2012; Rubin, Bruce, & Tenney, 1991).
Building on Rubin, Hammerman, and Konold’s (2006) argument of the need for stu-
dents to develop aggregate thinking in order to make informal statistical inferences,
we speculate that there may be benefits to enabling students to not just work from a
sample to infer to a population, but also to try to determine the population, and then
extrapolate likely samples. By integrating this focus on samples and distributions
within randomly-driven contexts, we suspect that children may learn to draw on data
to reason probabilistically. However, we feel the use of a strongly evidence-based
approach has the potential to challenge students’ beliefs more deeply.

We describe informal statistical inference as a generalization (or claim) beyond
the data, that uses the data as evidence, and acknowledges uncertainty (Makar & Ru-
bin, 2009). Inferential statistical reasoning—the reasoning that underpins and leads
to an informal statistical inference—is nurtured and developed by an inquiry-based
learning environment that develops norms and habits around inquiry, statistical con-
cepts and tools, and tasks that challenge students’ beliefs (Makar, Bakker, & Ben-
Zvi, 2011). Bakker (personal communication, August 2007) further argued that when
students make inferences beyond data, they do so with an expectation or model of
the data in mind. In this chapter, we explore this idea by explicitly examining the
probability distribution models created by young children in seeking to select a sam-
ple from an unknown population. Although the children did not consider their work
as creating a sample based on a probability model, their actions in developing their
samples can be compared to more formal models. In particular, we sought to build
on what we suspected would be grounded in equiprobability models and their sense
of fairness (uniform distribution), towards the triangular probability distribution that
would be expected from the outcome of adding two numbers between 1 and 10.

1.3.2 Models and Modeling in Primary Mathematics

Research has provided several examples of data modeling with young children (e.g.,
English, 2012; Lehrer & Schauble, 2000). These examples typically focus on ways
that children conduct and represent data investigations. Modeling in classrooms often
takes one of two approaches. Either models can be used to mathematize, apply and
communicate processes using models already known to learners, or models can be
used to develop new models (to the learner) through model-eliciting activities. The
latter provides children with a sense of agency and opportunity to experience statis-
tics as a tool for learning about the world, and to engage in sense-making and critical
analysis (Greer, Verschaffel, & Mukhopadhyay, 2007). Models in this second form
have an additional potential in engaging children in learning to envision and antic-
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ipate structures in the invariances (patterns and structures) that underpin variability
in data, as is done in the discipline (Lehrer & Kim, 2009, p. 116):

In everyday discourse, variability is often associated with a lack of structure or
pattern, as mere difference among data. The disciplined view is very different:
Variability is structured as distribution, and the nature of the distribution reflects
the operation of a repeated random process (DeGroot, 1975; Thompson, Liu, &
Saldanha, 2007). Random is not a synonym for haphazard, but is instead a descrip-
tion of phenomena having uncertain individual outcomes and predictable pattern,
given sufficient repetition (Moore, 1990).

The need to reconcile the unpredictability of individual outcomes of random pro-
cesses with the predictability of patterns associated with aggregated outcomes is
critical in statistics education. The perception of variability as “anything goes” is
rampant both in understandings about data and in conceptualizing how samples and
variability between samples can be harnessed to represent patterns in the population
(Lehrer & Kim, 2009; Rubin et al., 1991). Data modeling, even from a young age,
can support students in articulating informal inferences from random processes—
ones that coordinate the opposing concepts of randomness in everyday discourse
with expectations of probability models in the discipline.

Other work with young children has explored their engagement with disciplinary
structures and patterns to deepen mathematical learning. For example, seeing and
representing patterns and relationships are foundational to early algebra. These ex-
periences “not only [develop] an understanding of common mathematical structures
but also a tendency to look for patterns in new situations” (Mulligan & Mitchelmore,
2012, p. 2). Research suggests that children begin their exploration of random phe-
nomenon steeped in at least one of three expectations—that outcomes are (1) com-
pletely unpredictable, (2) can be attributed to “fairness” (equiprobability), and/or
(3) are deterministically controlled (e.g., favorite number; Pratt, 2005). Therefore
immersing children in a context that challenges these notions may support them to
anticipate patterns in data, seek underlying structures, and make inferences to models
in probabilistic contexts.

1.3.3 Theoretical Framework: Argumentation-Based Inquiry

The data in this study come from a classroom in which part of the students’ mathe-
matics learning was conducted using mathematical inquiry. Mathematical inquiry is
an approach to teaching and learning where students address ill-structured problems
that rely on mathematical (or statistical) evidence (Makar, 2012). An ill-structured
problem is one in which the problem statement and/or pathway for solving the prob-
lem contain ambiguities that require negotiation (Reitman, 1965). For example, stu-
dents may address a question like, “Do students at our school eat a healthy lunch?”
or “What is the best recipe for play dough?” In these questions, students must nego-
tiate what they mean by ambiguous words like “healthy” or “best” (ambiguities in
the problem statement) as well as negotiating a plan for both how they will find out
(e.g., data collection, analysis, sample selected) and the criteria by which they will
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assess their solution (how will they decide whether lunches overall were healthy or
which recipe is the best?).

In problems posed with such inherent ambiguity, there is the potential for students
to address the problems in ways that are not mathematical or statistical in nature. For
example, the “play dough” question above has the potential to be addressed without
using mathematics or statistics at all—with students simply claiming the play dough
that has their favorite color is the best. Or using the healthy lunch example above,
students may choose to determine a healthy lunch by counting pieces of “junk” food
and comparing them to overall numbers of “non-junk” food to make a determina-
tion. Although this offers some scope for mathematics (counting), there are more
complex and deeper levels of analysis available that are also age-appropriate; for ex-
ample, fractional representations of quantities of each food group in lunchboxes in
comparison to daily dietary recommendations, or average totals of sodium, saturated
fat, sugar, and kilojoules in each lunchbox, plotted and graphically represented by
year level. The former example would enable students to see where their diets were
deficient and could be improved whereas the latter example would enable conjec-
tures to be made about whether lunches became more or less healthy as student’s age
increased.

One means of creating a discipline-based focus in science education has been the
introduction of argumentation practices into the classroom. The use of such practices
in science has been shown to have multiple potential benefits; including the potential
to increase students’ understanding of scientific concepts (Howe & Mercer, 2007), to
provide students with opportunities to develop high levels of discipline-specific liter-
acy (Jiménez-Aleixandre & Erduran, 2007), to address what is acceptable evidence
and reasoning within the discipline (Simon & Richardson, 2009), and to increase
students’ contextual knowledge (Zohar & Nemet, 2002).

Toulmin’s classical work on argument (Toulmin, 1958; Toulmin, Rieke, & Janik,
1984) describes four elements that can be found in any argument: claim, grounds,
warrants/rules, and backing. The claim is the initial assertion that identifies the stance
and position of the argumentor. Grounds provide the support required to enable the
claim to be accepted: It is the information that the claim is based upon and that leads
to the claim being made. Warrants and rules provide for the checking of the grounds
to determine whether they offer genuine support for the claim: they are the justifica-
tion for moving from the grounds to the claim. Warrants are not self-supporting and
require backing, which validates the use of the warrant. The backing is often implied;
however, it is essentially identifiable in a valid argument. To these four essential com-
ponents, Toulmin et al. add qualifiers and rebuttals in order for the proponent to iden-
tify limitations to the arguments or circumstances under which the argument might
not hold. Essentially, Toulmin’s model is such a complex interwoven structure that it
has been criticized for the difficulty inherent in distinguishing between components:
particularly between data and warrants (Erduran, 2007) and data, claim, and warrants
(Kelly, Druker, & Chen, 1998). To address this difficulty, McNeill and her associates
provided a simplified Claim-Evidence-Reasoning model for working with younger
children (McNeill & Krajcik, 2011; McNeill & Martin, 2011; Zembal-Saul, McNeill,
& Hershberger, 2013). In essence, students make a claim (statement of position in
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the same vein as Toulmin’s claim), provide evidence (Toulmin’s grounds), and then
reason how the evidence enabled them to move towards the claim (Toulmin’s war-
rants and backing). This model was adopted as a structural model for argument in
this study for working with, and teaching argument to, younger students.

In common usage, the purpose of an argument, and the practice of argumentation,
is often to achieve a winning position: to convince an other of a particular belief
or position, or toward a particular action. Contrariwise, van Eemeren and Grooten-
dorst (2004) proposed a pragma-dialectical model in which the aim is to achieve
consensus. That is, the argument is resolved if all parties come to agreement or if
opposing views are withdrawn. However, this model may still enable a dominant po-
sition, rather than a robust position, to be accepted. Epistemic argumentation (Biro
& Siegel, 1992; Lumer, 2010; Siegel & Biro, 1997) seeks to address potential imbal-
ance by providing a goal of collective truth-seeking. While the goal remains to reach
consensus, “it is a qualified, justified consensus, where both parties not only share the
final opinion but—ideally—their subjective justification for it” (Lumer, 2010, p. 48).
Thus, epistemic argumentation comes from a position where the validity of an argu-
ment is evaluated through epistemic criteria only (Biro & Siegel, 1992): the argument
rests on the quality of the evidence and reasoning advanced, and its acceptability in
terms of discipline norms and values.

Another aspect of argument goal and purpose relates to knowledge development.
Berland and Reiser (2009) propose three levels of explanation and argumentation—
understanding, explanation and persuasion1. These levels are aligned with the goals
of sense-making, articulation and persuasion, respectively. The goal of understand-
ing (sense-making) is for students to develop a personal sense of that which is being
studied. While evidence is at the core of sense-making, this evidence may be based
on personal experience, observation, or attempts to incorporate new experiences and
knowledge into existing understandings. Essentially this knowledge is internalized
and, as such, is largely unavailable to be challenged. One identified benefit to intro-
ducing argumentation practices into the classroom is that of “visibilizing” cognitive
processes. If student conceptions can be identified through classroom discourse, they
are more open to being challenged or enhanced depending on the accuracy of the
conception (Jiménez-Aleixandre & Erduran, 2007).

As students engaging in argumentation articulate their understandings to their
classroom audience, they necessarily must practice the construction of the argument
and prepare to explicate the connections between their claim, evidence and reason-
ing; for if they do not, it will be requested of them. Thus, as students construct their
explanation, and with experience begin to anticipate the delivery, they necessarily
engage deeply and critically with the claim-evidence-reasoning dimensions and in-
teractions. Research would indicate that students rarely engage in the persuasion
stage (Berland & Reiser, 2009). The stage differs from explanation in that the goal
is to convince others of the epistemic acceptability of the evidence and reasoning
advanced, and to develop the most robust understandings available.

1Note: While Berland and Reiser refer to this as persuasion, they are referring to the goal of persuading
others of the veracity of the reasoning and evidence put forward in support of the claim.
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In this chapter, we focus on changes in students’ probabilistic reasoning as they
engaged in an inquiry-based problem centered on a non-equiprobable distribution.
Specifically, a class of 7–8 year old students were engaged with the question, “What
is the best card for winning addition bingo?” The literature, reported above, sug-
gested that students would likely anticipate complete unpredictability, equally likely
outcomes, and/or outcomes based on “luck” or “fairness”. We hypothesized that as
they moved from sense-making to persuasion, the increased focus on evidence would
necessitate evolving ideas about the mismatch between empirical samples of data
(from a triangular probability distribution) and students’ initial inferential expecta-
tions. As the evidence was increasingly challenged, we anticipated a shift in student
thinking from a uniform distribution model to one which more closely represented
the triangular probability distribution.

1.4 Subjects and Methods

The class engaged in this teaching sequence was comprised of 22 Year 3 students
(7–8 years old) from a suburban government school in Australia. At the time the
research was undertaken, the class was taught by two part-time teachers with signifi-
cant experience in the implementation of inquiry-based learning in mathematics. The
unit described here was wholly taught by one of those teachers, Ms. Thomson, who
collaborated closely with the first author to reflectively design the lesson sequencing
and content.

1.4.1 Context

Design research methodology was adopted (Cobb, Confrey, Lehrer, & Schauble,
2003) to develop an inquiry-based teaching unit around the game of addition bingo
(lotto): addressing the inquiry question, “What is the best card for winning addition
bingo?” In addition bingo, all possible combinations of the sum of two numbers (1
to 10) are written on slips of paper and placed in a box. Children have a card (Figure
1.1) consisting of a 5 ⇥ 5 array of self-selected numbers (their predictions of what
will be called), allowing for repeated numbers. As each sum is drawn (e.g., 3 + 8)
from the box, children mark off the sum (in this case, 11) if it appears on their card.
Players win the game if they are first to mark off all of the numbers on their card.
Prior to engaging in this unit of work, the students had undertaken a previous inquiry,
“Can you make a one-liter container?” Thus the students were developing familiarity
with the need to gather evidence in order to answer an inquiry-based question.

To contextualize the learning, the Queensland state curriculum requires that, by
the end of Year 3, the students can:

Make predictions about chance events using simple statements (“It is likely/unlikely
that an event will occur”), and

Organize data in lists, tables, picture graphs and bar graphs.
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Figure 1.1. Blank Addition Bingo card.

The comparison of experimental estimates of probability and theoretical proba-
bility would not be undertaken in the State curriculum until Year 6 or 7; likewise, the
recording of numerical probability would be left until such time (Queensland Studies
Authority (QSA), 2007).

1.4.2 Data Collection and Analysis

Data collection occurred through various means: Each lesson was videotaped in its
entirety and then transcribed for analysis; student work samples were collected; and
field notes were also kept to identify salient moments of interest, note the researcher’s
developing ideas and observations, and to record the informal conversations held
with the teacher. In this chapter, the data rely primarily on the video episodes from
class lessons, partially informed by the other data collected.

Data analysis was undertaken through several iterations of coding (Corbin &
Strauss, 2008). The first iteration served to provide a generalized picture of what was
occurring in order to contextualize findings and identify questions that warranted fur-
ther study. The purpose of this phase was also to identify salient moments that might
provide specific insight into both the argumentation process and students’ develop-
ment of probabilistic reasoning, and which would thus indicate potential sections or
episodes for further analysis. Examples included moments of insight for either stu-
dent or teacher, difficulties that were addressed or that might have been problematic
in addressing, and students’ attempts at using evidence and reasoning. A selection
of the episodes and artifacts identified in the initial stages was examined using the
claim-evidence-reasoning framework and salient excerpts selected for their ability to
illustrate particular aspects of the classroom discourse.

1.4.3 Research Questions

An argumentation-rich unit on probabilistic inference was designed to focus young
children on the need to articulate and persuade others through the use of evidence.
The research question addressed in this study was:

What insights about young students’ reasoning under uncertainty and inferential
models emerge when a focus on evidence is used to support them in articulating
reasoning?

In particular, when working in a non-equiprobability context,
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1. How does a focus on evidence initially challenge students’ tenacious equiprob-
ability models?

2. How do students use evidence to articulate and reconcile conflicts between their
beliefs, empirical data and inferential models?

1.5 Analysis and Results

As the students progressed through the course of the inquiry, they constructed mul-
tiple models to enhance their understanding and to enable them to make inferences
about the bingo numbers. These models were purposeful in that the students used
them to support and develop their ideas; for this reason, the models themselves, and
the use the students make of them, provide insight into students’ thinking.

1.5.1 First Model: Uniform Probability Distribution

In students’ first round of Addition Bingo, a common initial expectation was that the
numbers would be fairly equally distributed. While students likely did not envision
a uniform probability model as a distribution when creating their Addition Bingo
card, they appeared to draw on an equiprobability assumption. Figure 1.2 shows
the distribution of numbers collated from all student cards from the first game. The
graph suggests their strong tendency to list all numbers 2 to 20 with a few other
familiar numbers to fill in the remaining spaces (note the additional 10s and small
even numbers). A few “impossible” numbers were also listed (e.g., 1 and numbers
above 20).
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Figure 1.2. Students’ aggregated initial frequencies for Addition Bingo.

As the students played the first game of Addition Bingo, they began to recognize
problems in the cards they had created (e.g., the number 1 would never be called). As
the students in this class were accustomed to negotiation of ideas, these difficulties
were not considered by students to be problematic, rather, they saw them as points
for discussion. (Note that the numbering system is for reference only and does not
imply consecutive remarks.)



ANALYSIS AND RESULTS 11

01 Gen: I can’t win.
02 Teacher: You can’t win? Why?
03 Lilly: Clay put a 1 on his card.
04 Teacher: Put your hand up if you put a 1 on your card? [a few

hands go up]. . . I am pleased you realized that part way
through Gen. My lowest was 1 + 1. So what is the
lowest number you could use?

05 Students: Two.

Before the next round, students began to generate strategies that attempted to
address the problems of “impossible numbers” that the class encountered in the pre-
vious game. As they shared these strategies with the class, students’ reasoning sug-
gested they recognized a need to be more attentive to the frequencies of possible
outcomes. For example, some students had put numbers such as two or twenty more
than once on their card, but in discussion recognized that they could only occur once
(i.e., the sum of two can only be represented in a single way). Other numbers, such as
12 and 15, were heard more often than expected. These challenged students’ initial
ideas of equiprobability model and created a need to seek a more useful model.

Students’ initial responses were to fill their cards with these frequently heard num-
bers. For example, Gideon relied on his memory of hearing 15 come up multiple
times. Sirena’s reasoning was grounded in the number of possible ways to obtain a
sum of 12. At this point the teacher encouraged them to seek evidence for why these
numbers were appearing more frequently. A focus on providing evidence encouraged
a shift in the class towards identifying the frequencies, as Sirena was suggesting. To
facilitate this, the teacher encouraged the students to see if they could find a way of
working out which numbers would come up most often.

Several strategies were adopted by students and these emerged over the next few
games as they sought methods of finding, testing and providing evidence for the
frequencies of each outcome (Figure 1.3). For example, one group counted the num-
ber of occurrences of each outcome by pulling each slip of paper from the bucket
and tallying them (Figure 1.3; upper-left); other groups sought to record the possible
combinations for each number. Some groups relied on the patterns of frequencies
(one way to obtain the sum of two, two ways to obtain the sum of three, three ways
to obtain the sum of four, etc.) to list the possible outcomes for each number (Fig-
ure 1.3; upper-right). One student working alone recorded and tallied the number of
ways each number could occur and then displayed the number of tallies on a number
line, creating a dot plot (Figure 1.3; lower).

1.5.2 Second Model: Sample Space

As they were reflecting on their progress, students noted that the frequencies they
recorded of each sum often differed from their peers. The teacher provided them
with an empty addition table as another way to keep track of possible outcomes.
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Figure 1.3. Unordered tally marks (upper-left); listing possible outcomes
(upper-right); and students’ aggregated initial frequencies for Addition Bingo

(lower).

Although they did not use the phrase “sample space”, they recognized it as a way to
ensure that all possible outcomes were recorded.
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Figure 1.4. Addition table.

The table became a common form of evidence that students used to justify that
some numbers were more likely to be selected than others (Figure 1.4). It became the
dominant model in the classroom for generating their expectations of which numbers
would be called out. There were still tensions, however, in deciding how many of
each number to use for their Addition Bingo card as only 25 of the 100 outcomes in
the sample space could be used.
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06 Gen: I had 11 is highly likely to be called out; probably, be-
cause it is the one that has the most sums and probably
they will be pulled out first. But you could still pull out
like nine or six or something like that.

07 Teacher: So you are saying it is not certain, but it is highly likely.
Do you have evidence to show me that it is highly
likely? If I came over to your book now, do you have
the evidence to show me that?

08 Gen: [indicating an addition table and running her finger
along the diagonal] the ones that add to 11 are here,
and there’s 10 of them. We could still have 10, because
there are nine chances. So 10 is probably likely.

09 Teacher: . . . So would you say that is evidence?
10 Jess: Yep.

As they worked with collating frequencies, the teacher helped them to use the
table to calculate the probability of numbers being selected.

11 Teacher: So if 11 is the most popular, how many 11s?
12 Byron: Um, 10.
13 Teacher: OK so there’s ten 11s. How many questions were there

in the bucket? [the teacher was referring to the number
of sums as ‘questions’]

14 Byron: 100
15 Teacher: 100. So, what is the probability of drawing out an 11?
16 Gregory: It is the most common.
17 Teacher: Yeah. . . . 11 is the most common, there is ten of them.

There’s 100 different sums in that bucket. What is the
probability of pulling out an 11? . . .

18 Sirena: 90 out of 100. I mean 10 out of 100.
19 Teacher: 10 out of 100.

Over the next several lessons, the class stopped periodically to calculate and com-
pare the probabilities of different numbers occurring, and discussing whether “com-
mon” numbers were “likely” to come up each time the teacher pulled a slip from the
bucket. She often used analogies to help them gain an understanding of these likeli-
hoods (if only two children in the class were going to be given ice blocks [popsicles],
is it likely or unlikely that you will get one?). As the students selected their numbers
for the games, there was a strong shift towards using primarily common numbers.
Students often over-estimated frequencies of the most common sums (e.g., 10, 11,
and 12), justifying their choices as those most likely to occur (Figure 1.5).
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Figure 1.5. A sample Bingo card with reasoning.

Not all of their choices were based on the addition table model, however, as a few
students included a mix of common numbers and those they preferred or considered
“lucky”.

20 Gideon: I chose the numbers because some are popular and
some I put in for no reason, I just felt like it.

21 Teacher: [repeats what Gideon said] Is that a mathematical way
of trying to solve that problem.

22 Students: No . . .
23 Salena: I just chose a six and I chose a 16 because it is my

lucky number and um I might have a chance of a lucky
number

24 Teacher: Does 16 have a big chance of being drawn out?
25 Troy: Five out of 100!
26 Teacher: 16 has five out of 100 chance of being pulled out.

Students who filled their card only with the most common numbers from the
addition table never won the game. As a model for selecting numbers for their card,
there were still problems. Therefore, a discussion ensued about “how many” of the
most common numbers should be selected. After one of the games, the teacher had
the class examine the numbers selected on the winning card. It was not one that over-
estimated the common numbers, but was a student who picked a mix of common
and less common numbers. Gideon’s reasons for picking the numbers were only
partially mathematical, so the teacher emphasized that they were looking for a more
mathematical approach; that is, an approach that relied on mathematical evidence.

27 Teacher: Everybody look up this way and let’s see what num-
bers Gideon picked and we will see if we can work out
why he won. Let’s try and work out, using some maths,
why Gideon’s card won. OK Gideon, what have you
got?
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28 Gideon: [teacher writes the numbers on the board as Gideon
reads] 11, 11, 11, 10, 10, 9, 5, 7, 6, 8, 12, 8, 6, 13, 16,
14, 11, 12, 9, 19, 10, 12, 17, 9, 11

29 Teacher: OK, they are the numbers Gideon chose, and they won.
Now have a look at the way I have written that all over
the board like that. Have I represented that information
very well?

30 Students: No

1.5.3 Third Model: Paul’s Mountain(s)

Students were asked to organize the winning numbers in some sort of logical repre-
sentation to better visualize the outcomes from the games in relation to the sample
space. Paul, who had listed the frequencies of numbers in the addition table onto a
dot plot (Figure 1.3; lower), used the same strategy to display the data played in the
game (Figure 1.6, represented as sideways tallies).

 

Figure 1.6. Paul’s record of Gideon’s winning card.

The opportunity to visualize both of these representations (Figure 1.3; lower and
Figure 1.6) helped students talk about the difference between the distribution of the
sums of the cards in the box (theoretical population) and the distribution of the sums
of a winning card (empirical sample).

31 Teacher: If you have a look at his dot plot that you’ve got here
(Figure 1.6). What can you tell me about the shape
compared to his original shape that he had (Figure 1.3;
lower). . . . How different is that than his first one? So
that is his original dot plot. Remember his original dot
plot [stops to discipline]. His original dot plot started
at two, went down to 20. It got higher in the middle
and went back down again. So what was this repre-
senting again? . . . What was this telling me? What was
it representing?

32 Clay: Kind of like a mountain.
33 Teacher: . . . What was this telling me? What was it represent-

ing?
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34 Byron: How many things were in there [the box].
35 Teacher: . . . If this one shows us all the numbers in the box, have

a look at this one, his new one (Gideon’s winning card
distribution, Figure 1.6). . . . What about it looks differ-
ent? What about it looks similar? What do you see on
here that makes it a bit similar to the other one? Alex,
what can you see that makes it a little bit similar? Gen?

36 Gen: There’s a mountain in it.
37 Teacher: There is a mountain in the middle. This one has got

a mountain as well. . . . looking at that, would you say
that Gideon picked good numbers?

38 Students: Yes.

In later rounds, students began to rely more on “Paul’s mountain” to select their
numbers than the addition table (sample space; see Figure 1.4) used previously. In
one round, as the numbers were called out, they were recorded on a dot plot on the
board. The teacher then recorded the winning card and the two cards coming second
on the same distribution, along with the shape of Paul’s mountain superimposed
above them (Figure 1.7).

 

Figure 1.7. The numbers pulled from the box, with the winning three cards. Paul’s
mountain superimposed above.

In order to make comparisons among the winning cards, the numbers being drawn
out and the sample space of all possible numbers, the teacher tried to focus students
on interpreting the representations within the context and strategies of the game.

39 Lorena: It’s like Paul’s mountain.
40 Student: Paul’s still the biggest
41 Researcher: Paul’s mountain has to be the biggest I suppose.
42 Teacher: Why is Paul’s mountain [the biggest]?
43 Aiden: It’s got all the numbers
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44 Teacher: It’s got all the numbers in it. It’s got every single num-
ber. His mountain has got 100 numbers. . . . What does
a bump in the mountain mean?

45 Glenn: It means that 11 is the highest. The numbers that have
the small ones they are not really being called out a lot.

46 Researcher: . . . OK. So what will you expect to happen next time?
It may not happen but if you were allowed to predict
what you think might happen, what do you think might
happen?

47 Alanna: Probably something a lot different.
48 Teacher: A lot different? When I look at your mountain and I

look at other people’s mountains, what do you notice?
Anybody?

49 Sirena: That umm. That they chose the numbers that came out
the most and they didn’t choose a lot of the numbers
that didn’t come out the most.

50 Teacher: So they chose a lot of numbers that came out the most?
51 Sirena: But they didn’t choose a lot of the numbers that didn’t

come out the most.
52 Teacher: So you can still see that people here have chosen the

numbers that were in the middle of Paul’s mountain.
Can you see that from the data there that people have
done that? . . . like when you have a look at it, the most
of the bumps are here aren’t they [8–13]? That is where
most of your high stuff is, and I think if you chose
mostly from that area, and those people have actually
won.

As students continued to play the game and test their strategies, the teacher led
discussions that asked them to reason and provide evidence for the numbers they
selected. They aimed to connect key statistical ideas to their strategies. Importantly,
the discussions were not used to “shame” students who did not select productive
strategies, but rather were used to encourage students to (respectfully) challenge one
another’s thinking with statistical evidence.

53 Teacher: You said that six and 16 have an equal chance. OK.
Can you prove that?

54 Lorena: Yes, because six has five chances and on the other
side (using the symmetry in Paul’s mountain), it is the
same, five.

55 Teacher: OK you chose six and 16 because they have equal
chances. How many sixes and 16’s did you choose?
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56 Lorena: I didn’t use six but I chose four 16’s
57 Teacher: . . . But is it [going to] give you the best chance of win-

ning? Why not Jess?
58 Jess: Because, well, I’m not trying to be mean to Lorena or

anything, but like 16 isn’t a really popular number so it
might not come out as much as four times. It could but
it sort of like is only a possible chance of 16 coming
up.

1.5.4 Iterations of Games: Accumulating Samples

In order to see the effect of repeated iterations of the game, the students filled out
smaller 3⇥ 3 cards and played many games quickly. A dot plot was created to keep
track of numbers that were called out in each successive game (Figure 1.8). Students
were asked to compare the accumulating samples to what they expected to see. (The
following comments are selected from the transcript of the discussion, in order, but
are not necessarily sequential.)

 

Figure 1.8. Accumulation of sums pulled over multiple games.

59 Teacher: Is there something that you have predicted to happen
but it isn’t happening?

60 Isobel: The 12 is more than the 11.
61 Jess: With all the colors the 11 is a bit bare, I would expect

more, about five or six. But in the second round, it only
came out twice and the 12 and the 13 came out more
often.

62 Byron: The 10 is much shorter and I would have predicted that
10 would have come up more.

Most students were comparing the accumulating data to the shape of the distribu-
tion they had come to expect from Paul’s mountain. Their growing sense of this the-
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oretical model (a triangular probability distribution), enabled them coordinate their
meanings in terms of the experimental outcomes. Students sometimes combined sta-
tistical evidence with common fallacies.

63 Teacher: Next game. What would you predict might happen?
64 Jess: I think the 10’s will start building up.
65 Teacher: Why?
66 Jess: I think because it hasn’t been called out. The numbers

are just thinking ‘Oh we’ve been called out a lot so we
might give 10 a go’

67 Teacher: So you think the numbers are thinking that?
68 Students: [giggle]
69 Teacher: Do you think that what you just said is based on any

evidence that you know?
70 Jess: Nooo . . .

Because of the continued focus on evidence, students came to expect these chal-
lenges. Throughout the unit, these challenges supported a shift from the equiprob-
ability model, towards a model of the sample space (addition table) and finally the
triangular probability model. Rather than being “taught” the triangular probability
distribution, clearly not appropriate for this age, the process of negotiation created
opportunities to connect each of these models to informal concepts of sample space,
theoretical and empirical distributions, compound probability and inference through
their expectations, testing and representations. In the end, students were asked to
create and then critique their “best” Addition Bingo card. Gen’s card below (Figure
1.9) suggests that students had clearly shifted from their original uniform probability
model and were able to reason how their card was related to an ideal “best” card to
win the game.

1.6 Discussion and Implications

When making an informal statistical inference, do young children infer to a model?
We believe they do. Although the children in this paper were not aware of the formal
probability models used in the discipline, their inferences suggest that they envi-
sioned and anticipated structure in the variability of the data. That is, they had ex-
pectations around how the numbers in the addition bingo game would be drawn. The
children accepted the uncertainties of drawing out numbers from a box, but did not
approach it as a completely haphazard event. From the beginning, most students ac-
cepted the bounds of possible sums (two through twenty) or became aware of them
very quickly. Within those constraints, the children initially selected numbers that
appeared to have a “fair” chance of being selected (with perhaps a lucky number or
two thrown in). This implicit expectation of a uniform probability model was evi-
denced both individually by the selection of numbers on their card and the collective
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Figure 1.9. Gen’s reflection on her final card.

shape of their collated distribution. A uniform probability model is used when the
values of the distribution are equally likely; and indeed, three was just as likely to be
selected as 11 in the children’s initial cards (Figure 1.2). They expected numbers to
be equally likely. We argue that they were inferring to a uniform probability model,
even though they were not explicitly aware of this.

As numbers were drawn, the uniform probability model was challenged. The chil-
dren were not surprised by the individual outcomes that were drawn, but by their col-
lective distribution. Through their awareness that some numbers appeared multiple
times, the importance of attending to frequency (not relevant in a uniform distri-
bution) became apparent. Not all children let go of their “lucky numbers”, even at
the end of the unit. However even those who did not, found a way to fit their lucky
numbers into a distribution that still recognized basic patterns within a triangular
probability distribution: a “mountain” in the middle and low frequencies in the tails.
The children who were able to capitalize on their awareness of the structure of the
theoretical distribution were more successful in the game.

If we do believe that the children were inferring to a model, a statistical struc-
ture, we can think more systematically about the models they engaged with, and the
benefits that may have been gained. Mulligan and Mitchelmore (2013) argue that
considering children’s development of mathematical structure can “provide new in-
sights into how young students can abstract and generalize mathematical ideas much
earlier, and in more complex ways” (p. 29). We see connections between the desire to
understand and develop children’s mathematical-statistical structures and the move-
ment to introduce complex concepts at an informal level in earlier years of school-
ing. The structures that underpin key concepts in statistics can be introduced through
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informal concepts to expose and develop children’s sense of structures within the
discipline. These structures enable us to work meaningfully with mathematical and
statistical ideas in unfamiliar problems. Models, therefore, provide underlying struc-
tures that children can learn to depend on, adapt and make meaning from within a
problem.

Children’s search for frequencies of numbers in the game created a number of ex-
periences and perspectives of frequency, not all of which were model-based. Hearing
particular numbers such as 12 and 15 come up multiple times developed an aware-
ness of frequency that may have challenged an equiprobability model, but did not
provide a structure from which to anticipate frequencies. Tallying the numbers in the
bucket again reinforced the idea that some numbers were more commonly occurring
than others but still lacked a sense of pattern that could reveal how the frequencies
were structured in the distribution. Several students did recognize patterns once they
began listing possible combinations (one way to obtain the sum of two, two ways
to obtain the sum of three, etc.) and this initial awareness of a pattern helped them
to check their expectations against the frequencies they counted; it was challenged
when they realized that there were not 11 ways to make 12, as they anticipated.
The sample space supported a way to reliably record all possible outcomes. Students
were able to use the sample space to calculate probabilities of outcomes, and make
meaning of the small likelihood of even the most frequently occurring numbers. The
addition table also revealed patterns in the relationships among the outcomes (e.g.,
equal sums falling along a diagonal) that enabled the students to be confident in se-
lecting numbers for their cards, although these patterns may have contributed to an
over-emphasis on the most common numbers. The sample space in the form of an
addition table therefore was a model from which they could work, although it lacked
the visual opportunity to envision the structure of variability and “modal clump”
in a triangular probability distribution. “Paul’s mountain” generated a more visual
structure that underpinned the theoretical model.

The theoretical model of a triangular probability distribution represents the vari-
ability in the sample space deterministically. The benefit of the theoretical model is
in its ability to expose predictable patterns and relationships in the sample space.
However, it lacked the sense of randomness that children experienced and came to
expect in each game. The familiarity in the mountain that appeared in Paul’s tally-dot
plot of Gideon’s winning card (Figure 1.6) provided this uncertainty. As an empirical
model of a triangular probability distribution, Paul’s second representation embraced
both the structure of the expected outcomes and the sense of uncertainty by show-
ing variability in its divergence from the theoretical distribution. Models are useful
when they incorporate the structures and relationships we understand, expect and
are productive-in-use; we believe that the class embraced Paul’s second model more
readily because of this. The two models together set up an opportunity to recognize
and express the difference between the theoretical frequencies (what was expected)
and the empirical frequencies (what occurred). These two concepts and their rela-
tionship will not be met formally for several years, yet the structures visible through
these models enabled students to make sense of the game and provided a strong sense
of utility in the dot plot representations.
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1.6.1 Argumentation-Based Inquiry

We contend that the unit of work reported here illustrates potential for the use of
argument-based inquiry in challenging students’ alternate probabilistic conceptions,
particularly those that have been previously identified as difficult to shift. The nature
of epistemic argumentation is such that it requires students to focus on the provision
of reasoned evidence. This enables student inferences and claims to be challenged by
focusing on the evidence provided rather than taking a ‘right or wrong’ approach to
their learning. In the example here, the students were initially guided into a position
where the ideas they had, and the models they were perhaps subconsciously work-
ing from, were challenged through the activity itself. Argumentation-based inquiry
requires significant scaffolding by a teacher. In this instance, the teacher has used
questioning extensively both to support and challenge students’ developing under-
standings of probability (Makar, Bakker, & Ben-Zvi, under review).

The experimental data outcomes of the first game caused students to question
the ideas they already held. The teacher was then able to take this moment of con-
flict and press students to provide evidence that would enable them to identify more
likely potential outcomes. The focus on (statistical) evidence supported the develop-
ment of new models that more accurately reflected the actual triangular probability
distribution. Once the students had presented evidence, the multiple representations
of evidence were able to be shared with the class. This enabled both the teacher and
the students to visibilize student thinking and challenge inaccurate ideas by focusing
on the evidence rather than on the student; a process that was clearly a developed
norm in this class and that students did not appear to find in the least confronting.

After the students had developed their evidence, they were able to infer from
their new distribution models and to make claims regarding likely samples. The dis-
tributions they had developed as evidence were not sufficient to provide a decisive
answer: the students needed to reason from the distribution (evidence) to the Bingo
card (claim). The students were able to provide reasoning, such as seen in the Bingo
card in Figure 1.5. This enabled a level of challenge to be provided by the teacher
and other students once again as we saw when Jess challenged Lorena (lines 56–58).
However, the repeated iterations of the games, and the resultant production of ex-
perimental outcomes also served to challenge students’ reasoning from evidence to
claim.

An additional aspect worthy of note is that of classroom culture. This classroom
clearly had established classroom norms of inquiry and negotiation. The students
were accustomed to being challenged and to challenging others in ways that were
non-confronting but were rather aimed at developing stronger and better responses:
essentially students did not progress as if they knew there was a final goal in mind,
only a best-case scenario. This may have served the students particularly well in
working with the uncertain nature of informal inference. A second and possibly
aligned aspect of this sequence of lessons was the engaging nature of the problem.
The students enjoyed the game playing aspect and the level of mild competition in-
herent in playing each round. This level of competition, and a desire to get a good
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card so they could win, may well have motivated the students to persevere with the
micro-adjustments they were making towards the end.

1.6.2 Implications for Research and Teaching

This study has important implications for research in statistics education.

Need for more research. The research described here is derived from a rich in-
quiry task undertaken by a single class. As such it is intended to provide specific
insights into student thinking rather than develop a transferable approach. Ad-
ditional research would be beneficial on a much wider scale to determine the
potential for argumentation to challenge probabilistic intuitions.

Transfer issues. One particular aspect which would warrant further research is
the issue of transfer. (Fischbein, 1987) elaborates on the interwoven nature of
probabilistic schema and further research is essential into the extent to which
the internalized schema is impacted, both in terms of near and far transfer and
longevity of the new understandings.

What models are relevant at a young age? If inferential reasoning assumes that
students are inferring to a model, what types of models (beyond uniform distri-
butions) are apparent before students learn about formal probability models and
standard distribution shapes?

Literature on probability from an inferential perspective. Much of the classic
literature on students’ reasoning under uncertainty is situated in literature that
does not take an inferential perspective. Given the increased focus on learning
probability and statistics through inference, there would be benefit in rethinking
and revising classic research from an inferential perspective.

This study has useful implications for teaching probability and statistics to young
children.

Beyond equiprobability contexts with young children. Children’s early experi-
ences with probabilistic thinking stem from experiences and beliefs established
informally and away from the schooling context (Amir & Williams, 1999).
The intuitions that develop as a result often remain hard to shift. In terms of
equiprobability bias, even in those with formal probabilistic knowledge demon-
strate reliance on intuitions (Lecoutre et al., 1990). Early schooling experiences
may serve to reinforce these intuitions as students often engage with aspects
of probability activities that, while focusing on randomness, remain restricted
to events with equiprobable outcomes (e.g., simple coin and dice tossing, spin-
ners). Students may benefit from early exposure to experiments that have un-
equal outcomes and outcomes that are unknown or difficult to identify theoreti-
cally.

Focus on evidence may shift/undermine stubborn conceptions. The use of ar-
gument in the classroom has potential to challenge students through several
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mechanisms. The first is that structuring an argument, whether formally or in-
formally, requires the student to consider the evidence and present a coherent
claim derived from evidence. This necessitates an evidentiary focus as distinct
from a “gut” feeling. Second, and dove-tailing with the first, is that the presenta-
tion of the argument enables the students to identify the evidence and reasoning
attached to the claim. Thus intuitions can be identified and addressed by either
classmates or teacher: evidence can be challenged, reasoning can be questioned,
and, if necessary, further investigations can be established to create or increase
the state of cognitive disequilibrium.
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Abstract

In this chapter, the results from a design-based research study to support 10–11
years old students’ articulation of uncertainty in making informal inferences are
examined. The pedagogical approach taken was Bayesian-like and was mediated
by the use of TinkerPlots™ tools and student talk. The notion of uncertainty used
in the study focuses on both students’ probability assessments and their personal
degree of confidence in judging the fairness of chance games. Six students at a local
primary school in Exeter, UK participated in the study during a 9-hour mathemat-
ics enrichment program. Sociocultural discourse analysis was used to qualitatively
analyze students’ small group discussions. The findings from the study show that
the interaction of using TinkerPlots™ simulation tools and dialogic talk in a small
group leads to new insights in students’ reasoning about uncertainty as they make
informal inferences about the fairness of the games.

Keywords: Informal inference; Bayesian reasoning; Subjective probability; Tech-
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The term ‘uncertainty’ is unquestionably fraught with misinterpretation—especially
by non-scientists. I’d prefer the phrase ‘how confident am I?’, the reciprocal of un-
certainty. (Gibbs et al., 2013, p. 6).

2.1 Overview

The concept of inference in statistics refers to “drawing conclusions about popu-
lations or processes based on sample data” (Zieffler, Garfield, delMas, & Reading,
2008, p. 40). Formal statistical inference that students encounter in advanced levels
includes certain techniques to draw conclusions from data, such as estimation and
hypothesis testing. Given the problematic nature of understanding these formal ideas
in the context of making inferences by older students (Zieffler et al., 2008), there has
been an attempt to begin to develop the foundation for these ideas early on, working
with young students to use statistical inference informally (Makar & Rubin, 2009).

Informal statistical inference can be viewed as a way of making informal conclu-
sions (using statistical and probabilistic knowledge) about a population or process
from which the data come. The notion of uncertainty plays an important role in mak-
ing such judgments using data. According to the framework described by Makar
and Rubin (2009) informal statistical inference includes making a generalization be-
yond data, using data as evidence, and using probabilistic language in describing
the generalization. So, at the heart of statistical inference is “the process of mak-
ing probabilistic generalizations from (evidenced with) data that extend beyond the
data collected” (Makar & Rubin, 2009, p. 83), which inherently involves features of
uncertainty. Thus, developing the language and understanding of probability in the
sense of “statistical tendency, and/or level of confidence or uncertainty in a predic-
tion” (Makar & Rubin, 2009, p. 87) is crucial in reasoning and making decisions
based on uncertain data.

This chapter presents how young students articulate uncertainty in the context
of fairness in games of chance as they test their hypotheses and update their level
of confidence on the basis of the data collected both through physical experiments
and computer simulations in TinkerPlots™ (Konold & Miller, 2011). Within this
context, the main goal of this chapter is to examine in what ways the combination of
using TinkerPlots™ and peer-to-peer dialogic interactions supports students’ reason-
ing about uncertainty in making informal inferences about chance situations through
a Bayesian-like approach.

The present study is part of a larger design-based research project which has the
overall aim of investigating how to develop young students’ conceptual understand-
ing of key ideas in statistics and probability in the context of informal statistical
inference through the mediating roles of technological tools and students’ talk. The
study was conducted during a 9-hour mathematics enrichment program with six pri-
mary school students, ages 10–11, in Exeter, UK. The teaching experiment discussed
in this paper is one of the initial iterations of the design-based study.
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2.2 Problem

In recognition of the role that working with data and making judgments under uncer-
tainty play in daily life and in various fields, statistics and probability have become
part of the mainstream school mathematics curricula in primary grades for more than
two decades (e.g., Department for Education and Employment, 1999; National Coun-
cil of Teachers of Mathematics, 2000). The emergence of teaching statistics within
school mathematics has led Exploratory Data Analysis (EDA; Tukey, 1977), which
involves real data analysis through looking for and describing patterns or trends in
data, to become the basis for the data-handling strand in the pre-tertiary mathematics
curricula (Biehler, 1986; Shaughnessy, Garfield, & Greer, 1996). In the meantime, as
Ainley and Pratt (2001) point out, EDA provided an opportunity for open-ended data
exploration by students, using basic concepts of descriptive statistics, while “fore-
grounding data and making the mathematical model, probability, subsidiary.” (p. 7).
This has created an artificial separation between data and chance topics, both relevant
to uncertainty, in both research and instruction when in fact they are closely related
(see Konold & Kazak, 2008). So, one way to build a strong connection between data
and topics related to chance is to encourage students to make informal conclusions
based on data (Moore, 1990). As it can also be seen in the development of themes of
the Statistical Reasoning, Thinking, and Literacy (SRTL) forums in the past decade,
the focus has recently shifted towards informal statistical inference, which is an im-
portant component of statistical thinking, at all grade levels (K–College). A special
issue of the journal Mathematical Thinking and Learning, for instance, was devoted
to the papers presented at the SRTL-6 forum with a focus on the role of context in
developing students’ reasoning in informal statistical inference (Makar & Ben-Zvi,
2011).

Since informal statistical inference is considered an end product, the underlying
reasoning process leading to that is called informal inferential reasoning (Makar,
Bakker, & Ben-Zvi, 2011). According to Fisherian inference, this reasoning process
is based on the concept of likelihood which entails: (1) formulating a hypothesis (i.e.,
null-hypothesis or model), (2) making a judgment that if the hypothesis or model
were true, the observed data would have been very unlikely (i.e., intuitively comput-
ing a p-value), and (3) rejecting the initial hypothesis or model based on the con-
ditional probability that the observed data would occur by chance (Rossman, 2008).
Rossman argues that students do not seem to spontaneously apply this common form
of reasoning when making statistical inferences. An alternative approach to statisti-
cal inference, which is distinct from that of Fisher, is based on a Bayesian frame-
work. Bayesian inference uses a subjectivist interpretation of probability (Rossman,
2008). In this approach, one would start with a priori probabilities associated with a
hypothesis or model based on a belief or previous data, then update these probabil-
ities as new information or data is obtained. It is argued that this form of deductive
reasoning seems to be more intuitive than that of Fisher (Albert, 2002; Rossman,
2008). Because of this, there has been a tendency to shift the focus of inference in
undergraduate-level statistics courses to a Bayesian framework (Albert, 2002; Dı́az,
2010).
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The subjective viewpoint of probability is closely connected to Bayesian infer-
ence, and is often equated to the degree of belief. Despite its common use in every-
day reasoning, subjective estimates of probability have been neglected in the school
mathematics curricula (Jones, Langrall, & Mooney, 2007). Hence, there has been a
lack of interest in researching this aspect of probability. Given this gap in the lit-
erature, and that Bayesian thinking and reasoning tend to be more intuitive than the
frequentist perspective in statistical inference, a Bayesian-like approach was adopted
to study 10–11 year old students’ reasoning about uncertainty in making informal in-
ference in the context of random chance events. More specifically, the Chips Game
Task described in this chapter is designed to understand students’ articulation of un-
certainty as they evaluate the fairness of chance games by making an initial hypoth-
esis and expressing their confidence in the likelihood of a particular game actually
being fair (or not). Students then revise both their initial hypothesis and their level of
confidence as new information is obtained from the data collected through physical
experiments and computer simulations. The notion of uncertainty in this task relates
to both students’ probability assessments and their personal degree of confidence in
judging the fairness of the games. Moreover, a link to making informal inference is
established by focusing on the probability estimates through experimental data in the
task (Konold et al., 2011). Within this context, the following research questions are
investigated: (1) How does the combination of using TinkerPlots™ and dialogic in-
teractions in small groups promote students’ reasoning about uncertainty in making
informal inferences about random events? (2) What are the dialogic mechanisms that
help support students’ reasoning in the joint activities?

2.3 Literature and Background

Probability is the science of quantification of uncertainty in random processes. The
approach used in this study to examine reasoning about uncertainty has roots in the
historical development of probability. Hacking (1975) noted that the concept of prob-
ability has historically had a dual characteristic: On the one hand is an epistemic
notion of probability understood as degree of support by evidence, and on the other
hand is a statistical notion of probability concerned with stable frequencies of occur-
rences of certain outcomes during statistical processes like tossing a coin repeatedly
many times. Similarly, Hald (2003) distinguished the two kinds of probability as:
subjective probability “used for measuring the degree of belief in a proposition war-
ranted by evidence” (p. 28) and derived from our imperfect knowledge, and objective
probability “used for describing properties of random mechanisms or experiments,
such as games of chance, and for describing chance events in populations, such as
the chance of a male birth” (p. 28).

An implication of this dual nature of probability mentioned in Hacking (1975) and
Hald (2003) is twofold. First, the epistemic and subjective notions of probability em-
phasize personal probabilities relative to our background knowledge and beliefs, and
thus enable us to represent learning from experience. Second, the statistical and ob-
jective notions of probability are based on the symmetry in the mechanisms of chance
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setups, such as equally likely outcomes or the stability of relative frequencies from
experiments in the long run. Furthermore, Bernoulli distinguished between theoreti-
cal “probabilities which can be calculated a priori (deductively, from considerations
of symmetry) and [empirical probabilities] which can be calculated only a posteriori
(inductively, from relative frequencies)” (Hald, 2003, p. 247). He then proved the
first limit theorem of probability (“Bernoulli Theorem”) stating that the probability
of a large difference between the empirical probability and the theoretical probabil-
ity tends to zero as the number of trials increases (Stohl, 2005). The idea that the
long-run relative frequency of an event should be very close to the probability of that
event is an important corollary of this theorem.

For educational purposes, these different views of probability concepts suggest
that when we deal with uncertainty in chance events, we draw upon a variety of evi-
dence, such as personal knowledge or belief, empirical results, and theoretical knowl-
edge. It is also implied that as one learns to appeal to evidence, symmetry of chance
setups, and running simulations, one begins to link subjective, empirical, and theo-
retical estimates of the probability. In particular, young students’ personal and expe-
riential knowledge about the world plays an important role in their understanding of
probability. Therefore, in this study the students started with formulating a hypoth-
esis about the fairness of a chance game based on their personal knowledge/belief
and updated it with the new data from a Bayesian viewpoint (where certainty level is
changeable). The assumption was that the simulation of chance experiments would
help students interpret probability of events as the relative frequency of outcomes in
the long run (where certainty level increases as the number of trials get larger). Then
students were expected to provide evidence for the observed results through theoret-
ical analysis of chance events based on the sample space (where certainty level about
their hypothesis is the highest).

2.3.1 Theoretical Background

Based on the idea that inference is an end product of inferential reasoning, Makar
et al. (2011) recognized the need for understanding and supporting the informal in-
ferential reasoning process that leads to informal statistical inference. Drawing upon
their review of relevant literature and analysis of three sixth graders’ informal in-
ferential reasoning, Makar et al. claim that informal statistical inference needs to
be embedded in informal inferential reasoning, “nurtured by statistical knowledge,
knowledge about the problem context, useful norms and habits developed over time,
and supported by an inquiry-based environment (tasks, tools, scaffolds)” (p. 171).
Within the aim of this study, the design of the learning environment suggested by
Makar et al. is seen as particularly relevant to support young students’ reasoning
about uncertainty. In this research, the design element involves relevant tasks, appro-
priate computer tools, and talk as scaffolding in peer group interaction. Then these
are used to understand how to promote students’ emerging reasoning in making in-
formal inferences in the context of chance events in the current research data.
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Designing Relevant Tasks. The research indicates that older students have diffi-
culties in understanding the concepts and reasoning related to the common formal
statistical inference methods (Zieffler et al., 2008) and this formal inferential reason-
ing process does not come naturally to students (Rossman, 2008). It has also been
argued that a Bayesian approach to making a statistical inference is more intuitive
and better reflects the commonsense thinking about uncertainty in daily life (Albert,
2002). Even young students use probabilistic language (e.g., more likely, possible,
impossible, always, and rare) to express different levels of uncertainty. Subjective
probability, to which Bayesian inference is closely related, is a way of assigning
quantities between 0 and 1 to these different levels of uncertainty with beliefs chang-
ing based on new evidence (Albert, 2002). The findings of Huber and Huber (1987)
suggest that even young children can use personal knowledge or beliefs in the tasks
involving ordinal comparison of subjective probabilities about given events in the
contexts of sports and gambling. In addition, it is pointed out that children’s subjec-
tive probability evaluations of events tend to show more stability in the gambling task
because of the availability of the objective probabilities, (i.e., the areas in the spinner
device used in the task; Huber & Huber, 1987). This suggests that young students’
use of subjective probability in making informal inferences may be supported by
enabling them to estimate the likelihood of events from other sources as well (e.g.,
the symmetry in the mechanism of chance setup and relative frequencies). To do so,
we need a task which allows students to use subjective, empirical, and theoretical
estimates of the probability.

The Bayesian viewpoint seems to be often consistent with people’s way of de-
veloping intuitions based on learning from their experiences and revising their be-
liefs as new information is obtained (Falk & Konold, 1992). Furthermore, Hawkins
and Kapadia (1984) suggest that subjective probability is utilized to complement the
traditional classical and frequentist approaches in teaching probability. Therefore, to
support students’ informal inferential reasoning, a task was designed using Bayesian-
like thinking to develop informal inference where students were expected to state
their initial hypothesis (prediction) about the fairness of chance games, provide an
explanation, and rate their level of confidence in their hypothesis on a 0%–100%
scale. After generating their hypotheses, students were asked to both physically play
the game and simulate results from the game using TinkerPlots™ to gather data to
support or revise their initial hypothesis and to update their level of confidence. Af-
terwards, students used the possible outcomes for the combined events to provide
a theoretical model for data. They were then expected to be able to explain using
this theoretical model how their previously collected empirical results could be used
to support their final hypothesis. Through this process, the aim was to highlight the
inherent relationship between probability and informal statistical inference in the
context of chance games.

Using Appropriate Computer Tools. Several studies have investigated young stu-
dents’ reasoning processes relevant to inference through technology-enhanced tasks.
Pratt, Johnston-Wilder, Ainley, and Mason (2008) found that when guessing the hid-
den numbers in the sides of a die on a computer simulation tool, called Inference
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Maker, 10–11-year old students tended not to focus on emergent, aggregate charac-
teristics of data. Accordingly, students failed to see the relevance of larger samples
in making inferences with a greater confidence, which then would lead to the idea of
the Law of Large Numbers. Others reported on effective use of technological tools,
in particular TinkerPlots™, to support these understandings with middle school stu-
dents (Ben-Zvi, 2006; Fitzallen & Watson, 2010). For instance, Fitzallen and Watson
(2010) reported that when using TinkerPlots™, students (ages 10–12) generated dif-
ferent kinds of plots that appeared meaningful to them and used these effectively
in making their conclusions from data. In their study, the software also facilitated
students’ thinking processes that involved moving back and forth between making
hypotheses and constructing plots in making sense of the data. Additionally, Ben-Zvi
(2006) indicated that students used TinkerPlots™ not only as a representation tool,
but also as an argumentation tool in expressing their ideas to others.

Other studies (Konold, Harradine, & Kazak, 2007; Konold & Kazak, 2008) con-
ducted using the development version of TinkerPlots™ also revealed how the new
probability simulation feature could support middle school students’ development
of an integrated set of statistical and probabilistic ideas. Findings from Konold and
Kazak (2008) suggested that the TinkerPlots™ environment facilitated students’ vi-
sual reasoning via dynamic graphs where the results accumulated as they were gen-
erated by the Sampler (a tool within TinkerPlots™ to model probabilistic processes).
The combination of observing the simulation data from multiple trials and sketching
only the overall shape and relative heights of stacks seen in the plot enabled students
to explore the fit between the expected distribution based on the sample space and
the empirical data. These observations led students to perceive ‘data as signal and
noise’, which is a key idea in dealing with situations involving uncertainty (Konold
& Pollatsek, 2002). More recent studies presented in the SRTL-8 forum (Ainley, Ari-
dor, Ben-Zvi, Braham, & Pratt, 2013; Braham, Ben-Zvi, & Aridor, 2013; Harradine
& Konold, 2013) further documented the benefits of using TinkerPlots™’s simula-
tion and modeling features in promoting young students’ statistical understanding
and reasoning about uncertainty in the context of informal inference.

Using Talk as Scaffolding in Peer Group Interaction. It is suggested that en-
couraging talk in a mathematics classroom helps students reflect on their thinking,
explore, and form new understandings (Wickham, 2008). Mercer (1996) identified
three different types of talk when students engaged in small group work in class-
rooms: (1) disputational talk in which a lot of disagreement between children, indi-
vidualized decision making and a competitive, rather than cooperative, relationship
can be seen; (2) cumulative talk in which children tend to simply build on what the
other has said in a shared, supportive but an uncritical way; and (3) exploratory talk
in which children listen to each other actively, ask questions, challenge ideas in a
critical but constructive way, and give explicit reasons for challenges. Several stud-
ies using the Thinking Together approach, a dialogue-based pedagogy to develop
children’s collective thinking and learning (Dawes, Mercer, & Wegerif, 2000), found
exploratory talk effective in promoting young students’ mathematical reasoning and
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problem solving when they work together in groups with mathematics software (e.g.,
Monaghan, 2005; Wegerif & Dawes, 2004).

Another type of talk, called dialogic talk, extends the definition of exploratory
talk by referring to collaborative and creative engagements with more emphasis on
the dialogic quality of the relationships between students (as well as those between
students and the shared task) than on the explicit verbal reasoning (Wegerif, 2013).
Wegerif argues that dialogic talk entails openness to the other and to otherness in
general to the extent that participating individuals are able to listen to each other and
to change their minds. From a dialogic perspective inspired by the work of Bakhtin
(1981, 1986), dialogic processes refer to the creative leaps required to understand
things from the outside position of the witness or the “superaddressee” position in
Bakhtin’s terms (Wegerif, 2013). According to Wegerif, this creativity is sometimes
an emergent effect of the dialogic space that opens up in the gap between different
perspectives, including virtual perspective such as that of the superaddressee.

In Kazak, Wegerif, and Fujita (2013), it is argued that the combination of tech-
nology and students’ dialogic talk can play a critical role in helping students make
noticeable shifts forward in their conceptual understanding of probability. The article
describes a trajectory of two 11–12-year old students making conjectures about the
fairness of a game, involving combined events (an earlier version of the Chips Game
Task in the current chapter), testing and revising their initial theories based on simu-
lation data using TinkerPlots™. It was found that the dialogic talk helped these two
students in several ways. For example, they could articulate their thinking including
half-baked or uncertain ideas. The dialogic approach used in the study encouraged
students to ask for explanations because they began to feel that making mistakes and
showing that they do not understand were acceptable. In this way they could help
each other to understand. Moreover, the mechanism behind the initial switch in per-
spective in one of the students was interpreted as dialogic in the sense that there was
an invisible dialogue going on between the student and an absent ‘witness’. While
taking an outside perspective in reconsidering the problem, he was able to question
his initial view and change his mind.

2.4 Subjects and Methods

This exploratory study was carried out with six high achieving Year 6 (age 10–11)
students, two boys and four girls (pseudonyms: Ozzy, Jake, Keyna, Flora, Gabby,
and Blair), from a local primary school in Exeter, UK. The sample was selected as a
convenience sample recruited through their classroom teacher.

2.4.1 Data Collection

The method of research employed was a design study. A design study entails an iter-
ative process to develop theories of students’ learning and ways of supporting their
learning of domain specific content (Cobb, Confrey, Lehrer, & Schauble, 2003). The
initial design is improved through testing and revising conjectures based on continual
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analysis of students’ reasoning and the learning environment while the experiment
is in progress. In this study, the research cycle involved designing instructional ma-
terials and a learning environment that supported the desired learning goals in the
domain of statistics, conducting teaching sessions, and retrospective analysis. The
retrospective analysis of the first cycle was the basis for the new design phase in the
second cycle.

During the study, students were seated to work in pairs or groups of three at tables
with a laptop and manipulative materials, such as game chips and bags. Each group’s
work was videotaped to capture the students’ interactions around the computer. Ad-
ditionally, the computer screen of the group including Blair, Gabby, and Flora was
recorded using Camtasia software (TechSmith, 2011) to capture their work in Tin-
kerPlots™ environment during the Chips Game Task (see Section 4.2). Each group
also answered questions on the given worksheets for each task. Pre-assessment items
were used to evaluate students’ reasoning about combined events prior to the proba-
bility tasks. The data for analysis included video footage of group work and lessons,
computer screen captures, and student artifacts.

2.4.2 Procedures and Tasks

In this study, TinkerPlots™ (Konold & Miller, 2011) was used as the information
and communication technology (ICT) tool. TinkerPlots™ is a distinct computer pro-
gram compared to other graphing or spreadsheet programs as it builds on children’s
intuitive knowledge about data representations and analysis. It enables students to
construct their own graphs when organizing their data by ordering, stacking, and
separating. TinkerPlots™ also includes a variety of tools, such as dividers and ref-
erence lines, to intuitively analyze data in making inferences. A probability simu-
lation/modeling tool (i.e., the Sampler) allows students to build models of random
phenomena using variety of devices (i.e., mixer, spinner, bars, stacks, curve, and
counter) that can be filled with different elements from which to sample (see Fig-
ure 2.1). This tool then enables students to collect measures and outcomes from the
sampled elements. Another affordance of the tool is that it allows students to quickly
generate a large number of outcomes with each run and to repeat this several times
to look at the results from sample to sample.

In addition to the use of TinkerPlots™ to explore data and chance, the participants
were introduced to a dialogic way of communicating during group work. Since not
all types of student talk that occurred in groups would necessarily result in effective
collaboration in joint activities (see Mercer, 1996), certain ground rules were explic-
itly discussed and practiced with the students in order to set up the conditions for
effective talk (Dawes et al., 2000). As an example, here is a set of negotiated expec-
tations for group work in this study: (1) we should make sure that each person has
an opportunity to contribute ideas, (2) we should ask each other ‘why?’ and listen
to the explanation and try to understand, (3) we should ask others what they think,
(4) we should consider alternative ideas or methods, and (5) we should try to reach
an agreement before we do anything on the computer.



38 HOW CONFIDENT ARE YOU?

The study involved a sequence of tasks designed to develop key ideas and con-
cepts in probability relevant to uncertainty (i.e., randomness, relationship between
theoretical and data-centered estimates of probability, the role of sample size, quan-
tifying uncertainty, confidence level, evidence) and to support their reasoning about
uncertainty in making informal statistical inferences through students’ talk (in groups
of 2–3) and their use of computer tools over three sessions each of which lasted about
three hours.

Day 1. After a brief introduction to the software, students began to use the Sampler
tool to build a data factory to make “monkeys” and “teddy bears.” This task was
intended to familiarize students with some of the data modeling and simulation tools
in TinkerPlots™, as well as to practice incorporating the five dialogic talk ground
rules (discussed previously) as they worked together around a laptop in groups of
three. Later in the class, the entire group had a discussion about the words “random”
and “unpredictable.” Students were also asked to provide examples for each of the
following words relevant to uncertainty: Likely, unlikely, equally likely, most likely,
no chance, even chance, certain, uncertain, fair, and unfair.

In the following activity about random events, students initially were asked to
write down the sort of results they would expect to get if they were to flip a coin
20 times. After the discussion of their made-up data, we flipped a coin 20 times
and compared the results. They also built a model of single coin flipping, graphed
and analyzed the results from 50, 100, and 2000 repeated trials, and discussed the
variability resulting from those simulations. At the end of the session, the students
were asked to discuss in their groups the fairness of the method described in the
following context:

“Carla and her two friends, Justi and Cloe, all want to ride in the front seat of the
car on a short trip they are taking. They agree to flip two coins to decide. Carla
wins if the two coins come up different. Justi wins if both coins are heads. Cloe
wins if both coins are tails” (developed by Konold and Kazak as part of the Model
Chance Project instructional materials).

Day 2. This day began with a whole-group discussion of a fair method or a fair
game, after which the Chips Game Task was introduced. Students played a game
that involved randomly drawing a game chip from a bag containing one blue and
three red chips. Students were only told that the bag contained chips of two colors:
red and blue. Students were split into two groups, and each time a red chip, was
drawn, one group received a point, and each time a blue chip was drawn, the other
group received a point. The game was played 12 times and prior to beginning each
new game, students were asked about their level of certainty regarding the fairness
of the game. As additional data from each game played was accumulated, students
updated their initial conceptions of randomness, chance variability, and uncertainty.
Prior to the group task involving reasoning about combined events in a chance game,
two assessment items were given to the participants to answer individually. One item
involved combined events and the other questioned the fairness of a game involving
combined events. The expectations for dialogic talk were revisited before starting the
next task.
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The Chips Game Task was built on the following idea: When events occur ran-
domly, we cannot be certain about what will happen next, but we can analyze and
compare the probabilities of particular events provided that we know enough about
all the possible outcomes that could happen. When introducing the task, we first
asked the groups to discuss whether the following game was fair:

There are two bags containing game chips of two colors—red and blue. To play
the game, you will randomly select a chip from each bag. If the chips are the same
color, this group will win. If they are different color, the other group will win.

Game 1
Bag One: Three red chips, One blue chip
Bag Two: One red chip, Three blue chips

In this group work, students were expected to state their initial hypothesis (pre-
diction) on whether the game was fair or not, along with an explanation of their
reasoning. They were also asked to rate their level of confidence in their hypothesis
using a scale of 0%–100% (see worksheet in Appendix 1). Students were asked to
evaluate their confidence level because, as emphasized in the SRTL-8 theme, assess-
ing confidence about an uncertain event is seen as essential in making predictions and
conclusions about the reasonableness of patterns recognized in data. After this, they
were asked to physically play the game as many times as they felt that they needed
to in order to gather enough data to support or revise their initial hypothesis, and re-
evaluate their level of confidence. Students also modeled the game in TinkerPlots™,
to collect more data to test their hypothesis through visualizing the probability of
two events in the graph, and again re-rate their confidence level (Here too students
were allowed to decide how many trials they felt they needed to carry out.) At the
end, the students needed to provide an explanation for the empirical results with the
expectation that they would work out all the possibilities for the combined event and
link the sample space to the empirical distribution (with some scaffolding if needed).

Students also completed the following variations of the task in a similar format:

Can you make the game (explained above) fair?

Game 2—Bag One has four red chips and Bag Two has two red chips and two
blue chips. Is it a fair game?

Can you design a fair game using five chips in each bag; using the blue and red
chips and the same rules?

Can you design a game so that the mixture (i.e. ‘red, blue’ or ‘blue, red’) will
always win?

Day 3. Students were introduced to the Random Bunny Hops Task (Kazak, Fujita,
& Wegerif, 2014): “Suppose there are a number of bunnies on land and each bunny
can choose randomly to hop only right or left. For each hop, bunnies are just as
likely to hop right as left. We want to know where a bunny is likely to be after
five hops.” Following a class discussion about how to decide which side the bunnies
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might hop, students were asked to make their initial predictions: “Imagine that a
bunny is standing on a number line at 0. You flip a coin to decide which way the
bunny hops. If the coin lands heads up, it hops one step to the right (i.e., one step
along the positive direction). If the coin lands tails up, it hops one step to the left (i.e.,
one step along the negative direction).” With the objective of students’ articulation
of uncertainty in the context of making informal statistical inferences, they were
expected to predict, produce and analyze data, and compare simulation data with a
population model using the simulation features of TinkerPlots™.

2.5 Analysis and Results

Sociocultural discourse analysis was used to analyze the qualitative aspects of the
data as detailed by Mercer (2004). The focus of the analysis was the talk of students
working jointly on computer-based activities in pairs or groups. Video-recordings
of each group’s work were viewed to identify key episodes of talk that led to a
new insight in students’ reasoning during their joint activity. Selected transcribed
excerpts of joint activity in the context of the Chips Game Task were analyzed in de-
tail to show how students’ emerging reasoning about uncertainty was supported by
the combination of talk and the use of TinkerPlots™. The method of analysis adapted
from Mercer (1996) involved two levels that emerge from a socio-cultural perspec-
tive: linguistic and psychological. At the linguistic level, the talk was examined in
terms of kinds of speech acts observed in students’ exchanges, such as asserting,
challenging, and explaining, and students’ responses and reactions to each other’s
talk. At the psychological level, the talk was analyzed as thought and action, such as
the visible pursuits of emerging reasoning relevant to uncertainty through the talk in
combination with other tools—TinkerPlots™ and physical materials.

The findings of the study are described and discussed in this section by focusing
on a close examination of four episodes (from Day 2) where new insights into stu-
dents’ reasoning about uncertainty were identified during the joint activity for one
group: Gabby, Blair, and Flora.

2.5.1 Episode 1: Students’ Initial Reasoning about Uncertainty in the
Fairness of a Game

In Excerpt 1, Gabby, Blair, and Flora were jointly working to decide whether Game
1 was fair or not in order to make their initial prediction on the worksheet (Appendix
1). After a demonstration of the game with the bags by Taro (researcher), the group
seemed to agree that the mixture would occur more often and the game was not fair.
However, Gabby later inclined to change her idea about the unfairness of the game.
Blair disagreed with her and wanted to explain why she thought the game was not
fair to Gabby.

01 Taro: Is it fair?
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02 Gabby: No, it is not fair. Surely it is not fair. Actually, wait, no
it is fair.

03 Blair: No, it is not fair . . . Because look [Blair tries to get the
chips out of each bag but some of them fall off the ta-
ble. Gabby covers her face and turns over to the work-
sheet].

04 Gabby: Look look look [looking at each bag’s content drawn
on the sheet. Blair puts the chips together in two
groups as they were in the bags on the table]. Look
so there is. So there is four blues and there is four reds
[pointing to the drawing of the bags on the worksheet].

05 Blair: Yeah, but they are in different bags.
06 Gabby: Yeah I knew that [Blair moves the groups of chips right

above the drawings of the bags on the worksheet]. But
look, look if you got that, and then like, so you’ve got
three chance. Look if you pick the blue for instance
[Gabby still pointing to the chips on the drawing]. Lis-
ten [tapping Blair’s arm, trying to get her attention] if
you pick the blue for instance, then you get three other
chances, [a moment of thought, a new insight] actually
[hesitating about her answer now] . . .

07 Blair: Look. Because look yeah.
08 Gabby: No it is not fair because there is three [pointing to the

first bag on the worksheet].
09 Blair: Yeah okay. [Pointing to the red chips from Bag 2 on

the table] If I pick the most common one from here
[Bag 2] is obviously red [picking a red chip] and the
most common one in here [Bag 1] is obviously blue,
[picking a blue chip], then [showing both chips in her
hands—one blue one red] they are different.

Students began to make their initial prediction based on subjective probabilities
as they used their own personal beliefs about the situation. In particular, Gabby and
Blair had different opinions regarding the fairness of the game. Each tried to as-
sert their own ideas with some reasoning (lines 03–06) as seen in disputational talks
(Mercer, 2004) and to convince the other. Gabby thought the game was fair because
there was an equal number of red chips and blue chips in total with a similar rea-
soning to the equiprobability bias (Lecoutre, 1992). She seemed to think about the
event outcomes additively (i.e. four blue chips and four red chips in total) rather than
to use multiplicative reasoning needed to evaluate the probability of the combined
events (i.e., six same color chips and ten mixed color chips). Only after Blair chal-
lenged her idea, Gabby made a shift in her understanding of the combined nature of
outcomes from each bag (line 08). By listening to Blair’s explanation she began to
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see the outcomes of the game from a different perspective and, as a result, changed
her mind.

2.5.2 Episode 2: Students’ Reasoning about Uncertainty After Playing
the Game

On the worksheet, the group marked their confidence level for the unfairness of the
game at 75% after their initial prediction. In the excerpt below, the teacher researcher
asked students again how confident they were when they finished playing the game
30 times with the bags. Even though they all felt more confident about the unfair-
ness of the game after the results (same color=13, mixed color=17), their responses
varied with no explicit reasoning without teacher prompt.

10 Sibel
(Teacher
Researcher):

Now what do you think after playing the game?

11 Gabby: I think I am between 80 and 90 because I still, you still
could be.

12 Flora: Yeah you still produce like pick them up bunch of time.
13 Gabby: I think I am about 90.
14 Blair: I think I am about 95.
15 Sibel

(Teacher
Researcher):

Okay, can you explain why you think 95? Can you
agree?

16 Gabby: Well because of our results [looking at the worksheet].
17 Blair: Because of our results [they got 13 same color, 17

mixed color].
18 Gabby: [Blair’s chair slams into the tripod with noise] Well we

already thought it was 75 and now the results proved
that. Now we are very sure but we are not completely
certain.

19 Sibel
(Teacher
Researcher):

Okay, so pick which one is in there [referring to the
scale on their worksheet].

20 Blair: Should we get the 90?
21 Gabby: Which one do you think Flora?
22 Flora: 80 or 90 I would say.
23 Blair: Eh, make Gabby 90.
24 Flora: Oh, okay [she marks it on the scale on the worksheet].
25 Gabby: No wait what do you think? [asking Flora]
26 Flora: It is your 90.
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27 Gabby: You sure?
28 Flora: Yeah.

When Gabby and Blair came to an agreement for their joint decision, students’
prediction or hypothesis and explanation about the unfairness of the game seemed
reasonable. Their initial confidence level marked at 75% on the scale indicated that
they were not yet certain that the game was unfair. After playing the game 30 times,
the results came out in favor of the mixture supporting their hypothesis and hence
each student individually stated a higher confidence level—between 80% and 95%.
Given the data, Gabby’s comment, “Now we are very sure but we are not completely
certain” (line 18) suggested that their subjective probabilities were updated but the
uncertainty in their personal degree of confidence about the unfairness of the game
did not completely disappear. Since the talk between students tended to be more
cumulative (in the sense of Mercer, 2004) without explicit elaboration, it was difficult
to speculate about why they particularly chose 90% confidence level based on the
data they had generated.

2.5.3 Episode 3: Students’ Reasoning about Uncertainty through Tin-
kerPlots™ Simulations

In the following excerpt, students’ talk was around the TinkerPlots™ model of Game
1 that they built to gather more data to test their initial theory about the unfairness
of the game. As seen in Figure 2.1, the Sampler (left-side) consisted of two mixer
devices, one including one red and three blue balls, and the other including one blue
and three red balls. These two devices represented the number of red and blue chips
in the two bags. The students opted to set the number of trials (Repeat value) to 1000.
The results table—to the right of the Sampler—displays the sampled outcomes for
each of the repetitions as they are drawn. The plot (right-side) shows the frequency
and percentage of the combined outcomes, “the mixed color” and “the same color,”
for 1000 trials based on the combined outcomes for the two draws: “Blue, red” and
“red, blue” then “blue, blue” and “red, red”.

In this activity, Gabby was controlling the mouse while others were watching.
When they saw the initial simulation results on the screen (mixed color=62%, same
color=38%; as in Figure 2.1), Gabby inferred the outcome of “blue and red is prob-
ably more likely. . . I will run it again.” In order to be 100% certain that the game
was unfair, Gabby later suggested that they run a few more simulations and also in-
crease the number of trials. She also asked other group members for their opinions
to involve them in decision-making.

29 Gabby: I think now we are like. Are you like what percent oh
no, are you like hundred percent certain now?

30 Flora: Yeah, ninety five to hundred.
31 Gabby: What do you think Blair? Are you like hundred percent

sure?
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32 Blair: Yeah. Yeah I think I am about hundred.
33 Gabby: Because look. We have done it.
34 Blair: Totally confident
35 Gabby: Wait we can do it a couple of more times before we say

that. So wait should we change this number? Should
we change it to three hundred? No three thousand I
mean.

36 Flora: Yeah.
37 Gabby: Okay. Woo, umm [looking at the 3000 results that ap-

peared on the plot].
38 Blair: Sixty three percent, thirty seven percent.
39 Gabby: Yeah, they are getting closer [running the Sampler sev-

eral times looking at the results on the plot, 62%–38%,
62%–38%, 62%–38%, 61%–39%, 63%–37%, 62%–
38%, 63%–37%, 64%–36%, 62%–38%, 63%–37%,
64%–36%]

Collecting more data very quickly through their TinkerPlots™ model enabled the
students to further investigate their initial prediction about Game 1. After the initial
simulation results from 1000 trials, students expressed more confidence. When Blair
said that she was “totally confident” (line 34), Gabby pointed out that they would
need more data before they could become 100% certain (line 35). The group then
agreed on running a few more simulations and increasing the number of trials to
3000. This was a major step towards an understanding of the relative frequencies
as estimates of probabilities as in Bernoulli’s theorem mentioned in Section 5.3 and
using them to revise their subjective probabilities. Here the talk stimulated by the
TinkerPlots™ simulation results seemed to help these students see the relevance of a
large number of trials with several iterations. Gabby’s observation of how stable the
percentages of the same and different color chips got in the repeated trials showed
an insight into an important concept relevant to reasoning about uncertainty.

2.5.4 Episode 4: Students’ Reasoning about Uncertainty in Designing
a Fair Game

When students were provided with two bags, five red and five blue chips, and asked
to design a fair game by placing five chips in each bag, they jointly worked on the
task and came up with three red and two blue chips in bag one and two red and three
blue chips in bag two. To test their hypothesis, they built a model of their game in
TinkerPlots™ and ran it several times with 1000 trials. The results were mostly 52%
mixed color and 48% same color, respectively. When the results from one simulation
yielded 51%–49%, Flora and Gabby cheered, “Yeay, 51 and 49!” Then Gabby kept
clicking the run button repeatedly, watching the results compile on the plot. It seemed
like they were looking for the results close to 50%–50%. When asked whether or not
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Figure 2.1. Screenshot of students’ TinkerPlots™ model and simulation for Game 1.

their game was fair, Gabby said “Yes” with confidence but Blair added, “It’s roughly
. . . It feels like it’s as close as you can because there is an odd like number in each
bag.” This uncertainty due to the results that were close enough to 50%–50% but not
quite even and slightly in favor of the mixture (Blair called this “the fairest game”)
motivated a further joint exploration that led to a theoretical analysis of the number
of possible outcomes for each combined event (mixed color and same color).

In the excerpt below, the teacher researcher joined the group, which was trying
to make sense of the simulation results for the game that they initially thought of as
fair. This time their joint task developed around the physical material—a group of
two blue chips and three red chips and another group of two red chips and three blue
chips on the table similar to the contents of the bags in their game. While Gabby still
thought it was a fair game, Blair disagreed with her and gave a reason by focusing
on the number of red and blue chips in each bag and the amount of mixed color
chips that one could get in the game. By manipulating the chips on the table, Blair
offered a new idea for why the game could not be fair. Through scaffolding by the
teacher researcher, Gabby then took on Blair’s idea and began to count the number
of possible outcomes for the same color and the mixed color (see Figure 2.2).

40 Sibel
(Teacher
Researcher):

So when you put two like this, and then like this [a
group of one red chip and three blue chips and a group
of one blue chip and three red chips] huh?

41 Gabby: Yeah. That’s fair.
42 Sibel

(Teacher
Researcher):

That is fair?
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43 Blair: I don’t think it is completely fair, because, there is,
like a different amount of reds in each bag, a differ-
ent amount of blues, but then there is the same amount
of the opposite color, like, so, in each bag.

44 Sibel
(Teacher
Researcher):

Oh what does that mean? Interesting, did you follow
her? Gabby?

45 Gabby: Yeah.
46 Sibel

(Teacher
Researcher):

Does it matter? She says that they have . . . the same
number of, different color?

47 Blair: The same amount, there is the same number of differ-
ent colors, like three blues and three reds, like that, but
then, there is not the same amount of the same colors,
because there is two and three.

48 Sibel
(Teacher
Researcher):

Huh, in each bag . . .

49 Blair: So it is almost impossible to get them the same, be-
cause if you like move this one for this one and you’d
have . . . [showing two groups: one with one blue chip
and four red chips and another with one red chip and
four blue chips]

50 Gabby: Wait how did you . . . [rearranging the chips into the
original groups—two blue chips and three red chips;
two red chips and three blue chips—and starting to
count] there is, one . . . wait, one, two, three, four. No,
wait . . . Wait . . . wait wait three, four, five. So . . . so
there is five. There is ten times that you can get the
same, and then . . .

In this task of designing a new fair game with five chips in each bag, the role of
the computer was not directly useful in making a shift in students’ reasoning about
uncertainty, but raised the need for further exploration. More specifically, interpret-
ing the results generated in TinkerPlots™ required an understanding of sample-to-
sample variability versus variability due to the chance setup since the simulation
outcomes in percent (with 1000 trials) were close enough to even, like 52%–48%
or 51%–49% or even occasionally 50%–50%. Therefore, a theoretical approach was
needed to distinguish whether the game was actually fair or not. The previous excerpt
illustrated how students’ talk, as well as teacher’s scaffolding, led to a new insight in
students’ reasoning about uncertainty. Especially, after Blair’s idea of comparing the
possible number of same color chips and the possible number of mixed color chips
(lines 43 and 47) and the questions posed by the teacher researcher (lines 44 and
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Figure 2.2. An illustration of Gabby’s way of counting the number of possible
mixed color chips they can get in the game.

46), Gabby seemed to have a new way of seeing the task by reflecting through taking
an outside perspective, which was considered as a dialogic switch (Wegerif, 2013).
Eventually, she found that there were 12 different ways to get two chips of the same
color, but there were 13 different ways to get two chips that were different colors.
This led her to conclude that, “there is one more chance that you will get [chips of
different colors].” The observed trajectory of students’ reasoning that led to this con-
clusion supports the link between the initial subjective approach used to decide the
fairness of the game, and the frequentist and classical approaches to probability.

2.6 Discussion and Implications

The research questions of this study were: (1) How does the combination of using
TinkerPlots™ and dialogic interactions in small groups promote students’ reason-
ing about uncertainty in making informal inferences about random events? (2) What
are the dialogic mechanisms that help support students’ reasoning in the joint activi-
ties? The research data were analyzed by focusing on the design element supporting
students’ informal inferential reasoning—tasks, tools, and scaffolds (student talk)
(Makar et al., 2011). This section first discusses the key findings from these analyses
as they relate to the subjective approach to probability, scaffolding (through tools and
talk), and themes of the dialogic processes. Then, implications for both teaching and
research are provided.

2.6.1 Three Emerging Themes in Promoting Students’ Reasoning about
Uncertainty

Subjective approach to probability. This research has addressed the call for more re-
search on investigating subjective probability and how students understand it (Jones
et al., 2007). The findings of the exploratory study attempted to build connections be-
tween different views of probability (classical, frequentist, and subjective) and imply
that focusing on subjective probabilities can strengthen the link between probability
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and informal statistical inference. In a Bayesian-like approach to informal statistical
inference adopted in this study, subjective probability is basically considered as, “a
person’s uncertainty about the occurrence of an event, about the consequences of
an action” (Huber & Huber, 1987, p. 304). From the analyses, it became apparent
that asking students to begin with a hypothesis (prediction) about the fairness of a
game and to rate their level of confidence in it helped them to develop their intuitions
leading to conceptualizing subjective probability. More specifically, the empirical
data obtained from simulating the game repeatedly were consistently used by the
students to revise both their initial hypothesis and confidence level (e.g., Episodes 2
and 3). When there was a higher uncertainty about the occurrences of the combined
events (‘same color’ and ‘mixed color’) in the empirical results (e.g., Episode 4), the
theoretical analysis of all possible outcomes of the combined events (i.e., counting
activity as seen in lines 40–50) provided students with additional insight about their
initial hypothesis. In this way, they were able to strengthen their level of certainty in
relation to the hypothesis about the fairness of the game.

Scaffolding (through tools and talk). TinkerPlots™ and talk played a major role
in scaffolding students’ reasoning about uncertainty at different stages of the Chips
Game Task. In particular, the episodes presented in this chapter show how student
talk was promoted and evolved to support their reasoning through the use of Tinker-
Plots™ software. While initially disputational and cumulative types of talk were ob-
served (lines 1–9 and 10–28), in later episodes students switched to exploratory talk,
offering explicit reasons for their arguments (e.g., lines 40–50; particularly in Blair’s
statements). As found in previous studies, it was this exploratory talk that helped
students shift their understanding of the problem. Note that Blair’s explicit reasoning
combined with support by teacher scaffolding led Gabby to count all possible out-
comes using the red/blue chips and then to change her mind about the fairness of the
game.

Throughout the task, TinkerPlots™ was central to students’ reasoning as it scaf-
folded their talk, including arguments and reasons, and peer interaction by enabling
them to collect a large amount of data very quickly and simultaneously see the results
in the plot while testing their initial hypothesis. The simulation data in TinkerPlots™
also stimulated students’ reasoning as they were updating their level of confidence
about their hypothesis (whether the game is fair or not). In designing a fair game
with five chips in each bag (Episode 4) particularly, the simulation results from re-
peated trials with a large amount of data in TinkerPlots™ helped one of the students
interpret the game as “roughly” fair. Her comment, “It feels like it’s as close as you
can because there is an odd like number in each bag,” suggested an uncertainty about
the fairness of the game to some extent, which then prompted the need for a the-
oretical analysis of all the possible outcomes to explain the small difference in the
occurrences of each combined outcome. Note that during this moment facilitated by
talk and software students needed to utilize all three views of probability (subjective,
frequentist, and classical) in order to initially recognize the uncertainty, then account
for it, and finally resolve it. For example, subjective interpretation of probability
came about when students drew upon their personal knowledge or belief to design a
fair game and updated their level of confidence based on data. So, at the same time
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they relied on frequentist interpretation of probability when they used the relative
frequency of each combined outcome in TinkerPlots™ simulations to test their ini-
tial hypothesis about the fairness. However, the observed ‘almost even’ results from
repeated trials led a student to question the fairness of their game. Then, an analysis
of sample space was needed as seen in the classical approach to probability.

Dialogic processes. In the detailed analysis of the episodes discussed in the pre-
vious section, two switches in perspective were noted from a dialogic approach in-
spired by Bakhtin when a moment of insight helped students shift their reasoning
about uncertainty. In lines 1–9, the switch in Gabby’s perspective was facilitated by
the listening to, and understanding, Blair’s justification of why the game could not
be fair. Hence the dialogic process behind this switch could be attributed to her abil-
ity to see from the perspective of a specific other (Wegerif, 2013). In a later episode
(lines 40–50) the dialogic switch in Gabby’s reasoning mediated by exploratory talk
and teacher scaffolding was interpreted as a result of her reflection by taking an out-
side perspective (Wegerif, 2013). Behind both switches in perspective is the dialogic
quality of the relationship between the students in the group. In these episodes, for
instance, we can see trusting, being open to, challenging and critiquing each other’s
ideas in a constructive way (as opposed to competitiveness), actively listening to each
other with understanding, and acknowledging a change of mind by appropriating the
perspective of the other.

2.6.2 Implications for Teaching

The emphasis on subjective probability and Bayesian inference in instruction at the
pre-university level is very limited or absent. On the other hand, promoting infor-
mal statistical inference at early levels of schooling is gaining attention as a result
of recent research findings. Subjective probability in the context of a Bayesian-like
informal statistical inference seems quite natural, and is worthy of more attention
to underpin the link between probability and informal statistical inference, which is
important to understand uncertainty. The results also show that students need to ex-
perience how different views of probability can be used to quantify uncertainty in
mathematics classrooms (see Section 6.1).

The interaction between the use of technology and student talk investigated with
a small group of high achieving students in this study is seen as effective for sup-
porting reasoning about uncertainty in making inferences. Promoting this interaction
in more typical classroom settings would entail explicitly teaching, discussing, and
practicing certain expectations for talking and using computer software for solv-
ing problems together as described and suggested by the previous studies conducted
in primary mathematics classrooms (Mercer & Sams, 2006; Monaghan, 2005). This
study extends these in illustrating how dialogic talk, computer tools and teacher scaf-
folding can support students’ informal inferential reasoning and understanding of
probability.
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2.6.3 Implications for Research

While several research studies have focused on students’ understanding of the re-
lationship between empirical and theoretical probabilities (Ireland & Watson, 2009;
Stohl & Tarr, 2002), the link between subjective, empirical, and theoretical probabil-
ities, which historically emerged in relation to each other (Shafer, 1992), has been
neglected. Thus, further research is needed on young students’ understanding of the
relationship between subjective probability and the other approaches to probability.

Finally, the study shows the importance of a dialogic approach inspired by Bakhtin
(1986) to explain the switches in perspectives when students have a new insight lead-
ing to reason about uncertainty. This dialogic perspective can add to the commonly
used theoretical approaches, such as constructivist and socio-cultural, in statistics
education research. Hence, future studies should seek to further investigate the ad-
vantages of dialogic approach in developing students’ conceptual understanding of
other statistical topics.
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Appendix 1: Chips Game Task Worksheet
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Appendix 2: Chips Game Task Worksheet Completed for Game 1 by
Flora, Gabby, and Blair.





CHAPTER 3

STUDENTS’ ARTICULATIONS OF
UNCERTAINTY IN INFORMALLY
EXPLORING SAMPLING
DISTRIBUTIONS
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Abstract

The uncertainty in making general conclusions about what is the “true”, long
run situation is a core idea of formal and informal statistical inference. We analyzed
students’ articulations of uncertainty during their first steps in exploring sampling
distributions in a TinkerPlots™ inquiry-based learning environment. A new “inte-
grated modeling approach” (IMA) was implemented to help students understand
the relationship between sample and population. We focused this case study on
two students (age 13, grade 7) who had previously participated in the Connec-
tions Project exploratory data analysis (EDA) activities. Over seven main stages,
the students’ articulations of uncertainty were shaped by two different views in the
way they observed and manipulated the sampling distributions: (1) a move from a
global to a probabilistic view and (2) a move from a local–deterministic to a quasi-
probabilistic view.

Keywords: Informal statistical inference; Sampling distribution; Modeling; Statis-
tics education; Statistical reasoning; Uncertainty
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3.1 Overview

Quantitative information is everywhere, and statistics are increasingly presented as a
way to add credibility to advertisements, arguments, or advice. Being able to prop-
erly evaluate evidence (data) and claims based on data is an important skill that all
students should learn as part of their educational programs. Given the prevalence
of surveys in media, statistically literate adults should be able to properly interpret
and evaluate messages that contain statistical elements (Gal, 2004). They have to be
aware that the meaning of certain statistical terms used in media reports of surveys
(e.g., random, representative, reliable, likelihood) may be different than their every-
day meaning. Furthermore, they need to have a sense of the power to draw reliable
statistical inferences from samples and be able to appreciate the purpose of such ac-
tivity. In this chapter, we address these issues, and in particular a key phenomenon of
articulations of uncertainty, with the help of data coming from the long-term design
and research Connections Project. In this project, children in grades 4–9 have been
performing statistical reasoning in an inquiry-based and technology-enhanced envi-
ronment. While looking at a pair of seventh graders exploring sampling distributions,
we describe the development of their ability to talk and reason about uncertainty.

3.2 Problem

The recognition that judgments based on sample data are basically uncertain is a key
idea of formal and informal statistical inference (ISI). Informal inferential reasoning
(IIR) includes various elements such as, accounting for, examining, controlling, and
quantifying the uncertainty resulting from drawing a random sample in order to infer
from it to a population (Pfannkuch, Wild, & Parsonage, 2012). To understand the
uncertainty involved in taking a sample, one needs to envision a process of repeated
sampling and its relation to the individual sample with the result of a sampling distri-
bution (Saldanha & McAllister, 2014). However, research suggests that students tend
to focus on individual samples and statistical summaries of them instead of how col-
lections of sample statistics are distributed (Saldanha & Thompson, 2002), and that
students tend to respond in a deterministic way while reasoning about data (Ben-Zvi,
Aridor, Makar, & Bakker, 2012). A significant challenge for statistics educators is to
enable students to develop a sense of the uncertainty involved in making conclusions
from a sample data to a population, and to encourage students to make connections
between a process of repeated sampling and the individual sample in order to under-
stand this uncertainty. In this chapter we describe our response to this challenge by
experimenting with the “Integrated Modeling Approach” (IMA).

3.3 Literature and Background

In this literature review, we first address the type of uncertainty we refer to in our
chapter in relation to formal and informal statistical inference. Second, with respect
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to the challenge of supporting students’ articulations about uncertainty while making
ISIs, we review studies on reasoning about sampling that show students’ difficulties
in dealing with that uncertainty. In responding to this challenge, we also describe the
technological tool that underpins the design of the activities of our research. Lastly,
we review two settings that have been used in the research to examine students’ IIR
and situate our learning environment in relation to those two settings.

3.3.1 Formal Statistical Inference

To learn about real world situations, we collect data and move “beyond the data in
hand to draw conclusions about some wider universe, taking into account that varia-
tion is everywhere and that conclusions are uncertain” (Moore, 2007, p. xxviii). In its
simplest form, the question of statistical inference deals with the manner of making
general conclusions about what the true, long run situation is actually like, based on
outcomes of a random sample that can be collected only once. Given only the sam-
ple evidence, the statistician is always unsure of any assertion he makes about the
true state of the situation. The theory of statistical inference provides ways to assess
this uncertainty and to calculate the probability of error in a particular decision. For
example, the probability of getting a statistic as extreme as or more extreme than a
specific one, given a specified null hypothesis can be calculated. For being able to
calculate such probabilities, it is necessary first to make connections between a statis-
tic that is derived from an individual sample and a process of repeated sampling.

3.3.2 Informal Statistical Inference (ISI)

In order to give students a sense of the power of drawing reliable inferences from
samples, and given that statistical inference is challenging for most students (Garfield
& Ben-Zvi, 2008), ISI and IIR have recently became a major focus of research (e.g.,
Gil & Ben-Zvi, 2011; Makar & Ben-Zvi, 2011; Makar, Bakker, & Ben-Zvi, 2011;
Pratt & Ainley, 2008). ISI is a data-based generalization, which does not involve
formal statistical procedures, that includes an articulated component of uncertainty
(Makar & Rubin, 2009). IIR is the reasoning process that leads to the formulation
of ISIs. IIR includes “the cognitive activities involved in informally drawing conclu-
sions or making predictions about ‘some wider universe’ from patterns, representa-
tions, statistical measures and statistical models of random samples, while attending
to the strength and limitations of the sampling and the drawn inferences” (Ben-Zvi,
Gil, & Apel, 2007, p. 2).

3.3.3 Sampling Distribution

Understanding the logic behind such ISIs includes “juggling” several ideas, such as:
random sampling, sampling variability and relationship between sample and pop-
ulation. However, students can hold contradictory ideas about these relationships:
(1) sampling representativeness—the expectation that a sample taken from a popula-
tion will have characteristics similar to that population; and (2) sampling variability—



60 STUDENTS’ ARTICULATIONS OF UNCERTAINTY

the expectation that different samples taken from a population vary from each other
and do not match the population (Rubin, Bruce, & Tenney, 1991). Students that hold
the first idea have almost an absolute certainty in relation to the sample representa-
tiveness of the population. Students that hold the second idea have a big uncertainty
in relation to the sample representativeness of the population. Rubin et al. (1991)
showed that senior high school students did not integrate these ideas in their rea-
soning about distributions of sample outcomes, but held instead one idea at a time
depending on the given task.

To integrate these contradicting ideas, students need to envision a process of re-
peated sampling (Shaughnessy, 2007) with the result of a sampling distribution—the
idea “that the values of a statistic are distributed somehow with a range of possi-
bilities” (Thompson, Liu, & Saldanha, 2007, p. 209). Engaging students with sam-
pling distributions might support an emergence of a probabilistic view—the ability
to make probability statements about sample statistics in order to control or quantify
uncertainty.

However, sampling distribution is one of the most difficult concepts in learning
statistics (Saldanha & Thompson, 2002). As a result of failing to develop a deep un-
derstanding of sampling distribution, students often develop a procedural knowledge
of statistical inference. Garfield, delMas, and Chance (2005) listed what students
should understand about sampling distributions including, for example, as sample
size (n) gets larger, variability of the sample means gets smaller, and students should
be able to interpret or apply areas under curve as probability statements about sample
statistics. They also listed what students should be able to do with this knowledge
about sampling distributions, such as describe the size of the standard error of the
mean and the likelihood of different values of the sample mean.

We suggest that in order to develop deep understanding of informal statistical
inference, students should be exposed informally first to ideas of sampling variability
and sampling distribution over several years starting at early age. Learning these
complex ideas in early years is enabled nowadays with technological advancements.
Next, we situate the rationale of the learning environment of this study by reviewing
a technological tool that guided the design of students’ activities, and two types of
settings used in previous studies to develop and study students’ IIR.

3.3.4 Learning in a Technology-Enhanced Environment

Technological advancements have led to numerous changes in statistical instruction,
including new school curricula that introduce advanced statistical concepts as early
as the elementary level (Franklin & Garfield, 2006). Technology enables students to
organize and represent data dynamically with less emphasis on calculations. Thus,
class discussions or activities may focus on “what if” questions by manipulating
graphs and instantly seeing the results (Chance, Ben-Zvi, Garfield, & Medina, 2007).
Using technology also enables students to experience and participate in the statistical
processes in tangible and dynamic ways, which are not available without technology
(Biehler, Ben-Zvi, Bakker, & Maker, 2013). For example, simulations can offer ways
to understand ideas of long-run patterns and random processes (Garfield, Chance, &



LITERATURE AND BACKGROUND 61

Snell, 2000). Several studies have demonstrated the advantage of dynamic and in-
novative technological tools, such as Fathom® and TinkerPlots™ (Konold & Miller,
2011) in developing students’ statistical reasoning and in supporting their compe-
tence in making general arguments via data-based evidence (e.g., Ben-Zvi, 2000;
Paparistodemou & Meletiou-Mavrotheris, 2008).

3.3.5 Research on Students’ Informal Inferential Reasoning

Two main types of settings have been used in the research literature to examine young
students’ informal inferential reasoning. The first, Exploratory Data Analysis (EDA)
is a learning environment in which students are engaged in real world data investi-
gations where they create surveys to study some question of interest (e.g., Ben-Zvi,
2006; Pfannkuch, 2006; Makar et al., 2011; Makar & Rubin, 2009). In a study by
Ben-Zvi (2006), fifth grade students collected and investigated real data about them-
selves using TinkerPlots™. Following the growing samples instructional heuristic
(Bakker, 2004; Ben-Zvi et al., 2012; Konold & Pollatsek, 2002), the students were
gradually introduced to increasing sample sizes in order to support their reasoning
about informal inference and sampling. The growing samples task design supported
students’ informal inferential and sampling reasoning by observing aggregate fea-
tures of distributions, identifying signals out of noise, accounting for the constraints
of their inferences, and providing persuasive data-based arguments.

The second setting is probability-based learning environments (e.g., Konold et al.,
2011; Pratt, 2000; Pratt, Johnston-Wilder, Ainley, & Mason, 2008), in which students
are engaged in manipulating chance devices, such as coins, spinners and dice. Such
settings emphasize how probability is used by statisticians in problem solving. For
example, 10-year old students who worked with the Chance-Maker microworld were
able to understand how empirical probability, theoretical probability and sample size
are related to drawing valid inferences (Pratt, 2000). In a study by Konold, Harradine,
and Kazak (2007) students built models using computer-based simulations, in order
to create reasonable approximations of phenomena, ones that take into account signal
and noise.

The first setting has a big potential to improve students’ use of data as evidence to
draw conclusions: When students work on topics close to their world, which makes
the task authentic and relevant, they can gain important insights into how statisti-
cal tools can be used to argue, investigate, and communicate foundational statis-
tical ideas. However, those settings might lack probabilistic considerations, which
are important for understanding the relationship between samples and populations.
The second setting might encourage and develop students’ probabilistic reasoning:
When students manipulate chance devices, they can easily build probability mod-
els of the expected distribution and observe simulation data of the model. Then, they
can compare simulation data and empirical data to draw conclusions. This strategy of
comparing simulated and empirical data introduces students to the logic of statistical
inference and emphasizes the key role played by chance variation in statistical infer-
ence. Probability settings, however, might lack aspects of authentic data exploration
and might exclude the relevance of the situation.
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The activities of this study were designed according to the “Integrated Modeling
Approach” (described below) to help students in understanding the relationship be-
tween sample and population. This approach intends to integrate these two types of
settings. In other words, IMA aims to support students’ IIR on authentic data while
taking into account probabilistic considerations.

The topic of informal inferential reasoning is not yet sufficiently examined in the
literature, and specifically lacks studies on the combination of probabilistic reasoning
and making ISIs in authentic contexts. This is the focus of the current study.

3.4 Method

This case study focuses on the question: How can students’ articulations of uncer-
tainty emerge while informally exploring sampling distributions in the integrated
modeling approach? In order to address this question, we closely followed the ar-
ticulations of a pair of seventh grade students (age 13) as they examined a sampling
distribution using the sampler in TinkerPlots™. This study is part of the longitu-
dinal design and research Connections Project (2005–2015; Gil & Ben-Zvi, 2011)
aiming to develop and study children’s statistical reasoning in an inquiry-based and
technology-enhanced environment for learning statistics in grades 4–9.

3.4.1 Participants

This study involved a pair of students (grade 7, aged 13), Shay and Liron, in a private
school in northern Israel. We selected them since they had high communication and
thinking skills which can provide a window to their statistical reasoning. They had
already participated in two Connections Project experiments. In fifth grade (age 11,
2010), they collected and investigated data about their peers using the first version of
TinkerPlots™. Following the growing samples heuristic (Ben-Zvi et al., 2012), the
students were introduced gradually to samples of increasing sizes, in order to support
their reasoning about ISI and sampling. In sixth grade (age 12, 2011), they engaged
in both real world data investigations and model-based investigations using Tinker-
Plots™ chance devices in order to support their reasoning about ISI and sampling.
The first co-author observed and guided the students during eight sessions (about 80
minutes each) over a four-week period.

3.4.2 The “Integrated Modeling Approach” (IMA)

The IMA was developed to guide the design and analysis of experimental tasks (as
part of Manor’s Ph.D. study) to help students learn about the relationship between
sample and population. It is comprised of data and model worlds. In the data world,
students collect a real sample, frequently through a random sampling process, in or-
der to study a particular phenomenon in the population. Students choose a research
theme, pose questions, select attributes, collect and analyze data, make informal in-
ferences about a population and express their level of confidence in the data. Students
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also begin to model real world phenomena using statistics by moving from real world
questions to statistical ones. However, they do not necessarily account for probabilis-
tic considerations (e.g., the chance variability that stems from the random sampling
process). In the model world, students build a model (a probability distribution) of
an explored (hypothetical) population and produce data of random samples from this
model. Hence, they pay attention to a model and to the random process that produces
the outcomes of samples from this model. Due to randomness, the details vary from
sample to sample, but the variability is controlled. That is, given a certain distribution
of the population, the likelihood of certain results can be estimated.

In the IMA learning trajectory, students iteratively create connections between the
two worlds by working on the same problem context in both worlds. They begin their
exploration in the data world (the first dotted trajectory in Figure 3.1) by choosing
a meaningful research theme, formulating a question, making an initial conjecture
based on their contextual knowledge, building a questionnaire, planning how to draw
a sample and collecting real small sample data (represented by a small dotted circle
in Figure 3.1). While exploring the sample data they start making sense of it and
search for typical characteristics or trends in the data to make ISIs. In the end of this
part, they make a second version of their conjecture (the second triangle in Figure
3.1) about the population based both on their contextual knowledge and the sample
data results.

As a motivation to move to the model world, the students are asked to express
their level of confidence in the sample data that they had collected in relation to the
second version of their conjecture and to consider what is the minimal sample size
needed to draw reliable inferences about the population with a reasonable confidence
level. At this point, the students are first introduced to the model world. They are
told: “Imagine you were almighty and could know what characterizes the population.
What do you think a random sample from this population would look like? Could
you find in this imaginary world the minimal sample size that could represent the
population well?”

To do that, the students begin their exploration in the model world (the first lined
trajectory in Figure 3.1). They build in TinkerPlots™ a model of the hypothetical
population according to their second version of their conjecture and then they sim-
ulate sample data from this model. They explore the variability between simulated
samples, compare them to the model and gradually enlarge sample size to reduce
the variability between samples. Agreeing on the minimal sample size by which they
can draw conclusions with confidence, they move again to the data world (the sec-
ond dotted trajectory in Figure 3.1) to collect real sample data of that size. In the
data world, they collect more sample data and formulate the third version of their
conjecture (the third triangle in Figure 3.1) about the population based on both their
contextual knowledge and the second sample data. They also explain their level of
confidence in the data based on what they have learned in the model world.

The continuous trajectory in Figure 3.1 describes integrative transitions between
the worlds which might occur to improve the model in relation to different issues,
like the dependency between attributes in the model, the shape of distributions of
attributes in the model. Our hypothesis is that the IMA can support students’ de-
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Figure 3.1. The Integrated Modeling Approach (IMA) model.

velopment of reasoning about uncertainty when making ISIs by experimenting with
transitions and building connections between the two worlds.

A central feature of the IMA is the use and the study of TinkerPlots™ (Konold &
Miller, 2011), a dynamic interactive statistics software developed to support young
students’ statistical reasoning through investigation of data and statistical concepts.
TinkerPlots™ is designed in a “bottom up” manner; that is, it builds on young learn-
ers’ previous knowledge (Konold, 2002). Using TinkerPlots™, young learners can
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start exploring data and creating their own graphs without having previous knowl-
edge of conventional graph types. Unlike other software, in which students choose
from a menu of ready-made plots, in this software, students can organize their data
using three simple operations: ordering data according to the variable values, sepa-
rating data into categories, and stacking data.

Using the software, the inquiry process usually does not end with the creation
of one representation. The dynamic nature of this software encourages learners to
explore data in different repeated representations, testing various hypotheses. In this
way, the tool encourages reasoning about data during comparison of distributions,
examination of correlations between variables and identification of trends.

TinkerPlots™ also includes a “sampler”, which allows learners to design and run
probability simulations. The sampler allows learners to build a data distribution of
a population and draw random samples from this population in an animated visual
way: The items are removed one by one from the population distribution to the sam-
ple distribution. Learners can then plot the samples’ results, giving a visual represen-
tation of the outcomes over many samples.

By using a probabilistic simulator, such as the one in TinkerPlots™, students
have an opportunity to explore relationships between data and chance (Konold &
Kazak, 2008) by means of one technological tool. They can learn about the sample
data using data exploration tools and build a hypothetical probabilistic model of the
population from which the sample was taken. They can then examine the sample
results in relation to this hypothetical model.

3.4.3 Data and Analysis

We performed a retrospective analysis after each session (to re-direct the next ses-
sion) and also after the entire teaching experiment was completed. Data collection
included students’ responses1 and gestures (captured using Camtasia), researchers’
observations, and students’ artifacts (e.g., data representations that students drew).
All students’ verbalizations were carefully transcribed. Interpretive micro-analysis
(e.g., Meira, 1998)—a microgenetic method (Chinn & Sherin, 2014)—was used to
analyze the data. It is a systematic, qualitative and detailed analysis of the tran-
scripts, which takes into account verbal, gestural, and symbolic actions within the
situations in which they occurred. The validation of the data analysis was performed
within a small group of statistics education researchers (including the co-authors).
The researchers discussed, presented, advanced, or rejected hypotheses and interpre-
tations, and inferences about the students’ reasoning and articulations. The goal of
such an analysis was to infer students’ articulations of uncertainty as they explored
the sampling distribution. Initial interpretations grounded on data were reviewed by
the researchers and triangulated by a group of expert and novice peers. During these
triangulation meetings, hypotheses that are posed by the researchers were advanced

1All students’ conversations were originally said or written in Hebrew, and have been translated for this
chapter. As part of the micro-analytic study, we closely examined the meaning of every word to make sure
the translation was as close as possible to the original intention of the contributor.
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and/or rejected, until a consensus was reached. Triangulation was achieved only af-
ter multiple sources of data validated a specific result (Schoenfeld, 2007) to achieve
“trustworthiness” (Lincoln & Guba, 1985).

3.4.4 The Setting

In the current study, the actual learning trajectory (a total of about 11 hours, Ta-
ble 3.1) was comprised of four activities that were designed according to the IMA.
In the data world, the students planned a statistical investigation. They chose a re-
search theme, posed a question, formulated a hypothesis, and decided on the sam-
pling method and sample size (Activity 1). In the model world, they built a hypo-
thetical TinkerPlots™ model for the distribution of the population based on their
research hypothesis (Activity 2). In order to encourage the students to examine the
connections between the two worlds, they were asked “what if” questions about op-
tional real data results while they were exploring the sampling distribution informally
(Activities 2 and 3). Finally, the students explored data and models in both worlds
by examining the real sample results in relation to their hypothetical models of the
population (Activity 4).
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3.5 Results

We focus on the students’ discussions during one episode of exploring sampling
distributions during Session 2.3 (described in Table 3.1). In order to put this episode
in context, we provide first a general description of students’ responses during the
entire learning trajectory.

3.5.1 General Account

Preliminary interview. In order to evaluate the students’ starting point, we inter-
viewed them about their participation in the Connections Project in the previous year.
During this interview the students discussed informally the sample size required to
draw reliable conclusions about a population and levels of confidence in results from
that sample. While Shay argued that a large sample (bigger than 100) is required to
infer reliably about a population of 600 students, Liron thought that a sample of 100
students (or 1/6 of the population) was sufficient. Shay explained that one cannot rely
on small samples since repeated sampling would yield very different results, while
the differences between larger samples would be significantly smaller. Accordingly,
they informally estimated their confidence level in a sample size of 1/6 of the popula-
tion: Shay—30% and Liron—75%. They concluded the interview by disagreeing on
the sample size needed for reliable conclusions: Shay—at least 1/2 of the population,
and Liron—1/3 to 1/2 of the population.

3.5.2 Activity 1. Learning about Teenagers: from a Sample to Popula-
tion.

In the first activity, we asked the students to plan a research project related to teenagers
about a subject that interested them.

Session 1.1: Research Plan (Part I). Choose a research theme and pose research
question and survey questions. Shay and Liron decided to study music practices
and preferences among teenagers. They suggested seven research questions and dis-
cussed how to formulate them while raising practical considerations. For example,
they discussed two optional formulations: “How much time do you listen to music
each day?” versus “How often do you listen to music?”

Choose population, sampling method and sample size. While Liron was interested
in studying the topic among seventh grade students in their school, Shay preferred
a larger population made of seventh graders that were “culturally similar.” Liron,
a guitar player, explained that knowing the music preferences of his peers would
direct him to play their favorite music type and become more popular among his
friends. Ultimately, Shay and Liron decided to study the topic among seventh grade
students within their school (about 120 students) and take a random sample of an
equal number of children from each seventh grade class, but did not agree about the
sample size.
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Session 1.2: Research Plan (Part II). Formulate a hypothesis about the expected
results of the research. Liron and Shay were asked to describe their hypothesis ver-
bally and visually. They created bar graphs for one or two attributes according to
their hypothesis. For example, they separately drew bar graphs of the favorite music
types among seventh grade students in their school (Figures 3.2 and 3.3).

Figure 3.2. Shay’s hypothesis regarding favorite music types.

3.5.3 Activity 2. Music among Teenagers: from a Population to Samples

Session 2.1: Model in TinkerPlots™ (Part I). After a short introduction to mod-
eling and simulation in daily life, we asked the students: “Imagine that you had the
power to find out what characterizes the music listening habits of teenagers and had
findings about all the seventh graders in your school: a) What will the distribution of
these findings look like? b) What will a random sample from this distribution look
like?” Using the TinkerPlots™ sampler, Shay and Liron built a model that included
seven attributes according to their hypotheses. They used the “stacks” device2 and
added the “show count” option (Figure 3.4).

At this point, Shay had a clear plan regarding the method of using the Tinker-
Plots™ sampler, while Liron was still trying to understand the meaning of the model
they built (Figure 3.4). Before they drew a random sample from this model, Shay
explained that they had created a simulated database of 30 cases (note that the stacks

2The TinkerPlots™ stacks device is used for entering a large number of duplicate elements. In a stacks
device, one can simply edit the labels along the bottom axis. Then, using a cursor, one can drag the top of
each stack to adjust the number in that stack and can also choose the “Show Count” option and edit the
number that appears above each element type.
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Figure 3.3. Liron’s hypothesis regarding favorite music types by gender.

Figure 3.4. Shay and Liron’s first model in TinkerPlots™.

in each device sum up to 30) to examine whether a sample size of half the population
would be similar to the population. They drew random samples of size 15 and com-
pared the attributes of the sample to the database one at a time. When Shay found a
discrepancy between the sample result and the database, he claimed that the sample
was not reliable.

Liron wondered how the sampler would represent the relationship between two
attributes (musical instrument and frequency of listening to music). Shay explained
to him that there was no reason to expect a relationship between the attributes be-
cause they had not yet constructed a relationship model (Figure 3.4) and the sampler
had drawn the data randomly. Furthermore, Liron seemed to be confused between
real data and simulated data. For example, having explored several attributes in the
simulated sample, he argued that his hypotheses were correct. Shay disagreed: “It’s
not true because we haven’t yet done the research. It is obvious that if we take a sam-
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ple from our hypothesis [model], it will be similar to our hypothesis.” Liron agreed,
with a bit of confusion.

Session 2.2: Model in TinkerPlots™ (Part II). Shay and Liron started building a
second model with seven attributes and 30 cases, but this time they added relation-
ships between attributes according to their hypotheses. After they had entered two
attributes (gender and favorite music type) to their model (Figure 3.5), Shay drew a
random sample of size 15 (Figure 3.6).

Figure 3.5. Shay and Liron’s second model with two interrelated attributes.

Figure 3.6. A random sample of size 15 taken from the second model (Figure 3.5).

They were surprised to observe that the sample (Figure 3.6) had 13 boys and
two girls although they had built the model with an equal number of boys and girls
(Figure 3.5). After drawing another sample, and again obtaining a similar result, they
ran the sampler slowly and discovered that the sampler was drawing samples with
replacement. Shay insisted on changing the sampling method to sampling without
replacement. They then continued to draw more samples, each half the size of the
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population, while increasing the number of cases in the model. Shay assumed that,
“the bigger the population is—the smaller relatively is the sample size you have to
take to learn about the population.”

Session 2.3: Sampling Distribution (The Focused Episode). Exploring Samples
from the Model. Shay and Liron built a third model with seven interconnected at-
tributes according to their hypotheses. They entered 120 cases into the model (iden-
tical to the real population size) and examined whether a sample size of half the
population would be similar to the model. They explained that in reality they in-
tended to collect 40 to 60 cases (Liron) or 60 cases (Shay). They first drew a sample
of size 120 without replacement (all 120 cases of the model, see Figure 3.7) to check
if their model was compatible with their hypothesis. They then drew several random
samples of size 70 from the model and explored the sample plot of favorite music
type. To assess their confidence level in samples of size 70, they compared these
sample plots to the population plot (Figure 3.7) to decide if they could learn from
them about the hypothetical population.

Figure 3.7. A random sample without replacement of size 120 taken from the third
model.

Exploring the sampling distribution. At this point, the interviewer reminded Shay
and Liron that there is a TinkerPlots™ option of simultaneous collection of data
from many samples. They decided to collect 100 random samples and explore the
sampling distribution of the statistic: Percentage of students whose favorite music is
rock (see a detailed analysis of this exploration in Section 6.5.5 below).

3.5.4 Activities 3 and 4

To refine students’ understanding of the connections between the two worlds, they
were given a third activity. The students were asked to study a hidden TinkerPlots™
sampler with unknown data distributions (built by two other students) by exploring
random samples drawn from this sampler. The idea behind this activity was to make
a clearer distinction between data from the model and real data.
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In the last activity Shay and Liron compared the real sample data of size 60 (col-
lected by them) with their hypothesis. In response to the interviewer’s suggestion to
use the sampling distribution, Liron determined an interval of proportions he agreed
to accept as “correct results.” Based on both the real sample results and this interval,
he decided to accept his hypothesis. As for the results which fell outside the interval,
Liron said that, “if it’s a little far out of the range, then that’s fine, but it’s not really
a conclusion.” Shay said that he had learned from the simulations that a sample size
does not depend on a percentage of the population, “the bigger the population is—the
more similar to the population a certain percentage of the population will be.”

3.5.5 Main Results (Session 2.3)

We identified seven key stages (Table 3.2) in Shay and Liron’s articulations of uncer-
tainty. These stages present the ways they accounted for, quantified, controlled and
decreased uncertainty while exploring the sampling distribution.

Table 3.2
Seven Stages in the Students’ Articulations of Uncertainty

Stage Stage Title
1 Accounting for uncertainty in sampling representativeness
2 Accounting for uncertainty due to sampling variability
3 Shay’s discovery: Quantifying uncertainty
4 The students’ views of uncertainty collide
5 Control of uncertainty: Better chance, but is it accurate enough?
6 Decrease of uncertainty by increasing sample size
7 Liron’s and Shay’s conclusions: Quasi-probabilistic vs. probabilistic

view

Stage 1: Accounting for Uncertainty in Sampling Representativeness. Shay
and Liron started this episode with a deep interest in examining whether a sample
size of half the population would be similar to the whole population. They were
curious to know the required sample size in order to make good conclusions about the
population, a sample which they were actually going to collect. They did not succeed
to resolve this issue by comparing a few repeated samples drawn from the model with
the model, and therefore decided to explore a sampling distribution (Figure 3.8) of
100 random samples, each of size 70, of the statistic: the percent of students whose
favorite music is rock (%ROCK in abbreviation). But, they first drew a plot of a sample
of size 120 without replacement (i.e., all the 120 cases of the model; Figure 3.7), and
saw that the %ROCK was 20% in their model.

They examined the representativeness level of samples size 70 by using two mea-
sures in the sampling distribution (Fig 3.8): a) The difference between the mean of
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Figure 3.8. A %ROCK sampling distribution of 100 samples size 70.

the sampling distribution (the blue triangle) and the %ROCK in the model (20%); and
b) the modal value (20%), and commented:

01 Shay: Indeed the mean is close [to the original %ROCK], but
this is obvious.

02 Liron: You are like, yes, yes [cynically referring to what he
thinks Shay is going to say]: “I’m going to prove that
he [Liron] is wrong.”

03 Interviewer3: What do you see here [Figure 3.8] now? Can you de-
scribe it?

04 Liron: That the mean is correct.
05 Shay: The mean will obviously be correct.
06 Liron: [Referring to interviewer’s question in Line 03] That

most of the tests [samples] showed that . . . the percent-
age of kids who like rock is 20, which is 20 percent of
kids who like rock.

07 Shay: But that is obvious, Liron.

Unlike Shay, who claimed that the results were self-evident, Liron expressed high
confidence in the representativeness of samples size 70. He was satisfied that the
sampling distribution’s mean was close to the original %ROCK and that the mode was
equal to it.

Stage 2: Accounting for Uncertainty due to Sampling Variability. The inter-
viewer nudged students to further reason about the sampling distribution (Figure
3.8):

3The interviewer in all the quotes is the first co-author.
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18 Interviewer: . . . What can you learn from this [Figure 3.8]?
19 Shay: I say that it is not accurate enough.
20 Liron: . . . So each piece of data here, every time it . . . that we

made a new mixing [took a new sample], once it was
27%, another time it was 30%, each time it was some
other percent, but it was 20% the most.

26 Interviewer: And if it was 19%, would that be right or not? Or 18
[percent]?

27 Liron: 18, no [would not be right].
28 Shay: 19 [percent] is still reasonable, but let’s say 18, and 23,

that would be going over the line.
29 Liron: 20 is, however, correct.
30 Shay: And there are quite a few [results that are 23%].

Liron first clarified to himself the simulation process that led to the sampling
distribution at hand, and concentrated on the signal of the sampling distribution.
Unlike him, Shay was more attentive to the resultant “noise” [Line 19]. Trying to
sway Liron’s attention from the mode, the interviewer asked him about a range of
results, but he remained focused on the equality between the mode and the original
%ROCK and provided only deterministic utterances [Line 29] (in the sense of Ben-Zvi
et al., 2012). Being aware of sampling variability, Shay accounted for the uncertainty
involved in this process [Lines 28 and 30].

Stage 3: Shay’s Discovery: Quantifying Uncertainty. In response to Shay’s re-
ferral to reasonable results [Lines 28 and 30], the interviewer suggested to group the
data into intervals instead of discrete categories. The students used dragging to create
a sampling distribution presented as continuous style vertical bins (Figure 3.9), and
added relative frequencies in percentages.

Figure 3.9. A continuous style vertical bins sampling distribution with percentages,
sample size 70.
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33 Interviewer: Tell me what you see here [now in Figure 3.9]?
34 Liron: But in fact I have proved what I have done!
35 Interviewer: How have you proven it?
36 Liron: 33% is incorrect, then.
37 Interviewer: No. What do you see here?
38 Shay: Oh [with excitement]! Here the percentages are the

probability that it will come out like this [that one sam-
ple will fall in this interval]!

39 Liron: [uncertain] What?

The new representation (Figure 3.9) led Shay to find a way to quantify the un-
certainty involved in the modeling and sampling process. He correctly interpreted
the percentages of a certain bin as the probability that a sample result will fall in
the interval covered by that bin [Line 38]. Unlike him, Liron was not pleased with
this new representation because the modal bin included several values rather than
just 20% (the value of the original %ROCK). He preferred the former representation
(Figure 3.8) since the mode there was equal to %ROCK, and therefore changed the
graph (Figure 3.9) back to the previous one (Figure 3.8).

Stage 4: The Students’ Views of Uncertainty Collide. Liron changed manually
(rather than by dragging) the interval width to one (Figure 3.10). They then used
Shay’s discovery from the previous stage to quantify the probability that a sample
statistic will be equal to the original %ROCK:

Figure 3.10. A sampling distribution with bin width of one, sample size 70.

51 Shay: Pay attention [Figure 3.10]: The probability. . . that it
[the sample statistic] will be correct is. . .

52 Liron: 22%!
53 Shay: 22%, and that’s not a lot.
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55 Liron: Why not a lot? Everyone [most of the data] however is
here [points at the center]. . . But this means that. . . that
it happened the most times.

62 Shay: If we take one hundred samples it [the mode] will ob-
viously come out close.

63 Liron: It happened most often, right? So, think about it for a
second: If it happened most often, every time that we
mixed [took a random sample], it most often produced
data that is in these percentages.

68 Interviewer: Right, but is this “most often” significant in relation to
other [results]? 21 [percent] also appears a lot.

69 Shay: No. No. [Not significant]. A probability of 22%!
70 Liron: But this is the idea. That it [the 20–20.999 interval in

Figure 3.10] is the largest. It occurred more times!
71 Shay: Listen, Liron. A probability of 22% is ridiculous.

The students’ interpretations of the probability of 22% exposed their different
points of view on likelihood and confidence: Liron increased his confidence in sam-
ples of size 70 since the mode was equal to the original %ROCK and he could state the
likelihood that samples of size 70 will be equal to the original %ROCK. His interpre-
tation of the sampling distribution was deterministic and local by focusing only on
the “correct” result without considering that a probability of 22% is relatively small.
For Shay, who viewed this sampling distribution globally (in the sense of Ben-Zvi &
Arcavi, 2001) and probabilistically, the 22% probability further decreased his confi-
dence in random samples of size 70.

Stage 5: Control of Uncertainty: Better Chance, but is it Accurate Enough?
Trying to move the students’ focus from a single “correct” result to a range of results,
the interviewer asked whether getting 22% in a random sample will be too far from
the original %ROCK. This question led to the following discussions.

77 Shay: But Liron, let’s say that up to three should be
enough. . .

78 Interviewer: What is “up to three”?
79 Shay: Of, an inaccuracy of up to three is good enough. Write

down three [asking Liron to change the bin width to
three, Figure 3.11].

81 Shay: And the probability is one-third. . . If we are satisfied
enough [compromise] with [a range of] 18 to 21 [rather
than precisely 20].

The interviewer tried to understand why Shay said that the interval 18 to 21 had
“an inaccuracy of up to three” [Line 79]. In response, Shay explained that it was
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Figure 3.11. A sampling distribution with bin width of three, sample size 70.

close enough to the original %ROCK. The interviewer clarified that a deviation of
three from 20% means plus or minus three, (i.e., 17–23%). Shay then created several
graphs (Figures 3.12–3.14) trying to get a symmetrical range around the 20% by
using the dragging option in TinkerPlots™ but did not succeed.

Figure 3.12. A sampling distribution with minimum value nine, sample size 70.

102 Shay: Come on. It is more or less. Everything is more or less
a probability of one-third. It is less than fifty and I’m
not satisfied with it [Figure 3.12].
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Figure 3.13. A sampling distribution with bin width of five, sample size 70.

109 Shay: 18 to 23. What do you think, Liron? It’s a better chance
[62%], but is it accurate enough? [Figure 3.13].

110 Liron: Well, let it go, you see? The highest result will always
be between 18 and 23 [Figure 3.13].

Figure 3.14. A sampling distribution with minimum value seven and maximum
value 32, sample size 70.

115 Shay: It is obvious that the probability [of the center interval
around 20%] will be the highest. The probability that
it would turn out correct is higher than the one that it
would turn out incorrect. The question is how much
higher it is.
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Liron strengthened his confidence level by observing that the center bin that in-
cluded the value of the original %ROCK had large probability in all these graphs. Shay
examined each graph differently (Figures 3.12–3.14): He observed the probabilities
that a sample fell in different ranges around %ROCK in order to control the uncer-
tainty and decrease it. The students’ different perspectives made Shay articulate the
key issue in examining this sampling distribution: What is the probability of the cen-
ter bin that I accept as certain enough to use a sample size 70? [Line 115] When Shay
eventually created another graph (Figure 3.15), the interviewer suggested to sum the
percentages of the three center bins (20± 3) to get 75%.

Figure 3.15. A sampling distribution with bin width two, sample size 70: The
probability of the 17–23 range is 75%.

129 Shay: Even if the chance is 75 [%]. . . [Figure 3.15]
130 Liron: Wait, it [referring to the 19–20.999 bin] is the lowest

here!
131 Shay: There is a 25% chance that it will not turn out right,

and I cannot take a risk of 25%.
132 Liron: Stop! Then it is not correct, right? Because it is sud-

denly lower [than the frequencies of other intervals].
[Cursing], and it is 20.

133 Interviewer: [Correcting Liron] These are all the numbers that are
19 to 21.

134 Liron: That is not correct.
136 Shay: Not to mention the fact that it is far. . . And if there is a

deviation of three to four percentages, than it could be
meaningful because it could bypass other data [type of
music].

Examining the new sampling distribution (Figure 3.15) with a probabilistic view,
Shay focused on the probability of getting “wrong” results and defined it as a risk he
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refused to take. He was aware of the negative aspect of the risk [Line 131] and the
compromise he had to make by accepting a large deviation from the original %ROCK
[Line 136]. Liron, focusing mostly on the center bin height was upset to find that
it was not the mode [Line 130], which he rejected. This caused an increase of his
uncertainty. He struggled to find a solution to this problem, and the interviewer tried
to move his focus from the absolute height of the bins to their relative frequency:

144 Interviewer: Shay talks about other things. He computes the per-
centages here.

145 Shay: [These percentages are] the probability that it would
turn out accurate and accurate enough. It is not suffi-
cient that it is not accurate enough, it is also a proba-
bility that is not sufficiently high.

146 Shay: Let us decide on the deviation that we agree to accept.
147 Interviewer: How much deviation can you accept, Liron, from

twenty?
148 Liron: Two at the maximum. I mean two deviations.
149 Shay: I would compromise on three.

In trying to explain his reasoning, Shay refined his articulations of the relations
between probability, accuracy and certainty [Lines 145–146]. He realized that for
decreasing uncertainty, there was a need for two related conditions: (1) Small range
of values of statistics around the original %ROCK; and (2) High probability to get a
sample statistic in that range. At the end of this stage, Shay determined that a sample
size of 70 was “unequivocal not enough” [Line 168] and therefore increased the
sample size to 100 to decrease his uncertainty.

Stage 6: Decrease Uncertainty by Increase of Sample Size. The students drew
100 Samples and created a sampling distribution for sample size 100 (Figure 3.16).

188 Liron: I was right. I was right [observing Figure 3.16].
189 Shay: That still doesn’t mean that you were right.
192 Liron: 49 [%]. It’s almost 50 [%]. It’s good enough.

Their different perspectives are clear now: Observing the new sampling distribu-
tion based on samples size 100 (Figure 16), Liron increased his certainty since 49%
of the samples were almost equal to the original %ROCK. Shay was unhappy with this
small probability and kept experimenting by changing the bin width to one (Figure
3.16).
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Figure 3.16. A sampling distribution of 100 random samples, size 100, bin width
two.

Figure 3.17. A sampling distribution with bin width one, sample size 100: The
probability of the 18–22 range is 86%.

201 Shay: We said that if it were in the range of two [deviations
from 20%], then it would be accurate enough. So, I
take all those that are in the range of two and add them
to examine the chance that this will turn out accurate
enough [Figure 3.17].

202 Liron: Oh, we add from 18 to 22?
203 Shay: Yes.

Shay explained why he changed the bin width in the graph to one [Line 201]: He
wanted to find the probability to get a result with an inaccuracy of two deviations,
which turned out to be 86%.
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205 Interviewer: Then what is this 86%?
206 Shay: The chance.
207 Liron: Which is much higher than 50% [49% in Figure 3.16,

Line 192].
208 Interviewer: The chance of what?
209 Shay: It was 75%4 previously [75% in Figure 3.15, Line

129].
210 Interviewer: 86% is the chance of what?
211 Shay: That it will be accurate enough.
212 Liron: As long as these 20% are the highest, I have proven

what I have said.
213 Interviewer: But you could receive a different sample. You could

receive 23 or 21. How would you explain to me that it
is more likely that I would receive 20? And very likely.
25% is not enough for me.

Shay and Liron responded differently to the interviewer’s question about the mean-
ing of the 86% in Figure 3.17. Shay noticed that the probability of the center bins
increased from 75% to 86% as the sample size increased from 70 to 100 [Line 209].
This articulation is part of his ongoing and consistent effort to find a probability that
would turn out accurate enough to make him more certain. Liron, for the first time
in this episode, seems to refer to the relative frequency as a chance [Line 207], but
immediately afterwards he returns to focus on the 20% as a mode [Line 212]. The
interviewer tried to sway Liron from deterministic to probabilistic reasoning [Line
213]. As a result, and with the interviewer’s mediation, Liron described a range of
results he agreed to accept, exemplified how he would make a decision if he got
a certain result of a real single sample, and accounted for chance in the sampling
distribution.

228 Liron: If we say that in a real sample, if we examine the chil-
dren, and receive 19% children that like rock, then in
my opinion it is all right. This is because it is amongst
the highest chances.

229 Interviewer: What does “all right” mean to you? What will you re-
ally believe?

230 Liron: To 20 [the percentage of students whose favorite type
of music is rock].

4Shay did not realize that on samples size 70, 75% was the probability of obtaining a statistic within a
range of three deviations from the original %ROCK (17–23) and not of two deviations. On samples of
size 100 he obtained a probability of 86% of getting a statistic within a range of two deviations from the
original %ROCK (18–22).
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Stage 7: Liron’s and Shay’s Conclusions: Quasi-Probabilistic vs. Probabilistic
View. The interviewer asked each one of the students to summarize his conclu-
sions. Liron explained his considerations about making decisions from a hypothetical
single sample result.

252 Interviewer: When will you say that your hypothesis was correct?
253 Liron: I believe only this and this and this [point to 19–21 bins

in Figure 3.17].
254 Interviewer: And if 18% comes out, you wouldn’t believe your hy-

pothesis?
255 Liron: I would sort of believe my hypothesis because it was

close enough. As if, a range that, I, it is as if, uh . . . it
is like saying maximum minimum. Okay?

257 Liron: Minimum is 19 or 21. That means that my hypothesis
is really correct. Not by a 100% but really correct.

258 Interviewer: By what percent?
261 Liron: I don’t know. I have no idea. I am not so good at per-

centages. In my opinion, 18 or 21 is the maximum.
262 Interviewer: That you would be ready to be wrong?
263 Liron: Which means: My hypothesis is quite correct, but it

was not really, it was not in the right direction. This is
like 50%. I was half-right and half-wrong. A range of
17 or 23, I am not correct at all, I can already tell you
that my hypothesis was wrong.

Liron explained how he would decide whether to accept or reject his hypothesis
according to different real sample results while using phrases like “sort of believe”
and “quite correct”, which reflect uncertainty in his articulations. However, in his
explanation, he refers only to the difference between the statistic’s value and the
original %ROCK and not to the probabilities or the frequencies of results based on the
sampling distribution (like he started to do before). Therefore, we think that in the
former stage he held a quasi-probabilistic view when he accounted for chance in the
sampling distribution.

Shay explained his conclusions from the exploration of the sampling distributions.

266 Interviewer: Shay, what do you think? When would you believe and
what would you not believe?

267 Shay: Okay, Let’s say that I am ready to accept a deviation of
two percent. This is a total of 86%, Okay? This leaves
me with an error of 14%.

269 Shay: 14% [chance] that it would turn out incorrect. I refuse
to take a 14% [error or risk].
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270 Interviewer: Is this too much?
271 Shay: That wouldn’t help! As hard as we may try, we must

take all the data to be certain.

Shay described his probabilistic considerations about the ability to make conclu-
sions from sample to population based on what he has learned from examining the
two sampling distributions. Using rich and high level of expressions, Shay explained
the reasons for his high uncertainty while taking into account accuracy and risk level
and the connection between them.

3.5.6 Summary of Results

We summarize the results on Shay’s and Liron’s articulations of uncertainty sepa-
rately (as shown also in Table 3.3) because most of the time they “walked” in parallel
lines, with a few mutual influences.

Table 3.3
Summary of the Students’ Articulations of Uncertainty

Stage Stage Title Shay’s Position Liron’s Position
1 Accounting for uncer-

tainty in sampling rep-
resentativeness

Accounted for big un-
certainty as before be-
cause sampling repre-
sentativeness was ob-
vious for him

Accounted for small
uncertainty because of
sampling representa-
tiveness

2 Accounting for uncer-
tainty due to sampling
variability

Accounted for big
uncertainty result-
ing from sampling
variability

Focused on the mode
in the sampling
distribution being
equal to the original
%ROCK, and therefore
accounted for small
uncertainty

3 Shay’s discovery:
Quantifying uncer-
tainty

Quantified uncer-
tainty using relative
frequency of bins in
sampling distribution

Found it difficult to fo-
cus on the signal in the
sampling distribution
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Table 3.3 – continued from previous page
Stage Stage Title Shay’s Position Liron’s Position
4 The students’ views of

uncertainty collide
Observing likelihood
of 22% in samples
whose %ROCK was
equal to the original
%ROCK, decreased his
confidence level about
random samples of
size 70 because it was
only a likelihood of
22%

Observing likelihood
of 22% in samples
whose %ROCK was
equal to the original
%ROCK, increased his
confidence level about
random samples of
size 70

5 Control of uncer-
tainty: Better chance,
but is it accurate
enough?

Controlled uncertainty
by determining dif-
ferent ranges around
the original %ROCK
and accounted for the
probability that a sam-
ple will fall in that
range; Quantified un-
certainty by focusing
on the probability to
get “wrong” results
and defined it as a risk

Increased his confi-
dence level in samples
of size 70 while
observing graphs in
which the center bin
that included the value
of the original %ROCK
had large probability;
Decreased his con-
fidence level while
observing graphs in
which the center bin
was not the mode

6 Decrease of uncer-
tainty by increase of
sample size

Increased his con-
fidence level about
samples of size 100
but his uncertainty
remained too high be-
cause the probability
to get “wrong” results
was too big

Increased his confi-
dence level about sam-
ples of size 70 because
the likelihood for bins
that included the value
of the original %ROCK
was bigger than 50%

7 Liron’s and Shay’s
conclusions: Quasi-
probabilistic vs.
probabilistic view

Summarized his
considerations about
uncertainty taking a
probabilistic view

Summarized his
considerations about
making decisions
from a hypothetical
single sample result
referring only to the
difference between the
statistic’s value and
the original %ROCK
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Shay’s Articulation of Uncertainty: From Global to Probabilistic View. Shay
demonstrated a global view of the sampling distribution in the first two stages. He
was aware and certain of the signal in this distribution around 20%. But it was the
noise he noticed in the distribution that caused him to feel uncertain about the ability
to make conclusions based on random samples of size 70. Yet, he expressed his un-
certainty only in general terms, for example that “it is not accurate enough.” Only in
the beginning of the third stage, motivated by his deep curiosity to understand uncer-
tainty, he started viewing the sampling distribution probabilistically, which enabled
him to quantify the uncertainty.

At the third and fourth stages, Shay interpreted the bin heights as probability state-
ments about a sample statistic. At the end of Stage 5, he explained that he looked for
the “probability that it [%ROCK in sample size 70] would turn out accurate and ac-
curate enough.” But he realized not only “that it is not accurate enough, it is also a
probability that is not sufficiently high.” Then he determined that a sample size of 70
was “unequivocal not enough” and increased the sample size to 100 to reduce uncer-
tainty by getting smaller variability. For example, he realized that the probability of
getting a sample statistic in the range of plus minus two deviations is 86% in sample
size 100, larger than 75% in sample size 70. Although he did not remember that the
probability of 75% on samples size 70 was calculated for getting a sample statistic
in a larger range of plus minus three deviations, Shay was not surprised and even
expected to get a larger probability on larger samples. Thus, it seems that he under-
stood informally two key ideas regarding sampling distributions: (1) as the sample
size gets larger, the variability of the sample means gets smaller; and (2) the bins’
relative frequency represents the probability of the sample statistics (Garfield et al.,
2005).

Furthermore, when Shay tried to control uncertainty in the fifth stage, he deter-
mined a range of statistic values with an “error” of three deviations from 20%, found
the probability of obtaining a sample statistic outside of this range, and named it
“risk.” It seems that he thus described informally a measure of variability of sam-
pling distribution, similar to the formal standard error of the mean. He also described
the likelihood of different values of the sample %ROCK in order to quantify uncer-
tainty. In order to control and decrease uncertainty, he described the probabilities that
a sample will fall in different ranges around the original %ROCK. Therefore, we can
claim that he was able to use his knowledge about sampling distributions to describe:
a) the size of the standard error of the mean; and b) the likelihood of different val-
ues of the sample mean (Garfield et al., 2005). In some sense, Shay’s “discovery” of
how to control uncertainty by relating it to the probability of getting a certain statis-
tical result can be viewed as a first step towards understanding the reasoning behind
hypothesis testing.

Liron’s Articulation of Uncertainty: From Deterministic to Quasi-Probabilistic
View. Liron’s articulations were characterized with a local view of uncertainty in
the sampling distribution. He noticed from the beginning that most of the %ROCKs in
the sampling distribution were equal to the original %ROCK and that the mean of the
sampling distribution was very close to the original %ROCK. Focusing on these sig-
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nals, Liron expressed a very high level of confidence most of the time and sometimes
even an absolute certainty in samples of size 70. Liron’s consideration of one of two
possible conclusions (correct or incorrect) also demonstrates his deterministic view
of uncertainty (Ben-Zvi et al., 2012). The shift in his view happened during the fifth
and sixth stages: Following his discussions with Shay and observing Shay’s actions
and articulations, Liron widened his observations to an interval of results around
the value of the original %ROCK. When the students began observing a sampling
distribution of samples size 100, Liron referred to relative frequency in sampling
distribution but still was focused on the mode. With the interviewer’s mediation, he
expressed a quasi-probabilistic view when he accounted for chance in the sampling
distribution. But in the seventh stage, his decisions were based only on the values’
difference from the original %ROCK and there was no reference again to probabilities
or to frequencies.

3.6 Discussion and Implications

This chapter focuses on the question: How can students’ articulations of uncertainty
emerge while informally exploring sampling distributions using the integrated mod-
eling approach? To address this question we analyzed Shay’s and Liron’s articula-
tions of uncertainty in seven stages in which they explored sampling distributions
in the model world in order to find the minimal sample size on which they could
make ISIs in the data world. They struggled with the fundamental concept of sta-
tistical uncertainty in the process of making a statistical inference from a sample to
population.

The study sheds light on how young students were able to engage with the com-
plex idea of sampling distribution by encouraging them to articulate their uncertainty
in the context of making ISIs. Even students with statistical knowledge about theoret-
ical probability distributions find it difficult to make connections between theoretical
models and empirical distributions (Noll & Shaughnessy, 2012). Both of the students
understood that the exploration of the sampling distribution can help them decide on
the minimal sample size needed to draw reliable conclusions about the population.
Actually, their argumentation circled around the question of whether the sample size
explored was large enough or not. That is, they began to connect between repeated
samples that were drawn from a theoretical model and a single empirical sample that
they were about to collect. This finding strengthens the argument that one needs to
envision a process of repeated sampling to understand the logic behind ISI and the
relationship between sample and population (Shaughnessy, 2007; Thompson et al.,
2007).

We suggest that there was another important factor that helped the students to
connect between repeated sampling and a single sample: the students’ engagement
with an authentic context (Edelson & Reiser, 2006) and in the data and model worlds.
They explored sampling distributions that stemmed from an authentic and real mo-
tivation to study students’ music preferences in their age group. The exploration of
the sampling distribution came after they realized that they could not ask everyone,
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but rather had to take a sample and decide on a sample size. Thus, their entrance to
the model world and the resulting sampling distribution exploration was motivated
by a real and an authentic goal.

We found two different views in the way the students observed and manipulated
the sampling distributions: Shay moved from a global to probabilistic view and Liron
from a local–deterministic to quasi-probabilistic view. These views shaped their ar-
ticulations of uncertainty. Rubin, Hammerman, and Konold (2006) claimed that one
needs to see the distribution as an aggregate to make conclusions from a distribu-
tion. In regards to the issue of sampling distribution, we suggest to broaden this
claim: One needs to have an aggregate-probabilistic view of the sampling distribu-
tion to infer from a sampling distribution. Shay’s awareness of the signal and noise
of the sampling distribution increased his uncertainty in relation to samples of size
70, which motivated him to look for ways to control and quantify the uncertainty
and motivated him to move to a probabilistic view. In Liron’s case too, when he was
encouraged by the interviewer or by Shay to consider a range or the frequency of
results, he began to move from a local to global, quasi-probabilistic view.

Although Liron showed a deterministic view most of the time in this episode, he
demonstrated in other activities of the Connections Project in grades 5 and 6 a proba-
bilistic view in his articulations of distributions and fluently noticed signal and noise
in data. We think that one reason for his local and deterministic view in this study
was the type of statistic they explored. Exploring sampling distributions of possi-
ble percentages made it harder for him to conceive of the distribution as a whole. His
recurrent descriptions of the simulation process and the meaning of the sampling dis-
tribution’s data indicate that understanding the sampling distribution was not easy for
him. It might explain partly his persistent focus on the signal. However, the glimpse
of probabilistic views that Liron exposed may indicate an emergence of a change in
his articulation and understanding of uncertainty. We suggest studying the conjecture
that sampling distributions of means and many iterations between the data and model
worlds may help students like Liron shift to a probabilistic view.

The IMA design and learning trajectory, which connects iteratively between the
data and model worlds, seems to motivate students to consider, control and quantify
uncertainties by exploring sampling distributions. In our case, they knew that after
exploring the sampling distribution, they would have to make a decision about the
sample size of the real data they will collect in order to make good conclusions about
the population. Furthermore, before exploring sampling distributions, the students
built the hypothetical model based on their context knowledge and were engaged
in drawing and exploring samples from this model. We think that the process of
building models and drawing samples from them contributed to their thinking about
resampling and prepared them to the sampling distributions exploration. We suggest
that the complex learning processes described above are strongly related to the IMA
design, and take actions to experiment and study it further in different contexts and
age levels.

We are well aware that Shay and Liron might not be representative of other stu-
dents of a similar age since they benefited from their deep involvement in the Con-
nections Project for two years before this study. Since we believe that the complex
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issue of sampling distribution should be presented after some experience with EDA
activities, we are currently conducting another study of three pairs of sixth grade
students who had only partial involvement in the Connections Project (Manor &
Ben-Zvi, in press) to test the idiosyncrasy of the case presented in this chapter.

As a result of this study, we have made some changes in the IMA learning tra-
jectory in the way and timing which we present the sampling distribution (Manor,
Ben-Zvi, & Aridor, 2014). We found it better to enable students to spend more time
on exploring repeated samples and inventing methods to compare these random sam-
ples before the idea of sampling distributions is presented. No doubt, the innovative
educational approach discussed in this study is exploratory and deserves significant
additional design and research efforts in order to contribute to the growing body of
research on promoting students’ reasoning about uncertainty in the context of sam-
pling distributions.

References

Bakker, A. (2004). Design research in statistics education: On symbolizing and
computer tools. Utrecht, The Netherlands: CD-� Press, Center for Science
and Mathematics Education.

Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statis-
tical learning. Mathematical Thinking and Learning, 2(1 & 2), 127–155. doi:
10.1207/S15327833MTL0202 6

Ben-Zvi, D. (2006). Scaffolding students’ informal inference and argumentation.
In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International
Conference on Teaching Statistics. Voorburg, The Netherlands: International
Statistical Institute.

Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students’ construction of global
views of data and data representations. Educational Studies in Mathematics,
45, 35–65. doi: 10.1023/A:1013809201228

Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articu-
lations of uncertainty while making informal statistical inferences. ZDM—
The International Journal on Mathematics Education, 44, 913–925. doi:
10.1007/s11858-012-0420-3

Ben-Zvi, D., Gil, E., & Apel, N. (2007). What is hidden beyond the data? help-
ing young students to reason and argue about some wider universe. Paper
presented at SRTL-5, University of Warwick, UK.

Biehler, R., Ben-Zvi, D., Bakker, A., & Maker, K. (2013). Technology for enhanc-
ing statistical reasoning at the school level. In M. A. Clements, A. Bishop,
C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of
mathematics education (pp. 643–690). New York: Springer.

Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in
improving student learning of statistics. Technology Innovations in Statistics
Education, 1(1). Retrieved from https://escholarship.org/uc/item/8sd2t4rr

Chinn, C. A., & Sherin, B. L. (2014). Microgenetic methods. In R. K. Sawyer (Ed.),

https://escholarship.org/uc/item/8sd2t4rr


92 STUDENTS’ ARTICULATIONS OF UNCERTAINTY

The Cambridge handbook of the learning sciences (2nd ed., pp. 171–190).
New York: Cambridge University Press.

Edelson, D. C., & Reiser, B. J. (2006). Making authentic practices accessible to
learners: Design challenges and strategies. In R. K. Sawyer (Ed.), Cambridge
handbook of the learning sciences (pp. 335–354). New York: Cambridge Uni-
versity Press.

Franklin, C., & Garfield, J. (2006). The Guidelines for Assessment and Instruction in
Statistics Education (GAISE) project: Developing statistics education guide-
lines for pre K–12 and college courses. In G. F. Burrill (Ed.), Thinking and
reasoning with data and chance: Sixty-eighth NCTM yearbook (pp. 345–375).
Reston, VA: National Council of Teachers of Mathematics.

Gal, I. (2004). Statistical literacy. In D. Ben-Zvi & J. B. Garfield (Eds.), The
challenge of developing statistical literacy, reasoning and thinking (pp. 47–
78). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Con-
necting research and teaching practice. New York: Springer.

Garfield, J., Chance, B., & Snell, J. L. (2000). Technology in college statistics
courses. In D. Holton (Ed.), The teaching and learning of mathematics at
university level: An ICMI study (pp. 357–370). Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Garfield, J., delMas, R., & Chance, B. (2005). Tools for teaching and assessing
statistical inference. Retrieved from http://www.tc.umn.edu/⇠delma001/stat
tools/

Gil, E., & Ben-Zvi, D. (2011). Explanations and context in the emergence of stu-
dents’ informal inferential reasoning. Mathematical Thinking and Learning,
13(1–2), 87–108. doi: 10.1080/10986065.2011.538295

Konold, C. (2002). Teaching concepts rather than conventions. New England Journal
of Mathematics, 34(2), 69–81.

Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by mod-
eling them. International Journal of Computers for Mathematical Learning,
12, 217–230. doi: 10.1007/s10758-007-9123-1

Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innova-
tions in Statistics Education, 2(1). Retrieved from http://repositories.cdlib.org/
uclastat/cts/tise/vol2/iss1/art1/

Konold, C., Madden, S., Pollatsek, A., Pfannkuch, M., Wild, C., Ziedins, I., . . .
Kazak, S. (2011). Conceptual challenges in coordinating theoretical and data-
centered estimates of probability. Mathematical Thinking and Learning, 13(1-
2), 68–86. doi: 10.1080/10986065.2011.538299

Konold, C., & Miller, C. (2011). TinkerPlots™ 2.0 beta. Amherst, MA:University
of Massachusetts.

Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy
processes. Journal for Research in Mathematics Education, 33(4), 259–289.
doi: 10.2307/749741

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Thousand Oaks, CA:
Sage Publications.

http://www.tc.umn.edu/~delma001/stat_tools/
http://www.tc.umn.edu/~delma001/stat_tools/
http://repositories.cdlib.org/uclastat/cts/tise/vol2/iss1/art1/
http://repositories.cdlib.org/uclastat/cts/tise/vol2/iss1/art1/


REFERENCES 93

Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statis-
tical inference. Mathematical Thinking and Learning, 13(1–2), 152–173. doi:
10.1080/10986065.2011.538301

Makar, K., & Ben-Zvi, D. (2011). The role of context in developing reasoning about
informal statistical inference. Mathematical Thinking and Learning, 13(1–2),
1–4. doi: 10.1080/10986065.2011.538291

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical
inference. Statistics Education Research Journal, 8(1), 82–105.

Manor, H., & Ben-Zvi, D. (in press). Students’ emergent articulations of models and
modeling in making informal statistical inferences. Paper will be presented at
SRTL-9, Paderborn, Germany.

Manor, H., Ben-Zvi, D., & Aridor, K. (2014). Students’ reasoning about uncer-
tainty while making informal statistical inferences in an “integrated model-
ing approach”. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability
in statistics education: Proceedings of the Ninth International Conference on
Teaching Statistics (ICOTS9).

Meira, L. (1998). Making sense of instructional devices: The emergence of trans-
parency in mathematical activity. Journal for Research in Mathematics Edu-
cation, 29(2), 121–142. doi: 10.2307/749895

Moore, D. (2007). The basic practice of statistics (4th ed.). New York: W. H.
Freeman and Company.

Noll, J., & Shaughnessy, J. M. (2012). Aspects of students’ reasoning about varia-
tion in empirical sampling distributions. Journal for Research in Mathematics
Education, 43(5), 509–556. doi: 10.5951/jresematheduc.43.5.0509

Paparistodemou, E., & Meletiou-Mavrotheris, M. (2008). Developing young stu-
dents’ informal inference skills in data analysis. Statistics Education Research
Journal, 7(2), 83–106. Retrieved from http://www.stat.auckland.ac.nz/serj

Pfannkuch, M. (2006). Informal inferential reasoning. In A. Rossman & B. Chance
(Eds.), Proceedings of the 7th International Conference on Teaching Statistics
(ICOTS) [CD-ROM]. Salvador, Bahia, Brazil.

Pfannkuch, M., Wild, C., & Parsonage, R. (2012). A conceptual pathway to confi-
dence intervals. ZDM—The International Journal on Mathematics Education,
44(7), 899–911. doi: 10.1007/s11858-012-0446-6

Pratt, D. (2000). Making sense of the total of two dice. Journal for Research in
Mathematics Education, 31(5), 602–625. doi: 10.2307/749889

Pratt, D., & Ainley, J. (2008). Introducing the special issue on informal inferential
reasoning. Statistics Education Research Journal, 7(2), 3–4. Retrieved from
http://www.stat.auckland.ac.nz/serj

Pratt, D., Johnston-Wilder, P., Ainley, J., & Mason, J. (2008). Local and global
thinking in statistical inference. Statistics Education Research Journal, 7(2),
107–129. Retrieved from http://www.stat.auckland.ac.nz/serj

Rubin, A., Bruce, B., & Tenney, Y. (1991). Learning about sampling: Trouble at
the core of statistics. In D. Vere-Jones (Ed.), Proceedings of the Third In-
ternational Conference on Teaching Statistics (icots-3) (Vol. 1, pp. 314–319).

http://www.stat.auckland.ac.nz/serj
http://www.stat.auckland.ac.nz/serj
http://www.stat.auckland.ac.nz/serj


94 STUDENTS’ ARTICULATIONS OF UNCERTAINTY

Voorburg, The Netherlands: International Statistical Institute. Retrieved from
http://iase-web.org/documents/papers/icots3/BOOK1/A9-4.pdf

Rubin, A., Hammerman, J., & Konold, C. (2006). Exploring informal inference
with interactive visualization software. In A. Rossman & B. Chance (Eds.),
Proceedings of the Seventh International Conference on Teaching Statistics.
Voorburg, The Netherlands: International Statistical Institute. Retrieved from
http://www.ime.usp.br/⇠abe/ICOTS7/Proceedings/index.html

Saldanha, L., & McAllister, M. (2014). Using re-sampling and sampling variability
in an applied context as a basis for making statistical inference with confi-
dence. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statis-
tics education: Proceedings of the Ninth International Conference on Teaching
Statistics (ICOTS9). Voorburg, The Netherlands: International Statistical In-
stitute.

Saldanha, L., & Thompson, P. (2002). Conception of sample and their relationship
to statistical inference. Educational Studies in Mathematics, 51(3), 257–270.
doi: 10.1023/A:1023692604014

Schoenfeld, A. H. (2007). Method. In F. K. Lester (Ed.), Second handbook of
research on mathematics teaching and learning (pp. 69–107). Charlotte, NC:
Information Age Publishing.

Shaughnessy, M. (2007). Research on statistics learning and reasoning. In F. Lester
(Ed.), Second handbook of research on the teaching and learning of mathe-
matics (Vol. 2, pp. 957–1009). Charlotte, NC: Information Age Publishing.

Thompson, P. W., Liu, Y., & Saldanha, L. A. (2007). Intracacies of statistical in-
ference and teachers’ understanding of them. In M. Lovett & P. Shah (Eds.),
Thinking with data (pp. 207–231). New York: Lawrence Erlbaum Associates.

http://iase-web.org/documents/papers/icots3/BOOK1/A9-4.pdf
http://www.ime.usp.br/~abe/ICOTS7/Proceedings/index.html


CHAPTER 4

EXPERIMENT-TO-CAUSATION
INFERENCE: UNDERSTANDING
CAUSALITY IN A PROBABILISTIC
SETTING

Maxine Pfannkuch1, Stephanie Budgett1, and Pip Arnold2

1The University of Auckland, New Zealand
2Cognition Education Limited and The University of Auckland, New Zealand

Abstract

Research on students’ understanding of experiment-to-causation inference is
limited despite the randomized experiment being prevalent in high school and in-
troductory statistics courses. Using design research we: Determined conceptual
foundations, created a two-lesson learning trajectory incorporating dynamic visu-
alization software for the randomization test, implemented the trajectory in large
introductory statistics classes (n ⇡ 450) and a workplace class, and analyzed
student data from pretests and posttests and interviews to ascertain their reason-
ing processes in order to inform future teaching and learning approaches. In this
chapter we have mainly focused on six students to explore their reasoning pro-
cesses as they moved from the observed data and randomization test to making an
experiment-to-causation inference. Our findings suggested that the dynamic visu-
alization software assisted students to recall and understand the processes under-
pinning the randomization test. Student inference argumentation, however, needed
further development.
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We identified twelve elements within uncertainty and causality where the reason-
ing of students needed to be developed in instruction to enable them to appreciate
more fully the argumentation and concepts underpinning the designed experiment
and the randomization test.

Keywords: Randomization test; Introductory statistics students; Randomized ex-
periment; Dynamic visualizations; Causality and uncertainty; Inference argumen-
tation

4.1 Overview

In this chapter we focus on the randomized experiment and understanding causal-
ity. Since causality is established within a probabilistic setting, we aim to explicate
the notions within uncertainty underpinning experiment-to-causation inference us-
ing the randomization test. We discuss six main interconnected uncertainty ideas
that underpin a two-lesson learning trajectory designed using the dynamic Visual
Inference Tools (VIT: http://www.stat.auckland.ac.nz/⇠wild/VIT). We then explore
ideas of uncertainty prevalent in students’ reasoning processes as they progress from
thinking about the observed data, recalling the randomization test with the VIT soft-
ware, to making a claim about the data. We identify twelve notions of uncertainty
that instruction may need to address when developing students’ ideas in the realm of
experiment-to-causation inference.

The study is part of a large project, which aimed to understand how to introduce
school- and tertiary-level students to inferential ideas using bootstrapping and ran-
domization methods. The research reported in this chapter focuses on the pre- and
post-instruction tests and interviews of six introductory university and workplace
statistics students. Occasionally we refer to the test responses of the other students
(n ⇡ 800). The study was conducted within the classroom setting for the university
students (class sizes ⇡ 450) and a professional development workshop setting for
the workplace students (n ⇡ 20).

4.2 Problem

Research on statistical inference has largely focused on sample-to-population infer-
ence and students’ understanding of significance testing including the p-value. Apart
from the work of Madden (2008a, 2008b, 2011) there seems to be little research that
focuses on experiment-to-causation inference. With experimental design and causal
inference included in the introductory statistics curricula at both the secondary and
tertiary levels (e.g., College Board, 2010; Common Core State Standards Initiative,
2010; Franklin et al., 2007; Ministry of Education, 2007), there is a need to explore
students’ reasoning about causality. Frameworks for understanding students’ reason-
ing, conceptualizations, and misconceptions together with researched learning tra-
jectories need to be further developed to inform the teaching of causal inference.
Hence, it is useful to study experiment-to-causation inference in order to understand

http://www.stat.auckland.ac.nz/~wild/VIT
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the reasoning processes that students use regarding causality and uncertainty when
learning the randomization test. Using that knowledge we should be able to con-
struct better learning trajectories. Although we acknowledge that the randomization
test is a formal inferential method, our approach could be classified as partial infor-
mal inference, as students are not introduced to formal ideas of the null hypothesis,
p-values and significance.

4.3 Literature and Background

For some time, statisticians (e.g., Pearl, 1996) and educators (e.g., Wild & Pfannkuch,
1999) have questioned why statistics has neglected causality. Wild and Pfannkuch
(1999, p. 238) suggest that the looking for causation should be at the forefront in
education:

Statistics education should really be telling students something every scientist knows,
“The quest for causes is the most important game in town.” It should be saying
“Here is how statistics helps you in that quest. Here are several strategies and some
pitfalls to beware of along the way. . . ”

Since the search for causes is of fundamental importance, they believe that a goal
of the introductory statistics curriculum should be to move students from association
to causation, and that there is a need to provide accessible material to teachers to
meet this goal. They point out that correlation, the objective measure of linking one
variable to another, along with the mantra, “correlation does not imply causation”
has dominated statistics and statistics education. Pearl (1997) believes the field of
statistics has not addressed causal inference, apart from the randomized experiment,
because the language of statistics is ensconced in the language of probability. For
the field to move forward in the area of causality he has invented mathematical con-
structs for thinking about causal pathways in observational studies. Rubin (2004) has
proposed a similar, albeit different, framework. Both Pearl and Rubin have opined
that introductory statistics courses need to better address statistical inference and
causality, especially related to observational studies. In fact, Pearl has instigated an
award, the American Statistical Association’s Causality in Statistics Education Prize,
to encourage the teaching of causal inference in introductory statistics.

Currently, within conventional statistics courses, testing for a causal relationship
is limited to Fisher’s randomized experiment, where there is an intervention and
random assignment of units into groups (e.g., treatment and control). The random-
ized experiment, to date, has been the primary path to causal inference in statistics.
Fisher’s insight, which enabled causal inference, was replacing the link between
the explanatory and response variables with a random coin toss, that is, random
re-assignment (Pearl, 1996). In this situation, probability modeling can be used to
determine whether the treatment is effective. This juxtaposition of uncertainty and
causal inference within the context of the randomization test may be problematic for
students when first encountered.
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4.3.1 Uncertainty, Modeling, and Technology

Uncertainty in statistical inference lies at the nexus of statistical and probabilistic rea-
soning. Formally, in statistical inference, uncertainty is embodied in concepts such
as confidence intervals and significance testing, the understanding of which is based
on big ideas such as random behavior, independence, variation, distribution, the Law
of Large Numbers and sampling distributions (Gal, 2005; Konold & Kazak, 2008;
Pratt, 2005). In this formality, statistical inference is the process through which un-
certainty is quantified. The broader process of inference, however, combines this
quantification with two other unquantifiable types of uncertainty, data quality and
data validity.

Data quality is the uncertainty related to the quality of the design of the study,
non-sampling errors, and the measures, data, and information gathered that are used
in making inferences; the unquantifiable sources of variation, which researchers at-
tempt to minimize in the conduct of a study, that give researchers reason to hesitate
in making claims. Data validity is the uncertainty about whether the right data were
collected, whether the right questions were asked of the data, whether confound-
ing variables explain the findings, whether the process that generated the data has
changed over time and hence applications of any findings are no longer valid, and
whether the researchers’ mental model of the world matches reality. This type of un-
certainty also includes doubt from the knowledge that findings are based on current
knowledge and that findings can be overturned in the future in the face of new evi-
dence (e.g., Scarf, Imuta, Colombo, & Hayne, 2012) leading to the realization that
all knowledge is uncertain, which can lead to skepticism about any evidence. In ef-
fect, when students make an inference or claim, they need to consider or weigh the
evidence on these three types of uncertainty. A major question is how to untangle
these three types of uncertainty when developing students’ reasoning about making
judgments from data with respect to experiment-to-causation inference.

Researchers have examined how people make judgments under uncertainty
(Kahneman, 2011), at what age students understand the construct of uncertainty
(Langrall & Mooney, 2005), and how young students articulate uncertainty (Ben-
Zvi, Aridor, Makar, & Bakker, 2012). They have been surprised at the deep-rooted
cultural bias towards deterministic thinking, which seems to interfere with devel-
oping students’ ability to reason probabilistically (Fischbein, 1975). To conceptu-
alize the world non-deterministically requires long-term experiences and reflection
upon probabilistic situations including an emphasis on modeling random behavior
(Garfield, delMas, & Zieffler, 2012; Greer & Mukhopadhyay, 2005). The purpose
of such modeling is to mimic random behavior in a real world system in an effort to
understand the behavior of the real-world system, to answer questions about that sys-
tem, and to predict future outcomes in the real-world system (Pfannkuch & Ziedins,
2013).

Modeling random behavior underpins the quantification of uncertainty using for-
mal methods for statistical inference (e.g., confidence intervals and significance test-
ing). We believe that introductory statistics students should be introduced to the
quantification of uncertainty via bootstrapping and randomization methods rather
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than through the conventional parametric approaches for inference that rely on a
mathematical formalization (e.g., t-test, ANOVA). In line with Cobb (2007), we
think the logic of inference, and the “big ideas” and concepts underpinning inference
are more transparent to students using these methods, and are transferable to a wider
range of situations. Also, these methods are becoming more prevalent in statistical
practice (Hesterberg, Moore, Monaghan, Clipson, & Epstein, 2009). Moreover, the
research of Madden (2008a, 2008b, 2011), Garfield et al. (2012) and Tintle, Topliff,
Vanderstoep, Holmes, and Swanson (2012) point to positive outcomes in students’
statistical inferential reasoning when using randomization methods to teach infer-
ence for probabilistic situations.

The bootstrap and randomization methods can also be mediated through visual
representations, which allow some concepts to become more accessible to students.
Technology helps students link multiple representations—visual, symbolic, and
numeric—and enhances their understanding through promotion of a visualization
approach to learning (Sacristan et al., 2010). Dynamic software can allow students
to analyze directly the behavior of a phenomenon, to visualize statistical processes
in ways that were not previously possible, such as viewing a process as it develops
rather than analyzing it from the end result. Such representational infrastructure al-
lows access to statistical concepts previously considered too advanced for students.
As Wood (2005, p. 9) states, simulation approaches “offer the promise of liberat-
ing statistics from the shackles of the symbolic arguments that many people find so
difficult.”

4.3.2 Our Approach to Experiments and Inference

The experiments we refer to henceforth are comparative experiments that have both
an intervention and random allocation to groups. The random allocation is performed
in an attempt to make the group comparisons “fair”; a design that can facilitate causal
inferences about the effects of an intervention. To assist introductory statistics stu-
dents in making a direct conceptual connection, we adopted as a basic principle
that the “inferential method should mirror the process of data production” (Wild,
Pfannkuch, Regan, & Parsonage, 2013, p. 9). That is, the data is produced by ran-
dom allocation to treatment groups and therefore the inference method should be
based on random re-allocation to treatment groups. As (Teague, 2006, p. 169) stated:

The experimenter must always pay careful attention to the design of an experiment,
since the method of analysis is determined by the manner in which the experimental
units are randomized to treatments. The way you randomize is the way you analyze.

To enable students to make an experiment-to-causation inference we expect them
undertake three actions: (1) thinking about the data obtained from an experiment;
(2) conducting the randomization test by modeling random behavior; and (3) making
a claim about the data. All these actions involve drawing on the underpinning ideas
about uncertainty in making inferences.
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4.3.3 Theoretical Framework: Six Interconnected Underpinning Ideas

Since inference lies between statistical and probabilistic reasoning, we draw on the
work of Konold and Kazak (2008) who established four main ideas that are at the
heart of connecting data and chance activities: model fit, distribution, signal–noise,
and the Law of Large Numbers. Building on their work, which was for sample-to-
population inference, we have redefined and interpreted these four ideas for experiment-
to-causation inference. To this end, we have included two additional ideas, inference
argumentation and principles of experimental design and causation, and modified
Konold and Kazak’s idea of the Law of Large Numbers to include random process
and independence. Altogether, we have identified six inter-connected main ideas re-
lated to uncertainty that seem to underlie the ways of thinking about experimental
data when attempting to make an inference (see Table 4.1). Below we briefly de-
scribe these six main ideas.

Table 4.1
Framework of Underpinning Ideas for Three Actions when Thinking about Uncertainty
in Experiment-to-Causation Inference

Action 1: Thinking about
Observed Data

Action 2: Modeling Random
Behavior

Action 3: Making a Claim
about the Data

Explanations for observed dif-
ference

Testing observed difference
against chance alone

Argument for observed differ-
ence

• Model Fit • Model Fit • Signal–Noise
• Signal–Noise • Distribution • Inference
• Principles of • Signal–Noise Argumentation

Experimental Design • Law of Large • Principles of
and Causation Numbers, Random Experimental Design

Process, and and Causation
Independence

The VIT module we use for the randomization test has one dynamically linked
vertical screen (see Figure 4.1). The module shows the original data in the top plot.
The middle plot represents the possible differences in centers when randomly re-
allocating under chance alone. The re-randomization distribution1, which is then
used to find the likelihood of observed difference or greater under chance alone,
is dynamically built and displayed in the bottom plot.

Model Fit. When examining plots of observed data from a comparative experiment,
researchers typically have prior contextual expectations about the direction of the
difference (cf. Arnold, 2013). Since an experiment is often conducted based on prior
research, there would be an expectation that the treatment would show some effect.

1We deliberately used this language to convey the underlying idea.
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Figure 4.1. Screenshots of three dynamically linked plots within one vertical screen
for VIT randomization test.

Students also bring their own general knowledge to the observed data and hence
biological mechanisms inherent in the treatment, explanations about one group of
experimental units compared to the other, and confounding variables can be proffered
for any observed difference (Pfannkuch, Wild, & Regan, 2013). If the distributions
observed are not as expected then further investigation is warranted including how
the experiment was conducted. Therefore, features of the observed data are evaluated
against students’ “models” (e.g., expectation or conjecture; Konold & Kazak, 2008).

Similarly, when building the re-randomization distribution for the observed dif-
ference in centers, students have, or develop, expectations about features of this dis-
tribution. They typically expect to see a unimodal, symmetric distribution that is
centered at zero. Another expectation that we have of the students is that they will
draw on their experience of the randomization variation module, which they were
shown during instruction. The module demonstrates chance acting alone where there
is no treatment, only random assignment of units to two groups. Hence the proba-
bility model that is created in the randomization test can also be evaluated against
the students’ “models” (expectation of distributional features and expectation of the
possible range of chance variation alone).
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Signal–Noise. For experiments, we see the ideas of signal–noise showing up at
three distinct points in the inferential process. The first point is during the examina-
tion of the observed data, which includes noise—chance effects of just who happened
to be assigned to each group—and a potential signal—if the effect of the treatment
is present. That is, chance acting alone may be the cause for observed differences
(complete noise) or the differences may be due to both chance and treatment acting
(noise and signal). Students must consider both of these explanations when thinking
about why there is an observed difference. The second point at which signal–noise
needs to be considered is during examination of the re-randomization distribution.
At this point, students need to be able to reason about whether a treatment effect
(signal) would be detectable under the obscuring effects of chance variation (noise)
(Pfannkuch et al., 2013). Lastly, students need to consider signal–noise when they are
interpreting the tail proportion to determine (1) whether the treatment is effective—a
composite of signal and noise or (2) that they do not know whether the treatment is
effective because the observed difference could be due to only noise or could be due
to noise and signal—in which case there is a failure to detect the signal within the
noise.

Principles of Experimental Design and Causation. For students to understand
and interpret the observed results from a randomized comparative experiment, they
need a good understanding of the principles behind the design. Apart from under-
standing the rationale for the use of a control group, blinding, and placebo, they also
need to be aware that the researcher controls one or more of the explanatory variables
through the use of random assignment of the experimental units to the two groups.
In particular students need to realize that random assignment is the method for mak-
ing the comparison fair with respect to: (1) eliminating bias that may result if the
researcher assigns the units; (2) balancing the groups on variables that are known
to affect the response; and (3) balancing the groups on confounding variables that
may be unknown to the researchers (Agresti & Franklin, 2007). Another key idea
behind randomized comparative experiments is that causality can “be established if
the values of the explanatory variable are randomly assigned to the units” (Lock,
Lock, Lock, Lock, & Lock, 2013, p. 36). Another facet of experiments is that volun-
teers are often used which means being cautious about or not generalizing results to
a broader population.

Law of Large Numbers, Random Process and Independence. Many researchers
have noted that learning to reason probabilistically includes developing notions of a
repeatable process, random behavior, the Law of Large Numbers and independence.
Yet, linking the idea of randomness and independence can be challenging for students
(Watson, 2005). In the VIT dynamic creation of the re-randomization distribution,
which is a probability model, students can visually see:

The independence of each trial as the original data with the group label removed
is brought together and then randomly re-allocated to the two groups;

Random behavior in operation as the red arrows, the re-randomized differences
in centers, constantly change; and



LITERATURE AND BACKGROUND 103

The Law of Large Numbers in operation as the re-randomization distribution
builds up and stabilizes as the random re-allocation process is repeated 1000
times.

Although we do not formally refer to the Law of Large Numbers, assumptions of a
random process, and independence in the learning trajectory used, students can still
potentially experience these concepts in this visualization of the process.

Distribution. A distribution is formed from a collection of individual data values
into a conceptual entity that has its own characteristics and properties such as center,
shape, variation, and density, which are inextricably linked to the context of the situ-
ation (Arnold & Pfannkuch, 2012; Bakker & Gravemeijer, 2004). Part of interpreting
distributions is the visual decoding of the display such as the units and variables on
the axes and what each data value represents (Friel, Curcio, & Bright, 2001). When
confronted with the observed data from an experiment, students need to visually de-
code the display along with understanding the background of the study. They also
need to make comparisons of the distributional properties of the two groups rather
than individual cases. This can be especially difficult for novices (e.g., Konold, Hig-
gins, Russell, & Khalil, 2004). However, there is a shuttling between observing dis-
tributions as an entity and observing individual data values. For example, the notion
of tendency can be observed through comparing the property of distributional shift.
The reasoning is centered on the idea that the group taken as a whole may benefit
from the treatment but it may not be the case for every unit.

Similarly, when students observe the dynamic creation of the re-randomization
distribution, or a static display, they need to visually decode the variables on the
axes and what each data value represents. For the re-randomization distribution, or
probability model, the property of interest is the tail proportion, which is visually
represented, and therefore students need to understand what this represents in terms
of all the other “data” (statistics) generated. From the perspective of Liu and Thomp-
son (2007), such a dynamic visual display should be orienting students towards a
stochastic conception of probability, since they are being provided with an image of
possible outcomes.

Inference Argumentation. The nature of inference argumentation is based on un-
derstanding the logic of an indirect argument that uses probabilistic statements. This
is often difficult for students to grasp, and hence, confusion about the argument can
result in misinterpretation of the p-values (Nickerson, 2004). Many researchers (e.g.,
Falk & Greenbaum, 1995; Nickerson, 2004) have documented misconceptions re-
lated to the interpretation of the p-value and the consequent inferences made. Two
examples of these misconceptions are:

Accepting the null hypothesis if the p-value is considered to be large

Considering a p-value as the probability that the null hypothesis is true given
the data, rather than the probability of the data assuming that the null hypothesis
is true.
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In our teaching approach we purposefully have the students use language that we
hope will partially convey particular concepts. For p-value, we use “tail proportion”,
for the null hypothesis we use “chance is acting alone”. However, the dynamic vi-
sualizations that we use only show the tail proportion, so we expect inference argu-
mentation to remain difficult for students.

In addition to reasoning from the tail proportion, students also have to consider
the aforementioned ideas related to causation. Causal, or deterministic, thinking is
the predominant mode of thinking within society, with most people not willing to
accept the role of chance. Biehler (2011) used an inference example cited in Makar,
Bakker, and Ben-Zvi (2011) to point out that the use of probabilistic thinking may
lead to other issues. The example, which compared the physical fitness for fifth and
sixth graders used the following language: “From these two samples, we infer that
the physical fitness in sixth grade is probably better than in seventh grade?” (p. 152).
Biehler (p. 6) observed: “‘Probably’ better expresses uncertainty. However what have
we exactly gained? All our knowledge is uncertain. We can add this to every sentence
we say.” Hence, if people have the point of view that all knowledge is uncertain
then they may be unwilling to use causal language, even to express inferences from
experiments.

4.3.4 Research Questions

Since there seems to be little research in the area of experiment-to-causation infer-
ence with regard to conceptions of uncertainty, and since the VIT software is new and
untested with respect to students’ reasoning processes, we believe an exploration into
students’ concepts of uncertainty when using inference may contribute to the exist-
ing knowledge base. To examine students’ reasoning processes regarding causality
and uncertainty in the context of making partially informal experiment-to-causation
inferences, we will focus on the following specific research questions:

1. What reasoning processes do students use when thinking about the observed
data from an experiment (Action 1)?

2. What ideas and reasoning processes do students use when recalling the random-
ization test (Action 2)?

3. What argumentations do students use when making a claim about data from an
experiment (Action 3)?

4.4 Subjects and Methods

The findings presented in this chapter come from a collaborative research project
involving 33 team members and over 2700 students. The research team was com-
prised of a statistical software conceptual developer, an international advisor, two
education researchers, two resource developers, five professional development fa-
cilitators, eight university lecturers, and 14 secondary school teachers. Using prin-
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ciples of design research (Hjalmarson & Lesh, 2008), the development process in-
volved two research cycles, each consisting of four phases: (1) from an identified
problematic situation, understanding and defining the conceptual foundations of in-
ference; (2) development of new resource materials and dynamic visualization soft-
ware (VIT); (3) implementation with Year 13, introductory university, and workplace
statistics students; and (4) retrospective analysis followed by modification and sup-
plementation of resource materials. The focus of design research is to support and
engineer new types of reasoning and thinking in response to problematic situations.
As well as being pragmatic through producing an educational product that can be
used by teachers, design research can also lead to new educational theories and areas
of research (Bakker, 2004).

4.4.1 Participants and Procedure

The research reported in this chapter focuses on the pre- and post-instruction written
responses and interviews of six introductory university and workplace students. Sev-
enteen university students (randomly sampled from 200 volunteers in a population
of n = 2553) and nine workplace volunteers (sampled from n = 14) participated in
the interview process. Eleven of these 26 students were randomly allocated the ran-
domization posttest in class (others completed a bootstrapping posttest). We chose
to concentrate on the responses of six of these students (S1 to S6) because they were
interviewed by the same research assistant, and were able to articulate their ideas.
These six students’ prior experience of statistics would be fairly representative of
about 60% of the university and workplace cohorts. Occasionally we refer to the
written responses of the wider cohorts to give an indication of the prevalence of the
reasoning under discussion.

None of the participants had any experience with experiment-to-causation in-
ference or the randomization test. All students experienced the same learning tra-
jectory of two 50-minute lectures for the randomization test, which incorporated
hands-on activities, attention to language and verbalizations, and VIT dynamic visu-
alizations. Learning occurred within the classroom setting for the university students
(class sizes ⇡ 450) and a professional development workshop setting for the work-
place students (n ⇡ 20). An assignment component allowed students to use the
VIT software to perform the randomization test that was demonstrated as part of the
teaching sessions. For a detailed description of the teaching sequence, see Budgett,
Pfannkuch, Regan, and Wild (2013).

4.4.2 Assessment Items and Data Analysis

Test and interview items that are discussed in this chapter are provided in the Ap-
pendix. Data from the tests were entered into spreadsheets. The first two authors of
this chapter initially developed either hierarchical or non-hierarchical descriptors and
coding frameworks for each assessment item based on the student data. The decision
as to whether a hierarchical or non-hierarchical descriptor was necessary depended
on the type of assessment item. At least 200 student responses were independently
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coded until the descriptors and coding frameworks no longer needed to be modified
and a consensus was reached on interpretation of the descriptors and the rating of stu-
dent responses was synchronized. Two research assistants then independently coded
the remainder of the data. For the interviews, which were audio- and video-taped
and transcribed, familiarization with the data was initially conducted in cognizance
of the findings and frameworks developed for the written responses. Based on this
qualitative analysis of the interviews, a framework of the elements for describing
the reasoning ideas within each of the three actions was developed (see Table 4.2).
We then interpreted and discussed the interview data until a consensus was reached
on interpreting how the students were thinking, identifying the gaps in the students’
thinking, and the main elements emerging from the data that should be incorporated
into the framework.

4.5 Analysis and Results

From the theoretical framework (see Table 4.1) and the student data we empirically
developed a framework (see Table 4.2) for elements within uncertainty that are op-
erationalized for experiment-to-causation inference. These notions are ones that we
have identified in an introductory environment and are not an exhaustive list. They
are simply an initial attempt towards a framework that could be used for understand-
ing students’ reasoning about causality within a probabilistic setting. A description
of the reasoning and ideas within each element will be given, discussed and illus-
trated with student examples to demonstrate issues that students need to consider
and grapple with as they learn about causal inference.

Table 4.2
Framework of Elements within Uncertainty Activated for Experiment-to-Causation
Inference for Each of the Three Actions

Action 1: Thinking about
Observed Data

Action 2: Modeling Random
Behavior

Action 3: Making a Claim
about the Data

Explanations for observed dif-
ference

Testing observed difference
against chance alone

Argument for observed differ-
ence

• Treatment is effective • Purpose of test • Interpretation of tail
(treatment acting • Simulating random re- proportion
alongside chance) allocation, uncertainty • Rare occurrence

• Chance is acting alone • Measuring uncertainty • Causal evidence
• Experiment design and • Distribution of • Tendency

other issues possible measures • Generalization
under uncertainty • Experiment design and

• Quantification of other issues
uncertainty
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4.5.1 Action 1: Thinking about the Observed Data

For Action 1, we consider the pretest and posttest responses of S1, S2, S3, S4, and S5
(see Table 4.3) along with the responses from the wider cohorts to Question 1 (see
Appendix). Briefly, students were given an experimental scenario, accompanying
plots, and summary statistics. Then they were asked for two explanations for the
observed difference. The explanations that we were seeking were: (1) the treatment
is effective, and (2) chance is acting alone.

Table 4.3
Selected Students’ Pretest and Posttest Responses to Question 1 (see Appendix) which
Asked for Two Main Possible Explanations for the Observed Difference

Student Pretest Responses Posttest Responses
S1 (1) Fish oil replacing regular oil really

reduces blood pressure. (2) Samples are
too small and the observed difference is
a result of biased sampling or big sam-
pling error.

(1) The observed difference happened
by chance. (2) Consumption of fish oil
reduces blood pressure.

S2 (1) A fish oil diet does reduce blood
pressure more than a regular diet.
(2) Blood pressure is reduced when par-
ticipants know they are on a fish oil diet.

(1) Chance is acting alone. (2) Some-
thing other than chance is acting. This
may be the manipulation of the treat-
ment type.

S3 (1) The fish oil diet is effective in lower-
ing blood pressure. (2) External factors
are influencing the results due to a small
sample size.

(1) The fish oil diet is effective in reduc-
ing blood pressure. (2) Chance.

S4 (1) Those in the fish oil group had higher
blood pressure than those in the regu-
lar oil group to begin with. (2) Those in
the fish oil group had a greater range of
blood pressure reductions than those in
the regular oil group.

(1) The observed difference is not due to
the effectiveness of the fish oil diet (i.e.,
it is chance that caused this difference).
(2) The observed difference is due to a
combination of chance, as well as the
fish oil diet, to some extent.

S5 (1) That the fish oil is lowering the
amount of mercury and hence blood
pressure. (2) That regular oil is raising
mercury levels and blood pressure.

(1) That the fish oil is lowering mercury
levels in the blood and therefore lower-
ing blood pressure. not provided

Of the 1,886 students who responded to this question in the pretest, 50% were
able to state that one explanation for the observed difference between the two groups
was that the fish oil was effective in reducing blood pressure, with written statements
such as those shown by S1 to S3 in Table 4.3. This increased to 69% (n = 868)
in the posttest. Thus many students responding noted the fact that the study was
specifically designed to investigate the effectiveness of fish oil when compared with
regular oil. However, in their search for explanations for the observed difference,
some students reasoned beyond the experiment, using their contextual knowledge.
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This was evident in both the pretest and posttest responses provided by S5 (see Table
4.3) and responses from the wider cohort such as:

That the Omega 3 contained in fish oil has a positive effect in reducing blood
pressure values.
Fish oil group may contain vitamins and minerals needed to reduce blood pressure.
Fish oil helps lower cholesterol more than a regular oil diet would.

While these statements may be true, the experiment was not designed to test the
effectiveness of cholesterol, Omega 3, Mercury content, vitamins or minerals. These
students appear to have proceeded to the next stage and, rather than thinking if the
treatment is effective, they are wondering why it is effective. Such inferences are
beyond the scope of the experiment.

Of the 1,487 students who provided a second explanation in the pretest, very
few (5%) mentioned chance. An analysis of responses indicated that students were
searching for other reasons for the observed difference. When asked what he meant
by “external factors influencing the results,” S3 stated, “they might have gone and
done a whole lot of exercise.” Other suggestions included the fish oil group being fit-
ter, having a different lifestyle or, as suggested by S4, having higher blood pressure
than the regular oil group to begin with. These confounding variables may indeed be
explanations for the observed difference between the two groups. However, given the
experimental design of the study and the fact that participants were randomly allo-
cated to treatment groups, if those on the fish oil diet happened to be fitter, happened
to have a different lifestyle, or happened have higher blood pressure to begin with,
then these are what we would classify as chance explanations. Some students, in-
cluding S2, had their own beliefs about blood pressure: “Blood pressure does reduce
over time naturally and so the fish oil is actually not doing anything. . . the regular
oil is causing people’s blood pressure to remain constant.” Such a belief suggests
contextual knowledge information or misinformation is used to explain observed
differences. S2 also suggested that blood pressure would reduce more in the fish oil
group since they knew they were being treated: “I made the assumption that people
who were on either diets knew that they were on the fish oil diet or the regular oil
diet so they had that knowledge,” which meant he was considering the placebo effect.
Information about design issues such as double blinding, and whether the fish oil and
regular oil diets were given as tablets would normally be given to students but in a
time-restricted test this was not possible resulting in some students focusing on these
issues as explanations for the observed difference.

Given that most students had some previous experience of sample-to-population
inference, it did not surprise us that some students raised concern about representa-
tiveness of the groups. When asked to explain her pretest response, S1 commented:

To make accurate conclusions about the whole influence of fish oil we need to
assess how these 14 people. . . are representative of the whole male population with
high blood pressure. . . if they are not like typical people with high blood pressure
we may have got biased results.

Another commonly held belief, again perhaps attributable to prior experience of
sample-to-population inference, was that the group sizes were too small for any
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meaningful dialogue about the observed difference. Examples can be seen in the
comments made by S1 and S3 in the pretest (see Table 4.3). In the posttest, S1 re-
flected on her pretest uneasiness with the group size and realized:

My concern was mainly about the sample size, just the small. . . yeah so I didn’t
think about the difference between the two groups just by chance.

When asked if she now had more of an understanding of the chance acting alone
concept, she responded:

Yeah, definitely. I would say that the whole like this, hypothesis, this would happen
by chance. . . we need some statements that we can test. So one of them is whether
this could happen by chance or not.

Thus it would appear that S1 is now recognizing that chance may contribute to the
difference observed between the two groups and is beginning to consider how to test
for that.

As anticipated, many more students (61%, n = 810) suggested chance as an
alternative explanation in the posttest. Interpreting brief written responses from the
wider cohort such as “chance”, and “chance is acting alone”, it is difficult to know
precisely how these students are now reasoning. However, their responses suggest
that chance is now part of their thinking and vocabulary. When asked what he meant
by chance, S3 responded by saying:

Just it could randomly occur. Pretty much it’s possible for results to be just ran-
domly different, I guess.

While S3 acknowledges that randomness may be responsible for the observed differ-
ence, it is unclear if he has a sound grasp of the notion of chance acting alone.

S4’s written posttest response (see Table 4.3) indicates that she believes that
chance is present in both of her explanations for the observed difference. She rea-
sons that even if the fish oil is effective, chance is also operating and therefore a
chance component contributes, at least partially, to the observed difference between
the two groups. This is a well-reasoned response, acknowledging that chance is al-
ways acting, even if the treatment is effective.

In summary, we reflect on the research question for Action 1 about the reason-
ing processes used by these students when thinking about the observed data from an
experiment, making reference to the development of the underpinning ideas identi-
fied in Action 1 in Table 4.1. Reflecting on the pretest responses, we believe that the
natural instinct of beginning students with no direct experience of the randomiza-
tion test or principles of experimental design, when searching for explanations for
the observed difference, was to rely on their prior inferential knowledge (sample-to-
population) or to search for causes with which they felt comfortable, even if these
causes were beyond the scope of the experiment. Within the model fit idea, the stu-
dents seemed to bring their own experience to the observed data in a quest to offer
explanations for the difference. Many were unable to access underpinning ideas of
experimental design and causation since these did not form part of their prior knowl-
edge. Given the lack of chance explanations in the pretest, it would appear that the
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students did not attend to the signal–noise idea and that their natural reasoning pro-
cesses did not entertain effects of randomness and chance.

In the posttest, responses from students conveyed more of an appreciation of the
ideas encompassed within the notion of experimental design and causation with
fewer concerns about representativeness, group size or confounding variables within
Action 1. However, the signal–noise idea still needs to be further developed. Most
of the chance explanations provided by these students and the wider cohort did not
appear to convey the understanding that chance is always acting. Instead, the overrid-
ing impression was that most students had the underlying notion that either chance
is acting alone, or chance is not acting at all. Such a problem is not surprising given
that students only had two hours of instruction. However, we need to be aware that
further instruction should address these two apparent conceptions:

If the evidence favors a chance alone explanation, it excludes the possibility that
the treatment may be effective.

If the evidence favors a treatment explanation, it excludes the possibility that
chance is acting alongside treatment.

Thus the idea that “treatment is effective” comprises both treatment and chance com-
ponents, and the idea that “chance is acting alone” does not rule out the effectiveness
of the treatment, is a learning issue that needs to be addressed. We believe that such
conceptions can partly be attributed to the logic of the indirect argumentation asso-
ciated with making a claim as a result of experiment-to-causation inference.

4.5.2 Action 2: Modeling Random Behavior

For Action 2 the students referred to Questions 1 and 2 (see Appendix). They were
asked about the purpose of the test and to recall the randomization test in order to de-
termine their understanding of how the distribution in Question 2 was formed. Note
that Questions 1 and 2 were not presented in the format and with the representations
used in the dynamic visualizations (for a comparison see Figure 4.1). Hence, the
students needed to decode the representations given and recall the re-randomization
process. To quantify the uncertainty on the distribution given in Question 2, the stu-
dents needed to take the difference in means given in the table and plot it. Unlike the
VIT software which gives the tail proportion visually and numerically when a button
is activated, they had to recall the observed difference being plotted, the tail propor-
tion being shaded in and then work out that they had to roughly count the number of
differences equal or greater than 7.71. Before we elaborate on the student responses,
an overall summary of the elements of reasoning and ideas that we were looking for
is given in Table 4.4 along with student examples, codes, and descriptors for each of
the elements.

Focusing on the responses of S1 to S4, we use the codes T1 to T5 (see Table
4.4) to illustrate how the randomization test was promoting ideas of uncertainty and
where more development in students’ reasoning appears to be needed.
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S2 could state that the randomization test was determining “the chance of getting
the result that we did in the circumstances where chance could be acting alone (T1)”
and that there was a “mixing up of the conditions with the observations if everything
was due to chance (T2).” He knew that each dot in the distribution represented a dif-
ference between the means (T3), that the process was repeated 1000 times and that a
distribution developed (T4). However, his reasoning within element T4 faltered as he
failed to connect that chance acting alone was visually represented by the distribu-
tion and he said he was “confused.” He was also unable to obtain the tail proportion
(T5). The interviewer asked, “so then what would be the observed difference if you
were to plot that from this graph [points to graph in Question 1].” He responded, “I
assume 7.71, oh right, it would be about there [he locates 7.71 on the distribution
and puts a box around the tail proportion], yeah I’ve got it now.” At that moment he
connected the steps in the procedure for the randomization step, found the tail pro-
portion and quantified the uncertainty (T5). Thus we conjecture S2 had a fragmented
understanding of the randomization test process. He is developing ideas of a repeated
chance process forming a distribution but is not yet fully connecting the underlying
concepts.

S3 was able to succinctly describe the purpose of the randomization test: “You
have a measurement of the difference and with the randomization test you measure
how likely it is that chance alone will produce the same difference (T1).” He then
followed with a description of the randomization test process.

They separated the results from the group and then just randomly assigned them
in a resample (T2), and then they took the mean difference of that (T3) and then
repeated that process a 1000 times in this case, and it’s got a distribution of what
was possible by chance alone (T4), and then compared the result that they got from
the actual test with the distribution, to get a tail of how likely it was (T5), if it was
just chance.

For S3 one of the dots in the distribution “would represent chance.” It is “just
one difference between the means for a re-sampling.” Hence unlike S2, he seems to
make the connection between the notion of chance alone and that the distribution is
a visual representation of chance alone. He was also able to quantify the uncertainty
by putting 7.71 on the distribution and calculating the tail proportion, as did S1 and
S4.
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Table 4.4
Summary of Elements of Reasoning within Action 2

Element Description of Ideas Student example†

Purpose of test (T1) Test observed difference if
chance is acting alone (As-
sumption treatment has no ef-
fect)

So you say if everything was
due to chance what would it
look like and what would our
probability be of getting the
same result if we did? What
would be the chance of getting
the result that we did in the
circumstances where chance
would be acting alone? (S1)

Simulating random re-
allocation, uncertainty (T2)

Notion of randomness of who
gets into which group

You take all the results and in-
stead of having them split into
two groups, you take them
into one group and then split
them into two randomly. (S6)

Measuring under uncertainty
(T3)

Record and interpret differ-
ences in center

Well when you re-randomize
them and take the difference
which is what this one does
[refers to imagined plot], it
gives you that, it just shows
you what possible values you
would get for the difference if
it were purely chance. (S6)

Distribution of possible mea-
sures under uncertainty (prob-
ability model; T4)

Repeat T2 and T3 many times
(repeatable process) Build
distribution of a statistic
(interpret what is measured)

And then repeated that pro-
cess a thousand times in this
case, and it’s got a distribu-
tion of what was possible by
chance alone. (S3)

So if we just take one dot here,
what is that? (I)

That is just one difference be-
tween the means, from a re-
sampling [re-randomization].
(S3)

Quantification of uncertainty
(tail proportion; T5)

Purpose of putting ob-
served difference on re-
randomization distribution
Read the tail proportion

You would be able to see how
big the observed difference
was between the two and how
it compares to the first sample.
(S4)

Where is the observed differ-
ence located on this plot? (I)

†I = Interviewer
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Table 4.4 – continued from previous page

Element Description of Ideas Student example†

I think I thought the observed
difference was just there for
me. Yeah 7.7. The tail propor-
tion [refers to 7/1000 she has
given on posttest] is the proba-
bility that the observed differ-
ence occurs. (S4)

†I = Interviewer

S1 gave a good indication she was recalling the visual images of the VIT software
because when asked about what happened in the middle plot she said: “just click on
re-sampling and then the sample was rearranged and re-sampled and then a new
difference was shown. [The difference was shown as a] red arrow.” Note that three
of the students S1, S3, and S2 (not shown) used the term re-sample rather than re-
randomization. In the instruction we used re-sample for the bootstrap method and re-
randomization for the randomization test, but this careful distinction in terminology
to reinforce the difference between sample-to-population inference and experiment-
to-causation inference bypassed many students.

In summary we reflect on the research question for Action 2 about the ideas and
reasoning processes about uncertainty that these four students used when recalling
the randomization test (Figure 4.1) and their development of the underpinning ideas
identified in Action 2 in Figure 4.1. We conjecture that these students seemed to
have the notion the observed difference is tested against chance alone. Within the
model fit idea the students seemed to be expecting the distribution given in Question
2, as they did not query it, and all knew the distribution had been generated from
a random process that was repeated many times suggesting a notion of the Law of
Large Numbers. Their references to the data being mixed up and re-allocated to the
two groups suggest unarticulated ideas of independence. The notion of a chance
distribution generated from the recording of the differences in means for each re-
randomization was also recognized by the students. However, only three of these four
students seemed to understand the purpose of representing the tail proportion in that
distribution and hence were able to quantify the uncertainty, the tail proportion. S2
failed to cognitively integrate that the distribution was an image of possible chance
outcomes (noise), against which the original observed difference is tested or signal
is detected. The data suggest that this idea of signal–noise within Action 2 is one of
the more difficult concepts for students to grasp.

We believe that the dynamic imagery of the VIT software facilitated the ability of
students to recall many of the ideas underpinning the randomization test and, hence,
was assisting them in developing concepts associated with uncertainty in the context
of making partially informal inferences. The notions of uncertainty that need to be
developed within this test are many-fold and multi-faceted. There are ideas of testing
against uncertainty and simulating, mimicking and measuring or quantifying uncer-
tainty with a chance alone distribution. The generation of this distribution allows a
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quantification of uncertainty for a causal inference, an uncertainty idea that is quite
different from the uncertainty ideas for the development of the distribution. Hence a
causal inference is predicated on quantifying the uncertainty of an observed differ-
ence or greater from the quantification of an “uncertainty” distribution that has been
generated from a random process.

4.5.3 Action 3: Making a Claim about the Data

Following Question 2 (Appendix, posttest) students were asked during the interview
for their interpretation of the tail proportion; if it was small or large. (Note: For
these introductory students the guideline for determining whether chance was not
acting alone that was used in instruction was less than 10%.) They were also asked to
elaborate on what they were thinking when they wrote their responses to Question 3
(see Table 4.5). Using the responses of S1, S4, S5, and S6 we explore the claims they
are prepared to make about the data, and the reasoning underpinning their argument.

Table 4.5
Examples of Some Student Responses to Question 3 (see Appendix)

Student Written Response
S1 “A study, conducted on a control group, showed that, most probably,

fish oil diet reduces blood pressure for those with a high blood pres-
sure.” The original statement concerned all people, while the study was
conducted (aimed at) for people with high blood pressure.

S4 The study was based on a sample so we cannot claim that a fish oil
diet lowers blood pressure for the whole population. Also an interval
should be given to show there is uncertainty. The study ruled out that
chance is acting alone but this means that the lowered blood pressure
could be a combination of chance and the fish oil diet. “It is a fairly
safe bet that the mean reduction in blood pressure of those on a fish oil
diet is higher than the mean reduction in blood pressure of those on a
regular oil diet.”

S5 The line is too definite. “People have a good chance of lowering their
blood pressure with a fish oil diet” would be more accurate and accept-
able

S6 The test shows that blood pressure was lowered in comparison to the
regular oil diet, and there has only been a causal relationship drawn as
only chance has been ruled out by re-randomization. A more accurate
statement would be “Fish oil diet probably lowers blood pressure in
comparison to regular oil diet. More research needed.”

S5’s interpretation of a small tail proportion was, “chance is not acting alone”,
which he later changed to “chance is probably not acting alone”, because he did
not want to definitely say the treatment was effective, although there was a “good
chance” fish oil lowered blood pressure (see Table 4.5). Sample size was his grounds
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for not being definite; “they only used 14 people.” S6’s interpretation of a small tail
proportion was that:

It’s very unlikely chance is acting alone, something else is acting. . . it might not
be the fish oil; it probably is. . . more research is needed. The fish oil diet probably
lowers blood pressure.

Although he recognized that a causal relationship could be drawn as chance had been
ruled out (see Table 4.5), his grounds for not making a definite statement were based
on possible confounding variables because “people have all sorts of different diets.”

S1 stated a small tail proportion suggested that for the observed difference:
It would be assumed that it is really unlikely that it happened by chance. It is
highly probable that there exists a causal relationship between the fish oil diet and
reduction in blood pressure.

Her quantification of uncertainty about a causal inference could be a step towards
considering that the observed difference may be a rare occurrence and in fact she
may be drawing an incorrect conclusion. She also recognized that generalization
was a notion that needed attention when formulating an inference argument (see Ta-
ble 4.5). The influence of sample-to-population inference, however, led S1 to reason
that there was uncertainty about the treatment being effective “because of sampling,
not to make a statement directly about all people. . . [there] is sampling error. . . quality
of our sample group.” Similarly S4’s reasoning was based on sample-to-population
inference (see Table 4.5) but she did not want to make an inference from a sample
suggesting some possible misconceptions within this arena. She explained her argu-
ment in terms of chance is not acting alone and “there is evidence that it is just not
chance but it could also be a combination of some things. . . it could be fish oil or not.”
Although she could correctly verbalize that “treatment is effective” is comprised of
two components, chance and something else acting alongside chance such as treat-
ment, she stated, “we can’t say concretely that it is the fish oil diet that worked.” She
said her use of the language

It’s a fairly safe bet (see Table 4.5) includes the uncertainties, so you are not com-
mitting yourself to saying it does lower blood pressure. . . you are talking about the
average and not something else. . . it gives the idea that it is based on a sample as
well and not for everyone in general.

Note that her reasoning about uncertainty is expressed through referring to the aver-
age, a tendency idea that some other students more explicitly expressed (e.g., “We
can say it can help lower blood pressure, but not definitely work on each person who
used a fish oil diet”) and a sample-to-population inference notion.

For a small tail proportion drawing a causal inference has not yet crystallized, as
the students’ arguments show the influence of their prior knowledge such as sample
size and sample-to-population inferences and contextual knowledge of other factors
that could affect blood pressure. They express their uncertainties in probability lan-
guage, suggesting they are attaching a likelihood to the treatment effectiveness, a
facet which is further illustrated in their interpretation of a large tail proportion.

For a large tail proportion, for example 30%, S5 said, “chance is acting alone”
which he changed to “chance probably is acting alone” because 30% to him was
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the probability that chance is acting alone; “it’s kind of like in the middle. You’d be
leaning towards chance is acting alone but not definite.” Thus, there was a chance
that “fish oil could lower blood pressure.” S6 provided a similar explanation for a
large tail proportion:

The researchers could not conclude anything. The tail proportion shows evidence
that chance is acting alone, but it does not prove if it is. As a result, no conclusion
could be drawn, as there is a 30% chance of chance acting alone.

S6 is correct that no conclusion can be drawn but his reasoning is incorrect. He
further elaborated on his reasoning processes for small and large tail proportions,
which shows his thinking about how the tail proportion gives the probability of
chance acting alone.

Well, five out of 1000 is tiny. You wouldn’t see that sort of thing happening often
but a 30% chance is one in three, it’s quite likely, will probably happen. If you had
a choice between a poison that kills you 0.5% of the time and one that kills you
30% of the time, you’d drink the first poison.

S1 also indicated her reasoning was along the same line as S5 and S6, as she re-
ported, “the probability is quite high that it happened by chance,” and that chance was
responsible, “just a chance that people were spread into groups like this.” She also
stated this one test was insufficient to determine whether the treatment was effective;
“this test wouldn’t be a good base to conclude anything about the real influence of
fish oil on blood pressure,” indicating that she did not have a sound grasp of the prin-
ciples behind experimental design or she was searching for a biological mechanism
to explain why fish oil could be effective in reducing blood pressure. S4 explained
her argument as “chance is acting alone” and “that difference would be because of
chance and not because of diet.” Thus she is reasoning from the position of chance
is acting alone versus chance is not acting alone.

From the student interviews and other student responses (n = 695) to Question
3 we proposed four notions within uncertainty that needed to be attended to when
making a claim statement, which we named: Rare occurrence (R), Causal evidence
(C), Tendency (T), and Generalization (G) (see Table 4.6 for an indication of rea-
soning and ideas behind each of these proposed elements). Hence, we hoped to see
language in students’ statements alluding to these notions, such as:

We are pretty sure (R) that a fish oil diet causes (C) males with high blood pressure
(G) to tend (T) to have a higher reduction in blood pressure than those on a regular
oil diet. We need to be careful about generalizing beyond the group in the study (G).

Many students changed the word “will” in the original Question 3 statement to
“may”, or to something similar, but we were unable to tell from many of their ex-
planations which one of the identified uncertainty notions they were using in their
reasoning. It also may have been that they were using other notions of uncertainty
(e.g., believing that all knowledge is uncertain; “Nothing is 100% certain. You can-
not state for a definite fact that fish oil will lower blood pressure.”), or using their
sample-to-population knowledge and believing the group sizes were too small. From
the student interviews already discussed there is evidence that these notions of un-
certainty, as well as others not listed here, were being invoked.
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In summary we reflect on the research question for Action 3 about the argumen-
tations students use when making a claim about data from an experiment. Within
the signal–noise idea the students did not seem to have yet grasped that the rea-
soning is about whether a treatment effect is detectable under chance variation, not
about whether the treatment is effective or not, or chance is acting alone or not. By
using the latter two reasoning processes, they appeared to invoke a plethora of no-
tions about uncertainty and misconceptions related to comprehension of principles of
experimental design and causation and inference argumentation. For example, con-
founding variables and group size seemed to become the rationale for a reluctance
to consider causality; the tail proportion becomes the probability of the treatment
being effective; and other issues, such as the tendency notion, generalization, and all
knowledge is uncertain influence their argumentation.

Students’ argumentation in Action 3 is not surprising since they only experienced
a two-lecture introduction to experiment-to-causation inference and the VIT tools
only give a visual image of the tail proportion within a distribution. Hence, they
express misconceptions previously identified with p-values (e.g., Nickerson, 2004).
Our findings, however, uncover a wider range of thinking within uncertainty that is
invoked with experiment-to-causation inference and that will need to be addressed
in further instruction.

4.5.4 Summary of Student Notions about Uncertainty

Our aim in this chapter was to uncover new considerations about students’ reason-
ing processes regarding causality and uncertainty in the context of making partially
informal inferences. From our analysis of student reasoning processes within each
of the three actions that occur towards making an experiment-to-causation inference,
we have uncovered twelve elements within uncertainty (Table 4.6) that we think need
to be addressed in instruction to enable students to appreciate and grasp more fully
the thinking and argumentation underpinning the designed experiment and the ran-
domization test.

A two-lecture introduction was insufficient, as was the case in this study, for stu-
dents to understand the implications of experimental design, and to overcome prior
knowledge, such as sample-to-population inference. As is prevalent within society,
these students seemed to engage in deterministic thinking as they sought other causes
beyond the cause set up by the experiment. Hence, to understand causality in a proba-
bilistic setting, our students needed more time for exploration and experience, which
they did obtain in a further four weeks of instruction later on in the course.
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Table 4.6
Summary of Elements within Uncertainty that May Need to be Addressed in
Instruction for Experiment-to-Causation inference

Element Description of reasoning and ideas
Causal evidence Understanding that in a properly executed randomized comparative ex-

periment causality can be established if the values of the explanatory
variable (treatment) are randomly assigned to the units.

Randomization Test Understanding the purpose of the test and reasoning and ideas un-
derpinning the quantification of uncertainty towards experiment-to-
causation inference (see Figure 5).

Tail Proportion Understanding that the aim is to detect a signal, the treatment effect,
under the obscuring effects of noise or chance variation. A small tail
proportion indicates a signal has been detected, while a large tail pro-
portion indicates a signal has not been detected suggesting that noise
could be obscuring the signal or there could be no signal, just noise,
implying that a claim cannot be made. (See discussion section on this
metaphor.)

Treatment is effec-
tive

Understanding that the treatment is effective element is composed of a
chance component and a treatment effect component.

Rare occurrence Realizing the possibility, although small, that a difference in centers
at least as large as that observed could happen by chance alone. That
is, the observed difference may be a rare occurrence and the wrong
inference may have been made (Type 1 error—not covered in our two-
lecture introductory instruction).

Generalization Understanding that care must be taken with any generalization to a
wider group than those in the study who were volunteers with partic-
ular characteristics (e.g., male, high blood pressure). The population
is all those who participated in the experiment. Inappropriate to think
about a wider population.

Tendency Understanding that the inference is about the tendency of the treatment
group as a whole to improve, not every individual.

Confounding vari-
ables

Understanding that unknown or potential confounding variables can be
treated as chance explanations, which are accounted for in the method
of random assignment and in the re-randomization distribution.

Design issues (e.g.,
group size)

Realizing a design issue such as group size is not a problem. Under-
standing that smaller group sizes require a large observed difference in
centers in order to detect whether the treatment is effective under the
obscuring effects of chance variation compared to larger group sizes.

Sample-to-
population in-
ference

Realizing that a designed experiment uses volunteers, does not take a
sample from the population, and does not aim to make an inference
about a population; rather it aims to make an inference about an inter-
vention.
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Table 4.6 – continued from previous page

Element Description of reasoning and ideas
Contextual knowl-
edge

Understanding that claims are based on the data in hand and that con-
textual knowledge, for example, about possible biological mechanisms
for the observed difference in centers is used for the next stage of an in-
vestigation. Realizing that one’s own contextual knowledge and beliefs
can bias perceptions or leads one’s thinking astray.

All knowledge is
uncertain

Acknowledging that there are other sources of uncertainty such as
quantification of uncertainty for statistical inference as well as the un-
certainty about current knowledge being overturned in the future.

4.6 Discussion and Implications

Research has largely focused on sample-to-population inference and has consistently
documented a tendency for students to think deterministically or causally and to not
take sample size into account (e.g., Kahneman, 2011; Meletiou-Mavrotheris, Lee, &
Fouladi, 2007). Students, however, when first introduced to experiment-to-causation
inference do not seem to be willing to use causal thinking from the designed experi-
ment. Rather, they tend to focus on many considerations of uncertainty and causality,
such as sources of variation within the study design, the idea that all knowledge is
uncertain, the group size is too small (not a concern in this situation), not every in-
dividual case benefits from the treatment, the observed difference might be a rare
occurrence, the group of people on whom the experiment was conducted were vol-
unteers, wondering about the biological mechanism behind the treatment, chance
explanations, and chance is acting alone. The idea that chance and treatment act
alongside one another also needs to be addressed in instruction. Making judgments
from data, therefore, involves students in untangling considerations regarding uncer-
tainty in the realms of statistical inference, data quality, and data validity.

Cognitively coordinating, attending to, and building conceptions of uncertainty
for experiment-to-causation inference requires a teaching sequence that gradually
develops more sophisticated notions of uncertainty and causality which addresses the
elements of uncertainty identified in Table 4.6. The integrated textbook, Core-Plus
Mathematics (Hirsh, Fey, Hart, Schoen, & Watkins, 2008), has learning trajectories
that address experiments and causation using randomization tests with CPMP-Tools
(Keller, 2006). Hart, Hirsch, and Keller (2007) believe these tools provide cognitive
amplification, resulting in a conceptual understanding of inference. Also of note, is
Madden’s (2008) research, which, although addressing different research questions,
was able to demonstrate that high school mathematics teachers who participated in a
four-day professional development course could successfully compare distributions
using the randomization test with CPMP-Tools and Fathom™ (Finzer, 2005). Similar
to the findings of many researchers about developing students’ probabilistic reason-
ing (e.g., Garfield et al., 2012; Konold & Kazak, 2008), however, we conjecture that
developing students’ understanding of causality in a probabilistic setting will require
multiple experiences over several years.
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The six underpinning interconnected ideas (model fit; signal–noise, principles
of experimental design; the Law of Large Numbers, random process and indepen-
dence; distribution; and inference argumentation) change subtly as students move
from thinking about the observed data, to conducting a randomization test by mod-
eling the random behavior of reallocating units to two groups, to making a claim
about the data. These interconnected ideas involve uncertainty related to statistical
inference for experiments. Grappling with understanding the concepts underpinning
the quantification of statistical inference, and interacting with many considerations
about uncertainty are learning experiences that these students will need in further in-
struction. The dynamic visual imagery, resources, verbalizations and teacher–student
discussion used in this study are, we believe, a small step in the right direction for
students to begin to appreciate uncertainty in its many guises.

Inference argumentation, however, as our findings suggest, requires further devel-
opment and is in accordance with other research on interpretation of the p-value (e.g.,
Nickerson, 2004). Such a finding is not surprising given the limitation of a two-lesson
introduction to the randomization test and the nature of the argumentation, which
is incumbent on reasoning about detecting a signal within the abstract notion of a
chance alone distribution. To improve students’ inference argumentation we suggest
that future research explore new metaphors, visual imagery, and verbalizations. For
example, we used the language “chance is acting alone” as an explanation of the ob-
served difference in centers, and for arguing from the re-randomization distribution.
Chris Wild (personal communication, November 28, 2013) suggests using language
such as, “can randomization do this?” and “compare what we have got with what
randomization alone can deliver”, where randomization must be understood as ran-
dom assignment of units to two groups. Although such language may be less abstract
than “chance is acting alone”, the downside is that it does not immediately lead to
more universal ideas further along conceptual and learning trajectories for teaching
inference. Also the signal–noise metaphor for inference argumentation (see tail pro-
portion element in Table 4.6) may provide students with better visual imagery, such
as an association with detecting signals in outer space to learn about the argument,
rather than chance is acting alone imagery

Causal inference also needs attention. Its long history is intertwined with philo-
sophical argumentation as perspectives and ideas have changed; from the attribu-
tion of causes to gods or people to physical objects; from making causal inferences
based on correlation ideas to using the randomized experiment, and more recently,
from observational studies (Pearl, 1996). Therefore, teaching approaches need to ac-
knowledge students’ intuitive reasoning, prior knowledge and general philosophical
approach to argumentation. With students’ propensity to think deterministically, and
not to appreciate the role of chance ((Fischbein, 1975), it appears from our findings
that it may take time for students to grasp the idea of a causal inference and the role
of chance in evaluating evidence of causality.

While more research is needed to modify the theoretical frameworks for statistical
inferential thinking, the conceptual pathways in the curriculum, and to understand
students’ reasoning about uncertainty, teaching in a completely new way through
using the randomization test and focusing on experiment-to-causation inference has
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opened up and revealed the depth of thinking that is needed to grasp more fully the
issues surrounding conceptions of uncertainty and causality.
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Appendix: Appendix: Assessment Items from the Pretest and Posttest

Pretest and posttest scenario: (Knapp & FitzGerald, 1989)

Pretest and posttest questions (NB: In the posttest “statistical test” in Question 1, part
B was changed to “randomization test”)
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Posttest Question 2

Posttest Question 3
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Abstract

We investigate the reasoning of preservice teachers about uncertainty in the
context of randomization tests facilitated by TinkerPlots™. This method of hy-
pothesis testing is a widely used method to look beyond the comparison of two
groups and to generalize findings beyond a sample. To support preservice teach-
ers while they conducted these tests, we developed two courses to lead them to
randomization tests: One course moves from data analysis to randomization tests;
the other from simulations to randomization tests. A video study which includes
the observation of preservice teachers while conducting randomization tests with
TinkerPlots™ placed at the end of both courses will be the focus of this chapter.
Finally, this chapter will give insights into how the process of randomization tests
can be supported for learners and will outline a group of German preservice teach-
ers’ encounters with randomization tests.

Keywords: Informal inferential reasoning; Randomization tests; preservice teach-
ers; TinkerPlots™
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5.1 Overview

The education of preservice teachers in mathematics at the University of Paderborn
consists of three domains: mathematics, didactics of mathematics, and pedagogy. An
obligatory mathematics course is called Elementary Statistics and Probability The-
ory, in which the participants are introduced to the basics of statistics and probability.
In addition, preservice teachers can attend a seminar, which deepens this course in
a succeeding term. The authors of this chapter have designed two of these semi-
nars, incorporating 15 sessions into each (Frischemeier & Biehler, 2012; Podworny,
2013). The first course deals with exploratory data analysis with TinkerPlots™ and
is called Developing Statistical Reasoning Using the TinkerPlots™ Software. The
second course, Applied Stochastics—Understanding and Solving Complex Problems
with Simulations, is about simulation with TinkerPlots™. With each course we ad-
dress reasoning about uncertainty in the context of exploring real data. This finishes
with randomization, which is a topic highly related to Reasoning about Uncertainty
in the Context of Making Informal Statistical Inferences. A common final goal in both
courses is supporting the participants in learning to draw conclusions from data via
randomization tests. For information concerning randomization tests, see Edgington
and Onghena (2007), Ernst (2004), and Zieffler, Harring, and Long (2011). Both
courses have different approaches and routes but both finally lead to randomization
tests. The first course’s route is from data analysis over group comparisons to ran-
domization tests and the second course’s route is from simulation to randomization
tests. Note that due to organizational reasons there were no participants who attended
both courses. Randomization tests are the final topic in both courses and we want to
investigate the reasoning of preservice teachers about uncertainty in this context.
After the preservice teachers gained experience with informal methods of drawing
conclusions from data we introduced null hypothesis testing, where p-values were
used as way of quantifying uncertainty. Drawing conclusions from data was a funda-
mental aspect in both courses, but conducting a randomization test turned out to be
a very difficult statistical task on many levels; for example developing an adequate
null hypothesis, the calculation of the possible arrangements and permutations of the
data, the computation of the p-value, and the correct conclusions from computed p-
values with regard to the null hypothesis. The simulation method supported by the
use of adequate software can make the process much easier and can support learners
in their modeling process. Educational software, in particular TinkerPlots™, enables
the demonstration of the randomization process itself: The random assignment in the
sampler is visible.

To analyze preservice teachers’ thinking and reasoning while conducting a ran-
domization test with TinkerPlots™, we conducted a video study after each course.
In this study, the preservice teachers were recorded while doing a randomization test
with TinkerPlots™. Results of this study are presented in this chapter. We will further
present a scheme representing a whole cycle of testing and further material which is
supposed to support learners while doing these tests.

Note, that we did not carry out an experimental comparative study with random
assignment of subjects to the two courses so that we could have made a causal in-
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ference from the two different treatments to the quality of preservice teachers’ rea-
soning. Nevertheless the comparison of the two groups will provide us with some
insights and hypotheses about the possible effects of the two different routes to ran-
domization tests.

5.2 Problem

In Germany, randomization tests are widely unknown in textbooks at the secondary
and tertiary level. Consequently, there is no research concerning German preservice
teachers’ coping with randomization tests. In the German school curriculum even
the “testing” of hypotheses with p-values does not appear very often. In grade 11
or 12, formal hypothesis testing with pre-defined significance levels is a topic in
several federal states, but often not obligatory for the final examinations. In general
it is reported that pupils, students and preservice teachers have many misconceptions
about hypothesis testing independent of the kind of test procedure. In our courses
we do not teach how to compute p-values by using probability distributions, but
use the software TinkerPlots™ for estimating p-values via simulation. This is a more
informal approach, taken from the informal inferential reasoning discussion (see e.g.,
Zieffler, Garfield, delMas, & Reading, 2008). We see many advantages in using a
software capable of simulation (e.g., Biehler & Maxara, 2007; Konold, Harradine, &
Kazak, 2007; Meyfarth, 2008). Most participants in our courses have no or very little
knowledge about hypothesis testing, since this is not part of the obligatory course,
Elementary Statistics and Probability.

Similar to delMas, Zieffler, and Brown (2013), who developed an introductory
course with the goals of developing students’ informal and formal statistical infer-
ences, we developed two courses leading to randomization tests (see Section 3.4). In
this article we focus on German preservice teachers working on a randomization test
task (see Section 3.4). Because they have never previously experienced the idea of
randomization, we want to address the following research questions:

1. How do the preservice teachers accomplish the steps of a randomization test?

2. How well are the preservice teachers able to model a randomization test exper-
iment with TinkerPlots™ ? What is the role of TinkerPlots™ in their thinking?

3. How do the preservice teachers interpret the results of the randomization test?

5.3 Literature and Background

P -values and their interpretations present many difficulties for learners. For an overview
of (mis-)conceptions regarding hypothesis testing with p-values, see Garfield and
Ben-Zvi (2008, p. 270). These authors report problems with questions like the one
mentioned previously concerning students generalizing a result found in a sample.
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An opportunity for emergent inferential reasoning, especially in connection with re-
sults from group comparisons, is a randomization test. Ernst (2004) describes a de-
tailed and formal introduction into randomization tests but the question arises as to
how this kind of reasoning can be implemented in mathematics teaching at earlier
levels? Rossman (2008) recommends starting inferential reasoning with randomiza-
tion tests. His introduction to randomization tests uses the example “Dolphin Ther-
apy”. Thirty people aged 18–65 years with a diagnosis of depression were randomly
assigned to either a treatment with common medical methods, or a treatment of a
special dolphin therapy. At the end of the experiment, the researchers noticed that
the proportion of patients with severe depression in the dolphin therapy group was
smaller than the proportion of patients with severe depression in the control group.
The question arises: Is it possible to infer that the dolphin therapy is a more effec-
tive treatment of depression than the common medical therapy? Or did the observed
difference occur by chance?

The key concept, and the key question, is that of “chance variability”. A big ad-
vantage according to Rossman (2008), and a convincing argument for a first step
into informal inferential reasoning via randomization tests, is that “. . . this procedure
for introducing introductory students to the reasoning process of statistical inference
is that it makes clear the connection between the random assignment in the design
of the study and the inference procedure” (p. 10). Some difficulties concerning the
interpretation of p-values can be reduced by using randomization tests: “. . . [a ran-
domization test] also helps to emphasize the interpretation of a p-value as the long
term proportion of times that a result at least as extreme as in the actual data would
have occurred by chance alone under the null model” (Rossman, 2008, p. 10). To
make the argument clearer, it is easy to imagine that if the random assignment to
groups is repeated many times, the p-value gives the relative proportion of the repe-
titions, where we get a value at least as extreme as the observed value. Cobb (2007)
emphasizes that—by using randomization tests in introductory courses—students
have a better opportunity to understand the “core logic of inference” (p. 11). There
are no mathematical derivations from probability distributions to be done, which can
lower the understanding. In more detail Cobb refers to the 3R’s for a randomization
test with software: Randomize data production; Repeat by simulation to see what’s
typical (and what’s not); Reject any model that puts your data in its tail. Rossman
(2008) provides examples of how such a randomization-based approach might be
implemented at the secondary and tertiary level.

The use of randomization tests is also discussed by Edgington and Onghena
(2007). They point out that, “. . . a randomization test is valid for any kind of sample,
regardless of how the sample is selected. This is an extremely important property be-
cause the use of non random samples is common in experimentation, and parametric
statistical tables . . . are not valid for such samples” (p. 6). These authors do, however,
point out that random assignment is a necessary condition for using randomization
tests. However, these differentiations are partly controversial among statisticians.
First, we will describe the “process-approach” by Konold (1994), and second, we
will distinguish several scenarios that may arise when “making inferences.”
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Konold (1994) describes an approach where data is produced from a random as-
signment process (called “process-approach”). Within the process-approach (for de-
tails, see Konold, 1994; Konold & Pollatsek, 2002) data is seen as produced by a
possibly hypothetical process.

Zieffler et al. (2011, p. 119) go into more detail and distinguish between four
types/scenarios of “making inferences”: Scenario 1 is characterized as a random
sample and a non-random assignment, which they call “generalizable research”. This
may lead to conclusions about the population from which the sample was drawn but
generally does not allow causal inferences. Scenario 2 describes a situation of a non-
random sample and a random assignment to an experimental and a control group
which is meant to be “randomized experimental research”. In this case a generaliza-
tion to a wider population is not possible but causal inferences related to the treatment
in the experimental group. Scenario 3 refers to a random sample and a random as-
signment and is called “generalizable, randomized experimental research.” Here are
two types of possible inferences: Drawing conclusions about the population on the
one hand and inferences on causality on the other hand. Finally, Scenario 4 covers
a non-random sample and a non-random assignment which is understood as “non-
generalizable, nonexperimental research”, in this case conclusions have to be drawn
very carefully. A method like bootstrapping would have been more adequate in the
case of a random sample. This would mean sampling with replacement. (However,
from a didactic point of view, resampling with replacement is less intuitive and more
difficult to explain to students.) The idea of a randomization test procedure is that
the random allocation of the variables can be imagined as a 1:1 mapping. In the spe-
cial case of doing randomization tests with TinkerPlots™, this process can be made
explicitly visible in the sampler.

Let us take a look at hypothesis tests in general. Which misconceptions occur
when students perform and interpret a hypothesis test? Vallecillos (1994) reports
that many students think similarly to a deductive process and do not appreciate the
uncertainty in the reasoning process. Another typical misconception regarding the
p-value is that the p-value is the probability that the null hypothesis is true, given
the observed data (Garfield & Ben-Zvi, 2008, p. 270). Liu and Thompson (2009)
conducted a study with eight high school teachers and point out that they had the
interpretation: If the null hypothesis is rejected, than the statement must be false.
Related to this, Harradine, Batanero, and Rossman (2011, p. 12) state that instructors
need to “critical[ly] evaluat[e] . . . the use of alternative methods (e.g., randomization
tests) when first introducing statistical inference. Great care should be taken in this
area given the widespread and long-term use of classical statistical inference”.

Liu and Thompson (2009) propose to do randomization tests with TinkerPlots™.
However, not much empirical research related to learning trajectories and learners’
misconceptions while doing a randomization test has been published. Frischemeier
and Biehler (2013) found that when analyzing written statistical projects which in-
cluded a randomization test, preservice teachers seem to lack conceptual knowl-
edge. For example, they can have problems generating an adequate null-hypothesis
or drawing conclusions from a calculated p-value, while having good procedural
knowledge regarding the use of TinkerPlots™ while doing randomization tests.
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Based on this research, we developed a framework for clarifying the different
steps that are necessary when conducting a randomization test. Adapted from this
framework we elaborated a randomization test scheme with guidelines for our par-
ticipants with the steps they are supposed to carry out for doing a simulation based
randomization test with TinkerPlots™.

5.4 Subjects and Methods

Our first course takes students directly from group comparisons using descriptive
statistics to randomization tests with a minimum of probability elements (e.g., Konold,
1994). In contrast, our second course routes students from probability modeling to
randomization tests, similar to what is proposed in CATALST (Zieffler & Catalysts
for Change, 2013). More specifically, the course began with students using simu-
lation to compare models to real data and then transitioned to randomization tests
using a minimum of elements of data analysis.

5.4.1 Topics of Course 1: Developing Statistical Reasoning Using the
TinkerPlots™ Software

In this course the preservice teachers go through the entire PPDAC-cycle (Wild &
Pfannkuch, 1999) which includes elements such as generating statistical questions
and hypotheses, constructing a questionnaire, collecting data1, analyzing data with
the TinkerPlots™ software (Konold & Miller, 2011), and writing down findings in a
statistical report. The preservice teachers learn how to write a statistical report, make
group comparisons2, discover and describe a relationship between two numerical
variables, and make conclusions from a sample to a wider population in the form
of informal inferential reasoning (IIR; for a definition, see Zieffler et al., 2008). At
the end of the course, they, in teams of two, completed a statistical project with
topics of their choice related to a data set concerning the leisure time activities of
first semester preservice teachers. Making comparisons of distributions of numerical
variables (i.e., group comparisons) was a fundamental goal of the course. In addition
to describing and interpreting single distributions and exploring differences between
them we wanted the preservice teachers to draw wider conclusions and generalize
their findings. A typical task associated with group comparisons was: “Is there a real
difference regarding the variable Time Reading (time spent on reading books or
magazines in hours per week) between the boys and the girls, or did that difference
occur by chance?” At the end of the course we introduced the preservice teachers to

1The dataset primary used in this course was collected in a first semester mathematics course for pre-
service teachers and the self-created questionnaire involved items concerning their leisure time activities,
intentions of becoming a math-teacher and their first impressions of studying at the University of Pader-
born.
2The comparison between two or more distributions of a numerical variable.
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randomization tests. Details about how randomization tests were introduced in the
course are available in Frischemeier and Biehler (2013).

5.4.2 Topics of Course 2: Applied Stochastics—Understanding and
Solving Complex Problems with Simulations

The course covers five topics: (1) Data analysis with TinkerPlots; (2) Basic simula-
tions with TinkerPlots™; (3) Precision of simulations; (4) Independence and depen-
dence; and (5) Hypothesis testing with p-values and randomization tests.These topics
covered different time spans in the course. The main focus for the class was on the
second and fifth topics. Each of these spanned four class sessions. Preservice teachers
witness demonstrations of and short introductions to the software, and work in pairs
on pre-designed learning trajectories. Preservice teachers learn to model different
“real-world” situations using the TinkerPlots™ sampler, compute and display out-
comes from random experiments and interpret the results. This process is supported
with a “graphical simulation scheme”, which can be used to plan, structure, or docu-
ment a simulation with TinkerPlots™. We developed this tool, based on experiences
we had teaching with Fathom® and adapted it for use with TinkerPlots™. The preser-
vice teachers were required to put together a portfolio with some selected tasks and
with reflections on every topic in order to support their understanding (Stratmann,
Preußler, & Kerres, 2009). A major goal of this course was to have preservice teach-
ers experience a more informal method of solving probability and statistics problems
in addition to the formal computations that are prevalent in the culture of the German
schools. With simulations, the preservice teachers were able to examine problems
that could not have been solved formulaically at their mathematical level.

5.4.3 Study Participants

The study participants were preservice mathematics teachers at the primary and sec-
ondary school level and were either enrolled in Course 1 (n = 12) or Course 2
(n = 24). Each had previously completed the course, Elementary Statistics and
Probability Theory, which does not cover inferential statistics. The preservice teach-
ers all attended the university after their school day is finished, and did not have any
prior practical experience in teaching.

Two months after the completion of each course, the study participants were in-
terviewed in teams of two (n = 6 pairs in Course 1 and n = 12 pairs in Course 2).
The interviews were designed to reveal the cognitive processes of learners conduct-
ing a randomization test. The participants were given the VSE-task, which will be
described below. Although the participants were also given other tasks, the results
of these tasks will not be reported in this chapter. The study, which was digitally
recorded, was two-phased, with a working phase at the beginning and a “stimulated-
recall” phase afterwards (see Busse & Borromeo Ferri, 2003). In the working phase,
the preservice teachers worked independently on the VSE task and were required to
communicate with each other (along the lines of “thinking aloud”; Bromme, 1981)
without any input or interruption by the interviewer. This phase was videotaped with
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the screen-capture software Camtasia. In the second phase, “stimulated-recall”, the
participants were shown the recording of their working phase and prompted by the
interviewer to express their thoughts and aims at several stages. The interviewer in-
terrupted the video during selected situations and posed questions such as, “what did
you think at this moment?”, “why did you do it that way?”, “can you explain your
intention on this aspect?”, etc. in the form of basic, direct questions as suggested by
Leiss (2007).

5.4.4 Data

The data collected included the randomization test schemes, exercise sheets, Cam-
tasia recordings and TinkerPlots™ files from the working phase (phase 1) and the
Camtasia recordings from the “stimulated-recall” phase.

The Randomization Test Task for the Participants. We wanted to observe in
which way our preservice teachers could deal with a “typical” randomization test task
consisting of a group comparison and a randomization test. In this section, our focus
will be on the procedure of carrying out a randomization test. For our study, we took a
dataset exported from the website of the German Bureau of Statistics3 which contains
861 cases sampled at random from 60,552 interviewed German employees. The data
included variables such as gender, wage per month, kind of employment agreement,
and so forth. The task was to compare the monthly wages of males (n = 477) and
females (n = 384). Figure 5.1 suggests that male employees tend to have higher
monthly wages than female employees in the sample.

Is there a difference with respect to a variable between the two groups or could
that difference have occurred at random due to the selection of our sample? This kind
of question may lead us to a randomization test that can be carried out with software
such as TinkerPlots™ (Konold & Miller, 2011).

The results of conducting a randomization test using TinkerPlots™ are shown
in Figure 5.3. In the VSE sample dataset there is an observed difference of 833e
between the average income of women and men. The null hypothesis (that is to
be rejected) is that there is no difference between the average income of women
and men in the larger population. Using the results from the randomization test in
TinkerPlots™, the estimated probability that the difference between women and men
is 833e or larger in a sample of 861 people, under the assumption that the null
hypothesis is true, is 0.000.

In the sampler, the two variables “gender” and “salary” (from the original VSE
data set) are represented as two separate devices (boxes). “Gender” is represented
in a stack device that can take the values of “female” or “male”, and “salary” is
represented as a mixer with 861 cases labelled with the values of the employees’

3The VSE 2006 dataset contains anonymous data for research and teaching, generated from the
2006 Earning Survey data. The 2006 Earning Survey was conducted as a stratified sample survey
of nearly 28,700 companies with 10 or more employees. The companies employ around 1.8 mil-
lion employees nationwide. It is available at https://www.destatis.de/DE/Publikationen/Thematisch/
VerdiensteArbeitskosten/VerdiensteBerufe/VerdienstenachBerufe.html (retrieved on June 30, 2013).

https://www.destatis.de/DE/Publikationen/Thematisch/VerdiensteArbeitskosten/VerdiensteBerufe/VerdienstenachBerufe.html
https://www.destatis.de/DE/Publikationen/Thematisch/VerdiensteArbeitskosten/VerdiensteBerufe/VerdienstenachBerufe.html
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Figure 5.1. Group comparison for the VSE task.

Figure 5.2. Excerpt of VSE task handed out to the participants of the interview
study.

monthly salaries. Note, that the variable “gender” is not uniformly distributed in this
device (there are 477 males and 384 females in the sample). The null hypothesis is
modeled by independently sampling (without replacement) a gender and salary from
the two devices. In the results table (labelled “Results of Sampler 1”) we see a subset
of the results from a single sample. The difference of the average income for the two
groups from this sample is computed and displayed in the stacked histograms of the
“Results of Sampler 1”. In this random draw, ‘women’ earn 212e more than ‘men’.

This random sampling and computation of the mean difference is carried out 1000
times. The difference in the means is collected and shown in the table in the bottom
left-hand corner of Figure 5.3. These differences are displayed in the plot “History
of Results of Sampler 1” in the bottom right-hand corner of Figure 5.3. This distribu-
tion represents the sample mean differences one would expect if there was no mean
difference in the population. None of these simulated mean salary differences are as
extreme as the observed difference of 833e seen in the VSE data. So the p-value is
0.0000. What can we conclude from these results? Due to this very low p-value there
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Figure 5.3. Screenshot from TinkerPlots™ displaying the results of a randomization
test.

is strong evidence against the null hypothesis of no-difference-in-means of gender
and salary in the population.

We note that the observed mean difference in salary of 833e does not appear on
the scale where the simulated values are plotted; the highest value from the simula-
tion is around 350e. This is a difficult for the participants to understand. Although
this seemingly produces a p-value of 0, it requires learners doing the VSE task to
recognize that the actual p-value is not zero, but needs to be interpreted as a very
small p-value.

Framework for Randomization Tests with TinkerPlots™. Biehler (1997, p. 175)
describes a cycle for computer-supported statistical problem solving which consists
of four phases: “Statistical problem”, “problem for the software”, “results of soft-
ware”, and “interpretation of results in statistics”. We extended this model to a frame-
work that describes the cycle of conducting a randomization test (and can also be
seen as a cycle for conducting chance experiments via simulation in general) using
software (see Figure 5.4).

Here we distinguish between three worlds: The contextual world, the statistical
world, and the world of software, each of which is embedded within the other. For
doing a randomization test using software (here using TinkerPlots™), six steps are
needed, two from each world. The starting and ending points are in the world of
context. The intermediate steps are located in the statistical world and also in the
world of the software. These steps will be explained further and illustrated by the
VSE task in italics.

Real problem: The starting point for the cycle is a task with a question. Normally
this is provided in the task. The group difference in the VSE task is: Men earn 833e
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Figure 5.4. Framework for randomization testing.

more per month on average than women in the sample. What can you infer with
regard to the population? In this situation the real problem is given in the task. Note
that there might also be tasks which require the formulation of a real problem.

Statistical problem: At this point, when the null hypothesis is generated, we
move from the “contextual world” (real world) to the “statistical world”. It is notable
that at this stage it is necessary to formulate an adequate null hypothesis, which can
be “tested”. For the VSE task an adequate null hypothesis might be: There is no
difference between the average salary of men and women in the population.

Statistical method: After formulating an adequate null hypothesis, an appropriate
statistical test has to be chosen. In this case, a randomization test would be appropri-
ate.

Simulation with TinkerPlots™: As a basis for a simulation in TinkerPlots™,
the previously constructed null model links the statistical and the software world.
The null model of no difference can be modeled using the sampler in TinkerPlots™
(similar to that shown in Figure 5.5).

The first mixer contains 861 cases, 384 of which are women and 477 of which
are men. This mimics the number of men and women in the sample data. The second
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mixer contains one case for each of the 861 salaries of the sample data. A case is
randomly selected from each of the two mixers, a gender and a salary. This process
is repeated 861 times (without replacement) to produce a new, randomized sample.
The difference in mean salary between males and females for this new sample drawn
under the assumption that gender is independent of salary is computed and recorded.
This entire re-randomization process is then repeated many times.

Figure 5.5. TinkerPlots™ sampler with two mixers.

Results of the simulation: In order for the results to be valid, the simulation in
TinkerPlots™ has several technical steps that need to be followed. These steps will
be explained later in the Results section. The technical steps mentioned above com-
pletely take place in the software world. At this stage, the results of the simulation
have to be interpreted and documented. In the VSE task, a p-value would be com-
puted to indicate the probability of obtaining a result at least as extreme as the mean
difference observed in the original data. In our case, the p-value is less than 0.0001.

Statistical Inferences: When making statistical inferences, we re-enter the statis-
tical world. The results produced by the software have to be transformed into statis-
tical terms: Evidence, significance. For the VSE-task this is in short that a p-value of
less than 0.0001 leads to very strong evidence against the null hypothesis.

Inferences: Finally we come back to the context world, where we interpret what
the statistical inferences (done in the step above) imply about generalizations and
conclusions we can make about the real problem. For example, in the VSE task, we
can make the conclusion that salary is not independent of gender in the population—
there are mean differences in the salaries between females and males.

Supporting Material for Conducting Randomization Tests with Software. A
handout (see Figure 5.6) to support the preservice teachers in performing the com-
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plex randomization test procedure was developed based on the proposed framework.
It can also serve as a means of documentation of the several steps done by the par-
ticipants.

Figure 5.6. Randomization test scheme.

As drawing adequate conclusions from p-values is difficult for learners, we also
provided guidelines to support learners when using statistical evidence to draw con-
clusions (see Figure 5.7). These guidelines were given to preservice teachers in both
courses.

5.5 Analysis and Results

The data analysis took place in two parts. In the first part, we analyze the random-
ization test schemes and the TinkerPlots™ files. In the second part, we take a look at
chosen excerpts of the videos.
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We have weak evidence against the null hypothesis, if p  10%

We have medium evidence against the null hypothesis, if p  5%

We have strong evidence against the null hypothesis, if p  1%

We have very strong evidence against the null hypothesis, if p  0.1%

We have no evidence against the null hypothesis, if p > 10%

Figure 5.7. Guidelines for supporting learners while drawing conclusions from
p-values.

5.5.1 Analysis One: Worksheets and TinkerPlots™ Files with Regard
to Statistical Steps

The data are initially analyzed with regard to the statistical steps taken to conduct
a randomization test. These data comprise the preservice teachers’ completed test
schemes and TinkerPlots™ files. The written material (e.g., test schemes) can give
us insight into the verbal skills and the understanding of the preservice teachers in
a compressed form. The TinkerPlots™ files, which we analyze in a second step,
offer insights into preservice teacher’s TinkerPlots™ skills and knowledge, as well as
their approach to a simulation task. Both data sources can reveal preservice teachers’
difficulties in certain steps.

As an example of a filled out randomization test scheme, we present the case of
Sara and Maggie (see Figure 5.8). This is an example of a sufficiently completed
randomization test scheme.

For our analysis process we take into account the completed randomization test
schemes and the TinkerPlots™ files. We distinguish between “statistical steps” (the
six major steps necessary to perform the task; see Table 1) and “TinkerPlots™ steps”
(the seven major steps we believe are crucial to conducting a randomization test with
TinkerPlots™; see Table 4). According to our cycle (Figure 5.4) and the randomiza-
tion test scheme (Figure 5.8) we base our analysis on six major “statistical” steps.

In the following paragraphs, we will describe “successful” performance for each
of the “statistical” and “TinkerPlots™” steps. “Successful performance” is based on
an expected solution at each step. We will also document typical mistakes that were
seen in the data. Finally, we will summarize the results by recording the frequency of
successfully accomplished steps and presenting the success rate4 for each step. This
will be presented for each course and as an overall measure.

4The success rate tells us the percentage of the participants who have accomplished the step.
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Figure 5.8. Randomization test scheme of Sara and Maggie.

Table 5.1
Six Major “Statistical” Steps when Conducting a Randomization Test

Step 1 Reading off the difference of the means of the groups in the dataset
Step 2 Formulating an adequate null hypothesis
Step 3 Describing the null model
Step 4 Formulating the test statistic
Step 5 Determining the p-value
Step 6 Drawing conclusions from the p-value

Step 1: Reading off the difference of the means of the groups in the dataset: In
a first step the participants have to read off the difference between the conditional
means, namely the mean difference between women’s salaries and men’s salaries.
This idea is displayed in Figure 5.9. An expected solution at this step could be,
“Women earn on average 833e less than men. This difference is 29% of the male
average.” This value is the observed value of the test statistic employed in the hy-
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pothesis test and should be included in the scheme. Successful performance on this
step would be that the preservice teacher measured and recorded this value correctly
in their scheme.

Figure 5.9. Reading off the difference of means between men (männlich) and
women (weiblich) concerning the average monthly salary (Bruttomonatsverdienst).

Step 2: Formulating an adequate null hypothesis: The starting point of the ran-
domization test is formulating an adequate null hypothesis, for example, “The aver-
age salary is independent of gender”. Successful performance on this step would be
that the preservice teacher generated an adequate null hypothesis.

Step 3: Describing the null model: The null hypothesis then has to be translated
into a simulation model in TinkerPlots™. The simulation model needs to include a
sampling device (e.g., mixer) for each attribute (gender and salary). The sampling
from each device needs to be independent and without replacement. In this step, the
preservice teachers should have prepared the simulation and described these aspects
of the simulation model. We will judge the quality of the simulation model they
actually built when we look at the TinkerPlots™ files. Here we judge the quality of
the statistical description of the null model. In Table 5.2 we see some examples of
null model descriptions distinguished by Course 1 and 2.

Table 5.2
Examples Regarding the Description of the Null Model

Course 1 Course 2
Urn with gender and salary. New assign-
ment (thrown together).

Factory created. The values of salary are
placed in an urn and drawn randomly
without replacement. Values of gender
are assigned to each value of salary.

861 pairs are drawn from two urns. At-
tribute 1: Gender and Attribute 2: Salary.
These pairs are collected in a table.

Sampler. Two mixers: Salary and gen-
der. Data placed in urn. Simulation with-
out replacement.
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Most participants did not provide a clear description of the null model. In Course
2 the “factory” metaphor was introduced and used very often, but only one pair used
this metaphor in their description (see Table 5.2, top right).

We did not rate the descriptions as successful or not, because this was difficult to
decide. Too many different formulations and use of vocabulary made it impossible
to categorize the answers. We will have a look in chosen transcripts in the sense of
reconstructing the cognitive process of the participants. It is clear that more emphasis
has to be put on this step in a revised teaching sequence.

Step 4: Formulating the test statistic: In this step the participants were supposed
to describe the test statistic in statistical terms, or at least, in their own words. The
test statistic can be described as an expected solution for “the difference between
the average monthly salary of men and women”. In a solution, to be rated correct,
the words “difference”, and “averages of salary” must have occurred in a meaning-
ful combination. Only two phrases were rated as correct; the remainder were rated
as incomplete or wrong. In Table 5.3 we present test statistics rated as “correct”,
“incomplete”, or “incorrect” for each of the courses.

Table 5.3
Written Statements Regarding the Formulation of the Test Statistic

Course Correct (3x) Incomplete (9x) Incorrect (6x)
Course 1 Difference of aver-

ages of salary
Differences of
salary (2x)

Salary

Difference of aver-
age salary of men
and women (2x)

Differences of
salary of men and
women (5x)

Difference is 833e
or more

Course 2 Difference of aver-
ages (2x)

Mean of salary

No description (3x)

We rated “Difference of averages of salary” (see Table 5.3, “Correct”) as correct,
because there the component “difference” and the idea of the average of the variable
“salary” was included, whereas “Differences of salary” and “differences of averages”
(Table 5.3, “Incomplete”) would be rated as incomplete because it lacks either “av-
erage” or “salary”. Single expressions like “salary” or “mean of salary” were coded
as incorrect.

All in all, we have only three correctly formulated test statistics, all from pre-
service teachers enrolled in Course 2. The verbal formulation of the test statistic
in statistical terms was a problem for almost all of the participants: Fifteen of the
eighteen descriptions were incomplete or incorrect.

Step 5: Determining the p-value: The p-value, the relative frequency that the dif-
ference in the average salary between women and men generated by the simulation
is equal to 832.80e or larger than 832.80e, is approximately 0% (p < 0.0001). An
expected solution might be, “The p-value is approx. 0 % here. This is the probability
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of getting a value as extreme or more extreme than the observed one of 833e, under
assumption that the null hypothesis is true.” An additional verbalization like that in
the second sentence is desired, but not necessary to be rated as correct. None of the
preservice teachers offered an additional verbalization of the p-value in any form.

Step 6a: Drawing correct statistical conclusions: A p-value of 0% should lead
to very strong doubts against the null hypothesis. The observed value 833e is very
extreme compared to the simulated distribution. A solution could be: “A p-value
smaller than 0.001 shows very strong evidence against the null hypothesis. There are
two possibilities: either the null hypothesis is true, and something very uncommon
has happened, or the null hypothesis is not true and should be rejected.” Successful
performance on this step would be assigned if the p-value is interpreted correctly,
either with the “evidence” terminology or with the interpretation given in the second
sentence.

Step 6b: Drawing correct contextual conclusions: Did the preservice teachers
connect the context of the task with the interpretation of the p-value? To reject the
null hypothesis, a difference must be established between the average salary for men
and women. An expected solution might be, “With a p-value of approximately 0%,
we can argue against the null hypothesis and infer that there is an effect of gender,
in which case, men earn, on average, more than women.” Successful performance on
this step would be if they refer to the task in the sense of connecting interpretation
with context.

Overview of Results. Figure 5.10 displays the proportion of successfully accom-
plished steps overall (left) and separated by course (right). Steps 3 and 4, where the
statistical issues should be formulated, could not be rated as correct or incorrect and
therefore do not appear in Figure 5.10.

Figure 5.10. Success rates overall and success rates according to courses for Step 1,
2, 4, 5, 6a, and 6b.

In Course 2, the procedure of conducting a hypothesis test was taught explicitly,
so the better results are not surprising. At least half of the preservice teachers in
Course 1 were able to conduct a randomization test. One difficulty of the task, men-
tioned previously, was that the p-value obtained from the simulation was very close
to zero. The participants from Course 1 never saw such an extreme p-value in their
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coursework, which may explain the lower success rate for Steps 5–6b. In general,
the reference to context was also a problem for the participants. This is where the
transition from the “statistical world” to the “contextual world” takes place in the
software cycle (see Figure 5.4).

Overview of Mistakes that Occurred in the Statistical Steps. At Step 2: The error
was to formulate the alternative hypothesis as the null hypothesis. “Null hypotheses”
we rated as “non-adequate” were: “Men earn more than women on average,” which
occurred twice out of 18 pairs. One pair did not generate a null hypothesis at all.

At Step 5: Those who were not rated as correct at this step were not able to find the
p-value at all. Our interpretation is that this was due to the extreme observed value,
which did not appear in the graph of the simulated distribution. Those who could not
solve this step came from Course 1, where they had less experience with p-values
and never saw a p-value near zero.

At Step 6a: Why is the success rate of Course 1 so low? One reason might be
that in Course 1, terminology related to evidence was not commonly used. (The “ev-
idence” language was only used in Course 1 one time.). In Course 2, the participants
were trained to use the “evidence” terminology for making inferences about the null
hypothesis.

5.5.2 Analysis One: Worksheets and TinkerPlots™ Files

Let us now have a look at the steps which have to be done in TinkerPlots™ (partly
parallel to the statistical Steps 3, 4, and 5) when conducting the simulation of the null
model (Table 5.4).

Table 5.4
TinkerPlots™ (TP) Steps

Step Description
TP1 Populating the mixers with the correct labels/values to mimic the

original sample.
TP2 Setting the number of repetitions (how many cases should be ran-

domly selected from each mixer) to the original sample size.
TP3 Setting the number of repetitions (how many cases should be ran-

domly selected from each mixer) to the original sample size.
TP4 Plotting the new, randomized sample and depicting the measure

of deviation from the null hypothesis (e.g., mean difference) in
the plot.

TP5 Collecting the chosen measure from many different re-
randomizations using “Collect Statistic” and the history function.

TP6 Plotting the collected statistics to examine the distribution of the
“test statistic”.

TP7 Computing the p-value
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Steps TP1–TP7: Modeling the simulation in TinkerPlots™—summary of techni-
cal aspects: We identified crucial steps for the simulation process and will describe
them below.

Step TP1: Populating the mixers with the correct labels/values to mimic the orig-
inal sample: Mixers can be used as devices (see Figure 5.11) or stacks or a combi-
nation of both, because they are the only devices with the option to sample “without
replacement”. The devices have to be filled with the values of the two attributes
“Gender” and “Salary” of the dataset. It is not necessary to rename the attributes
as in Figure 5.11. Successful performance on this step is to complete the settings
correctly.

Figure 5.11. Example of a sampler to model the VSE task.

Step TP2: Setting the number of repetitions (how many cases should be randomly
selected from each mixer) to the original sample size: For a correct simulation of
a randomization test the sample size has to be 861. There must be as much repeti-
tions as there is data in the sampler. The original dataset consists of 861 cases, so
in this case, 861 is the number that has to be chosen for the number of repetitions.
Successful performance on this step is to do the simulation with 861 repetitions.

Step TP3: Set the number of repetitions (how many cases should be randomly se-
lected from each mixer) to the original sample size: A fundamental aspect in doing a
randomization test is drawing without replacement when simulating the experiment.
This option has to be adjusted for both devices. Successful performance on this step
is assigned if drawing was done without replacement.

Step TP4: Plotting the new, randomized sample and depicting the measure of de-
viation from the null hypothesis (e.g., mean difference) in the plot: The distribution
of the results of one run (that is, 861 repetitions of the three draws) of the sampler
has to be displayed in a plot. A crucial further step is the identification of the av-
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erage salary of women and men. Successful performance on this step is the correct
calculation (e.g. with the ruler) of the difference between the means.

Step TP5: Collecting the chosen measure from many different re-randomizations
using “collect statistic” and the history function: Successful performance on this
step consists in collecting the differences of means as “history”.

Step TP6: Plotting the collected statistics to examine the distribution of the “test
statistic”: The collected values lead to the distribution of the test statistic. This distri-
bution has to be shown in a plot in a way that allows further analysis. For displaying
the bell-shaped distribution of collected measures the plot should be separated com-
pletely (see Figure 5.12). This shows that the observed value of 833e does not appear
in the simulated distribution. Successful performance on this step is assigned if this
has been done.

Figure 5.12. Example of a simulated distribution based on the null hypothesis.

Step TP7: Computing the p-value: A crucial point is to identify the p-value in
the distribution of the test statistic (see Step 4). The distribution ranges from about
�350 to +350, so the observed value of 833 (Category 1) does not appear on the
scale. The p-value is the probability of obtaining the observed value of 832 or more
extreme (this means larger) values, under the assumption that the null hypothesis is
true. It should be clear that this probability is very near zero, because there is no
result as extreme as that. This can be concluded from the display without any use of
TinkerPlots™ functions. However, many pairs used the TinkerPlots™’ divider tool.
Successful performance on this step is to calculate the p-value with the divider in Tin-
kerPlots™ correctly. Figure 5.13 displays the overall success rates of accomplishing
TinkerPlots™ steps.

Even if Step TP1 was done incorrectly with an equal distribution for gender, we
considered this not as crucial in regard to the evaluation of the following steps—
nonetheless, the step TP1 was coded as “not successful” if it was done incorrectly
with an equal distribution of gender. This mistake does not have an effect on the
coding of the succeeding steps. This is the same for step TP3 (it should be drawn
without replacement). If this was not done, it indicates the need to do a bootstrap test:
We did not talk about this in class, but it could also be a solution. Nonetheless, the
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Figure 5.13. Overall success rates of TinkerPlots™ steps.

step TP3 was coded as “not successful” if it was done incorrectly with replacement.
This mistake does not have an effect on the coding of the upcoming steps.

Having a look at Figure 5.13, we conclude that the participants have very few
problems conducting a simulation of a randomization test in TinkerPlots™. Overall,
we can conclude that the steps were done satisfactorily. More than half of the pairs
did a good job at conducting a randomization test with TinkerPlots™ and at inter-
preting the results. We rated their performance “good” if the statistical steps 1, 2 and
6 (6a or 6b) and the TinkerPlots™ steps TP2, TP4, TP5, TP6, and TP7 (see above)
are correctly done.

Mistakes and Difficulties in the TP Steps. Step TP1: As can be seen in Figure
5.13, Step TP1 had the lowest success rate. One difficulty in Step TP1 was that many
participants selected the proportion of women and men used in the sampling device
to be equal, rather than basing it on the proportions in the original sample. This was
done by 44% of the studied participants. Of these, 50% used a mixer with only two
cases, one labeled “male” and another “female”, and 50% used a spinner device with
an equal distribution for gender (Figure 14a and 14b).

Figure 5.14. Equal distribution for gender with either a mixer or a spinner.

Step TP3: Another common difficulty, which occurred at Step TP3, was that the
cases of the mixer were drawn with replacement—the default setting of the Tinker-
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Plots™ sampler. All 44% who chose the equal distribution of cases in step TP1 drew
with replacement. If the spinner device was chosen, this problem is exacerbated, as
spinners always sample with replacement. With regard to statistical understanding
this aspect is important since we are conducting a randomization test (which has to
be done without replacement) and not a bootstrap test (which is meant to be done
with replacement).

A fundamental “contradiction” which arises is that all the TinkerPlots™ steps
and most of the statistical steps (1, 2, 5, and 6) were correctly done, but the statistical
steps 3 (describing the null model) and 4 (describing the test statistics) were poorly
articulated in the randomization test schemes.

5.5.3 Analysis Two: Re-Analysis of Selected Steps on the Basis of the
Video Data

Although informative, the “level one” analysis does not give enough insight into
the cognitive processes of the preservice teachers, specifically those used while set-
ting up the null model. To further understand those processes, we examine the video
data. We use selected transcriptions and base our analysis of the written material
by means of “crucial episodes” in the sense of Voigt (1984). The selection of these
crucial episodes is subjective. We chose episodes that reveal interesting insights into
the cognitive processes. Here, we examine two pairs of preservice teachers, Sara and
Maggie (Course 2) and Conrad and Maria (Course 1) as they carry out a randomiza-
tion test. We focus on the episodes related to the construction of the null model.

The pair of participants from Course 2, Sara and Maggie, worked together during
the entire course. They were also homework partners. Based on their contributions
in class and the evaluation of their homework, we believe they have a good under-
standing of the theory and also that they can successfully use TinkerPlots™. During
class they often discussed their work. Sara and Maggie are the only pair of partici-
pants that used the “factory” metaphor of the sampler in their description of the null
model. Because of these observations during the course, we chose to study Sara and
Maggie as participants who would exhibit exemplary responses.

Conrad and Maria, the participants from Course 1, were chosen because they
represent the more “typical” pair of participants in the study. Similar to Sara and
Maggie, we observed many positive interactions between Conrad and Maria in class.
In contrast to Sara and Maggie, however, we did not judge the pair to have the same
amount of statistical understanding—Conrad seemed to have a better understanding
than Maria, and also did most of the TinkerPlots™ work in class. Maria seemed a
bit shy, which might explain some of the differences we observed between her and
Conrad.

Sara and Maggie: The Null Model. Prior to the point at which this transcript be-
gins, Sara and Maggie read off the difference between the means of the two groups
in the dataset and have generated an adequate null hypothesis (“salary is independent
from gender”, see Figure 5.8). Now they begin discussing how to fill the sampler in
TinkerPlots™.
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72 Sara: No I mean for the simulation in a moment.
73 Maggie: Do it as you may suppose.
74 Sara: For the simulation, we have to paste all salaries which

are there.
75 Maggie: Aha!
76 Sara: No “Zufall” [random], is it right there?

[TinkerPlots™] They drag a sampler [German label: random].
77 Interviewer: Yes.
78 Sara: Ok. Then all salaries there, how did it work?
79 Maggie: Yes right. You have to copy, wait I’ll try it.
80 Sara: And then, oh wait, we have to delete this [they delete

the balls in the sampler]. Ok, again actually with men
and women or in the second?

81 Maggie: Oh you want to have a second factory, ok.
82 Sara: Ok, then we take. Or do you want to have another?
83 Maggie: Do it. Now again, do you want only the percentages?
84 Sara: Oh yes it’s right. We need eh. But there are as many

men as women, aren’t there?
85 Maggie: Look here, you can’t do this, no I think not. We can try

it, because otherwise we can’t use the mixer. [. . . ]
95 Maggie: Yes. I fill in the scheme.
96 Sara: Eh. What’s this?
97 Maggie: It’s ok, what have we done there?
98 Sara: Appropriate a.
99 Maggie: Factory.
100 Sara: Yes. (laughing)

[TinkerPlots™] The students constructed this sampler.

101 Maggie: So a factory.
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In this excerpt we get to know some of Sara and Maggie’s thoughts as they are
setting up the sampler. They describe what has to be done in several steps: “We have
to paste all salaries which are there” (Line 74); “You have to copy” (Line 79). In
Line 81 they describe the device of the sampler as a factory. This is an important
observation, since this describes the meaning of the null model metaphorically and
exemplifies Konold et al.’s (2007) idea of “understanding distributions through mod-
eling them” using the factory metaphor. The “factory” metaphor was introduced in
Course 2 and was used during most course activities. These two participants used the
“factory” metaphor for the data-production process in TinkerPlots™. Not only this,
but they could articulate and describe this process as suggested by the video tran-
script and in their written files. They also documented this idea in the randomization
test scheme, as seen in Figure 5.15.

Figure 5.15. Excerpt of Sara and Maggie’s randomization test scheme.

We interpret that Sara and Maggie seem to see the sampler as a kind of (data)
factory, which produces data under certain conditions and having certain properties.
This pair demonstrates a good understanding of the underlying process for setting up
and populating the sampler. Their language reveals they have made the connection
between the statistical world and the software world. As we mentioned previously,
most participants in our study do not make this connection. All in all, Sara and Mag-
gie solved the VSE task very well.

Conrad and Maria: The Null Hypothesis and the Null Model. Conrad and Maria
also read off the differences of means between the two groups in the VSE dataset.
The first part of the transcript begins as the pair discuss the generation of the null
hypothesis.

09 Conrad: I don’t know, if the H-null hypothesis—is it then,
that so, that women earn less or is it called that it’s
refuted—so the other way round?

10 Maria: I don’t know, no
11 Conrad: Women earn on average less than men
12 Maria: It doesn’t matter, right?
13 Conrad: Well
14 Maria: We write it soon (U)

[TinkerPlots™] On the randomization test scheme they write down the
following null hypothesis:
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Women earn on average less than men.

This excerpt can be interpreted as a typical discussion the participants engage in
at the often choose a “wrong” hypothesis, such as, “women earn on average less than
men” (see Figure 5.15). Conrad and Maria articulated what they expected for the
difference of average of salaries in the population, the research hypothesis, rather
than the null hypothesis. Evidence from the other participants’ test schemes suggest
that this is a typical problem for participants when setting up a null hypothesis—the
inability to distinguish (or confusion between) between the null hypothesis and the
research hypothesis.

Figure 5.16. Excerpt of randomization test scheme of Conrad and Maria after
generating the null hypothesis and before setting up the null model.

The next excerpt from Conrad and Maria’s transcript gives us insight into how
they constructed their model in TinkerPlots™ (null model).

15 Conrad: Yes, we want to create two urns now, where on the one
side—well, that we can allocate the genders, right?!
That it is independent of the gross earnings, i.e., on
one side the quantity of the gender and on the other
side, no on one side all salaries and on the other side
how many men and women, the parts. And then it’s
thrown together.

16 Maria: Right.
17 Conrad: That the allocation of the gross monthly earnings is

independent of the gender, that is just like that
18 Maria: Yes that’s what we want

[TinkerPlots™]
19 Conrad: (Conrad and Maria laughing)
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Yeah . . . now we need a second urn (U) like—what do
we have to click that we get a second urn, a second
box? . . . Do you know what I mean?

20 Maria: Yes, I know what you mean.
Without speaking they copy the values of the second
attribute (salary) in a second mixer.

In contrast to their null hypothesis, they construct the sampler using independent
sampling devices (mixers; see excerpt of transcript). We assume that they had the
correct conception in mind and knew that they have to reject their null model, which
assumes that salary and gender are independent. After setting up their null model,
Conrad and Maria carried out the remaining steps in TinkerPlots™ correctly. While
they had probably internalized a “scheme” consisting of the required steps for carry-
ing out a randomization test, their understanding or connection to the statistical steps
was missing here. We also observed this phenomenon in the classroom during both
courses.

After running the simulation, Conrad and Maria then looked for conclusions. At
this stage the transcript continues:

[TinkerPlots™] Conrad and Maria fill the devices of the sampler cor-
rectly. The are drawing 861 times without replacement
and plot the results of the sampler. Then they calculate
the difference of means of both distributions and col-
lect 5000 “measures” via the history function. Finally,
they plot the collected measures (as seen in the plot
below)
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After collecting the measures there have doubts
whether the null hypothesis is correct:

45 Conrad: No (negating), and now we have to . . . now we should
this—what is it called? So this, what measured this, so,
what percentage it is . . . about

52 Conrad: That couldn’t be, right? Then it would be 0% . . . yes,
you know—we’ve referenced to the old thing, right?!

53 Conrad: (meanwhile) Yes, I know what you mean
54 Conrad: And then here once, we should go into minus and even

into plus, the [. . . ] but— . . . or had we done anything
wrong? With this 832 or is it—

56 Conrad: Yes, it would be so, then we register it, I don’t know
differently, no, then . . . it is, there are 0%

[TinkerPlots™]
They create a divider.

68 Conrad: In other words, we
69 Maria: Don’t have a difference

From the transcript, it is clear that Conrad is the discussion leader at this stage. Not
surprisingly, he also seems to have a better understanding of the whole process than
Maria. After looking at their collected history of the differences between the average
salary of men and women, they start the discussion about the null hypothesis.

70 Conrad: Well, right. And then (. . . ) we got our—I think, our
null hypothesis is wrong, right? Because we should re-
ject it, because it doesn’t fit . . . because we should stay
under 5% . . . and then we should reject the null hypoth-
esis

71 Maria: (interrupts C) Additionally we add a “not” (They add
“not” in Step 2 of their randomization test scheme) On
the randomization test scheme they register finally the
following null hypothesis: Women earn on average not
less than men.

72 Conrad: Well, our null hypothesis is that the women do not earn
less than men on average, we are below 5% and and
therefore the null hypothesis is rejected and so we can
say that women earn less than men on average.
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They interpret the distribution and the p-value correctly in the sense of the task,
albeit not for their null hypothesis. This leads them to some cognitive conflict re-
garding their initial null hypothesis. Because they were convinced that they carried
out the simulation correctly, they changed their written null hypothesis by adding
the word “not” to their randomization test scheme (see Figure 5.16). This confirmed
our interpretation that they initially had in mind that the assumption, “there is no
difference in the average salary of men and women” was supposed to be rejected.
That is probably why they stated, “women earn on average less than men” in their
hypothesis. They seem to know they should reject the null hypothesis with a small
p-value and these are the reasons why their null hypothesis must be wrong.

Figure 5.17. Excerpt of randomization test scheme of Conrad and Maria—final
stage.

The addition of the “not” to the null hypothesis, which happened almost at the
end of their work, makes the whole randomization test process finally correct. While
Conrad and Maria did not correctly write a null hypothesis at the beginning of the
randomization test scheme, and did not immediately connect it with the simulation,
they, at least, noticed the discrepancy between their initial writing and their interpre-
tation of the simulation results. Conrad reveals his understanding of this discrepancy
as he immediately realized that he had to change the null hypothesis. Moreover, he
recognized that he should not change the simulation nor think that he misinterpreted
the distribution and p-value. This is an example of learning during/from the use of
software, and shows a connection between the statistical and software world.

We conclude that Conrad and Maria solved the task correctly. They have, like
others in our courses, a good understanding of the technical aspects of a simulation,
and in particular of those aspects of the simulation of a randomization test. However,
they only showed a limited understanding of the statistical background of a hypothe-
sis test. Further analysis, not reported in this chapter, suggests that this result may be
generalized to many participants from Course 1, but only for some participants from
Course 2. The extended discussions and realization of several hypothesis tests with
large and small p-values over a period of four weeks in Course 2 certainly helped to
deepen the understanding of participants taking the second course.

5.6 Discussion and Implications

In contrast to Rossman (2008), we do not start informal statistical inferences with
randomization tests. In both courses (data-centered or probability-centered), we teach
randomization tests at the end of our courses. The reason for this is that we want
preservice teachers to be proficient using the software for simulating chance exper-
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iments before being exposed to the complex topic of randomization tests. Also, we
want preservice teachers to gain experience in making informal inferences before
making formal inferences either in the context of probability models or that of data
analysis. Because of these learning trajectories, randomization tests are introduced
at the end of our courses.

5.6.1 Summary of Some Findings

We have distinguished two domains of knowledge, the statistical knowledge needed
to fully understand the randomization test procedure, and the software knowledge
needed carry out the randomization test simulation using TinkerPlots™. Many pre-
service teachers in our study were able to conduct the majority of steps to carry out a
randomization test using TinkerPlots™. This is a pleasing outcome since the partic-
ipants had not previously been exposed to randomization tests and given the limited
amount of time in the courses to teach these methods.

The results of this study also suggested that the participants had gaps in the statis-
tical knowledge underlying the randomization test. For example, participants had a
difficult time generating an adequate null hypothesis, setting up the null model, and
interpreting a p-value. It is, perhaps, not surprising that these struggles have been
previously documented in the literature (e.g., Garfield & Ben-Zvi, 2008; Vallecillos,
1994). These findings have implications for the re-design of the learning trajecto-
ries for both courses, and we will address this at the end of this section. Before this,
however, we will summarize what we found concerning our research questions.

How well are the preservice teachers able to model a randomization test exper-
iment with TinkerPlots™? What is the role of TinkerPlots™ in their thinking?
The data suggests that the participants in Course 2 (which emphasizes probability
and only covers minimal data analysis) have more statistical knowledge. This pro-
vides some evidence that a course where simulations of chance experiments and hy-
pothesis testing are taught explicitly before entering a learning trajectory to random-
ization tests might lead to a better understanding of randomization tests as compared
to a course where randomization tests are immediately preceded by data analysis.

The technical features of TinkerPlots™ do not seem to be problematic for the
preservice teachers. Problems only occur at the interface of the software and statis-
tical world (TP Steps 1 and 3). When TP Step 1 was performed incorrectly, it was
because participants populated the sampler using an equal proportion of women and
men instead of reproducing the sample proportions. When TP Step 3 was performed
incorrectly, participants’ mistake was in sampling “with replacement.” The data from
Conrad and Maria’s transcript suggests that TinkerPlots™ can help support students’
reasoning, at least in the sense of refining their null hypothesis see also delMas et al.
(2013). The crucial point seems to be the transition between the statistical and the
software level (Figure 5.18), particularly the construction of the null model.

In which way do the preservice teachers accomplish the steps of a random-
ization test? How do the preservice teachers interpret the results of the ran-
domization test? Most of our preservice teachers were able to conduct the steps
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Figure 5.18. Excerpt from “software cycle when conducting chance experiments”.

of a randomization test with TinkerPlots™ when supported by the randomization
test scheme. Some of the participants struggle at typical crucial points, like not be-
ing able to formulate an adequate hypothesis (similar to results of the study of Liu
and Thompson (2009). We also observed common difficulties when interpreting p-
values, as Garfield and Ben-Zvi (2008) reported, for example.

Despite these difficulties and gaps in their statistical knowledge, the preservice
teachers were able to make inferences about group comparisons. But, doubts re-
main about how deep their conceptual understanding of hypothesis testing actually
is. Since we see (c.f. Figure 5.13) that the participants of Course 2 performed better
in several steps and in several aspects, the approach with minimal data analysis and
an emphasized probability component might be better suited for learners approach-
ing the randomization test method. This conclusion is not more than a suggestion as
we did not do a randomized comparative experiment. Furthermore since participants
taking Course 2 were more experienced in simulating chance experiments and mak-
ing conclusions from given p-values, this might suggest the need to simulate several
chance experiments before introducing hypothesis testing—randomization tests in
particular. For getting a better understanding of the randomization process itself, it
might be helpful to add a hands-on activity such as that proposed by Arnold, Budgett,
and Pfannkuch (2013).

A further important finding is that courses need to put more emphasis on relating
the statistical and the contextual world (see Figure 5.4). Since we identify typical
mistakes such as the false reproduction of the sample (in the sense of a number of
draws unequal to the number of cases in the sample) and not drawing without re-
placement (as it is necessary, when doing a randomization test), we recommend that
the null model should be discussed in detail before simulating a chance experiment
with software. This might include a discussion of suitable null models for different
situations. One specific redesign of the learning trajectory might be trying to improve
connections between generating the null hypothesis and conducting a TinkerPlots™
simulation by explicitly discussing the construction of the null model. It might also
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be helpful to formulate the results of the simulation in both “everyday” language and
using statistical language.

Furthermore, students need to learn how to interpret the p-value with regard to
the “real-world” situation. A statistically correct answer, like, “I reject the null hy-
pothesis because the p-value is smaller than 0.001”, cannot be rated as a satisfactory
answer, because the connection to the context (the gender difference in salaries) is
missing. There is a need to discuss the meaning of what a small p-value indicates
about the real problem, in this case, gender difference in salaries.

Our findings have made us aware of some limitations of the study. The VSE data
exhibit such a large gender difference in the variable salary that the p-value in the
randomization test is calculated as 0 and does not evoke a discussion about uncer-
tainty related to p-values.

A major further implication that arises for us is that the support of learners with
regard to the structural aspects in form of a randomization test scheme is crucial. Ob-
servations in the video-study and in the two courses made it evident for us that the
participants made substantial use of the randomization test scheme when structuring
their activities. Nonetheless, there are aspects and misconceptions that cannot be ad-
dressed by the use of a randomization test scheme. The development of conceptual
knowledge of the participants has to be improved on “generating an adequate and
testable null hypothesis” and “drawing conclusions from a given p-value”, so revis-
ing the global learning trajectories of Course 1 and Course 2—less than Course 1, is
an implication. Discussions about inferences of small and very small p-values, but
also about possible inferences when large p-values occur should be implemented in
the teaching. Also the diagram “framework for randomization testing” (see Figure
5.4) might be useful as an explicit tool in the teaching process.
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CHAPTER 6

EXPLORING TEACHERS’ IDEAS OF
UNCERTAINTY
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Abstract

This chapter reports research that studied the ideas of uncertainty held by teach-
ers while working in activities designed to promote informal inferential reasoning.
The present study was done within a professional development program for in-
service statistics teachers. The program was one semester long and the participants
were ten statistics teachers from public schools in Medellin, Colombia. The teach-
ers engaged in the program bringing tasks, teaching materials and class videos to
the weekly meetings to promote discussion and reflection. The data for the present
report come from teacher’s discussions and reflections solving two statistical tasks
that took teachers throughout an investigative cycle. The findings reveal that teach-
ers attributed important value to perceptual beliefs and placed less trust in prob-
abilistic reasoning. Additionally, the teachers’s use of probabilistic language to
quantify uncertainty moved from the extremes of telling everything or nothing to
telling something.
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6.1 Overview

There are different meanings of uncertainty. In daily language, it is common to hear
expressions like “the results of the game are uncertain” or “it is uncertain whether it
will rain today”. Uncertainty suggests a measurement of probability that can be the
result of a formal or informal process of inference. In the field of statistics, uncer-
tainty is used in subtly different ways. One way of referring to uncertainty is related
to hypothesis testing and confidence intervals, which are tools to help the researcher
in the process of decision-making. Another way is directly linked to the components
of the study design. Several components such as reliability of the measurements, de-
pendability of data management and non-sampling error must be considered when
designing a study. There is yet another type of uncertainty that arises when the ap-
propriateness of the data collected to solve the situation of interest is in question, or
when confounding variables need to be considered (Arnold, Budgett, & Pfannkuch,
2013).

For the present work, uncertainty is considered a fundamental concept underlying
informal statistical inference. In making inferences about the population, we do not
really know what the ultimate result is, but we use the outcomes of a representative
sample to make an inference to a larger set of data. We looked at how teachers use
the ideas of uncertainty to guide the process of informal inferential reasoning. The
aspect of uncertainty addressed in this chapter is related to the ideas of uncertainty
held by in-service teachers in situations in which they are required to make informal
statistical inferences. We studied the ideas of uncertainty held by the teachers while
working on tasks designed to promote informal inferential reasoning.

This research was accomplished within the setting of a professional development
program. Our main interest was probabilistic language since it constitutes an impor-
tant tool to look at the ideas of uncertainty. This study followed a qualitative research
paradigm and gathered data from the statistics teachers’ discussions and reflections
after solving statistical tasks. The professional development program was carried out
with ten in-service statistics teachers with a wide range of experience who taught at
different school levels (elementary, middle and high school). The program allowed
teachers to bring, share and discuss instructional tasks with their colleagues but also
allowed them to experience some tasks designed by the research team which fol-
lowed the investigative cycle suggested by Wild and Pfannkuch (1999). The analysis
focused on some episodes of teachers solving two statistical tasks and paid attention
to the language used. We finished with some implications for research and instruction

6.2 Problem

Ideas of uncertainty are important in developing reasoning about statistical inference
at the school-level. While formal statistical inference (e.g., hypothesis testing) is
typically taught at the secondary or tertiary level, children at a very young age can use
statistical inference informally to make decisions about observed patterns and draw
conclusions without formally running a statistical analysis (Ben-Zvi, Gil, & Apel,
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2007; Makar & Rubin, 2009). Consequently, teachers should be prepared to deal
with uncertainty when it emerges in classroom discussions in relation to informal
statistical inference.

There is evidence that statistics teachers often overlook great opportunities in
which they can focus on ideas students bring to the class to orient, clarify or dis-
cuss statistical concepts (Makar & Rubin, 2009; Zapata-Cardona & Rocha, 2012).
The majority of the time, teachers do not neglect those opportunities on purpose, but
rather because of their own limitations in articulating students’ ideas from classroom
discussions to informal statistical inference. One of the reasons for this problem,
particularly in the Colombian educational system, is teachers’ lack of training in the
discipline of statistics and in the teaching of statistics. Colombian teacher education
programs in mathematics generally only require one basic statistics course and pro-
fessional development programs are optional. Once a teacher has a college degree
(s)he is certified to teach statistics even though (s)he may never have taken a profes-
sional development course. Research has suggested that this degree of preparation
is not enough to help teachers successfully develop solid foundations of statistical
reasoning in their students (Zapata-Cardona & Rocha, 2011).

One way for teachers to help develop students’ ideas of statistical inference is
to expose them to problems and situations in which elements of uncertainty are es-
sential. For example, teachers might promote tasks that require students to make
predictions including probabilistic language that articulates the level of confidence
(Ben-Zvi, Aridor, Makar, & Bakker, 2012). This can be a challenging task for teach-
ers who have not had the proper training.

Many professional development programs for teachers are taught based on the
principle that teachers need to be told what to do in the classroom (Arnaus, 1999).
According to this idea, a trainer can instruct a group of teachers about how to teach.
However, more recent research has suggested that professional development pro-
grams should instead be oriented around the circumstances and events that teachers
face daily in their practice (Kirkwood & Christie, 2006). The programs should also
focus on a better understanding of the relationship between theoretical and experi-
ential knowledge within particular contexts. This approach to professional develop-
ment can promote teachers’ reflection and critical inquiries about their own practice
(Humes, 2001).

The purpose of this research is to study the development of ideas about uncer-
tainty of in-service teachers within a professional development program designed to
address situations that teachers face on a day-to-day basis in their own classroom. In
addition to examining the ideas of uncertainty held by in-service statistics teachers,
this work will also study the expressions teachers use to quantify uncertainty. Be-
cause of the limited research on teachers’ ideas related to inference, this research is
based on results from previous research with students to guide a professional devel-
opment program.
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6.3 Literature and Background

Research on informal statistical reasoning has been carried out with students from
different levels of the educational system (Arnold et al., 2013; Bakker, Ben-Zvi,
Makar, & Kurvers, 2013; Ben-Zvi et al., 2012; Garfield & Ben-Zvi, 2008; Manor,
Ben-Zvi, & Aridor, 2013; Metz, 1998; Pfannkuch, 2011). However, informal sta-
tistical reasoning seems to be a topic of little interest within teachers’ professional
development programs. This lack of interest could be grounded in the belief that
teachers are already able to guide experiences on informal statistical inference in
their teaching.

In the field of cognitive development, the work of Piaget and Inhelder (1975) has
strongly influenced the research on uncertainty. They presented children from 5 to
14 years old with a sequence of different physical tasks. The results of their extended
study showed that ideas about uncertainty begin to appear in children around seven
years old, who prior to this age assume a deterministic causality. In contrast, other
researchers (Fay & Klahr, 1996; Kuzmak & Gelman, 1986) found that preschool age
children have an understanding about uncertainty.

The literature on decision-making has also contributed to the understanding of
people’s reasoning about uncertainty. This field of research has documented the dif-
ficulties adults face making probabilistic judgments. Usually, a typical adult fails to
make any probabilistic distinction between determinacy and indeterminacy (Konold,
1991) and most of the time assigns deterministic behaviors to phenomena that are
regulated by chance (Kahneman & Tversky, 1982). Consequently, the adults fail to
recognize the extent to which chance contributes to what they experience about the
world.

Educational studies have provided an interesting view on students’ reasoning.
A particular study focused on the development of students’ expressions of uncer-
tainty in reasoning from samples (Ben-Zvi et al., 2012). The researchers were able
to show the evolution of fifth graders’ probabilistic language. Another influential
study (Makar & Rubin, 2009) developed a theoretical framework for how people
reason about informal statistical inference. In the proposed framework, the authors
highlight three principles that appear to be essential in informal statistical inference:
Generalization, use of data as evidence and use of probabilistic language. The study
highlighted that the correct use of probabilistic language is important to avoid deter-
ministic claims. However, in the classes the authors studied, little attention was paid
to probabilistic language.

Many research studies have documented the difficulties encountered when learn-
ing about statistical inference. This literature contains studies that disclose different
errors and misuses in reasoning about inference (e.g., Watson, 2002). It also focuses
on the exploration of how to develop students’ reasoning about statistical inference
(Ben-Zvi et al., 2012; Franklin et al., 2007; Garfield & Ben-Zvi, 2008; Pfannkuch,
2005; Pfannkuch & Wild, 2000; Wild & Pfannkuch, 1999). One method of develop-
ing students’ reasoning about uncertainty that has shown promise in this literature is
the focus on informal statistical inference.
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6.3.1 Informal Statistical Inference

Informal statistical inference is described in the literature as the process of making
probabilistic generalizations from a sample to a population without running a formal
statistical test. It is the act of looking beyond the data to cases outside of the sample
at hand (Makar & Rubin, 2009) and the cognitive activity involved in drawing con-
clusions or making predictions about “some wider universe” (Garfield & Ben-Zvi,
2008). Informal statistical inference takes into account multiple dimensions such as
data, distributions, measurements, representations, and statistical models.

In making informal statistical inferences, language is essential since it articulates
the level of confidence or uncertainty in the prediction (Ben-Zvi et al., 2012; Makar
& Rubin, 2009). One of the tools in statistical inference is the information gathered
from samples. However, the results from a sample might lead the learner to think that
the sample reflects the behavior of the population (Rubin, Bruce, & Tenney, 1991).
This is known as over-reliance on sample representativeness.

In contrast, the learner might doubt the information given from the sample be-
cause of the variability intrinsic in every sample. The learner might conclude that
the sample does not give relevant information about the population and attribute the
results exclusively to chance. This is known as over-reliance on sample variability.
These two methods of judging results from a sample reflect either a deterministic
or a relativistic view of the learner that influences the language used in the informal
inference. According to Rubin and colleagues (1991), the information from a sample
should not tell everything or nothing, but something about the subjacent population.

A possible educational approach that might help to support the development of in-
formal statistical inference is the statistical investigations inspired in the “investiga-
tive cycle” (Wild & Pfannkuch, 1999). In this approach, the participants are involved
in the solution of a problem that takes them through the stages of the investigation
process (questioning, planning, gathering data, analysis, and interpretation). The in-
vestigative cycle is also highlighted in the Guidelines for Assessment and Instruc-
tion in Statistics Education (Franklin et al., 2007). This document, endorsed by the
American Statistical Association, emphasizes that the statistical question is a very
important beginning of the investigation.

At the Eighth International Research Forum on Statistical Reasoning, Thinking
and Literacy (SRTL-8), the results from several different research studies related to
people’s reasoning about uncertainty were presented. For example, there were stud-
ies looking at new ideas of uncertainty emerging in students during an introductory
statistics course focused on bootstrapping and randomization methods (Arnold et
al., 2013). Others were interested in students’ web of actions and reasons involved
in reducing uncertainty in solving a real problem (Bakker et al., 2013). While oth-
ers were interested in confronting how confident students were with their inferences
after working with sampling distributions (Manor et al., 2013). Different ways to
approach the study of uncertainty lead to different ideas about uncertainty. Whereas
the research conducted by Arnold et al. (2013) and (Bakker et al., 2013) was focused
on aspects of uncertainty related to study design and hypothesis testing, the research



168 EXPLORING TEACHERS’ IDEAS OF UNCERTAINTY

carried out by Manor et al. (2013) was concerned with the level of confidence ex-
pressed by the participants when making inferences.

6.4 Subjects and Methods

This study follows a qualitative research paradigm since the key interest—the ideas
of uncertainty—is a phenomenon that is qualitative in nature (Sánchez-Gamboa,
1998). The research was carried out in a professional development program for teach-
ers. Such a natural environment, according to Suter (2006), is favorable when the re-
search is focused on discovering how study participants construct their own meaning
of events or situations. A qualitative research orientation “honors the understanding
of a whole phenomenon via the perspective of those who actually live it and make
sense of it” (p. 344). In other words, it takes into account the subjective experiences
or internal states (emotions, thoughts, reflections, etc.) of the participants: In this
particular case, the expressions teachers use to refer to uncertainty.

6.4.1 Setting and Participants

To address the goal of the research, data were gathered from teachers’ discussions
and reflections in a professional development program carried out during the first
semester of 2013. The unit of analysis was teachers’ discourse, since discourse and
cognition are related (Lerman, 2001). The program followed the principles of a com-
munity of practice (Wenger, 1998) where every teacher was expected to contribute
with something to the team (experience, reflections, tasks, lesson plans, etc.). The
program started with ten in-service statistics teachers (one elementary, nine sec-
ondary) who were part of a self-called research group1 in teaching mathematics
promoted by the Secretary of Education of Medellin, Colombia. The teachers repre-
sented a broad range of experience—from a teacher in his second year, to a teacher
with fifteen years of experience. The teachers all worked for public schools in the city
and held undergraduate degrees in mathematics education; some of them were pur-
suing Master’s degrees in the sciences. All the teachers had taken a course in which
descriptive statistics was taught, but none had taken a statistical methods course.

The professional development program, which met for an entire semester, met
for three-hours once a week. In every meeting, the teacher educators brought some
exemplary materials to discuss and promote reflection among the teachers; however,
the teachers were also welcome to bring and share activities, teaching materials,
difficulties, reflections, and achievements in their statistics teaching.

As a mechanism to start the program, we asked teachers to bring a lesson plan for
a statistics class that they were about to teach. They planned the lesson in pairs and
presented it to their colleagues to get comments to either improve the lesson or reflect

1Although the teachers referred to themselves as a research group, they had not been involved in a research
project. The “research group” expression might reflect the positive perceptions they had of themselves as
a team.
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on crucial aspects from the planning. Some teachers even taught and videotaped a
class that was based on their lesson plan, and brought the video to share and discuss
with their colleagues. Throughout the professional development program, we paid
close attention to the teachers’ discussions and reflections because their comments
were important inputs to orient the subsequent gatherings and to propose specific
activities.

During the professional development program, the teachers were engaged in solv-
ing statistical tasks. In the process of solving the tasks, the teachers were encouraged
to think about their level of certainty when they were making inferences. Most of the
tasks involved familiar settings for the teachers. For example, one task was related
to the probability of success for a student answering a multiple-choice test by guess-
ing. Although there were several tasks that were worked on during the professional
development program, in this chapter we focus on only two of the tasks. These tasks
were selected because they involved decision-making based on quantification of un-
certainty, promoted rich discussion among teachers and offered details that might
help address the goal of the research. Although the goal of this research focused on
the professional development program and on the development of teaching materials,
the data offered multiple opportunities to study uncertainty.

6.4.2 Tasks

The tasks proposed to the teachers were designed taking into account the investiga-
tive cycle suggested by Wild and Pfannkuch (1999). While teachers worked on the
tasks, we paid close attention to the probabilistic language used. In addition, we paid
attention to the participant’s engagement with predictions, followed by data gen-
eration to support informal inferences, and finally, reflection on the discrepancies
between predictions and outcomes. Taking this approach was very important since
the participants had only taken an algebra-based statistics course. We think that hav-
ing the teacher go through the process of an investigative cycle, within an interesting
task, opens the door for promoting informal statistical inference and encourages that
teacher’s reflection on his or her own practice as a teacher of statistics.

The Horse Race Task. One proposed task was a horse race game. The teachers
were asked to answer the following question: “Which horse would you bet on?” The
teachers received six different color chips, two dice and a handout with the diagram
shown in Figure 6.1. There were six horses numbered from zero to five; the play-
ers associated each horse with a color chip. The rules of the game were explained.
The game was played in pairs; each team ran a race in which the horses progressed
according to the difference in tossing two dice. The teachers had to make their bets
before starting the race. Each teacher could select up to two different horses. The
race was over when a horse got to the finish line.

The Discrimination Task. The second task, taken from Scheaffer, Gnanadesikan,
Watkins, and Witmer (1996), explored a situation of possible discrimination. The
task was inspired by a study published in the Journal of Applied Psychology (Rosen
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Figure 6.1. Handout for the simulation of the horse race.

& Jerdee, 1974). The statistical question of interest was whether bank supervisors
were discriminating against women during a promotion process for bank manager
positions. In the actual case, there were 48 applicants (24 males and 24 females).
Of the 35 applicants recommended for promotion, 21 were male and only 14 were
female. Table 6.1 summarizes this information.

Table 6.1
Counts for the Discrimination Task

Recommended
for Promotion

Not Recommended
for Promotion Total

Male 21 3 24
Female 14 9 24
Total 35 13 48

The Discrimination Task was an interesting scenario to engage teachers in discus-
sions related to informal inferential reasoning. We wanted to study what information
they used to decide whether there was any discrimination. We also wanted to know
how certain they felt about their decision.

6.4.3 Data Analysis

Each session of the professional development program was video recorded. Videos
were observed, transcribed, translated into English and annotated to help capture
teachers’ ideas of uncertainty when making informal statistical inferences. Three
undergraduate students, three graduate students, and two faculty members from the
mathematics education and science education programs took part in the data analy-
sis. All were also participants in the research seminar. This team met once every three
weeks to share progress about other ongoing research (four different projects were
going on at that time) and also to discuss results and interpretations from the video
analysis. When there was disagreement, the research team would continue discussion
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until reaching a consensus. Entries from the teachers’ journals were also examined,
whenever possible, and used to validate interpretations from the video analysis. De-
spite the large amount of data collected, only those episodes that offered information
about the probabilistic language used by the teachers when making informal infer-
ences were selected for the analysis. Although there were ten participants engaged in
the professional development program, we only report on the analysis for the teach-
ers who voluntarily decided to share their reasoning about the two tasks.

6.5 Analysis and Results

Having described the research setting, participants, tasks, and data analysis methods,
we are ready to set out to respond to our research goal of examining teachers’ ideas
of uncertainty in the process of their informal statistical reasoning. In this section, we
describe the analysis of the data collected for the two tasks. In the first task, teachers
needed to quantify uncertainty in order to decide which of the six horses to bet on.
In the second task, the teachers needed to quantify the uncertainty in order to make
an unbiased judgment about whether there was sex discrimination in a company’s
promotion process.

6.5.1 The Horse Race Task

Once the task was explained, the teachers2 selected their horses (see Table 6.2) and
started the game. As the game progressed, many of the teachers felt surprised because
the horses they selected did not advance in the race as they had initially expected.
To stimulate discussion we asked the teachers to explain the aspects they took into
account for their selection.

Table 6.2
Teacher Pairs’ Wagers and Results

Teacher Pairs

Horse
Number
Wagered

Winning
Horse
Number

Nancy and Elmer 3 and 0 2
Cristina and Daniel 2 and 5 1
Andrés and Germán 3 and 5 1
Zaida and Juan 3 and 1 1
Wilson and Francisco 4 and 5 1
Research Assistants 1 and 2 4 and 5 3

2The teachers’ names are pseudonyms to protect the identity of the participants.
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While the game was in progress, we asked the teachers whether they noticed any
special pattern in the race thus far. One of the teachers (Daniel) said, “the number
five has bad luck” (he had selected Horse #5). This expression, at that point, makes
us think that the teacher did not use any strategy to try to quantify uncertainty. He
attributed the results exclusively to luck. He looked at the data gathered up to that
moment and generalized with the expression bad luck. He took into account what
he saw to conclude a pattern. At that particular moment Daniel observed the infor-
mation offered by the sample and he relied on its representativeness to express that
statement.

After the teachers finished the game, we explored the reasons that they used to
initially select a horse. One of the teachers (Germán) said, “I choose [number] five
because I like it so much”. Another teacher, Juan, was a frequent player of ludo3

and he had some sense of the distribution of the outcomes after throwing two dice.
However, this sense of distribution was not enough to support his argument about
selecting the horse number one. He said,

I discarded [the horse] number five because I saw that only when I get seven [six
and one] I could advance that number. [I discarded] The [horse number] zero be-
cause one thinks that always after throwing two dice the most difficult is to get
pairs. But the [horse number] one, I chose it because of the color. Simply, I like
that color [red].

Juan, in his explanation, showed some indication of statistical reasoning. He knew
how to advance with number five after throwing the dice and had some clues about
the scarceness of pairs. However, at the end, his perceptual beliefs were stronger for
selecting the red chip associated with horse number one, the one he had selected. He
admitted that the color was decisive in the selection.

Teachers’ reasoning to select the horses seemed to be primarily based on percep-
tual beliefs (such as color preference, number, or position of the horse) and not on
probabilistic judgments in which the sample space and other statistical aspects would
be considered. This is consistent with results reported in previous research that state:
“People do not follow the principles of probability theory in judging the likelihood
of uncertain events” (Kahneman & Tversky, 1972, p. 431).

After pooling the winning horses from the different races (Table 6.2, third col-
umn), the teachers noticed that Horse #1 won in most races. However, in one of the
races, the winning horse was Horse #2 (the experimental results of one race and the
way the horses advanced are shown in Figure 6.3). We took advantage of the situation
and asked the following question: “It seems that horse number one has a tendency to
win, but in one of the races the winner was horse number two; how can you explain
this phenomenon?” One of the teachers, Daniel, said, “because of the randomness.
Probability helps us to make a decision but that [result] is not totally sure”. His justi-
fication revealed some indication of considering a probabilistic judgment. He went to
the middle ground between representativeness and variability. The expression “that
is not totally sure” seems to be an intent to offer a degree of uncertainty that can

3Ludo is a board game in which players advance counters according to the results of throwing two dice.
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be attributed to the non-deterministic nature of statistics tasks. It appears that this
teacher has a sense of confidence that Horse #1 could win, but something else could
happen. He recognized the sample did not tell everything, nor did it tell nothing, but
something (as expressed by Rubin et al., 1991). We suspect this change happened as
a result of experiencing and reflecting on the task.
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Figure 6.2. Nancy and Elmer’s experimental results for the horse race task.

After noticing trends in the race results, the teachers constructed a table to show
the different combinations and the theoretical probability distribution (as shown in
Tables 6.3 and 6.4) and contrasted these results with their experimental results. Table
6.4 helped the teachers understand that Horse #1 and Horse #2 have the highest
probabilities of winning a race.

Table 6.3
Combination of Results–Difference

Die 1 2 3 4 5 6
1 0 1 2 3 4 5
2 1 0 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 0 1 2
5 4 3 2 1 0 1
6 5 4 3 2 1 0
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Table 6.4
Theoretical Probability Distribution

Horse Number
0 1 2 3 4 5

Favorable events 6 10 8 6 4 2
Probability 0.16 0.27 0.22 0.16 0.11 0.05

In one of the races, the winner was Horse #3. The teachers were curious about
this outcome and asked about a suitable explanation for this result. Daniel used the
pooled results and the constructed table of the probability distribution to justify his
reasoning,

To get number one, we have ten favorable events out of thirty-six possible ones,
but we have twenty-six [events] that are not favorable. This means that it is easier
to get a number whose difference is different from one than to get one. Having the
highest probability does not mean that it is always going to win.

It is interesting that Daniel was able to relate the results back to the table of the
probability distribution in order to support his explanation. However, the first part
of his argument does not really explain why having Horse #3 as a winner could be a
suitable outcome. The second part of his explanation was stronger and offered, again,
a quantification of the uncertainty involved in this situation. A high chance does not
guarantee a certain event. This was another indication that Daniel used the sample to
obtain some information—not nothing, not everything, but something.

Another associated result was the evolution of language used by the teachers. The
probabilistic language the teachers used when making predictions or generalizations
in this task moved from deterministic or relativistic extremes to the middle. At the
beginning of the task, the teachers’ expressions revealed that they saw the sample as
a provider of all the information or they did not see the sample as a provider of any
information. However, as the teachers progressed through the task, their language be-
came more and more refined. They went from deterministic expressions such as, “the
number five has bad luck”, to relativistic expressions, such as, “having the highest
probability does not mean that it is always going to win”.

The horse race task gave the teachers the opportunity to be involved in a hands-on
activity, to talk about uncertainty, and at the same time gave them inputs for their
own reflection. One of the teachers, Nancy, expressed,

It is too obvious that the horses advance in counts according to the difference on
the two dice. I wonder why we did not bet on those values [those with the highest
probability]. This activity was quite entertaining and if we liked it, students might
enjoy it even more.

Similar to Nancy, we were also surprised that at the beginning of the game the
teachers selected the horses for the race using personal criteria and not necessarily
taking into account probabilistic criteria. However, the teachers’ engagement in the
task allowed them to contrast the performance of their selection with the theoretical
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probability, which we consider a crucial point for promoting reflection about their
own decisions.

Proposing tasks that involve uncertainty where the teachers go through the in-
vestigative cycle (generating simulated data, analyzing the information, and making
sense of the results to explain a particular behavior) seems to constitute an appro-
priate tool for helping teachers to contrast their initial intuitions with simulated and
theoretical data. Many of their initial intuitions were associated with perceptual be-
liefs, external attributions of the counters and luck. However, as they progressed
through the cycle to solve tasks with a degree of uncertainty, their decisions became
more based on basic principles of probability theory. Additionally, exposing teachers
to the investigative cycle seems to help them refine their probabilistic language. They
moved from deterministic and relativistic expressions about the results of a sample
to expressions in the middle ground of this continuum.

In relation to these results, Wild and Pfannkuch stated that the investigative cycle
could be useful for building “a more holistic feel for statistical investigation” (1999,
p. 243), since it “is a high-level description of a systematic approach to investigation.
It identifies major elements. It can be used as the foundation for something that is
much more of a prescription” (p. 243). This make sense if we take into consideration
that the final goal of the statistical investigation is learning from real contexts where
uncertainty is present.

6.5.2 The Discrimination Task

After presenting the discrimination scenario, we asked teachers to argue, based on
the provided information, whether there was enough evidence to believe the com-
pany had discriminated against the women in their promotion process. The initial
discussion was intense. It took a while for teachers to understand the actual study
and they gave several suggestions for designing a different study to detect discrimi-
nation. Some teachers strongly believed that there was no evidence of discrimination,
some were undecided and some stated that there was evidence of discrimination.

For example, Daniel, one of the teachers who indicated no evidence of discrimi-
nation, said that he took the information given into account, but he did not consider
a comparison of the proportion of people promoted between the genders. He based
his argument on different reasoning, saying, “if there were 24 women and 14 were
recommended for promotion, that is more than a half. I do not think that there is dis-
crimination”. He also stated, “one does not promote everyone”. Daniel also argued
that the counts on the table might have been possible just by chance alone. It is plau-
sible, based on his statements, to think that the results of the sample did not offer him
enough information and he simply thought that it was a reasonable result among all
the possible samples—over-reliance on sample variability (as is mentioned by Rubin
et al., 1991).

To study the discrimination scenario, Daniel suggested comparing the counts
within the female group; he compared the number of women promoted with the
total number of female applicants. He felt that making a comparison between males
and females was not necessary in order to make a decision about discrimination.
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Another teacher, Juan, mentioned that he did not see how statistics could be used
to solve the problem of discrimination. He said, “in these type of situations, one
could see statistics as a tool. However, to what extent, with this information and us-
ing statistics, could one decide whether there was discrimination or not?” In spite
of his comment, Juan ultimately compared the proportions of the males and females
promoted, and based on the differences stated, “I think that there was discrimina-
tion”. But, he did not mention how certain he was about the stated difference. It
seems that Juan did not see relevant information from the results shown in the sam-
ple, suggesting he has an over-reliance on sample variability—no information. How-
ever, he went back to the data from the sample and compared the values on the table
to suspect some discrimination.

It is interesting to note that teachers’ answers to the discrimination question were
often at the extreme ends of the scale of probability. They either saw discrimina-
tion or did not see it, but they failed to consider a range of possibilities to quantify
uncertainty. This might be explained from a philosophical point of view where de-
terminism makes us feel comfortable and we try to stay away from situations that
require us to consider variation. “The stronghold of the deterministic sentiment is
the antipathy to the idea of chance” (James, 2007, p. 153). According to James, de-
terminism professes the universe is already established and the future does not have
ambiguous possibilities.

To help teachers understand the phenomenon, we simulated the random variation
model by using a deck of cards. We asked the teachers to create a deck of cards with
24 black cards (males) and 24 red cards (females). They shuffled the cards and then
dealt out 35 cards (the promoted applicants) and counted the number of black cards
out of 35. They recorded this number, repeated the simulation four more times, and
put together their results in a dot plot on the board (see Figure 6.3).
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Figure 6.3. Simulation results of the number of men promoted.

In collecting and organizing the data from the simulations, the teachers who ini-
tially predicted discrimination began to confirm their previous intuitions. Those who
did not anticipate discrimination started to reconsider their predictions. The gener-
ation of simulated data also allowed teachers to visualize a sampling distribution
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and discover the rarity of having 21 out 24 men promoted assuming a model of no
effect (no difference, no discrimination). The sampling distribution was an impor-
tant artifact that gave the teachers some statistical evidence to confirm or refute their
previous predictions.

The simulated distribution also allowed teachers to quantify, at least experimen-
tally, the degree of confidence for their conclusions. A value of 21 or higher only
occurred two out of 35 times; that is, it occurred less than 6% of the time! The value
of 6% was a simulated p-value (the chance of observing 21 or higher, if there is no
discrimination). We finished the activity at this point and decided not to carry out a
more formal statistical analysis.

6.6 Discussion and Implications

The goal of the professional development program described in this chapter was to
bring together in-service teachers to share experiences in their statistics teaching.
The tasks presented here were inputs to study the ideas of uncertainty held by the
teachers when they go through an investigative cycle. We found that teachers at-
tributed important value to perceptual beliefs while probabilistic reasoning was not
a resource commonly used to support their decisions. At the same time, we found
that the teachers’ informal statistical inferences relied either on sample representa-
tiveness or sample variability. However, after being involved in solving statistical
tasks that resemble statistical investigations, teachers’ inferences were located in the
middle ground between representativeness and variability.

The tasks proposed in this research allowed us to see some degrees of quantifi-
cation of the uncertainty in teachers’ talks. However, the probabilistic language to
quantify uncertainty was scarce. This could suggest teachers’ strong tendency to see
the world from a deterministic point of view but at the same time could suggest the
lack of power of the tasks to promote the use of probabilistic language. The tasks
that state a statistical question and require generation of data to analyze and make a
decision seem to be valuable resources for the teachers. The discrimination task, for
example, allowed them to confront their initial intuitions that were at the extremes of
the continuum from representativeness to variability. In addition, it supported teach-
ers’ decision-making process based on a visual distribution of possible values.

In future research, it is clear that the number of tasks needs to be increased. This
study is a report based exclusively on two tasks and perhaps, coincidentally, the re-
sults from them are comparable—the participant teachers moved from the extremes
of over-reliance on sample representativeness and sample variability to less deter-
ministic expressions of uncertainty. However, it is admissible to think about increas-
ing the number of tasks in future research. Otherwise, we ourselves would be falling
into the trap of over-reliance on sample representativeness, the same condition we
helped teachers to overcome. Increasing the number of tasks would also help to es-
tablish other patterns that might emerge in teachers’ consideration of uncertainty.

The epistemological foundations of this research are anchored in a social perspec-
tive of teachers’ professional development. Following this perspective, the tasks pro-



178 EXPLORING TEACHERS’ IDEAS OF UNCERTAINTY

posed to the participants were undertaken by a community of teachers. We are aware
that when problem solving takes place in a group setting, many teachers’ voices are
often not heard—only a few have the courage to lead the discussions. It would be in-
teresting to use smaller groups (e.g., 2–3 teachers at a time) to study whether similar
patterns in teachers’ articulation about uncertainty would be found.

Although the purpose of this research was not the study of teachers’ content
knowledge, it was evident that a large limiting factor was the teachers’ lack of knowl-
edge and exposure to statistical inference. The results from this study provide pre-
liminary evidence that we need to give more thought to our pre-service teachers’
programs of study. The statistics courses the teachers are taking in their undergradu-
ate programs do not seem to prepare them for the content and statistical inquiry they
would need to teach in a statistics course at the school-level. Teachers will likely
need other professional development opportunities, not only for developing deeper
content knowledge than their pre-service education provides, but also for qualifying
their practice.

Designing a program that gradually helps teachers to develop sophisticated no-
tions of uncertainty is challenging. Although we are not comfortable making gross
generalizations due to the small number of participants, we do think that some of
the structure and findings from this study could be considered when teaching school
statistics. We have come to believe that the structure of the community, the group
discussions, the reflections and the confrontation of simulations with theoretical re-
sults all interacted in promoting the development of the teachers’ ideas of uncer-
tainty. Educational approaches that encourage teachers to talk and reflect on making
sense of data and statistical inferences can support teachers learning. Professional de-
velopment programs for statistics teachers should be designed to expose in-service
teachers to statistical investigations.
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635). Madrid, Spain: Akal.

Arnold, P., Budgett, S., & Pfannkuch, M. (2013). Experiment-to-causation inference:
The emergence of new considerations regarding uncertainty. In A. Zieffler
& E. Fry (Eds.), Proceedings of the Eighth International Collaboration for
Research on Statistical Reasoning, Thinking, and Literacy (SRTL-8) (pp. 119–
146). Two Harbors, MN: University of Minnesota.



REFERENCES 179

Bakker, A., Ben-Zvi, D., Makar, K., & Kurvers, T. (2013). Reducing uncertainty
in a hospital laboratory: A vocational student’s web of reasons and actions in-
volved in making a statistical inference. In A. Z. . E. Fry (Ed.), Proceedings of
the Eighth International Collaboration for Research on Statistical Reasoning,
Thinking, and Literacy (SRTL-8) (pp. 34–48). Two Harbors, MN: University
of Minnesota.

Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articu-
lations of uncertainty while making informal statistical inferences. ZDM—
The International Journal on Mathematics Education, 44, 913–925. doi:
10.1007/s11858-012-0420-3

Ben-Zvi, D., Gil, E., & Apel, N. (2007). What is hidden beyond the data? young
students reason and argue about some wider universe. In Proceedings of the
Fifth International Research Forum on Statistical Reasoning, Thinking, and
Literacy (SRTL-5). United Kingdom. Retrieved from https://sites.google.com/
site/danibenzvi/allpublications

Fay, A. L., & Klahr, D. (1996). Knowing about guessing and guessing about know-
ing: Preschoolers’ understanding of indeterminacy. Child Development, 67,
689–716. doi: 10.1111/j.1467-8624.1996.tb01760.x

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer,
R. (2007). Guidelines for assessment and instruction in statistics education
(GAISE) report: A pre-K–12 curriculum framework. Alexandria, VA: Ameri-
can Statistical Association.

Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Con-
necting research and teaching practice. New York: Springer.

Humes, W. (2001). Conditions for professional development. Scottish Educational
Review, 33(1), 6–17.

James, W. (2007). The dillema of determinism. In The will to believe and other
essays in popular philosophy (pp. 145–183). New York: Cosimo, Inc.

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of repre-
sentativeness. Cognitive Psychology, 3, 430–454.

Kahneman, D., & Tversky, A. (1982). Variants of uncertainty. Cognition, 11, 143–
157. doi: 10.1016/0010-0277(82)90023-3

Kirkwood, M., & Christie, D. (2006). The role of teacher research in continuing
professional development. British Journal of Educational Studies, 54(4), 429–
448. doi: 10.1111/j.1467-8527.2006.00355.x

Konold, C. (1991). Informal conceptions of probability. Cognition and Instruction,
6, 59–98. doi: 10.1207/s1532690xci0601 3

Kuzmak, S., & Gelman, R. (1986). Young children’s understanding of random
phenomena. Child Development, 57, 559–566.

Lerman, S. (2001). Cultural, discursive psychology: a sociocultural approach to
studying the teaching and learning of mathematics. Educational Studies in
Mathematics, 46(1–3), 87–113. doi: 10.1007/0-306-48085-9 3

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical
inference. Statistics Education Research Journal, 8(1), 82–105.

https://sites.google.com/site/danibenzvi/allpublications
https://sites.google.com/site/danibenzvi/allpublications


180 EXPLORING TEACHERS’ IDEAS OF UNCERTAINTY

Manor, H., Ben-Zvi, D., & Aridor, K. (2013). Students’ reasoning about uncer-
tainty while exploring sampling distributions in an “integrated approach”. In
A. Z. . E. Fry (Ed.), Proceedings of the Eighth International Collaboration
for Research on Statistical Reasoning, Thinking, and Literacy (SRTL-8) (pp.
18–33). Two Harbors, MN: University of Minnesota.

Metz, K. E. (1998). Emergent understanding and attribution of randomness: Compar-
ative analysis of the reasoning of primary grade children and undergraduates.
Cognition and Instruction, 16(3), 285–365. doi: 10.1207/s1532690xci1603 3

Pfannkuch, M. (2005). Probability and statistical inference: How can teachers enable
learners to make the connection? In G. A. Jones (Ed.), Exploring probability
in school: Challenges for teaching and learning (pp. 267–294). New York:
Springer.

Pfannkuch, M. (2011). The role of context in developing informal statistical infer-
ential reasoning: A classroom study. Mathematical Thinking and Learning,
13(1–2), 27–46. doi: 10.1080/10986065.2011.538302

Pfannkuch, M., & Wild, C. (2000). Statistical thinking and statistical practice:
Themes gleaned from professional statisticians. Statistical Science, 15(2),
132–152.

Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children.
London: Routledge & Kegan Paul.

Rosen, B., & Jerdee, T. (1974). Influence of sex role stereotypes on personal deci-
sions. Applied Psychology, 5(9), 9–14.

Rubin, A., Bruce, B., & Tenney, Y. (1991). Learning about sampling: Trouble at
the core of statistics. In D. Vere-Jones (Ed.), Proceedings of the Third In-
ternational Conference on Teaching Statistics (icots-3) (Vol. 1, pp. 314–319).
Voorburg, The Netherlands: International Statistical Institute. Retrieved from
http://iase-web.org/documents/papers/icots3/BOOK1/A9-4.pdf

Sánchez-Gamboa, S. (1998). Fundamentos para la investigación educativa: Pre-
supuestos epistemológicos que orientan el investigador [Foundations for ed-
ucational research: Epistemological assumptions that guide the researcher].
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