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Abstract 

Knowledge of the relationship between functional brain activity and its anatomical source is vital in 

many clinical situations. A multidisciplinary research approach is necessary to enhance understanding 

of the basic mechanisms of normal and pathological brain functions. Although functional 

neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) facilitate non-

invasive access to the active brain, the low temporal resolution necessitates using alternative 

techniques to study brain dynamics. Electroencephalography (EEG) is a non-invasive method for 

acquiring neural information with high temporal resolution which measures electric potential over 

the scalp corresponding to neural activity. EEG source localization (ESL) is a technique applied to 

EEG to localize the sources of the measured potentials. This technique has been applied to EEG in 

adults in the studies of physiological, psychological, pathological, and functional brain abnormalities 

such as tumours and epilepsies. 

There are indications of the early brain developmental roots of specific abnormalities such as autism, 

Williams syndrome and schizophrenia that are observed in certain developmental and 

neuropsychiatric disorders. However, these observations have been performed only in adults. Indeed, 

despite the necessity of research in neonatal brain functional analysis for medical care of preterm and 

ill infants, there is limited research in neonatal ESL due in part to limitations in acquiring the relevant 

parameters of the neonatal head.  

The overall objective of this thesis is to improve neonatal health care through enhancing non-invasive 

neonatal brain monitoring by developments in neonatal ESL. The accuracy of neonatal ESL is 

critically dependant on the quality of the head model whose main components, conductivity, 

thickness, and homogeneity of different layers have not been established. The number of electrodes 

needed to capture neonatal EEG in full spatial detail is another missing parameter of importance in 

extracting information about functional brain activity from neonatal scalp recordings. The last step to 

achieve this objective, neonatal ESL development, is proposing and applying an accurate algorithm 

to estimate neural currents from scalp potentials, i.e., to solve the inverse EEG problem.  



This thesis proposes methodologies for estimating the required neonatal head model parameters and 

then solves the inverse EEG problem in newborns. This has been completed in three steps by: (i) 

estimating the source depth and spatial resolution of neonatal EEG, (ii) estimating appropriate head 

model conductivity values including the effect of fontanelles on neonatal skull conductivity, and (iii) 

fitting an inverse solution to the neonatal ESL problem. Solving EEG inverse problem in this thesis 

refers to computing the inverse solution in a particular case. After completing these steps, the 

procedure is validated and evaluated through simulated and real EEG datasets.  

Parameters such as neonatal skull conductivity cannot be directly calculated in newborns due to 

ethical constraints. Therefore, tasks I and II were completed by applying empirical methods along 

with simulations using the Boundary Element method (BEM) and Finite Element Method (FEM) to 

indirectly estimate the unknown in vivo neonatal head model parameters.  

The last task was completed through applying subspace separation and time-frequency signal 

processing techniques to solve the inverse EEG problem. Time Frequency MUltiple Signal 

Classification (TF-MUSIC), which uses the orthogonality between estimated noise subspace and the 

Lead Field Matrix (LFM) to find the best source locations / orientations, was enhanced by applying 

image processing techniques to substitute subjective steps in the prior implementations of the TF-

MUSIC algorithm. 

The major findings of this study are: 

A) The amount of unique information in neonatal scalp EEG is much richer than has been commonly 

assumed. The Nyquist frequency for spatial EEG sampling is (~0.5-0.8 c/cm) that is equivalent to a 

wavelength of 1.25-2 cm which would translate to the need for interelectrode spacing of about 3-

5mm to capture full spatial detail.  

B) Source depth strongly affects spatial power spectral density (PSDx) as does skull conductivity. 

Simulation experiments support previous suggestions that the depth of the dipole representing the 

cortical source is about 10 mm. 



C) Fontanelles of the neonatal skull have conductivity that is not statistically significant different 

from other areas of the skull.   

D) Comparing different skull conductivities from 0.003 to 0.3 S/m in models shows that the spatial 

decay of real neonatal EEG data is best reproduced when skull conductivity values 0.06-0.2 S/m are 

used. These conductivity values are orders of magnitude higher than used in adult head models.  

E) The TF-MUSIC algorithm reconstructed original source distribution even in low signal to noise 

situations where it was applied to a range of realistic simulated neonatal EEGs with different time-

frequency domain signatures. The realistic simulated neonatal EEGs were generated using the 

realistic neonatal head model which was produced based on segmented neonatal brain MRI and the 

estimated parameters. The performance of the TF-MUSIC algorithm was calculated using an 

introduced performance metric. 

F) Visually evoked potentials (VEP) EEG data was selected to evaluate the TF-MUSIC algorithm in 

its application to the real neonatal EEG. The maximum of the TF-MUSIC output, i.e. the source 

location determined by the algorithm, was in the occipital lobe, the expected site of cortical 

representation of VEP data.   

The observation of highly varying spatial patterning is consistent with the idea that the development 

of infant cognition may be able to be studied by analysis of the formation of spatiotemporal patterns 

like cinematic frames that in some respects resemble “neural avalanches”. Capturing these with novel 

dense array EEG devices, may open a novel window to capturing the details. The implication of these 

outcomes is important: from opening a new opportunity for source level connectivity analysis of 

emerging large scale brain processes involved in the development of  perception and cognition 

through to providing an important tool to study pathological conditions such as neonatal brain 

seizures and the effectiveness of interventions to improve brain outcomes.  
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1 CHAPTER 1: THESIS BACKGROUND 

 

1.1 Introduction 

Knowledge of the relationship between functional brain activity and its anatomical source, i.e. 

functional organization of the brain, is important in many clinical situations that include diagnosis 

and treatment of pathologies that impair normal brain function such as intractable epilepsy, 

schizophrenia, depression, and Parkinson’s and Alzheimer’s diseases [1, 2]. This is of necessity a 

multidisciplinary research field that enhances our understanding of the basic mechanisms of cognitive 

processes, processes that underlie normal and pathological brain functions [3, 4]. 

Functional neuroimaging techniques such as Single Photon Emission Computer Tomography 

(SPECT), Positron Emission Tomography (PET), and functional Magnetic Resonance Imaging 

(fMRI) have made it possible to non-invasively access the active brain [5]. Cognitive tasks activate 

several large-scale brain regions which determine the dynamic interactions with the others [5, 6]. 

These functional imaging techniques exploit physiological changes that fluctuate in the scale of 

several hundreds of milliseconds at best. Their temporal resolution is limited and rapid brain 

dynamics cannot be studied using these techniques [7]. Methods such as covariance-based analysis 

of PET images [8] and the hemodynamic response of single-trial event-related fMRI [9] have been 

proposed to improve previous methods and solve this problem, but they have been only partly 

successful [5]. 

Electroencephalography (EEG) is a non-invasive method for acquiring neural information with a high 

temporal resolution. It measures electrical potential corresponding to neural activities over the scalp 

by means of sensors directly attached to the scalp. EEG as a clinical tool has had widespread 

application to examining different abnormal electrical behaviour in neurons [1]. The millisecond-

range temporal resolution of EEG [10] has made it possible to obtain evidence about some brain states 

such as epileptic state during seizure that cannot be provided by other modalities [11]. Another 

advantage of EEG over other modalities except Magnetoencephalography (MEG) is its capability to 



determine causality within the neural assemblies in addition to detecting them [10]. MEG is EEG’s 

complementary technique that measures the magnetic induction outside the head generated by the 

electrical brain activity [1]. However, due to its higher cost and lesser flexibility, MEG is a less 

desired option. 

EEG signals can also be utilized to extract the functional organization of the brain. This procedure is 

realized in the form of a mathematical analysis known as the EEG source localization (ESL). This 

technique has been widely applied on adult EEG. However, due to limitation of acquiring the relevant 

parameters of the neonatal head, there is no report of successful application of this technique to 

neonatal EEG. This dissertation investigates the functional organization of the neonatal brain and 

proposes novel methodologies for studying newborn brain functionality through scalp EEG analysis 

and Magnetic Resonance Imaging (MRI). Three aspects of the neonatal EEG source localization 

(nESL) problem have been investigated: i) appropriate head model conductivity values, ii) spatial 

resolution of neonatal EEG and source depth and iii) fitting the inverse solution. Empirical methods 

were applied to indirectly estimate the unknown in vivo neonatal head model parameters. These 

parameters were then employed to establish a realistic neonatal head model that was used both in the 

generation of simulated realistic EEG and later in the validation of the proposed source localization 

method.  

This approach has been enhanced through replacing the subjective stages of legacy ESL methods by 

applying image processing techniques to the time-frequency transformation of the EEG signals. A 

new ESL performance metric is also introduced which not only measures the dipole localization error, 

but the effect of the presence of other sources. The approach is evaluated by applying it to event 

related potentials (ERP) and visually evoked potentials (VEP) EEG recordings of healthy term, and 

preterm infants. This chapter describes the background and the rationale of the thesis which precedes 

a description of the significance, objectives and overall contributions of the work. It concludes with 

an outline of the whole thesis. 



1.2 Background of Neonatal EEG Source Localization 

Despite its superior temporal resolution, the spatial resolution of EEG is less than other functional 

brain imaging methods because of the separation between EEG electrodes and current sources inside 

the head, i.e. neurons, by several layers with different conductivity values [12]. Moreover, since 

various source arrangements inside the brain or cortex can result in a similar potential distribution on 

the scalp, the visual interpretation of EEG cannot result in the accurate location of neural generators 

[11, 13]. Accordingly, inferring the underlying generator source distribution in the brain for a 

potential distribution on the scalp is ambiguous and the only approved method to sensibly estimate 

the corresponding sources with more detailed spatial information is to apply a mathematical 

procedure referred to as the inverse problem solution [13, 14].  

ESL techniques attempt to estimate the current sources within the brain that produced the EEG signals 

from electrodes. ESL is an important tool used to estimate the intracerebral generators of the 

potentials observed on the scalp in both clinical neuroscience and cognitive neuroscience research 

[13, 15]. The clinical applications of ESL in neurology have been mainly focused on the epilepsy and 

yet there is an increasing interest in studying motor evoked potentials by means of ESL as well. 

Similarly, cognitive neuroscience studies have used ESL to investigate temporal information in the 

ERP. In addition, psychiatry and psychopharmacology have employed ESL to study sources in 

specific frequency bands [13].  

In view of the fact that there are an infinite number of different compositions of current sources that 

can give rise to an identical potential distribution over the scalp, there are an infinite number of 

equivalent inverse solutions for a single potential distribution. This necessitates applying some prior 

assumptions or extra information to determine the appropriate solution [1]. Consequently this further 

information / constraint describe a main characteristic of each individual ESL method. This additional 

information / a priori assumption / s can be introduced in the form of source modelling / distribution 

or the volume conductor’s constraints [11, 13]. Accordingly, as long as new knowledge of creation 

of source signal or the volume conductor is generated which can be incorporated as a priori 



constraints in the inverse problem, new solutions to the inverse problem exist that can be formulated 

in the form of a new source localization method [13]. 

Based on recent works in neuroimaging [16-18] and in developmental neurobiology [19-21], it is 

clear that brain functions are already highly specialized at early developmental stages. Functional 

assessment of neonatal brain has been encouraged by the increasing interest in medical care of 

preterm and ill infants as well as recent advances in developmental neuroscience. Neonatal brain 

activity can reliably be recorded with neonatal EEG, in a manner similar to that used in the adult, 

[22]. However, the neonatal EEG (nEEG) includes numerous features such as focal or multi-focal 

transients [23, 24] which are normal and differentiate it from adult EEG. These are relatively sharp 

fluctuations in the scalp potentials that are likely to be produced by focal sources within the brain.  

Despite the wide range of methods currently applied in adult EEG source localization, no specific 

method has been proposed to address the nESL problem. This is mainly because of differences in 

electrostatic parameters and head geometry [25, 26]. There is no agreement on which methods may 

be most appropriate for nESL. The accuracy of source localization is critically dependent on the 

quality of the head model [27]. The two essential and critical components of the head volume 

conductor model include the geometry and conductivity profile of different layers. The accuracy of 

both parameters has a direct impact on the accuracy of source localization [28, 29]. Lack of accurate 

knowledge about these parameters in the neonatal head model has been the main obstacle in applying 

the existing adult source localization techniques. Fitting a head model for newborns requires data 

relating to conductivity, thickness, and homogeneity of different layers especially the skull, and the 

effect of the fontanelles. Neither direct nor indirect information is currently available about the 

conductivity of the cartilage layer and the fontanelles. The development of a proper neonatal head 

model requires that this lack of knowledge is dealt with effectively and this will then allow the 

assessment of whether adult source localization techniques are well-adapted to neonates [25].  

Another key parameter that needs to be considered in an accurate nESL is the proper range of source 

depth in the neonatal head model. The effect of source depth has been successfully investigated in 



adult ESL techniques but it has not been sufficiently studied in neonates [30]. Since electrical and 

magnetic signals are attenuated by distance based on the inverse square law, the distance between 

EEG electrodes and the brain/cortex is another key variable in the accuracy of each ESL method. 

However, there is insufficient knowledge of variation of brain-scalp distance in different cortical 

regions in neonates and children [31, 32]. Consequently, each prospective source model needs to 

carefully consider the neonatally relevant range of tissue conductivities and source depths when 

source localizing cortical activity in neonates [30].  

The number of electrodes needed to capture neonatal EEG in full spatial detail is another parameter 

of importance in extracting information about the functional brain activity from neonatal scalp 

recordings. It is not clear how much information can be obtained from the neonates scalp. This 

richness in amplitude texture can be perceived as “spatial patterning”, i.e. spatial distribution of the 

neonatal scalp EEG and it has been measured in adults by estimating the spatial frequency content of 

the scalp EEG [33-35]. Since the number of actual sources that create the potential distribution over 

scalp is much more than the number of receivers (EEG electrodes), increasing the number of receivers 

will enhance the accuracy of ESL. The functional assessment of neonatal brain activity is currently 

thoroughly hampered by the poor spatial resolution provided by conventional neonatal EEG recording 

with about 10 electrodes that ignores most of the spatial content of neonatal EEG [22]. Accordingly 

a genuine nESL approach should observe the spatial patterning of the neonatal EEG and determine 

the value of satisfactory EEG electrode density.  

The final stage of a neonatal EEG source localization method is to choose an appropriate inverse 

solution which will be possible only when all the required information is already present. The inverse 

problem is to estimate the distribution of sources that fits the given recorded EEG signal from the 

scalp. The best choice of the inverse solution is strongly dependent on the source model [1, 10, 11, 

13, 36]. The main approaches of ESL include Equivalent current dipole (ECD) [37-39] and imaging 

methods [5, 13, 40, 41]. The assumption of a priori knowledge about the number of sources to model 

the neural generators is the main difference between the two categories. While ECD assumes a limited 



known number of dipoles can produce a sufficient approximate of scalp EEG, a huge number of 

dipoles (normally ~10000 or more) is required producing an adequate approximation of scalp 

potentials in imaging methods. There is no limitation in this case on the number of current dipoles 

used to model the source of electrical activity in brain. There is another intermediate approach to 

approximate the sources that generated the scalp potentials. These are a subcategory of ECD 

approaches that do not need a priori knowledge about the exact number of sources, similar to the 

distributed sources approach, they scan through the whole brain / cortex volume for a handful of 

fitting dipoles. These scanning methods constitute an alternative approach in EEG source localization 

[37, 42].  

Selecting an appropriate localization approach for the neonatal EEG inverse problem includes several 

prerequisites that need to be considered concisely. This choice clearly determines how we interpret 

the data and every selected approximation will reflect the accepted assumptions or the prior 

knowledge implemented in the methodology chosen for solving the problem [10]. These assumptions 

include a priori knowledge about the source distribution and number of sources (single/ multiple 

sources), location of the sources (cortical/deeper sources), source expansion (focal and sparse 

sources), and time dependent/independent source/s. Based on previous works on adult EEG source 

localization, methods based on equivalent current dipoles generate more accurate results in 

somatosensory stimulation [43], in the analysis of epileptic brain activity [44], and interictal spike 

localization [45, 46] where brain activity is highly focused in a small area. Imaging methods, on the 

other hand, are more appropriate for the case where large areas of the brain may be involved in the 

activity and it is not possible to predict the number of active regions in the brain such as in cognitive 

experiments [10].  

  

1.3 A short review of inverse solutions 

The general form of the relationship between the EEG measurements and its generator current sources 

for the discrete signals can be stated as [36] 



 𝑉 = 𝑳𝑆 + 𝑁  (1) 

 

in which  𝑉 is the measurement vector, 𝑆 is the source vector, 𝑳 is the Lead Field Matrix (LFM) and 

𝑁 is the noise vector introduced into the measurements. Under this notation, the ESL is the procedure 

to estimate 𝑆 when 𝑉 (EEG) and 𝑳 (LFM) are known. The LFM is the gain value from each source 

location to the measurement positions and hence, is dependent on the characteristics of the media 

between the source and destination. As it is a prerequisite for solving the inverse problem, it should 

be worked out in advance.   

Practically, the LFM is calculated in the procedure which is called forward problem solution. 

Consequently, the inverse solution practically starts with solving the forward problem. In the forward 

problem, a given electrical source distribution is assumed in order to calculate the potentials on the 

scalp. Poisson's differential equation along with Neumann and Dirichlet boundary conditions can be 

used to describe the potentials in a volume conductor generated by the extracellular current from 

cells. Then the next step is to determine the boundaries to calculate the solution of the pertaining 

electromagnetic boundary problems [47]. Selecting the volume model and its physical / electrical 

parameters will determine the method for solution of these equations. In other words, the choice of 

the head model geometry determines which of the forward solution techniques is applicable. The two 

main options for the head model include spherical and realistic head models. 

The first volume conductor model is a homogeneous spherical head model with three or four 

concentric layers. In this model, the inner sphere, the intermediate layer and outer layer represent the 

brain, skull, and scalp respectively. The main advantage of this model is that it accommodates an 

analytical solution for Poisson’s equations when the surface integrals are computed over the 

simplified geometry of the spherical head model [1]. However, spherical models that can reasonably 

approximate the superior regions of the brain do not generate satisfactory results in terms of the 

overall localization accuracy. This is because the head is roughly spherical in this part and therefore 

realistically shaped models are necessary to represent the whole head [10, 48]. These models are 



generated by incorporating anatomical information / imaging to the forward problem. For instance, 

MRIs are segmented into different regions to identify different tissues such as brain, cerebrospinal 

fluid (CSF), skull and scalp. The segmented MRI is then used to construct a 3D mesh.  

This information makes it possible to find the surface boundaries for brain, CSF, skull and scalp 

which determine the boundary conditions of the electromagnetic equations [1]. These are surfaces 

that separate regions of different conductivities. There are two broadly applied numerical methods 

for solving these equations. The first method, Boundary Element Method (BEM), assumes 

homogeneity and isotropy over the entire region within boundaries and is computationally more 

efficient than the other. In the second method, Finite Element Method (FEM), the entire volume 

conductor is digitized in small elements as tetrahedrons and the Poisson equation is solved for each 

element [49]. Both methods need knowledge of the conductivity of the head tissues. However, since 

the exact conductivity of elements is not known, applying the piecewise constant conductivity instead 

of a spatially varying anisotropic conductivity model, generates similar results in terms of accuracy 

of the solution [8]. 

Once the forward problem’s equations are solved and the LFM is calculated, the inverse problem can 

be solved for a given EEG dataset. There are a variety of inverse solutions that are currently applied 

in the adult ESL problem. These methods can be broadly divided into three major categories, as 

mentioned above:  (i) equivalent current dipole (ECD) or parametric methods, (ii) distributed source 

or imaging or non-parametric methods, and (iii) intermediate methods [13]. All these methods use a 

current dipole as an elemental source model to represent an idealized point source. The main 

characteristic of every localization method depends on the choice of the a priori assumptions / extra 

information implemented in the source distribution or the volume conductor’s properties to solve the 

ill-posed ESL problem. Accordingly the above approaches are the result of different assumptions 

about the source distribution. 

 



1.3.1  Equivalent current dipole (ECD) approaches 

In the first approach, ECD known as dipole fitting or parametric methods, it is assumed that potential 

measurement over the scalp is generated by a few current dipoles of unknown location and moment 

parameters. The ESL method then attempts to estimate these unknown parameters through a non-

linear numerical method. A solution will exist only if the number of unknown parameters is less than 

or equal to the number of electrodes. Once some estimates of these unknown parameters are acquired, 

a potential distribution is calculated by solving the forward problem and the result is compared with 

the true measurements. The trivial solution to find the best fitting parameters is an exhaustive search 

through the whole solution space with any possible location and orientation of the sources. This is 

very demanding and if more than one dipole is assumed it is nearly impossible [50]. Hence, non-

linear optimization processes based on directed search algorithms are usually used to find the 

parameters that generate the potential distribution over the scalp with the least difference from the 

actual EEG measurements. There is a risk of undesirable local minima in these methods in which the 

algorithm accepts a certain location in the source space because moving in any direction increases 

the error of the fit [51]. Although the theoretical number of sources is determined by the number of 

EEG electrodes, the practical number of sources that can be reliably localized by these methods is 

limited by the complexity of the directed search algorithms and the problem of local minima. The 

main parametric approaches are non-linear least-squares solvers, Brain Electric Source Analysis 

(BESA), simulated annealing and finite elements. [1, 10, 11, 13, 36]. 

 

1.3.1.1  Least-Squares: 

The earliest and most straightforward strategy is to fix the number of sources and use a nonlinear 

estimation algorithm to minimize the squared error between the EEG data and the fields computed 

from the estimated sources using a forward model. A key problem with the least-squares method is 

that the number of sources to be used must be decided a priori. Estimates can be obtained by looking 



at the effective rank of the data using singular value decomposition (SVD) or through information-

theoretic criteria, but in practice several model orders are run and the results are selected based on 

physiological plausibility. Caution is obviously required since a sufficiently large number of sources 

can be made to fit any data set, regardless of its quality. Furthermore, as the number of sources 

increases, the nonconvexity of the cost function results in increased chances of trapping in undesirable 

local minima [1]. 

 

1.3.1.2 Brain electric source analysis (BESA): 

It has been shown that the practical limitation of the number of sources can be relaxed if the temporal 

domain is incorporated in the dipole fitting procedure [52]. The BESA software has implemented this 

spatio-temporal multiple source analysis technique. In this method, dipoles are assumed to have fixed 

position and fixed or varying orientation over a given time interval and then the whole block of data 

is used in the least square fit [53]. It is essential to assume the correct number of initial sources in this 

method similar to other ECD approaches.  

 

1.3.1.3  Simulated annealing and finite elements: 

This is a global optimization approach that uses simulated annealing [54] for the optimization [1]. 

The basis for optimization is an objective function based on the current-density boundary integrals 

rather than potential differences in other ECD approaches. It is associated with standard finite-

element formulations in two dimensions. The user is also able to define target search regions. Thus, 

by approaching current density at each electrode to zero, the modelled dipole is varied in such a way 

that the Neumann and Dirichlet boundary condition is satisfied [55]. 

 



1.3.2  Distributed sources approaches 

The imaging approaches on the other hand, are based on the assumption that a large number of current 

dipoles distributed within the brain or on the cortical surface give rise to the potential measurements 

on the scalp. Imaging methods or non-parametric optimization methods are also referred to as 

Distributed Source Models, or Distributed Inverse Solutions (DIS). In these methods, there is no need 

to know the exact number of sources. The brain / cortex in this approach is converted to a mesh of 

points which is called the source space and a current dipole is supposed to be fixed in each point of 

this source space (with possibly fixed orientations). However, there is a major difference between the 

assumptions made on dipoles in the two methods. The dipoles in parametric methods can be localized 

everywhere in the brain / cortex and can take any orientation. However, in the non-parametric 

approaches the location / orientation of dipoles are supposed to be known beforehand and the 

localization method tries to estimate the amplitude of each dipole. In this case, since the only 

unknowns are the amplitudes of the dipole, the source localization is linear. These methods henceforth 

approximate the 3D current distribution in the brain.  

In the noise free conditions it will be possible to find a current distribution that can exactly produce 

the measured potential distribution over the scalp. However, it is not the only possible solution that 

exactly reproduces the measured potentials and there are an infinite number of distributions of current 

dipoles in the source space with equivalent generated potentials [13, 36]. The non-parametric methods 

are designed for the localization of brain activities generated by a large number of sources (around 

10,000) such as cognitive experiments that cannot be modelled by the few limited number of dipoles 

of the parametric methods. Alternatively if non-parametric techniques are used to localize highly 

focal sources such as somatosensory stimulation or epilepsies, these methods lack the precision of 

parametric methods and show the activity over a large portion of the brain / cortex surface. This is 

because in these methods a limited number of detectors (e.g. ~ 100) are mapped to a large number of 

generators (e.g. 10000) and the problem is severely underdetermined [1, 10, 36]. The three main 

trends in non-parametric ESL include Bayesian framework such as Minimum norm estimates (MNE) 



and Low resolution electrical tomography (LORETA), the weighted resolution optimization such as 

Local Auto Regressive Average (LAURA), and Shrinking and multiresolution methods such as 

Shrinking LORETA-FOCUSS [10, 11, 13, 36].  

 

1.3.2.1 Bayesian Framework 

The Bayesian approach uses the Bayes posterior probability theorem to incorporate a priori 

information about the current source distribution 𝑆 into the estimation of the sources given the 

measurements 𝑉 [1, 36] 

 𝑃(𝑆 𝑉⁄ ) =
𝑃(𝑉 𝑆⁄ ) × 𝑃(𝑆)

𝑃(𝑉)
 (2) 

 

where 𝑃(𝑆 𝑉⁄ ) is the posterior probability for the current distribution given the potential 𝑉 and 𝑃(𝑆) is 

a prior current distribution which reflects our a prior knowledge about it. Practically this is estimated 

by maximization of the posterior probability [1] 

 𝑆̂ = argmax
𝑆

{𝑃(𝑉 𝑆⁄ ) × 𝑃(𝑆)} (3) 

 

in which 𝑆̂ is the estimated current distribution and 𝑃(𝑉 𝑆⁄ ) is the term that depends on the forward 

model and the true source distribution. The type of a priori knowledge 𝑃(𝑆) that is incorporated 

results in different methods. Minimum norm estimate (MNE) and Low resolution electrical 

tomography (LORETA) are the most famous techniques in this group. 

 

Minimum norm estimates (MNE): 

MNE is the estimate of this current distribution without incorporating almost any a priori information 

[56]. It only assumes that the current distributions should have minimum overall power and is 



achieved through regularization method [36, 57]. Also a more general assumption in MNE is that the 

noise and current are normally distributed [58]. The MNE requires minimal assumptions and hence 

is suitable for the localization of poorly known activity distributions and for tracking activity changes 

between brain areas as a function of time [59]. However, there is no physiological validation on the 

MNE’s assumption for selecting the solution with the minimum power. In other words, in the 

activities where there are a large number of active points in the brain, MNE favours superficial 

sources. This is because less activity is required in superficial areas to generate a certain surface 

voltage distribution than deeper sources which can lead to erroneous interpretations [13]. 

 

- Low resolution electrical tomography (LORETA) 

The tendency of MNE to select superficial sources is modified in later methods such as weighted 

MNE (WMNE) by applying various weighting strategies. In the simplest form, the norm of columns 

of the LFM, which corresponds to the source space points, are used for the weighting. In the Focal 

Underdetermined System Solution (FOCUSS) algorithm [60], weights are iteratively modified 

according to the solutions estimated in the previous step, leading to a non-linear solution. LORETA 

[61, 62] assumes that the spatial distribution of sources is smooth and hence tries to minimize the 

Laplacian of the weighted sources. Consequently it gives the depth-compensated inverse solution 

[36]. In other words, superficial or deeper sources have a similar opportunity to be reconstructed.  

The physiological assumption of LORETA is that activity is correlated among the neurons in 

neighbouring areas of cortex. Although this assumption is generally correct, it has been criticized in 

that it leads to a spatial scale where such correlations can no longer be reasonably expected [13]. 

Indeed, there are anatomically close areas of brain such as the medial parts of the two hemispheres 

with distinct functionality which do not comply with this assumption. Furthermore, the assumption 

of correlation over relatively large distances has caused LORETA to provide rather blurred, over-

smoothed, solutions. Consequently, this technique is not well suited for focal source estimation and 

some false activities may appear[61].  



1.3.2.2 Weighted resolution optimization approaches 

This approach is composed of a family of linear distributed solutions such as Local Auto Regressive 

Average (LAURA) [36, 63] and EPI-FOCUS [64] in which physical constraints into the solution are 

realized in the form of a local autoregressive average. These are (quasi) linear inverse solutions 

especially suitable for single, but not necessarily point-like generators, in realistic head models [65]. 

 

1.3.2.3 Shrinking methods and multi resolution methods 

A concentrated source solution may be obtained by applying suitable iterations to the solution of a 

distributed source model. This is the basis in the inverse solutions based on the Shrinking and multi 

resolution methods. 

 

- Shrinking LORETA-FOCUSS (SLOFO) 

To reduce computation time and increase source resolution, SLOFO combines the ideas of LORETA 

and FOCUSS and makes iterative adjustments [36]. The weighting matrix and the solution space are 

both adjusted in this method [66]. It enhances the strength of some prominent dipoles in the solution 

and decays the strength of other dipoles. The starting point of the algorithm is the smooth LORETA 

solution. 

 

- Standardized shrinking LORETA-FOCUSS (SSLOFO) 

This procedure is similar to the Shrinking LORETA-FOCUSS. Features of high resolution 

(FOCUSS) and low resolution (WMN, Shrinking LORETA (sLORETA)) methods are used to extract 

regions of dominant activity as well as to localize multiple sources within those regions. SSLOFO 

gives better results than FOCUSS when there are many extended sources [36]. It also reconstructs 

different source configurations better than WMN and sLORETA [14]. 



1.3.3  Scanning methods 

The last approach is the intermediate alternative approach in which the presence of an equivalent 

current dipole is scanned in the entire source space without the necessity of a priori knowledge of the 

number of sources. In other words, while these methods can localize sources with a high resolution 

similar to ECD approaches, they do not need the exact number of sources to be determined beforehand 

[1]. In these methods a metric, which is an estimator of the contribution of each putative source 

location to the data, is derived either via spatial filtering techniques or signal classification indices 

(subspace separation). Source locations in these methods are assumed the whole points of a 3D grid 

or mesh that constitutes the source space spanned over the whole brain or cortical surface. The ESL 

in these methods finds the best performing location (orientation) among the whole points of source 

space [1, 38, 42]. Consequently, the output of ESL in these methods is comprised of a matrix of values 

for the whole grid points. Distributed source methods similarly generate an output value for each grid 

point that resembles the output of dipole scan methods. Though, the interpretation of the outputs of 

the two methods is different. For a small number of sources, the location of the maximum metric in 

dipole scanning methods is comparable with the location of the dipole with maximum amplitude in 

distributed source approaches. The major techniques based on scanning method include linearly 

constrained minimum variance (LCMV) beamformer and multiple signal classification (MUSIC) and 

their variations.  

 

1.3.3.1 Linearly constrained minimum variance (LCMV): 

The main idea in beamforming is to discriminate between signals arriving from a location of interest 

and those originating elsewhere by means of spatial filtering on data from a sensor array. The LCMV 

beamformer was developed in the array signal processing community as a means for combining the 

outputs of multiple antennae to produce a single output with the characteristics of a single larger 

antenna. [1, 67]. 



In the application of LCMV beamformer in MEG and EEG it is used as a virtual depth electrode. It 

minimizes the contribution from all other sources to monitor a single point in the brain by forming a 

linear combination of the EEG channels. In this way all possible source locations in the brain are 

monitored by scanning the location of this virtual depth electrode throughout the brain.  

The performance of the LCMV beamformer is limited by the transient and often correlated nature of 

neural activation in different parts of the brain. This is because the process of minimization of the 

effect of other sources is affected by cancellation of the signal of interest that is correlated to other 

sources. Consequently, the LCMV beamformers can only be suitable for the cases where there is a 

limited number of strongly correlated independent components in the data [1, 10]. 

 

1.3.3.2 Multiple signal classification (MUSIC) 

MUSIC was developed in the array signal processing community and then applied in the EEG signal 

processing [68]. It can be used to localize single or multiple simultaneous sources from an EEG signal. 

Fixed orientation dipoles as well as the rotating dipoles or a mixture of both can be used to model the 

current sources. This is a spatio-temporal approach which incorporates the temporal domain to 

estimate the signal subspace and use it for localizing the sources. The signal subspace is estimated in 

the SVD  [36] of the covariance matrix of  EEG signals. First a part of EEG signals are selected in 

time domain according to the research question in hand and the desired physiological features. Next 

the covariance matrix of this part of the signal is calculated and then its singular value decomposition 

is found as  

 𝑀 = 𝑈Σ𝑉𝑇 (4) 

 

in which U is known as the left singular vectors and the signal subspace is estimated to be spanned 

by US  the p (the number of sources) first left most columns of  U. The algorithm scans through a 

three-dimensional (3-D) head volume and computes projections onto an estimated signal subspace. 



In other words, columns of LFM that are corresponding to a particular dipole are scanned for finding 

the maximum projection to signal subspace. 

Although the MUSIC method can estimate the sources with a high accuracy in the cases where the 

number of sources is not large, its performance reduces for a large number of sources that can happen 

in activities such as cognitive brain actions. Errors in the estimation of the signal subspace can affect 

the performance of the localization of multiple sources. Moreover, when the dimension of the source 

space increases it becomes difficult to find several local maxima in the MUSIC metric. When the 

projection to signal subspace is computed only at a finite set of grid points, some problems may also 

occur [1, 69].  

Several variants of MUSIC such as Recursive MUSIC (R-MUSIC) [70], recursively applied and 

projected (RAP-MUSIC) [42], and Time-Frequency MUSIC (TF-MUSIC) [71-74] have been 

proposed to modify the shortcomings of the MUSIC method. TF-MUSIC approach uses the time 

domain and frequency domain simultaneously to estimate the signal subspace. It has been shown that 

neuronal activities in a human brain and their electrophysiological data such as EEG are basically 

nonstationary signals [75] and therefore can be better characterized and analysed by means of time-

frequency analysis [76]. It is possible to use time-frequency distribution [77] of signals to identify a 

region of interest (ROI) including the desired bio-physiological features [74]. This will enhance the 

signal to noise ratio (SNR) effectively and the performance of the localization method effectively will 

be improved. However, the subjectivity in the identification of ROI can affect the performance in low 

SNR values and result in inaccurate source arrangements. 

To summarize, use of the ECD based methods is most appropriate when the source of the brain 

activity is expected to be focal and there is a prior knowledge of exact number of sources. The 

distributed sources methods are more appropriate to study complex brain activities which include 

spatially extended sources or unpredicted active regions of the brain [10, 11]. The scanning methods, 

on the other hand, must be used when the application of EEG includes focal sources but there is no 

prior knowledge about the exact number of sources. The inverse solution of an individual ESL 



problem is selected upon the requirements and the conditions of the problem. Accordingly, the 

specific prerequisites of the neonatal EEG research question should be utilized to limit the selection 

criteria for nESL approach. The selection criteria in the neonatal EEG source localization problem 

can be summarised in two major necessities.  

First, the method should be fitted to localize focal sources precisely. The focal fluctuations in the 

amplitude of neonatal EEG are the common features of normal and abnormal neonatal EEG with the 

prominent occurrence [22, 78, 79]. Since these features, which differentiate neonatal EEG from the 

adult EEG, are assumed to be generated by the focal sources, the candidate inverse method for nESL 

should be selected from the approaches adapted to fulfil this condition. In addition to normal neonatal 

EEG, the prospective method should be fitted for accurate localization of sources in ERP and 

pathologic studies in neonates such as seizure. These conditions are better satisfied by the approaches 

that use a small number of dipoles to model the current sources i.e. the ECD and the scanning 

methods. 

Secondly, the selected method should be able to discriminate between the separate EEG events seen 

in the dense array EEG recordings in terms of their sources. The recordings of neonatal EEG with 64 

channels display many EEG events that look like they are distinct events. Any proposed neonatal 

source localization technique should be able to separate these distinct events in time and frequency 

domains and disclose their differences in terms of the sources accordingly. This can be realized 

through using techniques which take into the account time and frequency domains simultaneously. It 

is possible to use features of signal in both domains to identify a ROI which includes the desired 

events. Methods such as TF-MUSIC has been suggested and applied on adult MEG signals to fulfil 

this necessity [72-74]. 

There are also minor priorities in the selection of a neonatal EEG source localization scheme which 

can be satisfied according to the individual research project. It is specially the case when the nESL 

output is used as an input to other neonatal EEG research projects. In this case, the specific 

requirements of the research study needs to be included in the corresponding selection criteria. For 



instance as a valuable research project, nESL can be utilized to establish a brain level connectivity 

analysis tool for the neonatal EEG. The method then must be able to localize multiple simultaneous 

sources, a feature present in MUSIC-based methods [14, 37, 71, 80, 81]. Another example of this 

type of prerequisites is the ability to locate oscillations from the scalp level signal onto the cortical 

surface which will be employed in the study of the oscillatory activities in the neonatal EEG. Since 

the ECD approaches require a priori knowledge of the exact number of dipoles, which is not the case 

in many of above mentioned applications, the scanning methods are preferred to ECD approaches. 

The selection procedure includes more criteria and particulars that will be covered in full details in 

chapter 5 of this thesis. 

  



1.4 Motivation and significance 

Independent extrauterine living and breathing necessitates a state of maturity of the fetus and its 

developmental processes that is only achieved after about 37 weeks gestational age (GA). More than 

50% of infants born earlier, i.e. preterm infants [82, 83], face immaturity of vital functions of the 

brain [83]. Most preterm babies only survive with the continuous special care given in neonatal 

intensive care units (NICU). Although the survival rate for all but the most extremely preterm infants 

now surpasses 85%, they may experience later neurobehavioral impairments, including motor 

incoordination, cognitive impairment, attention deficits, or behavioural problems [84]. Preterm birth 

is associated with increased risk of psychiatric disorders such as bipolar disorder, depression and 

psychosis [85]. 

In Australia approximately 2600 very-low-birth weight (<1500g) or very preterm infants (<30 weeks 

GA) are born per annum [84]. Around 8% of infants are born preterm in Australia each year and 

approximately 15% of infants are admitted to NICUs [82]. Owing to the increasing rate of preterm 

birth during the last two decades [86] in Australia [87, 88] the development of early intervention tools 

is required to improve neurodevelopmental outcomes. The broad aim of this thesis is to improve the 

neonatal health care by enhancing the non-invasive neonatal brain monitoring. This enhancement is 

realized through applying time-frequency signal processing techniques to the task of neonatal EEG 

source localization. The major significance of this thesis includes: 

A) Automatic non-invasive neonatal brain monitoring through EEG:  

The lack of apparent clinical symptoms such as muscle spasms or sporadic eye movements makes 

the detection of neurological abnormalities in neonates challenging. EEG recording is the mere 

detection method in some situations such as neonatal seizure [89], with early predictive potential for 

long-term neurological outcomes. Although the neurophysiologist’s assessment of the severity of 

newborn encephalopathy still serves as the gold standard, it requires high levels of expertise and is 

time consuming. In addition, studies [90, 91] have shown that the interpretation of EEG is very 

subjective and challenging for the majority of neonatologists [89, 92]. Accordingly, an automatic 



objective newborn screening tool based on neonatal EEG that makes it feasible to continuously 

monitor infants in NICUs and other clinical situations constitutes the first motivation of this research. 

B) Neonatal EEG source localization:  

The low temporal resolution and high cost of functional brain assessment techniques such as fMRI 

has produced the opportunity for techniques based on EEG source localization (ESL) with a low cost 

and high temporal resolution to take their place. ESL has been employed to localize the sources of 

abnormalities, such as tumours and epilepsy in studies of physiological, psychological, pathological, 

and functional brain abnormalities in adults [93]. It has been also used in the presurgical evaluation 

of adult patients with refractory epilepsy to localize the epileptogenic area [25] and it is expected to 

be included in the clinical routine practices for patients suffering from focal epilepsy in near future 

[94]. The partial relationship between the anatomical and functional organization of human brain may 

reveal the basis for specific abnormalities such as autism, Williams syndrome and schizophrenia that 

are observed in certain developmental and neuropsychiatric disorders. There are indications of the 

early brain developmental roots of these later symptoms [95]. However, these observations have been 

performed only on adults and because of technical and anatomical constraints there is no report of 

applying ESL to neonatal EEG [25]. Consequently another motivation for this dissertation is to 

propose methodological development and validation of an ESL scheme for neonatal EEG to provide 

accurate neurological-functional information of the brain, especially in preterm infants. 

  



1.5 Objective of the research 

The principal objective of this study is to create a solution for neonatal EEG source localization using 

advanced signal processing techniques including time-frequency analysis and digital image 

processing algorithms. This will be realized in the form of a tool that can be utilized by neonatal brain 

researchers and in the advanced form, in clinical practices. Due to dissimilarities between adult and 

neonatal EEG, and the technical limitations relating to acquisition of relevant parameters of newborn 

head, applying adult ESL techniques for neonatal ESL problem has not been attempted. Consequently 

the final goal of this thesis is to fill this gap in the field of neonatal brain research and consists of 

several detailed objectives in the different stages of study as below: 

Objective 1: Parameterize a neonatal head model by investigating the features of focal transients in 

neonatal EEG. 

Objective 2: Create and validate a neonatal head model through solving the forward solution.  

Objective 3: Choose appropriate adult source localization techniques for the case of cortical sources 

and apply them to the neonatal head model. 

Objective 4: Enhance the selected method to adapt it for neonatal EEG source localization and 

validate it. 

 

 

 

 

 



1.6 Proposed approach and methods 

The proposed approach consists of 5 stages: 

1- Generate an estimation of unknown parameters of the neonatal head including skull layer 

conductivity, appropriate source depth, the effect of fontanelles and the required number of 

EEG electrodes. 

2- Implementation of the neonatal head model by using the estimated parameters and also 

segmentation of neonatal EEG and solving the Boundary Element Method for the mesh point 

constructed upon segmented MRI. 

3- Choose an appropriate inverse solution for the neonatal ESL problem and implement it by 

means of statistical signal processing techniques and time-frequency signal processing 

techniques using the previously developed neonatal head model. 

4- Define and calculate a performance metric and use it to evaluate and validate the proposed 

method by means of simulated realistic EEG and comparing the performance of localization 

to other methods. 

5- Enhance the proposed method by creating an automatic ROI identification in the time-

frequency plane owing to the significance of ROI in the final performance of the proposed 

neonatal ESL method.  

 

 

 

 

 

 

 



1.7 Major Contributions of the Thesis 

Contributions of the thesis are as follows 

Objective 1: Several parameters involved in the calculation of inverse solution of the neonatal 

EEG have been calculated and presented in chapter 3 and 4. The acceptable range of the neonatal 

skull layer conductivity and the proper source depth in modelling neonatal head are presented in 

chapter 4. These parameters significantly affect the accuracy and the performance of the ESL and 

lack of accurate knowledge about them has been the main obstacle in the realization of neonatal 

ESL. The number of EEG electrodes needed to capture neonatal EEG in full spatial detail is 

calculated and presented in chapter 3. The spatial patterning of the neonatal EEG is the other 

essential issue in a genuine neonatal ESL methodology which calculates the sufficient number of 

EEG electrodes for recording neonatal EEG without losing information.  

 

Objective 2: The effect of the fontanelles, the main difference in the geometry of the neonatal and 

adult skull, as another prerequisite for the neonatal ESL is investigated in chapter 2. While the 

histological similarity of the other layers between neonates and adults allow approximation of their 

conductivities across ages, neither direct nor indirect information is currently available about the 

conductivity of the cartilage layer and fontanelles. Implementation of parameters achieved in 

objective 1 and the result of investigation about the effect of the fontanelles, along with the 

segmentation of neonatal MRI, facilitated the realization of a realistic neonatal head model that is 

presented in chapter 4. 

 

Objective 3: An inverse solution for the neonatal EEG source localization problem is proposed 

and validated in chapter 5. Choosing the appropriate localization approach for the neonatal EEG 

inverse problem is a challenging task because it requires the exact interpretation of prior 

knowledge about the elements of neonatal ESL including neonatal head model parameters and 

neonatal EEG. The dominant features of normal and abnormal neonatal EEG, focal transients, are 



generated by focal sources and accordingly, methods based on a limited number of dipoles will 

better fit this purpose. A methodological approach is presented in chapter 5 to select and propose 

the appropriate neonatal ESL. 

 

Objective 4: The proposed neonatal inverse solution, time-frequency multiple signal classification 

algorithm (TF-MUSIC), is enhanced through the automatic region of interest (ROI) identification 

that is explained in chapter 5. In addition, a new ESL performance metric that makes it possible to 

measure the effect of individual parameter in the final performance of an inverse solution has been 

introduced in chapter 5. It has been shown also in chapter 5 that the ROI plays the most 

fundamental role in the superiority of the TF-MUSIC algorithm over MUSIC or other methods. 

Consequently, the effective determination of ROI significantly affects the performance of a source 

localization technique such as the TF-MUSIC that uses the ROI. It has also been shown in chapter 

5 that the choice of time-frequency distribution (TFD) kernel does not independently change the 

localization performance; though the effect of TFD kernel on ROI identification is noticeable. 

 

  



1.8 Thesis Organization 

The thesis comprises six chapters as below: 

Chapter 1: provides a background of the research topic and a short review of different adult EEG 

inverse solutions. The motivations, aims and objectives of the research are then described. The last 

sections of this chapter explain the proposed approach and the methodology used and lists the major 

contributions of this thesis. 

Chapter 2: describes the parameters of the neonatal head model. A brief theoretical background is 

presented which is followed by the explanation of the parameters of neonatal head model. The two 

techniques used in this chapter to acquire the neonatal head model parameter, i.e. spatial decay of 

amplitude in focal transients and spatial decay of linear correlation between scalp EEG signals are 

then explained.  

Chapter 3: is dedicated to spatial patterning of neonatal scalp EEG. First the spatial power spectrum 

is described and then the linear array experiment is presented which is used to calculate the sufficient 

number of electrodes in a full recording of the neonatal EEG. The clinical implication of spatial 

patterning in EEG and the results relating to the analysis of linear array are the two last sections of 

this chapter. 

Chapter 4: this is where the proper skull conductivity range in realistic neonatal head models is 

estimated. A short theoretical background at the beginning of the chapter is followed by the 

experimental methods for the estimation of neonatal conductivity and then procedures for generating 

the head model including the BEM and FEM, for calculating the theoretical values of the neonatal 

skull conductivity. 

Chapter 5: suggests the neonatal EEG source localization, i.e. the enhanced TF-MUSIC. First a 

review of time-frequency analysis is presented and then the TF-MUSIC algorithm is discussed. A 

method of objective ROI identification which is used to enhance the TF-MUSIC algorithm is then 



presented. The last section of this chapter is dedicated to the evaluation and validation of the proposed 

method for the neonatal ESL. The performance evaluation through introducing a new performance 

metric is explained in the last section. Then ROI and its significance in the performance of the method 

are described later. 

Chapter 6: Conclusion and possible future direction in this study. 
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2 CHAPTER 2: PARAMETERS OF THE NEONATAL HEAD MODEL1  

 

2.1 Introduction 

The EEG is an important diagnosis tool for the evaluation of seizures and other disorders of the 

central nervous system (CNS). It has also been used in  monitoring the progress of such diseases and 

for prognosis of long term developmental outcome [96]. There is a need to better understand the 

relation between brain structures and function in newborns which can be achieved using EEG source 

localization (ESL) techniques. This includes, as explained in the first chapter, techniques used to non-

invasively investigate the brain functions for better understanding of development processes and 

pathologies such as seizures. 

ESL is the procedure of mapping EEG to the brain regions responsible for its generation. The 

accuracy of such a technique is critically dependent on the quality of the head model [27, 97]. Head 

models are mathematical representations for the electromagnetic relationships between neural 

currents and the scalp potentials. They include parameters such as tissue conductivity, thickness and 

geometrical specifications of the different layers of the head. However, the precise parameters to 

model the neonatal head have not been accurately determined which has prohibited the development 

of specific neonatal source localization techniques. Instead adult source localization techniques have 

been applied to the neonatal EEG [25]. 

There are several differences between the neonatal and adult head which make it difficult to produce 

an accurate neonatal head model. A realistic head model needs to take into account the different 

macroscopic and microscopic structures of neonatal skull, which have an effect on tissue 

conductivities. The neonatal brain is surrounded by a set of cartilaginous cranial bones with sutures 

and fontanelles between them and because these tissues are soft and relatively wet they are a good 

conductor. However, adult skull bone is well ossified and relatively dry, so is a poor conductor [96-

                                                
1 This chapter is an extension of the following paper : Maryam Odabaee, Siamak Layeghy, Mostefa Mesbah, Ghasem 

Azemi, Boualem Boashash, Paul B. Colditz, Sampsa Vanhatalo, "EEG amplitude and correlation spatial decay analysis 

for neonatal head modelling," in Information Science, Signal Processing and their Applications (ISSPA), 2012 11th 

International Conference on, 2012, pp. 882-887. 



101].  

The importance of conductivity’s role in the solution of an inverse problem comes from the fact that 

EEG signals are produced by the ohmic current flow in the head rather than capacitive or inductive 

currents. This makes EEG signals highly sensitive to the value of conductivity and likewise the 

inverse solution [10]. While neonatal skull conductivity is known to be the most accountable layer 

for the significant dissimilarities in the behaviour of newborn scalp EEG and adult EEG, this 

difference has been avoided in the studies of human neonatal EEG source localization (nESL) [25, 

102]. These studies have simply adopted conductivity values from prior adult literature; however the 

lack of empirical reference makes interpretation of those results difficult.  

Therefore, the main challenge in designing a suitable neonatal head model is to find the tissue 

conductivity profile for different layers and most importantly the skull. However, direct measurement 

of the in vivo head tissue conductivities is not ethically feasible in newborns and there is a need for 

indirect measurements. The methodology developed in this chapter to investigate the influence of the 

fontanelles on the neonatal skull conductivity profile is the first step to address this issue. This indirect 

measurement method, which is based on the application of statistical analysis and digital signal 

processing techniques to the scalp EEGs, will be followed in the next chapters for measuring other in 

vivo parameters effective on a realistic neonatal head model and henceforth on EEG source analysis. 

 

2.2 Theoretical background 

Many EEG source localization techniques have been developed to identify the brain structures (i.e. 

current sources) that generate EEG signals [36]. One of the main prerequisites for the successful 

realization of these methods is a sufficiently accurate volume conductor model with appropriate tissue 

conductivity profiles [97]. In the adult EEG literature, concentric spherical shells with different 

conductivities have been commonly used to model the different tissue layers comprising the head [47, 

103]. More realistic head models based on segmented MRIs [25, 104, 105] have also been developed 



and used in conjunction with advanced computational methods such as Finite Element Methods 

(FEM) and Boundary Element Methods (BEM) [1, 13, 106] to achieve more accurate results.  

In the context of neonatal EEG source localization, it has been recognized that the neonatal head 

cannot satisfactorily be represented by  the adult models [25]. The adult skull is well ossified, 

relatively dry, and much more resistive to electric current flow than the underlying layer of CSF. 

Different values have been reported for the in vivo conductivity ratio of CSF to skull in the adult 

ranging from 20 - 200  [100] measured by temporarily removing part of skull during epilepsy surgery. 

This ratio is reported as about 15 [99] or  24 [97] by injecting small electric currents into the scalp 

and measuring the potentials at the other electrodes. Yet in [101] using finite element modelling of 

the layered structure of the human skull the ratio was estimated at 40 rather than the commonly used 

value of 80 [96, 101, 107]. One possible reason for the difference in values of skull conductivity could 

be due to the region of the skull examined or position of the skull used for estimating its conductivity 

[108]. 

In neonates, on the other hand, there are no dry ossified bones and the brain is surrounded by the 

future skull tissue and cartilage, which is soft and relatively wet and therefore a good conductor. 

Hence, the constituent elements of the neonatal skull contribute to its different conductivity index 

from the adult. The skull thickness is another important parameter in ESL as it directly affects the 

spatial flow of current in the head [109]. The thickness changes during human development with a 

sharp increase from birth to the end of the first year. While the infant skull thickness varies from 1 to 

2 mm, it is 5 to 8 mm in the adult [110-112]. Accordingly, since the length of the path directly affects 

the resistivity against the electrical current, less of the passing flow of current is lost in the neonatal 

skull less of the passing flow of current is lost in the neonatal skull  neonatal .  

A major difference between the conductivity profile of the neonatal and adult skull is the fontanelles 

region for which there is no information available. While there are similarities between the other head 

tissues in terms of microscopic anatomy, fontanelles and cartilage do not have a comparable 

compartment in the adult head. This wide opening in the skull is a major difference in the head 



geometry between the neonatal and adult head (see Figure 4). It is a section of the foetal and neonatal 

skull encompassing the gaps between the incompletely formed cranial bones where the cartilage will 

close later in development. Neither direct nor indirect information is currently available about the 

conductivity of the fontanelles (and cartilage layer). Though, the histological similarity of the other 

layers between neonates and adults allows approximation of their conductivities across ages. This 

information therefore is crucial in the construction of a practical neonatal head model. Hence, it is a 

prerequisite in each genuine nESL technique to address this singularity of the neonatal head model. 

Although direct investigation of the effect of the fontanelles is not feasible in neonates, it can be 

studied by the application of the electromagnetism theory in dielectric materials. 

The technique employed here for this purpose is based on the spatial distribution of potential and 

potentials correlation over the scalp. It is shown that the spatial decay of both potential amplitudes 

and their correlations are an indirect measure of skull conductivity which are used to estimate the 

effect of fontanelles on skull conductivity. It uses the “lead field theory” which relates the scalp 

potentials generated by current sources in the brain / cortex and the externally generated currents over 

the scalp. The main idea here is to study the spatial correlation of potentials due to volume conduction 

of randomly spaced, uncorrelated radial cortical sources. The result of comparisons of these measures 

in different regions of skull are used to investigate the effect of fontanelles in neonatal head modelling 

[113]. 

 

2.2.1 Lead field theory 

Transmission of the information in a nerve cell is accomplished by the exchange of ions across its 

membrane that causes a  temporary variation in the potential along the axon which is called the action 

potential [93]. The rise time of action potentials are about 1 ms which probably includes the highest 

significant frequency component in bioelectric systems of the order of 1 KHz [114]. Although the 

neural activity is time varying, the variation rate and the frequency components are considered very 

slow compared to the electromagnetic wave propagation speed. In other words, the wavelength of the 

http://en.wikipedia.org/wiki/Skull


potential signals is about 300 Km which make the points with small distances equivalent in terms of 

time variations, i.e. propagation delay. Consequently, the behaviour of all fields and currents can be 

explained by the quasi-static Maxwell equations which assume them as stationary at each instance of 

time [47]. In this condition the electric potential over the scalp, 𝑣 can be described by the following 

equation [98]: 

∇. (𝜎∇𝑣) =  ∇. 𝑱𝒔 (5) 

in which 𝜎 is the tissue conductivity, 𝐽𝑠 is the current density due to transmembrane ion exchanges in 

neurons, ∇. ( ) is the operator for the divergence or the flux density, and ∇𝑣 is the gradient vector of 

potential. For the case of I, a flow from a point-like current source to a current sink, the Eq. (5) can 

be stated as: 

∇. (𝜎∇𝑣) =  −Iδ(𝐫 − 𝐫2) + Iδ(𝐫 − 𝐫1) (6) 

If a current dipole is used to model the current source, as it commonly is in the literature [1, 37, 41, 

81, 98, 115], the potential difference between two scalp locations 𝐫1 and 𝐫2 caused by the dipole source 

at 𝐫 can be stated as: 

𝑣(𝐫2) − 𝑣(𝐫1) =  𝐋(𝐫1, 𝐫2; 𝒓).𝐦(𝐫) (7) 

in which 𝐋(𝐫1, 𝐫2; 𝒓) is called the field vector for a particular electrode pair and individual dipole 

position, and  𝐦(𝐫) is the dipole moment. The dipole moment 𝐦(𝐫) is defined by the unit vector 𝐫 

in the direction from current sink to current source and its magnitude 𝑚 = ‖𝐦(𝐫)‖ = 𝐼. 𝑑 as the 

product of the current and the distance between two poles, i.e. current source and sink. In other words, 

the current dipole can be stated as [47] 

𝐦 = 𝑚𝐫 = I. d𝐫 (8) 

or in the Cartesian coordinate system 

𝐦 = m𝑥𝐱 + m𝑦𝐲 + m𝒛𝐳  (9) 

where m𝑥, m𝑦 and m𝑧 are called dipole component in the direction of x, y and z respectively. 

Practically the lead field is calculated by [98] 



𝐋(𝐫1, 𝐫2; 𝒓) =  
𝑱𝒊(𝒓)

𝜎𝑰𝒊(𝒓)
  (10) 

in which 𝑱𝒊(𝒓) is the density of induced current at 𝒓 if current 𝑰𝒊(𝒓) were injected between 𝐫1and 𝐫2. 

This relation holds for arbitrary geometry and inhomogeneous conductivity volume conductors.  

 

2.2.2 Theoretical spatial distribution of potential correlation over the scalp  

In order to derive the analytical expressions for the spatial distribution of the correlation of scalp 

potentials, the human head is approximated by a model of four layer spherical shells depicted in 

Figure 1.  

 

 

 

 

 

 

 

 

The cortical currents are also modelled by a large number of randomly located radial dipoles. In this 

condition the potential at any scalp point 𝒓 is the sum of the potentials generated by individual sources  

and accordingly can be described by [116] 

 
 

Figure 1 - The cross-section of the volume conductor model, including four spherical shells representing the brain, CSF, 

skull and scalp tissues. From the inner to outer layers the corresponding conductivity values are 𝝈𝟏, 𝝈𝟐, 𝝈𝟑, 𝝈𝟒. 

The boundaries between various tissues are located at RBC, RCS, and RSS and R represents the radius of the head 

R
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V(𝒓) =  ∑𝑣𝑖(𝒓. 𝒓𝒊)

𝑁

𝑖=1

 (11) 

in which 𝑣𝑖(𝒓. 𝒓𝒊) is the potential at 𝒓 due to a single dipole at location 𝒓𝒊 which can be derived from 

Eq. (7) when the reference point,𝑣(𝐫1), is located infinitely far from the head. For the case where the 

head is approximated by spherical shells it can be stated as [113] 

 

𝑣(𝜓) =  
𝑚

4𝜋𝜎4𝑅
2
∑ 𝑐𝑛𝑓𝑛−1𝑃𝑛(𝑐𝑜𝑠(𝜓))

∞

𝑛=1

 (12) 

where 𝑚 is the magnitude of dipole moment, 𝜎4 is the scalp conductivity, 𝑅 is the outer radius of the 

head, 𝑃𝑛 is the Legendre polynomial of degree 𝑛, 𝜓 is the angular difference between source and 

measurement site, and 𝑐𝑛 and 𝑓𝑛−1 contain the model parameters as defined in [117] that include the 

radii and conductivities of the head layers depicted in Figure 2 for this model. 

 

 

 

 

 

 

 

 

To calculate the spatial distribution of correlation of potentials over the scalp an infinite number of 

uncorrelated cortical dipoles model the continuous cortical source distribution. In this condition the 

 

Figure 2 - The solid line indicates the values of 𝑐𝑛 𝑓𝑛−1  with respect to 𝑛 

and the fitted third-order polynomial is marked by the cross signs [33] 

 



spatial correlation depends only on 𝜓, the angular difference between measurement sites and can be 

stated as a Legendre series of it [118] 

 

𝜌(𝑐𝑜𝑠(𝜓)) =  ∑
(2𝑛 + 1)

2
𝜌𝑛𝑃𝑛(𝑐𝑜𝑠(𝜓))

∞

𝑛=1

 (13) 

 

where 𝜌𝑛 are spatial power spectrum given for the employed model as stated in [113].  

 

2.3 Features in neonatal EEG  

The human skull is the most resistive tissue layer in the head and considered most responsible for the 

spatial blurring of the adult EEG [101, 113, 119]. In other words, the poor conductive adult human 

skull acts as a spatial low-pass filter for the passing potentials, which blurs its distribution at the scalp 

layer [120]. Theoretical potential decay on the scalp is inversely related to skull conductivity for a 

four spherical shells head model and variety of source arrangements [113]. These results are 

confirmed in the adult by applying a small amount of current into the head and calculating the 

conductivity of different layers [97]. In addition, similar results are achieved for the theoretical spatial 

decay of correlation of scalp potential and the skull conductivity [113]. 

These results indicate that the spatial decay of scalp potential amplitude and the spatial decay of 

correlation of scalp potentials can be viewed as an indirect product of skull conductivity. This work 

exploits spatial decay of neonatal EEG signal recorded from the scalp to study the effect of fontanelles 

in nESL. Spatial decay of the amplitude of focal transients in neonatal EEG are specifically 

investigated in this study as they have physiological interpretation and discriminate neonatal EEG 

from the adult. These salient features, which are common in normal and abnormal neonatal EEG, are 

assumed to be generated by focal sources [22-24, 78, 79].  

These features are characterized by short and relatively sharp transients in the neonatal EEG [32]. 

Typical focal transients of neonatal EEG are depicted in Figure 3,Figure 5 and Figure 6. The time-



frequency representation of the selected focal transient in Figure 3 includes time varying spectral 

content. Time-frequency representation [76] of signals is an analysis tool which takes into account 

the non-stationarity of signals, i.e. the variation of spectral content of signal in time. This method is 

explained and briefly reviewed in Chapter 5 of this thesis. The spatial linear correlations between the 

EEG signals recorded from different parts of the neonates’ scalps are investigated for the comparison 

with adult EEG datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4  EEG Signal acquisition 

An adult and a neonatal EEG database were used for this study. The neonatal dataset included six 64-

channels EEG recordings (Figure 5) from normal full term neonates with a sampling rate of 512Hz 

 

Figure 3 - An example of focal transients marked by a clinical expert. a) The raw neonatal EEG in black and 

its median in red. b) Neonatal EEG after removing its median. c) zoomed version of the selected part of (b) , 

and d) Time-Frequency Distribution (TFD) of the selected part by means of Doppler independent kernel with 

  a hyperbolic cosine type window of length 100 sample (sampling frequency: 512). 
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and the adult dataset  included one 256-channel EEG of normal adult with 1000Hz sampling 

frequency. 

 

 

 

 

 

 

 

 

 

Neonatal EEG data were recorded at the Department of Children’s Clinical Neurophysiology at 

Helsinki University Hospital using a Cognitrace amplifier (ANT B.V., Enschede, The Netherlands, 

www.ant-neuro.com). Electrodes (sintered Ag/AgCl) were placed according to the international 10-

10 standard using the Waveguard electrode cap (Waveguard, ANT-Neuro, Germany; www.ant-

neuro.com; see also http://www.nemo-europe.com/en/educational-tools.php). Common average 

reference was used in the recording. Informed consent was obtained from the parents of the babies. 

Adult EEG recording was performed with a 256-channel EEG system (Geodesic Inc, www.egi.com) 

and was kindly provided to us courtesy of Dr. German Gomeq-Herrero from VU University of 

Amsterdam. 

 

  
 

Figure 4 -  Right - The location of fontanelles and sutures on the neonatal skull (picture from ADAM INC. 

website), Left - The three scalp regions of interest (Fontanel in red, Left & Right in dark blue; The Group 

“All” is all of them together). 

http://www.ant-neuro.com/
http://www.ant-neuro.com/
http://www.ant-neuro.com/


2.5 Method 

Different signal processing techniques such as filtering and statistical analysis were used to prepare 

data and perform experiments to test the two head model hypothesis. In the first hypothesis 

fontanelles make significant effect on the skull conductivity and need to be treated accordingly. The 

second hypothesis assumes they are not effective on skull conductivity and no special treatment is 

required. Two signal processing approaches were utilized for investigating the spatial characteristics 

of neonatal scalp EEG. First, the spatial amplitude decay of focal transients, selected from three 

different scalp regions as shown in  

Figure 4, were examined and compared. Based on their spatial distributions, the selected features 

were likely produced by a focal source within the brain. These features were defined as relatively 

sharp brain-borne potentials and were manually identified and marked from neonatal EEG by Dr. S. 

Vanhatalo, a clinical neurophysiologist. An example of these markings is depicted in Figure 5. 

 

 

 

 

 

 

 

 

 

 

The absence of comparable, focal physiological EEG transients in adults precluded the comparison 

of results to neonatal scalp EEG and hence another technique was used for this comparison. The 

spatial decay of linear correlation function between EEG signals, selected from the same three areas, 

 
 

Figure 5 - A sample of multi-channel EEG signal with focal transients highlighted in blue (pointed by red arrows). 



was calculated. This approach has been previously applied to EEG signals in adults and older children 

whose fontanelles is partly closed, to estimate the skull conductivity [113]. This last approach 

therefore made it possible to directly compare EEG from neonates and adults. 

 

2.5.1 Pre-processing 

Preprocessing was designed to optimally extract the spectral properties of these neonatal EEG 

transient signals from the other, ongoing EEG activity. A digital low-pass Finite Impulse Response 

(FIR) filter with 30Hz cut-off was first applied to the EEG data to remove mains and other high 

frequency noise. In order to highlight and focus on the analysis of faster focal transients only, a 

nonlinear median filter was applied to remove low-frequency background drift. The window of 120 

samples (~230ms) was selected based on the length of transient which was typically about half of this 

window. We then subtracted the median low-pass (MLP; 120 samples, ~230ms) filtered data from 

the original trace 𝑤[𝑛], which yielded an output 𝑣[𝑛] without the “ringing” typically seen with 

conventional high pass filters. This operation is expressed as: 

 

 𝑣(𝑘)[𝑛] = 𝑤(𝑘)[𝑛] − 𝑚𝑒𝑑𝑖𝑎𝑛{𝑤(𝑘)[𝑛]} (14) 

 

For 120𝑘 ≤ 𝑛 ≤ 120(𝑘 + 1) where 𝑘 = 0,1, … ,𝑀 refers to the 𝑘𝑡ℎ segment of the EEG signal, 𝑀 =

[𝑁 𝑀⁄ ], and 𝑁 is the length of the original signal. A typical output of this procedure is depicted in 

Figure 6. Through filtering, the lower frequencies (0-0.25 Hz) are attenuated and the effects of higher 

frequencies (2.5-5 Hz), related to the faster focal transient, are highlighted. 

 

2.5.2 Spatial decay of amplitude in focal transients 

Spatial decay of EEG amplitude within four scalp regions, namely ‘Fontanel’, ‘Left’, ‘Right’ and 

‘All’ region (see Figure 4) was investigated. Due to the lack of cartilage in the fontanelles area of the 



newborn skull, this area was expected to have different volume conduction (conductivity) to the left 

and right regions. Since Left and Right regions are assumed equivalent in terms of conductivity, they 

are merged to constitute a single “Left & Right” region. The aim was to determine whether the 

amplitude decay of the focal transients in the fontanelles region is steeper (because of the higher 

conductivity of the region) than the other regions. First, a channel with the specified transient was 

selected as the reference channel in the selected region. Then, the decay in the amplitudes of other 

neighbouring channels (in that area) with respect to the reference area was calculated as a function of 

the distance between those channels.  

 

2.5.3 Spatial decay of linear correlation between scalp EEG signals 

Lack of focal EEG transients in adults precluded the direct comparison of neonatal and adult EEG. 

Hence, a complementary step was taken. The spatial decay of linear correlation of EEG signals was 

calculated for each of the four scalp regions and compared. The Pearson correlation was used to 

measure the strength of linear dependence between two channels. A higher value of the correlation 

between two channels indicates a higher similarity of the transients in two channels which naturally 

decreases as inter-electrode distance increases. To compare results from neonatal data with those from 

adults, a 256 channel EEG dataset of normal adult was used as the mean inter-electrode distances in 

neonatal 64ch and adult 256ch recordings are similar. 

 

 

 

 

 

 

 

 

Figure 6 - (up) The original EEG signal (blue) and the output of MLP filterapplied on the original EEG (red), (Down) 

The EEG signal w[n]  after subtracting the MLP filter output (The transient is pointed out by the arrow). 
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For the channels in a particular region, the correlation matrix 𝐶𝐿×𝐿 was calculated where L is the 

number of channels in the region (for example, L = 15  for the left region). The entry 𝑐𝑖𝑗 of the 

correlation matrix, represents the Pearson correlation coefficient between 2-minute EEG recordings 

of channels i and j. If the EEG signals recorded from 𝑖𝑡ℎ and 𝑗𝑡ℎ channels are denoted as 𝑣𝑖[𝑛] and 

𝑣𝑗[𝑛] respectively, where 𝑛 = 1,2, … ,𝑁 with 𝑁 = 2 × 60 × 512 = 61440 samples, then 𝑐𝑖𝑗 is given 

by: 

 
𝑐𝑖𝑗 =

∑ (𝑣𝑖[𝑛] − 𝑣𝑖̅)(𝑣𝑗[𝑛] − 𝑣𝑗̅)
𝑁−1
𝑛=0

√(∑ (𝑣𝑖[𝑛] − 𝑣𝑖̅)2𝑁−1
𝑛=0 )(∑ (𝑣𝑗[𝑛] − 𝑣𝑗̅)2𝑁−1

𝑛=0 )

 
(15) 

   

2.6 Results 

Results are represented separately for neonates and adults in the following sections respectively. 

 

2.6.1 Expermintal results from neonatal EEG 

The spatial decays of focal transients were investigated using two different approaches. In the first 

approach, the spatial decay analysis was constrained to the three spatial regions shown in Figure 4. 

The results obtained are shown in Figure 7-a (Fontanel Region) for a typical marked focal transient 

on data from channel FZ. In the second approach, the spatial decay was analysed using all 64 

electrodes (Figure 7-b).  

The behaviour of the amplitude decay vs. distance was approximated using first quadratic and cubic 

regressions. Since a linear behaviour could be seen over the first neighbouring electrodes (at least up 

to 5-6 cm), the linear regression was adopted for these variations.  Figure 8 shows a typical sample 

of amplitude decay vs. inter-electrode distance. The slope of spatial decay was measured in different 

regions.  

 

 



 

 

 

 

 

 

 

 

Figure 8 depicts an example of spatial amplitude decay of a transient with the highest amplitude in 

the 'Right' region (electrode position ‘FC4’) with different regression lines (Cubic, Quadratic, and 

linear). A linear regression was fitted on the linear part of higher order curves by using electrodes 

with 2 or 3 inter-electrode distances from the reference electrode. It is clear from Figure 8 that 

electrodes located within 5 cm of the reference electrode exhibit a linear decay with spatial distance. 

This is confirmed by the statistical analysis of 40 plots of the different marked transients. The slopes 

of fitted linear functions were calculated for each region.  

Figure 9 displays the boxplots of the calculated slopes for different regions, i.e. Left & Right, Fontanel 

and All. 

 

 

 

 

 

 
 

Figure 7 - a) typical spatial decay of amplitude within fontanelles, b) among all, calculated from the focal 

transient, peak amplitude at FZ channel. 
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2.6.2 Comparison of neonatal and adult EEG  

In order to measure the statistical difference of the computed slopes pertaining to lines fitted using 

linear regression, the Analysis of Variance test (ANOVA) [121], was then applied. ANOVA is a 

statistical method which analyses differences between group means of different variables. The result 

of the ANOVA test returned the p-value of 0.55 which indicated no significant statistical difference 

exists between the amplitude decays in different regions of the scalp. These results suggest that 

neonatal head models can be considerably simplified as compared to prior suggestions that the 

fontanelles area needs special attention [25].  

In order to study the EEG spatial decay, we plotted the correlation coefficient given in (15) as a 

function of the spatial distance taking one of the electrodes (or channels) as a reference. This is applied 

to the different scalp regions defined above for both newborn and adult EEG. To estimate the inter-

electrode correlation vs. inter-electrode distance, we applied quadratic, cubic and linear regressions. 

(Figure 10) shows that correlation decays linearly over the closely spaced neighbours; hence a linear 

regression was applied. To compare the slopes between neonatal and adult EEG (Figure 10), the 

reference electrode was selected from the Fontanel region (on the central of the scalp, Cz for neonate, 

E90 for Adult). 

 

Figure 8 - Comparison of different regressions (Linear, Quadratic, and Cubic) demonstrates that they are 

comparable over the first 5 cm. (data is taken from spatial decay of amplitudes in over the 'Right' region). 
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The correlation analysis (Figure 10) showed the slope of the correlation decay is up to several times 

steeper in neonates than in adults. This magnitude of difference is not readily explained by the 

difference in head geometry (head radius and skull thickness) and, therefore calls for further 

experiments to define relevant conductivity estimates for neonatal skull tissue which will be 

considered in the two next chapters. 

 

2.7 Conclusions 

Two different methods were used to probe the spatial properties of neonatal EEG signals. These 

methods were established on theoretical background calculated for spherical volume conductor 

models. The results suggest that a neonatal head model can be constructed using complete tissue 

layers (i.e. ignoring the existence of the open fontanelles). A possible reason for this phenomenon 

can be related to the similarity of conductivity in neonatal skull and the fontanelles. The main findings 

were; i) there is no statistically significant difference between head areas covered by cartilage and 

fontanelles in terms of EEG amplitude spatial decay, ii) neonatal scalp EEG has significantly higher 

spatial density (information per unit distance which is a result of spatial decay) compared to adult 

 
 

Figure 9 - Comparison of the values of slopes in three scalp region shows that there are no meaningful differences in 

the spatial decay of scalp EEG amplitudes. 

Fontanele Right&Left All
0.12

0.14

0.16

0.18

0.2

0.22

0.24

S
lo

p
e
 v

a
lu

e
s



scalp EEG and iii) there is a clear difference between adults and neonates. These findings will affect 

the design of an appropriate head model for source localization of neonatal EEG. 

 

 

 

 

 

 

 

 

 

 

 

 

Further development will require accurate values of tissue conductivities for the newborn skull. The 

construction of a forward model suitable for the neonatal head, incorporating appropriate conductivity 

values that could replicate the spatial decay measured in our present work would also be required. 

This would achieve a solution to source localization in the neonate. Generation of a pertinent head 

model will enable us to study, for instance, the time-frequency characteristics of neonatal EEG in the 

source space. This issue is addressed in Chapter 5 of this thesis. 

 

  

 

Figure 10 - The comparison of spatial decay of linear correlation between neonate and adult. Each point indicates the 

value of correlation between an EEG channel with the corresponding distance to the reference point (CZ in neonates 

and E90 in adult). Channel with a distance bigger than 5 cm (neonates) and 10 cm (adults) were excluded. Linear and 

Quadratic regression used to estimate the variation of spatial correlation. For the first 5 cm, the two regressions are 

similar and the slope of the correlation decay is up to several times steeper in neonates than in adults. 
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3 CHAPTER 3: SPATIAL PATTERNING OF THE NEONATAL EEG 2 

 

3.1 Introduction 

Functional brain analysis is a key component in progress in diagnosis and prognosis of central 

nervous system pathologies in adults. Recent studies in infant neuroimaging have shown that the main 

functional network distributions are focused around brain regions responsible for perception-action 

tasks [17]. Activity patterns synchronize cortico-subcortical networks well before inputs on sensory 

regions of the brain are dominated by environmental influences [20]. These findings, along with other 

recent neuroimaging studies [16, 18] and in developmental neurobiology [19, 21] have made it clear 

that brain functions are already highly specialized early in development. Accordingly, functional 

brain analysis tools are of equal interest, necessity and importance in neonates as in adults.  

EEG and EEG source localization techniques are among the most important tools and provide the 

best temporal resolution for mapping brain functions to anatomical sources in adults. However, the 

spatial resolution currently provided by conventional neonatal EEG recording, hardly suffices to 

distinguish brain lobes from each other. This lack of spatial resolution has severely hampered the 

functional assessment of neonatal brain activity  [22]. Several studies have recently pursued the 

objective to devise a technique for fulfilling this shortcoming in neonatal EEG. Subsequently, better 

spatial resolution has been achieved using high density EEG (hdEEG) from the neonatal head in the 

laboratory environment [25, 122, 123], and in neonatal intensive care units [123, 124].  

The theoretical benefits of increasing the number of recording electrodes are clear (examples can be 

seen in [113, 125]). EEG is the result of spatial sampling of a continuous potential field that can be 

measured over the entire scalp surface [126]. Variations of this potential field in time and space 

(regional differences) correspond to the changes in the generator currents (neural activity) in time and 

brain areas. In other words, EEG electrodes measure the potential only at a discrete set of electrode 

                                                
2 This chapter is an extension of the following paper: M. Odabaee, W. J. Freeman, P. B. Colditz, C. Ramon, and S. 

Vanhatalo, "Spatial patterning of the neonatal EEG suggests a need for a high number of electrodes," Neuroimage, vol. 

68, pp. 229-235, 2013. 



sites while for an accurate topographical map of scalp potential field, numerous measurement sites 

are required [122].  

A useful analogy in this context is that the number of pixels in a digital picture must exceed a 

minimum that is necessary to form an image that is not blurry and distorted. Similarly, if the number 

of EEG electrodes is less than a limit which is determined by the amount of spatial changes / variations 

in the potential field, some spatial changes / variations cannot be seen. Practically this has been 

confirmed by recording cerebral activities previously not known, or difficult to localize, through 

improved spatial resolution obtained from a higher number of electrodes (e.g. [127, 128]).  

The increase in spatial sampling has opened the pathway to genuine source localization of neonatal 

EEG [25, 102, 129], akin to what is routine with adult EEG. However, it is not clear how spatially 

compact neonatal EEG is. The richness in amplitude texture can be perceived as “spatial patterning” 

of the neonatal scalp EEG (hereafter referred to as “spatial patterning”). It has been measured in adults 

by estimating the spatial frequency content of scalp EEG [33, 34].  

It would then be possible to estimate the errors related to the conventional under-sampling of EEG 

(also in [125]), once the spatial information content of neonatal EEG is known. It would also be 

necessary to define the number of EEG electrodes needed to record neonatal brain activity in full 

detail. A true realistic forward and inverse solution for neonatal EEG source localization can only be 

generated once this information is available. The spatial resolution of scalp EEG signals in adults is 

reduced by smearing due to the scalp and skull impedance, but this is of a lesser degree in neonates 

because these barriers are of lower impedance in infants ([102]). Consequently, the detailed spatial 

information should be more acquirable from the scalp EEG of neonates than adults [113, 125].  

The effects of fontanelles in modelling of the neonatal skull were studied in the previous chapter. 

This Chapter investigates the second missing piece of information in neonatal EEG source 

localization (nESL), “spatial patterning” is investigated in this chapter. This requires two 

fundamental, complementary questions to be addressed: i) how complex is the EEG amplitude on the 

neonatal scalp? and ii) how large are the oscillatory bouts measured on the neonatal scalp? The answer 



to these questions will subsequently determine the minimum number of required EEG electrodes and 

distance between electrodes to capture neonatal EEG in full detail. Finally, when neonatal skull 

conductivity is estimated in the next chapter, it represents the final step necessary to complete the 

missing parameters of the neonatal head model. 

 

 

3.2 Materials and methods 

3.2.1 Subjects and recordings 

3.2.1.1 Subjects  

EEG recordings were obtained from term healthy newborns. Two recordings were used for the linear 

array study and five recordings were used in the hdEEG recordings. EEG data was recorded in the 

Department of Children’s Clinical Neurophysiology (Helsinki University Central Hospital) using a 

Cognitrace amplifier with sampling rate of 256 Hz or 512 Hz and an inbuilt average reference (ANT 

B.V., Enschede, The Netherlands, www.ant-neuro.com). Informed consent was obtained from the 

parents. This study was approved by the Ethics Committee of the Hospital for Children and 

Adolescents, Helsinki University Central Hospital. 

 

3.2.1.2 Linear array recording 

A linear electrode array was custom made by embedding 50 electrode pins (material Ag/AgCl; 

diameter 1mm; obtained from Biomed Product, USA) into a silicone strip with a 2.5mm interelectrode 

distance (Figure 11). The linear array was interfaced with the amplifier using a flat cable attached to 

a standard DB37 connector. Additional ground and reference electrodes were added as conventional 

cup electrodes (material Au), placed on the opposite side of the head. The scalp was cleaned and 

dried, and the array was lightly bound over either the parietal or occipitoparietal scalp or over the 

fontanelles (extending from about POz position along the midline to fontanelles).  

 



3.2.1.3 hdEEG recording 

64 channel hdEEG caps were used (Waveguard, ANT B.V., Enschede, The Netherlands, www.ant-

neuro.com; see also [124]). A video clip showing an EEG recording of this kind is shown in the link 

www.nemo-europe.com/en/educational-tools.php.  

 

 

3.2.2 Data analysis 

Empirical methods were combined with simulations to study various aspects of the spatial texture of 

neonatal EEG. The study consisted of three complementary parts. In the first part a custom-fabricated 

linear array of electrodes (also available in [33, 130]) was used to obtain a theoretical estimate of the 

spatial information content / EEG patterning in selected scalp locations. A commercial high density 

(hdEEG, 64 channels) EEG cap was used in the second part in order to estimate the spatial extent of 

focal fluctuations of amplitudes, and to estimate the “practical” spatial EEG extent “patterning” from 

oscillatory events in the neonatal EEG [21, 22]. These events appear as short bursts of higher 

frequency activity, often nested [131] within slow waveforms and have multiple names related to 

their visual appearance (e.g. delta brush, Table 1 in [21] can be studied for further considerations). In 

the third part, a spherical head model was employed with neonatal dimensions to see i) whether our 

empirically measured spatial power spectral density (PSDx) can be reproduced by using a simple 

parametric model, and ii) how skull layer conductivity or source depth affect the PSDx. These will 

pilot the pathway to translate our results into future realistic head models. 

 

3.2.2.1 Linear array experiment 

A lack of gel coupling as used in conventional EEG recordings and the poor mechanical stability of 

the electrode-skin interface created a challenge for obtaining signal segments that were sufficiently 

clean enough artefacts. Epochs where there were more than 20 adjacent electrodes with sufficiently 

clean signal were selected. Altogether 54 seconds of such EEG from seven different time windows 

were identified (range 1.1-19 sec; mean length 7.7 sec). A representative epoch is shown in Figure 



11). Epochs were exported in European Data Format (EDF) format for further analysis after bandpass 

filtering at 3-30 Hz to remove mains-related artefacts and trace instability due to mechanical 

movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single missing traces (e.g. see Figure 11-C; traces #19 and #48) were interpolated using the nearest 

two neighboring channels, which introduces a spatial lowpass filter, and hence a small but 

unavoidable underestimation of the higher spatial frequencies. Then, PSDx were calculated from the 

vectors created from the signal values across the channels at each sampling instance (see Figure 11- 

 

Figure 11 - Linear array experiment Linear array device, and the ground (green wire) and reference (blue) electrodes. 

The white cloth was used to wrap the array tightly against the baby’s scalp, shown in the parieto-occipital position 

in this figure. B) The structure of the linear array device in more detail. Sensor pins (1mm thick) were placed at 2.5 

mm intervals on a silicone bar. The blue vertical scale bar between photographs is 15cm. C) Example of a segment 

of raw data obtained from the linear array device. Note how a single transient or short oscillation (depicted with the 

shaded gray area) is limited to a part of the electrode array only. The stippled line shows the direction of sampling 

for the spatial frequency analysis. D) Examples of time series used for the analysis of spatial frequency. This time 

series consists of about 50 samples that were collected from a single time point over the linear array. E) Spatial 

spectra of linear array recordings from three different scalp locations. There is a clear roll-off of power at around 0.5-

0.8 cycles/cm that is shown highlighted by the shaded area. Note the remarkably similar 1/f linear slope in the middle 

part between the PSDx traces from different brain areas. The PSDx traces are cut at 2c/cm, which is the spatial 

Nyquist frequency in these recordings with sampling of 4 electrodes/cm 
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D; see also [33] ). Due to the EEG sampling frequency of 256 Hz, 256 PSDx traces per second 

resulted. Then the median value of each spatial frequency bin was calculated from each EEG epoch. 

The use of the spatial frequency spectrum to estimate the optimal electrode density (i.e. spatial 

frequency) can be considered analogous to the common use of temporal frequency spectrum (PSDt) 

to estimate the required (temporal) sampling frequency of the EEG signal. The canonical form of the 

spatial spectrum is three segments: a flat low-frequency segment, a middle segment with rapid fall in 

power with increasing frequency, and a flat high-frequency segment resembling that of white noise 

(see [132]). Most of the desired information is contained in the middle segment between the two 

inflections. The first step is to define the point in the spectrum where it reaches the noise floor (termed 

the “upper inflection point”) which gives the upper end of the frequency range that should ideally be 

captured.  

The second step is to calculate the number of electrodes with the specified interelectrode spacing that 

are needed to sample the entire range of spatial frequency [33, 34]. The lower inflection point gives 

an estimate of the desired width of the array. According to the Nyquist theorem, at least two samples 

are required to capture each cycle at the highest frequency with preferably three samples required to 

ascertain the ‘practical’ Nyquist frequency. The width of the array must be great enough to encompass 

at least one cycle of the lowest spatial frequency. In the temporal domain, these would be cycles per 

second (or Hz) and recording duration in seconds, whilst in the spatial domain they are cycles per 

centimeter and dimensions of an array in cm. For instance, in the case of 1cycle/cm, one should have 

at least two electrodes in each centimeter (i.e. 5 mm interelectrode spacing) to sample adequately the 

given spatial pattern in EEG oscillation. The product of the sampling frequency in number of 

electrodes/cm times the width of the array in cm gives the number of electrodes and channels required.  

 

Methodological considerations 

It would have been ideal to record with headgear that has sensors positioned in 2D with the density 

used in our current linear array. Our pilot experiments with a prototype of such ultrahigh density 2D 



array showed that, with the technology available to us now, it was not possible to manufacture a 

gentle enough 2D array for the neonatal scalp. This might be possible in the future, as very dense 

arrays with even 128ch for a preterm baby have been recently manufactured commercially (Dr. Philip 

Grieve, personal communication). Frontal locations were not used because the babies felt too 

uncomfortable after placing the array onto the forehead, which led to excessive frontal muscle 

activation and contamination of  the EEG (cf. [33] ). 

 

3.2.2.2 hdEEG experiment  

We visually identified focal oscillations from epochs within EEG background classified as trace 

alternant, the dominant pattern during quiet sleep in neonates [22, 131]. This state was selected to 

provide better signal to noise for the subsequent analysis that targeted the bouts of rapid oscillations 

typically associated with spontaneous activity transient (SAT) events (see also [131, 133]). The 

oscillation bouts were identified after applying bandpass filtering (for reading only) into three 

frequency bands: 1-5 Hz, 5-10 Hz and 12-18 Hz. The filtering during visual reading was based on 

Butterworth forward filter with slope of 24 dB per octave built into ASA software (Advanced Source 

Analysis (ASA) ANT Neuro, Colosseum 22, 7521 PT, Enschede, Netherlands, www.ant-neuro.com). 

These frequency bands were selected to roughly correspond to the individual oscillatory components 

in the neonatal EEG (cf. [133]). All data were exported to EDF format and filtered at 1-20 Hz by 

using Butterworth forward and backward filter (zero phase) with slope of 6 dB per octave built. 

In the further quantitative analysis, all signals were filtered into three frequency bands with FIR linear 

phase bandpass filters: 1-5 Hz (slope 12 dB/Hz, phase response 180 degree/Hz), 5-10 Hz (slope 5 

dB/Hz, phase response 52.5 degree/Hz), and 12-18 Hz (slope 1.5 dB/Hz, phase response 23 

degree/Hz). The instantaneous amplitude was then obtained from these signals using the analytic 

associate of signal as: 

 

 𝑍𝑘[𝑛] ≜ 𝑆𝑘[𝑛] +  𝑗𝐻[𝑆𝑘[𝑛]] = 𝑎𝑘[𝑛]𝑒𝑗𝜙𝑘[𝑛] (16) 



 

in which 𝐻[. ] is the Hilbert transform operator and 𝑎𝑘[𝑛] is the instantaneous amplitude. Epochs 

annotated visually as oscillatory bouts were selected and signals ordered according to peak amplitude. 

The signal with the highest amplitude was taken as the index for the given epoch, and the 

instantaneous amplitude values in all other electrodes were plotted as a function of inter-electrode 

distance. This yields graphs of amplitude decay as shown in Figure 12-B.  

Finally, linear regression lines were fitted over the amplitude values within the nearest 5 cm from the 

index signal (see Figure 12-B) in order to obtain the slopes of amplitude decays, and to compare the 

decays between frequency bands (Figure 12-C). The use of several frequency bands is reasoned by 

the previous studies in adults showing that the spatial extent of an oscillation is proportional to its 

temporal frequency [134]. In neonatal EEG, the highest frequency range (>10 Hz) is likely most 

relevant [131, 135]. 

 

3.2.2.3 Simulation experiment 

A 4-layer spherical head model was constructed (Figure 13) to study the effects of source depth and 

tissue conductivities on the PSDx in scalp EEG. To this end, we defined model dimensions to closely 

mimic the neonatal head (Figure 13) with a circumference of 36cm. This lead to the choice of the 

following radii: R1 = 4.9 cm representing brain; R2 = 5.3 cm representing CSF; R3 = 5.5 cm 

representing skull; R4 = 5.7 cm representing scalp. The following conductivity values were used based 

on a recent study [102]: σ1 = 3.3 mS/cm for brain; σ2 = 17.9 mS/cm for CSF and σ4 = 4.3 mS/cm for 

scalp. For the skull layer, we tested two conductivities, 2.0mS/cm and 0.22mS/cm, to mimic 

previously published estimates of neonatal and adult conductivities, respectively. To analyze the 

effect of the dipole depth on PSDx, the simulations were run for dipole depths of 0.85, 1.0 and 1.2 

cm from the scalp surface. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to mimic our linear array device, we placed 50 electrodes with 2.5 mm spacing on the outer 

surface of the sphere simulating the scalp EEG points. The sources, point dipoles, were located on 

 
 

Figure 12 - Spatial decay of oscillation amplitudes, the hdEEG experiment A) Examples of a 64ch EEG tracing after 

band pass filtering for three different frequency bands . All frequency bands show spatially selective activation bouts, 

but comparison of the frequency bands shows clearly that the oscillatory bouts become patchier, i.e. more focal, as the 

frequency increases. B) Examples of analyses of the spatial decay of oscillation amplitudes at two frequency bands. 

The instantaneous amplitude of the given frequency band in each electrode is plotted as a function of distance from 

the electrode in the center of this oscillatory bout (i.e. the signal with the highest amplitude). Note how the amplitudes 

decay rapidly until they reach the “noise floor” at around 5cm from the peak. The slope of spatial amplitude decay is 

calculated from the signals that are within 5cm from the peak, as shown by the linear fitting in these graphs. C) 

Summary of the findings of slopes of spatial amplitude decay in different frequency bands. Note the increase in the 

slope, i.e. steeper decline of amplitudes, at higher frequency bands. Significant differences are shown with asterisks 

(p<0.01; Mann Whitney U-test). 

 



radii at different depths from the scalp giving spacing between them slightly less than 3 mm. The 

linear separation between the dipoles was dependent on the depth of the dipole layer and the 3.0 mm 

separation between scalp potential points. Each dipole was oriented perpendicular to the tangent of 

the layer at its point. The dipole intensity was assigned by a random number generator giving a normal 

distribution with zero mean and unit standard deviation (SD). 

 

 

 

 

 

 

 

 

 

 

 

 

The surface (scalp) potentials of the 4-layer head model were computed using the mathematical 

expressions described before by Sun [117] and using a Matlab 6.5 software package. The simulated 

scalp potentials were normalized to zero mean and unit SD by subtracting the mean of the spatial 

array of data and dividing by the SD. The spatial power spectral densities (PSDx) were computed 

using the 1-D FFT. The procedure was repeated 100 times with independent random intensity patterns 

of the dipoles, and the PSDx values were averaged. 

 
 

Figure 13 - Simulation experiment. Schematic drawing on the left shows the structure of our 4-layer spherical 

model (left) with neonatal dimensions (circumference ~36cm). The middle drawing demonstrates the 

placement of dipole sources on the cortex, as well as the 1-D linear array on the scalp. The graph on the right 

presents PSDx calculated as an average of 100 simulations in each trace. The upper three PSDx traces (red) 

represent situation where skull conductivity is set closer to the assumed neonatal value (2.0mS/cm) with 

varying depth of the source. The lower three PSDx traces (blue) represent situation with skull conductivity 

closer to the assumed adult skull bone conduction (0.22mS/cm). Note the strong dependency of PSDx, up to 

orders of magnitude, on both of these parameters. 

 
 



 

3.3 Results 

3.3.1 Linear array results 

Inspection of the raw data from the linear array recordings showed that several EEG events, including 

single transients or short oscillations, were strictly confined to a few electrodes only. Figure 11-C 

shows an example where a rapid oscillation is evident in only about ten electrodes, which implies an 

extent of only 10 x 2.5 = 25mm on the scalp. The median PSDx calculated over the linear array 

electrodes shows that the PSDx of neonatal EEG follows the canonical form of the background EEG 

(cf. [33]) with a flat low-frequency plateau, middle nearly linear 1/f down-slope of log power vs. log 

frequency, as well as another plateau at a higher frequency range. The finding was qualitatively very 

similar between the two babies studied. Comparison of signals obtained from different scalp areas 

shows that the inflection point between the middle and higher frequency range is in all traces at around 

0.5-0.8 cycles/cm (Figure 11-E), and the power law (1/f) –like linear slope in the middle part is similar 

in all three brain areas. The limited number of spatial points available in such real life recordings does 

not allow statistical testing of how strictly the neonatal scalp EEG follows a genuine power law 

distribution (cf. [136]), but the similarity between brain areas is notable. 

There are, however, qualitative differences in the PSDx graphs between the slopes of the higher 

frequency segments: the signals measured from the parieto-occipital area (Figure 11-A) had steeper 

slopes than those measured from the parietal or midline areas. The exact anatomical match between 

the linear array positions and the underlying gyral and sulcal structures or inter-hemispheric fissures 

is unavailable. However, our observation suggests that the EEG information content extends to higher 

spatial frequencies over the cortical areas (parietal and parieto-occipital positions) as opposed to the 

scalp above the inter-hemispheric fissure (midline) (see Figure 11-E).  

 

3.3.2 hdEEG results 

Inspection of the raw data (Figure 12-A) shows that i) oscillations at all frequency bands cover only 



part of the scalp, and ii) oscillations at higher frequencies tend to appear more “patchy” in the display 

that shows all electrodes. In other words, the higher frequencies appear to be spatially more limited. 

To assess the spatial extent of each individual oscillation, we looked at the spatial decay of oscillation 

amplitudes. The signal with maximal amplitude during the given oscillatory bout was taken as the 

index signal, and amplitudes of the neighboring electrodes were plotted as a function of distance. The 

amplitudes of focal oscillations decline to about half over the nearest 4-6 centimeters, and then the 

amplitudes reach the “noise floor” with no systematic further decline when moving away from the 

peak (see example in Figure 12-B). Using the linear regression line over the first 5cm from the index 

signal to see the slope of the amplitude decay showed that the highest frequencies had the steepest 

slopes (12-20 Hz: 0.15±0.02 (SEM); 5-10 Hz: 0.13±0.03; 1-5 Hz: 0.11±0.02, see Figure 12-C). The 

difference between the highest frequency and the lower frequencies was also statistically significant 

(Mann-Whittney U-test; p<0.01 for 12-20 Hz vs 5-10 Hz; p<0.01 for 12-20 Hz versus 1-5 Hz), 

however the difference between 1-5 Hz and 5-10 Hz frequency bands was not significant (p=0.17).  

 

3.3.3 Simulation results 

The averaged PSDx over the 100 PSDx from random dipole intensities is shown in Figure 13. Using 

the spherical model with neonatal dimensions (radii and tissue thicknesses) resulted in PSDx graphs 

with rapid decay between 0.1-1.0 c/cm, which is strikingly comparable to the PSDx computed from 

the linear array recordings (see Figure 11). Comparison of PSDx generated by using different scalp 

conductivities and source depths shows a clear effect of both parameters on the PSDx. Increasing the 

depth of the dipole layer from the highest position just below the highest gyri at about 8.5mm below 

the scalp towards cortical sites closer to the edges of gyri (up to 1.2 mm below the scalp) substantially 

decreased the power of PSDx at the spatial frequency range of 0.1 to 1.0 c/cm (note that the power in 

Figure 13 is shown in logarithmic scale).  

This clear trend was seen using both values of skull layer conductivity. However, increasing skull 

conductivity near to values recently suggested for neonatal skull [102] lead to more than an order of 



magnitude increase in PSDx at the spatial frequency range of 0.1 to 1.0 c/cm. A closer inspection of 

the PSDx from our simulation experiment suggests further that i) the slope within 0.1-1.0 c/cm range 

tends to be steeper with higher conductivity values, and ii) the higher conductivity is needed to create 

an apparent lower frequency inflection point at around 0.2 c/cm which is also seen in the real EEG 

from the linear array recordings (Figure 11- E). 

 

3.4 Discussion  

There is an increasing demand for source analysis of neonatal EEG, but currently there is inadequate 

knowledge about i) the spatial patterning of neonatal scalp EEG and hence ii) the number of electrodes 

needed to capture neonatal EEG in full spatial detail. This study addresses these issues by using a 

very high density (2.5mm interelectrode spacing) linear electrode array to assess the spatial power 

spectrum, by using a high density (64 electrodes) EEG cap to assess the spatial extent of the common 

oscillatory bouts in the neonatal EEG and by using a neonatal size spherical head model to assess the 

effects of source depth and skull conductivities on the spatial frequency spectrum.  

The findings support the notion that the spatial patterning, the amount of unique information in 

neonatal scalp EEG, is much richer than has been commonly believed. Notably, the common 

perception has not been based on knowledge, but has emerged as a consequence of  the way clinical 

routines were set by the early pioneers of neonatal EEG (reviewed in [22]). It is intriguing in this 

context, that the idea of rich spatial texture of this kind has been implicitly embedded in the 

conventional reporting and classification of neonatal EEG. It is well known that neonates may have 

focal sharp transients or epileptic discharges that only appear in one electrode (see e.g. [22, 78, 79]). 

If the spatial texture of neonatal EEG was smoothed (i.e., smeared) by volume conduction, such 

relatively high amplitude transients would be seen in many more electrodes. Our work is hence fully 

compatible with the implicit knowledge from prior descriptive literature on neonatal EEG, as well as 

with the prior theoretical analyses on EEG of older infants [113, 125]. 

Our observations from the linear array showed that the spatial characteristics of neonatal EEG follow 



the canonical form of PSDx that is qualitatively similar to that previously published from comparable 

adult recordings [33]. The essential features of the PSDx for our present study were the inflection 

points at the lower and higher frequency ends of the middle part of the PDSx with a linear slope (in 

log-log coordinates). The middle segment delimits the frequency range with the maximal likelihood 

of finding information content with relevance to brain’s electric activity. The inflection point on its 

right side yields the Nyquist frequency for spatial EEG sampling (see also [33]). The spatial frequency 

of this point (~0.5-0.8 c/cm) is equivalent to a wavelength of 1.25-2 cm.  

Prior work analyzing PSDx from the adult scalp at a comparable temporal frequency range reported 

the corresponding spatial frequency to be ~0.2-0.4 c/cm, equivalent to a wavelength of 2.5-5cm [33, 

34]. Because the spatial texture of EEG is spatially mostly noncyclic, it would be more robust to have 

the sample frequency 3–5 times higher than the frequency limit [137] which would yield 

interelectrode spacing of about 3-5mm in neonates and 5-8 mm in adults. Simulations with adult head 

model have even suggested need for interelectrode spacing as high as 3mm (see [138]). The inflection 

point on the left side (0.5 cycles/cm in Figure 11-E) indicates the minimum width of an array (2 cm) 

needed to capture a complete spatial pattern in the EEG in each temporal frequency band [130].  

The hdEEG study showed that each oscillatory bout decayed to the level of the noise floor within 

about 4cm (higher frequencies; see Figure 12-B) around its peak location. In order to be detected, 

multiple electrodes within the given diameter of about 8cm are required. This would suggest that one 

needs to have electrodes spaced no more than 2-3 cm apart or conversely, that each electrode covers 

roughly about 3cm of scalp. These spatial considerations are even more important if source 

localization is an aim. To translate this to actual neonatal EEG recordings, we plotted examples of 

3cm circles on the photographs of newborns with conventional neonatal EEG electrode positions and 

the hdEEG used in the present study (Figure 14).  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

The conventional electrode positioning, considered to be “the full neonatal array” [22] clearly ignore 

major parts of brain activity. In particular, electrode coverage of the parietal and centro-temporal 

areas, the areas with the most developmentally significant rapid oscillations, is so poor that even a 

majority of focal events may go undetected. 

The difference in the estimates of the ideal interelectrode spacing between the linear array and hdEEG 

study is probably mostly related to the difference in the electrode contact area. The diameter of skin 

contact area in the hdEEG recordings (i.e. the diameter of the skin gel interface) is around 10-15mm, 

whereas it was only 1mm in our linear array. The scalp amplitudes within the skin-gel contact area 

are averaged, so each contact in the hdEEG is spatially averaging four to six consecutive linear array 

contacts. As a practical example, the local oscillatory bout seen in Figure 11-C (contacts 15-25) spans 

only 25mm, and so may be readily ignored by the spatial averaging inherent with the larger electrode 

 

Figure 14 - Comparison of conventional and hdEEG recordings. A) the conventional “full array” neonatal EEG setting 

(10 electrodes) and B) the hdEEG setting (64 electrodes) used in the present study. The circles with graded colors 

plotted over the photograph have a diameter of about 4-5cm. They give a schematic representation of an oscillatory 

bout that declines to half of its amplitude within the circle, meaning that more than one electrode should be located 

within this area for its reliable detection. Note how the conventional neonatal EEG severely under-samples the scalp 

resulting in a high likelihood of missing oscillations of this kind. 
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contacts.  

These two ranges of ideal interelectrode estimates should be viewed in the practical context. The 

theoretical ideal obtained from the linear array recordings sets the upper limit to the density of scalp 

electrodes as 6-10mm spacing, but this raises practical challenges in devising appropriate and 

practical electrode caps. Approaches could include the use of dry electrodes [139], if their mechanical 

stability can be improved, or a modification of dense EMG arrays [140], if they can be developed to 

establish firm contact with the spherical-shaped baby scalp. 

Our observation of the spatially highly varying patterns of neonatal scalp EEG suggests an 

opportunity for adjustment of the head model used in source localization paradigms. Recent studies 

have defined head model parameters for neonatal EEG source localization, most importantly tissue 

conductivities, by estimating the anatomical match between a known brain lesion and the inverse 

solution of a pathological EEG transient [25, 102]. This approach assumes that pathological EEG 

transients are generated within the lesion, which may not always be the case.  

Our study on the spatial patterning of scalp EEG opens an alternative approach: as shown in our 

tentative forward model stimulation with spherical model, the head model parameters can be sought 

by modifying them in a forward solution so that the spatial patterning of the calculated lead field 

matrix resembles that of empirically observed scalp EEG. Our tentative experiment with a spherical 

model showed clearly how source depth will dramatically affect PSDx power. This observation 

implies that building a source analysis paradigm by using EEG from deep brain lesions as the 

anatomical reference (cf. [25, 102]) does likely present a significant bias when aiming to develop and 

validate source localization paradigms for cortical EEG activity. Moreover, our simulation 

experiments support the previous suggestions that skull conductivity does strongly affect PSDx. This 

highlights the urgent need to validate the range of physiologically relevant conductivity estimates to 

support realistic head models which is explained in next chapter of this thesis. Intriguingly in this 

context, electrical impedance tomography has been recently developed to a stage that it may offer an 

alternative paradigm for empirical estimation of in vivo tissue conductivities in humans [141, 142]. 



The clinical implications of our study must take into account the indication for each EEG study. Some 

applications such as long term brain monitoring, will likely not gain from higher spatial resolution. 

Recent advances in neonatal neuroimaging have clearly highlighted the clinical gain from increased 

spatial resolution in the anatomical domain. (e.g. [16-18]). The next obvious advance will be to define 

the functional correlate of any altered structure, and this can only be accomplished with improved 

spatial EEG information.  

Finally, the observation of highly varying spatial patterning and power law-like (1/f) linear slope in 

the spatial spectrum is consistent with the idea that the development of infant cognition may be able 

to be studied by analysis of the formation of spatiotemporal patterns like cinematic frames [130] that 

in some respects resemble “neural avalanches” [143, 144]. Capturing these with novel dense array 

EEG devices, akin to what has been recently achieved with adult EEG [145-147], may open a novel 

window to capturing the details of emerging large scale brain processes, such as those related to 

perception and cognition [148]. 

  



4 CHAPTER 4: ESTIMATING SKULL CONDUCTIVITY IN REALISTIC 

NEONATAL HEAD MODELS3 

 

4.1 Introduction 

With the aim of solving the neonatal EEG source localization problem, some prerequisites were 

identified which must be fulfilled before proposing an inverse solution algorithm. The list of 

insufficiencies in realistic neonatal head models include the effect of fontanelles on the neonatal skull 

conductivity profile, the number of EEG electrodes required to support the spatial patterning of 

neonatal EEG, the appropriate dipole depth to model neural sources, and the neonatal skull 

conductivities. Each chapter of this dissertation has been dedicated to address one of these parameters 

which after completion will enable us to implement an inverse solution algorithm.  

An empirical methodology was presented in chapter 2 to study the effect of the fontanelles in the 

neonatal skull conductivity profile. Then the spatial patterning of the neonatal EEG, i.e. the proper 

number of EEG electrodes to capture it in full spatial detail was studied in chapter 3 using the 

methodology presented in chapter 2. The main objective of this chapter is to estimate the two other 

remaining parameters of the neonatal head model; the skull conductivity which is considered the most 

significantly different element between neonatal and adult head models, and the appropriate dipole 

depth to model neural sources in the neonatal head models. 

In order to address the question of the value for neonatal skull conductivity, empiric measures of 

spatial spreading in the neonatal EEG are combined with forward simulations using realistic neonatal 

head models. Accordingly two questions were answered: First, what is the extent of spatial 

correlations in the neonatal EEG signal? And second, by comparing this information to forward 

simulations with a realistic neonatal head model, what levels of skull conductivity could explain such 

spatial correlation in the neonatal scalp EEG?  

Similarly to the previous chapter, the two empirical methods presented in chapter 2 i.e. the analysis 

                                                
3 This chapter is an extension of the following paper: Maryam Odabaee, Anton Tokariev, Siamak Layeghy, Mostefa 

Mesbah, Paul Colditz, Ceon Ramon and S. Vanhatalo, "Neonatal EEG at Scalp is Focal and Implies High Skull 

Conductivity in Realistic Neonatal Head Models," Neuroimage, vol. 96, pp. 73-80, 2014. 



of spatial amplitude decay and the analysis of spatial correlation decay are used to empirically 

estimate neonatal skull conductivity. Then the finite element method (FEM) and boundary element 

method (BEM) techniques are used to generate realistic head models based on a manually segmented 

magnetic resonance image of a neonatal brain. Different skull conductivities (from 0.003 to 0.3 S/m) 

were implemented in these head models to calculate the spatial decays of scalp potentials produced 

by a single dipole in the cortex. Then the results of the spatial analysis in the simulations and real 

neonatal EEG were compared to estimate the appropriate range of neonatal skull conductivity.  

The cortex-scalp distance is variable in different cortical regions, as explained in the first chapter, and 

because of insufficient knowledge of these variations in neonates and children it is necessary to 

determine the proper source depth before solving the inverse problem. In order to address this 

necessity, the generated head models were different in terms of the source depth chosen as were 

different skull conductivity values. Head models generated using FEM included radial sources in 

three different depths from the scalp surface placed in a parietal position. Each of these models were 

simulated using all three skull conductivity values. It has been shown in chapter xx that the spatial 

frequency of neonatal EEG also depends on the source depth. The produced models were used to 

study the relationship between different source depths and the spread of scalp EEG potentials. 

 

4.2 Theoretical Background 

It is now known that the conventional recording configuration using only 6-10 electrodes [22] hardly 

suffices to distinguish brain lobes from each other, and severely compromises spatial information 

content [35, 125, 149]. A better spatial parcellation has been recently attempted by devising various 

means to record high density EEG (hdEEG) from the neonatal head in the laboratory environment 

[25, 122, 150, 151], and in neonatal intensive care units [123, 152]. Increasing the number of 

recording electrodes leads to clear theoretical benefits, including recognition of cerebral activities 

that may, otherwise, go either unnoticed or unlocalized. Most importantly, a larger electrode number 

(i.e. increased spatial sampling), as explained in previous chapter, opens the possibility of genuine 



source localization of neonatal EEG [25, 102, 153]. 

Previous studies have shown that neonatal / infant scalp EEG has a very high spatial content or spatial 

patterning [35, 125]. These works not only confirm that adding more electrodes adds non-redundant 

information, but also that spatial smearing of scalp EEG is substantially lower in neonates [35] than 

in adults [34, 103, 154]. This notion has far reaching implications: The salient low spatial smearing 

in the neonatal EEG means that the conductive pathways from the cortex (the generator) to the scalp 

electrode is not yet be ready in a manner Jan significantly different in babies compared to adults. An 

obvious difference is the head geometry where tissue layers are thinner in newborns. The shorter 

cortex-electrode distance is, by itself, unlikely to explain the observed differences in spatial smearing 

which in adults is commonly considered to arise from the poorly conductive skull layer.  

Histological comparison of cranial tissues in infants and adults shows that the skull layer undergoes 

a significant development from the soft and relatively wet, un-ossified skull matrix [155] to a hard 

and relatively dry (ossified) skull bone in the adult. It is likely that this histological difference would 

lead to higher skull conductivity and hence less spatial smearing in neonates. It is not known; 

however, what skull conductivity values would be plausible in the neonatal EEG source localization. 

While electric impedance tomography has been developed to provide potential alternative paradigms 

for empirical estimation of in vivo tissue conductivities in humans [156, 157], there is no report of 

any direct experimental data on conductivity in live human neonatal skull. Skull conductivities have 

been studied in animal neonates [158], but those results cannot be used for the human because of the 

marked differences in the cranial histology in early development. Studies with EEG source 

localization of human neonatal EEG [25, 102] have avoided the issue by simply adopting conductivity 

values from the adult literature, however the lack of empirical reference makes interpretation of those 

results uncertain. 

  



4.3 Methods and Materials  

This study consists of two complementary parts, one empirical and the other based on simulations. 

The empirical part uses high density EEG (hdEEG) recordings to compare the spatial correlations in 

neonatal and adult EEG signals in order to estimate the spatial extent of focal transients in neonatal 

scalp EEG. The simulation part uses a realistic newborn head model to compute scalp potentials 

(forward solution) generated by discrete cortical dipoles mimicking cortical sources of focal 

transients in the real EEG. The simulations were computed for different skull conductivities to find 

the range of values of the conductivity of the skull capable of explaining the empiric observations. 

 

4.3.1 Subjects and hdEEG recording 

Four hdEEG recordings were acquired from four different newborns at term age in the Department 

of Children’s Clinical Neurophysiology (Helsinki University Central Hospital) using a Full-band 

EEG [159] acquisition system with sampling rate of 256Hz or 512Hz (Cognitrace; ANT B.V., 

Enschede, The Netherlands, www.ant-neuro.com). A 64 channel hdEEG cap tailored for neonates 

(Waveguard, ANT B.V., Enschede, The Netherlands, www.ant-neuro.com; see also Stjerna et al., 

2012) was used in this study. A video clip showing an EEG recording of this kind is available at 

www.nemo-europe.com/en/educational-tools.php. Informed consent was obtained from the parents 

prior to recordings. This study was approved by the Ethics Committee of the Hospital for Children 

and Adolescents, Helsinki University Central Hospital. 

The four adult EEG recordings used in this study were kindly provided by Dr. German Gomeq-

Herrero. They were recorded with a 256-channel EEG system (Geodesic Inc, www.egi.com) for 

unrelated studies in VU University of Amsterdam, The Netherlands.  

 

http://www.ant-neuro.com/
file:///C:/Documents%20and%20Settings/ogpcoldi/Local%20Settings/Temp/Temporary%20Directory%201%20for%20nearFinal_pack.zip/nearFinal_pack/www.nemo-europe.com/en/educational-tools.php


4.3.2 Preprocessing and electrode grouping 

4.3.2.1 Preprocessing 

The data were first inspected visually using the ASA review software (Advanced Source Analysis 

(ASA) ANT Neuro, Colosseum 22, 7521 PT, Enschede, Netherlands, www.ant-neuro.com). Artifact-

free epochs were selected irrespective of the sleep state. Data were then filtered with a 30Hz lowpass 

FIR filter prior to exporting it into European Data Format (EDF). All data were processed using 

common average reference (CAR). Further analysis was performed in the MATLAB (MathWorks, 

Natick, Massachusetts, U.S.A) environment using customized scripts described below.  

 

4.3.2.2 Electrode grouping 

The initial analysis assessed whether decays in EEG spatial correlation and / or EEG amplitudes 

depend on the scalp area. This is particularly relevant in neonates where fontanelles, a wider skull 

opening in the midline, is often claimed, without supporting evidence, to distort the scalp EEG 

potentials. To investigate this, spatial decays among three groups of electrodes were compared (see 

Figure 15 C): Group 1 electrodes included those located above the confluent layers of skull over 

central-parietal-temporal-occipital regions. Group 2 constituted the midline electrodes that always 

stand above or at the edges of the fontanelles. Group 3 electrodes were those in the frontal region 

where the skull layer is mostly closed, but the frontalles EEG phenomena are separated from other 

brain areas in the neonates [22]. When performing a within group analysis, amplitude / correlations 

were only computed among electrodes that belonged to the same group (e.g. group 2 decay did only 

reflect decay of amplitude / correlation along the midline). Finally, all electrodes together were also 

grouped and spatial decays were computed in all directions irrespective of its initial grouping.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 Analysis of spatial amplitude decay  

Focal transients, as explained in chapter 2, are a common and salient occurrence in both normal and 

abnormal neonatal EEG [22, 79, 160]. They are characterized by a short and relatively sharp 

 
 

Figure 15 - Experimental setup and results of amplitude decay. A) An example of a 64 channel (hdEEG) recording in 

a term neonate. B) A seven second epoch of 64 channel EEG data with inset highlighting an example of focal transient 

in F5 electrode. C) The grouping of electrodes used for initial analysis of spatial amplitude and correlation decays 

(Group 1: Centro parietal areas, Group 2: midline above the fontanelles, and Group 3: frontal areas). D) Example of 

an amplitude decay result from an individual transient. The red line shows the linear fit over electrode amplitudes 

within 5 cm from the given index electrode. The circled electrodes (>5cm) are excluded from the linear fit. E) An 

example of all transients in one baby (thin black lines individual transients; red line the average). F) Summary of 

results from each baby (N1-N4; left graph) and from each electrode group (G1-G3, as well as all together G1-3), 

respectively. 

 

 



appearance and focal spatial distribution that is consistent with an underlying cortical origin. In this 

study, focal transients were marked by a board certified EEGer (S.V.) using the ASA review software 

and further analysis was performed using MATLAB. The electrode with the highest amplitude peak 

at the marked location was chosen as the reference electrode, and all potential values from other 

electrodes were plotted as a function of distance from this reference electrode. The reference electrode 

in this context is the electrode that was plotted at location zero in the spatial decay graphs (Figure 15 

and Figure 16), and is not to be confused with the recording reference which in this study was grand 

average. This procedure was repeated for all focal transients, 110 in total (group 1 n= 38; group 2 

n=21; group 3 n=51). Finally, a linear regression was computed over the nearest 5 cm (for newborns) 

or 10 cm (for adults) from the index electrode. Electrodes whose amplitudes were found to be >90% 

of the reference value were excluded from further analysis in order to mitigate the effects of noise 

and other artifacts. 

  

4.3.4 Analysis of spatial correlation decay 

Spatial decay of linear correlations between electrodes were computed using 2 minute long scalp 

EEG segments to see how rapidly these correlations decay as a function of distance from the reference 

electrode. This decay was taken as a measure of spatial smearing of scalp EEG. This approach, 

however, cannot distinguish between signal spread due to conductive tissue layers and multiple local 

sources from that generated by a large cortical source. However, results from previous studies 

strongly favor the interpretation that the relative differences between neonates and adults are mainly 

attributed to spatial smearing via volume conduction [35, 113, 161] . 



 

 

 

Figure 16 - Spatial correlation of amplitudes in neonates and adults. A) linear correlations between electrodes in a 

neonate (crosses) and in an adult (dots). Note the very steep decline of correlations in the neonate compared to adult. 

In the neonate, the background level (about zero) is reached near 5cm from the index electrode while in the adult the 

background level (about 0.4) is reached only at 10cm from the index electrode. Circled symbols are excluded from 

the linear fitting because of the distance. B) Spatial decays in linear correlations in all subjects. The decay slopes are 

comparable within groups (adults (A1-A4) and neonates (N1-N4) but are significantly different between groups 

 (p < 0.0001). 

 

Distance (cm)

A

0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

Distance (cm)

C
o

rr
e

la
ti

o
n

Single channel correlation both adult and babies

 

 

0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

Distance (cm)

C
o

rr
e

la
ti

o
n

Single channel correlation both adult and babies

 

 

Adult correlation slope

Adult regression line

Excluded adult data

Babies correlation slope

Babies regression line

Excluded babies data

Adult

0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

Distance (cm)

C
o

rr
e

la
ti

o
n

Single channel correlation both adult and babies

 

 

Adult correlation slope

Adult regression line

Excluded adult data

Babies correlation slope

Babies regression line

Excluded babies data

Newborn

0                     5                       10                    15                    20

1

0.8

0.6

0.4

0.2

0

-0.2

C
o

rr
e
la

ti
o

n

B

A1 A2 A3 A4 N1 N2 N3 N4 AdultsNewborns
0

0.1

0.2

0.3

0.4
Comparison of the regression line's slopes ADULT & Babies

0.4

0.3

0.2

0.1

A1   A2   A3  A4   N1   N2   N3  N4                Adults   Newborns



It is known that temporal frequencies correlate inversely with the size of cortical generator [154]. In 

order to limit the analysis to cortical activities that likely encompass relatively small cortical areas, 

slow events were removed from the EEG as described in chapter 2. A median filter was applied using 

a window length of 120 samples (~230 ms in data sampled at 512Hz), which was seen to cover about 

half of focal transients analysed elsewhere in this work. Then the median low pass filtered data was 

subtracted from the original trace [162]. The advantage of this approach compared to conventional 

low pass filtering, is that it removes the low frequencies without introducing the typical “filter 

ringing” that would confound any subsequent analysis based on instant amplitudes. 

Next, linear (Pearson) correlation was computed between the 2min (61440 samples) EEG segments 

from every electrode pair, and correlation coefficient was plotted as a function of distance between 

the electrodes. With the intention of assessing the general nature of the spatial decay, quadratic, cubic 

and linear functions were fitted to the different plots. It was found that the inter-electrode correlation 

decays can be adequately approximated by a linear function over closely spaced neighbors (see Figure 

15 D), hence a linear approximation was adopted. Finally, the slope of the linear regression of these 

linear approximations was computed as a measure of the scalp EEG spatial decay.  

 

4.3.5 Statistics 

As most data was non-normally distributed (see Figure 16 B), nonparametric tests were used in all 

analyses. Comparison between individuals and groups was performed using analysis of variance with 

Kruskall-Wallis test. Any significant findings were followed by post hoc pairwise comparison with 

non-parametric Mann Whittney U test, which was also used for all pairwise group comparisons. 

Statistical significance was considered if p<0.01 was observed. 

 



4.3.6 Head model generation  

A T1 magnetic resonance image (MRI) was acquired with a Philips 3T scanner in Helsinki University 

Central Hospital from a full-term healthy baby. Each slice was 240x256 pixels with a pixel resolution 

of 1x1mm, and slice thickness of 0.9mm. From the full image stack, 176 slices covering the cranium 

were segmented manually into 5 compartments (scalp, skull, CSF, brain, eyes) by a clinician using 

FSL software [163]. The same segmented image stack was used for generation of both head models 

as described below.  

 

4.3.6.1 Finite element method (FEM)  

A 3-D FEM head model was generated using custom made scripts [164] from the segmented image 

stack where voxel resolution was 1×1×1mm. The electrical conductivities of various tissues were 

obtained from the literature as detailed below. For a given dipole position, flux and potential 

distributions were computed using an adaptive FEM solver [164]. The scalp potentials were extracted 

for further analysis. For a typical FEM run, voxel sizes varied from 1x1x1 to 16x16x16 pixels. A 

detailed image of a FEM run voxels is shown in Figure 17 where voxels near the dipole are of 1x1x1 

pixel size, while voxels further away have varying size. The size of voxels was automatically adjusted 

in the FEM solver based on a preset L2 norm error limit on the normal and tangential fluxes at the 

voxel faces. 

 

4.3.6.2 Boundary Element Method (BEM) head model 

To generate the BEM-based head model, Brainstorm software [165] was used along with the 

previously segmented MRIs to construct 3D surfaces of the scalp, outer skull, inner skull and brain 

(Figure 17 A). To reduce the computational load, the raw 3D surfaces were down-sampled to sparser 

grids: scalp, inner skull and outer skull to 2562 vertices (5120 faces) and brain surface to 4322 vertices 

(8640 faces). The brain surface (that corresponds to be outermost cortical surface) was used as a 

source space (with a distance between sources are about 3 mm). The forward operator for this three-



shell model was computed using Symmetric Boundary Element Method in the OpenMEEG software 

[166].  

 

4.3.7 Tissue conductivities 

The purpose of this work was to define a plausible range of conductivities in the neonatal skull, which 

is the only conductive layer that undergoes substantial developmental change with respect to its 

histological and hence conductive properties. The conductivities were adopted for other tissue 

compartments (brain 0.33 S/m, CSF 1.79 S/m, scalp 0.33 S/m) directly from the prior literature [25, 

164, 167]. The forward solutions were then computed with three different skull conductivities that 

ranged from the very poorly conductive estimate of adult skull to a high conduction similar to scalp 

(i.e. 0.0033 S/m, 0.033 S/m, and 0.33 S/m). It would be histologically acceptable to assume that the 

soft and well vascularized neonatal skull tissue [155, 168] has conduction properties comparable to 

scalp.  

 

4.3.8 Forward solutions and their analysis 

Forward solutions (scalp potentials in each scalp points, n=90649; see Figure 17 D) with FEM were 

computed for radial sources placed in a parietal position at three different depths (8mm, 13mm and 

16mm) from the scalp surface, and the procedure was repeated for all three skull conductivity values 

(i.e. total of nine runs). Source depth was varied because the cortex-scalp distance is variable as shown 

in the present analysis (Figure 17 C) and the prior study of Beauchamp et al [169]. It has also been 

shown previously that spatial frequency of neonatal EEG depends on the source depth [35]. The 

source space in BEM is at the brain surface, so locations near the FEM source (parietal) were sought 

that were at depths of about 10-13 mm from the scalp surface.  

The highest (peak) value of scalp potentials was defined, and then all other scalp potential values 

were plotted as a function of distance from the peak value (Figure 17 E). As the amplitude decay was 

found to be linear, in line with the empiric data, a linear regression line was fitted over the nearest 5 



centimeters from the peak. The slope of this line was used to generate the graph that compares 

conductivities and source depths (Figure 17 F) as well as to finally compare these results to be 

empirical findings presented above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17 - Forward simulation using realistic head models. A) Segmentation of the neonatal MRI that was used for 

constructing both FEM and BEM. B) The adaptive FEM model generated from the segmentation shown in A. C) 

Topography of scalp-cortex distances in the segmented head model as computed from the BEM surfaces. D) 

Comparison of the effects of skull conductivity (0.33 to 0.0033 S/m) and source depth (from 8mm to 16mm) on the 

scalp distribution of EEG potentials. Note how the scalp potential becomes smaller and spatially flatter when the 

conductivity becomes higher or the source becomes deeper. E) An example of the spatial decay of scalp potential. 

Each blue point represents a scalp point in the head model (FEM). The linear fit used to obtain slopes is calculated 

for the first 5cm. F) Summary of all simulation results combining skull conductivity (X axis), source depth (Y axis) 

and the slope of spatial potential decay (Z axis). This combination plot can be used to suggest the skull conductivity 

that fits empirical observations of potential decay: First, the analysis of scalp-cortex distances (E) suggests that a 

relevant depth of the cortical sources could be around 10mm. Second, analysis of real EEG (Figure 15 D-F) suggests 

that the slope of amplitude decays is around 0.23. These will limit yield the suggested range of skull conductivities 

that is at around 0.06-0.2 S/m. 

 

 



4.4 Results 

4.4.1 Spatial amplitude decay  

Inspection of the raw hdEEG data (Figure 15 B) shows that transients in the neonatal EEG often cover 

only a few electrodes, and that they can, hence, be assumed to have been generated by a focal cortical 

generator. All signal amplitudes at the given peak times were then plotted as a function of inter-

electrode distance (Figure 15 D). Such graphs demonstrate clearly that the amplitudes decay rapidly 

within the first few centimeters before becoming scattered further away due to the presence of 

unrelated ongoing activity in other cortical areas. The slope of the linear fit was thus taken as a proxy 

of spatial amplitude decay. The slope values within each subject (example shown in Figure 15 E) 

were found to be notably consistent. The slope values in different newborns showed no significant 

difference (p=0.52; Figure 15 F). Moreover, comparison between electrode groups showed no 

significant differences between midline region (fontanelles) and other brain regions covered with 

newborn skull tissue (p=0.21 for comparison between groups). Taken together, these indicate that 

spatial decay of scalp amplitudes is consistent across scalp areas as well as between individuals. 

 

4.4.2 Spatial correlation decay 

Plotting the linear correlations between electrodes as a function of inter-electrode distance in the 

neonatal EEG showed a clear decay to near zero within about the first five centimeters (an example 

subject is shown in Figure 16 A).  

Inspection of a similar analysis in the adult (256 channel) hdEEG recordings showed that the slope 

of spatial decay in the adults is strikingly flatter, and the levels of correlation tend to be more scattered 

throughout the scalp (i.e. at all distances). After inspecting a larger number of individual graphs (an 

example is shown in Figure 16 A), it was concluded that the adult EEG data exhibits a relatively 

linear slope up to about 10 cm from the reference electrode. Hence, the linear regression fit in the 

adult data was performed for the nearest 10 cm from the index electrode. The regression slopes were 

found to be consistent and without significant differences within the groups of neonates and adults 



(Figure 16 B). However, the slopes were generally about three times steeper in the neonates compared 

to adults (mean slope in adults 0.052; mean slope in neonates 0.17), and the difference between age 

groups was highly significant (p< 1e-5). 

 

4.4.3 Forward model simulations 

Spatial decay of scalp EEG was next estimated from the realistic shape neonatal head model where 

the EEG source was placed at varying depths in the parietal cortex. The distribution of scalp potentials 

has a clear peak above the source consistent with the radial source orientation. Comparison of 

different skull conductivities showed, as expected, that the scalp potential becomes progressively 

smoother towards the lower conductivity. Indeed, with the skull conductivity adopted from the adult 

literature (0.0033 S/m), the scalp potential distribution from a single focal cortical source extended 

over half of the head which is different from the empirical results observed in the neonatal EEG 

signals.  

Similar analysis using the BEM model (Figure 18) showed that the plots of spatial amplitude decay 

have considerably less scatter, which is likely due to reduced noise in the relatively simple forward 

solution of BEM. As shown in Figure 18, the results between FEM and BEM models were generally 

comparable. Consistent with the results from prior studies using the 4-layer spherical neonatal head 

model as explained in the previous chapter, a clear relationship between different source depths and 

the spread of scalp EEG potentials was found. The most superficial source (at 8mm depth) produced 

a highly focal potential distribution, which became considerably broader as the source was placed 

deeper at 13mm or 16mm. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.4 Comparison of empirical and simulation results 

The simulations yielded a two dimensional relationship of spatial decays (Figure 17 F) of scalp EEG 

potentials as a function of the skull conductivity and the source depth. In order to determine 

empirically the range of plausible conductivity values associated with neonatal skull, there is first a 

need to define an anatomically reasonable source depth. For that purpose, skull-cortex distances were 

computed (Figure 17 C) that, together with a recent study [169] suggest that the surface of cortex is 

at around 6-10mm from the scalp. Second, the range of empirical regression slope values (around 

0.23) that resulted from the analysis of neonatal EEG (Figure 15) to limit the focus in the z axis. After 

limiting the focus in depth and slope (x and y, respectively), the graph will return the range of y 

values, the skull conductivity, that here is within the range of about 0.06-0.2 S/m. 

 

 
 

Figure 18 - Comparison of FEM and BEM models. This graph has superimposed plots of spatial decays of scalp 

amplitudes from FEM (gray) and BEM (black) forward simulations. The overall rate of spatial decay is notably 

similar, though there is more scatter in the FEM model. In these plots, conductivity was set to 0.33 S/m, and the dipole 

depths were 8mm and 13mm in FEM and BEM, respectively. 
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4.5 Discussion  

These findings support the notion that the EEG recorded from the newborn scalp is very focal in 

nature, and that this is in part the result of the high conductivity of the skull tissue. The EEG activity 

generated by a focal source was found to decay within a few centimeters at the scalp, on average, 

three times faster than in the adult EEG. Simulations using a realistic neonatal head model indicate 

that neonatal skull conductivity is close to that of soft tissues, and hence orders of magnitude higher 

than conventionally assumed for the adult skull. These results are fully consistent with recent empiric 

[151] and simulation findings [113], and our findings of spatial correlation in the adult EEG data 

compare well with prior similar analyses on adults [161]. Notably, this work also validates recent 

suggestions [35, 102] to use higher skull conductivity values for the neonatal skull.  

The observed steep spatial decay of amplitudes is consistent with the results reported in the previous 

chapter for the high spatial complexity in the neonatal EEG. Moreover, it implicitly explains why 

there is no significant difference between electrodes in the midline and other scalp areas. This is in 

apparent conflict with the common assumption of EEG distortion by fontanelles in neonates; however 

such thinking results from ignorance of the particular developmental histology of the neonatal skull 

tissue and its conductivity value. It has been clearly established [168] that neonatal skull bone is not 

ossified at birth, that the skull tissue undergoes a membranous type ossification during early life, and 

that the histological structure of skull remains trabecular [170, 171] for a longer time, hence providing 

tissue pathways with high electric conductivity until the skull becomes fully ossified later in life. Our 

conclusion of very high neonatal skull conductivity, indeed comparable to other soft tissues, is fully 

compatible with these anatomical considerations.  

There are three factors that cannot be directly controlled, but they may potentially confound our 

empirical analysis. Their bias is, however, likely to lead to a conservative estimate of skull 

conductivity, because they tend to make the slopes of spatial decay flatter. First, the hdEEG only 

includes 64 channels which results in inter-electrode distance of about 20-30mm. Such spatial 

sampling implies that the amplitudes and linear correlations would have already decayed within the 



nearest few electrodes. The linear regression slopes were computed from the nearest few electrodes 

in each case.  

Second, an unrelated brain activity across cortical areas may unavoidably bias estimates of spatial 

decays (of both transient amplitudes and inter-electrode correlations) towards flatter slopes. Third, it 

is obvious that the cortical generators are not point sources, but that they have an unknown spatial 

extent. The true spatial decay related to signal smearing in the conductive tissues should be analyzed 

from the edge of the putative cortical generator area, if such was known. It is also possible that distant 

cortical sites have high signal correlations due to their genuine synchrony [133, 148, 172-174], which 

would lead to a flatter spatial decay of correlations due to physiological rather than volume 

conduction effects. 

Source localization in neonatal EEG has recently generated considerable interest due to rapid progress 

in developmental neuroscience and computational methods as explained in the first chapter [25, 167]. 

The recent introduction of hdEEG recording methods [25, 122, 150, 152]; has been the crucial 

technical advance opening the way for improvements in source localization approaches. It is 

intriguing in this context, that the result of neonatal EEG analysis are indirectly challenging the view 

based on adult EEG, that source localization or source space signal analysis [174, 175] would be 

superior to signal space (i.e. raw scalp EEG data) analysis. The high spatial specificity of neonatal 

EEG shown here [35, 113] implies relatively little cross talk between scalp EEG channels. Hence, the 

typically used low numbers of scalp electrodes, ranging from the conventional eight [22] to about 20-

30 electrodes [173], can be considered to yield relatively non-redundant signals. However, anatomical 

localization of EEG signal sources is still required for the process of combining EEG and functional 

MRI studies that became accessible once they were reported to be safe in neonates [176]. 

While conventional neonatal EEG recordings are spatially too under-sampled to genuinely gain from 

source localization, it is possible to add further spatial localizing information using the following 

advances: First, the number of electrodes from the presently used 64 channels should be increased, 

and the anatomical positioning of electrodes in each recording session should be considerably 



improved from the presently used anatomical landmarks [177]. These challenges are already solved 

and the methods exist for their clinical implementation [178]. Second, the head model used for source 

localization needs to be computed for each individual recording session because of the substantial 

variability in head geometries between neonates, as well as within the same infant (due to 

development) between different recording sessions. Third, the EEG activity in neonates arises from 

different underlying mechanisms where much of the early activity is, indeed, orchestrated by 

immature thalamo-cortical or subplate-cortex networks. Details of the networks involved in early 

EEG generation are only known from experimental animal models, which have been shown in the 

spatially coordinated spontaneous activity transients that are distinct from those giving rise to 

traditional EEG oscillations of older subjects [19, 179-183], which are not compatible with the a 

priori assumptions that underlie the adult source reconstruction paradigms. All these issues pose 

significant technical, physiological, ethical, and logistic challenges in attempts to push the limits of 

spatial source localization of neonatal brain activity.  

  



5 CHAPTER 5: LOCALIZATION OF NEONATAL EEG USING AN 

ENHANCED TIME-FREQUENCY MUSIC APPROACH 

 

 

 

5.1 Introduction 

This chapter proposes, evaluates and validates an accurate source localization technique for the 

neonatal EEG (nEEG) based on time-frequency analysis. A requirement of such a method is that it 

should have the capacity to accurately localize normal EEG patterns such as focal fluctuations of 

amplitude as a common feature of nEEG. Solving the EEG source localization (ESL) problem 

requires an accurate model of the newborn head. To have such a model, an accurate knowledge of 

the electrical conductivities and thicknesses of the different head layers (CSF, Skull and scalp) is 

required. Currently, no accurate value of these parameters exists and, as a consequence, I proposed 

in previous chapters to indirectly obtain these parameters. Therefore, values of these parameters, 

along with the appropriate number of electrodes and the dipole’s depth, were indirectly estimated 

using the approach proposed in chapters 3 and 4 (see also [32, 35]). These values were used as a basis 

to develop a realistic head model which, in conjunction with the time-frequency multiple signal 

classification (TF-MUSIC) algorithm, was used to solve the EEG inverse problem.  

Unlike previously reported studies [71, 72], in the proposed TF-MUSIC-based ESL method, the 

regions of interest (ROIs) for nEEG in the time-frequency plane are identified automatically, rather 

than manually. Since manual ROI identification is subjective, and hence the result of EEG source 

localization can be changed based on the competency of the user, it is preferred to be avoided in the 

possible applications. More importantly, determining the ROI in the time-frequency plane requires 

knowledge and expertise not present in clinical practices. Consequently, the important advantage of 

automatic ROI identification is that it makes it possible TF-MUSIC algorithm can be used even where 

no knowledge of Time frequency conversion of EEG signals is available. In this new approach, time-

frequency representations of nEEG signals are interpreted as images that are processed to identify the 

ROIs automatically. A new performance metric was introduced to objectively evaluate the 



performance of the proposed method using realistic simulated EEG data (EEG simulations generated 

using a realistic head model). It was also evaluated by comparing to other previously proposed source 

localization techniques. The proposed method was also evaluated using real EEG data such as 

Visually Evoked Potentials (VEP) with known cortical representations. The next section contains the 

theoretical background used to develop the TF-MUSIC source localization algorithm including time-

frequency analysis, forward and inverse problems. 

   

5.2 Theoretical Background 

5.2.1 Time-frequency analysis: a brief review 

Time-frequency signal analysis is an advanced harmonic analysis technique [184] introduced to 

analyse nonstationary signals, or signals whose frequency content varies with time. The widely used 

Fourier analysis, regarded as a major achievement in Physics and Mathematics [185], fails to provide 

information on incident time of spectral components [186, 187]. This is because the Fourier 

representation transform is defined as a weighted average of the time-domain signal [188]. This is 

mathematically expressed as: 

 

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−2𝜋𝑓𝑡𝑑𝑡

∞

−∞

 (17) 

 

where 𝑋(𝑓) stands for the Fourier transform. This representation is appropriate when the signal 𝑥(𝑡) 

is stationary. However, when the signal is nonstationary, as in the case of EEG [93], the Fourier 

transform does no longer lead to an accurate representation of the signal [188]. 

In the case of a signal with slowly time-varying spectra, a possible strategy to overcome the limitation 

of the Fourier transform, is to use the windowed Fourier transform for the time periods in which the 

signal is stationary [189]. This approach, called short time Fourier transform (STFT), was the earliest 

proposed linear time-frequency representation / distribution (TFD) [186, 187]. The name “linear” 



comes from the fact that the transform is a linear function of the time domain signal. However, many 

natural and man-made signals have spectral content that varies quickly with time. As a consequence, 

no appropriate window exists that achieves a good time-frequency resolution trade-off while 

satisfying the stationary condition [186, 190]. It is therefore necessary to use other more advanced 

techniques to overcome this problem. A possible solution would be to use higher (than linear) order 

time-frequency representations. One of the most widely used classes of higher order time-frequency 

representations is the quadratic class discussed below.  

 

 

5.2.1.1 Linear time-frequency distributions  

One of the main properties of this category of TFDs is linearity. If the signal 𝑥(𝑡) under analysis is a 

linear combination of components 𝑥𝑖(𝑡), its TFD is a linear combination of the components’ TFDs. 

 

 𝑥(𝑡) =  ∑𝑎𝑖𝑥𝑖(𝑡)  ⇒  𝑇𝐹𝐷{𝑥(𝑡)} = ∑𝑎𝑖

𝑖

𝑇𝐹𝐷{𝑥𝑖(𝑡)} 

𝑖

 (18) 

 

Two important members of the linear class of TFDs are the STFT and wavelet transforms (WT). 

STFT of the continuous time signal 𝑥(𝑡) at time 𝑡 is essentially the Fourier transform of the signal 

multiplied by a finite length analysis window 𝑤𝐻(𝜐 − 𝑡) centred at the time 𝑡. In other words,  

 

 𝑆𝑇𝐹𝑇𝑥
𝑤(𝑡, 𝑓) = ∫ [𝑥(𝜏)𝑤𝐻(𝜏 − 𝑡)]𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏

+∞

−∞

 (19) 

 

where −𝑯 denotes the conjugate transpose [191]. The STFT strongly depends on the choice of 

analysis window. It can also be expressed in terms of the spectra of the signal and the analysis window 

as 

 𝑆𝑇𝐹𝑇𝑥
𝑤(𝑡, 𝑓) = 𝑒−𝑗2𝜋𝑓𝑡 ∫ [𝑋(𝜐)𝑊𝐻(𝜐 − 𝑓)]𝑒𝑗2𝜋𝑓𝜈𝑑𝜐

+∞

−∞

 (20) 

 

where 𝑋 and 𝑊 stand for the Fourier transform of 𝑥(𝑡) and 𝑤(𝑡) respectively. This formulation 



indicates that the STFT can be derived by passing the signal through a bandpass filter with the centre 

frequency 𝑓. This makes it possible to implement the STFT using a filter bank. 

Wavelet transform is the other widely used linear TFD which has found numerous applications in 

different areas of engineering. Although WT is mostly known as a time-scale transformation, it can 

be shown to be a time-frequency representation through a simple manipulation: 

 

 𝑊𝑇𝑥
𝑤(𝑡, 𝑓) = √|𝑓 𝑓0⁄ |∫ 𝑥(𝜏)𝑤𝐻 [

𝑓

𝑓0
(𝜏 − 𝑡)] 𝑑𝜏

+∞

−∞

 (21) 

 

in which 𝑤(𝑡), a real or complex bandpass function with the central frequency 𝑓0 centred on 𝑡 = 0, 

serves as the analysis wavelet [187]. The relationship between scale 𝑎 and frequency 𝑓 is given by 

 𝑎 = 𝑓0 𝑓⁄ . 

 

 

5.2.1.2 Quadratic time-frequency distributions 

Although a linear relationship between a signal and its TFD is a desirable property in many situations, 

it is not the case when one uses the TFD to represent the signal’s energy distribution in time and 

frequency. In this case, the quadratic representation is more suitable. However, because of the 

uncertainty principle 

 ∆𝑡∆𝑓 ≥
1

4𝜋
 (22) 

 

which relates to the average analysis window ∆𝑡 to the average analysis bandwidth ∆𝑓 , it is not 

possible to analyse the signal with desirable accuracy in both time and frequency domains. In other 

words, the uncertainty principle limits the ability of any quadratic TFD to have a high resolution in 

time and frequency simultaneously. Nonetheless, it does not put any limit on marginal properties 

which states instantaneous power and energy spectrum; hence an ideal TFD is expected to comply 

with these marginal properties [187] as  

 

 
𝜌𝑥𝑥(𝑡, 𝑓) = 𝑄𝑇𝐹𝐷{𝑥(𝑡)} 

 
 



 
∫ 𝜌𝑥𝑥(𝑡, 𝑓) 𝑑𝑓 =  |𝑥(𝑡)|2

+∞

−∞

 

 

(23) 

 
∫ 𝜌𝑥𝑥(𝑡, 𝑓) 𝑑𝑡 = |𝑋(𝑓)|2

+∞

−∞

 

 

(24) 

 

 

There are a number of quadratic TFDs that satisfy both marginals. Among those is the well-known 

Wigner distribution [190]. The Wigner distribution of signal 𝑥(𝑡) is defined as  

 

 𝑊𝑥𝑥(𝑡, 𝑓) = ∫ 𝑥(𝑡 + 𝜏
2⁄ )𝑥𝐻(𝑡 − 𝜏

2⁄ )𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

 (25) 

or equivalently by 

 𝑊𝑥𝑥(𝑡, 𝑓) = ∫ 𝑋(𝑓 + 𝜐
2⁄ )𝑋𝐻(𝑓 − 𝜐

2⁄ )𝑒𝑗2𝜋𝑓𝜐𝑑𝜐
+∞

−∞

 (26) 

 

Due to the Hermitian symmetry [192] of the Fourier transform for real-valued signals; that is 

 

 𝑥(𝑡)  ∈ ℝ ⇒ 𝑋(−𝑓) = 𝑋∗(𝑓) (27) 

 

 the spectral representation for negative frequencies does not convey any extra information. This 

means that ignoring the signal’s spectrum associated with the negative frequencies, when calculating 

the Wigner distribution, will not lead to any loss of information. To the contrary, doing this allows 

for a reduction in computational cost and sampling rate without introducing aliasing [193]. This is 

achieved by replacing the real-valued signal 𝑥(𝑡) by its analytic associate 𝑧(𝑡) in equation (25) [188]. 

The analytic signal 𝑧(𝑡) is obtained by:  

 𝑧(𝑡) = 𝑥(𝑡) + 𝑗ℋ{𝑥(𝑡)} (28) 

 

 

where the ℋ{𝑥(𝑡)} stands for the Hilbert transform of the signal 𝑥(𝑡) and is defined as  

 

 

 ℋ{𝑥(𝑡)} =  ℱ−1{−𝑗𝑠𝑔𝑛(𝑓)ℱ{𝑥(𝑡)}} (29) 

 

 



ℱ and ℱ−1 stand for the Fourier and the inverse Fourier transforms respectively [194]. Using the 

analytical signal leads to a new TFD, known as the Wigner-Ville distribution [195] (WVD),defined 

as: 

 

  𝑊𝑉𝐷𝑥𝑥(𝑡, 𝑓) = ∫ 𝑧(𝑡 + 𝜏
2⁄ )𝑧𝐻(𝑡 − 𝜏

2⁄ )𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

 (30) 

 

The many desirable mathematical properties of the WVD make it one of the most important and 

widely used member of the quadratic TFD class. The other members can be obtained by simply 

smoothing or filtering the WVD. The general form of the quadratic class of TFDs can be expressed 

as: 

 

  𝜌𝑥𝑥(𝑡, 𝑓) = ∫ ∫ 𝐺(𝑡 − 𝑢, 𝜏)𝑧(𝑢 + 𝜏
2⁄ )𝑧𝐻(𝑢 − 𝜏

2⁄ )𝑒−𝑗2𝜋𝑓𝜏𝑑𝑢𝑑𝜏
+∞

−∞

+∞

−∞

 (31) 

 

 in which 𝐺(𝑡) is the smoothing function, also known as the kernel [188]. A comprehensive review 

of the quadratic time-frequency distributions can be found in [187-191, 196-198].  

 

5.2.2 Forward problem 

Solving the forward EEG problem is part of the method proposed for neonatal ESL in this chapter. 

In order to solve the inverse EEG problem, that is to find the brain current sources responsible for 

generating the EEG measured at the scalp, it is necessary to have a model of the head. In the case of 

the TF-MUSIC algorithm, this translates to having access to the Lead Field Matrix (LFM). The LFM 

is obtained by solving the forward problem that is to find the potentials generated by current sources 

within the brain. 

 

5.2.2.1 Lead field matrix 

As mentioned above, the EEG Forward problem describes the task of computing the scalp potentials 

generated by hypothetical dipoles, or more generally from current distributions, inside the brain [36]. 



Because most of the EEG energy resides in the 0.1 to 100 Hz frequency band [1], the forward model 

can be described using the quasi-static version of Maxwell’s equations [47, 80]. Under this condition, 

the static electric field 𝐄 can be expressed as [47] 

 

 𝐄 = − ∇𝐕 (32) 

 

where 𝐕 is the vector potential and ∇ represents the gradient. This can be combined with the other 

Maxwell equation [47] which relates divergence of the current density 𝑱 to current source distribution 

𝑺 

 ∇ ∙ 𝑱 = 𝑺
𝑱 =  𝜎𝐄

 
(33) 

 

where ∇ ∙ ( ) represents divergence and σ is the electrical conductivity of the volume. This 

combination will result in the following equation, Poisson's equation, which gives the potentials 𝐕 at 

any position in a volume conductor due to current source distribution: 

 

 ∇ ∙ (𝜎(∇𝐕)) = −𝑺 (34) 

 

 

The electrical conductivities of the different head tissues along with the geometry of the volume 

representing the head are the major factors that determine the accuracy of the forward solution. Due 

to the linearity of Maxwell’s equations, the solution of the above differential equation, i.e., the 

measured potentials at each scalp site, is assumed to be a superposition of potentials generated by all 

point sources (dipoles) within the brain [10], expressed by: 

 
 𝑽 = 𝑳𝑺 (35) 

 

in which 𝑳 is the LFM that indicates gain from each source to measurement positions. The EEG signal 

in this case can be stated as the linear combination of these potentials and the additive noise 𝑵 

collected by EEG electrodes 



 𝑿 =  𝑽 + 𝑵 (36) 

 

The corresponding sampled multichannel (𝑀 channels) discrete-time EEG can be denoted as 

 

 
𝑿[𝑛] =  [𝑥1[𝑛], 𝑥2[𝑛],⋯ , 𝑥𝑀[𝑛]]

𝑇
∈ ℝ𝑀×1 

(37) 

 

in which 𝑥𝑖[𝑛] is the scalp EEG measured by the ith channel and the discrete time source spatio-

temporal variations for a set of 𝑃 sources will be 

 

 
𝑺[𝑛] =  [𝑠1[𝑛], 𝑠2[𝑛],⋯ , 𝑠𝑝[𝑛]]

𝑇

∈ ℝ𝑃×1 
(38) 

 

Hence, the source signals and the measured EEG at each time instance 𝑛 are related by a set of linear 

equations 

  𝑿[𝑛] =  𝑳 𝑺[𝑛] +  𝑵[𝑛]; 

𝑳 = 𝚲𝚽  

(39) 

 

where 𝑿[𝑛] (M × 1) is the multichannel EEG vector, 𝑺[𝑛] (𝑃 × 1) is the source vector, N[n] (M ×

1) is the measurement noise vector, and L(𝑀 × 𝑃) is the LFM which contains the location (𝚲) and 

orientation (𝚽) information of the dipoles [36, 69, 73]. The LFM includes one column corresponding 

to each dipole (source) which states the gain values from that source to each measurement location 

(𝑀 rows) on the scalp. The orientations of the dipolar sources, representing the neural currents, are 

assumed to be normal to the cortex surface and fixed during a specified time period. The non-normal 

dipole orientations are implemented by means of three orthogonal dipoles within the same location.  

There are two commonly used numeric methods for solving the forward model and obtaining the 

LFM: the Boundary Element Method (BEM) [199] and the Finite Element Method (FEM) [200]. 

BEM calculates the potentials at the boundaries of a volume induced by a current source. Although 

it is restricted to isotropic conductivities, it is widely used because of its low computational cost [47]. 



FEM, contrary to BEM, solves the equations in the differential form for each single 3D segment of 

the volume. It has been shown, when piecewise constant conductivity is assumed (instead of a 

spatially varying anisotropic conductivity model), both methods perform similarly in terms of the 

accuracy of the inverse problem solution [10]. 

 

5.2.2.2 The neonatal head model 

In order to solve the forward problem for a specific subject, parameters such as the geometry of the 

head, conductivity of the tissues forming the head and electrodes locations need to be known [32]. 

Then the head volume is divided into very small regions and the electrostatic equations are solved for 

hypothetical sources in these regions.  

If spherical geometry with homogenous conductivity is used for approximating the head, analytical 

solutions of the forward problem can be obtained. However, spherical models that can reasonably 

approximate the upper regions of the head do not lead to satisfactory results in terms of the overall 

source localization accuracy. To remedy this problem, realistically shaped models are used to 

represent the whole head [10, 48]. These models are generated by incorporating anatomical 

information obtained from medical imaging modalities such as MRI. 

There are several major differences between neonatal and adult heads, as explained in Chapter 2. In 

addition to the volume, the physical attributes of different tissues composing the head account for 

most of the dissimilarities. While the fontanelles comprise an important geometric distinction 

between the two heads, the skull conductivity is the most import source of the difference. The 

important role played by the conductivity in the solution of the inverse problem comes from the fact 

that EEG signals are predominantly produced by ohmic current flow in the head, rather than by 

capacitive or inductive currents [10]. 

 



5.2.3 Inverse problem 

The EEG inverse problem is the problem of using the scalp potentials and the LFM to estimate the 

location, orientation, and strength of the different brain current sources or dipoles, i.e., solving Eq. 

(39) for 𝑺[𝑛] given 𝑿[𝑛] and 𝑳. Although many methods were proposed for solving the inverse problem 

in the case of adults, no method currently exists for the case of the newborn [151]. The accuracy of 

the ESL technique critically depends on the quality of the head model [27]. The lack of an accurate 

newborn head model has been the major obstacle for solving the EEG source localization in neonates. 

 

5.2.3.1 Selecting an inverse solution for the neonatal EEG source localization 

This choice of an inverse solution method determines how data are interpreted and what 

approximations are involved [10]. Based on previous studies on adult ESL, the methods based on 

equivalent current dipole (ECD) give the most accurate results for somatosensory evoked potentials 

[43], seizures [44], and interictal spikes [45, 46], that is, when the EEG activities are highly localized. 

Imaging methods (distributed sources), on the other hand, are better fitted for EEG activities that 

involve large areas of the brain. Since imaging methods do not require prior knowledge of the number 

of sources, they are preferred for applications where it is not possible to predict the number of active 

regions such as in cognitive experiments [10].  

The exact number of dipoles, as a key prerequisite in the ECD approaches, should be estimated 

beforehand. Several techniques have been proposed to address this issue by means of other imaging 

modalities or from physiological understanding of the brain [201, 202]. An alternative approach is to 

use temporal information (a given period of EEG data) to identify the appropriate number of dipoles 

[69]. This approach led to a number of methods known as scanning methods. In these methods, the 

search for equivalent current dipoles is performed by scanning a 3D grid or mesh that involves the 

whole brain or the cortical surface [1]. These methods can localize cortical sources with a high 

resolution, similar to ECD approaches, without requiring a prior knowledge of the exact number of 



sources (in the price of extra computational load).  

The MUSIC [68] approach and its derivatives such as Sequential-MUSIC (S-MUSIC) [203], 

ImprovEd Sequential MUSIC (IES-MUSIC) [204], Recursive MUSIC (R-MUSIC) [70] and 

Recursively Applied and Projected MUSIC (RAP-MUSIC) [42] are among the best scanning 

methods. The MUSIC approach uses the singular value decomposition of the spatio-temporal EEG 

signals to find the signal subspace. In this method a metric, which is an estimator of the contribution 

of each putative dipole location to the data, is derived [38] to find the dipolar topographies that project 

to the estimated signal subspace. The best performing putative source locations are taken as source 

[69]. Therefore, MUSIC takes advantage of ECD approaches without their constraint of prior 

knowledge of source number [13].  

The candidate inverse solution in this study is selected to meet two major requirements. Firstly, the 

method should localize focal fluctuations generated by focal sources as a common feature of nEEG 

[22, 78, 79] (see Figure 19 for typical local fluctuations in the amplitude of nEEG). The prospective 

method should also be able to localize sources of event related potentials (ERP) or VEP which are 

used in the neonatal EEG studies. This requirement is better satisfied by approaches that use a small 

number of dipoles to model the current sources, e.g., both the ECD and the scanning methods. 

Recordings of nEEG with 64 channels display many EEG events that seem to be distinct events (as 

explained in Chapter 3). The potential method, as a second condition, should be able to discriminate 

between the different EEG events seen in dense array EEG recordings in terms of their sources. These 

events are generated by sources that create signatures / features which can be recognized in the time-

frequency domain. It is possible to use features of the signal in both time and frequency domains in 

order to identify a region in the time-frequency plane which includes the desired events. Then the 

inverse solution can be obtained for that particular segment of signal. TF-MUSIC from the scanning 

methods, when used with adult MEG signals, was shown to satisfy the second requirement [73, 74] 

as well as the first condition.  

There are also other factors that are important when selecting the method that solves the inverse EEG 



problem. But these are application dependent. For example when source localization is combined 

with the brain connectivity analysis tool, the method must be able to localize multiple sources 

simultaneously. This feature is present in MUSIC-based methods [14, 37]. The TF-MUSIC algorithm 

has been successfully applied to localize focal brain activities, proving the capability of the method 

to separate events in the time-frequency plane and matches to the multiple simultaneous source 

localization requirement. Therefore, it is the appropriate candidate for the present neonatal EEG 

source localization problem.  

 

5.2.3.2 The advantage of the TF-MUSIC as an inverse solution 

TF-MUSIC is different from MUSIC in that the signal and noise subspaces are extracted (through 

singular value decomposition) from the spatial time frequency (STFD) of the multichannel signal 

rather than the signal as is the case with MUSIC (the STFD is explained in the method section). In 

fact, the source analysis is only applied to a given region in the time-frequency plane (STFD). This 

makes it possible to localize neural sources with a signature in the corresponding region of the time-

frequency plane [72, 205]. The key advantage of time frequency analysis in this application is its 

capability to enhance signal- to- noise ratio (SNR) by spreading the noise over all areas of the time-

frequency plane whilst concentrating the signal around its instantaneous frequencies (this is explained 

in details in the method section) [206].  

 

5.3 Materials 

5.3.1 Functional and anatomical datasets 

Different functional and anatomical datasets along with several realistic simulated EEG datasets have 

been utilized in various parts of this study. The real-life functional and anatomical datasets were 

kindly provided by Dr. Sampsa Vanhatalo4. Four neonatal high-density EEG recordings were 

                                                
4 Department of Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, PO Box 280, FIN-00029 

HUS, Finland 



obtained from four different infants using 64-channel hdEEG caps for neonates (Waveguard, ANT 

B.V., Enschede, The Netherlands, www.ant-neuro.com) in the Department of Children's Clinical 

Neurophysiology (Helsinki University Central Hospital) by means of a full-band EEG [207] 

acquisition system with a sampling rate of 512 Hz (Cognitrace; ANT B.V., Enschede, The 

Netherlands, www.ant-neuro.com). A T1-MRI of a full-term healthy infant (one of those four for 

whom neonatal EEG was recorded) was acquired using a Philips 3T scanner in Helsinki University 

Central Hospital. Each slice was 240 × 256 pixels with a pixel resolution of 1 × 1 mm, and slice 

thickness of 0.9 mm.  

 

 

5.3.2 Realistic simulated EEG 

Realistic simulated EEGs are those simulated EEGs which have been generated using a realistic 

model of volume conduction [208]. The head model generation is explained in later sections. The 

head model parameters utilized in this simulation, as was shown in previous chapters, closely 

approximate real neonatal head parameters [32]. Several methods have been introduced to estimate 

  

Figure 19 - Two examples of focal transients marked by a children’s neurophysiologist  

 shown by pink squares. Up) The raw nEEG in black and its median in red. Down) nEEG after removing its median. 

Removing the median of data highlights the focal transient as explained in Chapter 2 and [151]. 
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proper EEG source time series. Time series used in this simulation were adopted from [72]. They 

result in realistic simulated EEG generated by three sources over various locations of cortex 

 
 

 
𝑊𝑗[𝑛] = 𝑘𝑗 × 𝑒

[
−(𝑛−𝜉𝑗)

2

2𝜌𝑗
2 ]

× 𝑐𝑜𝑠 (2𝜋(𝛼𝑗𝑛
2 + 𝛽𝑗𝑛 + 𝜀𝑗)) j=1,2,3 

(40) 

 

 

A range of values of the parameters {𝛼, 𝛽, 𝜌, 𝜉, 𝑘, 𝜀} were used in different simulations (parameters 

represent different time and frequency characteristics such as phase shift, frequency shift etc.) to 

generate different spacing in time and frequency or the strength and weakness of sources. These 

source signals were employed in the forward model to generate the scalp potentials. White Gaussian 

noise was then added to the resultant potential signals to yield a synthetic EEG with different SNR 

values (values of SNR from 0 dB to -15 dB were selected to measure the performance). Figure 20 

illustrates a typical simulated multichannel EEG, along with the averaged TFD over all channels. 

 

  
 

Figure 20 - Left) Selected channels from simulated EEG generated with 3 sources and SNR=-8 dB Right) The averaged 

time frequency distribution of all EEG channels using Extended Modified B Distribution kernel with typical 

kernel parameters α = 0.1 and β = 0.3 (explained in  section 5.4.3) . 
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5.4 Methods 

The method used to implement the TF-MUSIC algorithm with automatic ROI identification is 

illustrated in Figure 21. First the forward model, that constitutes an input to the TF-MUSIC algorithm, 

is detailed. Then the other input, starting from nEEG dataset, passing through the pre-processing stage 

and finally time frequency analyses are described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 - The implementation of TF-MUSIC algorithm with automatic ROI identification. The inputs include anatomical 

(right input) and functional (left input) data. The identification of ROIs in the time-frequency plane is implemented by 

means of the object definition in image processing techniques.  
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5.4.1 Implementation of the forward model 

Implementation of forward problem solution starts with segmenting MRI of the neonatal head. 

Neonatal magnetic resonance images have much lower white / grey matter contrast compared to 

adults (see Figure 22 for comparison). For this reason, none of the existing automatic segmentation 

software tools currently used for adult brain MRI segmentation could be successfully applied to 

segment the neonatal MRI. Therefore 176 slices covering the cranium from the full image stack were 

manually segmented into 5 compartments (scalp, skull, CSF, brain, eyes) using the FSL software 

(Analysis Group, FMRIB, Oxford, UK, http://www.fmrib.ox.ac.uk/research/analysis-group) [163]. 

The fontanelles gap in the skull was manually closed, as it was shown in Chapter 2 that it is not 

significantly different, in terms of electrical conductivity, from other skull regions [151]. 

 

 
 

  

Figure 22 - Comparison of adult (top panel) and neonatal (bottom panel)  

(Images generated using Tools for NIfTI and ANALYZE image by Shen, J. ) 
 

 

Brainstorm software [165, 209] was then used to construct a 3D mesh that fit the different layers of 

the newborn’s head. A sample mesh is illustrated in Figure 23.  

 

 

 



 

 
 

Figure 23 - a) Neonatal head tissues and b) their border surfacesconstructed through 3D meshes including Brain 

(yellow), the inner-skull (red) and outer-skull (green) and the scalp (dark pink) 

 

Utilising this software, the 3D surfaces of the brain are built inner-skull, outer-skull and scalp, to 

designate the brain, CSF, skull and scalp tissues’ borders (see Figure 23). The initially generated 

meshes were composed of 49010 vertices (98016 faces) for the brain, 49366 vertices (98728 faces) 

for the inner-skull surface, 105902 vertices (212356 faces) for the outer-skull surface and 64612 

vertices (129220 faces) for the scalp. A down sampling stage (reduction of the number of vertices) 

was undertaken to reduce the computational load. The final mesh comprised 6001 vertices (11998 

faces) for the brain and 1922 vertices (3840 faces) for each of the inner-skull, outer-skull and scalp 

surfaces (see Figure 24).  

It was shown in Chapter 4 that the depth of the dipole representing the cortical source is usually 

around 10 mm. Consequently, the outermost cortical surface was selected for the distribution of 

hypothetical dipoles, i.e., the source space. Each node of cortex mesh hosted a dipole normal to the 

local cortex as depicted in Figure 25. The average distance between each node and its nearest 

neighbour was about 1.5 mm. Because of the anatomical arrangement of the nerve cells that give rise 

to the scalp potentials [1], only normal orientation for the cortical dipoles was considered.  

Brain

CSF

Skull

Scalp

a)

b)



  

 

 

 

  

 

 

 

Figure 24 - a) The original surface mesh constructed for the brain(Composed of 49010 vertices) and down sampled 

surface meshes for Brain, inner-skull, outer-skull and Scalp. a) Brain: 6001 vertices (11998 faces) b) inner-skull: 

1922 vertices (3840 faces) c) outer-skull: 1922 vertices (3840 faces) d) Scalp: 1922 vertices (3840 faces) 

 

In order to capture the full spatial information content of nEEG signal, as indicated in Chapter 3, a 

64-channels electrode position was selected for the calculation of the LFM.  

 

 

 

 

 

Figure 25 - The source space distributed on the cortical surface. The average distance between each nearest pair of 

sources is about 1.5 mm. The arrows indicate the direction of hypothetical dipoles which are normal to the local cortical 

surface  
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The last step was to find the boundary conditions in Eq. (34), i.e., assign conductivity values for the 

pair of volumes in two sides of each boundary, and solve Eq. (34). The estimated range of the neonatal 

skull conductivity value was shown in Chapter 4 to be around 0.06–0.2 S/m. A value of 0.1 S/m was 

selected for the neonatal skull conductivity and for brain and scalp conductivities, (0.33 S/m) and 

(0.33 S/m) were used respectively. Adopting adult conductivity values for neonatal tissues other than 

skull is acceptable as skull is the only layer where conductivity substantially changes during 

development [32]. 

Since it was not possible to estimate the exact spatial distribution of the conductivity (it could only 

be estimated in the layer level), applying FEM would not produce a better result than BEM; which is 

computationally more efficient. OpenMEEG forward solver software [210] was used to calculate the 

forward solution through BEM. Finally the forward solution (the gain matrix or LFM) was generated 

which included all the gain values from 6001 individual sources to each of 64 electrode positions on 

the scalp and the resulting lead field matrix was of the dimension 64 × 6001 .  

 

 

5.4.2 EEG Pre-processing  

Pre-processing is often the first step in processing EEG data as depicted in the left side of Figure 21. 

It includes selection of artefact free epochs and filtering. The ASA review software (ANT B.V. 

Enschede, The Netherlands www.ant-neuro.com) was used to visually inspect each dataset to select 

artefact free epochs. A 30 Hz low-pass Finite Impulse Response (FIR) filter was then used to remove 

mains artefact and higher frequencies. All subsequent analysis was performed in the MATLAB 

(MathWorks, Natick, Massachusetts, U.S.A) using customized scripts and open source toolboxes as 

explained. 

 

 



5.4.3 Computing the EEG Inverse solution: The TF-MUSIC algorithm with automated ROI 

identification 

The computed LFM and pre-processed EEG were used by the algorithm to compute EEG the inverse 

solution as indicated in Figure 21. As mentioned, TF-MUSIC belongs to the spatio-temporal approach 

of ESL which uses temporal information to estimate signal subspace over spatial domain. Therefore, 

it uses the expansion of TFD to spatial domain, i.e., spatial time-frequency distribution (STFD) of 

signal for this purpose. This is depicted in the left path, where the multi-channel EEG data is 

processed by the STFD block after the preprocessing stage. Since all the analysis was performed in 

the MATLAB using sampled discrete-time EEG signals, only discrete TF-MUSIC formulation is 

explained. The discrete form STFD of multi-channel EEG signals 𝑿[𝑛] using a quadratic TFD is 

defined as [188]  

 

 

 

where 𝒁𝑥[𝑛] is the analytic associate of 𝑿[𝑛], [𝝆𝐱𝐱[𝑛, 𝑘]]
𝑖𝑗

= 𝜌x𝑖x𝑗
[𝑛, 𝑘], for 𝑖, 𝑗 = 1,… ,𝑀, ∗

𝑛
 

indicates convolution in n, and −𝑯 denotes the conjugate transpose. The diagonal elements of 𝝆𝑿𝑿 

are auto-TFDs of 𝑿[𝑛] channels while its off-diagonal terms are the inter-channel cross-TFDs 

of 𝑿[𝑛]. The term 𝐺[𝑛,𝑚] is the discrete time-lag kernel associated with a specific quadratic TFD. 

Several TFDs were used in the context of nESL. Among those are the Wigner-Ville distribution 

(WVD) [191, 197, 198], the Spectrogram (SPEC) [188], the modified B-distribution (MB) [188], the 

Pseudo Wigner-Ville (PWVD) [187], the Choi-Williams distribution (CW) [188], and the extended 

modified B-distribution (EMBD) [211]. Table 1 lists the time-lag kernels of these TFDs along with 

the typical parameters used in the implementations performed in this study. 

  

 

 

 

 𝝆𝐱𝐱[𝑛, 𝑘] = 2DFT
𝑚→𝑘

{𝐺[𝑛,𝑚] ∗
𝑛

(𝒁𝑥[𝑛 + 𝑚]𝒁𝑥
𝐻[𝑛 − 𝑚])} (41) 



Table 1 - Discrete time-lag kernels and the kernels’ parameters of the TFDs used in this study 

 

TFD 

 

time-lag Kernel Typical Kernel Parameter(s) 

Spectrogram 𝑤[𝑛 + 𝑚]𝑤[𝑛 − 𝑚] 𝑤 = 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑁 4⁄ ) 

Wigner-Ville δ[𝑛] - 

Modified B 
cosh−2β[n]

∑ cosh−2β[n]𝑛

 𝛽 = 0.01 

Pseudo Wigner-Ville 
cosh−2β[m]

∑ cosh−2β[m]𝑚

 𝛽 = 0.01 

Choi-Williams 
√πσ

2|𝑚|
exp [

−𝜋2𝜎𝑛2

4𝑚2
] ∗∗ [𝑠𝑖𝑛𝑐[𝑛]𝑠𝑖𝑛𝑐[𝑚]] 𝜎 = 11 

Extended Modified B 
cosh−2α[n]

∑ cosh−2α[n]𝑛

cosh−2β[m]

∑ cosh−2β[m]𝑚

 𝛼 = 0.1, 𝛽 =  0.3  

∗ ∗ indicates the convolution in time and lag domains 

 𝑛 is the discrete time, 𝑚 is the discrete lag and 𝑁 is the length of the signal 

 

 

Applying the STFD transform on Eq. (39) results in: 

 
 

 
𝛒𝐱𝐱[𝑛, 𝑘] =  (𝚲𝚽)𝛒𝐒𝐒[𝑛, 𝑘](𝚽T𝚲𝑇) + (𝚲𝚽)𝛒𝐒𝐍[𝑛, 𝑘] + (𝚽T𝚲𝑇)𝛒𝐍𝐒[𝑛, 𝑘] + 𝛒𝐍𝐍[𝑛, 𝑘] (42) 

 

 

After calculating the STFD, the ROIs are identified. The ROI in a TFD is a portion of plane which 

contains the signal’s most powerful components. Since object detection and identification is a well-

established technique in the image processing and there are currently well developed methods that 

can accurately identify objects in the images, ROIs are defined and determined in this study based on 

the concept of object in image (Eq. (44)). The procedure for identifying ROIs using image processing 

techniques is depicted in Figure 26. Since time-frequency distribution of a 𝑀-channels discrete-time 

EEG will result in 𝑀 time-frequency distributions, extracting characteristic of the signal of interest 

requires a further process to generate single representation instead of the 𝑀 time-frequency 

distributions. A possible solution, as used in [72], is to calculate the singular value decomposition of 

the 𝑀-channels discrete-time EEG and generate the time-frequency distributions of the significantly 

large singular values of temporal singular vectors. However, there are other methods that can be used 



for this purpose. The method used in this study includes averaging of the 𝑀 time-frequency 

distributions over channels. In this method first, auto TFDs of all channels are separately calculated 

then they are averaged over the channel to form a single averaged TFD: 

 

   

 

𝜌av[𝑛, 𝑘] =  
1

M
∑𝜌𝑥𝑖

[𝑛, 𝑘]

𝑀

𝑖=1

 

 

(43) 

 

in which 𝜌𝑥𝑖
[𝑛, 𝑘] is the TFD of 𝑖𝑡ℎ channel and 𝜌av[𝑛, 𝑘] is the averaged TFD. The averaged TFD is 

then converted to a binary image using thresholding. Initially, the threshold was set to 50% of the 

maximum of 𝜌𝑥𝑖
[𝑛, 𝑘] (the data was assumed artefact free, while in the case of data with artefact the 

median may result in faster convergence). In the next step, objects, connected portions of the image 

that can be interpreted as a single unit, are processed in the binary image. Then all connected 

components (objects) that include fewer pixels than a threshold (created mostly by noise) are 

removed. Next, disjointed areas of a single object are connected through morphological operations. 

In this manner, the borders of objects are determined, objects are dilated and the interior gaps of the 

object are filled. In the last step the number of connected objects is found. The number of objects is 

compared to the number of ROIs determined beforehand. If they match, the area of each ROI 

establishes the output of the algorithm. Otherwise, the value of the threshold is varied according to 

the number of objects. If it is greater than the number of ROIs, the threshold value increases, so fewer 

objects are identified and vice versa. The loop is repeated until the number of objects and ROIs are 

equal. A ROI of the focal transients of true nEEG that are identified using this method is depicted in 

Figure 27.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 𝜻 identified ROIs 𝛀, which are based on 𝜻 objects 𝚯 determined through steps explained above, 

are used to specify the integration area of STFD’s (for each ROI) as:  

 

Ω = {(𝑛, 𝑘) 𝑛⁄ , 𝑘 ∈ [Θ]}, 𝑖 = 1,2, … , 𝜁

𝑁Ω = 𝑁(Ω) = 𝑎𝑟𝑒𝑎{Θ}
 (44) 

𝚪𝑿𝑿 = 
1

𝑁Ω

∑ 𝛒𝐱𝐱[𝑛, 𝑘]

Ω

 
(45) 

 

 
 
 

Figure 26 - Identifying ROIs in the TFD of the lowpass filtered EEG by means of image processing techniques.  
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Figure 27 - The border of the automatically identified ROI of a focal transient in newborn EEG is shown in black. The 

red rectangle indicates the ROI limits in time and frequency. 

 

 

 
𝚪𝑺𝑺 = 

1

𝑁Ω

∑ 𝛒𝐒𝐒[𝑛, 𝑘]

Ω

 
(46) 

 
𝚪𝑵𝑺 = 

1

𝑁Ω

∑𝛒𝐍𝐒[𝑛, 𝑘]

Ω

≈ 〈𝛒𝐍𝐒[𝑛, 𝑘]〉 = 𝟎 
(47) 

 
𝚪𝑺𝑵 = 

1

𝑁Ω

∑ 𝛒𝐒𝐍[𝑛, 𝑘] ≈

Ω

〈𝛒𝐒𝐍[𝑛, 𝑘]〉 = 𝟎 
(48) 

 
𝚪𝑵𝑵 = 

1

𝑁Ω

∑𝛒𝐍𝐍[𝑛, 𝑘] =  𝜎𝑁𝑁 
2 𝑰

Ω

 
(49) 

 

in which 〈 〉 indicates the ensemble average, and by assuming ergodic property for noise, the 

ensemble average is approximated with the average over ROI, and 𝜎𝑁𝑁 
2  is the noise power density in 

the identified region. Hence the Eq. (39) will convert to 

 

 𝚪𝑿𝑿 = (𝚲𝚽)𝚪𝐒𝐒(𝚽
T𝚲𝑇) + 𝜎𝑁𝑁 

2 𝑰,            or 

𝚪𝑿𝑿 =  𝐋𝚪𝐒𝐒𝐋
T + 𝜎𝑁𝑁 

2 𝑰 

(50) 

 

which states the relationship between source and measurement covariance matrices in the time-

frequency domain. Derivation of Eq. (50) and its final solution, i.e., the TF-MUSIC dipole fitting 

metric, is carried out using the following realistic assumptions: 
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 Dipole sources do not change their orientation (normal to the cortex) 

 The noise generated by the EEG electrodes’ hardware is the only noise source so 

 The noise is white and Gaussian (Eq. (49)) 

 Noise and signal are not correlated in the time and frequencies limited by the ROIs (Eq. 

(47) and Eq.(48))  

If ROI includes θ sources and 𝚺 is the matrix of eigenvectors of 𝚪𝑿𝑿, then it can be stated in terms of 

𝚺𝑆 and 𝚺𝑁 that their column span is equal to the signal and noise subspace respectively 

 

 
 𝚺 =  [𝚺𝑆, 𝚺𝑁] = [[𝒖1, … , 𝒖θ], [ 𝒖θ+1, … , 𝒖𝑀]] 

(51) 

 

where 𝒖𝑖 , 𝑖 = 1,… , θ and 𝒖𝑗 , 𝑗 = θ + 1,… ,M are signal and noise level eigenvectors respectively [72]. 

In order to drive the final TF-MUSIC metric, Eq. (50) is rearranged as 

 

 (𝚪𝑿𝑿 − 𝜎𝑁𝑁 
2 𝑰) =  𝐋𝚪𝐒𝐒𝐋

T 
(52) 

 

which by multiplying its both sides with a noise level eigenvector will result in: 

 

 (𝚪𝑿𝑿 − 𝜎𝑁𝑁 
2 𝑰)𝒖𝑗 =  𝐋𝚪𝐒𝐒𝐋

T𝒖𝑗 , 𝑗 = θ + 1,… ,M 
(53) 

 

Since 𝒖𝑗 , 𝒋 = θ + 𝟏,… ,M is a noise level eigenvector of 𝚪𝑿𝑿, left side of the above equation is zero 

and hence  

  𝐋𝚪𝐒𝐒𝐋
T𝒖𝑗 = 𝟎, 𝑗 = θ + 1,… ,M 

(54) 

which indicates  
  𝐋T𝒖𝑗 = 𝟎, 𝑗 = θ + 1,… ,M 

(55) 

 

This equation indicates that the orthogonality of LFM and noise level eigenvectors can be checked to 

estimate the source locations [72]. Therefore, the dipole fitting metric / localizing function can be 

derived as a measure of orthogonality between noise subspace and the LFM: 



 

 

 
 𝑱(𝒙, 𝒚, 𝒛) =

1

𝜆𝑚𝑖𝑛{𝑳(𝑥, 𝑦, 𝑧)𝑇 × 𝚺𝑁 × 𝚺𝑁
𝑇 × 𝑳(𝑥, 𝑦, 𝑧), 𝑳(𝑥, 𝑦, 𝑧)𝑇 × 𝑳(𝑥, 𝑦, 𝑧)}

(𝒙, 𝒚, 𝒛) = {(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) ∈ 𝐿𝐹𝑀 𝑖, 𝑗, 𝑘 = 1,2, … , 𝐺⁄ }

  

 

 

(56) 

 

 

where 𝜆min is the minimum generalized eigenvalue of the matrix pair in the bracket [72] and G is the 

number of grid points modelling the brain (these are the grid or mesh points that were generated in 

the forward model where the LFM was calculated and depicted in Figure 25). Calculating this 

function / metric for each ROI over all grid points (source space) will result in a map with a peak at 

or near the location of the corresponding source. When the number of ROIs is greater than one, the 

metric 𝑱 is calculated as a function of source space for each ROI separately and a distinct TF-MUSIC 

metric map is depicted for each of them. A sample TF-MUSIC metric map for the case of 3 sources 

is depicted in Figure 28 along with the metric of the MUSIC for the same dataset in which the 3 

sources are simultaneously identified as the 3 first values of the metric. Each map consists of the 

value of TF-MUSIC (MUSIC) metric in each grid location. All the STFDs in our implementation 

were calculated using “a computationally efficient implementation of quadratic TFDs” as presented 

in [212, 213].  

 

5.4.4 Performance metric and evaluation 

Throughout this and subsequent sections, TF-MUSIC refers to the algorithm with automatic ROI 

identification, unless otherwise stated. In this section, first a performance metric is derived for 

measuring the accuracy of the implemented source localization technique, and next the validation 

methodology is explained.  

 



 
 

Figure 28 - The TF-MUSIC and MUSIC metrics for a simulated EEG using 3 sources. Blue maps belong to the TF-MUSIC 

where each source is identified in a separate peak of TF-MUSIC metric calculated in ROI1, ROI2, and ROI3 (happening in 

grid points N1=1129, N2=1124 and N3=2421 respectively). The red map is the output of the MUSIC algorithm for the same 

data in which sources are identified as the 3 first peaks of the MUSIC metric (the same grid points, N1, N2, and N3). 

 

 

 

5.4.4.1 Performance metric 

 

There is no current performance metric for the evaluation of MUSIC and TF-MUSIC algorithms. The 

most common ESL error parameter is the dipole localization error which is only applicable if there is 

a knowledge of the original sources [36, 214, 215]. Dipole localization error is calculated for the 

simulated EEGs where a dipole (original source) is used to generate EEG, then by applying the ESL 

algorithm, dipole location / orientation (source) is estimated. The error is then defined as the Euclidian 

distance between the original and estimated dipole locations. I, here, introduce a new performance 
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metric which considers the dipole localization error and two other effective factors. Since there is no 

accurate knowledge of the original sources in the real life EEGs, this performance metric is only 

applicable on simulated EEG datasets where positions of original sources are known. It consists of 

three effective parameters in the EEG source localization accuracy: 

- Distance: Distance or dipole localization error is the most trivial parameter in determining the 

ESL error. As mentioned, it is calculated as the Euclidian distance between the estimated and 

original source locations. For the MUSIC and TF-MUSIC algorithm, the locations of the 

maximums of the MUSIC and TF-MUSIC metrics (Eq. (56)) are defined as the location of the 

estimated sources (see Figure 28 for an example). Hence the distance between the location of 

each maximum of metric and its corresponding original source (which give rise to the signal 

in corresponding ROI) is defined as the distance error which can be calculated through 

Eq.(59).  

- Current intensity in the location of the original sources: This is another effective parameter 

in the accuracy of EEG source localization. If the source distribution is estimated accurately 

by an ESL algorithm, the maximum of the current intensity will happen in the location of the 

original source. Hence, the ratio of current intensity in the location of original source to the 

maximum current intensity is a measure of EEG source localization accuracy. As mentioned, 

in MUSIC and TF-MUSIC algorithms, the output is the metric (Eq. (56)) and the location of 

its maximum is defined as the location of estimated source. If source localization is done 

without error, the maximum of metric should happen in the location of the original source. 

Consequently the ratio of metric magnitude in the location of original source to metrics’ 

maximum is a measure of EEG source localization accuracy. 

- Presence of other sources: This is another parameter effective in the ESL accuracy which 

takes into account the similarity between estimated and original current distributions. As 

mentioned, magnitude of the current intensity in the location of original source is an effective 

parameter in ESL accuracy. Therefore, the number of locations (in the source space) with a 



current intensity magnitude greater than its magnitude in the location of the original source 

indicates how similar the estimated and original current distributions are. This parameter 

indicates how many stronger sources than the original source are estimated by an algorithm. 

If two algorithms estimate the same current intensity in the location of the original source, the 

one which estimates more locations in the source space with greater current intensity 

magnitudes includes bigger error. Again for MUSIC and TF-MUSIC, in which output is the 

metric stated in Eq. (56), these calculations are performed using the metric’s magnitude rather 

than current intensity magnitude. Hence, the number of source space locations (grid or mesh 

points) in which magnitude of metric is greater than its magnitude in the location of original 

source indicates how different the current distribution is estimated by the algorithm. In this 

manner, the order or “Rank” of the metric’s magnitude in the original source location 

contributes to the performance metric. 

These parameters are contributed in a single ESL performance metric through below empirical 

formulation (Eq. (57)). Different combinations of the above parameters through sum or product were 

possible along with various weighting functions and coefficients. A scenario was designed to choose 

the best combination (sum or product), weighting functions and coefficients. In this scenario, 

simulated EEGs of different SNRs were generated by NOrig original sources, according to the 

previously explained method, and the source space (the brain) was modelled using a grid of NGrid 

points. Both MUSIC and TF-MUSIC algorithms were applied on the simulated EEGs and the 

corresponding modelled source space. Then parameters of sources estimated by the algorithms were 

compared to the original sources through these performance metrics. The value of performance metric 

was supposed to vary from 0 to 1 where 0 indicates the maximum localization error and 1 indicates 

errorless localization (estimating the source in the location of the original source). In order to 

introduce the high localization errors (performance = 0) EEGs of very low SNRs were generated (less 

than -15dB) which are much lower than normal EEG SNRs. It was supposed that the localization of 

each source equivalently affects the performance and the final performance was calculated as the 



average of localization performances of all sources. The final selected formulation and weighting 

coefficients are explained in the equations (57) to (60) as 

 

 P𝑡𝑓𝑚 =
1

NOrig

× ∑ w1 × (1 −
Distmax(𝑘)(𝑘)

max(Dist(k))
) + w2 ×

|JOrig(k)(𝑘)|

max(|J(k)|)
+ w3 × (1 −

RankOrig(k)(k) − 1

NGrid

)

NOrig

k=1

 (57) 

 

in which Dist (k) is the distance to the kth original source from each point of the grid 

 

 Dist(k) = √(x − xOrig(k))
2
+ (y − yOrig(k))

2
+ (z − zOrig(k))

2
 (58) 

so 

 Distmax(𝑘)(k) = √(xmax (k) − xOrig(k))
2
+ (ymax (k) − yOrig(k))

2
+ (zmax (k) − zOrig(k))

2
 (59) 

 

is the Euclidian distance from kth original source to the point where the maximum of the localizing 

function (metric) in the kth region of interest occurs. The other remaining terms are 

NGrid: Number of grid points (6001 in our generated source space) 

NOrig: Number of original sources (3 in the case of our simulated EEGs) 

J(k): The TF-MUSIC metric (localization function) as per Eq. (56) for the kth ROI, and hence 

JOrig(k)(𝑘) is the value of the metric in the location of the kth original source (corresponding to the kth 

ROI) 

Rank(k) : The order of grid points based on the value of the TF-MUSIC metric in the kth ROI 

so, RankOrig(k)(k) indicates the order of the kth original source in the kth ROI.  

The final selected Weighting functions: 



 

𝑊1 = a1 ∗  e
⌊𝑏1−

Distmax(𝑘)(𝑘)

max(Dist(k))
⌋

𝑊2 = a2 ∗ 𝑒
⌊
|JOrig(k)(𝑘)|

max(|J(k)|)
−𝑏2⌋

𝑊3 = a3 ∗ 𝑒
⌊
𝑏3−𝑅𝑎𝑛𝑘𝑂𝑟𝑖𝑔(𝑘)(𝑘)

𝑁𝐺𝑟𝑖𝑑
⌋

a1 =  0.6, a2 =  0.35 , a3 =  0.05, b1 = 0.2, b2 = 0.6, b3 = 50
 

 (60) 

 

in which ⌊𝑥⌋ indicates floor of 𝑥 (the largest integer not greater than 𝑥). Each weighting function 

consists of two parts. The coefficients ai, 𝑖 = 1,2,3, ∑ ai = 1𝑖  indicate the importance of each term in 

relation to the others and the exponential part is selected to guarantee high values are not assigned 

when the estimated source locations are at a far distance from the original sources or the estimated 

and original source distributions are very different. For instance, when the estimated and original 

source are in a distance equal to half a maximum distance in the brain, the performance of the part 

relating to distance in Eq. (57) without weighting function 𝑊1 i.e. 

 

 (1 −
Distmax(𝑘)(𝑘)

max(Dist(k))
)  

 

 will be 0.5 which means the overall performance metric of this source is greater than 0.5. However, 

the exponential part of the weighting function 𝑊1 i.e. 

 

 
e
⌊𝑏1−

Distmax(𝑘)(𝑘)

max(Dist(k))
⌋
 

 

 

modifies the value of this part (the part relating to distance) to 0.22 which looks more reasonable for 

such a large localization error.  

 

 

 

 

 

 



5.4.4.2 Validation of the proposed ESL methodology 

There is no established gold standard in ESL for the validation of different localization methods or 

for comparing their relative merits. The main difficulty is finding the true location of the sources in 

the case of real life data. Consequently, in most cases inverse solutions are validated and evaluated 

through simulated datasets. In this technique, as explained in previous sections, first the head model 

(LFM) is calculated in the forward procedure. Then, one or more current dipoles are located in the 

grid points (the source space as explained earlier) to generate potential on the scalp. Next, the 

corresponding potentials due to these dipolar sources are computed over the scalp. Finally, white 

Gaussian noises (WGN) with different variances are added to the simulated potentials to generate 

realistic simulated EEG with various SNRs and the localization error is calculated for each signal. 

ESL Performance measurement using variation of the SNR is a common methodology in this field 

that has been utilized in many previous studies [215-220]. However, selecting a range for the variance 

or standard deviation of noise is not immediately obvious. This is mainly because of the widespread 

practice of averaging experimental data, EEG sensor’s patterns and models and also other 

experimental parameters in collecting EEG that can affect the noise level in the measurement data 

[215]. In [215] they used a dipole of intensity 10 nA-m located in the most exterior layer of the cortex 

(near CSF) which gave rise to potential over scalp with roughly 4 µV peak in nearest EEG electrode. 

They added WGN with a standard deviation of 0.4 µV but they did not provide more information 

about the average signal power that can be compared to noise power. In [220] they applied a ratio of 

noise standard deviation to the signal’s standard deviation equal to 0.5 (equivalent to SNR = 6dB) in 

their simulations for the outer most cortical sources. A value of 3 (equivalent to SNR ≈ -10 dB) as 

the noise standard deviation to the signal’s standard deviation ratio was also used in their simulations 

to model deeper sources in the brain.  

The first validation objective in this study was to investigate the potential of the proposed method to 

reconstruct the generators of realistic simulated EEG and to measure the accuracy of the method 

through the simulated signals. Therefore, a series of realistic simulated EEGs were generated as 



explained above with SNRs ranging from 0 dB to -15 dB, and the performance of the TF-MUSIC and 

MUSIC algorithms were calculated for each signal. The proposed performance metric, as mentioned, 

not only could measure the dipole localization error (distance parameter) but it also enabled the 

measurement of similarity between the reconstructed and original source distributions taking into 

account the two other parameters outlined above.  

Although realistic simulated EEG may be used for initial validation, it is unable to model the complex 

distributions and interactions of active sources in the brain. There are assumptions within each ESL 

method to estimate the source distribution; real EEG scenarios are necessary to evaluate the validity 

of these assumptions. In fact, the main reason for creating a new ESL is to apply it to actual EEG data 

to solve a specific real physiological inverse problem. Thus a complementary part of the evaluation 

procedure in this study is the assessment using real data such as VEP where the dominant sources are 

almost known (cortical representations are known). 

 

5.5 Results and discussions  

5.5.1 Validation and comparison datasets 

Both simulated and actual EEG datasets were used for the evaluation of the method applied through 

realistic neonatal head model. Realistic simulated EEG was discussed in section 5.3.2. Nine different 

sets of parameters of 3 sources, along with the realistic head model produced in the forward model, 

were used to generate realistic simulated EEGs. The locations of sources were in the outer most layer 

of the cortex, the same as depicted in Figure 29. These simulated datasets were utilized in different 

parts of the evaluation procedure. It is clear these choices of source parameters are not the only 

possibility and there are many other sets of parameters that can be used to generate realistic simulated 

EEGs. Hence, the performance measurement and the evaluation procedure in this study only indicate 

the capacity of the proposed method.  

The neonatal VEP EEG was the only available real neonatal EEG dataset that was used to evaluate 



the method. It was provided by Dr. Sampsa Vanhatalo5. This full-term newborn EEG recording with 

21 channels was obtained from EEG archives of the Department of Children’s Clinical 

Neurophysiology (Helsinki University Central Hospital, Finland). Visual stimulus of 1 Hz was used 

to evoke EEG during sleep. The EEG was recorded in a rate of 256 Hz using a NicoOne EEG 

amplifier (Cardinal Healthcare, USA) and EEG caps (sintered Ag/AgCl electrodes; Waveguard, 

ANT-Neuro, Germany) with electrodes positioned according to the international 10-20 standard.  

The comparison between the proposed method and other current ESL techniques was performed only 

using realistic simulated EEGs which included exact source locations. 

 

 

5.5.2 Validation results 

Results of applying the proposed method on the simulated nEEGs indicate that it is possible to 

localize 3 different simultaneous sources precisely using TF-MUSIC algorithm implemented using a 

typical TFD kernel in the low noise conditions (for instance at SNR = -5 dB) (see Figure 29 and 

Figure 30). As mentioned, a value of 6dB or more [220] is normally used for modelling the SNR in 

the simulated EEGs for an outer most cortical layer source. However, in order to model deeper 

sources, this value is modified and smaller SNRs are used. Consequently, the SNR variation can 

reasonably approximate a range of cortical and deeper sources and so the performance of the ESL 

algorithm can be estimated for these sources. 
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Figure 29 - Typical source reconstruction by TF-MUSIC for realistic simulated neonatal EEG in SNR = -5 dB (radial 

dipole orientation). The red spheres indicate the location of original sources and the green circles are source locations 

calculated by the TF-MUSIC algorithm (implemented using EMBD kernel with typical parameter as mentioned in Table1) 

 

Although the above illustration depicts the capacity of the method for optimization and enhancement, 

a single implementation of algorithm cannot explain the overall performance and merit of the 

algorithm. In order to create a better illustration of the algorithm’s performance it is preferred to 

generate a range of signals, implement the algorithm using various kernels, and calculate performance 

for each one. The performance value in each SNR is then the average of all performance values in 

the same SNR.  

 

 

 

 



 
 

 

Figure 30 - The performance of the TF-MUSIC algorithm averaged over different kernels  (TF-MUSIC was 

implemented using the 6 kernels listed in Table 1 and the performance was calculated for each one and then their 

average was calculated) compared to the MUSIC algorithm 

 

 

Therefore, the performance of the TF-MUSIC algorithm for SNR values from 0 dB to -15 dB was 

calculated through averaging over various kernels and depicted in Figure 30. In these SNR values, 9 

different sets of parameters (as mentioned earlier) were applied to generate 9 different realistic 

simulated EEGs. In this way, 9 EEG datasets with various spacing between their signatures in the 

time-frequency plane were produced in the same SNR value. Figure 31 depicts two samples from 

such EEG datasets. Each generated signal was analysed using all kernels listed in Table 1. In this way 

the TF-MUSIC algorithm was implemented using 6 kernels and applied to each of the 9 signals and 

the performance was calculated. In this manner for the TF-MUSIC algorithm 54 performance values 

were generated in each single SNR in Figure 30 and the corresponding performance was calculated 

as the average of these 54 performances. A similar procedure took place for the MUSIC algorithm in 

which the 9 generated signals were analysed by the MUSIC algorithm and performance was 

calculated for each one. Hence, the value of performance for the MUSIC was averaged over 9 values. 

As seen in Figure 30, the performance of the TF-MUSIC algorithm in SNR equal to -5 dB is about 
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0.9 (90%) which is almost 25% better than the MUSIC algorithm. According to the performance 

metric formulation, the 90% performance value for a 3-sources scenario is equivalent to localizing 

two sources in their original locations and localizing the third source with error. The performance of 

the MUSIC algorithm in the same SNR is about 65% that can be interpreted (based on performance 

metric formulation) as error-less localization of one source and localizing two sources with error.  

 

 

  
𝛼 = [−18  55  51.25], 𝛽 = [−35  75  43.75] 

𝜌 = [ 0.1   0.2   0.1], 𝜉 = [0.25  − 0.2  0.2] 

𝑘 = [ 1.5  1.5  1.5], 𝜀 = [  0     0     0] 

𝛼 =  [−23    50    55], 𝛽 = [−50    70    50] 

𝜌 = [ 0.1   0.2   0.1], 𝜉 = [0.4  − 0.15  0.425] 

𝑘 = [ 1.5  1.5  1.5], 𝜀 = [  0     0     0] 

 
Figure 31 - Time-frequency distribution of the two different samples from realistic simulated EEGs with SNR = -8 dB, along 

with parameters corresponding to the three sources used for generation of each one. The time-frequency representation is 

theaverage of TFDs of all channels calculated using Pseudo Wigner-Ville kernel with β=0.01. 

 

 

5.5.3 Comparison with existing ESL methods (other than MUSIC) 

The method was also evaluated by comparing to three distributed sources (imaging) approaches, 

standardized Low Resolution brain Electromagnetic Tomography (sLORETA) [221], weighted 

Minimum Norm Estimate (wMNE) [222, 223] and dynamic Statistical Parametric Maps (dSPM) 

[224]. These comparisons were also performed using realistic simulated EEG datasets which could 

provide a standard base for the comparison. These algorithms are implemented in the Brainstorm 

software and the outputs were depicted in the Brainstorm format. Though, the TF-MUSIC algorithm 

was implemented using scripts in the MATLAB environment and its output was loaded into the 
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Brainstorm software for the uniformity of illustration. 

Although the output of these algorithms is different from TF-MUSIC, this comparison is still 

meaningful. While the output of the distributed sources methods such as sLORETA or wMNE shows 

a temporal current density in the brain [10], the output of TF-MUSIC is a metric which indicates 

merit of each point as the candidate source location. In the case of imaging methods the localization 

error is calculated based on the properties of the maximums of estimated current source distribution, 

and in the case of TF-MUSIC also it is the maximum which is the base of calculations (as mentioned 

in performance metric formulation) [13]. This similarity can be used to establish a common base for 

the comparison between the two groups. In other words, in both cases the error-less source 

localization is achieved when the maximum of the output is located in the position of the original 

sources.  

The results of applying the TF-MUSIC algorithm and these distributed sources ESL techniques to 

typical realistic simulated EEG data (depicted in Figure 32) using three sources and SNR = -5 dB is 

shown in Figure 33. The TF-MUSIC output is the same as Figure 29 (in which sources are localized 

without error) except that it is depicted in the Brainstorm format and repeated in two time instances. 

The output of sLORETA, wMNE and dSPM is also sampled in two different time instances as shown 

in Figure 32 (with red lines and arrows). 

 

 



 

 

 

𝛼 = [−13 60  47.5] , 𝛽 = [−20 80 37.5], 𝜌 = [ 0.1  0.2  0.1], 𝜉 = [0.4  − 0.15  0.425], 𝑘 = [ 1.5  1.5  1.5], 

 𝜀 = [0 0 0], SNR =-5 dB 

Figure 32 - Left) Realistic simulated EEG using three sources with the specified parameters. The red lines and arrows indicating 

the time instance in which source localization is performed.  Right) The time-frequency representation is the average of TFDs 

of all channels calculated using Pseudo Wigner-Ville kernel and typical kernel parameter (as table 1) 

 

Before interpreting the results it is necessary to mention another difference between the output of the 

TF-MUSIC algorithm and these distributed sources methods. Owing to the fact that TF-MUSIC is a 

spatio-temporal technique that uses a period of EEG signals to localize sources, processing a period 

of signal, rather than a time instance of signal, is necessary for the TF-MUSIC algorithm to function 

properly and estimate signal and noise subspaces. In other words, TF-MUSIC can simultaneously 

detect and localize sources with time delay in a single run of the algorithm, while, the distributed 

sources methods that work based on the time instances of the source signal, rather than a period of 

signal, need to proceed in time to detect and localize such sources.  
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Figure 33 - Outputs of various source localization methods for a realistic simulated EEG signal generated by three sources and 

SNR = -5 dB. Results are depicted for two different time instances, top row at t = 0.01 s and the bottom row at t = 2.65 s.  

a) TF-MUSIC, b) wMNE c) sLORETA and d) dSPM (through Brainstorm software) 

 

 

Consequently as seen, TF-MUSIC has detected the three sources (which appear with time shift) 

simultaneously. However, the three distributed sources (imaging) methods process instances of 

source signal separately as they appear in time. The TF-MUSIC output is the same in t = 0.01 s and t 

= 2.65 s in Figure 33. The three red regions over the cortex correspond to the three sources and the 

maximum of the metric value is exactly located at the location of the original sources. As previously 

explained, the output of wMNE, sLORETA and dSPM are not equivalent to the output of the TF-

MUSIC algorithm in terms of their values or colour equivalency, but the location of their maximum 

can be compared to the location of the TF-MUSIC output’s maximum.  

(a) (b) (c) (d)



 
 

Figure 34 - Manual thresholding of the outputs of ESL methods depicted in Figure 33. The red regions in each image indicate 

the highest value (the maximum of output). Same as Figure 33, the results are depicted for two different time instances, top 

row at t = 0.01 s and the bottom row at t = 2.65 s. a) TF-MUSIC, b) wMNE c) sLORETA and d) dSPM  

 

In fact, the colour range is different even between distributed sources techniques, but what is 

important is the location of the sources which is determined by the maximums of the outputs. A 

manual thresholding of the outputs depicted in Figure 33 was performed using Brainstorm software 

which resulted in Figure 34. As seen, after removing colour of the regions with magnitudes lower 

than maximums, what remains is the location of sources localized by each method (in the specified 

instance of time). Among the distributed sources methods depicted in Figure 34 sLORETA method 

has smallest localization error while it designates a large area around one of the sources as the source 

location. These results are discussed further in the concluding section. 

 

(a) (b) (c) (d)



5.5.4 Evaluation using real EEG  

Since the main objective of design and implementation of a new ESL technique is to solve a real life 

problem, i.e., to be applied on real EEG data, the last step in the evaluation of such a method includes 

localization of sources in the real EEG data. Accordingly, the implemented TF-MUSIC algorithm 

was also evaluated by being applied to real EEG data as the last step of the evaluation procedure. In 

order to use a real EEG dataset in the evaluation of an ESL technique, it should have known cortical 

representation such as evoked potentials. The evoked potentials have helped to study specific brain 

activities and also have provided an objective indication for the sensory function in infants where 

perceptual tests are impractical or unreliable [225, 226].  

However, these potentials are so weak that they are fully submerged in spontaneous electrical activity 

of the brain. While the EEG signal amplitude can normally reach to 50~100 µV, evoked potentials 

may be as small as 0.5~1 µV and often no larger than 5 µV. One of the common methods to enhance 

evoked potentials is through signal averaging technique. In this method the stimulus is repeated in 

separated intervals. After a large number of repetitions (e.g. greater than 200), the average value of 

EEG is calculated for the time instances based on an interval period and the result is presented in the 

form of a single interval evoked potential. Due to lack of correlation between separate intervals of 

background brain activity and correlation of the evoked potentials, this summation results in a clear 

representation of an evoked potential [225, 226]. 

The visually evoked potential or VEP was the only available neonatal evoked potential to be used in 

this study. The VEP EEGs are initiated by brief visual stimuli and are represented on the scalp 

overlying the visual cortex (Occipital lobe) [227]. They are an important means of obtaining 

reproducible quantitative data about the functional integrity of the optic pathways [228] that can even 

better quantify its functional integrity than other imaging modalities [227]. The VEP is also a primary 

tool to evaluate subjects such as neonates that cannot communicate [96].  

The TF-MUSIC algorithm was applied on neonatal VEP data and the result is depicted in Figure 35. 

Since anatomical data was not available for the VEP dataset, the anatomical data used for this 



evaluation was the same as that utilized in the generation of realistic simulated EEGs and also 

evaluations performed in two previous sections. The available VEP data included 21 channels though 

the results are depicted in the 64-electrode representation for a better illustration of the output. In 

order to visualize the output, the TF-MUSIC metric (output of the TF-MUSIC algorithm) was mapped 

to the cortex and the value of metric was designated by colours. Then, a manual thresholding similar 

to Figure 34 was performed to remove the colour of regions that the value of metric was less than 

90% of its maximum. As seen, the maximum of the output (and regions with a value of metric greater 

than maximum’s 90%), are located in the Occipital area of cortex which is in line with the known 

representation for the visually evoked potential EEG data. 

 

 

5.5.5 The effect of ROI-identification and TFD Kernel selection on the enhancement 

After validation and evaluation of the proposed algorithm using real and simulated datasets, the final 

step of this study is dedicated to the analysis of the proposed method. This analysis helps to know the 

possible future enhancement directions and potentials for later investigation on ESL and neonatal 

ESL through the TF-MUSIC algorithm. The very first step of such an analysis can be studying the 

 

 

Figure 35 - The results of applying TF-MUSIC on actual neonatal VEP data 

 The red stars indicate locations where the magnitude of TF-MUSIC metric is bigger than 90% of its maximum. 



differences between the TF-MUSIC and MUSIC algorithms. The block diagram in Figure 36 depicts 

the main implementation steps in the MUSIC algorithm. The comparison between Figure 36 and 

Figure 21 (implementation of TF-MUSIC) reveals that their two main differences include ROI-

identification and STFD blocks. As seen, the procedure in MUSIC and TF-MUSIC is similar except 

that in TF-MUSIC the noise and signal subspaces are extracted from the regions of TFD of signal 

(STFD), which is determined by ROI, rather than signal as in the case of MUSIC. Therefore, in order 

to analyse TF-MUSIC algorithm, it is sufficient to investigate the role of these two blocks in the 

enhancement achieved by TF-MUSIC over MUSIC (as explained in section 5.5.2 and illustrated in 

Figure 30). 

 

 

 

Figure 36 - Implementation of the MUSIC algorithm for EEG source localization 

 

5.5.5.1 The effect of ROI-identification in the enhancement 

The same 9 sets of source parameters, 𝛼, 𝛽, 𝜌, 𝜉, 𝜅, 𝜀, (for 3 sources) that used to generate realistic 

simulated EEGs in Figure 30 were applied to generate the same set of EEGs for the analysis of ROI-

identification effect. The TF-MUSIC algorithm was implemented using the same kernels and kernel 

parameters except that the whole time-frequency plane was identified as one ROI, i.e., no specific 

region of the time-frequency plane was selected as the region of interest. In each SNR value from 

{0, −5, −8,−10,−13,−15} dB, the TF-MUSIC-without-ROI algorithm implemented through each 
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kernel (and kernel parameter) and applied to the 9 various EEGs generated in the same SNR. The 

performance value calculated for each kernel in each SNR, as a result, was the average of 9 value, 

i.e., a total of 54 various performance values were averaged in each SNR (exactly the same procedure 

to generate Figure 30). The final performance result for the TF-MUSIC-without-ROI identification, 

calculated in this method, is depicted in Figure 37.  

 

 

 

As seen, the performance of the TF-MUSIC algorithm without identifying ROI is considerably less 

than MUSIC except in the last point. The most probable reason for the similarity of the performances 

in the last point is the formulation of the performance metric which limit the further falls at the end 

of the range. In order to determine the reason of performance degradation, when no ROI is selected 

in the TF-MUSIC algorithm (compare Figure 36 to Figure 21), the role of ROI in the formulation 

should be studied. The matrix 𝚪𝑿𝑿 in equation (45) which is used to calculate the signal and noise 

subspaces can be written as 

 
 

Figure 37 - The averaged performance of the TF-MUSIC algorithm without ROI  identification 

implemented using TFD kernels listed in table 1 and applied on 9 various simulated EEGs compared to the MUSIC 

algorithm 
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(61) 

 

where ρii[𝑛, 𝑘] is auto-TFD of channel i and ρij[𝑛, 𝑘] is cross-TFD of channel i and channel j. If no 

ROI is selected, i.e., the whole time-frequency plane is chosen as the ROI, the equation will be 
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(62) 

 

in which Ψ represents the whole time-frequency plane and 𝑁Ψ represents its area. The main 

components of signals are expected to be localized in parts of the time-frequency plane, which are 

selected as the ROIs Ω, while the white Gaussian noise power is spread throughout the time-frequency 

plane. Consequently, each component of matrix 𝚪𝑿𝑿_𝒏𝒐𝑹𝑶𝑰 will contain almost the same amount of 

signal’s power as components of matrix 𝚪𝑿𝑿 where it contains more noise power, i.e., the whole noise 

spread in the time-frequency plane. This means that signal and noise subspace estimation will be 

weaker from matrix 𝚪𝑿𝑿_𝒏𝒐𝑹𝑶𝑰 than matrix 𝚪𝑿𝑿 and therefore the corresponding accuracy of the EEG 

source localization will be reduced. A similar analysis can be done to compare each of the above 

matrices to the MUSIC algorithm. The signal and noise subspaces in the MUSIC algorithm are 

calculated from a signal time series or more accurately from a period of a signal’s time series as 

 
 

𝑿[𝟏:𝒏] =  [

𝑥1[1: 𝑛]

𝑥2[1: 𝑛]
⋮

𝑥𝑀[1: 𝑛]

] (63) 

 

The matrix 𝑿 contains the whole noise of the time domain, and equivalently the whole noise of time-

frequency plane of the signal. Therefore, the subspace separation based on it will result in less 



accuracy than the matrix 𝚪𝑿𝑿, i.e., the TF-MUSIC that is in line with the results depicted in Figure 

30. The comparison of the equations (62) and (63) reveals that  

- entries of matrix 𝚪𝑿𝑿_𝒏𝒐𝑹𝑶𝑰  and 𝑿 contain a similar amount of noise, i.e., the whole noise of 

the time-frequency plane,  

- entries of matrix 𝚪𝑿𝑿_𝒏𝒐𝑹𝑶𝑰 are quadratic transformations of signal.  

Therefore, the subspace separation is harder based on matrix 𝚪𝑿𝑿_𝒏𝒐𝑹𝑶𝑰 than matrix 𝑿 which contains 

signal. This is in line with the results depicted in Figure 37 where the accuracy of MUSIC is better 

than TF-MUSIC without ROI identification. 

 

5.5.5.2 Choice of TFD kernels and kernel parameters  

As shown in a previous section, the main advantage of TF-MUSIC over MUSIC is achieved through 

ROI identification stage. It was also shown that TF-MUSIC without ROI identification performs 

poorer than MUSIC, though, the role of various TFD kernels in representation of signal and therefore 

determination of ROI still need to be investigated. The TFD kernels listed in table 1, that are utilized 

in the implementation of TF-MUSIC in this study, are not the only available TFD kernels. There are 

other distributions such as Levin, Born-Jordan, Zhao-Atlas-Mark, Rihaczek and Page that can be used 

for this purpose [188]. The applied kernel parameters were also typical values that could be replaced 

by many other values. Investigating all possibilities for the TFD kernel and kernel parameters in this 

way is a huge volume of works. However, studying examples from the generated EEGs and the ROI 

identified by various kernels or kernel parameters will provide a good understanding about the role 

of TFD kernel in this regard. Figure 38 depicts ROIs in the averaged TFD of a 64-channels simulated 

EEG dataset identified by four different TFD kernels (with the kernel parameters listed in table 1). 

As seen, despite using various TFD kernels the identified ROIs are very similar. This means their 

resulting estimated noise and signal subspaces are similar. Therefore, it is expected their 

corresponding sources are localized in similar locations and the localization performance / accuracy 

is close among these various TFD kernels. This is also illustrated in Table 2 where the ESL 



performances of applying the TF-MUSIC algorithm with 5 different TFD kernels are compared to 

the MUSIC algorithm. 

 

 

  

  

Figure 38 - Comparison between ROIs identified in the averaged TFD of the simulated EEG using 3 sources with parameters 

𝛼 =  [-20 53 52.75], 𝛽 =[-41 73 46.25], 𝜌 =[ 0.1 0.2 0.1], 𝜉 =[0.325 -0.175 0.3125], 𝑘 =[1.5 1.5 1.5], 𝜀 =[0 0 0] (in SNR=-5 

dB) by four TFD as a) PWVD (β=0.01) b) WVD c) EMBD (α=0.1, β=.3) d) CW (σ=11) 

 

Similar to previous experiments, 9 sets of 3 source parameters were applied to generate 9 sets of 

realistic EEGs in each SNR as listed in Table 2. The TF-MUSIC algorithm was implemented using 

each listed kernel and applied to all simulated EEGs. The ESL performance value recorded for each 
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kernel, therefore, calculated as the average of 9 ESL performances. A similar procedure took place 

for the MUSIC algorithm and it was applied to same 9 sets of realistic simulated EEGs where its 

recorded performance was the average over 9 performance values. 

The averaged ESL performance values listed in Table 2 reveals that   

- Except the last column (SNR = -15 dB which can be interpreted as the performance value for 

the localization of deep sources and all sources are localized with error) the performance of 

the TF-MUSIC algorithm is better than MUSIC. This superiority is in line with previous 

results and as explained in a previous section is due to SNR enhancement achieved by ROI 

identification. 

 

 

 
Table 2 - Performance of the TF-MUSIC algorithm implemented using various TFD kernels along with the performance 

of the MUSIC algorithm. These values are calculated by applying algorithms on 9 different sets of source signals (realistic 

simulated EEGs by 3 sources with 9 different sets of parameters). Hence, the result in each SNR (both MUSIC and either 

of TFD kernels) is the average of 9 performance values. 

             
                SNR 
           

Kernel 

 
0 dB 

 
-5 dB 

 
-8 dB 

 
-10 dB 

 
-13 dB 

 
-15 dB 

WVD 0.9665 0.8546 0.7129 0.5578 0.3211 0.2373 

PWVD 0.9402 0.9144 0.7341 0.6136 0.3543 0.2695 

SPEC 0.9234 0.8823 0.7499 0.6007 0.3572 0.2044 

CW 0.9411 0.9005 0.7940 0.6959 0.4940 0.3220 

EMBD 0.8534 0.7879 0.6830 0.5366 0.3643 0.1630 

MUSIC 0.7428 0.6329 0.4487 0.4484 0.2656 0.1613 

 

 

- There is no single kernel (and kernel parameter) which is performing the best or the poorest 

in all SNR values. Some kernels are performing as the best kernel in some SNRs but not in 

all SNRs (the CW kernel is the best performing kernel in the SNRs -8 dB, -10 dB, -13 dB and 

-15 dB) and some kernels are doing the poorest in some SNRs and not in all SNRs (the EMBD 



kernel is performing poorer than other implemented TFD kernels in SNRs 0 dB, -5 dB, -8 dB, 

-10 dB and -15 dB). 

This example indicates that although the choice of TFD kernel can affect or improve the ESL 

performance of the TF-MUSIC algorithm, it cannot pledge its advantage for all signal samples. In 

other words, it is possible to find or optimize a TFD kernel (or kernel parameters) that performs better 

than other kernels (or kernel parameters) on a specific EEG dataset or even on several datasets, but it 

cannot prove its superiority in the case of untested EEG datasets. Furthermore, due to numerous 

possibilities of TFD kernel - kernel parameters combinations, such an optimization cannot guarantee 

that there is no better performing set of TFD kernel - kernel parameters combination. 

 

 

 

5.6 Conclusion 

Neonatal brain function analysis is an important tool to understand the newborn brain and to improve 

neonatal health. EEG source localization, which is commonly used in adults for functional brain 

analysis, is not well developed in neonates. This is a multidisciplinary research field by necessity 

requiring expertise from neurophysiology and neonatology, competencies in signal processing, 

medical image processing and a sound understanding of physics and mathematics. These skills can 

hardly be collected in a single research centre, and research in this field requires collaboration 

between various technical and medical researchers. This is evident from the organization of my two 

published papers on neonatal EEG which have been extended and included in this thesis. Lack of 

appropriate functional and anatomical neonatal brain data is another important obstacle in developing 

such techniques. A significant part of my research has involved looking for an appropriate neonatal 

MRI dataset to be segmented and converted to a realistic neonatal head model.  

The realistic neonatal head model, which is generated based on the true geometry of neonatal brain 

and other layers of neonatal head, serves as the first building block in any neonatal EEG source 

localization technique. The true neonatal head model parameters, such as various layers’ conductivity 



or true source depth which are the other aspects of a realistic neonatal head model, has been the main 

obstacle in developing neonatal EEG source localization techniques. In order to address the lack of a 

current method for neonatal EEG source localization, this dissertation has proposed a method which 

is based on a realistic neonatal head model with true estimation of head model parameters. Acquiring 

these parameters is discussed in chapters 2 to 4 and this chapter is dedicated to the development and 

evaluation of a method to solve the inverse EEG problem through signal processing techniques.  

When the appropriate neonatal head model parameters and segmented neonatal MRI were provided, 

the work on generating realistic neonatal head model started. First, the segmented neonatal MRI 

converted to a 3 dimensional mesh of points, then by assuming a 64-channels EEG cap, the 

electromagnetic relationships were calculated between putative dipoles in each mesh point of brain 

and an EEG electrode location. In this way, a realistic neonatal head model or the lead field matrix 

was acquired. The last step was to solve the inverse EEG problem using the acquired LFM and the 

proposed method.  

A method was proposed in this chapter to enhance the TF-MUSIC algorithm which has been 

previously applied to localize sources of adult MEG data. The TF-MUSIC algorithm is a signal 

processing technique that uses subspaces of spatial TFD of a measurement signal such as MEG or 

EEG and the LFM to estimate the best dipole locations. Not all parts of TFD of EEG signals are used 

for the signal and noise subspace separation in this technique. Some specific regions of TFD plane 

(ROIs) are selected which constitute the basis for the subspace estimation. It was shown in this chapter 

that the identification of ROI plays an important role in the source localization accuracy of an EEG 

source localization method.  

These regions (ROIs) were manually selected in the previous implementation of the TF-MUSIC 

algorithm. However, manual selection / identification of ROIs is subjective, and the result of source 

localization and its accuracy can be affected by the competency of the user identifying these regions 

in the time-frequency plane. Most importantly, identification of these regions in the time-frequency 

plane is not a skill of a neurophysiologist or clinical / medical experts. Identification of ROIs for a 



specific feature of EEG signal in the time-frequency plane relies on knowing the time-frequency 

representation of that EEG feature. This knowledge depends on an advanced signal processing 

technique which is not broadly available among neurophysiologists, neonatologists and other clinical 

/ medical people who are not working in the field signal processing. This means the previous 

implementation of the TF-MUSIC algorithm is not practical in real applications where no signal 

processing expert is present in clinical / medical practices. 

In order to address this deficiency in the previous implementation of the TF-MUSIC algorithm, I 

proposed to identify the ROIs automatically. This enhancement not only makes usage of the TF-

MUSIC algorithm possible in real clinical practices, but it also produces objective results which do 

not depend on the knowledge of the user. The automatic ROI identification for the TF-MUSIC 

algorithm was implemented based on the concept of object in the image. EEG datasets are 

multichannel signals in which events or features of interest may appear in some of the channels only. 

Therefore, it is necessary to generate a unique image for all multichannel EEG data that can clearly 

represent the signal for the events or the regions of interest. 

In order to produce a unique time frequency representation for multichannel EEG data, TFDs of all 

channels are calculated and averaged over channels. The averaging procedure fades out the signal of 

interest’s components but it also reduces the noise with a greater factor, as it is assumed that noise or 

background brain activities are not correlated between EEG electrodes. In the worst case, when the 

signal of interest appears in one EEG channel / electrode only (which is NOT the case with dense 

array neonatal EEG recordings or even 64-channels neonatal EEGs); the fading factor is equal for the 

noise and signal. Otherwise, i.e., when the signal of interest appears in more than one EEG channels 

/ electrodes, the fading factor for signal is smaller than noise as signal components are assumed to be 

correlated between various EEG electrodes. This means the averaging procedure does not degrade 

the signal of interest; on the contrary, it enhances the SNR for the signal of interest.    

The averaged TFD is converted to a binary image where ROIs are identified as connected areas. In 

the current implementation, it is assumed the number of ROIs is known in the signal. This assumption 



is realistic in many ESL applications such as evoked potentials or any other marked dataset in which 

each marked area can be assumed as a separate ROI. However, there are many other possibilities in 

image processing techniques and pattern recognition such as clustering that can be easily 

implemented for finding the number of ROIs and added to the algorithm. It was also assumed that the 

areas of ROIs are greater than a minimum which is a realistic assumption where features of EEG are 

present in time (and frequency) for more than a minimum period. This threshold is set to 50 pixels in 

the current implementation and objects with smaller areas are assumed noise and are removed. For 

an EEG dataset with a sampling rate of 256 Hz this means a region of signal with duration of 5 ms or 

larger can be selected as an ROI if its bandwidth is more than 1 Hz. These dimensions are much 

smaller than any features investigated in this study, such as focal transients or visually evoked 

potentials. Consequently the selected threshold worked well in this implementation (none of the 

marked event removed due to this threshold).     

After finishing the implementation of the proposed method, it was necessary to validate and evaluate 

the implemented algorithm. A common method for the evaluation of ESL algorithms applied in 

previous studies is to simulate EEG signals using known sources, combine them with different levels 

of white Gaussian noise and apply the ESL technique to localize sources of the noisy simulated EEGs. 

These simulated EEGs with different SNRs not only make it possible to evaluate the capacity of an 

ESL method for recovering weak cortical sources, they have been interpreted as the EEGs generated 

by deeper sources. Therefore, the capacity of a method to recover sources of an EEG dataset with low 

SNR values indicates its capacity to reconstruct deep sources in the EEG with higher SNRs.  

In order to validate and evaluate the proposed algorithm, simulated EEG datasets were generated 

using the realistic neonatal head model produced previously, and three sources with 9 sets of 

parameters. This variety of source parameters was used to study various state of separation of source 

signatures in time-frequency plane. However, these are not the only possibilities for the source signal 

parameters and numerous other values are possible which are not tested in this study. Nonetheless, 

the capacity of the proposed method is illustrated through the applied parameters as explained in this 



chapter. Since data was assumed artefact free, the noise collected by EEG acquiring hardware was 

the only assumed noise. In this way, the above mentioned EEGs were generated in 6 different levels 

of SNR as {0, -5, -8, -10, -13, -15} dB. 

In order to quantify the error of the TF-MUSIC algorithm, a metric was needed. Most of the presented 

ESL performance metrics allow for only the dipole localization error. Though there are other factors 

that can be considered for measuring original and reconstructed sources similarities, a new 

performance metric was introduced in this chapter that takes into account these parameters to enhance 

the error measurement’s accuracy in EEG source localization. These parameters were combined in 

an empirical formulation which was finalized after a series of experiments using the above mentioned 

simulated EEGs.  

A better calibration of this performance metric will be possible if there are more real artefact free 

neonatal EEGs with known cortical presentation. A set of exponential weighting functions and 

coefficients were applied in the proposed formulation of this performance metric to limit the value of 

performance when the original and reconstructed sources are very different. Though it seems, 

according to the results achieved using simulated EEGs, the exponential weighting functions need to 

be revised for better calibration. The value of performance metric is not a unique identifier of an 

ESL’s merit and it is possible to modify it in order to include the effect of source depth. It is possible 

to include some new coefficients, or modify current coefficients, to allow for such considerations. 

The proposed metric allowed the comparing of accuracies of the TF-MUSIC algorithm and other ESL 

techniques. The performance of the TF-MUSIC algorithm was about 25% better when compared to 

the MUSIC algorithm if ROIs were identified automatically. This enhancement was achieved in the 

price of the huge computational cost of the TF-MUSIC algorithm. As it revealed in this chapter, 

superiority of the TF-MUSIC algorithm is mainly due to SNR enhancement resulted by correct ROI 

identification. It was also shown that TF-MUSIC without ROI identification performs poorer than 

MUSIC. 

The TF-MUSIC algorithm was also compared to wMNE, sLORETA and dSPM using the realistic 



simulated EEGs. The outputs were mapped on the neonatal head model (the brain) and visually 

compared together. A manual threshold was applied to represent only their maximums. The result 

indicated the maximums of these distributed sources algorithms were practically close to that of TF-

MUSIC. Since these methods are well developed for localizing the sources of brain functions with 

broad active regions, they do not constitute the ideal rivals for this comparison. However, it is not 

claimed that the presented method is the best possible source localization algorithm for neonatal EEG, 

and this comparison indicated the capacity of the proposed method. The method was also applied to 

localize sources of real neonatal VEP where the results indicated the localization of sources in the 

Occipital region which is the known representation of the VEP. In the simulations used in this study, 

source signatures are not overlapping (in time-frequency plane), as the available real data was only 

included in separate marked events and the VEP which did not include overlapping sources. In other 

words, the current implementation of the algorithm assumes each ROI include only one source. 

However, the method can be easily modified to localize multiple sources in one ROI. An example of 

localizing multiple sources with overlapping signature in the time-frequency plane is illustrated in 

Appendix 1. This is similar to the procedure of the MUSIC algorithm for localizing multiple sources.    

This work has opened a door to further studies on neonatal EEG source localization and there are 

many possibilities that can be investigated in subsequent studies. Future work will attempt to enhance 

the proposed method through better estimation of subspaces. This can be achieved either through 

improving the ROI identification procedure or the estimation procedure. It is possible to use other 

methods to produce a unique representation of multichannel EEG which may improve ROI 

identification procedure. Methods such as singular value decomposition which has been used in a 

previous implementation of the TF-MUSIC algorithm or even the principal components of EEG 

signals are possibilities that can be used for this purpose. The subspaces of the regions of STFD which 

are selected as ROIs can also be estimated using other subspace techniques rather than MUSIC. 

FINES [229] is another subspace method which can be combined with time frequency analysis to 

generate possibly better performances. Contrary to MUSIC which uses the entire estimated noise 



subspace, FINES uses closeness criterion to find a small set of particular vectors in the estimated 

noise subspace [36]. The other aspect of future work will include finding a more accurate measure 

for the evaluation of ESL methods in the case of real EEG data with unknown cortical representation. 

Functional Magnetic Resonance Imaging which is commonly used for functional brain analysis could 

be considered in combination with ESL in these cases. 

  



6 CHAPTER 6: CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

6.1 Thesis summary  

The overall objective was to improve neonatal health care through enhancing non-invasive 

neonatal brain monitoring by developments in neonatal ESL.  

Functional brain organization in neonates has been investigated through (i) proposing methodologies 

to estimate essential neonatal head model parameters such as skull conductivity, source depth and 

spatial resolution of neonatal EEG, (ii) nominating an algorithm to fulfill prerequisite conditions in 

the neonatal EEG inverse problem, i.e., estimating neural activity from the scalp potential, and 

enhancing the selected algorithm, and (iii) validating and evaluating the proposed method through 

application to simulated and real EEG and quantifying its performance  by introducing a new EEG 

source localization (ESL) performance metric. 

Source localization performance is strongly affected by accuracy of the head model, including head 

model geometry and the chosen values of relevant parameters. Lack of accurate knowledge on the 

structural parameters in the neonatal head model has been an obstacle in the development of neonatal 

ESL. Neonatal skull conductivity, an essential component of the head volume conductor model, 

cannot be measured directly due to ethical restrictions. The spatial patterning of the neonatal EEG 

has also been hampered by the common use of 10 to 20 electrodes for neonatal EEG recordings. 

Insufficient knowledge of the cortex-scalp distance in neonates and children has also hampered the 

determination of source depth which is a prerequisite for solving the EEG inverse problem. 

This thesis has addressed these requirements and made contributions in both practical and theoretical 

aspects of neonatal EEG source localization by: 

 Applying empirical methods along with realistic simulations to indirectly estimate the 

unknown in vivo neonatal head model parameters, namely  

o the effect of fontanelles on the neonatal skull conductivity profile, 

o the number of electrodes needed to capture full spatial details of neonatal EEG 



o the proper neonatal skull conductivity value 

o the appropriate source depth in the neonatal head model 

 Proposing and enhancing an algorithm to compute the neonatal EEG inverse solution. The 

chosen algorithm was chosen from adult EEG source localization literature to fulfill several 

requirements in the neonatal ESL environment. The technique uses a current dipole to model 

neural activity in the brain and the whole source space is scanned for the dipole location that 

minimizes a cost function. The cost function is minimized where the orthogonality between 

the estimated EEG noise subspace and the lead field matrix (LFM) is at a maximum. The 

LFM is calculated in the EEG forward model and the noise subspace is estimated from 

manually identified regions of the spatial time frequency distribution (STFD) of EEG signals. 

The manual identification of regions of interest (ROI) necessitated a knowledge of the time 

frequency representation of EEG signals which is not practical. In order to address this 

limitation the subjective manual ROI identification was replaced by image processing 

techniques to objectively determine these regions. Thus the enhanced algorithm is suitable for 

application in clinical practice because knowledge of the time frequency representation of the 

EEG signals is not required. 

 Introducing an improved performance metric that quantifies the correspondence between the 

estimated and original source distributions. Since the original sources in real EEGs are 

unknown, most of the ESL evaluation methods use simulated EEGs where known source 

locations are used to generate EEG signals. After applying ESL to the simulated EEGs, the 

distance between original and estimated source locations can be defined as dipole localization 

error. A new performance metric is proposed that takes into account other factors in addition 

to dipole localization error to enhance the ESL error measurement accuracy. The two 

parameters effective in measuring original and reconstructed source similarities are addressed 

in this new performance metric as current intensity in the location of the original source and 

presence of other sources.  



6.2  Major conclusions of the thesis 

The major conclusions from the empirical and theoretical implementations, simulations, algorithm 

development, implementation and evaluation include: 

A) A clear difference is evident between adults and neonates in terms of spatial decay of signal’s 

correlations. The spatial decays were approximately three times steeper in neonates than in 

256 channel recordings in adult subjects.  

B) The amount of unique information in neonatal scalp EEG is much richer than commonly 

assumed. The Nyquist frequency for spatial EEG sampling is ~0.5-0.8 c/cm., equivalent to a 

wavelength of 1.25-2 cm. Thus in the neonate a 3-5mm interelectrode spacing is needed to 

capture full spatial detail. 

C) A hdEEG neonatal study using 64 electrodes, showed that each electrode covers roughly 

about 3cm of scalp (a circle with 3 cm diameter). This implies that in practical terms the 

conventional neonatal EEG using 10 to 20 electrodes gives a significant spatial under 

sampling, and consequently will lead to an underestimation of brain events and their EEG 

amplitudes. 

D) The conventional “full neonatal array” of 10-20 electrodes ignores large parts of brain 

activity. In particular, electrode coverage of the parietal and centro-temporal areas, the areas 

with the most developmentally significant rapid oscillations, is so poor that even a majority 

of focal events may go undetected. 

E) An experiment with a spherical head model clearly established how source depth dramatically 

affects spatial power spectral density (PSDx). Simulation experiments show also that skull 

conductivity strongly affects PSDx. This observation implies that building a source analysis 

paradigm using EEG from deep brain lesions as the anatomical reference is inappropriate 

when aiming to develop and validate source localization paradigms for cortical EEG activity.  



F) EEG amplitude spatial decay is not statistically significant different in over skull and 

fontanelles. Thus a neonatal head model can be constructed without any special consideration 

for fontanelles. 

G) Comparing skull conductivities in the range 0.003 to 0.3 S/m in head models showed the 

spatial decays of real neonatal EEG data are best reproduced when skull conductivities around 

0.06-0.2 S/m are assumed. These conductivity values are orders of magnitude higher than 

used in adult head models. 

H) The TF-MUSIC algorithm with automatically identified ROIs adequately reconstructed 

original source distributions in realistic simulated neonatal EEGs with different time-

frequency domain signatures, even in low signal to noise situations. The realistic simulated 

neonatal EEGs were generated using the neonatal head model based on segmented neonatal 

brain MRI and the estimated parameters. The performance of the TF-MUSIC algorithm was 

characterised using the newly proposed performance metric. Visual evoked potentials (VEP) 

EEG data was also used to evaluate the TF-MUSIC algorithm in its application to real 

neonatal VEP EEG and the source was localised bilaterally to the occipital lobes, the expected 

site of cortical representation of VEP data. 

 

6.3 Suggestions for future work 

This work has provided significant advances in neonatal EEG source localization with many 

possibilities to be investigated in subsequent studies. Future work should attempt to enhance the 

proposed method through improved estimation of signal and noise subspaces which could be achieved 

either through improving the objective ROI identification procedure or the estimation procedure. It 

is also required that a more accurate measurement to be performed for the evaluation of ESL methods 

in the case of real EEG data with unknown cortical representation. Functional Magnetic Resonance 

Imaging which is commonly used for functional brain analysis could be considered in combination 

with ESL in these cases. 



The observation of highly varying spatial patterning is consistent with the idea that the development 

of infant cognition may be studied by analysis of the formation of spatiotemporal patterns like 

cinematic frames that in some respects resemble “neural avalanches”. Capturing these with novel 

dense array EEG devices, may open a novel window to capturing the details of development and their 

functional correlates. These steps are essential to the new opportunities for source level connectivity 

analysis of emerging large scale brain processes involved in the development of perception and 

cognition through to providing tools to study pathological conditions such as neonatal brain seizures 

and the effectiveness of interventions to improve brain outcomes. 
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Appendix -1 

The procedure for localizing multiple sources with overlapping signature in the time-frequency plane 

necessitates knowing the number of sources in the ROI. The averaged TFD of a 64-channels EEG 

with overlapping signature in time-frequency domain is depicted in Figure A1-a. The ROI was 

identified by the TF-MUSIC algorithm automatically which is depicted in Figure A1-b.  

 

  

 

Figure A1 - a) The averaged TFD of a 64-channels simulated EEG using 3 sources with SNR = 0 dB and source parameters 

Kesi =[0.15  0.14  0.25], Alpha =[-23 -13 55], Rho =[ 0.1 0.2 0.1], Beta =[-50 70 50], K =[2.2 1.6 2.6] and Epsilon =[0 0 0] 

b) The ROI identified automatically includes the 3 sources whose signatures are overlapping 

  

The result of applying the TF-MUSIC algorithm on the above simulated EEG is depicted in Figure 

A2. The magnitude of the TF-MUSIC output, i.e., the localization function was normalized by 

dividing on its maximum and mapped over source space. This means the value of TF-MUSIC metric 

for each source location (nodes of the mesh which spanned over the brain) was directly illustrated 

using a color as depicted in Figure A2.  
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Figure A2 - The output of TF-MUSIC algorithm from two different view angles. Results for the EEG generated using 3 

sources with overlapping signature in the time-frequency plane. The magnitude of the TF-MUSIC metric was normalized and 

mapped to the source space (the mesh spanned over the brain). The green circles indicate the location of the original sources. 

 

As seen, the first three values of the TF-MUSIC metric has happened in the location of the original 

sources (designated using green circles). 
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