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Abstract 

Railways play one of the most important roles in today’s transport systems throughout the world 

due to their safety, relatively high traction capacity and low operation and maintenance cost [1]. 

With the development of electric drive and power electronics technology, the capacity and 

efficiency of railway transport has been improved dramatically, giving birth to higher speed 

passenger trains and higher capacity heavy haul trains. In Australia, the development of the mineral 

resources industry drives further improvement of railway operational efficiency without bringing 

excessive burden to infrastructural maintenance. The purpose of this thesis is to provide the 

required modelling and simulation to determine appropriate tractional system conditions and 

controllers to achieve this.  

 

The first part of this thesis is focused on building a locomotive mathematical model including all 

the essential dynamic components and interactions to provide prediction of locomotive dynamic 

response. The overall model consists of locomotive dynamics, wheel/rail contact dynamics and 

electrical drive and control dynamics. The locomotive dynamics include longitudinal, vertical and 

pitch motions of the locomotive body, front and rear bogies and six axles. For the wheel/rail contact 

dynamics, the Polach model is used to obtain the amount of tractive force generated due to 

wheel/rail interaction on the contact patch. The simplified electric drive dynamics are designed 

according to the traction effort curves provided by industry using constant torque and constant 

power regions. Modes of oscillations have been identified by eigenmode analysis and show that all 

the vertical and pitch modes of the locomotive dynamics are stable. The modes that are most likely 

to contribute to dynamic behaviour are identified and it is shown that the locomotive body pitch 

mode is most excited by traction perturbations. The locomotive dynamic behaviour under changes 

in contact conditions is also examined.  

 

The second part of this thesis is focused on achieving higher tractive force under different operating 

speed and wheel/rail contact conditions. The dynamic impact of a new control strategy is compared 

with that of a traditional fixed threshold creep/adhesion control strategy. A fuzzy logic based 

control strategy is employed to adjust the torque output of the motors according to the operating 

condition of the locomotive to achieve higher tractive force than that with the traditional constant 

creep control strategy. Simulation results show that by controlling the torque generated by the 

electric drives, tractive force can be maximized. However, the benefit in the tractive force increase 

is marginal under low speed operation at the cost of higher creep values. Under high speed 

operation, due to the impact of the electric drive traction effort characteristics, the dynamic 

responses with both control strategies are mostly identical.  
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The last part of this thesis is focused on specialized real-time traction control that regulates the wear 

to low levels, which is motivated by the increased amount of rail wear damage observed in the rail 

industry in recent years. In this thesis, a novel real-time approach of controlling wear damage on 

rail tracks is proposed based on a recent wear growth model. Simulation results show that under 

high speed operation the dynamic responses are mostly identical with two investigated control 

strategies due to the impact of the electric drive traction effort characteristics. However, the new 

control strategy can effectively reduce wear damage dramatically under other operation conditions, 

with a relatively small amount of tractive force decrease. 

 

The work in this thesis explores various aspects of locomotive traction research. The most 

important contributions are the development of a mathematical/simulation model for predicting the 

dynamic response of a locomotive under change of operating conditions and its impact on wear 

damage on rail tracks. The impact of maximizing tractive effort on rail track wear damage is 

quantified, providing practical guidance on locomotive operation. In addition to this, the 

development and testing of a specialized real-time traction control strategy that regulates the wear 

to low levels based on a recent wear growth model is provided. 
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Chapter I: Introduction 

 

1.1. Background and Motivation 

Rail offers one of the most efficient forms of land-based transport [2], providing great carrying 

capacity at relatively low energy cost. Figure 1 shows a typical Australian heavy haul rail system 

[3], where a train can reach a length of 2.5km and weights up to 40t/axle or more. The progressive 

development of AC traction motor and control technology based on power electronics has brought 

great benefits to the rail industry due to its high power capacity, reliability and low maintenance. As 

a result, the new AC traction motor has allowed locomotives to be operated with much higher 

continuous traction forces and adhesion levels than previously achieved on locomotives with DC 

motors.  

 

  

Figure 1: Australian heavy haul, intermodal and freight rail [3] 

 

Locomotives require precision traction control to achieve steady performance close to the adhesion 

limit, i.e. from 30% to 46% [4], to maximize capacity. Therefore it is important to the rail industry 

to investigate methods to make the most of the tractive capacity of modern electric motors to 

improve operation efficiency, by means of controlling the creep/adhesion on the wheel/rail contact 

patch. On the other hand, the increase of traction capacity of modern electric drives, particularly 
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with the goal of achieving the highest tractive force, is likely to cause an increase in maintenance 

costs due to wear at the wheel/rail contact patch, as shown in Figure 2. In Figure 2, W1 represents 

the rail head wear which is one of the most common types of wear damage and thus is the main 

focus of this thesis.  

 

Figure 2: Diagram showing the rail wear 

 

There is debate as to whether the more powerful AC motors contribute to considerable increases of 

rail track damage and track maintenance costs. Methods such as lubrication and surface coating 

have also been used, particularly in curves, to reduce wear damage [5]. A friction modifier (FM) 

has been employed on the rail/wheel contact patch to reduce such wear and rolling contact fatigue 

[6]. It works if applied properly. However, this method is reliant upon operator experience which 

can vary and the refilling of the FM applicators can be costly. The American Association of 

Railroads estimates that wear occurring at the wheel/rail interface as a result of ineffective 

lubrication costs in excess of $US 2 billion per year [7]. The use of more durable rail materials has 

also been proposed to reduce the cost of wear damage. However, the implementation of these 

methods may also involve large cost. Therefore, it is necessary to understand how different 

operation conditions and creep/adhesion control strategies affect wear growth. Particularly, the 

transient state of locomotive operation due to external perturbations such as changes of wheel-rail 

contact conditions needs to be further investigated, as the most significant changes of locomotive 

dynamic responses and oscillations are likely to occur during this transient state. Thus rail damage 

due to wear could be controlled in a systematic way on board, potentially reducing or even 

excluding the use of friction modifiers for the purpose of wear reduction.  

 

In order to study this, the vehicle/track dynamics, contact mechanics and traction and creep control 

behaviour of modern AC locomotive drives need to be integrated and assessed as a total dynamic 
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feedback interactive system. The dynamic response and its impact on wear growth under different 

control strategies and changes of contact conditions due to natural perturbations such as 

friction/lubrication, vehicle/track dynamics et al. need to be analysed. These problems will be 

addressed in this thesis. Moreover, a specialized novel real-time traction control system limiting rail 

track wear growth will also be proposed to provide a systematic approach to achieve the optimum 

balance between traction and wear. 

 

1.2. Objectives and Scope of Research 

The focus of this thesis is to develop a predictive integrated locomotive dynamic model, implement 

different creep/adhesion control strategies, and to propose and test a real-time control approach to 

limit rail damage caused by wear. 

 

Specifically, the major objectives of this thesis are as follows. 

 

 

1.2.1 Modelling of the locomotive dynamics 

To develop a simplified predictive integrated mathematical model including locomotive 

longitudinal, vertical and pitch dynamics, wheel/rail contact mechanics and simplified electric drive 

dynamics. To investigate the oscillation modes of the locomotive multibody dynamics and 

consequently identify the modes those are more likely to be excited, and to examine the locomotive 

dynamic behaviour under changes in contact conditions.  

 

1.2.2 Theoretical and numerical analysis of creep control and locomotive dynamics 

To develop creep/adhesion controllers to achieve highest tractive force under changes of operating 

conditions such as wheel/rail contact conditions and operation speed. To investigate their influence 

on locomotive dynamic response compared to fixed creep threshold control by carrying out 

simulations. 

 

1.2.3 Design of specialized real-time traction control that regulates the wear to low levels 

To develop a novel real-time control strategy to reduce the wear damage on the tracks. To 

investigate and compare its impact on the locomotive dynamic response and the wear damage with 

that with fixed creep threshold control by simulation. 
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1.3. Thesis Outline 

This thesis is divided into 6 chapters including this introduction. A summary of the remaining 

chapters is provided as follows.  

 

Chapter 2 provides an overview of the current state of research regarding locomotive 

dynamic modelling. A review of creep/adhesion control and of wear growth modelling in railways 

is then described. 

 

Chapter 3 presents the modelling methodology used to achieve the thesis objectives. Firstly, 

the simulation model for locomotive longitudinal-vertical-pitch dynamics, wheel/rail contact 

mechanics and electric drive dynamics are presented, followed by creep/adhesion control design. 

Finally the proposed wear rate control methodology is provided. 

 

Chapter 4 describes the simulation results first, including single drive simulation results and 

results with the locomotive dynamic model under changes of operation conditions. Simulation 

results and the comparisons of dynamic responses between constant threshold creep control and 

various adjustable creep controls achieving higher tractive force are then provided. Subsequently 

simulation results showing the impact of wear control on wear growth rate and locomotive dynamic 

responses are provided, followed by results highlighting the effectiveness of the wear control 

strategy. 

 

In Chapter 5, a summary of appended papers is provided. 

 

Chapter 6 summarises the conclusions of this study, together with the recommendations for 

future research. 
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Chapter II: Literature Review  

 

This chapter presents a detailed literature review of the locomotive dynamics and control research 

including five aspects which are categorized into locomotive dynamic modelling, wheel/rail contact 

mechanics, locomotive electric drive and control, locomotive adhesion/creep control, and wear 

models in railways. This leads to a summary statement of where the research performed in this 

thesis contributes to the body of knowledge on the development of locomotive traction and wear 

control technology. 

 

2.1. Review of Locomotive Dynamic Modelling/Simulation (Objective 1) 

This section provides literature research on the modelling of essential dynamic components of a 

locomotive, including the locomotive multibody dynamics, wheel/rail contact dynamics and electric 

drive dynamics. The reviews of the major dynamic components are detailed in the following 

sections. 

 

2.1.1. Review of Locomotive Multibody Dynamic Modelling 

Research into dynamic modelling and simulation of a locomotive based on mathematical models to 

represent certain complex railway vehicles varies significantly depending on the purpose of 

researchers and the cases being investigated. Most of the models can be categorised into (1) 

longitudinal and vertical dynamics on tangent tracks, (2) lateral dynamics on tangent tracks and (3) 

curving dynamics [8]. This study focuses on the first category as it is the most important dynamic 

part of locomotive dynamics which is closely related to traction/braking effort, passenger comfort 

and energy management. The modelling of rail vehicle longitudinal and vertical dynamics without 

consideration of traction or drive issues has been extensively studied for many years, and in 

different levels of complexity. In this section, a range of locomotive dynamic models are reviewed, 

including the quarter rail vehicle model, finite element models and longitudinal-vertical dynamic 

models for the whole locomotive built with Newton principles or Lagrangian method, and software 

packages that have been widely used for locomotive dynamic modelling. 

 

The simplest model proposed to reveal the overall dynamics of a locomotive is a quarter rail vehicle 

model, which is preferred in many studies because of its simplicity and ease of application [9, 10]. 

This model is based on a quarter of a 4 wheelsets locomotive and consists of a primary and 

secondary suspension as shown in Figure 3.  
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Figure 3:  The quarter rail vehicle model [9] 

 

The primary suspension connects the wheels and bogie frame, and the secondary suspension 

connects the bogie frame and the car body. Both are modelled as spring and damper elements. A 

rather complex locomotive model [11] has been built to investigate crashworthiness using the finite 

element method as shown in Figure 4. However, the FEM models are very time-consuming and 

computationally expensive. 

 

 

Figure 4 : FEM model of locomotive [11] 

 

Various multibody dynamics (MBD) software packages have been developed. Commonly used 

ones include Gensys, Vampire, Adams/Rail, NUCARS and Simpack [12]. These have also been 

employed to build locomotive dynamic models [13, 14] as shown in Figure 5a-5c below. 
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Figure 5a: Locomotive & track modelling with Gensys software [13] 

 

Gensys has been used for dynamics analysis for vehicle components such as for rubber suspension 

[15], as well as for a whole locomotive and its interaction with the railway [14].   

 

 

Figure 5b: A typical ADAMS/Rail model [12] 

 

Other multi-body dynamics packages such as VAMPIRE, NUCARS, SIMPACK, LMS Dads and 

ADAMS/Rail have also been used to model and analyse the dynamics of freight vehicles [16, 17]. 

ADAMS/Rail has also been used as a part of co-simulations with contact mechanics software 

package FASTSIM [18].  
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Figure 5c: A typical Vampire model screen [12] 

 

This modelling method is less complicated to implement compared with mathematical modelling 

methods as the software packages do not require end users to perform the complex mathematical 

modelling. However, this method is rather restricted as a model built in a certain software 

environment is not likely to be able to be implemented directly in other software environments.  

 

A Newton/Lagrangian full locomotive model for locomotive dynamic analysis is built by means of 

the basic Newton principle or by a Lagrangian method [19, 20]. A typical model is shown in Figure 

6. The model has 10 degrees of freedom and it contains a locomotive body which is connected with 

two bogies by secondary suspensions. Each bogie is connected with two wheelsets by primary 

suspensions. 
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Figure 6: A typical Newton/Lagrangian full locomotive (vertical direction) [21] 

 

Models built by this method can describe the dynamic response of the whole locomotive and the 

interaction between components and at the same time be not too computationally expensive. This 

method, although being not as detailed as the finite element modelling method, can reveal most of 

the locomotive dynamics and the interaction between different components. It is suitable to create a 

fast calculation dynamic model and is used in the thesis to develop the locomotive dynamic model 

subsystem.  

 

2.1.2. Review of Wheel-rail Contact Mechanics 

The wheel-rail contact characteristics calculate the dynamics of the interaction between the wheel 

and rail track, as illustrated in Figure 7. Wheel-rail contact mechanics focuses mainly on calculating 

tangential tractive/braking forces. In this section, contact mechanics methods that are used to 

calculate the tractive force are reviewed. 

 

Early investigation on the creep forces in wheel/rail rolling contact has been initiated by Carter [22]. 

In his work, a two-dimensional model was proposed with an assumption that the contact area is 

comprised of an area of adhesion in the leading part and an area of slip in the trailing part. Johnson 

extended this model to three-dimensional by considering the lateral creepage [23]. Kalker’s 

research on the rail/wheel contact modelling contributes to an important development in the area of 

fast and relatively accurate rail/wheel contact force calculation. The diagram of wheel/rail contact is 

shown in Figure 7. 
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Figure 7: A wheel rolling over a rail [24] 

 

Kalker [25] devised a contact mechanics method considering small creep conditions based on Hertz 

theory. Then he simplified the theory based on approximating the relation between the tangential 

surface traction and the tangential surface displacement by using compliance (flexibility) 

parameters [26]. Kalker then developed the theory further and published the FASTSIM algorithm 

with corresponding software. This is programmed in FORTRAN to calculate the longitudinal and 

lateral wheel-rail contact creep forces and can greatly shorten the calculation time compared to the 

original Kalker algorithm. However it is still considered too computationally expensive to use in 

complicated multibody systems [18]. Kalker’s algorithm although being the first method that can 

calculate the traction force accurately, loses its accuracy at a high creepage condition. Several 

methods have been developed by improving Kalker’s FASTSIM model such as by using tabulated 

data instead of calculation. Commercial software packages NUCARS and VAMPIRE use large 

pretabulated results to increase the calculation efficiency [5]. However, while small tables may 

affect the accuracy of the result, searching in large tables consumes calculation time [18]. 

 

In order to reduce computational time so that the calculation of wheel-rail contact force can be used 

in real-time vehicle dynamics simulations, Polach developed a fast algorithm. The computer code 

[18] calculates the wheel-rail contact forces with known contact geometry, creep and spin 

conditions. The assumption of the contact patch in his algorithm is based on Hertz contact and is 

shown in Figure 8.  
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Figure 8: Assumption of distribution of normal and tangential stresses in the wheel-rail 

contact area [18] 

 

This method is much faster than Kalker’s method. However, it cannot reveal the adhesion 

characteristic under a high creep value condition. The author then modified the method by adding in 

extra tuning parameters 𝑘𝑎 and 𝑘𝑠. This model’s input includes the normal contact force, the speeds 

of the locomotive and the wheelsets and the contact condition parameters. The normal contact 

forces are calculated from the vertical wheels’ accelerations, given the stiffness of the rail/wheel 

contact is known. The speeds of the wheels are obtained from the accelerometers. The locomotive 

speed can be measured by means of a GPS system. The contact condition parameters are from the 

Polach’s model [18]. The adhesion force curves for a typical dry or wet condition are shown in 

Figure 9 with the horizontal axis representing creepage and vertical axis representing the ratio 

between tangential tractive force and normal loading. The model has been validated by the 

comparing with experimental data from various vehicles (including SBB460, 12X, SD45X, DB127 

and S252) [27]. To clarify, the wet condition means an interfacial layer of liquid on the contact 

patch [27]. The wet rail conditions are obtained either when rain was falling or artificially spraying 

water to the rail surface ahead of the lead axle of the locomotive [27, 28]. 
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Figure 9: Calculated adhesion force-creep functions for typical parameters of real wheel [27] 

  

The modified creep force formula does not increase much of the calculation burden but can be used 

to calculate creep force for both low and high creep conditions. Recent research on wheel/rail force 

study gives a variety of contact force models. Spiryagin’s work introduced a contact model 

considering different contact conditions and the effect of contact temperature [29]. This model 

agrees well with their lab experimental data, however, it may increase the calculation time. 

 

Research on non-elliptical rail/wheel contact has been carried out to solve normal contact problems 

when Hertzian geometric assumptions do not hold. Some novel virtual penetration based methods 

include Kik–Piotrowski’s method [30], Linder’s method [31] and Stripes method [32]. Burgelman 

has compared the results of these methods and the elliptical based method FASTSIM and has 

concluded that the non-elliptical models predict a better curving behaviour with 12% lower 

creepages and 3% lower creep force than the FASTSIM elliptical model; however, the difference on 

straight tracks is negligible [33]. 

 

To sum up, Polach’s adhesion model is effective for both small and large values of longitudinal 

wheel-rail creep as well as representing the decreasing part of creep-force function exceeding the 



30 
 

adhesion limit [34]. Furthermore, it is used in this thesis as it has been verified to be relatively 

accurate for the application in the field of locomotive traction analysis [35]. 

 

2.1.3. Review of Locomotive Electric Drive Control Design 

Locomotive drive and creep controller design is critical to the performance of the locomotive 

system and also is one of the main focuses of the thesis. A well-designed drive and control system 

can not only increase the operational reliability of the locomotive but also improve the 

driver/passenger comfort. In this section an introduction including the characteristics of an AC 

motor emphasizing the challenge of its control will be proposed first, followed by some AC drive 

control methods commonly used in industry especially on locomotives. 

  

Dynamic analysis of an AC motor is shown in Figure 10.  It is a highly coupled, non-linear, and 

multivariable structure compared to the simple structure of DC motors [36]. One of the major 

technology challenges is implementing precise control.  

 

 

 

Figure 10: Single-phase equivalent circuit for a squirrel cage motor [37] (upper); and an AC 

Induction Motor with cut away showing squirrel cage rotor (lower) 

Stator 
Rotor 

Poles 
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Simple open loop control is possible with a fixed control frequency, via a variety of techniques such 

as switching of the number of active poles or varying the supply voltage. However such schemes do 

not provide good control over the system over a large range of speeds and slip [38]. AC drives do, 

however, naturally possess a steep torque slip curve near the synchronous speed of the motor, which 

is exploited in a number of control schemes based on varying the amplitude and waveform of the 

supplied voltage, enabling precise speed control [39]. The difficulties associated with this type of 

precise control over the full range of operating conditions is due to the nonlinear nature of the 

system and the practical challenge of generating the desired multiphase supply voltage with fine 

enough resolution to accurately reproduce the waveform as required for the control signal.  

 

An induction motor drive is a complicated nonlinear system that has been the subject of a large 

body of research and their control schemes have reached a high state of development [38]. System 

modelling typically allows for nonlinear inversion into a linear model, allowing the use of well 

understood linear control techniques [39]. The principal challenges in implementing these 

techniques are then technical and financial, in that a reliable estimate must be available for the 

control model. Examples of these challenges are the difficulty of accurately estimating rotor fluxes 

and load torques [40] and the cost associated with installing high accuracy sensors to measure 

rotation speed [41]. Techniques have been developed to overcome these limitations, such as sliding 

mode nonlinear state estimation techniques [42], but the potential costs of poor estimates are 

degraded performance [43]. 

 

The importance of AC induction drives and their control in industrial applications has resulted in 

the development of accurate simulation packages capable of reproducing the dynamic behaviour of 

typical drive and control configurations [43]. MATLAB/Simulink based modelling is frequently 

encountered in research papers as a useful tool for evaluating the expected performance of AC drive 

systems (see for example [43-45]). In the following sections, some widely used AC drive control 

methods are separately explained. 

 

This AC machine control method, also known as Field-Oriented Control (FOC), simulates the DC 

drive by means of complex transforms [46]. It achieves control performance as good as that of DC 

machines. The scheme is shown in Figure 11.  
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Figure 11: Basic scheme of FOC for the three-phase AC machine [47] 

 

In the system, two motor phase currents and the DC bus voltage are measured and transformed 

using the Clarke transformation block (the transformations can be found in [48]) into a stationary 

reference frame. These last two components are further transformed, using the Park transformation, 

into rotating components (dq). The PI controllers compare the command values with the measured 

components (after transformation) and command proper values to establish the desired condition. 

The outputs of the controllers are transformed from a rotating to a stationary frame using the Park 

transformation. The commanded signals of the stator voltage are sent to the pulse width modulation 

(PWM) block. Although the flux vector AC machine control method can achieve good torque 

response with full torque at zero speed and has performance very close to a DC drive, it needs a 

feedback device which can be costly and can add complexity to the drive system. A modulator is 

also used, which will slow down communication between the incoming voltage and frequency. 

 

The direct torque control (DTC) method was proposed by Manfred Depenbrok in U.S. Patent 

4,678,248 in 1987 and firstly applied by ABB in German diesel-electric locomotives [49]. This 

method achieves field orientation without feedback calculating the motor torque directly and 

without using modulation. DTC is commonly used in controlling locomotive motors, for example 

DE502 and DE10023 diesel-electric locomotives, as well as some Siemens locomotives. The DTC 

technique is chosen to control the traction motor because it is fast in response and computationally 

inexpensive to simulate. The structure of a typical DTC controlled AC drive is shown as in Figure 

12.  
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Figure 12: A typical DTC controlled AC drive structure [50] 

 

Details of this method can be found in [51]. This method has the following advantages: no 

modulator is needed; no tachometer or position encoder which is to feedback the shaft speed or 

position is required; and the torque performance is faster than other AC or DC drives [52]. This 

induction machine control technique is used in this thesis to build the complex drive model and to 

compare with available data considering the above advantages over other methods. 

 

2.2. Review of Adhesion/Creep Control (Objective 2) 

Modern development of mechatronics systems provides the possibility of improving rail vehicle 

operation under various conditions. The traction control system, also known as an adhesion control 

system or anti-slip regulation system is essential for such systems to achieve operational efficiency 

and reliability. The traction control system is designed to regulate the torque applied to the vehicle 

wheelsets to prevent excessive wheel-slip and resulting loss of traction. A number of different 

methods have been proposed by researchers aiming to prevent excessive wheel-slip and to operate 

the rail vehicle at an optimum level of adhesion. Most of these require vehicle velocity and wheel-

rail contact condition information. A terminology, creepage, needs to be introduced here. It is 

defined as the difference between wheelset velocity and locomotive velocity normalized by 

locomotive speed.  

As mentioned in previous sections, AC motors can achieve higher traction/adhesion performance 

than their DC counterparts to theoretically achieve the optimum traction/adhesion operation of rail 

locomotives. However, due to its inherent complexity and non-linearity, the high performance can 

only be achieved by accurate state detection and/or estimation together with proper AC drive 
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control design. The performance under dynamic conditions has also not been investigated deeply. 

The following sections will review several recent adhesion control techniques. 

 

2.2.1. Pattern-based Slip Control Method 

There are several pattern-based adhesion control methods and derivations. A typical application is 

by Park et al. [53]. The idea of this method is to adjust the control command according to a pre-set 

command pattern by setting different thresholds and can be illustrated in Figure 13.  

Current command
By pattern control 1

Current command
By pattern control 2

 

Figure 13: Pattern re-adhesion control method [53] 

 

In this method, the speed difference control (c) is separately activated after the dead zone, which is 

determined by the speed sensor error. The second step by pattern control (a and b) begins if the first 

step failed to constrain the slip under pre-set threshold 1. This method, although being able to 

constrain the slip velocity within a certain range as the author claimed, cannot assure the 

achievement of maximum adhesion during locomotive operation since the maximum adhesion is 

determined by creepage rather than slip velocity. 
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2.2.2. Disturbance Observer Based Slip Control  

Anti-slip control based on a disturbance observer was proposed by Ohishi et al. [54]. The method is 

to estimate the friction coefficient by using the estimated disturbance torque 𝑇̂𝐿 with an adhesion 

force coefficient estimation system in Figure 14. 

 

 

Figure 14: Estimation system of adhesion force coefficient [54] 

The anti-slip control is then carried out by setting the torque command to the maximum value based 

on the estimated friction coefficient. This method which has also been claimed to be able to achieve 

maximum adhesion force operation and good anti-slip effect, does not take the speed sensor delay 

into account and has only been simulated as a single wheel. As a result the transient behaviour of 

the locomotive utilizing this method has not been deeply investigated. 

 

2.2.3. Slip Control with Bogie Oscillation Suppression 

Yasuoka et al. proposed a slip control method [55] which also takes into account bogie oscillation 

suppression. This control method consists of creep control, estimated traction force control, 

oscillation suppression control and all wheel slip suppression control. The control system diagram 

is as shown in Figure 15.  
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Figure 15: Re-adhesion control block based on [55] 

 

The proposed creep controller in this method is to amplify the square of the slip velocity by a scale 

coefficient and use this as a torque reduction signal. The oscillation suppression control is by 

reducing the torque command to the leading wheel proportionally to the velocity difference between 

the leading and trailing wheels.  

 

2.2.4. Other Control Strategies  

Several advanced control strategies have been proposed on locomotive application for different 

purposes. An optimal control method has been proposed for cruise control [56] and energy 

management [57]. However, the optimal nature of this kind of controller may not be suitable for the 

application of traction dynamics improvement. The fuzzy logic method has also been proposed on 

locomotive applications [58, 59]. Fuzzy logic systems are based on fuzzy set theory [60]. Fuzzy sets 

derive from a grouping of elements into classes that do not possess sharply defined boundaries [61]. 

Since fuzzy logic uses fuzzy linguistic rules based on expert knowledge and specific numeric data 

without the existence of a suitable mathematical model [58], it has the ability to tackle uncertainties 

and nonlinearity [62]. This method can be applied to various real-life situations and is easy to 

design and implement. It is not a systematic way of control design and depends heavily on 

experience. Model predictive control (MPC) is a modern control method and has been applied on 

some slow process control situations [63]. However, the online optimal calculation for each time-

step makes it difficult to apply on a complex fast sampling process. A mechatronic approach to 
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control the wheel slip based on the information on the torsional vibration of the wheelset is 

investigated by Mei et al. [64]. Nonlinear control design and its application has been proposed [65] 

on a simplified mass locomotive. The process of finding the Lyapunov function may be difficult if 

the whole complex locomotive dynamics is considered. In this thesis, PI and fuzzy logic based 

controllers are used to achieve creep and wear control.  

 

2.3.   Review of Wear Models in Railways (Objective 3) 

Wear is the progressive loss of material from the operating surface of a body, caused by relative 

motion at the surface [66].  In the railway field it is a fundamental problem as the change of profile 

shape deeply affects the dynamic characteristics of railway vehicles such as stability or passenger 

comfort and, in the worst cases, can cause derailment [67]. Wear may be broadly classified 

according to the relative types of motion such as sliding, rolling and rolling-sliding, or types of wear 

mechanisms [68]. The wear phenomenon in the rail industry and its modelling has been studied for 

decades [67, 69-71]. However, the impact of locomotive dynamic response on wear phenomena 

under different conditions has not been investigated deeply. 

 

Beagley et al. proposed patterns of wear behaviour [72], which is categorized into “mild” and 

“severe” regimes to describe wear characteristics on either side of a wear transition between sliding 

velocity regions observed in his experimental results. A third regime, defined as “catastrophic” 

regime of wear, was defined by Bolton et al. according to their test results [73]. A thorough  review 

of this “catastrophic” wear phenomenon was performed by Markov et al. in [74]. Furthermore, three 

wear regimes for wheel/rail steels have also been observed by Danks et al. [75] with field and 

laboratory test results. Danks et al. also proposed to use the terms “type I wear”, “type II wear” and 

“type III wear” for describing the “stages” of the wear, which are characterised by: the wear rate; 

the worn surface features (particularly its roughness); and the size, morphology and colour of wear 

debris which are caused by wear modes identified in references [66, 72, 73, 75, 76]. According to 

Clayton [77], type I wear combines both oxidational and rolling-sliding modes of wear resulting in 

debris containing oxide and metal particles. It approaches a true oxidative wear, in which materials 

are removed by the progressive growth and mechanical breakdown of an oxide layer, at very low 

creep rate and contact pressures. At the creep rate beyond the creep saturation there is a significant 

contribution from the formation of rolled out, thin, metal flakes that eventually fracture. Type II is 

characterised by completely metallic wear debris, the occurrence of microscope ripples on the wear 

surfaces and some metal transfer. It has been concluded that this is a deformation and fracture 

process with no evidence of fatigue-like cracks at the surface. Type III wear involves an initial 
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break-in period that leads to the production of large pieces of wear debris. This causes self-inflicted 

wear of both contact surfaces. 

For the wheel/rail steel, the material loss in the wear process is defined as wear rate. It is determined 

by the loss of material mass per rolling distance (𝜇𝑔/𝑚) [75]; or by the total loss of material mass 

per rolling distance, per contact area (𝜇𝑔/𝑚/𝑚𝑚2) [76]. Both wheel and rail wear regimes can be 

illustrated in a similar mapping method [67, 71, 78-81]. According to Lewis et al. [71], the Type I, 

II and III wear regimes, corresponding to the mild, severe and catastrophic wear regimes 

respectively, can be presented by plotting wear rate against 𝑇𝛾/𝐴 to allow a direct comparison, as 

shown in Figure 16. 

 

Figure 16: Wear types identified during tests of BS11 Rail vs. Class D Tyre [71] 

 

According to the purpose of the study, wear rate can be plotted against the contact pressure and slip 

rate; multiplied by contact pressure and slip rate or even versus the ‘wear index’, 𝑇𝛾/𝐴 [82] as 

shown in Figure 16 (in which 𝑇 is the tangential force,  𝛾 is the creep rate and 𝐴 is the nominal 

contact area). The correspondence between the laboratory and field results has been investigated in 

[58]. Comparison of the wear rate, wear surface and wear debris in laboratory and field showed that 

type I wear may be used to model the rail head wear, type II wear is most likely to model the rail 

gauge wear and type III wear closely simulates the rail gauge wear under unlubricated condition 

and heavy axle loads [58]. This model was used in the intermediate stage of this study. A new 

model based on recent experimental data was used for the purpose of wear control. The new wear 

model is specified in the following section.  

A recent work on wear rate modelling has been carried out by Vuong et al. [66, 83], providing the 

relation between the frictional power density and the wear rate as shown in Figure 17 below. This 

wear model has also been used for the purpose of rail corrugation prediction and grinding cost 

analysis, which agrees with the field data from Queensland Rail [66].   



39 
 

 

Figure 17: The wear coefficient versus the frictional power density for UICB rail steel, 

running with class D wheel steel [83] 

 

In order to limit the wear damage on the rail tracks, the value 𝑃𝑟/𝐴𝑛 should be limited within a 

certain range. In this thesis the frictional power density threshold is chosen according to the 

experimental result as shown in Figure 17 above [83].   

2.4. Summary 

This chapter has examined the locomotive dynamic modelling efforts, rail-wheel contact mechanics, 

AC drive control techniques, adhesion/slip control methods and wear growth modelling. The 

available literature suggests that while there are seminal works with respect to each of the areas, 

there have been very few or emerging efforts that have tried to integrate these areas and establish a 

dynamic modelling framework for locomotive adhesion and wear control from a systems approach.  

This thesis will combine the above mentioned subsystems by taking advantage of the above 

mentioned methods and investigate reliable fast adhesion/traction and wear control. 

This section has identified the major research interests in this field in the period of the last 20 years 

and also identified the potential knowledge gap between control design and performance of 

locomotives and consequently established the objectives of the research. 
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Chapter III: Methodology 

This chapter provides a summary of methodologies and models developed in this thesis for 

locomotive and electric drive modelling, wheel/rail contact mechanics modelling, 

creep/adhesion control and wear control. More specifically, section 3.1 mainly introduces the 

mathematical modelling for locomotive longitudinal, vertical and pitch dynamics; a detailed 

wheel/rail contact mechanics modelling; and electric drive dynamic modelling (Objective 1). 

Section 3.2 provides details of the fuzzy logic based creep/adhesion control methods aiming 

to achieve higher tractive force under a change of operating conditions (Objective 2). In 

section 3.3, details of wear rate control strategy are provided (Objective 3).  

3.1. Overview 

In order to study the dynamic response of a locomotive under a change of operating 

conditions, a model considering all essential dynamic components needs to be developed. In 

the proposed model, three major subsystems are taken into consideration for the modelling 

process; namely, a mathematical model representing the dynamics of a locomotive along 

longitudinal, vertical and pitch directions, electric drive/control dynamics, and contact 

mechanics. The interaction among the three modules is shown in Figure 18. The dynamic 

model of the mechanical system of an electric locomotive based on the Newton-Euler method 

[84] is developed. The wheel-rail contact in this model is based on Polach’s model [27]. And 

the simplified electric drive model with a PI creep controller is integrated into the electric 

drive/control dynamics block in this model. 
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Figure 18: Schematic diagram of the overall system 
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The model may be described as a feedback system which takes creep as the major feedback 

signal. In the model, creep response is calculated directly from the rotational speed of the 

axles and the locomotive. The proposed system is also designed to be able to deploy into the 

field, where such speed information can be measured constantly. The rotational speeds of 

axles can be constantly measured by tachometers on the axles and used to generate reference 

creep. The position/speed information of the railway vehicle can be monitored by using a 

microwave ground speed sensor such as a Pegasem GSS20 [85, 86]. As a result, the creep 

value on each axle can be calculated as the relative difference between the speed of each axle 

and the locomotive speed. The controller then adjusts the amount of torque generated by each 

electric drive separately. The electric drive and control system provides a torque acting on the 

motor shaft in the locomotive model. Torque also results from the longitudinal force due to 

the interaction between wheel-rail track contact mechanics. The resultant creep changes the 

longitudinal tractive force calculated using the Polach model. The tractive force acts on the 

locomotive dynamic model and changes the displacements and velocities of the vehicle rigid 

bodies. Each of these components is detailed in the following sections. 

 

3.2. Locomotive dynamic modelling and eigenmode analysis (Objective 1) 

This section presents the modelling of essential locomotive dynamic components and 

eigenmode anaysis (Objective 1). Specifically, the locomotive longitudinal, vertical and pitch 

dynamics modelling; the wheel/rail contact dynamics modelling; and the electric drive 

dynamics modelling are described respectively in detail. 

 

3.2.1. Locomotive Multibody Dynamics 

 

A 2-dimensional locomotive dynamic model is shown in Figure 19, which includes 

longitudinal, vertical and pitch dynamics of locomotive motion. An assumption has been 

made that the motors are fixed on the bogie evenly and no relative displacement occurs 

between the motors and the bogies, in order to simplify the model. The longitudinal motions 

between wheelsets and bogies are neglected to simplify the calculation and save simulation 

time while maintaining most of the essential dynamics. Also as for a typical three-piece 

freight vehicle bogie, axles are mounted on the bogies via axle boxes (Figure 3.37, [5]). The 

longitudinal stiffness between the axle box and bogie tends to be relatively higher than that of 

other parts, thus the relevant motion between the axles and bogies tends to be negligible. 
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Moreover, the main purpose of this study is to investigate the effect of creep and wear 

controllers. Therefore, taking longitudinal motion between bogies and axles into 

consideration will cause excessive computational cost and would not change the main 

conclusions of this study.  

 
 

 
Figure 19: Locomotive longitudinal-vertical dynamic diagram 

 

This model has 21 degrees of freedom (DOF), including 9 DOFs for the longitudinal, vertical 

and pitch motion of locomotive body and two bogies and 12 DOFs for vertical and rotating 

motion of the six wheelsets. The connection between the car body and bogies, i.e. the 

secondary suspension, contains a set of springs and dampers along both longitudinal and 

vertical directions. The connection between wheelsets and bogies, i.e. the primary suspension, 

contains a set of springs and dampers along only vertical direction as the longitudinal 

connections between the wheelsets and bogies are assumed to be rigid as the longitudinal 

stiffness of the primary suspension is usually much higher than that of the secondary 

suspensions [87]. The vertical wheel/track is modelled as a simple beam model [5], described 

by a stiffness coefficient. The longitudinal tractive force acting on the whole locomotive is 

caused by the friction force between the wheel and rail, providing a longitudinal 

acceleration/deceleration dynamic component of the bogie’s motion and torque for bogie 

pitch motion. The relative motion between the bogies and car body provides the car body 

forces and torque for longitudinal, vertical and pitch motion. 

 

The system variables are expressed as a vector containing 42 entries, representing the relative 

displacements and velocities between different nodes as: 
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𝑋 = [𝑍 𝑍̇]
𝑇, 𝑍 = [𝑍𝑐 𝑍𝑏𝑜𝑔𝑖𝑒1 𝑍𝑏𝑜𝑔𝑖𝑒2 𝑍𝑎𝑥𝑙𝑒𝑠]𝑇,   (3.1) 

 

in which 𝑍𝑐 = [𝑥𝑐 𝑧𝑐 𝜃𝑐]
𝑇 is a 3×1 vector representing the locomotive body longitudinal, 

vertical and pitch motion from the static positions, 𝑍𝑏𝑜𝑔𝑖𝑒1 = [𝑥𝑏1 𝑧𝑏1 𝜃𝑏1]
𝑇  and 

𝑍𝑏𝑜𝑔𝑖𝑒2 = [𝑥𝑏2 𝑧𝑏2 𝜃𝑏2]
𝑇  are both 3×1 vectors representing longitudinal, vertical and 

pitch motion of the front and rear bogie separately, and 

𝑍𝑎𝑥𝑙𝑒𝑠 = [𝑧𝑤1 𝜃𝑤1 𝑧𝑤2 𝜃𝑤2 … 𝑧𝑤6 𝜃𝑤6]
𝑇 is a 12×1vector representing the vertical 

and rotating motion of wheelsets 1~6. The state space representation of the dynamics can be 

expressed as: 

 

𝑋̇ = 𝐴𝑚 ∙ 𝑋 + 𝐵𝑚 ∙ 𝑢
𝑌 = 𝐶 ∙ 𝑋 + 𝐷 ∙ 𝑢

,                                            (3.2) 

 

where matrix 𝐴𝑚 is defined as:  

 

 𝐴𝑚 = [
𝛩 𝐼

−𝑀−1𝐾𝑚 −𝑀−1𝐶𝑚
],                (3.3) 

 

where 𝑢 is the longitudinal tractive force resulted from the interaction between the wheelsets 

and rail tracks, 𝑌  is a vector of displacement or velocity of each node from its static 

position, 𝛩 is a zero matrix, 𝐼 is an 21×21 identity matrix, 𝐾𝑚 is the stiffness matrix, 𝐶𝑚 is 

the damping matrix, and 𝑀 is the diagonal mass and moment of inertia matrix in the form of,  

 

𝑀 = 𝑑𝑖𝑎𝑔(𝑀𝑐 𝑀𝑐 𝐼𝑐 𝑀𝑏 𝑀𝑏 𝐼𝑏 𝑀𝑏 𝑀𝑏 𝐼𝑏 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤).   

(3.4) 

Matrix D is defined as: 

 

     𝐷 = 𝛩21×6.                                                        (3.5) 

 

The detailed parameters of the locomotive are listed in Table 1.  
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Table 1: Detailed parameters of the locomotive model 

Parameter Value 

Mass of each bogie frame (kg) 12121 

Total mass of locomotive (t) 134 

Load mass (kg/carriage × no. of carriages) 90000 × 50 

Load force (N) 4.8 × 10
6
 

Gear Ratio 17/90 

Primary suspension springs (N/m) 89 × 10
6
 

Yaw viscous dampers stiffness (N/m) 45 × 10
6
 

Vertical viscous dampers stiffness (N/m) 44 × 10
6
 

Secondary suspension springs (N/m) 5.2× 10
6
 

Longitudinal and lateral shear stiffness (N/m) 0.188 × 10
6
 

Central pivot longitudinal stiffness (N/m) 5 × 10
6
 

Wheel contact stiffness (N/m) 2.4 × 10
9
 

Primary suspension vertical damping (kg/s) 10 × 10
3
 

Secondary suspension vertical damping (kg/s) 2 × 10
4
 

Rail damping (kg/s) 1 × 10
6
 

Locomotive body length (m) 22 

Locomotive body height – without bogie (m) 1.93 

Bogie length (m) 3.7 

Bogie height (m) 0.733 

Horizontal distance between bogies mass centre (m) 13.7 

Horizontal distance between axles (m) 1.3 

Vertical distance between body bottom and bogie top (m) 0.3605 

Vertical distance between bogie bottom and wheel top (m) 0.127 

Wheel diameter (m) 1.016 

Simulation time step (s) 

Wheelset mass (kg) 

Car body pitch moment of inertia (kg· m2) 

Front/rear bogie pitch moment of inertia (kg· m2) 

Wheelset pitch moment of inertia (kg· m2) 

5×10
-6 

2850 

3610410 

             37007 

1200 

 

The axle rotation dynamics is excluded from eigenmode (modal) analysis as the rotation of 

the axles is considered as linearly dependent on the motor shaft rotation, which is modelled as 

part of the motor dynamics. As a result the corresponding rows and columns are kept out 

from 𝐴𝑚 to form a new matrix 𝐴𝑚𝑜𝑑𝑎𝑙 for the locomotive modal analysis. Since the matrix 

𝐴𝑚𝑜𝑑𝑎𝑙 is the state space form of modal analysis [88, 89], the eigenvalues 𝜆𝑖 = −𝛼𝑖 ± 𝑖𝛽𝑖 of 

matrix 𝐴𝑚𝑜𝑑𝑎𝑙 represent the modes of motion of the locomotive and the first 15 elements of 

the eigenvectors represent the corresponding mode shapes.  The real part of the eigenvalues is 

the decay rate of the modes and the imaginary part is the corresponding damped natural 

frequency. The damping ratio is defined as 𝜁𝑖 =
−𝛼𝑖

√𝛼𝑖
2+𝛽𝑖

2
.  
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3.2.2. Contact Mechanics  

The creep force is caused by the wheel-rail rolling contact and it is crucial in terms of the 

locomotive traction/braking operation. The Polach creep force model [27] is employed as it 

has been verified to be relatively accurate for locomotive traction analysis [35]. The contact 

area is assumed to be elliptical. The solution assumes a linear growth of the relative 

displacement between the bodies from the leading point A to the trailing point C along the 

edge of the contact area as shown in Figure 8. The tangential stress acts in the opposite 

direction of the creep and the value of stress grows linearly with the distance from the leading 

edge. The relative motion of the contact surfaces appears when the tangential stress reaches 

its maximum value according to [18]. The resulting creep force along the tangential direction 

is, 

 

𝐹 =
2𝑄𝜇

𝜋
(

𝑘𝐴𝜀

1+(𝑘𝐴𝜀)2
+ 𝑎𝑟𝑐𝑡𝑎𝑛(𝑘𝑠𝜀)) ,                                          (3.6) 

 

where 𝐹 is the tangential force, 𝑄 is normal wheel load, 𝑘𝐴 is the reduction factor in the area 

of adhesion and 𝑘𝑠 is the reduction factor in the area of slip. 𝜀 is the gradient of the tangential 

stress in the area of adhesion which along the longitudinal direction (defined as 𝑥 direction in 

Figure 8) can be calculated as, 

 

𝜀𝑥 =
1

4

𝐺𝜋𝑎𝑏𝑐11

𝑄𝜇
𝑠𝑥,     (3.7) 

 

where 𝐺 is the shear modulus and 𝑎 and 𝑏 are the half-axles of the contact ellipse as shown in 

Figure 8. The contact area is calculated as in [90] as 𝑎 = 8.6 mm, 𝑏 = 4.4 mm according to 

the dimension of the wheel in Table 1 and 60 kg rail profile from [91], 𝑐11 is derived from 

Kalker’s work [25] and characterizes the longitudinal direction of the contact shear stiffness 

coefficient. Also 𝑠𝑥 is the creep component in longitudinal direction defined as, 

 

𝑠𝑥 =
𝑤𝑥

𝑉
,      (3.8) 

 

where 𝑤𝑥 is the slip velocity in longitudinal direction and 𝑉 is the vehicle speed.  
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The Polach model employed is a regular form considering both longitudinal and lateral creep 

forces. However this is a simulation on a straight track, so only longitudinal dynamics need to 

be considered. Hence it is assumed the locomotive is tracking with no lateral displacement on 

the contact patch. As a result total creep s equals creep along longitudinal direction 𝑠𝑥. 𝜇 is 

the coefficient of friction calculated as: 

 

𝜇 = 𝜇0[(1 − 𝐴𝑝)𝑒
−𝐵𝑝𝑤 + 𝐴𝑝],     (3.9) 

 

where 𝜇0 is the maximum friction coefficient at zero slip velocity, 𝐴𝑝 is the ratio of friction 

coefficient at infinity slip velocity 𝜇∞ and 𝜇0 defined as: 

𝐴𝑝 =
𝜇∞

𝜇0
 .                                                                (3.10) 

 𝐵𝑝 is the coefficient of exponential friction decrease. 

Details of the parameters are listed in the previous section. The axes can be calculated with 

elliptical point contact formulae as in Appendix 3 in [90]. 

 

𝑎

𝑏
≈ (

𝑅′

𝑅′′
)2/3 ,                                                           (3.11) 

𝑐 = (𝑎𝑏)1/2 = (
3𝑃𝑅𝑒

4𝐸∗
)
1/3

𝐹1(𝑅
′/𝑅′′),                                     (3.12) 

 

𝑅′ and 𝑅′′ are major and minor relative radii of curvature. 𝑅𝑒 is equivalent radius defined as 

𝑅𝑒 = (𝑅
′/𝑅′′)1/2 , 𝑃  is normal load and 𝐸∗  is the combined Young’s modulus defined as 

𝐸∗ = (
1−𝜈1

2

𝐸1
+
1−𝜈2

2

𝐸2
)
−1

 in which 𝜈 is the Poisson ratio. In this study under the assumption of 

straight tracks and cylindrical wheels, 𝑅′ is the radius of the wheel and 𝑅′′ is the radius of the 

rail head. The standard 60 kg rail profile [91] is considered, as shown in Figure 20: 
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Figure 20: Standard 60kg rail profile [91] 

 

The inputs of the Polach adhesion/traction model are locomotive velocity, normal contact 

force calculated by the locomotive dynamic model, wheel speed obtained from the electric 

drive shaft speed and the switchable parameter sets representing different contact conditions 

such as dry and wet wheel-rail contact circumstances. The parameters for dry and wet contact 

conditions are listed in Table 2, according to Polach’s work [27], where  𝐴  the ratio of 

friction coefficient is defined as 
𝜇∞

𝜇0
, 𝐵 is the coefficient of exponential friction decrease (s/m), 

𝑘𝐴 is the reduction factor in the area of adhesion and 𝑘𝑠 is the reduction factor in the area of 

slip. Rail tracks can be contaminated by oil. Compared with the dry and wet conditions, the 

oil contact condition tends to cause a large friction reduction. As a result, the wheelsets are 

more likely to lose traction under the oil condition than under the dry and wet conditions. 

Polach model parameters 𝑘𝐴 and 𝑘𝑠 will be tuned for an oil contact condition and the result 

will be shown in next chapter. 

Table 2: Parameters for different contact conditions 

Conditions Parameters Dry Wet 

kA 1 0.3 

kS 0.3 0.75 

µ0 0.55 0.3 

A 0.4 0.4 

B 0.25 0.09 
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3.2.3. Electric Drive Dynamics 

This section provides details of the complex DTC drive and the simplified single drive AC 

drive and controller modelling.  

The controlling variables are motor magnetising flux and motor torque. The electromagnetic 

torque generated by the induction machine can be expressed as [50], 

 

𝑇𝑒 =
3

2
𝑃

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
𝜓̅𝑠 × 𝜓̅𝑟 =

3

2
𝑃

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
|𝜓̅𝑠||𝜓̅𝑟|𝑠𝑖𝑛(𝛿)                                (3.13) 

 

where  𝜎 = 1 − 𝐿𝑚
2/𝐿𝑠𝐿𝑟 is the leakage factor, 𝑃 is the number of pole pairs, 𝛿 = 𝜌𝑠 − 𝜌𝑟 is 

the torque angle where 𝜌𝑠 and 𝜌𝑟 are stator and rotor flux angles. 𝐿𝑚 is the mutual inductance, 

𝐿𝑠 is the stator self-inductance and 𝐿𝑟 is the rotor self-inductance. The dynamic model of an 

induction machine in the stationary reference frame can be written in 𝛼𝛽 frame variables. The 

stator and rotor flux linkage and their components can be written as, 

 

𝜓̅𝑠 = 𝐿𝑠𝑖𝑠̅ + 𝐿𝑚𝑖𝑟̅
𝜓𝛼𝑠 = 𝐿𝑠𝑖𝛼𝑠 + 𝐿𝑚𝑖𝛼𝑟
𝜓𝛽𝑠 = 𝐿𝑠𝑖𝛽𝑠 + 𝐿𝑚𝑖𝛽𝑟

 ,                                                 (3.14) 

𝜓̅𝑟 = 𝐿𝑚𝑖𝑠̅ + 𝐿𝑟𝑖𝑟̅
𝜓𝛼𝑟 = 𝐿𝑟𝑖𝛼𝑟 + 𝐿𝑚𝑖𝛼𝑠
𝜓𝛽𝑟 = 𝐿𝑠𝑖𝛽𝑟 + 𝐿𝑚𝑖𝛽𝑠

 ,                                               (3.15) 

where 𝑖𝑠̅ and 𝑖𝑟̅ are the stator and rotor current vectors. The three phase voltage is controlled 

by the switching of the voltage source inverter (VSI) on and off. The rotor flux is determined 

by loading and the stator flux is to be controlled nearly constant. As a result the torque can be 

controlled by changing the stator flux angle. As shown in Figure 21 (left), the three phases of 

the AC machine are connected to an inverter supplied with direct current voltage source. 

Each switch can be connected to upper position, indicated by ‘1’, or lower position indicated 

by ‘0’. The line-to-neutral voltage 𝑣1𝑎 , 𝑣1𝑏  and 𝑣1𝑐  are determined only by the switching 

mode of the inverter. Eight voltage vectors, including two zero voltage vectors can be 

generated by a different switching mode setting, as shown in Figure 21 (right).  
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Figure 21: Schematic diagram of an AC machine with inverter (left) and instantaneous 

voltage vectors (right) [92] 

 

The control signal is generated by the look-up table based on the stator voltage vectors 

generated by the inverter switching states as shown in Figure 21. The look-up table is as 

shown in Figure 22 below.  

 

Figure 22: Optimum switching table and comparators [92] 

It gives the selection of the voltage vectors for all the possible stator flux space vector 

positions in terms of sectors. The switching is determined by the status of errors of the 

primary (stationary) flux linkage vector 𝜙 and electromagnetic torque 𝑇𝑒.  

 

The mechanical dynamics of the rotary motor is given by [93], 
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𝜔̇ =
1

𝐽
(𝑇𝑒 − 𝑇𝑙 − 𝑇𝑓),                                             (3.16) 

where 𝜔 is the angular velocity of the rotor, 𝐽 is the moment of inertia of the rotor, 𝑇𝑒 is the 

developed electromechanical torque, 𝑇𝑙 is the load torque and 𝑇𝑓 is the friction torque. In this 

thesis, the equivalent moment of inertia 𝐽𝑒𝑞 is introduced to represent the overall moment of 

inertia including the axles and gears. The gear ratio from the axle to the rotor is defined as 𝑅𝑔. 

The dynamics including the axles and the transmission mechanism is simplified as, 

 

𝐽𝑒𝑞𝜔̇ = 𝑇𝑒 − 𝑅𝑔𝑇𝑙 − 𝑇𝑓.                                            (3.17) 

 

The diagram of the DTC induction machine is as shown in Figure 23 below. 

 

 

Figure 23: Diagram of the DTC induction machine 

A simplified AC drive dynamic model has also been developed by excluding the electric 

dynamics of above procedure to simulate the low frequency dynamic response, and to reduce 

the simulation time. The simplified electric drive dynamics is as described by equation (3.17). 
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3.3. Creep Controllers (Objective 2) 

In this section, several creep/adhesion control methods will be provided in detail, including a 

PI controller, a fuzzy logic based controller and a modified fuzzy controller. 

 

3.3.1. PI Controller 

A PI controller is adopted and tuned with a creep threshold setting and controller parameters 

to test the system stability and to reveal the transient dynamic behaviour of the model. In this 

way, the diagram of this basic method is shown in Figure 24: 
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controller
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Creep control 
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Figure 24: Diagram of basic PID adhesion/creep controller 

 

The two main components of this subsystem are AC drives and the creep controller. The 

driver notch setting chooses different torque command levels. The torque reduction command 

is generated by the creep controller. The adjusted torque command then acts as the control 

input of the drives operating under torque control mode to generate electromagnetic torque 

acting on the shaft to drive the wheelset via a series of gears. The input electromagnetic 

torque command signal is the combination of the command signal given by driver notch 

setting and the compensation torque signal of the creep controller output. The PI controller 

compares the actual creep value to the pre-set threshold, which currently is chosen to be 7%. 

If the actual creep value is lower than the threshold, the controller outputs zero; otherwise, it 

generates a compensation value to reduce the overall torque command. In this way the AC 

motor tractive torque will be reduced and hence the creep will be controlled. A more 

advanced controller will be implemented in the following sections. The detailed model 

including electric AC drive dynamics would take approximately about 20 minutes to run 10 

seconds simulation on a desktop workstation using Matlab/Simulink. In comparison, the 
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simplified model described in the previous section takes only 10 minutes for the same 

simulation. Figure 25 shows the flow chart of the PI creep controller. 
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Figure 25: The flow chart of the PI creep controller 

 

The creep controller is based on the creepage with maximum traction effort according to the 

creep curve. The design of the creep controller is very similar to the creep controller 

described in the patent document (US patent number 20130082626A [94]), which uses a 
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threshold value of 3%. Based on the design of GE’s PowerHaul Series locomotive [95], 

individual axle traction control technology is employed. 

 

3.3.2. Fuzzy Logic Controller with Variable Creep Threshold 

The proposed adhesion control system utilizes the method described in [96] to determine the 

locomotive speed which will be used to calculate the creep values of each axle. And an 

adhesion force coefficient observer proposed in [54] is adopted to generate the ‘optimum’ 

reference motor torque signal. The control system diagram is as shown in Figure 26. 
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Figure 26: Adhesion control diagram 

A fuzzy logic creep controller is adopted in this work due to its advantage of giving strong 

self-adaptive and robust performance without the need of an accurate mathematical model 

[97]. The proposed fuzzy logic controller uses the information of differentiation of each 

axle’s creep and the differentiation of each axle’s adhesion coefficient, which is estimated 

from the change in vehicle acceleration over one sample period as proposed in [98]. Each of 

the fuzzy inputs of derivative of creep and derivative of adhesion coefficient is expressed by 

5 fuzzy membership functions, e.g. positive big (Pb), positive small (Ps), zero (0), negative 

small (Ns) and negative big (Nb). The output of the fuzzy logic controller is a torque 

compensation command to each of the motors, either to increase or reduce the 
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electromagnetic torque acting on the motors within the range of the traction limit. The 

controller output is described by, 

 

𝑇𝑚
∗ (𝑁) = 𝑇𝑚

∗ (𝑁 − 1) + 𝑇𝑐𝑜𝑚𝑝(𝑁).                                         (3.18) 

 

The membership functions and control rules are in Table 3 and Figure 27 below. 

 

Table 3: Fuzzy rule table 

Derivative of 

creep (ṡ) 
Derivative of adhesion coefficient (μ̇) 

Pb Ps 0 Ns Nb 

Pb Pb Ps Ns Ns Nb 

Ps Ps Ps 0 Nb Nb 

0 Ps 0 0 Ps Ps 

Ns Ns Ns Ps Ps Pb 

Nb Ns Ns Ps Ps Pb 

 

(a)                                                                     (b)      

 

Figure 27: (a) Membership functions of inputs and output; (b) Fuzzy logic 3D input-

output characteristics 

 

The fuzzy rules are designed based on [98], i.e. dividing the creep-adhesion coefficient curve 

into four different sessions according to the value of  𝑠̇ and 𝜇̇ (1~4 representing sessions of 

dry contact condition curve, 1*~4* representing sessions of wet contact condition curve), as 

shown in Figure 28: 
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Figure 28: Illustrative graph for the fuzzy rules  

 

The characteristics of the processes above in terms of 𝑠̇  and 𝜇̇  are detailed below. In 

processes 1 and 1*,  𝑠̇  is positive and  𝜇̇  is positive. In 2 and 2*, 𝑠̇  is positive and μ̇ is 

negative. In 3 and 3*, ṡ is negative and μ̇ is positive; and in 4 and 4*, ṡ is negative and μ̇ is 

negative. Moreover, the transient condition caused by the change of wheel-rail contact 

condition is also taken into consideration. Thus two additional sessions have been added. 

Process 5 is the transient from the dry curve to wet curve with a positive ṡ and a very large 

negative μ̇. Process 6 is the transient from wet curve to dry curve with a negative ṡ and a very 

large positive μ̇ . The principle of the logic is to maintain the adhesion coefficient at a 

maximum value 𝑂  for a dry contact condition or at 𝑂′  for a wet contact condition, by 

reducing the torque command when the creep value is on the right hand side of a maximum 

value and increasing the torque command when on the left hand side of a maximum value.  

 

3.3.3. Modified Fuzzy Logic Controller 

The modified fuzzy controller differs from the one in the previous section in generating the 

reference slip instead of torque compensation signal. The controller from [99] is used to 
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regulate the torque output of the motor. The locomotive adhesion/traction control scheme that 

based on fuzzy logic is shown in Figure 29. 
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Figure 29:   Schematic diagram of the overall system 

 

The model may be described as a feedback system. The rotational speeds of axles are 

constantly measured and used to generate a reference creep. The creep value on each axle is 

also calculated with the information of the speed of each axle and the locomotive speed. The 

controller then adjusts the amount of torque generated by the electric drives accordingly. The 

electric drive and control system provides a torque acting on the motor shaft in the 

locomotive model. Torque also results from the longitudinal force due to the interaction 

between wheel-rail track contact mechanics. The resultant creep changes the longitudinal 

tractive force calculated as described in the Polach model, and the tractive force acts on the 

locomotive dynamic model and changes the displacements and velocities of the car bodies 

and bogies. The reference creep is calculated with the fuzzy logic method based on the 

derivative of creep 𝑠̇  and derivative of adhesion coefficient 𝜇̇(𝑠) . The updating law of 

reference slip is,  

 

𝑠𝑟𝑒𝑓
𝑘 = 𝑠𝑟𝑒𝑓

𝑘−1 + Δ𝑘(𝑠̇, 𝜇̇),      (3.19) 

 

where updating term Δ𝑘(𝑠̇, 𝜇̇)is calculated with fuzzy logic. As the peak value of the adhesion 

coefficient occurs when 𝑑𝜇 𝑑𝑠 = 0⁄ , the update term can be chosen as 𝑑𝜇 𝑑𝑠⁄ . For a discrete 

time system, it can be represented by, 

 

𝜇𝑘−𝜇𝑘−1

𝑠𝑘−𝑠𝑘−1
,      (3.20) 
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where the value of adhesion coefficient 𝜇 on the numerator is approximated with the ratio 

between 𝐹̂𝑎  and normal contact force between the wheel and the rail. The whole term in 

equation (3.20) is used as the input of the reference generator. 

 

The fuzzy logic takes this as its input and calculates an updating term according to Table 4 

and membership functions in Figure 30. Both input and output have four membership 

functions, i.e. negative big (NB), negative small (N), positive small (P) and positive big (PB). 

The output of the fuzzy system is the updating term Δk.  

 

Table 4:   Fuzzy rule table of the modified fuzzy controller 

INPUT OUTPUT 

NB NB 

N N 

P P 

PB PB 

 

(a)                                                                         (b) 
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Figure 30: (a) Membership functions of input; (b) Membership functions of output 

 

Values from equation (3.20) correspond with values of the input in Figure 30 (a), with which 

corresponding fuzzy values 𝜇 𝑁𝐵, 𝜇 𝑁, 𝜇 𝑃 and 𝜇 𝑃𝐵 can be obtained from the vertical axis in 

Figure 30 (b). Consequently, the centre of gravity method is employed as the defuzzification 

method. This method calculates the value 𝑧∗ for a fuzzy number 𝐶̃ as in [100], 
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𝑧∗ =
∫𝑧𝜇𝐶̃ (𝑧)𝑑𝑧

∫𝜇𝐶̃ (𝑧)𝑑𝑧
  ,                     (3.21) 

 

where 𝜇𝐶̃ denotes the membership function of the fuzzy number 𝐶̃ (NB, N, P and PB).  

 

The sliding mode control law [99] is designed with a simplified system dynamic model with 

one axle and 1/6 of total dynamic mass and then integrated into the locomotive dynamics.  

The sliding surface 𝑆(𝑡) for the sliding mode controller is defined as, 

 

𝑆(𝑡) = 𝑒 + 𝛾 ∫ 𝑒 𝑑𝑡
𝑡

0
,         (3.22) 

 

with 𝑒 = 𝑠𝑟𝑒𝑓 − 𝑠 represents the tracking error between the creep reference refs and the actual 

creep 𝑠. γ is a positive design parameter. The derivative of the sliding surface, after taking 

account of the simplified system dynamics, can be expressed as, 

 

𝑆̇ = 𝑠̇𝑟𝑒𝑓 −
𝑟

𝐽𝑉
𝑇𝑡 +

𝑟2

𝐽𝑉
𝐹𝑎 −

1

𝑀𝑉
(𝑠 + 1)𝐹𝑎 + 𝛾𝑒 = −𝐷𝑐𝑠 − 𝐾𝑠𝑠𝑔𝑛(𝑠) .  (3.23) 

 

The tractive force can be estimated by, 

 

𝐹̂𝑎 =
1

𝑟
𝑇𝑡 −

𝐽

𝑟

𝑠

𝜏𝑠+1
,     (3.24) 

 

where τ is the time constant of the first order filter in the adhesion force observer [99]. Thus 

the tractive torque can be obtained as, 

 

𝑇𝑡 =
𝐽𝑉

𝑟
{𝑠̇𝑟𝑒𝑓 + 𝛾𝑒 + [

𝑟2

𝐽𝑉
−

1

𝑀𝑉
(𝑠 + 1)] 𝐹̂𝑎 + 𝐷𝑐𝑠 + 𝐾𝑠𝑠𝑔𝑛(𝑠)}.  (3.25) 

 

3.4. Wear Rate Control (Objective 3) 

In this section, the wear rate control strategy based on a recent wear rate model [66] is 

provided in detail.  

 

Wear of both rail and wheel can be categorized as Type I (Mild), Type II (Severe) and Type 

III (Catastrophic) regimes. Recent research [66, 83] has investigated wear transitions between 
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different types of wheel/rail steel and using different wear models and models have been 

proposed for various rail materials. The frictional power density 𝑃𝑟/𝐴𝑛  is defined by 
𝑃𝑟

𝐴𝑛
=

𝐹𝑡𝑉𝑠/𝐴𝑛, where 𝐹𝑡 is the traction force, 𝑉𝑠 is the relative slip velocity and 𝐴𝑛 is the nominal 

contact area. The wear coefficient 𝑘0 is determined by, 

 

𝑘0 =
∆𝑚

∆𝑊
 ,                                                             (3.26) 

 

where ∆𝑚 is the mass loss of the rail disc after a certain time interval and ∆𝑊 is the frictional 

work dissipated in the rolling/sliding contact [66] . The wear coefficient under the dry 

conditions is about five times higher than that under the FM conditions [66]. 

 

In order to avoid excessive wear damage on the rail and wheel as in the Type III region in 

Figure 17, the friction power density value separating Type II and III regions of Figure 17 is 

chosen as the wear control threshold. In this study the threshold is set at 34 𝑊/𝑚𝑚2.  

 

This study employs a PI based creep controller to limit the creep values under pre-set creep 

thresholds at 4%. The block diagram of the creep control is shown in Figure 31 (a) and the 

diagram shown in 29 (b) is the block diagram of the wear and creep controller. Each wheelset 

has its own set of a controller and a motor so that the speed of the motors can be adjusted 

independently. 
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Figure 31: (a) Creep only control diagram; (b) Creep and wear control diagram  

 

In this study the creep threshold setting is assumed to be adjustable to investigate its impact 

on wear growth rate under different contact conditions. Different notch settings adjust the 

level of power supply to the motors and are controlled by drivers. The creep controller adjusts 

the torque generated by the motor. If the creep measurement is lower than the pre-set 

threshold, the controller is not activated. Otherwise the creep controller gives a torque 

compensation signal to reduce the amount of torque generated by the electric drive. In this 

case, the parameter values of the PI controller are tuned to 𝑃𝑐𝑟𝑒𝑒𝑝 = 1.5 × 10
7 and 𝐼𝑐𝑟𝑒𝑒𝑝 =

2 × 105, for the proportional (P) and integral (I) constants respectively, with consideration of 

the ratio of 𝑒 = 𝑠𝑟𝑒𝑓 − 𝑠  and the scale of torque to compensate. Hence the torque 

compensation can be calculated as, 
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𝑇𝑐𝑜𝑚𝑝 = {
0   𝑖𝑓 𝑒 ≥ 0

𝑃𝑐𝑟𝑒𝑒𝑝 × 𝑒 + 𝐼𝑐𝑟𝑒𝑒𝑝 × ∫ 𝑒𝑑𝑡       𝑖𝑓 𝑒 < 0
𝑡2

𝑡1

 .                       (3.27) 

 

Similarly, the wear controller adjusts the torque generated by the motor if either the frictional 

power density estimation exceeds the frictional power density threshold setting or the creep 

measurement exceeds the creep threshold setting. If both the creep measurement and the 

frictional power density estimation are lower than their corresponding pre-set thresholds, the 

controller is not activated; otherwise the controller outputs the smaller negative value of the 

two as the torque compensation. The parameter values of the creep control subsystem are the 

same as that of the creep only controller. The PI wear control subsystem control parameters 

are 𝑃𝑤𝑒𝑎𝑟 = 1.25 × 10
7  and 𝐼𝑤𝑒𝑎𝑟 = 8 × 103  respectively. The torque compensation 

generated by the wear and creep controller can be calculated as, 

 

𝑇𝑐𝑜𝑚𝑝 =

{
  
 

  
 

                            0                             𝑖𝑓 𝑒𝑠 ≥ 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 ≥ 0

𝑃𝑐𝑟𝑒𝑒𝑝 × 𝑒𝑠 + 𝐼𝑐𝑟𝑒𝑒𝑝 × ∫ 𝑒𝑠𝑑𝑡               𝑖𝑓 𝑒𝑠 < 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 ≥ 0
𝑡2

𝑡1

𝑃𝑤𝑒𝑎𝑟 × 𝑒𝑃𝑟/𝐴𝑛 + 𝐼𝑤𝑒𝑎𝑟 × ∫ 𝑒𝑃𝑟/𝐴𝑛𝑑𝑡       𝑖𝑓 𝑒𝑠 ≥ 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 < 0
𝑡2

𝑡1

min {𝑃𝑐𝑟𝑒𝑒𝑝 × 𝑒𝑠 + 𝐼𝑐𝑟𝑒𝑒𝑝 × ∫ 𝑒𝑠𝑑𝑡
𝑡2

𝑡1
, 𝑃𝑤𝑒𝑎𝑟 × 𝑒𝑃𝑟/𝐴𝑛 + 𝐼𝑤𝑒𝑎𝑟 × ∫ 𝑒𝑃𝑟/𝐴𝑛𝑑𝑡

𝑡2

𝑡1
}

                                                                                                    𝑖𝑓 𝑒𝑠 < 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 < 0
  

. (3.28) 

 

3.5. Summary 

The modelling and control methods used to complete the objectives in this thesis are detailed. 

In order to achieve Objective 1, the locomotive longitudinal, vertical and pitch dynamics are 

modelled using the Newton-Euler method. The eigenmode analysis method is also described. 

The wheel/rail contact dynamics is described with the Polach model, followed by a complex 

model of DTC electric drive dynamics and a simplified model. Objective 2 is achieved by 

using PI and fuzzy logic based control methods. A recent wear growth model is employed to 

control the wear damage to achieve Objective 3. With the modelling and control 

methodology identified and formulated, corresponding results were obtained, which are 

presented and discussed in the following chapter.   
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Chapter IV: Results and Discussion 

 
This chapter presents a summary of the results of simulations in accordance with the thesis 

objectives. Firstly, simulation results of the individual dynamic subsystems, including the 

locomotive longitudinal, vertical and pitch dynamics, the wheel/rail contact mechanics and 

both simplified and complex electric drive dynamics, as well as the complete integrated 

system are presented and compared with available data from the literature. Eigenmode 

analysis has also been performed to validate the model and to identify the modes of 

oscillations that are more likely to be excited under external perturbations, to complete 

Objective 1. Secondly, the simulation results comparing the dynamic responses of the 

locomotive with a traditional creep controller and results with new creep controllers under 

changes of operating conditions are presented, highlighting the benefits and likely limitations 

of controllers aiming to achieve higher tractive forces to complete Objective 2. Lastly, 

simulation results showing the impact of different creep controller threshold settings on the 

wear index are presented, which give rise to the new real-time control strategy aiming to limit 

wear damage on the wheel/rail contact patch. Then the simulation results comparing the 

dynamic responses of the locomotive with the traditional creep controller and the new 

controller are presented to highlight the benefit of the new control strategy to complete 

Objective 3. 

 

4.1. Locomotive Dynamic Simulation and Validation (Objective 1) 

This section presents simulation results and analysis focusing on the individual dynamic 

subsystems respectively.  

 

4.1.1. Validation of Multibody Dynamics - Eigenmode Analysis 

An eigenmode analysis was performed to identify all the dynamic modes of vibration and to 

determine the stability of the system. The system eigenvalues are provided in Table 5. An 

eigenvalue is obtained for each possible mode of vibration of the system. The negative real 

part shows that all vertical and pitch motions are stable. In other words, these modes of 

vibration are positively damped. Besides the modes listed in the table below, a rigid body 

mode is also identified with a zero frequency. This mode is associated with the longitudinal 

rigid body motion of the locomotive.  
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Table 5:   Modal frequencies of the locomotive dynamic system vibrations, damping 

ratio, decay rates and corresponding eigenvalues 

Modes Frequency 

(Hz) 

Damping ratio Decay rate 

(𝑠−1) 

Eigenvalues 

Mode 1 0.4 0.78 3.4624 -3.4624 ± 2.7499i 

Mode 2 0.45 0.72 2.9184 -2.9184 ± 2.8363i 

Mode 3 3.29 0.08 1.6874 -1.6874 ± 20.644i 

Mode 4 3.31 0.09 2.201 -2.201 ± 23.333i 

Mode 5 3.85 0.48 13.119 -13.119 ± 24.2i 

Mode 6 3.94 0.45 12.63 -12.63 ± 24.778i 

Mode 7 137.55 0.02 17.123 -17.123 ± 864.15i 

Mode 8 137.55 0.02 17.123 -17.123 ± 864.15i 

Mode 9 137.55 0.02 17.123 -17.131 ± 864.27i 

Mode 10 137.55 0.02 17.123 -17.131 ± 864.27i 

Mode 11 137.62 0.02 17.123 -17.139 ± 864.69i 

Mode 12 137.62 0.02 17.123 -17.139 ± 864.69i 

 

 

Table 6 graphically shows the motion of each mode. The amplitude of the displacements 

illustrates the tendency of the motion of the particular mode to be excited by external 

perturbations. From Table 5 and Table 6, it can be seen that modes 7~12 have the least 

damping. These modes are the vertical displacements of the axles with mostly identical 

frequency about 137.6 Hz, thus form a family of modes in terms of frequency similarity. Due 

to the low damping ratio in these modes of motion, the vibration energy dissipation is slow, 

which means this mode is easy to excite due to external perturbations. However, as shown in 

Table 5, these modes have the highest decay rate at 17.123 𝑠−1, which means these modes of 

vibration die down quickly in time. Apart from this family of axle vertical modes, mode 3 

and mode 4 have the least damping ratios at about 0.08 as well as low decay rates at about 1.7 

𝑠−1 and 2.2 𝑠−1  respectively, which means these modes of vibration are relatively easy to be 

excited and are attenuated slowly. The major dynamic behaviour of mode 3 is the out of 

phase bogie longitudinal motion. Mode 4 includes the in phase locomotive body pitch, bogies’ 

longitudinal motions and the out of phase bogies’ vertical motions. 
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Table 6:  Diagram of the mode motions 

Mode 1: 0.4 Hz 

 

Mode 2: 0.45 Hz 

 
Mode 3: 3.29 Hz 

 

Mode 4: 3.31 Hz 

 
Mode 5: 3.85 Hz 

 

Mode 6: 3.94 Hz 

 
Mode 7: 137.55 Hz 

 

Mode 8: 137.55 Hz 

 

 Mode 9: 137.55 Hz  

 

Mode 10: 137.55 Hz 

 
Mode 11: 137.55 Hz 

 

Mode 12: 137.55 Hz 
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To investigate this further, Figure 32 shows the vertical displacements of the all axles under 

simultaneous change of contact conditions from dry to wet at 11 km/h. 
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Figure 32: Vertical displacements of axles under change of contact conditions 

 

As shown in Figure 32, the dynamic response of the axles has a frequency component of 

about 3.4 Hz, which is close to the frequency of Mode 4 in Table 6. The high frequency 

component in the axle response can be identified in the zoomed-in part in Figure 32. Figure 

33 shows the pitch motion of the locomotive body, the vertical motions of bogies and the 

longitudinal motions of the bogies scaled down to 1/100 of the original displacements in 

order to make these displacements comparable. The vertical displacement of bogie 2 is 

plotted as its absolute value for the same reason.  

 

 

 

Figure 33: Locomotive car body pitch, vertical and bogies’ vertical displacements 
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In Figure 33, the absolute value of bogie 2 vertical displacement (the vertical displacement 

itself is negative in the proposed coordinate) is mostly overlapped with the displacement of 

bogie 1 vertical displacement. It shows that the bogie vertical displacements are out of phase 

with a major frequency component of about 3.3 Hz. The locomotive body pitch motion and 

the vertical motion of bogie 1 are in phase with similar frequency of about 3.3 as shown in 

the zoomed-in part in the figure. These motions agree with the eigenmode analysis result of 

Mode 4 in Table 6. The tractive force reduces after the contact condition changes from dry to 

wet. The decline of the force causes the reduction of torque acting on the locomotive car 

body pitch motion, thus reducing its pitch angle. The corresponding change of bogies’ 

vertical motion is caused by the resultant vertical displacements of the locomotive body pitch 

motion.   

 

The eigenmode analysis result and the simulation result with a simultaneous wheel/rail 

contact condition change are consistent. This contributes to the validation of the dynamic 

modelling. It also highlights that the locomotive car body pitch mode is more likely to be 

excited by changes in friction conditions. 

 

4.1.2. Validation of the Creep Model  

The Polach creep model is mostly used for dry and wet wheel-rail contact conditions. In order 

to modify the Polach model to fit the creep-adhesion coefficient curve, the parameters were 

extended and tuned. As mentioned in previous chapter, the Polach model is of the form, 

𝐹 =
2𝑄𝑢

𝜋
(

𝑘𝐴𝜀

1+(𝑘𝐴𝜀)2
+ 𝑎𝑟𝑐𝑡𝑎𝑛(𝑘𝑠𝜀)) with 𝜇 = 𝜇0[(1 − 𝐴𝑝)𝑒

−𝐵𝑤 + 𝐴𝑝].         (4.1) 

The parameter 𝐴𝑝  is defined as the ratio of friction coefficients 
𝜇∞

𝜇0
, 𝐵  is defined as the 

coefficient of exponential friction decrease, 𝑘𝐴 is the reduction factor in the area of adhesion 

and 𝑘𝑠 is the  reduction factor in the area of slip. Additionally the original constraint on 𝑘𝐴 

and 𝑘𝑠  is 𝑘𝑠 ≤ 𝑘𝐴 ≤ 1  to match the particular measured data for dry and wet contact 

conditions. The oily condition however, has a different shape of creep-adhesion coefficient 

curve for which the parameters need to be extended and modified to match. The data for the 

oil contact condition in [101] is used as the standard for the Polach parameter tuning for the 

oil condition. The parameters are tuned such that the curve fits the data, particularly in the 

region of creep involved in this study from 0 to 0.1. The tuned parameters for this condition 
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are 𝑘𝐴 = 1000, 𝑘𝑠 = 0.025, 𝜇0 = 0.22, 𝐴𝑝 = 0.505 and 𝐵 = −0.003. The resulting Polach 

creep-adhesion coefficient curve comparing to the data in [101] is as in Figure 34. 

 

Figure 34: Tuned Polach creep-adhesion coefficient curve for oil condition at 20 km/h 

and data in [101] 

 

It can be seen that the curve of the model is consistent with the data in [101]. Moreover, the 

data in [101] agrees with the friction region specified by the experimental data for the 

greasy/oily contact condition in [102].Thus the Polach model is tuned for the oily condition. 

The parameters for dry and wet conditions are adopted from Polach’s work [27]. Figure 35 

below shows the influence of the locomotive speed and creep on the adhesion coefficient 

under a dry wheel/rail contact condition. 

 

Figure 35: The form of adhesion coefficient-creep function and the influence of vehicle 

speed under dry wheel/rail contact condition 
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Under a constant locomotive speed, after the adhesion coefficient increases to a maximum 

value with the increase of creep, it decreases as the creep continues to increase. There is 

likely not yet a universally applicable explanation to this phenomenon for all contact 

conditions. However the change of the temperature on the contact patch results in locally 

varying material parameters [103]. The elastic modulus drops as the increase of temperature. 

Consequently the friction drops. The likely dependency of the friction coefficient on contact 

area temperature usually gives good agreement between theory and measurements for dry and 

clean contact conditions [27, 104]. The curves for dry and wet conditions under low and high 

speeds are as shown in Figure 36, in which the ratio between the longitudinal force and the 

normal force 𝐹/𝑄  is also known as the adhesion coefficient. To clarify the definitions, 

friction is the general physical term describing the force resisting the relative motion of 

surfaces sliding against each other. Traction is mostly used to describe the tangential force in 

vehicle dynamics. Adhesion coefficient is the ratio between the tangential force and the 

normal force at the contact patch. 
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(a)                                                                         (b) 

Figure 36: Polach tractive force curve at different speeds under (a) dry contact 

condition; and (b) under wet contact condition 
 

The triangles in the figure mark the peak adhesion coefficient of the curves. It shows that 

under the same wheel-rail contact condition, the peak adhesion coefficient value shifts 

towards a low creep value as the locomotive speed is increased. This is due to the slip 

velocity dependent friction coefficient term in the Polach model. There is literature 

illustrating the dependency of friction coefficient on the slip velocity. Assumptions have been 

made that the dependency is caused by the high temperature at the contact patch under high 

speed. This causes material property changes and reduces the elastic modulus [103]. 
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As shown above, the contact dynamics between the wheel and rail is complex and highly 

nonlinear. The adhesion coefficient, that is the ratio between longitudinal and normal force 

between the wheel and rail contact patch, varies significantly under different conditions such 

as different operating speeds or wheel/rail contact conditions. Thus it is crucial to adjust the 

wheel speed accordingly to avoid the occurrence of undesirable dynamics such as the loss of 

traction due to the excessive spin of the wheels.  

 

4.1.3. Simulation Results of the Simplified and Detailed Drives 

In order to validate the AC and DC drive and controller performances, simulations were 

carried out for single wheelset simplified locomotive models for a range of traction 

conditions. The following results will be detailed in the following subsections. 

 Traction simulations for the dry condition to validate the tractive effort of the AC 

and DC drive and to compare to the traction curves in [101]. 

 A braking simulation for the dry condition to validate the braking effort of the AC 

and DC drive and to compare to the braking curve in [105]. 

 An acceleration simulation for the dry condition  and comparison to data from 

[106]. 

 A transient contact condition simulation from the dry to the oil condition at 20km/h 

to validate the effectiveness of the creep controller. 

 

In the simplified 1/6 locomotive model, the basic formula 𝑓 = 𝑚𝑎 has been employed where 

𝑓 is the traction/braking force caused by the interaction between the wheelset and rail tracks, 

𝑚 represents 1/6  of the total mass of the locomotive 134 tonnes and 𝑎 is the acceleration of 

the mass. In order to verify the drive model’s traction/braking performance without 

considering the vehicle structural dynamics, the dynamic model was simplified to a single 

mass of 1/6 of the total mass of the locomotive on an axle. Here a typical heavy haul 

locomotive GT46MAC mass and traction effort data are chosen for the simulation. 

The simulations have been carried out for each traction notch by changing the driver notch 

setting as shown in Figure 37. The initial velocity of the locomotive is set to be 0.01km/h to 

avoid error due to an infinite initial creep value. For each notch a simulation is then carried 

out for the dry contact condition, from the initial speed to 70 km/h. Then the tractive force 

value is rescaled to calculate the total tractive force of the corresponding notch by being 
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multiplied by 6 (drives) and compared with the data for the total tractive force for the 

locomotive in [101].  

(a) 

  
(b) 

                  
Figure 37: (a) Comparison between traction force curve of AC model full locomotive (= 

single AC traction effort ×6) and the GT46MAC data [107]; (b) Comparison between 

traction force curve of DC model full locomotive (= single DC traction effort ×6) and the 

GT46C data [108] 

The solid lines in Figure 37 (a) and (b) are traction curves for all 8 notches from data in [107] 

and [108] respectively. The dashed lines in Figure 37 (a) and (b) are the mean value of the 

traction curves of the AC and DC drive model respectively. As seen from Figure 37 the 

traction efforts of the model for all notches are consistent with the available data. Thus the 

traction performance of the drive is verified. Note the curves are characterised by two parts, 
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which is typical of locomotive electric traction drive, providing approximately constant 

torque for low speeds until the maximum power for each notch is reached after which the 

curve is power limited (= torque × speed). The dynamic braking simulation was performed to 

verify the braking effort of the model with comparison to the data in [105] and [108]. The 

simulations begin with a high initial locomotive speed and decelerate to 0.05 km/h.  
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(a) 

 
 (b) 
                                           

      
Figure 38: (a) Comparison between braking effort curve of AC model full locomotive (= 

single AC traction effort ×6) and the GT46MAC data [105]; (b) Comparison between 

braking effort curve of DC model full locomotive (= single DC traction effort ×6) and 

the GT46C data [108] 

 

The solid lines in Figure 38 are the braking curve of GT46MAC and GT46C locomotive in 

[105] and [108] and the dashed lines are the mean values of the braking curves of the AC and 
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DC drive model. In Figure 38(b) the solid lines and the dashed lines are overlapped. As it can 

be seen from Figure 38 the braking effort of the model is consistent with the data in [105] and 

[108]. Thus the braking performance of the drive is verified. Note the AC curve follows a 

similar behaviour as the tractive force curves, providing constant braking effort at low speeds 

and an approximate power limited curve at higher speeds. For very low speeds, there is a 

sharp linear behaviour where the dynamic braking effort is limited to being proportional to 

speed as opposed to being controlled by the creep.   

 

For the DC drive, the beginning velocity of the locomotive is set to be 90km/h. For each 

notch a simulation is then carried out for a dry contact condition, making the system run from 

the initial speed to 0.02 km/h rather than zero to avoid error due to the infinite creep value. 

The braking force is then calculated as described above and compared with the data for the 

total braking forces in [108]. The jagged nature of the curve is expected to maximise power 

dissipation given armature current limitations in the DC drive, i.e. the armature resistance is 

step changed. Note also that the slope at very low speeds is smaller to the AC case.  

 

Simulations for transient contact condition from dry to oily have been carried out to show the 

effectiveness of the creep/slip controller for all traction notches. Here it is assumed the 

transient contact change occurs at 20km/h. The transient contact condition is implemented by 

the switching of Polach parameters mentioned in Table 2 to the parameters tuned for the oil 

condition. 
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Figure 39: (a) AC creep curves for all traction mode notches under transient state at 

20km/h; (b) DC creep curves for all traction mode notches under transient state at 

20km/h 

 

Figure 39 shows a part of the simulation when the contact transition happens. From Figure 39 

(a), it can be seen that under higher notches, the peak creeps are higher than under lower 

notches. This is expected due to the high torque/tractive force command under high notches. 

The proposed creep controller is effective in constraining the creep to be under 10% for all 

conditions avoiding full sliding. It is noted that the response of notch 8 has a different shape 

to that of notch 7 because the creep controller has been activated above 7% creep. The shape 

of the response is dependent upon the vehicle dynamical, motor and controller parameters. 

The same transient simulation has also been conducted with a single DC drive on a same 
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simplified locomotive model as shown in Figure 39 (b). The creep curves of the DC drive are 

not smoothed while those of the AC drive have been smoothed due to the fact that the AC 

drive has high frequency torque ripples causing creep ripples. It is noted that the response of 

notches 8 and 7 has a different shape to that of notch 6 because the creep controller has been 

activated above 7% creep. The shape of the response is dependent upon the vehicle 

dynamical, motor and controller parameters. 

 

The acceleration simulation was aimed to verify the acceleration capacity by comparing with 

the data in [106]. The initial locomotive velocity is the same to avoid the numerical error 

during simulation. The driver notch setting increases from notch 1 to notch 3 sequentially and 

the speed and tractive effort are plotted in Figure 40. The comparison between the data in 

[106] and the simulation data is shown in Table 7. 
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Figure 40: Acceleration Simulation result (speed and Te×6 with notch) 

 

 

Table 7: acceleration simulation and comparison with data in [106] 

Speed range (km/h) Acceleration time(s) in [106] Acceleration time(s) of the 

model 

010 km/h 6.52 s 6.96 s 

020 km/h 11.54 s 12.08 s 

030 km/h 17.54 s 18 s 

 

The starting procedure of the locomotive starts from notch 1 and then the notch setting 

increases sequentially to simulate the field testing procedure. It can be seen from Table 7 that 

the simulation result is consistent with the data in [106]. Also the locomotive speed (the green 
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solid line) increases almost linearly with time as expected. Each time the notch setting 

increases, the torque increases subsequently and then decreases gradually due to the increase 

of locomotive speed, which can be explained with Figure 37. In particular, the maximum 

tractive force decreases as the locomotive speed increases as the electric drives operate under 

constant power mode.  

 

In this section, analysis and simulation results are provided for the essential dynamic 

subsystems of the locomotive. The eigenmode analysis reveals the frequency of vibration of 

each mode, as well as the modes which are most likely to be excited under external 

perturbations. The Polach model has been implemented and tuned for various contact 

conditions. The tuning results are compared with the data from literature, and they are in very 

good agreement. Additionally, the single drive model provided important validation 

information for the AC/DC drive module that can be adapted into the full locomotive model. 

The simulation results of AC and DC drives have confirmed that a creep controller is desired 

for the locomotives, as demonstrated in the result, that the maximum creep of the AC drive 

can exceed 9%, which is considerably large and is likely to cause a loss of tractive force. 

 

4.2. Investigations on Creep Controllers (Objective 2) 

Based on the full size co-co locomotive dynamics model presented in the previous section, a 

few different creep controllers are investigated for the purpose of preventing excessive creep 

from happening and achieving higher tractive force. All the simulations in this section are 

based on the simplified AC drive model which provides a detailed creep response. The creep 

controller is investigated under low speed acceleration operation with changes of friction 

conditions. The simulation is for the case when the locomotive runs into a wet rail section at 

11km/h and back out to a dry rail section at 12.5km/h. 

 

4.2.1. Axle Based PI Controller 

The simulation is performed for the acceleration process with change of friction conditions 

using the axle based PI controller. The result is shown in Figure 41 - Figure 43. It is shown in 

these figures that the axle based PI controller is able to reduce the creep quickly in the 

acceleration process, as well as after the change of friction conditions.  
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Figure 41: Acceleration test speed curve under a change of friction condition using the 

axle based controller 

As shown in Figure 41, the overall horizontal speeds of the locomotive car body and bogies 

increase during this simulation. The acceleration under the wet contact condition is lower 

than that under the dry contact condition due to the change of maximum adhesion coefficient. 

The speeds of the bogies oscillate when the wheel/rail contact condition changes due to the 

dynamic coupling between the bogies and the locomotive car body. 
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Figure 42: Acceleration test creep curves under a change of friction condition using the 

axle based controller 

Figure 42 shows the creep of individual axles during the change of contact conditions. The 

creep increases significantly after the locomotive runs into the wet section. However, the axle 
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based PI creep controller can effectively restrain the creep to be about 4%. The creep drops 

when the locomotive runs to the dry section again due to the increase of the adhesion 

coefficient from the wet to the dry contact condition.  
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Figure 43: Acceleration test tractive force curves under a change of friction condition 

using the axle based controller 

 

Figure 43 shows the tractive force of individual axles during the change of wheel/rail contact 

conditions. The axles provide higher tractive forces under dry wheel/rail contact condition 

than that under the wet condition. The spikes are caused by the dynamic process when the 

contact condition changes.  

 

4.2.2. Fuzzy Logic Adhesion Control 

Results of transient locomotive response with the proposed fuzzy logic controller are 

illustrated, including creep and tractive force. Initial operation speed was set at 10 km/h. 

Transient contact conditions are assumed to happen at 11km/h, from a dry contact condition 

to a wet condition, and change back from a wet to a dry contact condition at 12.5 km/h. The 

dynamic response comparison with PI and fuzzy controllers uses speed rather than time as the 

horizontal axis because the adhesion coefficient, under the same contact condition, is 

determined by the creep and locomotive speed. As a result the change of contact condition is 

assumed to happen at a certain speed to ensure the same force condition. 
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Figure 44: Comparison of total tractive force with PI and fuzzy controllers 

 

It can be seen from Figure 44 that the tractive force with PI and fuzzy controllers under a dry 

contact condition is similar, while then the fuzzy controller can reach slightly higher tractive 

force than that with the PI controller under the wet contact condition. This can be explained 

as follows. As the threshold of the PI controller is chosen such that it can reach the maximum 

tractive force under the dry contact condition near the simulation speed, the tractive forces 

with controller are close to each other, both around the maximum tractive force the system 

can reach at the same speed.  However, as the threshold of the PI controller is constant, it will 

not be able to adjust the control level according to the change of contact conditions and/or 

operating speed. On the other hand, the fuzzy controller searches for maximum tractive force 

with information of 𝑠̇ and 𝜇̇. This causes higher tractive force under the wet contact condition 

with fuzzy controller than that with the PI controller.  
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Figure 45: Comparison of creep response with PI control (a) and with fuzzy logic 

control (b) 

 

In Figure 45(a), after the contact condition changes from the dry condition to the wet 

condition, the creep values have been limited at 0.03, as the pre-set threshold of the PI 

controller, whereas the creep values of the system with fuzzy logic are higher as in Figure 

45(b), as the fuzzy controller adjusts the control effort according to the operation condition 

and intends to reach the maximum tractive force available.  
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The locomotive dynamic responses under transient contact conditions with PI and fuzzy logic 

creep controllers have been simulated. The comparison of the creep and total tractive force 

shows the advantage of the proposed fuzzy logic controller over the PI controller in term of 

realizing slightly higher tractive force under the change of contact conditions. While both 

controllers can limit the creep under a certain level, simulation results show that the fuzzy 

controller can reach slightly higher total tractive force than that with a constant threshold PI 

controller under the wet contact condition due to its ability to search for the maximum 

achievable force according to different contact conditions.  

 

4.2.3. Modified Fuzzy Logic Controller 

This section is also detailed in Appended Paper C. The proposed adhesion control system 

utilizes the method described in [99] with control torque acting on each axle. The following 

assumptions are made in the simulations.  

1) A single powered locomotive is considered hauling a number of wagons, which are 

modelled as an equivalent trailing mass. No other resistance such as drag and air resistance is 

considered in this simulation.  

2) A low speed simulation case is chosen to investigate the dynamic behaviour of 

highest tractive force case, namely the starting process of a locomotive.  

3) The high speed simulation case is chosen below the maximum speed of the 

locomotive (about 128 km/h).  

4) The tractive effort is limited by both the contact mechanics and the characteristic 

traction speed curve of the electric drive.   

 

The results comparing locomotive response obtained with PI and fuzzy logic sliding mode 

controllers are presented, focussing on tractive force and speed/acceleration, at speeds of 10 

km/h and 120km/h. Transient contact conditions are assumed to occur at 11km/h from dry to 

wet and at 12.5km/h from wet to dry for the low speed simulation. Similarly, for the high 

speed simulation case, the contact condition changes at 119.5km/h, and back to a dry 

condition at 120km/h. 

 

In order to compare the tractive performance under the same condition, the change of contact 

conditions is considered to be triggered by speed, and thus the following figures showing 

forces and creep employ speed as the horizontal axis. In the first simulation, the contact 
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condition is assumed to change during a very low speed operation, namely starting from 

11km/h. The transient tractive forces with different controllers are plotted in Figure 46. 
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Figure 46: Comparison of total tractive forces with PI and fuzzy sliding mode control at 

low speed 

 

At low speed, as shown in Figure 46, the tractive force with fuzzy sliding mode control is 

very similar to that with PI control, except under the wet condition when the fuzzy sliding 

mode control achieves marginally higher tractive force than PI control.  
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Figure 47: Creep of the front axle under change of contact conditions at low speed 
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The creep of all axles is similar with the same controller. The creep of the front axle is shown 

in Figure 47 to compare the creep response with the PI controller and with the fuzzy sliding 

mode one. It can be seen that at low speeds the creep of each axle with fuzzy sliding mode 

control is higher than that with PI control, however, the tractive force, as shown in Figure 46, 

is very similar. The similarity of the tractive force is caused by the relative flat area of the 

creep-tractive force curve as shown in Figure 36. In particular, the difference of the tractive 

force between when creep is 4% as with the PI control and about 4.5% with fuzzy logic 

sliding mode control is about 1%, as shown in Figure 36 (b). At such a low speed, the creep 

of each axle with fuzzy sliding mode control, however, is much higher than that with PI 

control, as shown in Figure 47. Therefore, in this case the fuzzy controller does not have an 

obvious advantage over the PI one in terms of tractive effort and creep control. Figure 48 

shows front and rear bogie pitch motion during low speed operation.  
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Figure 48: Bogie pitch motion during operation 

 

As the tractive force with PI and fuzzy control is similar as shown in Figure 46, the bogie 

pitch motion has a similar dynamic response with the PI and the fuzzy controller as shown in 

Figure 48. 

 

Figure 49 shows weight distribution on each axle during low speed operation. 
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Figure 49: Weight distribution on each axle 

 

Similar weight distribution dynamic responses with the PI and the fuzzy controllers are 

observed in Figure 49 due to the similar tractive force achieved with different controllers. As 

a result, the solid lines and the dashed lines mostly overlapped. 
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Figure 50: Comparison of total tractive forces with PI and fuzzy sliding mode control at 

high speed 
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At high operation speed, as shown in Figure 50, the tractive force with fuzzy sliding mode 

control is almost the same with that with PI control. This phenomenon is caused by the limit 

of electric drive tractive effort. As a result, the shift of the peak tractive force due to the 

change of operation speed will not affect the control effort.  
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Figure 51: Creep of the front axle under change of contact conditions at high speed 

 

Figure 51 shows the comparison of creep response of the front axle with a PI and a fuzzy 

sliding mode controller. Due to the constraint of electric drive tractive effort, at high speed, 

the creep of each axle with fuzzy sliding mode control is similar.  

 

Figure 52 shows front and rear bogie pitch motion during operation.  
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Figure 52: Bogie pitch motion during operation 

 

The fuzzy control achieves higher tractive force spikes as shown in Figure 50, thus there are 

higher torque spikes that cause the bogie pitch motion. Consequently, the pitch angle spikes 
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of the fuzzy control are higher than those with the PI control. Figure 53 shows weight 

distribution on each axle during operation. 
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Figure 53: Weight distribution on each axle 

 

As shown in Figure 53, normal force between the rear axle and track is the highest due to the 

pitch motion of the bogies. 

 

In this section, simulation results of tractive performances and the dynamic responses with PI 

and fuzzy logic based creep controllers under transient contact conditions are provided. The 

PI controller was set a constant creep reference while the fuzzy controller searches 

continuously for a creep value that can achieve the maximum adhesion coefficient under 

various contact conditions. Results show that a PI controller can effectively limit the creep 

below a desired threshold. The proposed fuzzy logic based controllers have an advantage in 

maintaining a higher tractive force than PI controllers at a low operation speed but it is small 

for the conditions simulated. At high operation speed, the tractive effort is almost identical 

due to the limitations of the electric drive tractive effort. The simulation results inspire the 

investigation on the impact of different control settings on the wear damage on the wheel/rail 

contact patch and a control approach to reduce the wear damage. 
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4.3. Impact of Locomotive Creep/Adhesion Control on Wear Index and Wear Control 

(Objective 3) 

The adhesion/creep controller has been investigated for decades and a number of different 

control approaches have been employed to improve the dynamic behaviour of the 

locomotives in various aspects. This section provides the simulation results to study the 

impact of different control strategies on wear damage. 

 
4.3.1. Impact of Locomotive Creep/Adhesion Control of Wear Index 

The parameter values of the PI controller are tuned to 1.5 × 107  and 2 × 105 , for the 

proportional (P) and integral (I) constants, respectively. Simulations have been carried out 

using the creep controller with different creep threshold settings in order to investigate its 

impact on rail damage due to wear. Detailed simulation cases are listed in Table 8. 

 

Table 8: Simulation cases 

Creep 

Threshold 

                 Speed case (dry-wet-dry) 

    Low (≈10 km/h)        Medium(≈50 km/h) 

0.03 Yes Yes 

0.04 Yes No 

0.06 Yes No 

0.08 Yes No 

 

 

A threshold higher than 0.03 is not simulated for the medium speed case since the creep 

response will not activate the creep controller due to the electric drive constraints. The 

locomotive acceleration operation is investigated to simulate high tractional conditions that 

typically occur on straight track. Thus other dynamics such as lateral and rolling dynamics 

are excluded from this study. The results comparing locomotive response obtained with 

different creep controller settings are presented, focussing on tractive force and the tractional 

power parameter 𝑇𝛾/𝐴 , which indicates the power expended through creepage [109], at 

speeds of about 10 km/h and 50km/h under the highest acceleration conditions. The 𝑇𝛾/𝐴 

value is relevant to wear rate according to the mapping relation [71], as shown in Figure  16 

[41]. 

 

In order to avoid serious rail damage caused by wear, the 𝑇𝛾/𝐴 value needs to be constrained 

below 60 N/mm
2
. Transient contact conditions are assumed to occur at 11km/h from dry to 
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wet and at 12.5km/h from wet to dry for the low speed simulation. Similarly, for the medium 

speed simulation case, the contact condition changes at 51km/h, and back to a dry condition 

at 52.5km/h. 

 

 

Case 1: low speed simulation 

 

Figure 54 shows the tractive force of the front wheel under a change of contact conditions 

during low speed conditions. 

 

dry drywet

 
Figure 54: Front wheel tractive force comparison under different controller thresholds 

at low speed 
 

The difference of tractive force under different creep control threshold settings is very small 

as shown in Figure 54. The reason is the gradient of the tractive force from creep values 0.03 

to 0.08 is small, thus the change of tractive force is not sensitive to the change of creep value. 

 

Figure 55 shows the front wheel 𝑇𝛾/𝐴 value with different creep threshold settings under a 

change of contact conditions under low speed. 
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Figure 55: Front wheel 𝑻𝜸/𝑨 values comparison under different controller thresholds 

at low speed 
 

As is shown in Figure 55, the 𝑇𝛾/𝐴 value is mostly proportional to the value of the creep 

threshold. From the simulation results, it can be seen that with a creep threshold below 0.04, 

the 𝑇𝛾/𝐴 value is below 60 N/mm
2
 and therefore according to Figure 16 the wear rate is 

constrained within the Type I and II (“mild” and “severe”) region. Similarly, with a creep 

threshold between 0.06 and 0.08, the wear rate is within the Type III (“catastrophic”) region, 

except under wet contact conditions. Therefore a creep controller threshold below 0.04 is 

desirable under low speed conditions. 

 

Case 2: medium speed simulation 

 

Figure 56 shows the front axle creep response for medium speed simulation under a change 

of contact conditions.  

 

dry drywet

 
Figure 56: Front axle creep response for medium speed simulation under change of 

contact conditions 
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As it is shown in Figure 56, under the change of contact condition from dry to wet and from 

wet to dry for medium speed operation, the creep is always below 0.02. As a result, the creep 

controller will not be activated under the creep threshold settings in Table 8. Thus the 

dynamic response and wear rate with different controller threshold settings should be the 

same. Figure 57 below shows the corresponding 𝑇𝛾/𝐴 response for medium speed simulation 

under the change of contact conditions. 

 

 

dry wet dry

 
Figure 57: Front wheel 𝐓𝛄/𝐀 values at medium speed 

 

In Figure 57, the 𝑇𝛾/𝐴 value at medium speed is always below 20 N/mm2 due to the torque-

speed characteristics of the electric drives, thus the wear rate is naturally within the Type I 

and Type II regions (see Figure 16).  

 

In this section, the wear rate with different PI creep control threshold settings under transient 

contact conditions has been compared by using the locomotive dynamic model under 

different operation speeds. Simulations have been carried out to compare tractive force and 

wear rate, focusing on the impact of operation speed and creep controller setting. Results 

show that by designing the creep controller threshold parameter, the wear rate can be 

effectively constrained within Type I and Type II regions, avoiding Type III ‘Catastrophic’ 

wear. Under higher speed operation, such as Case 2 in this section, the wear rate is naturally 

constrained within region I and II due to the impact of the torque-speed characteristics of the 

electric drives, irrespective of the creep controller.  
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4.3.2. Wear Growth Rate Control 

The dynamic response comparison with creep and wear controllers employs speed rather than 

time as the horizontal axis because the adhesion coefficient, under the same contact condition, 

is determined by the creep and locomotive speed. As a result the change of contact condition 

of the first axle is assumed to happen at a certain speed and sequentially the rest of axles 

change their contact condition to ensure the same force condition.  

 

Case I: Low speed operation simulation: 

 

The comparison of total tractive force with creep and wear controllers under a change of 

wheel/rail contact conditions between dry and friction modifier condition (FM) as listed in 

Table 2 under low speed operation is shown in Figure 58 below. Within the creep range 

between 0 and 0.04 in this study, the frictional modifier curve has a maximum adhesion 

coefficient of about 0.17. This is similar to the greasy condition in [102]. 
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Figure 58: Comparison of total tractive forces with creep and wear controllers 

 
It can be seen that under low speed operation, the total tractive force is about 4% lower with 

wear control than that with creep control under dry wheel/rail contact condition, and about 11% 

under the FM wheel/rail contact condition. Also, when the wheel/rail contact condition 

changes from FM back to dry, the total tractive force with the wear controller has less 

overshoot than that with the creep controller. It can be noticed with the increase of 

locomotive speed, the total tractive force difference increases between the case with creep 

control and that with wear control. The reason of this is that the creep control takes slip 
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velocity normalized by the speed of the locomotive as the control index; on the other hand, 

the wear control takes the frictional power density as the control index, which is directly 

affected by the slip velocity. As a result with the increase of the locomotive speed, the 

constant creep value means a larger slip velocity, which will result in a higher frictional 

power density ignoring the change of tractive force on the axle. 

 

The comparison of front and rear bogie pitch with creep and wear controllers under the 

change of wheel/rail contact conditions under low speed operation is shown in Figure 59 

below.  
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Figure 59: Comparison of front and rear bogie pitch with creep and wear controllers 

 

The front and rear bogie pitch motions show similar dynamic responses to that of the total 

tractive force. The difference of pitch angles increases with the increase of locomotive speed 

at low speed operation.  

 

The comparison of car body pitch with creep and wear controllers under a change of 

wheel/rail contact conditions under low speed operation is shown in Figure 60 below.  
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Figure 60: Comparison of car body pitch with creep and wear controllers  

 

The response of the car body pitch angle is closely correlated with that of the total tractive 

force. The change in car body pitch angles increases with locomotive operating speed. In 

addition, there are noticeable oscillations during the change of the wheel/rail contact 

condition, particularly when all axles on the front/rear bogie finish their contact condition 

transition. The reason for this is that after the last axle of the front bogie has run into the FM 

rail and before the first axle of the rear bogie runs into the FM area the tractive force is 

relatively steady after a steep change, forming a step-like tractive force variation as shown in 

Figure 58. This step-like tractive force change excites the mode of vibration of the car body 

pitch motion. 

 

The comparison of axle 1 creep response with creep and wear controllers under a change of 

wheel/rail contact conditions under low speed operation is shown in Figure 61 below.  

 
 



94 
 

  

9 10 11 12 13 14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

speed (km/h)

a
x
le

 1
 c

re
e

p

 

 

creep control

wear control

dry FM dry

 
 Figure 61: Comparison of axle 1 creep with creep and wear controllers 

 

The creep of axle 1 with the wear controller is about 45.6% and 50% lower than that with the 

creep controller under dry and FM wheel/rail contact conditions respectively.   

 

The comparison of axle 1 frictional power density with creep and wear controllers under a 

change of wheel/rail contact conditions under low speed operation is shown in Figure 62 

below.  
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Figure 62: Comparison of axle 1 friction power density with creep and wear controllers 
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As the wear controller employs a constant frictional power density as the control threshold, 

the value of the frictional power density is effectively constrained despite of the change of 

wheel/rail contact conditions. The frictional power density of axle 1 with creep controller, on 

the other hand, is about 1.94 and 2.2 times that with wear controller under dry and FM 

contact conditions respectively. 

 

The comparison of axle 1 mass loss rate with creep and wear controllers under a change of 

wheel/rail contact conditions under low speed operation is shown in Figure 63 below.  
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Figure 63: Comparison of axle 1 mass loss rate with creep and wear controllers 

 

As it is shown in Figure 63, the mass loss rate with the wear controller has been reduced to 

about 18% and 13% that of the creep controller, under the dry and FM conditions 

respectively. 

 
 
Case II: High speed operation simulation: 

 

The comparison of total tractive force with creep and wear controllers under a change of 

wheel/rail contact conditions under high speed operation is shown in Figure 64 below. 
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Figure 64: Comparison of total tractive forces with creep and wear controllers 

 

Due to the impact of the electric drive tractive effort characteristic, the total tractive force is 

much lower at high speed than that at low speed. Consequently under high speed operation 

the controllers do not take effect and there is no difference between the total tractive force 

with the creep controller and that with the wear controller under both dry and FM wheel/rail 

contact conditions. Thus the curves with the creep controller and those with the wear 

controllers overlapped from Figure 64 to Figure 69. 

 

The comparison of front and rear bogie pitch angles with creep and wear controllers under a 

change of wheel/rail contact conditions under high speed operation is shown in Figure 65 

below. 
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Figure 65: Comparison of front and rear bogie pitch with creep and wear controllers 

 

Since the same amount of low tractive force is achieved under high speed operation, the 

actual creep and the frictional power density are below their control thresholds, as shown in 
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Figure 67 and Figure 68. As a result of neither controller being activated, the pitch motions of 

the front and rear bogies show the same dynamics with the creep and wear controllers.  

 

The comparison of front and rear bogie pitch angles with creep and wear controllers under a 

change of wheel/rail contact conditions under high speed operation is shown in Figure 66 

below. 
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Figure 66: Comparison of car body pitch with creep and wear controllers  

 

The dynamic response of the car body pitch motion with the creep controller shows the same 

behaviour with that with the wear controller due to the same amount of tractive force.   

 

The comparison of axle 1 creep response with creep and wear controllers under a change of 

wheel/rail contact conditions under high speed operation is shown in Figure 67 below. 
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Figure 67: Comparison of axle 1 creep with creep and wear controllers 

 

The dynamic response of the axle 1 creep with the creep controller shows the same behaviour 

as that with the wear controller due to the same amount of tractive force.   

 

The comparison of axle 1 frictional power density with creep and wear controllers under a 

change of wheel/rail contact conditions under high speed operation is shown in Figure 68 

below.  
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Figure 68: Comparison of axle 1 friction power density with creep and wear controllers 

 

Again, the dynamic response of the axle 1 creep with the creep controller shows the same 

behaviour with that with the wear controller due to the same amount of tractive force.   
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The comparison of axle 1 mass loss rate with creep and wear controllers under change of 

wheel/rail contact conditions under high speed operation is shown in Figure 69 below.  
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Figure 69: Comparison of axle 1 mass loss rate with creep and wear controllers 

 

The response of mass loss rate has similar behaviour with both controllers. Comparing Figure 

63 and 67, it can be seen that the mass loss rate at high speed operation is much lower than 

that at low speed operation.  

 

4.4. Conclusion  

The dynamic modelling has been validated by comparing the acceleration simulation results 

with data from available literature. The modes of locomotive vibration are identified, 

highlighting the modes that are more likely to be excited under external perturbations 

(Objective 1). Although a traditional control method is able to limit the creep under the 

scenarios investigated in this thesis, advanced adhesion/creep strategies such as the fuzzy 

logic based ones have the advantage of achieving marginally higher tractive effort under low 

speeds (Objective 2). Simulation results reveal the impact of different creep control settings 

on the wear rate under various wheel/rail contact conditions. Simulation results comparing 

the locomotive dynamic response with a creep controller and the newly developed specialized 

real-time traction controller show that the proposed specialized traction controller can reduce 

wear damage significantly, particularly under low speed operation. The corresponding 

tractive force reduction is reasonably small (Objective 3).   
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Chapter V: Summary of Appended Papers 

 

In Paper A, (Y. Tian, W.J.T. (Bill) Daniel, S. Liu and P.A. Meehan, 2013, “Dynamic 

Tractional Behaviour Analysis and Control for a DC Locomotive”, World Congress of 

Rail Research 2013), the development of the mathematical model of a co-co locomotive 

including locomotive longitudinal, vertical and pitch dynamics, wheel/rail contact dynamics 

and simplified electric drive dynamics in Matlab as part of RailCRC Project No.R3.119 

Locomotive Adhesion is detailed. Details of the sub-modules are provided. Modes of 

vibration of the locomotive are identified. Dynamic responses have been simulated under 

change of wheel/rail contact conditions. 

  

In Paper B, (Y. Tian, W.J.T. (Bill) Daniel, S. Liu and P.A. Meehan, 2014, “Fuzzy Logic 

Creep Control for a 2D Locomotive Dynamic Model under Transient Wheel-rail 

Contact Condition”, 14th International Conference on Railway Engineering Design and 

Optimization, COMPRAIL 2014), a fuzzy logic creep/adhesion controller is developed and 

simulated with the locomotive mathematical model that has been developed previously. 

Dynamic responses have been compared with that with a traditional fixed creep threshold 

controller, highlighting the advantage of the fuzzy logic controller over the traditional one in 

terms of maintaining higher tractive force, particularly under wet wheel/rail contact 

condition. 

 

In Paper C, (Y. Tian, W.J.T. (Bill) Daniel, S. Liu and P.A. Meehan, 2014, “Fuzzy Logic 

based Sliding Mode Creep Controller under Varying Wheel-Rail Contact Conditions”, 

International Journal of Rail Transportation, 3(1), 40-59), a creep controller based on the 

work of Park et al. [99] has been employed and modified to cope with the change of 

wheel/rail contact conditions. Dynamic responses have been compared with that with a 

traditional fixed threshold creep controller. Results show that the new controller has marginal 

advantage keeping higher tractive force over the traditional one under low speed operation. 

The responses are mostly identical under high speed operation. Simulation results also show 

that the control strategy intending to maximize tractive force will cause much higher creep 

under low speed operation, which is likely to cause more rail damage.  

 

http://espace.library.uq.edu.au/list/?cat=quick_filter&search_keys%5Bcore_36%5D=14th+International+Conference+on+Railway+Engineering+Design+and+Optimization%2C+COMPRAIL+2014
http://espace.library.uq.edu.au/list/?cat=quick_filter&search_keys%5Bcore_36%5D=14th+International+Conference+on+Railway+Engineering+Design+and+Optimization%2C+COMPRAIL+2014


101 
 

In Paper D, (Y. Tian, W.J.T. (Bill) Daniel, S. Liu and P.A. Meehan, “Investigation of the 

impact of full scale locomotive adhesion control on wear under changing contact 

conditions”, accepted by Vehicle System Dynamics special issue, DOI: 

10.1080/00423114.2015.1020815), the impact of creep/adhesion controller on locomotive 

dynamic responses have been simulated and analysed. Dynamic responses with several creep 

threshold settings have been compared. Simulation results show that by properly choosing 

creep control threshold it is likely to avoid the locomotive operating in a Type III 

“Catastrophic” wear region under low speed operation, particularly under wet wheel/rail 

contact condition. The impact of the creep controller setting is minimized from medium 

speed operation due to the tractive effort characteristics of electric drives. 

 

In Paper E, (Y. Tian, W.J.T. (Bill) Daniel, and P.A. Meehan, “Real-time rail/wheel wear 

damage control”, submitted to International Journal of Rail Transportation), a new 

real-time control strategy has been proposed to reduce wear damage. Simulation results show 

that the proposed control strategy can effectively reduce mass loss rate caused by wear, 

particularly under low speed operation. The consequent tractive force reduction is relatively 

small. 

 

In Paper F (co-authored), (Sheng Liu, Ye Tian, W.J.T. (Bill) Daniel and Paul A. 

Meehan, Dynamic response of a locomotive with AC electric drives due to changes in 

friction conditions, submitted to Journal of Rail and Rapid Transit), locomotive dynamic 

response with detailed electric drive dynamics under change of contact conditions is 

simulated and analysed. Result shows that the detailed model is capable of simulating the 

dynamic fluctuations of creep and traction forces that is not presented in the simpler model. 

Such transient response may cause damage to the track and vehicle components. 
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Chapter VI: Conclusions and Future work 

This thesis contains a new predictive integrated dynamic model containing 2D locomotive 

dynamics, wheel/rail contact dynamics and electric drive and control dynamics to investigate 

the dynamic response of a locomotive under a change of operation conditions. Moreover, 

eigenmode analysis has been performed to determine model stability and identify the modes 

of locomotive vibration and those that are most likely to be excited under external 

perturbations (Objective 1). Creep/adhesion controllers were developed to achieve the highest 

tractive force available in order to cope with the trend of maximizing locomotive operation 

efficiency, particularly in the heavy haul sector. Their influence on locomotive dynamic 

response has also been investigated and compared with that of a fixed creep threshold creep 

control strategy (Objective 2). Based on the results, a real-time strategy, aiming to reduce 

wear damage on the tracks is developed based on a recent wear growth model (Objective 3). 

Details of this work are summarised in the following.  

 

In this thesis, an integrated mathematical model of the dynamics of a locomotive has been 

developed. The model includes the longitudinal, vertical and pitch motions of the locomotive 

body, front and rear bogies and six axles, as well as wheel/rail contact dynamics described by 

the Polach model and electric drive dynamics. Modes of vibrations of the locomotive have 

been identified with eigenmode analysis. The family of wheel vertical modes of vibration 

have the least damping and thus are the easiest to be excited under external perturbation, 

followed by the out of phase bogie longitudinal motion, the locomotive body pitch coupled 

with in phase bogie longitudinal motions and the out of phase bogie vertical motions. 

Research on a creep/adhesion controller has been carried out to investigate maximizing 

locomotive tractive force under various operation conditions including operating speeds and 

changes of wheel/rail contact conditions. Comparisons have been performed between the 

controller that achieves higher tractive force and a traditional one with a constant creep 

threshold. Simulation results show that under low speed operation the tractive forces with the 

traditional and the new control strategy under the dry contact condition are similar, while the 

new control strategy can reach higher tractive force than that with the traditional controller 

under wet contact conditions. Under high speed operation, the tractive force with the 

traditional controller and the new controller is similar under both dry and wet contact 

conditions. However, the simulation results also show that, by achieving marginally higher 

tractive force, the new control strategy causes higher creep under low speed operation. This 



103 
 

leads to the investigation as to how much more wear damage this new control strategy causes 

compared to the traditional creep control strategy.  

 

Simulations have been carried out to compare the impact of creep controller threshold 

settings on tractive force and the amount of wear damage caused on rail tracks. Results show 

that the intention of maximizing tractive force can lead to excessive wear damage on rail 

tracks, providing only marginal tractive increase under low speed operation. Among the creep 

thresholds (3%, 4%, 6% and 8%) that have been tested under low speed locomotive 

operation, with the contact condition changing between dry and wet, only thresholds lower 

than 4% can avoid the wear damage entering the type III “Catastrophic” region. Compared to 

creep threshold settings 3% and 4%, the higher creep threshold setting does not have 

significant advantage in achieving higher tractive force (about 3%), while is likely to cause 

more wear damage (about 36%) on the rail tracks.  

 

A new control strategy, aiming to reduce wear damage has been proposed based on a recent 

wear growth model. Simulation results show that, by controlling the wheel speed, the mass 

loss rate with the wear controller has been reduced to about 18% and 13% of the creep 

controller performance, at the cost of about 4% and 11% total tractive force decrease under 

the dry and FM conditions respectively. Under high speed operation, due to the constraint of 

the electric drive characteristic, the highest tractive force is significantly lower than that of 

low speed operation. The creep and friction power density are consequently lower so that 

neither controller will be triggered. Thus the dynamic responses are very similar. From the 

cost benefit point of view, the significant wear damage reduction is achieved by the proposed 

specialized real-time wear regulating traction controller under the low speed operation. The 

specialized traction controller is expected to reduce the wear damage on the rail tracks to 

about 20% of that with a creep controller. A simple regrinding model suggests that the 

optimum grind interval is inversely proportional to the wear/corrugation growth rate, which is 

approximately proportional to the steady wear coefficient [66]. Thus the grinding intervals 

with the wear controller under the dry and the FM conditions have been extended to 2.36 and 

2.77 times of that with the creep controller. Consequently, the re-grinding cost is expected to 

be reduced to 42.4% and 36% of that with the creep control under the dry and the FM 

conditions respectively. 

 

 



104 
 

6.1. Thesis Contributions  

The following are believed to be the novel contributions of this thesis to existing literature. 

 An integrated locomotive dynamic model including locomotive longitudinal-vertical-

pitch dynamics, wheel/rail contact dynamics and electric drive dynamics in Matlab 

has been developed for locomotive dynamic response and wear damage prediction 

under various operation conditions and control design.  

 Locomotive modes of vibration have been investigated by eigenmode analysis and 

those most likely to be excited are identified. This provided insights into locomotive 

dynamic behaviour under external perturbations as well as validation of the stability 

of the system. 

 Creep/adhesion controllers have been developed to achieve higher tractive force under 

change of operation conditions. The effectiveness has been compared with a 

traditional fixed threshold creep controller. 

 Locomotive dynamic responses of the controllers achieving higher tractive forces and 

of the traditional controller are compared, highlighting the amount of tractive force 

benefit that can be achieved under various operating conditions. 

 The impact of creep control setting on the tractive force and wear index 𝑻𝜸/𝑨 has 

been quantified. 

 The impact of operating condition such as operation velocity and change of contact 

conditions on creep, tractive force and wear on rail tracks has been quantified. 

 A novel control strategy aiming to limit the wear damage on the rail tracks, based on a 

recent wear growth model has been developed. Simulation comparison has been 

carried out to validate its effectiveness in reducing wear damage, and to quantify the 

amount of trade off in terms of tractive forces under various operating conditions. 

 

6.2. Suggestions for Future Work 

The work presented in this thesis shows possible avenues of further study, some of which 

have already commenced. These are listed in the following. 

 

 Modelling: 

This research reveals the dynamic impact of different control strategies based 

on a simplified dynamic model. A more sophisticated model is preferable to 
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show more accurate dynamic responses with different control strategies under 

curving behaviour and under the influence of vertical/lateral track 

irregularities. This requires a 3D dynamic model which is beyond the scope of 

this research. Moreover, a better wear model is valuable to be included to 

provide more accurate wear damage quantification under different contact 

conditions and operation speeds. 

 Experimental Validation: 

 The experimental validation with a full scale locomotive experimental 

platform is necessary to verify the creep controller’s performance. Under the 

acceleration operation on relatively straight tracks, the speeds of the 

locomotive and the axles need to be measured to calculate the creepage. 

Accelerations of the axles and the torque on the motor shaft need to be 

measured to obtain the tangential force. 

 The measurement of the mass loss with the creep and the wear regulating 

traction controllers is necessary to validate the wear regulating traction 

controller’s effect. The corresponding mass loss rate measurement can be 

carried out on the test rig in the lab environment. The upper and lower wheel 

speeds and the torque on the motor shaft need to be measured for the purpose 

of real-time control. The amount of contact surface deformation with the creep 

and the wear regulating traction control need to be measured and compared 

under the dry and the FM contact conditions.   
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Abstract: In recent decades, advanced power-electronics-based control techniques have been widely used to 

upgrade direct current (DC) drives for the traction of locomotives. However the dynamic response of such 

upgraded DC locomotives under transient conditions due to external perturbations has not been fully 

investigated. In this work, an integrated dynamic model for a typical DC Co-Co locomotive/track system is 

developed to provide predictive simulations of the motion and forces transmitted throughout the DC locomotive 

dynamic system. The model integrates a 2D longitudinal-vertical locomotive structural vibration model, 

wheel/rail contact mechanics using Polach’s creep force model, a generic DC dynamic traction model and a 

traditional creep controller to simulate the transient response to a change in friction conditions. It is found that 

although the largest creep is constrained below 10% there are large transient creep and traction fluctuations 

related to identified modes of vibration of the locomotive.  

1. Introduction 

The progressive adoption of high traction motors and control techniques based on power electronics has brought 

great benefits to rail industry due to its high power capacity and efficiency. Despite all the advantages, concerns 

arise as to the effects of operating at maximum adhesion and the possible impact of dynamic oscillations and 

resultant traction to the rail tracks. An electric locomotive is a complex system containing several nonlinear 

dynamic components coupled together when the locomotive operates. Its traction control performance and 

dynamic impact on the rail tracks are typically assessed under specific steady state conditions. However, the 

natural perturbations in friction/lubrication, wheel/rail profiles, track curvature, vehicle/track dynamics, 

wheel/track imperfections etc. are not comprehensively investigated yet. Among those perturbations, the 

transient changes in friction or lubrication can cause sudden changes of creep and often leads to over/under 

traction/braking. In order to investigate this issue, a predictive locomotive dynamic model combining crucial 

dynamic components such as locomotive rigid body dynamics, contact dynamics and electric drive and control 

is needed.  

Locomotive traction simulations have been investigated by several researchers. A simulation package for 

simulation of rail vehicle dynamics has been developed in Matlab environment by Chudzikiewicz [1] for Poland 

railway specifications. Traction simulation considering bogie vibration has been provided by Shimizu et al. and 

a disturbance observer based anti-slip controller is also proposed [2].  Spiryagin et al. employed co-simulation 

approach with the Gensys multibody code and Simulink to investigate the heavy haul train traction dynamics 

[3]. Fleischer proposed a modal state controller to reduce drive train oscillation during the traction simulation 

[4]. Bakhvalov et al. combined electrical and mechanical processes for locomotive traction simulation [5]. 

Senini et al. has also performed some locomotive traction and simulation on electric drive level [6]. These works 

however, haven’t focused investigation on the effect of transient contact conditions on the locomotive dynamic 

response. In this work, we focus on longitudinal and vertical dynamics on tangent tracks as it is the most 

important part of locomotive dynamics closely related with traction/braking effort, passenger comfort and 

energy management [7]. Newton-Euler method [8, 9] is used to obtain the motion equations of the locomotive 

model. For the contact mechanics, Polach’s adhesion model [10] is adopted as it has been verified to be 

effective for both small and large values of longitudinal wheel-rail creep  as well as the decreasing part of creep-

force function exceeding the adhesion limit [11]. Modern development of mechatronics systems has improved 

rail vehicle operation under various conditions. The traction control system, also known as an adhesion or anti-

slip control system is essential for the operational efficiency and reliability in these systems. A pattern-based 

slip control method has been applied and modified by Park et al. [12]. Anti-slip control based on a disturbance 

observer was proposed by Ohishi et al. [13]. Yasuoka et al. proposed a slip control method [14] involving bogie 

oscillation suppression. All these methods claim the effectiveness of their proposed creep/traction controller; 

however, these conclusions were not validated on a comprehensive locomotive dynamic model.  

In this paper, a full scale locomotive dynamic model with a basic creep controller combining all crucial dynamic 

components is developed and implemented using Matlab/Simulink to investigate creep and dynamic oscillation 

control. In addition, a traction control system is proposed and embedded into the dynamic model to prevent 

inefficient traction caused by perturbations. Eigenmode and frequency analysis is also performed to identify 

important structural behaviour. 
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2. Modelling details 

The locomotive model is comprised of three major dynamic components: locomotive longitudinal-vertical-

pitching dynamics, electric drive/control dynamics, and contact mechanics. The structure of the model is shown 

in Figure 1. A dynamics model of the mechanical system of an electric locomotive based on the Newton-Euler 

method is developed. The wheel-rail contact in this model is based on Polach’s model. And a simplified electric 

drive model with a basic creep controller is proposed and integrated into the electric drive/control dynamics 

block in this model.  
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Figure 1: Overall model structure of a locomotive 

The model may be described as a feedback system. The electric drive and control system provides a torque 

acting on the motor shaft in the locomotive model. Torque also results from the longitudinal force due to the 

interaction between wheel-rail track contact mechanics. The resultant creep changes the longitudinal tractive 

force calculated using the Polach model, and the tractive force acts on the locomotive dynamic model and 

changes the displacements and velocities of the rigid bodies. Each of those components is detailed in the 

following sections. 

Locomotive 2D dynamic model 

The locomotive dynamic model is illustrated in Figure 2. In this model longitudinal, vertical and pitching 

dynamics are taken into consideration. The simplified Co-Co locomotive has two bogies. Each bogie has three 

wheelsets attached. Key parameters including geometry, degrees of freedom etc., are marked in Figure 2. 

 
Figure 2: Diagram of simplified locomotive multibody structure 

This simplified dynamic model has 21 degrees of freedom (DOF), including 9 DOF on the longitudinal, vertical 

and pitching motion of locomotive body and two bogies, and 12 DOF on vertical and rotating motion of six 

wheelsets. The system variables are expressed as a vector containing 42 entries, representing the relative 

displacements and velocities between different nodes as,  

[ ]
T

X Z Z , 1 2

T

carbody bogie bogie axlesZ Z Z Z Z                                     (1) 

in which [ , , ]
T

carbody c c cZ x z  is a 3×1 vector representing the locomotive body longitudinal, vertical and 

pitching motion from the static positions, 1 1 1 1[ , , ]
T

bogie b b bZ x z  and 2 2 2 2[ , , ]
T

bogie b b bZ x z   are both 3×1 

vectors representing longitudinal, vertical and pitching motion of front and rear bogie separately, and 

1 1 2 2 6 6[ , , , , ..., , ]
T

axles w w w w w wZ z z z   is a 12×1vector representing the vertical and rotating motion of wheelset 

1~6. The state space representation of the simplified dynamics can be expressed as: 

X A X B u

Y C X D u

   

   
, 

1 1
A

M K M C 

  
 
  

                                               (2)  
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where u is the longitudinal tractive force resulted from the interaction between the wheelsets and rail tracks, Y

is a vector of displacement or velocity of each node from its static position,  is a zero matrix,  is an identity 

matrix of certain dimensions, and M is the diagonal mass and moment of inertia matrix in the form of,  

( , , , , , , , , , , , , , , , , , , , , )c c c t t t t t t w w w w w w w w w w w wM diag M M I M M I M M I M I M I M I M I M I M I .       (3) 

Contact mechanics 

The Polach model [10] is employed in the contact mechanics component to determine the longitudinal tractive 

force resulted from the interaction between the wheelsets and rail tracks. In the model, the longitudinal tractive 

force can be expressed as, 

 
2

arctan
21 ( )

A
s

A

Q k
F k

k

 


 

 
  
  

                                                 (4) 

where  0 1 BA e A     
  

, 
0
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


 ,  111

4x x

G abc
s

Q


 


  , x

x

w
s

V
  for longitudinal direction. Parameters are 

defined as in [10]: F is tractive force, Q is normal wheel load,  is the coefficient of friction, Ak is the  

reduction factor in the area of adhesion, sk is the reduction factor in the area of slip,  is the gradient of the 

tangential stress in the area of adhesion, x is the gradient of the tangential stress in the longitudinal direction, 

0 is the maximum friction coefficient at zero slip velocity,  is the friction coefficient at infinite slip velocity,

A is the ratio of friction coefficients, B is the coefficient of exponential friction decrease, is the total creep 

(slip) velocity, x is the creep (slip) velocity in the longitudinal direction, G is the shear modulus, ,a b are half-

axes of the contact ellipse, 11c is a coefficient from Kalker’s linear theory and V is vehicle speed. The 

implemented Polach model gives simulation results plotted in Figure a) and ideal tractive force versus speed 

curves for all 8 traction notches is as shown in Figure 3 b).  
a)                                                                                   b) 

 
Figure 3: a) Adhesion coefficient for dry wet, and oil conditions; b) Tractive effort curves of GT46C[110] 

In the figure, adhesion coefficients in dry, wet and oil conditions are plotted as a function of creep rate for 

locomotive speed of approximately 10 km/h. Note that Polach’s experiments show adhesion variation of about 

±20%. This can be also seen from Table 5 in [16] which has larger variations.  The curves in Figure for dry and 

wet conditions agree with those in Polach’s work [10], and the curve for oil contact condition agrees with the 

data from a US patent [17]. As a result, the contact mechanics component is considered reliable when applied on 

those three contact conditions. 

Electric drive and controller dynamics 

A simplified electric drive dynamic model has been adopted in the paper to reduce the simulation time. The 

relation between the speed of axle and maximum tractive force for different notch settings is presented by means 

of a look-up table. The rotor speed is determined by the electromagnetic torque generated by the motor and the 

loading torque from the contact mechanics. 

w wi ei liI T G T     𝑖 = 1~6                                                           (7) 

wI is moment of inertia of an axle, wi is angular acceleration of axle 𝑖 (𝑖: 1~6), G is gear ratio and eiT is torque 

generated by electric drive 𝑖 (𝑖: 1~6). The index 𝑖 represents the specific axle from the leading to the rear. A PI 

controller is also used in this study to act as the creep controller. It compares the measured creep value with the 

threshold setting providing torque compensation when the measured maximum creep value of the axles of a 

bogie exceeds the threshold setting at 6%. If the maximum creepage of all axles on a bogie exceeds the 

threshold, the creep controller reduces the torque acting on all axles on the bogie; otherwise the creep controller 
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stays idle without providing a torque reduction signal. The effect of the high frequency electronics of the electric 

drive have not been simulated in this case but will be investigated in future research. 

3. Results 

Eigenmode analysis 

An eigenmode analysis was performed in Matlab to identify all the dynamic modes of vibration and to 

determine the stability of the system. The system eigenvalues are provided in  

 

Table. An eigenvalue is obtained for each possible mode of vibration of the system. The first part (real value) of 

each complex eigenvalue represents the amount of damping (if negative) of each mode of vibration. The second 

part (imaginary number) represents the part from which the frequency of vibration can be calculated. From the 

eigenvalues of the system, it can be seen that except for the car body horizontal mode, all modes of vibration 

have positive damping (negative real parts) which implies that the system is stable. The car body horizontal 

mode with zero damping is expected due to the rigid body longitudinal motion of the train. 
Table 1: Modal frequencies of the locomotive dynamic system vibration (Hz) and corresponding eigenvalues 

Modes Frequency 

(Hz) 

Eigenvalues Modes Frequency 

(Hz) 

Eigenvalues 

Car body vertical 0.8 -0.3 ± 4.9i Bogie 2 vertical 7.2 -6.5 ± 45.3i 

Car body pitching 1.4 - 1.0 ± 8.9i Bogie pitching 12 -4.9 ± 75.7i 

Bogie 1 horizontal 2.8 -4.6 ± 17.1i Bogie pitching 12 -4.9 ± 75.7i 

Bogie 2  horizontal 2.9 -5 ± 17.8i Wheelset vertical 216 -1.6 ± 1361.3i 

Bogie 1 vertical 7.2 -6.2 ± 45.4i Wheelset vertical 216 -1.6 ± 1361.3i 

Wheelset vertical 216 -1.6 ± 1361.3i Wheelset vertical 216 -1.6 ± 1361.3i 

Wheelset vertical 216 -1.6 ± 1361.3i Car body horizontal 0 0 

Wheelset vertical 216 -1.6 ± 1361.3i    

In the subsequent section full Simulink simulations are performed from which the dominant modes of vibration 

in the response can be compared to the eigenvalue analysis. 

Simulation results 

Simulation results for the transient response to changing contact conditions from dry to oily are provided in this 

section. The structure of the simulation block is as shown in Figure 1. The whole system combines the 

locomotive dynamics, Polach contact mechanics and electric drive & creep controller dynamics as described in 

the previous sections. The manual input of the system is from notch settings by the driver which control the 

level of torque command to the electric drives. The torque generated by the electric drive together with the 

effect of the longitudinal force acting on the axle from the rail tracks determines the angular acceleration of the 

rotor and consequently that of the axle. The change in creep in the transient response directly affects the 

longitudinal traction force and causes the dynamic change of acceleration, speed and position of all nodes in the 

system. Initial locomotive velocity and creep rate are set at 10 km/h and 0.5% respectively. The locomotive is 

operating on traction notch 8, i.e. high acceleration. 

Figure 4 a) and b) show the creep response of each axle in response to the change in contact condition and the 

corresponding tractive force on each axle respectively. 
a)                                                                                        b) 

 
Figure 4: a) creep of all axles during the change of contact condition; b) tractive force on each axle 

It can be seen that the creep response of each axle on each bogie is very similar to that of its matching axle at the 

same location on the other bogie. Also the leading axle of each bogie has a different response compared to the 

other two axles on the same bogie. This is maybe because the creep controller uses the maximum value of all 
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axles on a bogie as a control index and reduces the torque of all axles on the bogie based on this maximum 

response. As the creeps of the middle and rear axles are generally lower than the leading axles during 

locomotive acceleration, the creep controller is triggered and determined only by the leading axles during the 

acceleration tests. This explanation could be confirmed by further investigation into the signal generated by the 

creep controller. From Figure 4 b) it can be seen that the middle and rear axles have a drop of tractive force 

beginning with a shape of spike, while the tractive forces on the leading axles drop without a spike. This is 

likely because the creep value the leading axles are operating on, when the contact condition changes, is on a 

relatively flat part on the creep-adhesion coefficient curve. In contrast, the middle and rear axles are operating 

on a steep part of the creep-adhesion coefficient curve. Hence when the creep value increases the tractive forces 

increase steeply as spikes. The middle and rear axles dynamic creep overshoots are about 33% and 50% 

compared to their steady state creep values under an oily contact condition respectively. The tractive force 

overshoot of middle axles is about 47% and that of rear axles is about 58%. 

Figure 5 a) shows the vertical displacement of each axle on the same bogie has similar dynamic responses 

during the change of contact condition.  
a)                                                                                 b)    

 
Figure 5: a) vertical displacement of all axles during the change of contact condition; b) pitching angles of car body and two 

bogies during the change of contact condition 

The front and rear axle vertical displacements are dominated by the corresponding bogie pitching and the 

middle axle vertical displacements are dominated by the vertical motion of the bogies. The frequency of the car 

body pitching is about 1.5 Hz which is close to the eigenmode analysis result of 1.4 Hz. Also the pitching 

frequency seen in the response of Figure 5 b) is close to 12 Hz as found in the eigenmode analysis of  

 

Table. The transient oscillations, between 1 to 4 seconds are caused by the system simulation initialization and 

stabilization. The bouncing motion of axles also affect the transient tractive force responses by varying the 

normal contact force between the axles and rail tracks as seen in Figures 4 b) and 5 a). Figure 5 b) shows the 

pitching angle of the car body and two bogies respectively. Comparing to previous figures, it can be seen that 

vertical displacement of the front and rear axles of each bogie is mainly affected by the pitching motion of each 

bogie. In addition, the sudden change of contact condition causes a decrease of tractive forces such that the 

torques acting on bogies and the locomotive body decrease consequently. This is the reason that the pitching 

angles of bogies and locomotive body are smaller under an oily contact condition than those under a dry contact 

condition. 

4. Conclusion 

In this work, an integrated dynamic model for a typical DC Co-Co locomotive/track system is developed. By 

simulating the transient response to a change in contact conditions from dry to oil under traction, the dynamic 

responses of all components are successfully generated. The resultant modes of those vibrations were validated 

by matching an eigenmode analysis of the structural dynamics model.  It is found that the proposed creep 

controller is able to constrain the largest creep rate effectively but transient dynamic oscillations occur in 

response. In particular, the simulation shows that there is a substantial transient creep force response to changes 

in friction conditions which are shown to be associated with bouncing modes of the bogies and pitching of the 

bogies and locomotive body. 
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Abstract 
In recent decades, advanced power-electronics-based control techniques have been widely used to electric drives 

for the traction of modern locomotives. However the dynamic response of such locomotives under transient 

conditions due to external perturbations has not been fully investigated. In this work, an integrated dynamic 

model for a typical Co-Co locomotive/track system is developed to provide predictive simulations of the motion 

and forces transmitted throughout the whole locomotive dynamic system. The model integrates a 2D 

longitudinal-vertical locomotive structural vibration model, wheel/rail contact mechanics using Polach’s creep 

force model, a simplified dynamic traction model and a fuzzy logic creep controller to simulate the transient 

response to a change in friction conditions. It is found that the proposed fuzzy logic controller has the advantage 

over a PI controller in terms of achieving higher tractive force under transient contact conditions. 

Keywords:   locomotive creep control, fuzzy logic, transient contact conditions. 

1 Introduction 

The progressive adoption of high traction motors and control techniques based on power electronics has brought 

great benefits to rail industry due to its high power capacity and efficiency. Despite all the advantages, concerns 

arise as to the effects of operating at maximum adhesion and the possible impact of dynamic oscillations and 

resultant traction to the rail tracks. An electric locomotive is a complex system containing several nonlinear 

dynamic components coupled together when the locomotive operates. Its traction control performance and 

dynamic impact on the rail tracks are typically assessed under specific steady state conditions. However, the 

natural perturbations in friction/lubrication, wheel/rail profiles, track curvature, vehicle/track dynamics, 

wheel/track imperfections etc. are not comprehensively investigated yet. Among those perturbations, the 

transient changes in friction or lubrication can cause sudden changes of creep and often leads to over/under 

traction/braking. In order to investigate this issue, a predictive locomotive dynamic model combining crucial 

dynamic components such as locomotive rigid body dynamics, contact dynamics and electric drive and control 

is needed.  

Locomotive traction simulations have been investigated by several researchers. A simulation package for 

simulation of rail vehicle dynamics has been developed in Matlab environment by Chudzikiewicz [1] for Poland 

railway specifications. Traction simulation considering bogie vibration has been provided by Shimizu et al. and 

a disturbance observer based anti-slip controller is also proposed [2].  Spiryagin et al. employed co-simulation 

approach with the Gensys multibody code and Simulink to investigate the heavy haul train traction dynamics 

[3]. Fleischer proposed a modal state controller to reduce drive train oscillation during the traction simulation 

[4]. Bakhvalov et al. combined electrical and mechanical processes for locomotive traction simulation [5]. 

Senini et al. has also performed some locomotive traction and simulation on electric drive level [6]. These works 

however, haven’t focused investigation on the effect of transient contact conditions on the locomotive dynamic 

response. In this work, we focus on longitudinal and vertical dynamics on tangent tracks as it is the most 

important part of locomotive dynamics closely related with traction/braking effort, passenger comfort and 

energy management [7]. Newton-Euler method [8,9] is used to obtain the motion equations of the locomotive 

model. For the contact mechanics, Polach’s adhesion model [10] is adopted as it has been verified to be 

effective for both small and large values of longitudinal wheel-rail creep as well as the decreasing part of creep-

force function exceeding the adhesion limit [11]. Modern development of mechatronics systems has improved 

rail vehicle operation under various conditions. The traction control system, also known as an adhesion or anti-

slip control system is essential for the operational efficiency and reliability in these systems. A pattern-based 

slip control method has been applied and modified by Park et al. [12]. Anti-slip control based on a disturbance 

observer was proposed by Ohishi et al. [13]. Yasuoka et al. proposed slip control method [14] involving bogie 



122 
 

oscillation suppression. All these methods claim the effectiveness of their proposed creep/traction controller; 

however, these conclusions were not validated on a comprehensive locomotive dynamic model.  

In this paper, a full scale locomotive dynamic model with a fuzzy logic creep controller combining all crucial 

dynamic components is developed and implemented using Matlab/Simulink to investigate creep and dynamic 

oscillation. In addition, a traction control system is proposed and embedded into the dynamic model to prevent 

inefficient traction caused by perturbations. Eigenmode and frequency analysis is also performed to identify 

important structural behaviour. 

2 Modelling details 

The locomotive model is comprised of three major dynamic components: locomotive longitudinal-vertical-

pitching dynamics, electric drive/control dynamics, and contact mechanics. The structure of the model is shown 

in Figure 1. A dynamics model of the mechanical system of an electric locomotive based on the Newton-Euler 

method is developed. The wheel-rail contact in this model is based on Polach’s model. And a simplified electric 

drive model with a basic creep controller is proposed and integrated into the electric drive/control dynamics 

block in this model.  

 

Figure 1: Overall model structure of a locomotive 

The model may be described as a feedback system. The electric drive and control system provides a torque 

acting on the motor shaft in the locomotive model. Torque also results from the longitudinal force due to the 

interaction between wheel-rail track contact mechanics. The resultant creep changes the longitudinal tractive 

force calculated using the Polach model, and the tractive force acts on the locomotive dynamic model and 

changes the displacements and velocities of the rigid bodies. Each of those components is detailed in the 

following sections. 

 

2.1 Locomotive 2D dynamic model 

The locomotive dynamic model is illustrated in Figure 2. In this model longitudinal, vertical and pitching 

dynamics are taken into consideration. The simplified Co-Co locomotive has two bogies. Each bogie has three 

wheelsets attached. Key parameters including geometry, degrees of freedom etc., are marked in Figure 2. 

 

 

Figure 2: Diagram of simplified locomotive multibody structure 

This simplified dynamic model has 21 degrees of freedom (DOF), including 9 DOF on the longitudinal, vertical 

and pitching motion of locomotive body and two bogies, and 12 DOF on vertical and rotating motion of six 
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wheelsets. The system variables are expressed as a vector containing 42 entries, representing the relative 

displacements and velocities between different nodes as, 

[ ]TX Z Z ,   
1 2

T

carbody bogie bogie axlesZ Z Z Z Z         (1) 

 in which [ , , ]T

carbody c c cZ x z   is a 3×1 vector representing the locomotive body longitudinal, vertical and 

pitching motion from the static positions, 1 1 1 1[ , , ]T

bogie b b bZ x z  and 2 2 2 2[ , , ]T

bogie b b bZ x z    are both 3×1 

vectors representing longitudinal, vertical and pitching motion of front and rear bogie separately, and 

1 1 2 2 6 6[ , , , ,..., , ]T

axles w w w w w wZ z z z    is a 12×1vector representing the vertical and rotating motion of 

wheelset 1~6. The state space representation of the simplified dynamics can be expressed as: 

X A X B u

Y C X D u

   

   
, 

1 1
A

M K M C 

  
  
 

                             (2) 

where u is the longitudinal tractive force resulted from the interaction between the wheelsets and rail tracks, Y
is a vector of displacement or velocity of each node from its static position, is a zero matrix,   is an identity 

matrix of certain dimensions, and M is the diagonal mass and moment of inertia matrix in the form of 

( , , , , , , , , , , ,

, , , , , , , , , )

c c c t t t t t t w w

w w w w w w w w w w

M

diag M M I M M I M M I M I

M I M I M I M I M I



                (3)                                                                                                                   

 

2.2 Contact mechanics 

The Polach model [10] is employed in the contact mechanics component to determine the longitudinal tractive 

force resulted from the interaction between the wheelsets and rail tracks. In the model, the longitudinal tractive 

force can be expressed as,  
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  for longitudinal direction. 

Parameters are defined as in [10]: F is tractive force, Q is normal wheel load,  is the coefficient of friction, 

Ak is the  reduction factor in the area of adhesion, sk is the reduction factor in the area of slip,  is the gradient 

of the tangential stress in the area of adhesion, x is the gradient of the tangential stress in the longitudinal 

direction, 0 is the maximum friction coefficient at zero slip velocity, 0 is the friction coefficient at infinite 

slip velocity, A is the ratio of friction coefficients, B is the coefficient of exponential friction decrease,  is the 

total creep (slip) velocity, x is the creep (slip) velocity in the longitudinal direction, G is the shear modulus, 

,a b are half-axes of the contact ellipse, 11c is a coefficient from Kalker’s linear theory and V is vehicle speed.  

 

Parameters describing dry and wet contact conditions have been adopted from Polach’s work [10] as below: 
Table 1: parameters for different contact conditions 

Conditions Parameters Dry Wet 

kA 1 0.3 

kS 0.3 0.75 

µ0 0.55 0.3 

A 0.4 0.4 

B 0.25 0.09 

 

The resulting creep-adhesion characteristics under dry and wet conditions are as in figure 3 a) and b) 

respectively,  
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                       a)                                                        b) 
Figure 3: a) Creep, speed and adhesion coefficient relation under dry contact condition; b) Creep, speed and adhesion 

coefficient relation under wet contact condition 

2.3 Simplified motor dynamic modelling 

A simple motor dynamic model characterizing the electromagnetic torque eT , mechanical loading lT , the 

equivalent moment of inertia of the axles with the motor rotor mJ  and the angular acceleration of axles w can 

be written as [15] 

m w m lJ T T                                                        (5) 

3 Proposed control system 

The proposed adhesion control system utilizes the method described in [16] to determine the locomotive speed 

which will be used to calculate the creep values of each axle. And an adhesion force coefficient observer 

proposed in [13] is adopted to generate the ‘optimum’ reference motor torque signal. The control system 

diagram is as shown in figure 4. 
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Figure 4: Adhesion control diagram 

A fuzzy logic creep controller is adopted in this work as its advantage of giving strong self-adaptive and robust 

performance without the need of accurate mathematical model [17]. The proposed fuzzy logic controller uses 

the information of differentiation of each axle’s creep of and the differentiation of each axle’s adhesion 

coefficient, which is estimated from the change in vehicle acceleration over one sample period as proposed in 

[18]. Each of the fuzzy inputs of derivative of creep and derivative of adhesion coefficient are expressed by 5 

fuzzy membership functions, e.g. positive big (Pb),positive small (Ps), zero (0), negative small (Ns) and 

negative big (Nb). The output of the fuzzy logic controller is torque compensation command to each of the 

motors, either to increase or reduce the electromagnetic torque acting on the motors within the range of traction 

limit. 

Controller output: 

                                         (6) 

The membership functions and control rules are in Table 2 and Figure 5 below. 
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Table 2: Fuzzy rule table 

Derivative of 
creep (𝒔̇) 

Derivative of adhesion coefficient (𝝁̇) 

Pb Ps 0 Ns Nb 

Pb Pb Ps Ns Ns Nb 
Ps Ps Ps 0 Nb Nb 
0 Ps 0 0 Ps Ps 

Ns Ns Ns Ps Ps Pb 
Nb Ns Ns Ps Ps Pb 

 

 

                          (a)                                                     (b)     

Figure 5: (a) Membership functions of inputs and output; (b) fuzzy logic 3D input-output characteristics 

The fuzzy rules are designed based on [18], i.e. dividing the creep-adhesion coefficient curve into four different 

sessions according to the value of and (1~4 representing sessions of dry contact condition curve;1*~4* 

representing sessions of wet contact condition curve), as shown in Figure 6: 

 

Figure 6: illustrative graph for the fuzzy rules  

1 and 1*: s  is positive and   is positive 

2 and 2*: s  is positive and   is negative 

3 and 3*: s  is negative and   is positive 

4 and 4*: s  is negative and   is negative 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

_s

dCreepNb dCreepNs dCreep0 dCreepPs dCreepPb

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

_7

dCoefNb dCoefNs dCoef0 dCoefPs dCoefPb

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.5

1

torque compensation

TcompNb TcompNs Tcomp0 TcompPs TcompPb

-2

-1

0

1

2

-2

0

2

-30

-20

-10

0

10

20

30

derivative of creep

proposed fuzzy adhesion control rule

derivative of
 adhesion coefficient

to
r
q

u
e

 r
e

d
u

c
ti
o

n

s 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

creep

a
d

h
e

s
io

n
 c

o
e

ff
ic

ie
n

t

 

 

dry

wet

5

4

2

3

1* 2*

3*

4*

6

1

O 

O
’ 



126 
 

Moreover, transient condition caused by the change of wheel-rail contact condition is also taken into 

consideration. Thus two additional sessions have been added: 

5: Transient from high curve to low curve- s  positive and   negative very large 

6: Transient from low curve to high curve- s  negative and   positive very large 

The principle of the logic is to maintain the adhesion coefficient at maximum value O  for dry contact condition 

or 'O  for wet contact condition, by reducing the torque command when creep value is on the right hand side of 

maximum values and increasing the torque command when on the left hand side of maximum values.  

4 Results 

Results of transient locomotive response with proposed fuzzy logic controller are illustrated, including creep and 

tractive force. Initial operation speed was set at 10 km/h. Transient contact conditions are assumed to happen at 

11km/h, from dry contact condition to wet condition, and change back from wet to dry contact condition at 12.5 

km/h.  
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Figure 7: Comparison of total tractive force with PI and fuzzy controller (left); magnification of tractive force comparison 

under wet contact condition (right) 

 

It can be seen from Figure 7 that the tractive force with PI and fuzzy controller under dry contact condition is 

similar, while then the fuzzy controller can reach higher tractive force than that with PI controller under wet 

contact condition. This can be explained as follow. As the threshold of the PI controller is chosen such that it can 

reach the maximum tractive force under dry contact condition near the simulation speed, the tractive force with 

controller are close to each other, both around the maximum tractive force the system can reach at the same speed.  

However, as the threshold of the PI controller is constant, it will not be able to adjust the control level according to 

the change of contact conditions and/or operating speed. On the other hand, the fuzzy controller search for 

maximum tractive force with information of s and  . This causes higher tractive force under wet contact 

condition with fuzzy controller than that with PI controller.  

 

        
                      (a)                                                     (b)     

Figure 8: Comparison of creep response with PI control (a) and with fuzzy logic control (b) 

In Figure 8(a), after the contact condition changes from dry condition to wet condition, the creep values have 

been limited at 0.03, as the pre-set threshold of the PI controller, whereas the creep values of the system with 

fuzzy logic are higher as in Figure 8(b), as the fuzzy controller adjusts the control effort according to the 

operation condition and intends to reach maximum tractive force available.  
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5 Conclusions 
External perturbations such as the change of rail-wheel contact conditions often cause undesirable locomotive 

dynamic responses. In this paper, the locomotive dynamic responses under transient contact conditions with PI 

and fuzzy logic creep controller have been simulated with an integrated 2D Co-Co locomotive/track dynamic 

model. The comparison of the creep and total tractive force shows the advantage of proposed fuzzy logic 

controller over PI controller in term of realizing higher tractive force under the change of contact conditions. 

While both controllers can limit the creep under a certain level, simulation results show that the fuzzy controller 

can reach higher total tractive force than that with a constant threshold PI controller under wet contact condition 

thanks to its ability to search for the maximum achievable force according to different contact conditions.  
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This paper presents locomotive traction controllers based on PI and sliding mode control with a 

fuzzy logic creep reference generator; and compares their performance based on tractive efforts 

under various operation speeds. The effect of change of wheel-rail friction conditions under 

different controllers is also investigated.  In particular, a sliding mode traction controller based on 

a fuzzy logic creep reference generator is developed to tackle nonlinearity and uncertainty due to 

the contact conditions and operation speeds. It is shown that at high speed operation, the fuzzy 

logic based sliding mode controller can achieve higher tractive force with lower creep values.  

Keywords: fuzzy logic; sliding mode control; traction control 

Nomenclature 
𝑥𝑐 Locomotive body longitudinal displacement 

𝑧𝑐 Locomotive body vertical displacement 

𝜃𝑐 Locomotive body pitch angle 

𝑥𝑏1,2 Locomotive front/rear bogie longitudinal displacement 

𝑧𝑏1,2 Locomotive front/rear bogie vertical displacement 

𝜃𝑏1,2 Locomotive front/rear bogie pitch displacement 

𝑧𝑤1~6 Wheelset 1~6 vertical displacement 

𝜃𝑤1~6 Wheelset 1~6 rotation angle 

𝑀𝑐 𝑀𝑡 𝑀𝑤 Mass of locomotive body, bogie and axle 

𝐼𝑐 𝐼𝑡 𝐼𝑤 Moment of inertia of locomotive body, bogie and axle along pitch direction 

𝑄 Wheel load 

𝜇  Friction coefficient  

𝜀  Gradient of the tangential stress in the area of adhesion 

𝑘𝐴, 𝑘𝑠  Reduction factor in the area of adhesion, reduction factor in the area of slip 

𝜇∞ Friction coefficient at infinity slip velocity 

𝜇0 Maximum friction coefficient at zero slip velocity 

𝑠𝑥 Creep in longitudinal (x) directions 

𝑉 Vehicle speed 

𝑤𝑥 Creep (slip) velocity in longitudinal (x) direction 

𝑎, 𝑏 Half-axes of the contact ellipse 

𝑐11 Coefficient from Kalker’s linear theory 

𝐹, 𝐺 Tractive force, Shear modulus 

𝑇𝑡𝑖  Torque generated by electric drive 𝑖=1~6 

𝑇𝑙𝑖 Torque acting on axle 𝑖=1~6 generated by longitudinal contact force  

 

1.   Introduction 
The progressive application of high traction motors and control techniques based on power electronics 

has brought great benefits to the rail industry due to its high power capacity and efficiency. Therefore, 

an effective control system is demanded to suit the contemporary high speed railway network. 

Traditionally, traction controller performance and its dynamic impact on rail are typically assessed 

under specific steady state conditions. In particular, traction controller performance under natural 

perturbations in friction/lubrication, wheel/rail profiles, track curvature, vehicle/track dynamics, 

wheel/track imperfections etc. has not been comprehensively investigated yet. Among those 

perturbations, the transient changes in friction or lubrication can cause sudden changes of creep and 

often lead to over/under traction/braking. In order to investigate this issue, a predictive locomotive 

dynamic model combining crucial dynamic components such as locomotive rigid body dynamics, 

contact dynamics and electric drive and control is needed.  
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Locomotive traction simulations have been investigated by several researchers. Spiryagin et al. 

employed a co-simulation approach with the Gensys multibody code and Simulink to investigate the 

heavy haul train traction dynamics [1]. Bakhvalov et al. combined electrical and mechanical processes 

for locomotive traction simulation [2]. Senini et al. has also performed some locomotive traction 

simulation on a simplified single wheel model [3]. These works, however, haven’t focused 

investigation on the effect of transient contact conditions on the locomotive dynamic response. 

Modern development of mechatronics systems has improved rail vehicle operation under various 

conditions. The traction control system, also known as an adhesion or anti-slip control system is 

essential for the operational efficiency and reliability of these systems. A pattern-based slip control 

method has been applied and modified by Park et al. [4]. Anti-slip control based on a disturbance 

observer was proposed by Ohishi et al. [5]. Yasuoka et al. proposed a slip control method [6] 

involving bogie oscillation suppression. All these methods claim the effectiveness of their proposed 

creep/traction control; however, these conclusions were not validated on a comprehensive locomotive 

dynamic model. Fuzzy logic control has also been used to control the traction / braking force of 

locomotive vehicles due to its robustness. Garcia-Rivera et al. have proposed a fuzzy logic controller 

to constrain the slip velocity [7]. The results show the effectiveness of limiting the slip velocity. 

However, that method cannot guarantee the achievement of maximum force. Cheok et al. proposed a 

fuzzy logic controller and validated its effectiveness by experiment comparing it with a traditional 

PID method [8]. However their research mainly focused on constant contact conditions and hence the 

control performance was not tested under a change of contact conditions. Khatun et al proposed a 

fuzzy logic controller for an electric vehicle antilock braking system and simulations have been 

performed for icy to dry contact condition changes [9]. However it was only tested on a single axle 

model and the transient response from dry to other conditions was not investigated. Park et al. [10] 

proposed an adaptive sliding mode controller in order to deal with system uncertainties. A fuzzy logic 

method was used to generate a reference slip ratio. Although the method has been simulated with a 

simplified rolling stock quarter model, the performance on a whole locomotive dynamic model with 

dynamic interaction throughout the structural/controller system during the change of contact condition 

were not addressed. 

In this paper, a full scale locomotive longitudinal-vertical-pitch dynamic model with a PI creep 

controller and a fuzzy logic sliding mode controller combining all crucial dynamic components is 

developed and implemented using Matlab/Simulink. The tractive performance is compared during a 

change of contact conditions. We focus on longitudinal and vertical dynamics on tangent tracks, as it 

is the most important part of locomotive dynamics closely related with traction/braking effort, 

passenger comfort and energy management [11]. A Newton-Euler method [12, 13] is used to obtain 

the motion equations of the locomotive model. For the contact mechanics, Polach’s adhesion model 

[14] is adopted as it has been verified to be effective for both small and large values of longitudinal 

wheel-rail creep  as well as the decreasing part of the creep-force function exceeding the adhesion 

limit [15]. The tractive performance and transient dynamics in creep and motion, particularly at 

different locomotive speeds, are compared and analysed. 

 

2.   Simulation modelling 
In order to study the dynamics and interactions between different components of the overall 

locomotive dynamics, three major subsystems are taken into consideration for the modelling process; 

namely, locomotive multi-body dynamics, electric drive/control dynamics and contact mechanics. The 

structure of the model is shown in Figure 1. A dynamics model of the mechanical system of an 

electric locomotive based on the Newton-Euler method [16] is developed. The wheel-rail contact in 

this model is based on Polach’s model [14]. A simplified electric drive model with a basic PI creep 

controller and a fuzzy logic sliding mode creep controller is proposed and integrated into the electric 

drive/control dynamics block in this model.  
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Figure 1.   Schematic diagram of the overall system. 

The model may be described as a feedback system. The rotational speeds of axles are constantly 

measured and used to generate a reference creep. The creep value on each axle is also calculated with 

the information of the speed of each axle and the locomotive speed. The controller then adjusts the 

amount of torque generated by the electric drives accordingly. The electric drive and control system 

provides a torque acting on the motor shaft in the locomotive model. Torque also results from the 

longitudinal force due to the interaction between wheel-rail track contact mechanics. The resultant 

creep changes the longitudinal tractive force calculated using the Polach model, and the tractive force 

acts on the locomotive dynamic model and changes the displacements and velocities of the rigid 

bodies. Each of those components is detailed in the following sections. 

 

2.1.   Locomotive longitudinal-vertical-pitch dynamic modelling 
A 2-dimensional locomotive dynamic model is shown in Figure 2, which emphasizes longitudinal, 

vertical and pitch dynamics of locomotive operation. An assumption has been made that the motors 

are fixed on the bogie evenly and no relative displacement between the motors and bogie is 

considered in order to simplify the model. The pitch motions of the wagons and car body (θ_b1, θ_b2 

and θ_c) will be affected by the traction motor dynamics. In particular, the torque generated by the 

motor changes the contact creep which determines the tractive torque causing pitch motions of the 

wagons and car body.  A commonly used Newton-Euler approach was used to obtain the locomotive 

dynamic equations in a similar manner as previous research [19-22]. 

 
Figure 2.   Locomotive longitudinal-vertical dynamic diagram. 

This model has 21 degrees of freedom (DOF), including 9 DOF of the longitudinal, vertical and 

pitch motions of the locomotive body and its two bogies, and 12 DOF of vertical and rotating motions 

of six wheelsets. The system variables are expressed as a vector containing 42 entries, representing 

the relative displacements and velocities between different nodes as, 

𝑋 = [𝑍 𝑍̇]
𝑇, 𝑍 = [𝑍𝑐𝑎𝑟𝑏𝑜𝑑𝑦 𝑍𝑏𝑜𝑔𝑖𝑒1 𝑍𝑏𝑜𝑔𝑖𝑒2 𝑍𝑎𝑥𝑙𝑒𝑠]𝑇,  (1) 

in which 𝑍𝑐𝑎𝑟𝑏𝑜𝑑𝑦 = [𝑥𝑐 𝑧𝑐 𝜃𝑐]
𝑇 is a 3×1 vector representing the locomotive body longitudinal, 

vertical and pitch motions from the static positions, 𝑍𝑏𝑜𝑔𝑖𝑒1 = [𝑥𝑏1 𝑧𝑏1 𝜃𝑏1]
𝑇  and 𝑍𝑏𝑜𝑔𝑖𝑒2 =

[𝑥𝑏2 𝑧𝑏2 𝜃𝑏2]
𝑇 are both 3×1 vectors representing longitudinal, vertical and pitch motions of the 
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front and rear bogie separately, and 𝑍𝑎𝑥𝑙𝑒𝑠 = [𝑧𝑤1 𝜃𝑤1 𝑧𝑤2 𝜃𝑤2 … 𝑧𝑤6 𝜃𝑤6]
𝑇  is a 

12×1vector representing the vertical and rotating motions of wheelset 1~6. The state space 

representation of the dynamics can be expressed as: 

𝑋̇ = 𝐴 ∙ 𝑋 + 𝐵 ∙ 𝑢
𝑌 = 𝐶 ∙ 𝑋 + 𝐷 ∙ 𝑢

, 𝐴 = [
Θ 𝐼

𝑀−1𝐾 𝑀−1𝐶
],    (2) 

where 𝑢 is the longitudinal tractive force resultant from the interaction between the wheelsets and rail 

tracks, 𝑌 is a vector of displacement or velocity of each node from its static position, Θ is a zero 

matrix, 𝐼  is an identity matrix of certain dimensions, and 𝑀 is the diagonal mass and moment of 

inertia matrix in the form of,  

M = diag(Mc Mc Ic Mt Mt It Mt Mt It Mw Iw Mw Iw Mw Iw Mw Iw Mw Iw Mw Iw). (3) 

Detailed locomotive parameters are shown in Appendix A as provided by industry partners. The 

terms M−1K and M−1C are defined as A21 and A22 separately and are provided in Appendix B.  

 

Eigenmode analysis 
An eigenmode analysis was performed in Matlab to identify all the dynamic modes of vibration and to 

determine the stability of the system. The system eigenvalues are provided in Table 1. An eigenvalue 

is obtained for each possible mode of vibration of the system. The first part (real value) of each 

complex eigenvalue represents the amount of damping (if negative) of each mode of vibration. The 

second part (imaginary number) represents the part from which the frequency of vibration can be 

calculated. From the eigenvalues of the system, it can be seen that except for the car body horizontal 

mode, all modes of vibration have positive damping (negative real parts) which implies that the 

system is stable. A car body horizontal mode with zero damping is expected due to the rigid body 

longitudinal motion of the train.  
 

 
Table1.   Modal frequencies of the locomotive dynamic system vibrations (Hz) and corresponding eigenvalues. 

Modes Frequency 

(Hz) 

Eigenvalues Modes Frequency 

(Hz) 

Eigenvalues 

Car body 

vertical 

0.3 -2.9 ± 1.9i Bogie 1 vertical 3.1 -2.9 ±20.6i 

Car body 

pitching 

1.8 -2.1± 11.4i Bogie 2 vertical 3.3 -1.7 ±20.8i 

Bogie pitching         3.3 -1.7 ± 20.8i Wheelset vertical 137.5   -17 ± 864i 

 

2.2.   Creep force modelling 
The creep force is caused by the rolling contact of wheel-rail interaction and is crucial in terms of 

locomotive traction/braking operation. Polach determined the tangential force along the rail tracks 

based on his experimental data as [16], 

 

𝐹 =
2𝑄𝜇

𝜋
(

𝑘𝐴𝜀

1+(𝑘𝐴𝜀)
2 + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑘𝑠𝜀)) ,                                                     (4) 

where 𝐹  is the tangential force, 𝑄  is normal wheel load, 𝑘𝐴  is the reduction factor in the area of 

adhesion and 𝑘𝑠 is the reduction factor in the area of slip. 𝜀 is the gradient of the tangential stress in 

the area of adhesion which along the longitudinal direction (defined as 𝑥 direction in figure 1) can be 

calculated as, 

𝜀𝑥 =
1

4

𝐺𝜋𝑎𝑏𝑐11

𝑄𝜇
𝑠𝑥,      (5) 

 

where 𝐺 is the shear modulus, 𝑎 and 𝑏 are the semi-axles of the contact ellipse as shown in Figure 3, 

𝑐11 is derived from Kalker’s work [23] and characterizes the longitudinal direction of the contact 

shear stiffness coefficient. Also 𝑠𝑥 is the creep component in longitudinal direction defined as 

 

𝑠𝑥 =
𝑤𝑥

𝑉
,       (6) 
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where 𝑤𝑥 is the slip velocity in longitudinal direction and 𝑉 is the vehicle speed.  

y

Direction of motion

Tangential

stress τ 

Area of 

slip

B

σ, τ 

b

a
 

Figure 3.  : Wheel-rail contact area and distribution of normal and tangential stresses [27]. 

 

As lateral dynamics is not considered in this paper, total creep 𝑠  equals creep along the 

longitudinal direction 𝑠𝑥. The coefficient of friction 𝜇 is calculated as 

 

𝜇 = 𝜇0[(1 − 𝐴)𝑒
−𝐵𝑤 + 𝐴],     (7) 

 

where 𝜇0 is the maximum friction coefficient at zero slip velocity, 𝐴 is the ratio of friction coefficient 

at infinity slip velocity 𝜇∞ and 𝜇0, 𝐵 is the coefficient of exponential friction decrease. Typical model 

parameters have been provided by Polach [16], as listed in Table 2. The contact patch dimesions 

shown in Figure 3 are specified as 𝑎 = 6 × 10−3 𝑚 and 𝑏 = 6 × 10−3 𝑚. 

 
 

Table 2.   Typical parameters for dry and wet contact condition [16]. 
 

 
Parameters 

 

Contact condition 

 

Dry Wet 

𝑘𝐴 1.00 0.30 

𝑘𝑠 0.40 0.10 

𝜇0 0.55 0.30 

𝐴 0.40 0.40 

𝐵 0.60 0.20 

 

As it is shown in Figure 4, the critical creep- at which maximum tractive force occurs shifts 

towards the lower creep values as the speed of locomotive increases. As a result, setting the reference 

creep to be constant will cause traction performance degradation over different locomotive operation 

speeds.  
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(a)                                                                         (b) 

Figure 4.   Polach tractive force curve at different speeds under (a) dry contact condition; and (b) under wet contact 

condition. 

 

2.3.   Wheel traction dynamic modelling 
A simple wheel traction dynamic model characterizing the traction torque acting from the electric 

motor on a wheelset 𝑇𝑡𝑖, external loading 𝑇𝑙𝑖, the equivalent moment of inertia of the axle with the 

motor rotor J , and the angular acceleration of axle 𝜔̇𝑤𝑖 can be written as [24] 

𝐽𝜔̇𝑤𝑖 = 𝑇𝑡𝑖 − 𝑇𝑙𝑖, 𝑖 = 1,2,… ,6     (8) 

 

3.   Proposed control system 
The proposed adhesion control system utilizes the method described in [9] with control torque acting 

on each axle.  

3.1.   Fuzzy logic 

Fuzzy logic systems are based on fuzzy set theory [25]. Fuzzy sets derive from a grouping of 

elements into classes that do not possess sharply defined boundaries [8]. Since fuzzy logic uses fuzzy 

linguistic rules based on expert knowledge and specific numeric data without the existence of a 

suitable mathematical model [26], it has the ability to tackle uncertainties and nonlinearity [6].  

The conventional locomotive adhesion/traction control scheme and that based on fuzzy logic are 

shown in Figure 5. 
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(a)                                                                         (b) 

Figure 5.   Adhesion control diagram (a) with a PI creep controller; (b) with fuzzy logic based sliding mode controller. 

The reference creep is calculated with the fuzzy logic method based on the derivative of creep 𝑠̇ 
and derivative of adhesion coefficient 𝜇̇(𝑠). The updating law of reference slip is,  

𝑠𝑟𝑒𝑓
𝑘 = 𝑠𝑟𝑒𝑓

𝑘−1 + Δ𝑘(𝑠̇, 𝜇̇) ,      (9) 

where updating term Δ𝑘(𝑠̇, 𝜇̇) is calculated with fuzzy logic. As the peak value of the adhesion 

coefficient occurs when 𝑑𝜇 𝑑𝑠 = 0⁄ , the update term can be chosen as 𝑑𝜇 𝑑𝑠⁄ . For a discrete time 

system, it can be represented by, 
𝜇𝑘−𝜇𝑘−1

𝑠𝑘−𝑠𝑘−1
,      (10) 
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where the value of adhesion coefficient μ on the numerator is approximated with the ratio between F̂a 

and normal contact force between the wheel and the rail. The whole term in equation (10) is used as 

the input of  the reference generator. 

The fuzzy logic takes this as its input and calculates an updating term according to Table 3 and 

membership functions in Figure 6. Both input and output has four membership functions, e.g. 

negative big (NB), negative small (N), positive small (P) and positive big (PB). The output of the 

fuzzy system is the updating term Δk.  

 
Table 3.   Fuzzy rule table. 

INPUT OUTPUT 

NB NB 

N N 

P P 

PB PB 

 

 
(a)                                                                         (b) 

Figure 6.   (a) Membership functions of input; (b) Membership functions of output. 

Values from equation (10) correspond with values of the input in Figure 6 (a), with which 

corresponding fuzzy values μ NB, μ N, μ P and μ PB can be obtained from the vertical axis in Figure 6 

(b). Consequently, the centre of gravity method is employed as the defuzzification method in this 

paper. This method calculates the value z∗ for a fuzzy number C̃ as in [100]27] 

z∗ =
∫zμC̃ (z)dz

∫μC̃ (z)dz
,      (11) 

where μC̃ denotes the membership function of the fuzzy number C̃ (NB, N, P and PB).  

The sliding mode control law [9] is designed with a simplified system dynamic model with one 

axle and 1/6 of total dynamic mass and then integrated into the locomotive dynamics.  The sliding 

surface 
( )S t

for the sliding mode controller is defined as, 

𝑆(𝑡) = 𝑒 + 𝛾 ∫ 𝑒 𝑑𝑡
𝑡

0
,         (12) 

with 𝑒 = 𝑠𝑟𝑒𝑓 − 𝑠 represents the tracking error between the creep reference and the actual creep 𝑠. 

γ is a positive design parameter. The derivative of the sliding surface, after taking account of the 

simplified system dynamics, can be expressed as, 

𝑆̇ = 𝑠̇𝑟𝑒𝑓 −
𝑟

𝐽𝑉
𝑇𝑡 +

𝑟2

𝐽𝑉
𝐹𝑎 −

1

𝑀𝑉
(𝑠 + 1)𝐹𝑎 + 𝛾𝑒 = −𝐷𝑐𝑠 − 𝐾𝑠𝑠𝑔𝑛(𝑠) .  (13) 

The tractive force can be estimated by: 

𝐹̂𝑎 =
1

𝑟
𝑇𝑡 −

𝐽

𝑟

𝑠

𝜏𝑠+1
,     (14) 

where τ is the time constant of the first order filter in the adhesion force observer [9]. Thus the tractive 

torque can be obtained as, 

𝑇𝑡 =
𝐽𝑉

𝑟
{𝑠̇𝑟𝑒𝑓 + 𝛾𝑒 + [

𝑟2

𝐽𝑉
−

1

𝑀𝑉
(𝑠 + 1)] 𝐹̂𝑎 + 𝐷𝑐𝑠 + 𝐾𝑠𝑠𝑔𝑛(𝑠)}.   (15) 
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3.2.   PI controller  

PI controllers are widely used in many industries [28]. They use feedback to reduce the effects of 

disturbance. Usually the feedback is compared with a reference value to obtain an offset. Through 

integral action it can eliminate steady-state offsets. It can also anticipate the future through derivative 

action [29].  

In this work, a PI controller is tuned which employs pre-set creep as a reference. With the offset 

between the reference and actual creep value, it generates the torque command accordingly. The PI 

controller parameters are tuned as 1.5 × 107𝑁 ∙ 𝑚  and 2 × 105𝑁 ∙ 𝑚/𝑠  for the proportional and 

integral coefficients respectively.  

 

4.   Results 
The following assumptions are made in the simulations: 1) A single powered locomotive is 

considered hauling a number of wagons, which are modelled as an equivalent trailing mass. No other 

resistance such as drag and air resistance is considered in this simulation; 2) A low speed simulation 

case is chosen to investigate the dynamic behaviour of highest tractive force case, namely the starting 

process of a locomotive; 3) The high speed simulation case is chosen below the maximum speed of 

the locomotive (about 128 km/h); 4) The tractive effort is limited by both the contact mechanics and 

the characteristic traction speed curve of the electric drive.   

The dynamic response comparison with PI and fuzzy controllers employs speed rather than time 

as the horizontal axis because the adhesion coefficient, under the same contact condition, is 

determined by the creep and locomotive speed. As a result the change of contact condition is assumed 

to happen at a certain speed to ensure the same force condition.  

 The results comparing locomotive response obtained with PI and fuzzy logic sliding mode 

controllers are presented, focussing on tractive force and speed/acceleration, at speeds of 10 km/h and 

120km/h. Transient contact conditions are assumed to occur at 11km/h from dry to wet and at 

12.5km/h from wet to dry for the low speed simulation. Similarly, for the high speed simulation case, 

the contact condition changes at 119.5km/h, and back to a dry condition at 120km/h. 

 Figure 7 shows the creep and normalized tractive force curve at high speed (120km/h) under 

both dry and wet contact conditions. Maximum tractive forces are marked as a triangle.  

 
Figure 7.   Polach tractive force curve at 120km/h under dry and wet contact conditions. 

As shown in Figure 4, the characteristic curve of the creep and adhesion coefficient relation 

varies under different operation speeds. In order to compare the tractive performance under the same 

condition, the change of contact conditions is considered to be triggered by speed, and thus the 

following figures showing forces and creep employ speed as the horizontal axis. 
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In the first simulation, the contact condition is assumed to change during a very low speed operation, 

namely starting from 10km/h. The transient tractive forces with different controllers are plotted in 

Figure 8: 

 
Figure 8.   Comparison of total tractive forces with PI and fuzzy sliding mode control at low speed. 

 

At low speed, as shown in Figure 8, the tractive force with fuzzy sliding mode control is very 

similar to that with PI control, except under the wet condition when the fuzzy sliding mode control 

achieves marginally higher tractive force than PI control.  

 
Figure 9.   Creep of the front axle under change of contact conditions at low speed. 

 

The creep of all axles is similar with the same controller. The creep of the front axle is shown in 

Figure 9 to compare the creep response with the PI controller and with the fuzzy sliding mode one. It 

can be seen that at low speeds the creep of each axle with fuzzy sliding mode control is higher than 

that with PI control, however, the tractive force, as shown in Figure 8, is very similar. The similarity 

of the tractive force is caused by the relative flat area of the creep-tractive force curve in Figure 4. In 
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particular, the difference of the tractive force between when creep is 4% as with the PI control and 

about 4.5% with fuzzy logic sliding mode control is about 1%, as shown in Figure 4 (b). At such a 

low speed, the creep of each axle with fuzzy sliding mode control, however, is much higher than that 

with PI control, as shown in Figure 9. Therefore in this case the fuzzy controller does not have an 

apparent advantage over the PI one in terms of tractive effort and creep control. Figure 10 shows front 

and rear bogie pitch motion during low speed operation.  

 

  
Figure 10.   Bogie pitch motion during operation. 

 

As the tractive force with PI and fuzzy control is similar as shown in Figure 8, the bogie pitch 

motion has a similar dynamic response with PI and the fuzzy controller as shown in Figure 10. 

Figure 11 shows weight distribution on each axle during low speed operation. 

  

Figure 11.   Weight distribution on each axle. 

 

Similar dynamic responses are observed in Figure 11 due to the similar tractive force achieved 

with different controllers. 
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Figure 12.   Car body pitch motion at low speed. 

 

The pitch motion of the car body, when the contact condition changes from dry to wet, is as 

shown in Figure 12. The pitch motions with different control methods are mostly identical to each 

other, due to the similarity of tractive force dynamics with different control. The major frequency 

component of the car body pitch dynamic is 1.8 Hz which agrees with the modal frequency analysis 

as in Table 1. The pitch motion of the locomotive body is also affected by bogie pitch motion with a 

frequency about 3.3 Hz.  

 
Figure 13.   Comparison of total tractive forces with PI and fuzzy sliding mode control at high speed. 

 

At high operation speed, as shown in Figure 13, the tractive force with fuzzy sliding mode 

control is almost the same with that with PI control. This phenomenon is caused by the limit of 
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electric drive tractive effort. As a result, the shift of the peak tractive force due to the change of 

operation speed, as shown in Figure 7 will not affect the control effort.  

 

 

 

 
Figure 14.   Creep of the front axle under change of contact conditions at high speed. 

 

Figure 14 shows the comparison of creep response of the front axle with a PI and a fuzzy sliding 

mode controller. Due to the constraint of electric drive tractive effort, at high speed, the creep of each 

axle with fuzzy sliding mode control is similar.  

Figure 15 shows front and rear bogie pitch motion during operation.  

 

   
Figure 15.   Bogie pitch motion during operation. 

 

The fuzzy control achieves higher tractive force spikes as shown in Figure 13, thus higher torque 

spikes that cause the bogie pitch motion . Consequently, the pitch angle spikes of the fuzzy control are 

higher than those with the PI control. Figure 16 shows weight distribution on each axle during 

operation. 
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Figure 16.   Weight distribution on each axle. 

 

As shown in Figure 16, normal force between the rear axle and track is the highest due to the 

pitch motion of the bogies. 

 
Figure 17.   Car body pitch motion at high speed. 
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The car body pitch motion at high speed, when the contact condition changes from dry to wet, is 

shown in Figure 17. The responses with sliding mode control and PI control are similar, except that 

the amplitude of pitch angle spikes with fuzzy sliding mode control is higher than that with PI control. 

From Figure 13, the fuzzy sliding mode control provides similar tractive force with the PI control. 

The higher tractive force spikes provide the car body a larger torque about the pitch direction, and 

thus causes higher pitch angle spikes than those with PI control.  

 

5.   Conclusion 
In this paper, total tractive performances and the dynamic responses with PI and fuzzy sliding mode 

creep controllers under transient contact conditions have been compared by using a proposed 21 DOF 

locomotive dynamic model. The PI controller was set a constant creep reference while the fuzzy 

controller searches continuously for a creep value that can achieve the maximum adhesion coefficient 

under various contact conditions. 

Simulations have been carried out to compare total tractive performance with PI and fuzzy 

sliding mode controllers under transient contact conditions. Results show that the proposed fuzzy 

sliding mode controller has an advantage in maintaining a higher tractive force than PI controllers at a 

low operation speed but it is small for the conditions simulated. At high operation speed, the tractive 

effort is almost identical due to the limitations of the electric drive tractive effort.  
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APPENDIX A 

Detailed parameters of the locomotive model: 

 

Parameter Value 

mass of each bogie frame (kg) 12121 

total mass of locomotive (t) 134 

load mass (kg/wagon × no. of wagons) 90000 × 50 

Gear Ratio 17/90 

Primary suspension springs (N/m) 89 × 10
6 

Vertical viscous dampers stiffness(N/m) 44 × 10
6
 

Secondary suspension springs (N/m) 5.2× 10
6
 

Longitudinal stiffness(N/m) 5 × 10
6
 

Wheel contact stiffness (N/m) 2.4 × 10
9 

Primary suspension vertical damping (kg/s) 10 × 10
3
 

Secondary suspension vertical damping (kg/s) 2 × 10
4
 

Rail damping (kg/s) 1 × 10
6
 

Locomotive body length (m) 22 

Locomotive body height – without bogie (m) 1.93 

Bogie length (m) 3.7 

Bogie height (m) 0.733 

Horizontal distance between bogies’ mass centres (m) 13.7 

Horizontal distance between axles (m) 1.3 

Vertical distance between body bottom and bogie top (m) 0.3605 

Vertical distance between bogie bottom and wheel top (m) 0.127 

Wheel diameter (m) 1.016 

Simulation time step (s) 5×10
-6 

Creep threshold 4%
 

 

APPENDIX B 

Detailed mathematical model for the longitudinal-vertical-pitch dynamics of the locomotive 
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ABSTRACT 
This paper presents the locomotive traction controller performance with respect to the track wear under 

different operation conditions. In particular, an investigation into the dynamic response of a locomotive 

under changing wheel-rail friction conditions is performed with an aim to determine the effect of controller 

setting on track wear. Simulation using a full scale longitudinal–vertical locomotive dynamic model shows 

that the appropriately designed creep threshold, controller, settings can effectively maintain high tractive 

effort while avoiding excessive rail damage due to wear, especially during acceleration under low speed. 

 

Nomenclature 

𝑥𝑐 Locomotive body longitudinal displacement 

𝑧𝑐 Locomotive body vertical displacement 

𝜃𝑐 Locomotive body pitch angle 

𝑥𝑏1,2 Locomotive front/rear bogie longitudinal displacement 

𝑧𝑏1,2 Locomotive front/rear bogie vertical displacement 

𝜃𝑏1,2 Locomotive front/rear bogie pitch displacement 

𝑧𝑤1~6 Wheelset 1~6 vertical displacement 

𝜃𝑤1~6 Wheelset 1~6 rotation angle 

𝑀𝑐 𝑀𝑏 𝑀𝑤 Mass of locomotive body, bogie and axle 

𝐼𝑐 𝐼𝑏 𝐼𝑤 Moment of inertia of locomotive body, bogie and axle along pitch direction 

𝑄 Wheel load 

𝜇  Friction coefficient  

𝜀  Gradient of the tangential stress in the area of adhesion 

𝑘𝐴, 𝑘𝑠  Reduction factor in the area of adhesion, reduction factor in the area of slip 

𝜇∞ Friction coefficient at infinity slip velocity 

𝜇0 Maximum friction coefficient at zero slip velocity 

𝑠𝑥 Creep in longitudinal (x) directions 

𝑉 Vehicle speed 

𝑤𝑥 Creep (slip) velocity in longitudinal (x) direction 

𝑎, 𝑏 Half-axes of the contact ellipse 

𝑐11 Coefficient from Kalker’s linear theory 

𝐹, 𝐺 Tractive force, Shear modulus 

𝑇𝑡𝑖  Torque generated by electric drive 𝑖=1~6 

𝑇𝑙𝑖 Torque acting on axle 𝑖=1~6 generated by longitudinal contact force  
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1. Introduction 

 

The progressive application of high traction motors and control techniques based on power electronics has 

brought great benefits to the rail industry due to its high power capacity and efficiency. Therefore, an 

effective locomotive control system is demanded to suit the contemporary high speed railway network. 

Traditionally, the traction controller performance and dynamic impact on the rail are assessed under specific 

steady state conditions. In particular, traction controller performance under natural perturbations in 

friction/lubrication, wheel/rail profiles, track curvature, vehicle/track dynamics, wheel/track imperfections 

etc. has not been comprehensively investigated yet. Among those perturbations, the changes in friction or 

lubrication can cause sudden changes of creep and often leads to over/under traction/braking. In order to 

investigate this issue, a predictive locomotive dynamic model combining crucial dynamic components such 

as locomotive rigid body dynamics, contact dynamics and electric drive and control is needed.  

 

Locomotive traction dynamics and rail wear have been investigated by several researchers. Bakhvalov et al. 

combined electrical and mechanical processes for locomotive traction simulation [1]. Senini et al. has also 

performed locomotive traction simulation at the electric drive level [2]. These works, however, are not 

focused on the effect of transient of the contact conditions and different controller settings on the rail wear; 

especially for a full-scale locomotive case. Modern development of mechatronics systems has improved rail 

vehicle operation under various conditions. The traction control system, also known as an adhesion or anti-

slip control system is essential for the operational efficiency and reliability of these systems. A pattern-based 

slip control method has been applied and modified by Park et al. [3]. An anti-slip control method based on a 

disturbance observer was proposed by Ohishi et al. [4]. Yasuoka et al. proposed a slip control method [5] 

involving bogie oscillation suppression. Most recently Spiryagin et al. employed a co-simulation approach 

with the Gensys multibody code and Simulink to investigate the heavy haul train traction dynamics [6] and 

fuzzy logic control [7] and adhesion estimation based control [8] to maximize adhesive forces. Yuan et al. 

proposed a fuzzy logic adhesion controller [9]. Mei et al. investigated a mechatronic approach to control the 

wheel slip based on the information on the torsional vibration of the wheelset [10]. Zhao et al. proposed an 

extended Kalman filter (EKF) based re-adhesion controller [11]. All these methods are reported to be 

effective in creep/traction control; however, the implementation of these methods to the rail industry can be 

challenging or costly as these methods require for the reliable high speed processors and/or high accuracy 

sensors. While on the other hand, a PI/PID controller has is one of the most widely used control methods in 

various industrial applications, comparing to methods such as fuzzy logic control, observer based control, 

extended Kalman filter based or torsional vibration based control. As a result, a PI controller is employed in 

this work to reveal the real case of locomotive operation and its possible effects on rail wear with different 

controller parameters. Wear phenomenon in the rail industry and its modelling has been studied for decades 

[12-15], however, the impact of locomotive dynamic response on wear phenomena under different 

conditions has not been investigated deeply. 

 

In this paper, the dynamic response of a full scale locomotive model with a traction controller under different 

speed and/or contact conditions is investigated in relation to the rail wear. This work focus on longitudinal 

and vertical dynamics on tangent tracks as it is the most important part of locomotive dynamics closely 

related with traction/braking effort, passenger comfort and energy management [16]. A full scale locomotive 

longitudinal-vertical-pitch dynamic model with a PI creep controller combining all crucial dynamic 

components is developed and implemented using Matlab/Simulink and the wear rate [15] is compared before 

and after a change of contact conditions under a range of operational speed. A Newton-Euler method [17, 18] 

is used to obtain the motion equations of the locomotive model. For the contact mechanics, Polach’s 

adhesion model [19] is adopted as it has been verified to be relatively accurate for the application in the field 

of locomotive traction analysis [20].  

 

 

2. Simulation modelling 
In order to study the impact of the operation of a full scale locomotive on rail damage due to wear 

phenomenon, a model considering all essential dynamic components needs to be developed. In this study, 

three major subsystems are taken into consideration for the modelling process; namely, a mathematical 

model representing the dynamics of a locomotive along longitudinal and vertical directions, electric 

drive/control dynamics, and contact mechanics. The structure of the model is shown in Figure 1. A dynamic 
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model of the mechanical system of an electric locomotive based on the Newton-Euler method [21] is 

developed. The wheel-rail contact in this model is based on Polach’s model [19]. A simplified electric drive 

model with a PI creep controller is integrated into the electric drive/control dynamics block in this model. 

  
Figure 1: Schematic diagram of the overall system 

 

The model may be described as a feedback system. The rotational speeds of axles are constantly measured 

by tachometers on the axles and used to generate reference creep. The position/speed information of the 

railway vehicle can be monitored by using a microwave ground speed sensor such as a Pegasem GSS20 [22, 

23]. The creep value on each axle is also calculated with the information of the speed of each axle and the 

locomotive speed. The controller then adjusts the amount of torque generated by each electric drive 

separately. The electric drive and control system provides a torque acting on the motor shaft in the 

locomotive model. Torque also results from the longitudinal force due to the interaction between wheel-rail 

track contact mechanics. The resultant creep changes the longitudinal tractive force calculated using the 

Polach model, and the tractive force acts on the locomotive dynamic model and changes the displacements 

and velocities of the vehicle rigid bodies. Each of these components is detailed in the following sections. 

2.1. Locomotive longitudinal-vertical dynamic modelling 
A full scale 2-dimensional locomotive dynamics model is shown in Figure 2, which emphasizes longitudinal, 

vertical and pitch dynamics of locomotive motion. An assumption has been made that the motors are fixed 

on the bogie evenly and no relative displacement between the motors and bogie is considered in order to 

simplify the model. The reasons that there is no longitudinal motion between wheelsets and bogies in this 

study are: 1. To simplify the calculation and save simulation time while maintaining most of the essential 

dynamics; 2. As for a typical three-piece freight vehicle bogie, axles are mounted on the bogies via 

axleboxes (Figure 3.37, [24]). The stiffness between the axlebox and bogie tends to be relatively larger than 

that of other parts, thus the relevant motion between the axles and bogies tend to be very small; 3. The main 

purpose of this study is to investigate the effect of controller threshold on wear growth. While taking 

longitudinal motion between bogies and axles into consideration will give a more preferable and detailed 

dynamic model, it wouldn’t change the main conclusion of this study.  
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Figure 2: Locomotive longitudinal-vertical dynamic diagram 

 

This model has 21 degrees of freedom (DOF), including 9 DOF for the longitudinal, vertical and pitch 

motion of locomotive body and two bogies, and 12 DOF for vertical and rotating motion of the six 

wheelsets. The connection between the car body and bogies, i.e. the secondary suspension, contains a set of 

springs and dampers along both longitudinal and vertical direction. The connection between wheelsets and 

bogies, i.e. the primary suspension, contains a set of springs and dampers along only vertical direction as the 

longitudinal connection between the wheelsets and bogies are assumed to be rigid as the longitudinal 

stiffness of the primary suspension is usually much higher than that of the secondary suspensions [25] and 

their effect to the dynamic response can be neglected. The longitudinal tractive force acting on the whole 

locomotive is caused by the friction force between the wheel and rail, providing longitudinal 

acceleration/deceleration dynamic component of the bogies and torque for bogie pitch motion. The relative 

motion between the bogies and car body provides the car body forces and torque for longitudinal, vertical 

and pitch motion. 

The system variables are expressed as a vector containing 42 entries, representing the relative displacements 

and velocities between different nodes as, 

 

𝑋 = [𝑍 𝑍̇]
𝑇, 𝑍 = [𝑍𝑐 𝑍𝑏𝑜𝑔𝑖𝑒1 𝑍𝑏𝑜𝑔𝑖𝑒2 𝑍𝑎𝑥𝑙𝑒𝑠]𝑇,   (1) 

 

in which 𝑍𝑐 = [𝑥𝑐 𝑧𝑐 𝜃𝑐]
𝑇 is a 3×1 vector representing the locomotive body longitudinal, vertical and 

pitch motion from the static positions, 𝑍𝑏𝑜𝑔𝑖𝑒1 = [𝑥𝑏1 𝑧𝑏1 𝜃𝑏1]
𝑇  and 𝑍𝑏𝑜𝑔𝑖𝑒2 = [𝑥𝑏2 𝑧𝑏2 𝜃𝑏2]

𝑇  are 

both 3×1 vectors representing longitudinal, vertical and pitch motion of the front and rear bogie separately, 

and 𝑍𝑎𝑥𝑙𝑒𝑠 = [𝑧𝑤1 𝜃𝑤1 𝑧𝑤2 𝜃𝑤2 … 𝑧𝑤6 𝜃𝑤6]
𝑇  is a 12×1vector representing the vertical and 

rotating motion of wheelset 1~6. The state space representation of the dynamics can be expressed as: 

 

𝑋̇ = 𝐴𝑚 ∙ 𝑋 + 𝐵𝑚 ∙ 𝑢
𝑌 = 𝐶 ∙ 𝑋 + 𝐷 ∙ 𝑢

, 𝐴 = [
Θ 𝐼

𝑀−1𝐾𝑚 𝑀−1𝐶𝑚
],    (2) 

 

where 𝑢 is the longitudinal tractive force resulted from the interaction between the wheelsets and rail tracks, 

𝑌 is a vector of displacement or velocity of each node from its static position, Θ is a zero matrix, 𝐼 is an 

identity matrix of certain dimensions, 𝐾𝑚 is the stiffness matrix, 𝐶𝑚 is the damping matrix, and 𝑀 is the 

diagonal mass and moment of inertia matrix in the form of,  

 

𝑀 = 𝑑𝑖𝑎𝑔(𝑀𝑐 𝑀𝑐 𝐼𝑐 𝑀𝑏 𝑀𝑏 𝐼𝑏 𝑀𝑏 𝑀𝑏 𝐼𝑏 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤 𝑀𝑤 𝐼𝑤).   (3) 

Matrices 𝐵𝑚 and D are shown in Appendix A. 

 

The detailed parameters are listed in Table 1 for a full size GT46Ace locomotive. 

 

Table 1: Detailed parameters of the locomotive model: 

Parameter Value 
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Mass of each bogie frame (kg) 12121 

Total mass of locomotive (t) 134 

load mass (kg/carriage × no. of carriages) 90000 × 50 

Load force (N) 4.8 × 10
6
 

Gear Ratio 17/90 

Primary suspension springs (N/m) 89 × 10
6
 

Yaw viscous dampers stiffness (N/m) 45 × 10
6
 

Vertical viscous dampers stiffness (N/m) 44 × 10
6
 

Secondary suspension springs (N/m) 5.2× 10
6
 

Longitudinal and lateral shear stiffness (N/m) 0.188 × 10
6
 

Central pivot longitudinal stiffness (N/m) 5 × 10
6
 

Wheel contact stiffness (N/m) 2.4 × 10
9
 

Primary suspension vertical damping (kg/s) 10 × 10
3
 

Secondary suspension vertical damping (kg/s) 2 × 10
4
 

Rail damping (kg/s) 1 × 10
6
 

Locomotive body length (m) 22 

Locomotive body height – without bogie (m) 1.93 

Bogie length (m) 3.7 

Bogie height (m) 0.733 

Horizontal distance between bogies mass centre(m) 13.7 

Horizontal distance between axles (m) 1.3 

Vertical distance between body bottom and bogie top (m) 0.3605 

Vertical distance between bogie bottom and wheel top (m) 0.127 

Wheel diameter (m) 1.016 

Simulation time step (s) 

Wheelset mass (kg) 

Car body pitch moment of inertia (kg· m2) 

Front/rear bogie pitch moment of inertia (kg· m2) 

Wheelset pitch moment of inertia (kg· m2) 

5×10
-6 

2850 

3610410 

               37007 

1200 

 

2.1.1. Eigenmode frequency analysis 

An eigenmode analysis was performed in Matlab to identify all the dynamic modes of vibration and to 

determine the stability of the system. The system eigenvalues are provided in Table 2. An eigenvalue is 

obtained for each possible mode of vibration of the system. The first part (real value) of each complex 

eigenvalue represents the amount of damping (if negative) of each mode of vibration. The second part 

(imaginary number) represents the part from which the frequency of vibration can be calculated. From the 

eigenvalues of the system, it can be seen that except for the car body horizontal mode, all modes of vibration 

have positive damping (negative real parts) which implies that the system is stable. A car body horizontal 

mode with zero damping is expected due to the rigid body longitudinal motion of the train.  

 
Table 2:   Modal frequencies of the locomotive dynamic system vibrations (Hz) and corresponding eigenvalues. 

Modes Frequency 

(Hz) 

Eigenvalues Modes Frequency 

(Hz) 

Eigenvalues 

Car body 

vertical 

0.4 -2.9 ± 2.8i Bogie 1 vertical 3.6 -14 ± 22.9i                       

Car body 

pitching 

1.8 -2.1± 11.4i Bogie 2 vertical 3.8   -13 + 24.2i                    

 Bogie 1 pitching         3.3 -1.7 ± 20.8i Wheelset vertical 137.5   -17 ± 864i 

 Bogie 2 pitching         3.3 -1.6± 20.6i    

Corresponding bode diagram are shown in Appendix C.  

 

2.2. Creep force modelling 
The creep force is caused by the wheel-rail rolling contact and it is crucial in terms of the locomotive 

traction/braking operation. Polach provided an efficient formula to calculate the tangential force along the 

rail tracks based on his experimental data and Figure 3 as [19], 
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𝐹 =
2𝑄𝜇

𝜋
(

𝑘𝐴𝜀

1+(𝑘𝐴𝜀)
2 + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑘𝑠𝜀)) ,                                                  (4) 

 

where 𝐹 is the tangential force, 𝑄 is normal wheel load, 𝑘𝐴 is the reduction factor in the area of adhesion and 

𝑘𝑠 is the reduction factor in the area of slip. 𝜀 is the gradient of the tangential stress in the area of adhesion 

which along the longitudinal direction (defined as 𝑥 direction in Figure 1) can be calculated as, 

 

𝜀𝑥 =
1

4

𝐺𝜋𝑎𝑏𝑐11

𝑄𝜇
𝑠𝑥,     (5) 

 

where 𝐺 is the shear modulus, 𝑎 and 𝑏 are the half-axles of the contact ellipse as shown in Figure 3. The 

contact area is calculated as in Appendix 3 in [26] as 𝑎 = 8.6 𝑚𝑚, 𝑏 = 4.4 𝑚𝑚 according to the dimension 

of the wheel in Table 1 and 60 kg rail profile from [27], 𝑐11  is derived from Kalker’s work [28] and 

characterizes the longitudinal direction of the contact shear stiffness coefficient. Also 𝑠𝑥  is the creep 

component in longitudinal direction defined as 

 

𝑠𝑥 =
𝑤𝑥

𝑉
,      (6) 

 

where 𝑤𝑥 is the slip velocity in longitudinal direction and 𝑉 is the vehicle speed.  

 

 
Figure 3: Wheel-rail contact area and distribution of normal and tangential stresses [19] 

 

The Polach model employed is a regular form considering both longitudinal and lateral creep forces. 

However this is a simulation on a straight track, so only longitudinal dynamics need to be considered. Hence 

it is assumed the locomotive is tracking with no lateral displacement on the contact patch. As a result total 

creep 𝑠 equals creep along the longitudinal direction 𝑠𝑥. 𝜇 is the coefficient of friction calculated as 

 

𝜇 = 𝜇0[(1 − 𝐴𝑝)𝑒
−𝐵𝑝𝑤 + 𝐴𝑝],     (7) 

 

where 𝜇0 is the maximum friction coefficient at zero slip velocity, 𝐴𝑝 is the ratio of friction coefficient at 

infinity slip velocity 𝜇∞  and 𝜇0 , 𝐵𝑝  is the coefficient of exponential friction decrease. Typical model 

parameters have been provided by Polach [19], as listed in Table 3. 
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Table 3: Typical parameters for dry and wet contact condition [19] 

 

 

Parameters 

 

Contact condition 

 

Dry Wet 

𝑘𝐴 1.00 0.30 

𝑘𝑠 0.40 0.10 

𝜇0 0.55 0.30 

𝐴𝑝 0.40 0.40 

𝐵𝑝 0.60 0.20 

 

As it is shown in Figure 4, the optimum tractive force ratio shifts to lower values of creep as the speed of 

locomotive increases. As a result, setting the reference creep to be constant will cause traction performance 

degradation over different locomotive operation speeds. The degradation between low speed to medium 

speed is approximately 7% and 5% and up to 16% and 11% from low speed to high speed under dry wet 

conditions respectively. 

 
(a)                                                                         (b) 

Figure 4: Polach tractive force curve at different speed under (a) dry contact condition; and (b) under wet contact condition  

 

2.3. Wheel traction dynamic modelling 
A simple wheel traction dynamic model characterizing the traction torque acting from the electric motor on a 

wheelset 𝑇𝑡𝑖, mechanical loading 𝑇𝑙𝑖, the equivalent moment of inertia of the axles with the motor rotor 𝐼𝑤, 

and the angular acceleration of axles 𝜃̈𝑤𝑖 can be described as [29]. The electrical modelling is not taken into 

account in this simplified model. 

 

𝐼𝑤𝜃̈𝑤𝑖 = 𝑇𝑡𝑖 − 𝑇𝑙𝑖, 𝑖 = 1,2,… ,6                                                             (8) 

 

3. Proposed control system 
This study employs a basic PI based creep controller to limit the creep values under pre-set creep thresholds. 

The detailed controller diagram is shown in 5. Each wheelset has its own set of controller and motor so that 

the speed of the motors can be adjusted independently. 

 
Figure 5: PI creep control diagram 
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In this study the creep threshold setting is assumed to be adjustable to investigate its impact on wear growth 

rate under different conditions, as shown in Figure 5.  Different notch settings adjust the level of power 

supply to the motors and are controlled by drivers.  The controller adjusts the torque generated by the motor 

if the creep measurement exceeds the creep threshold setting. If the creep measurement is lower than the pre-

set threshold, the controller is not activated. Otherwise the creep controller gives a torque compensation 

signal to adjust the amount of torque generated by the electric drive. In this case, the parameter values of the 

PI controller are tuned to 1.5 × 107  and 2 × 105 , for the proportional (P) and integral (I) constants 

respectively, with consideration of the ratio of 

 𝑒 = 𝑠𝑟𝑒𝑓 − 𝑠 and the scale of torque to compensate. The resulting overshoot is about 2.5% with a steady 

state error of 2.3 × 10−4. The torque compensation can be calculated as 

𝑇𝑐𝑜𝑚𝑝 = {
0   𝑖𝑓 𝑒 ≥ 0

1.5 × 107 × 𝑒 + 2 × 105 × ∫ 𝑒𝑑𝑡       𝑖𝑓 𝑒 < 0
𝑡2

𝑡1

                              (9) 

 

where 𝑡1 is the time when creep measurement starts exceeding threshold and 𝑡2 is the current time when the 

creep is still larger than the threshold setting. The purpose of the proposed controller and its parameters is to 

reveal the possibility of controlling wear growth rate under change of operating conditions by means of 

choosing proper creep threshold, rather than to provide ‘optimal’ controller available. Simulations have been 

carried out using the creep controller with different creep threshold settings in order to investigate its impact 

on rail damage due to wear. Detailed simulation cases are listed in Table 4. 

 
 

Table 4: Simulation cases 

Creep 

Threshold 

                 Speed case (dry-wet-dry) 

    Low (≈10 km/h)       Medium (≈50 km/h) 

0.03 Yes Yes 

0.04 Yes No 

0.06 Yes No 

0.08 Yes No 

 

A threshold higher than 0.03 is not simulated for the medium speed case since the creep response will not 

activate the creep controller due to the electric drive constraints. 

 

4. Results 
The locomotive acceleration operation is investigated to simulate high tractional conditions that typically 

occur on straight track. Thus other dynamics such as lateral and rolling dynamics are excluded from this 

study. The results comparing locomotive response obtained with different creep controller settings are 

presented, focussing on tractive force and the transitional power parameter 𝑇𝛾/𝐴, at speeds of about 10 km/h 

and 50km/h under the highest acceleration (notch 8) conditions. As the tractive effort of the electric drives is 

dependent of the operational speed, the change of contact condition is triggered when the locomotive reaches 

the same speed to ensure the result is comparable between different the control logics. The 𝑇𝛾/𝐴 value is 

relevant to wear rate according to the mapping relation[14], as shown in Figure  6 below: 
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Figure 6: Wear regimes identified during twin disc testing of BS11 rail materials vs. Class D tyre material[14] 

 

According to Figure 6, in order to avoid serious rail damage in Type III catastrophic region caused by wear, 

the Tγ/A value needs to be constrained below 60 N/mm2. Transient contact conditions are assumed to occur 

at 11km/h from dry to wet and at 12.5km/h from wet to dry for the low speed simulation. Similarly, for the 

medium speed simulation case, the contact condition changes at 51km/h, and back to a dry condition at 

52.5km/h. 

 

Case 1: low speed simulation 

 

Figure 7 shows the tractive force of the front wheel under a change of contact conditions during low speed 

conditions. 

 

 
Figure 7: front wheel tractive force comparison under different controller thresholds at low speed 

 

dry drywet
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The difference of tractive force under different creep control threshold settings is very small as shown in 

Figure 7. The reason is the gradient of the tractive force from creep values 0.03 to 0.08 is small as shown in 

Figure 4 a), thus the change of tractive force is not sensitive to the change of creep value. 

 

Figure 8 shows the front wheel set creep under different controller thresholds at low speed. It can be seen 

from the figure that the controller can effectively constrain the creep under the pre-set thresholds under 

various contact conditions.  

 

 
 

Figure 8: front wheel creep comparison under different controller thresholds at low speed 
 

Figure 9 shows the front wheel 𝑇𝛾/𝐴 value with different creep threshold settings under a change of contact 

conditions under low speed. 

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

time (s)

c
re

e
p

 

 

with threshold 0.03

with threshold 0.04

with threshold 0.06

with threshold 0.08

dry wet dry



158 
 

 
Figure 9: front wheel 𝑇𝛾/𝐴 values comparison under different controller thresholds at low speed 

 

As is shown in Figure 9, the 𝑇𝛾/𝐴 value is mostly proportional to the value of creep thresholds due to the 

similarity of tractive forces in 𝑇𝛾/𝐴 term under different threshold settings.  From the simulation results in 

Figure 9, it can be seen that with a creep threshold below 0.04, the 𝑇𝛾/𝐴 value is below 60 N/mm
2
 and 

therefore according to Figure 6 the wear rate is constrained within the Type I and II (“mild” and “severe”) 

region. Similarly, with a creep threshold between 0.06 and 0.08, the wear rate is within the Type III 

(“catastrophic”) region, except under wet contact conditions. Therefore a creep controller threshold below 

0.04 is desirable under low speed conditions. 

 

Case 2: medium speed simulation 

Figure 10 shows the front wheel tractive force response for medium speed simulation within constant power 

operation region. The changes of contact conditions occur at 51 km/h and 52.5 km/h.  
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Figure 10: front wheel tractive force 

 

The figure above shows that the front axle tractive force is not affected by the creep threshold setting at 

medium speed operation. This phenomenon can be explained by investigating the creep value on which the 

tractive force is dependant. Figure 11 shows the front axle creep response for medium speed simulation 

within constant power operation region. 

 

 
Figure 11: front wheel creep response for medium speed simulation under change of contact conditions 

As it is shown in Figure 11, under the change of contact condition from dry to wet and from wet to dry for 

medium speed operation, the creep is always below 0.02, thus below the minimum threshold in Table 4,  due 

to the force limit in the constant power region. As a result, the creep controller will not be activated under all 

creep threshold settings in Table 3. Thus the dynamic response and wear rate with different controller 

threshold settings should be the same. Figure 12 below shows the corresponding 𝐓𝛄/𝐀 response for medium 

speed simulation under the change of contact conditions. 

 
 

 
Figure 12: front wheel 𝑇𝛾/𝐴 values at medium speed 

 

In Figure 12, the 𝑇𝛾/𝐴 value at medium speed is always below 20 𝑁/𝑚𝑚2, thus the wear rate is within Type 

I and Type II region (see Figure 6). As a result, due to the impact of the torque-speed curve of the electric 

drives under constant power operating region, the wear rate is naturally constrained within the Type I and 

Type II region. 
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Comparing Figure 9 and Figure 12, it can be observed that at low speed operation where the tractive force is 

sufficient to activate the creep controller. The 𝑇𝛾/𝐴 value is larger under dry contact condition than under 

wet condition as a result of very similar creep values under both dry and wet condition but different tractive 

force, under a certain creep threshold setting. While at medium speed operation where the tractive force is 

not large enough to activate the creep controller under both dry and wet contact conditions, the 𝑇𝛾/𝐴 value is 

larger under wet contact condition than under dry condition, due to different creep values achieves similar 

tractive force as can be concluded from Figure 4.  

 

5. Conclusion and future work 
In this paper, wear rate with different PI creep control threshold settings under transient contact conditions 

have been compared by using a 21 DOF full-scale locomotive dynamic model under different operation 

speeds. Simulations have been carried out to compare tractive force and wear rate, focusing on the impact of 

operation speed and creep controller setting. Results show that by designing the creep controller threshold 

parameter, the wear rate can be effectively constrained within Type I and Type II regions, avoiding Type III 

‘Catastrophic’ wear. Under higher speed operation, such as Case 2 in this paper, the wear rate is naturally 

constrained within region I and II due to the impact of the torque-speed characteristics of the electric drives, 

irrespective of the creep controller. Future work will include the investigation on modifying the controller so 

that optimal tractive force can be achieved to ensure the wear growth rate is constrained within Type I and II 

regions, automatically. Also more detailed dynamic model including lateral dynamics and relative motions 

between wheelsets and bogies will be employed for more accurate dynamic and control analysis on both 

straight and curved tracks.  
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Appendix A: Matrix 𝑩𝒎 and D in Equation (2) 
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Appendix B: Full equations of the dynamic model 

 

1 2

1 2

1 1 2 1 1 2

1 1 2 3 1

1 1 1 2 1 3 1 1

3

1 3 1 2 1 1 2

1

( 3 )

c c b cx b cx

c c b cz b cz

c c b cz b cz b cx ch b cx ch

b w b rw x rw x rw x b cx

b b w b z w b z w b z b cz

b b w b z w b z rwjx w

j

m x f f

m z f f

I f L f L f L f L

m m x f f f f

m z f f f f

I f L f L f r






  

  

        

      

    

         

 

2 4 5 6 2

2 4 2 5 2 6 2 2

6

2 6 2 2 4 2 2

4

1 1 1 1

1 1 1

2 2 1 2

2 2

( 3 )

bh

b w b rw x rw x rw x b cx

b b w b z w b z w b z b cz

b b w b z w b z rwjx w bh

j

w w rw z b w z

w w t rw x w

w w rw z b w z

w w t

L

m m x f f f f

m z f f f f

I f L f L f r L

m z f f

I T f r

m z f f

I T f









      

    

       

  

   

  

  



2

3 3 1 3

3 3 3

4 4 2 4

4 4 4

5 5 2 5

5 5 5

6 16 2 6

6 6 6

1 1( )

rw x w

w w rw z b w z

w w t rw x w

w w rw z b w z

w w t rw x w

w w rw z b w z

w w t rw x w

w w rw b w z

w w t rw x w

b cx bcx c b bcx

r

m z f f

I T f r

m z f f

I T f r

m z f f

I T f r

m z f f

I T f r

f k x x c











  

   

  

   

  

   

  

   

     1

2 2 2

1 1 1 1 1

2 2 1 2 1

1 1 1 1 2 1 1 1 1 1

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

c b

b cx bcx c b bcx c b

b cz bcz c b c bcx c b c

b cz bcz c b c bcx c b c

w b z wbz b w b wbz b w b

x x

f k x x c x x

f k z z L c z z L

f k z z L c z z L

f k z z L c z z L

f

 

 

 

 

      

          

          

          

2 1 1 2 1 2

3 1 1 3 2 1 1 3 1 1

4 2 2 4 2 2 2 4 1 2

5 2 2 5 2 5

6 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

(

w b z wbz b w bcx b w

w b z wbz b w b wbz b w b

w b z wbz b w b wbz b w b

w b z wbz b w bcx b w

w b z wbz

k z z c z z

f k z z L c z z L

f k z z L c z z L

f k z z c z z

f k z

 

 

      

          

          

      

   2 6 2 2 2 6 1 2) ( )b w b wbz b w bz L c z z L        



164 
 

 
 
Appendix C: Bode diagram of the locomotive dynamics 
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Real-time rail/wheel wear damage control 

Ye Tian, W.J.T. (Bill) Daniel, Paul A. Meehan 

School of Mechanical and Mining Engineering, the University of Queensland, Queensland, Australia 4072 
 
 

 
This paper presents the performance of a real-time rail/wheel wear damage 
control system with respect to different operation conditions. In particular, an 
investigation into the wear growth rate control under changing wheel-rail friction 
conditions and different operation speeds is performed. Simulation using a 
mathematical model considering longitudinal-vertical-pitch dynamics of a 
locomotive running on straight tracks shows that the proposed controller can 
effectively reduce the rail/wheel wear damage by limiting mass loss rate, 
particularly during acceleration under low speed. 
 
Keywords: wear control; railway; locomotive; wheel-rail 

1. Introduction 
 
Rail offers one of the most efficient forms of land-based transport [1], providing great carrying capacity. 

However, there is discussion as to whether the trend towards more powerful locomotives, particularly in the 

heavy haul rail industry, would contribute to considerable increase of rail track damage due to wear and 

increased track maintenance cost. Traditionally, friction modifiers (FM) have been employed on the 

rail/wheel contact patch to reduce such wear and rolling contact fatigue [2]. However this method depends 

on experiences and lacks understanding of the impact of locomotive dynamic traction creep behaviour. There 

is also additional cost. The American Association of Railroads estimates that the wear occurring at the 

wheel/rail interface as a result of ineffective lubrication costs in excess of $US 2 billion per year [3]. 

Therefore, it is necessary to understand how wear growth is affected by different operation conditions and 

creep/adhesion control strategies. In particular, the transient state of locomotive operation due to external 

perturbations such as changes of wheel-rail contact conditions needs to be further investigated. As the most 

significant change of locomotive dynamic responses and oscillations are likely to occur during this transient 

state. Thus rail damage due to wear is likely to be controlled in a systematic way, potentially reducing or 

even excluding the use of friction modifiers for the purpose of wear reduction.  

 
      The study of patterns of wear behaviour was addressed by Beagley et al. [4]. Wear behaviour 
of wheel/rail steels was described as a ‘wear regime’. The terms “mild” and “severe” regimes were 
used to describe wear characteristics according to the surface deformation observed in his 
experiments. A regime that arose from more severe contact conditions was observed by Bolton et 
al. [5] and was defined as the ‘catastrophic’ wear regime. A detailed review of this wear regime of 
steel was performed by Markov et al. in [6]. These three rolling-sliding wear regimes for wheel/rail 
steels have also been reconfirmed by Danks et al. [7]. He also suggested using the terms “type I 
wear”, “type II wear” and “type III wear” for describing the “stages” of the wear in order to avoid the 
confusion between the mild and severe wear regimes and mild-oxidational and severe-oxidational 
wear mechanisms. For the wheel/rail steel, the material loss in wear process is defined as wear 
rate. It is determined by the loss of material mass per rolling distance (𝜇𝑔/𝑚) [7]; or by the total 

loss of material mass per rolling distance, per contact area (𝜇𝑔/𝑚/𝑚𝑚2) [8]. Wear rate is often 

plotted against the ‘wear index’ 𝑇𝛾/𝐴𝑛 [9].  A recent wear model considering the wear transitions 
has been developed by Vuong et al [10]. Both wheel and rail wear regimes can be illustrated in a 
similar mapping method [9, 11-15].  In this paper, the dynamic response of a full scale locomotive 
model with a traction controller under different speed and/or contact conditions is investigated in 
relation to the rail wear. This work focuses on longitudinal and vertical dynamics on tangent tracks 
as it is the most important part of locomotive dynamics closely related with traction/braking effort, 
passenger comfort and energy management [16]. A full scale locomotive longitudinal-vertical-pitch 
dynamic model with a PI creep controller and a wear controller combining all crucial dynamic 
components is developed and implemented using Matlab/Simulink and the wear rate [13] is 
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compared before and after a change of contact conditions under a range of operational speed. A 
Newton-Euler method [17, 18] is used to obtain the motion equations of the locomotive model. For 
the contact mechanics, Polach’s adhesion model [19] is adopted as it has been verified to be 
relatively accurate for the application in the field of locomotive traction analysis [20].  

2. Simulation modelling 
 
In order to compare the wear damage with and without the proposed wear controller, a locomotive 
dynamic model considering all essential dynamic components needs to be developed, as shown in 
Figure 1.  
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Figure 1. Schematic diagram of the overall system. 

 

In this study, the locomotive dynamic model proposed in [21] is employed.  Additionally, simplified 
electric drive models with a PI creep controller and a PI creep-wear controller are integrated into 
the electric drive/control dynamics block in this model. Each of these components is detailed in the 
following sections. 

2.1. Locomotive longitudinal-vertical dynamic modelling 
 
In this paper, the 2-dimensional locomotive dynamics model developed in [21] is employed. The 
model emphasizes longitudinal, vertical and pitch dynamics of locomotive motion. Details of the 
model is in [21]. 

2.2. Creep force modelling 
 
The Polach model employed is a regular form considering both longitudinal and lateral creep 
forces. However this is a simulation on a straight track, so only longitudinal dynamics need to be 
considered. Hence it is assumed the locomotive is tracking with no lateral displacement on the 
contact patch. The formulae are detailed in [22]. Typical model parameters have been provided by 
Polach [19], as listed in Table 1. 
 

 
 
 

Table 1: Parameters for dry [19] and friction modifier (FM) contact condition tuned according to the data in [10]  
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Parameters 

 

Contact condition 

 

Dry [27] FM [66] 

𝑘𝐴 1.00 0.60 

𝑘𝑠 0.40 0.20 

𝜇0 0.55 0.23 

𝐴𝑝 0.40 0.50 

𝐵𝑝 0.60 0.30 

 

 
2.3. Wear Control index 
 
Wear of both rail and wheel can be categorized as Type I (Mild), Type II (Severe) and Type III 
(Catastrophic) regimes. Recent research [10, 23] shows that there are wear transitions between 
wear types of wheel/rail steel and models and proposed models for various rail materials.  

 
Figure 2. The wear coefficient versus the frictional power density for BS11 rail steel, running with class D wheel 
steel [10]. 

 

The frictional power density 𝑃𝑟/𝐴𝑛 is defined by  
𝑃𝑟

𝐴𝑛
= 𝐹𝑡𝑉𝑠/𝐴𝑛, where 𝐹𝑡 is the traction force, 𝑉𝑠 is 

the relative slip velocity and 𝐴𝑛 is the nominal contact area. The wear coefficient 𝑘0 is determined 
by 

𝑘0 =
∆𝑚

∆𝑊
                                                                                     (1) 

 
where ∆𝑚 is the mass loss of rail disc after a certain time interval and ∆𝑊 is the frictional work 
dissipated in the rolling/sliding contact [10].The wear coefficient under dry condition is about 4.7 
times that under friction modifier condition [10]. In this work it is assumed the ratio is independent 
of the locomotive speed.  The mass loss rate, the amount of mass loss caused by wear per unit 
time, indicates the level of wear damage. According to Vuong [10],  
 

∆𝑊 = 𝜇𝑁𝑠𝑉Δt                                                                            (2) 
 

∆𝑚

Δt
= 𝑘0

∆𝑊

Δt
= 𝑘0𝜇𝑁𝑠𝑉                                                             (3) 

where 𝜇 is the adhesion coefficient, 𝑁 is the normal force, 𝑠 is the creep and 𝑉is the locomotive 
velocity. The unit of the mass loss rate is kg/s.  
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      In order to avoid excessive wear damage on the rail and wheel as in the Type III region in 
Figure 2 above, the wear index value separating Type II and III regions of Figure 2 is chosen as 

the wear control threshold. In this study the threshold is set at 35.7 𝑁/𝑚𝑚2.  

3. Proposed control system 
 
The creep controller in this study is chosen to be the same as in [21]. The creep and wear control 
for the overall locomotive is shown in Figure 3. Each wheelset has its own set of controller and 
motor so that the speed of the motors can be adjusted independently. 
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Figure 3. Creep and wear control diagram. 
 
 

The details of the creep controller is provided in [21]. The torque compensation can be calculated 
as 
 

𝑇𝑐𝑜𝑚𝑝 = {
                    0                                      𝑖𝑓 𝑒 ≥ 0

𝑃𝑐𝑟𝑒𝑒𝑝 × 𝑒 + 𝐼𝑐𝑟𝑒𝑒𝑝 × ∫ 𝑒𝑑𝑡       𝑖𝑓 𝑒 < 0
𝑡2

𝑡1

                        (4) 

where 𝑒 = 𝑠𝑟𝑒𝑓 − 𝑠 is the difference between the creep threshold and the measured creep. 

       
       Similarly, the wear controller adjusts the torque generated by the motor if either the frictional 
power density estimation exceeds the frictional power density threshold setting or the creep 
measurement exceeds the creep threshold setting. If both the creep measurement and the 
frictional power density estimation are lower than their corresponding pre-set thresholds, the 
controller is not activated; otherwise the controller outputs the smaller negative value of the two as 
the torque compensation. The parameter values of the creep control subsystem are the same as 
that of the creep only controller. The PI wear control subsystem control parameters are 𝑃𝑤𝑒𝑎𝑟 =
1.25 × 107 and 𝐼𝑤𝑒𝑎𝑟 = 8 × 10

3 respectively. The torque compensation generated by the wear and 
creep controller can be calculated as 
 
𝑇𝑐𝑜𝑚𝑝 =

{
  
 

  
 

0                                                            𝑖𝑓  𝑒𝑠 ≥ 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 ≥ 0

𝑃𝑐𝑟𝑒𝑒𝑝 × 𝑒𝑠 + 𝐼𝑐𝑟𝑒𝑒𝑝 × ∫ 𝑒𝑠𝑑𝑡               𝑖𝑓 𝑒𝑠 < 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 ≥ 0
𝑡2

𝑡1

𝑃𝑤𝑒𝑎𝑟 × 𝑒𝑃𝑟/𝐴𝑛 + 𝐼𝑤𝑒𝑎𝑟 × ∫ 𝑒𝑃𝑟/𝐴𝑛𝑑𝑡       𝑖𝑓 𝑒𝑠 ≥ 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 < 0
𝑡2

𝑡1

min {𝑃𝑐𝑟𝑒𝑒𝑝 × 𝑒𝑠 + 𝐼𝑐𝑟𝑒𝑒𝑝 × ∫ 𝑒𝑠𝑑𝑡
𝑡2

𝑡1
, 𝑃𝑤𝑒𝑎𝑟 × 𝑒𝑃𝑟/𝐴𝑛 + 𝐼𝑤𝑒𝑎𝑟 × ∫ 𝑒𝑃𝑟/𝐴𝑛𝑑𝑡

𝑡2

𝑡1
} ,

                                                                                                                                𝑖𝑓 𝑒𝑠 < 0 𝑎𝑛𝑑 𝑒𝑃𝑟/𝐴𝑛 < 0 
  

(5) 
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      Simulations have been carried out using the creep controller and the wear controller. 
Simulation results are compared in order to show the effectiveness of the wear controller in terms 
of reducing wear damage on the rail tracks.  
 
 

4. Results 
The same assumptions are made as in [22].  The dynamic response comparison with creep and 
wear controllers employs speed rather than time as the horizontal axis because the adhesion 
coefficient, is determined by the creep and locomotive speed under the same wheel/rail contact 
condition. As a result the change of contact condition of the first axle is assumed to happen at a 
certain speed and sequentially at the rest of axles to ensure the same force condition.  

 
Case I: Low speed operation simulation: 
 
The comparison of total tractive force with creep and wear controllers under change of wheel/rail 
contact conditions between dry and friction modifier condition (FM) as shown in Table 2 under low 
speed operation is shown in Figure 4 below. 
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Figure 
4. Comparison of total tractive forces with creep and wear controllers. 

 

      It can be seen that under low speed operation, the total tractive force is about 3.7% lower with 
wear control than that with creep control under dry wheel/rail contact condition, and about 11% 
under FM wheel/rail contact condition. Also when the wheel/rail contact condition changes from FM 
back to dry, the total tractive force with the wear controller has less overshoot than that with the 
creep controller. Also it can be noticed with the increase of locomotive speed, the total tractive 
force difference increases between the case with creep control and that with wear control. The 
reason of this is that the creep control takes slip velocity normalized by the speed of the locomotive 
as the control index; on the other hand, the wear control takes the frictional power density as the 
control index, which is directly affected by the slip velocity. As a result with the increase of the 
locomotive speed, the constant creep value means a larger slip velocity, which will result in a 
higher frictional power density ignoring the change of tractive force on the axle. 
 
       The comparison of front and rear bogie pitch with creep and wear controllers under a change 
of wheel/rail contact conditions under low speed operation is shown in Figure 5 below.  
 



172 
 

9 10 11 12 13 14
0.01

0.015

0.02

0.025

0.03

0.035

speed (km/h)

fr
o

n
t 
b

o
g

ie
 p

it
c
h

 (
ra

d
)

 

 

creep control

wear control

dry FM dry

9 10 11 12 13 14
0.01

0.015

0.02

0.025

0.03

0.035

speed (km/h)

re
a

r 
b

o
g

ie
 p

it
c
h

 (
ra

d
)

 

 

creep control

wear control

dry FM dry

  
Figure 5. Comparison of front and rear bogie pitch with creep and wear controllers. 
 
 

       The front and rear bogie pitch motions show similar dynamic responses to that of the total 
tractive force. The difference of pitch angles increases with the increase of locomotive speed at low 
speed operation.  
 
      The comparison of car body pitch with creep and wear controllers under change of wheel/rail 
contact conditions under low speed operation is shown in Figure 6 below.  
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Figure 6. Comparison of car body pitch with creep and wear controllers.  

 

      The response of the car body pitch angle is closely correlated with that of the total tractive 
force. The change in car body pitch angles increases with locomotive operating speed. In addition, 
there are noticeable oscillations during the change of the wheel/rail contact condition, particularly 
when all axles on the front/rear bogie finish their contact condition transition. The reason for this is 
that after the last axle of the front bogie has run into the FM rail and before the first axle of the rear 
bogie runs into the FM area, the tractive force is relatively steady after a steep change, forming a 
step-like tractive force variation as shown in Figure 4. This step-like tractive force change excites 
the mode of vibration of the car body pitch motion. 
      The comparison of axle 1 creep response with creep and wear controllers under change of 
wheel/rail contact conditions under low speed operation is shown in Figure 7 below.  
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Figure 7. Comparison of axle 1 creep with creep and wear controllers. 

 

The creep of axle 1 with the wear controller is about 43.4% and 59% lower than that with the creep 
controller under dry and FM wheel/rail contact conditions respectively.   
        The comparison of axle 1 frictional power density with creep and wear controllers under a  
change of wheel/rail contact conditions under low speed operation is shown in Figure 8 below.  
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Figure 8. Comparison of axle 1 friction power density with creep and wear controllers. 
 
 

      As the wear controller employs a constant frictional power density as the control threshold, the 
value of the frictional power density is effectively constrained despite of the change of wheel/rail 
contact conditions. The frictional power density of axle 1 with creep controller, on the other hand, is 
about 1.92 and 2.1 times that with wear controller under dry and FM contact conditions 
respectively. 
      The comparison of axle 1 wear coefficient with creep and wear controllers under change of 
wheel/rail contact conditions under low speed operation is shown in Figure 9 below.  
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Figure 9. Comparison of axle 1 mass loss rate with creep and wear controllers. 

 
      As it is shown in Figure 9, the mass loss rate with the wear controller has been reduced to 
about 20% and 16% than that with the creep controller, under the dry and FM conditions 
respectively. 
 
 
Case II: High speed operation simulation: 
 
The comparison of total tractive force with creep and wear controllers under a change of wheel/rail 
contact conditions under high speed operation is shown in Figure 10 below. 
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Figure 10. Comparison of total tractive forces with creep and wear controllers. 

 

      Due to the impact of the electric drive tractive effort characteristic, the total tractive force is 
much lower at high speed than that at low speed. Consequently under high speed operation the 
controllers do not take effect and there is no difference between the total tractive force with the 
creep controller and that with the wear controller under both dry and FM wheel/rail contact 
conditions. 
      The comparison of front and rear bogie pitch angles with creep and wear controllers under a 
change of wheel/rail contact conditions under high speed operation is shown in Figure 11 below. 
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Figure 11. Comparison of front and rear bogie pitch with creep and wear controllers. 

 
      Since the same amount of low tractive force achieved under high speed operation, the actual 
creep and the frictional power density are below their control thresholds, as shown in Figure 13 
and Figure 14. As a result of neither controller being activated, the pitch motions of the front and 
rear bogies show the same dynamics with the creep and wear controllers. The comparison of the 
car body pitch angles with creep and wear controllers under a change of wheel/rail contact 
conditions under high speed operation is shown in Figure 12 below. 
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Figure 12. Comparison of car body pitch with creep and wear controllers.  
 
The dynamic response of the car body pitch motion with the creep controller shows the same 
behaviour with that with the wear controller due to the same amount of tractive force.   
 
      The comparison of axle 1 creep response with creep and wear controllers under change of 
wheel/rail contact conditions under high speed operation is shown in Figure 13 below. 
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Figure 13. Comparison of axle 1 creep with creep and wear controllers. 

 
      The dynamic response of the axle 1 creep with the creep controller shows the same behaviour 
with that with the wear controller due to the same amount of tractive force.   

 
      The comparison of axle 1 frictional power density with creep and wear controllers under a 
change of wheel/rail contact conditions under high speed operation is shown in Figure 14 below.  
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Figure 14. Comparison of axle 1 friction power density with creep and wear controllers. 

 

The dynamic response of the axle 1 creep with the creep controller shows the same behaviour with 
that with the wear controller due to the same amount of tractive force.  The comparison of axle 1 
wear coefficient with creep and wear controllers under change of wheel/rail contact conditions 
under high speed operation is shown in Figure 15 below.  
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Figure 15. Comparison of axle 1 wear coefficient with creep and wear controllers. 
 

      The response of mass loss rate has similar behaviour with both controllers. Comparing Figure 
12 and 18, it can be seen that the mass loss rate at high speed operation is much lower than that 
at low speed operation.  
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5. Conclusion 
In this paper, a real-time rail/wheel wear damage control is developed. Simulations have been 
performed with a mathematical model of locomotive longitudinal, vertical and pitch dynamics, the 
Polach wheel/rail contact mechanics, and simplified electric drive dynamics. Simulations have 
been carried out to compare the locomotive dynamic response with a creep controller and the wear 
controller. Simulation results show that the proposed wear controller can reduce wear damage 
significantly under low speed operation, but has little effect on high speed operation. The cost of 
corresponding tractive force reduction is reasonably small.   
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ABSTRACT 

The locomotive traction control behaviour and its dynamic impact on the rail and vehicle have not been 

investigated deeply in respect to transient conditions. Such transient traction behaviour could be more 

significant to dynamic traction performance and track degradation (i.e. squat/corrugation formation etc.) than 

steady state behaviour. In order to study this, detailed numerical simulations are performed to investigate the 

locomotive dynamic response to a change in contact conditions. In particular, locomotive vibration, dynamic 

normal and tractional forces, and creep response are determined using a developed full scale locomotive 

dynamics model. The model includes the detailed AC motor dynamics, which was not considered in previous 

works. The result shows that the detailed model is capable of simulating the dynamic fluctuations of creep 

and traction forces that is not presented in the simpler model. Such transient response may cause damage to 

the track and vehicle components. 

 

Keywords Locomotive traction, multibody dynamics, AC motor dynamics, friction 

 

1. Introduction 
 

The recent development of AC traction motor and control technology used on locomotives has allowed 

locomotives to be operated with much higher continuous traction forces and adhesion levels than previously 

achieved on locomotives with DC motors. Therefore it has attracted great attention from the rail industry due 

to the high power capacity, reliability and low maintenance. They however require precision traction control 

to achieve steady performance close to the adhesion limit i.e. from 30% to 46% [1]. It is especially important 

to understand and control the dynamic and creep response in the change of contact conditions due to natural 

perturbations in friction/lubrication, wheel/rail profiles, track curvature, vehicle/track dynamics, wheel/track 

imperfections etc. Such transient traction behaviour could be more significant to dynamic traction 

performance and track degradation (i.e. squat/corrugation formation etc.) than steady state behaviour. It is 

therefore important to understand the dynamic response due to a change in friction conditions. In order to 

study this, the vehicle/track dynamics, contact mechanics and traction and creep control behaviour of modern 

AC locomotive drives needs to be integrated and assessed as a total dynamic feedback interactive system.  

 

To achieve this, the understanding of dynamic interactions between the locomotive structure, contact 

mechanics and traction control system is essential, especially the dynamic forces on the wheel-rail contact 

patch. Vehicle dynamics of locomotives has been previously studied in regard to wheel-rail contact 

mechanics, bogie self-steering etc. using different multibody software packages. The simplest model 

proposed to reveal the overall dynamics of a locomotive is a quarter rail vehicle model, which is preferred in 

many studies because of its simplicity and ease of application [2, 3].  Newton/Lagrangian full locomotive 

model for locomotive dynamic analysis is also built by means of basic newton principles or the Lagrangian 

method [4, 5]. However, these are either limited by modelling simplicity, particularly for the tractional and 

control dynamics, or simulation time. A rather complex locomotive model [6] has been built using the finite 

element method, though these FEM models are very time-consuming and computationally expensive. 

Spiryagin et al., proposed the multibody dynamics model on a bogie test rig compared with a locomotive 
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model, which further validated the accuracy of the high efficiency dynamics model [7]. Additionally, the 

integrated electric AC drive dynamics is expected to play a significant role in a locomotive dynamics system. 

A locomotive dynamics model with a simplified AC motor was proposed to simulate the transient dynamic 

response, from which the oscillation of the forces are linked to the corresponding vibration mode [8]. 

However the dynamic effect of the AC motor and creepage were not included, and the simulated time was 

not sufficient for the system to settle to a steady state. Therefore results of modelling a locomotive as a full 

mechatronic system combining the structural dynamics, contact mechanics and detailed AC motor dynamics 

for a relatively long time are required. 

 

The aim of this research is firstly to develop a comprehensive numerical simulation based on a state-of-the-

art locomotive dynamics model, which includes locomotive multibody dynamics, contact mechanics, 

detailed AC drive mechatronic systems, and creep controllers. The second aim is to use the developed model 

to investigate the dynamic response of a locomotive at a change of contact friction conditions to determine 

dynamic tractional forces that may cause excess damage to the vehicle and tracks. 

2. Model establishment and validations 

 

2.1. Overview 

The locomotive dynamics model for a simplified dynamic model is based on Newton-Euler formulation, 

using a wheel-rail contact model based on Polach’s method [9], an AC drive model based on direct torque 

control (DTC) with a creep controller. The locomotive model is comprised of three major components: 

locomotive multibody dynamics, AC drive & controller dynamics, and contact mechanics. The overall model 

structure is shown in Figure 1. Details of each block will be explained in the following sections. The input of 

the locomotive model is the traction or braking force acting on one of the wheelsets calculated with the 

Polach traction/adhesion model. Inputs of the Polach traction model are locomotive speed, wheelset speed, 

normal contact force and contact condition. Inputs of the AC drive are drive notch setting, traction or braking 

force as loading on the motor shafts and locomotive speed. 

 
Figure 1: Overall model structure of the dynamic model of a locomotive. 

 

The model is built in Matlab™ with the Simulink™ module. The efficiency of the model is optimized for 

real time use, and takes approximately 5 ~ 10 mins for compiling and 10 ~ 20 mins for simulating 10 s of 

real-time when run on a desktop computer, depending on whether the detailed AC motor dynamics is used. 

Given that this model is in completely monitored configuration, i.e., all dynamic response and AC drive 

conditions are continuously recorded, it is expected that the simulation time could be significantly reduced 

when deployed in real time circumstances. 
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2.2. Locomotive multibody dynamics 

The locomotive has been modelled as shown in Figure 2 for the purpose of building its dynamic model. In 

this simplified model only dynamics along the longitudinal, vertical and pitching direction are considered. 

The figure also shows the structure of the simplified co-co locomotive which has two bogies. Each bogie has 

three axles attached. Key simulated parameters including geometry, velocity, displacement, and rotational 

motions are marked in the figure. 

 
Figure 2: Diagram of simplified locomotive multibody structure 

 

This simplified dynamic model has 21 degrees of freedom (DOF), including 9 DOF for the longitudinal, 

vertical and pitching motion of locomotive body and two bogies, and 12 DOF for the vertical and rotating 

motion of the six axles. The system variables are expressed as a vector containing 42 entries, representing the 

relative displacements and velocities between different nodes. The multibody dynamics model is built using 

Matlab Simulink and takes input such as the torque control signal, and outputs the resultant locomotive 

dynamic response to other modules.  

 

An eigenmode analysis was performed in Matlab to identify all the dynamic modes of vibration and to 

determine the stability of the system. An eigenvalue is obtained for each possible mode of vibration of the 

system. The first part (real value) of each complex eigenvalue represents the amount of damping (if negative) 

of each mode of vibration. The second part (complex value) represents the part from which the frequency of 

vibration can be calculated.  From the eigenvalues of the system, it can be seen that all modes of vibration 

except one, have positive damping (negative real parts) which implies that the system is stable. The one pair 

of eigenvalues with zero damping is expected due to the rigid body longitudinal motion of the train. The 

modal frequencies may be calculated as shown in Table 1 in (Hz). 

 

 

Table 1: Modal frequencies of the multibody dynamic system vibration (Hz) 

 

Vibration mode Frequency 

Car body vertical 0.8 

Car body pitching 1.4 

Bogie 1 horizontal 2.8 

Bogie 2  horizontal 2.9 
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Bogie 1 vertical 7.2 

Bogie 2 vertical 7.2 

Bogie 1 pitching 12 

Bogie 2 pitching 12 

Wheelset 1 vertical 216 

Wheelset 2 vertical 216 

Wheelset 3 vertical 216 

Wheelset 4 vertical 216 

Wheelset 5 vertical 216 

Wheelset 6 vertical 216 

 

In the subsequent section full simulink simulations are performed from which the dominant modes of 

vibration in the response can be compared to the eigenvalue analysis. 

 

2.3. Contact mechanics 

The Polach contact mechanics model is widely used to determine the longitudinal tractive force due to the 

interaction between the wheelsets and rail tracks as it is efficient and compares well with field measurements 

and more complex models [9], [10]. Therefore the Polach model is employed in this research for efficiency.  

The implementation of the Polach model uses the inputs of locomotive velocity, normal contact force, wheel 

speed and a set of switchable parameters characterising different contact conditions (such as dry, wet or oil 

wheel-rail) including , , , and . The output is the adhesion coefficient, defined as the ratio 

between the longitudinal force and normal contact force. The model is developed in Matlab Simulink based 

on the code provided in [11]. The parameters for dry and wet contact conditions are listed in Table 2, 

according to Polach’s work, where A is the ratio of friction coefficient as defined as µ∞/µ0, B is the 

coefficient of exponential friction decrease (s/m), kA is the reduction factor in the area of adhesion and kS is 

the reduction factor in the area of slip. The Polach model parameters kA and kS are tuned for different contact 

conditions as shown subsequently. 

 

Table 2: parameters for different contact conditions [9] 

Conditions Parameters Dry Wet 

kA 1 0.3 

kS 0.3 0.75 

µ0 0.55 0.3 

A 0.4 0.4 

B 0.25 0.09 

 

2.4. Detailed AC drive controller dynamic model 

 
The detailed AC drive co-co locomotive model includes 2 bogies, each with 3 wheelsets/AC drives. This 

component is used for the investigation of transient dynamic response of the locomotive connected to the AC 

drive dynamics. To achieve the required accuracy, a detailed AC drive model was developed, which includes 

the electric dynamics of the AC drives high frequency (thyrister) cycles [12]. An induction motor drive is a 

complicated nonlinear system, that has been the subject of an large body of research and the control schemes 

developed are complex [13]. The modelling allows for nonlinear inversion into a linear model, allowing the 

use of well understood linear control techniques [14]. The challenges with AC drive technology are 

accurately estimating rotor fluxes and load torques [15] and the cost associated with installing high accuracy 

sensors to measure rotation speed [16].  

 

The direct torque control (DTC) method was used in the detailed AC drive [17] because it is fast in response 

and computationally inexpensive. The structure of a typical DTC controlled AC drive is shown in Figure 3. 

DTC is commonly used in controlling locomotive motors; for example DE502 and DE10023 diesel-electric 

locomotives, as well as some Siemens locomotives. Field-oriented control (FOC) is also widely used in 

Ak Sk 0 A B
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locomotive motor controls. It is suggested in the literature [18] that FOC and DTC would have very similar 

response. As a result, it is expected that the DTC model as described in this paper is generally able to 

represent FOC controlled locomotives such as the GT46. Figure 4 shows the Simulink diagram of the 

detailed AC drive with the DTC controller. 

 
Figure 3: A typical DTC controlled AC drive structure [17] 

 

 

 
Figure 4: Simulink diagram of the detailed AC drive 

 

The electromagnetic torque generated by the drive can be described by, 

.
 

Details of the parameters and formulae used was published by Kumsuwan et al. [17].  

 

The three phase voltage is controlled by the voltage source inverter (VSI) illustrated [19]. The control signal 

is generated by the look-up table where the selecting signal is determined by the difference between the 

reference electromagnetic torque Te* and the estimated electromagnetic torque Te, and the difference 

between the flux Ψs* and the estimated value Ψ.  
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2.5. Traction/creep controller 

The PI controller, as shown in Figure 5, was used as the creep controller in this subsystem. It compares the 

measured creep value with the threshold setting and provides an electric signal to the DTC controlled AC 

drive rather than providing direct torque compensation when the threshold creep value is triggered. The 

standard PI controller is tuned to effectively control the creepage in different contact conditions including 

dry and wet conditions. Presently, a slightly lower creep value than the threshold is used as the target of the 

controller (threshold minus 0.5%).  

 

The creep controller is based on the creepage with maximum traction effort according to the creep curve, 

which is set to 4% in this case. The design of the creep controller is very similar to the creep controller 

described in the patent document (US patent number 20130082626A [10]), which uses a threshold value of 

3%. Based on the design of GT46Ace locomotive, only one creep controller is installed in each bogie. As a 

result, we deployed single controller logic for each bogie, which takes the maximum creep value of the three 

axles of the bogie as the input and generates a torque reduction signal only when the creep value exceeds the 

pre-set creep threshold. Otherwise the creep controller stays idle and doesn’t provide a torque reduction 

signal. The controller includes a filter that keeps the excitation frequency within the limitation of the motor. 

 

 
Figure 5: The creep controller in the detailed AC drive 

 
2.6. Modelling details and locomotive specification 

The locomotive model is built to simulate a full size GT46Ace locomotive. The detailed parameters for the 

GT46Ace locomotive dynamics model are listed in Table 3. The detailed and simplified electric AC drive 

dynamics, the multibody dynamics and contact mechanics module are detailed in the previous section. The 

traction curve of the traction motor 1TB2622 used in GT46Ace locomotive is provided by Simens [20] as 

shown in Figure 6. 
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Figure 6: Traction curve of the locomotive (Notch 8) [20] 

 

Table 3: Detailed parameters of the locomotive model:  

Parameter Value 

Mass of each bogie frame (kg) 12121 

Total mass of locomotive (t) 134 

load mass (kg/carriage × no. of carriages) 90000 × 50 

Load force (N) 4.8 × 106 

Gear Ratio 17/90 

Primary suspension springs (N/m) 89 × 106 

Yaw viscous dampers stiffness (N/m) 45 × 106 

Vertical visvous dampers stiffness (N/m) 44 × 106 

Secondary suspension springs (N/m) 5.2× 106 

Longitudinal and lateral shear stiffness (N/m) 0.188 × 106 

Traction rods stiffness (N/m) 5 × 106 

Wheel contact stiffness (N/m) 2.4 × 109 

Primary suspension vertical damping (kg/s) 10 × 103 

Secondary suspension vertical damping (kg/s) 2 × 104 

Rail damping (kg/s) 1 × 106 

Locomotive body length (m) 22 

Locomotive body hight – without bogie (m) 1.93 

Bogie length (m) 3.7 

Bogie height (m) 0.733 

Horizontal distance between bogies mass centre(m) 13.7 

Horizontal distance between axles (m) 1.3 

Vertical distance between body bottom and bogie top (m) 0.3605 

Vertical distance between bogie bottom and wheel top (m) 0.127 

Wheel diameter (m) 1.016 

Simulation time step (s) 5×10-6 

Creep threshold 4% 
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1. Dynamic response of a locomotive at the transient of friction condition 

 

The full locomotive dynamic response under changing contact conditions from dry to wet are provided in 

this section. The structure and parameters of the simulation are described in the previous section. The notch 

setting is at 8. The torque generated by the electric drive together with the effect of the longitudinal force 

acting on the axle from the rail determine the angular acceleration of the rotor and consequently that of the 

axle. The change in creep in the transient response would directly affect the longitudinal traction force, and 

causes the dynamic change of acceleration, speed and position of all nodes in the system. The simulated 

dynamic response is reported below in terms of bogie and axle dynamic response, creep response and force 

response. 

2.1. Bogie and axle dynamic response 

Figure 7 shows the vertical displacement of each axle in response to a change from dry to wet conditions 

after 5s during acceleration. For direct comparison to the simplified model, parameters are chosen from [8]. 

The response on the same bogie is similar during the change of contact condition. The front and rear axle 

vertical displacements are dominated by the corresponding bogie pitching and the middle axle vertical 

displacements are dominated by the vertical motion of the bogies due to the acceleration. The vertical 

displacement response is different between the front (Bogie 1) and rear bogies (Bogie2). The front bogie has 

considerable higher amplitude compared with the rear bogie. The frequency of the car body pitching is about 

1.5 Hz which is close to the eigenmode analysis result of 1.4 Hz. The system settled to a steady state after 

approximately 4s, after which, at 5s, the contact friction condition was changed from dry to wet. After this 

change large transient oscillations occur on all axles. For the front bogie, all 3 axles (yellow, light blue, and 

purple) respond in the same mode, which indicates the vibration of the front bogie is dominated by a 

bouncing caused by the car body pitching mode and the frequency is around 1.5 Hz. This agrees with the 

eigenmode analysis as listed in Table 1. There is also a higher frequency pitching vibration mode at roughly 

13Hz (compared to 12Hz from Table 1) visible, but it is not very clear for the front bogie as the bouncing 

mode is dominant. For the rear bogie, the dynamic response is a combination of the bouncing/carbody 

pitching mode (1.5Hz) and the bogie pitching mode (12 Hz). The middle axle (light green) is in the same 

mode compared to the front bogie, however the leading and rear axles (red and blue) have high frequency 

pitching oscillations. It is noted that the oscillations of those two axles are out of phase, which is also 

consistent with bogie pitching. In general, it is demonstrated that after the change of friction condition, 

bouncing associated with the carbody pitching vibration mode will dominate the dynamic response, but for 

the rear bogie, the dynamic response is a combination of bouncing and bogie pitching. 

 

 

Figure 7: Vertical displacement of all axles during the change of contact condition 

Figure 8 shows the pitching angle of the car body. It is shown in the figure that the locomotive body 

vibration in the pitching mode after the change of the friction condition is approximately 1.5 Hz that agrees 

with the car body pitching mode calculated in table 1. This is caused by the difference in amplitude of the 

vertical oscillations of the front and rear bogies shown in Figure 7. Additionally, it is shown that the 

stabilized pitching angle was reduced from approximately 5 mrad to 2.4 mrad. This indicates the acceleration 
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has reduced.  Compared to the previous figures, it can be seen that the vertical displacement of the front and 

rear axle of each bogie is mainly determined by the pitching motion of each bogie.  

 
Figure 8: Pitching angles of car body and two bogies with the change of contact condition 

 

2.2. Creep response 

Figure 9 shows the creep on all six axes simulated by (a) the simplified model that was published previously 

[8] and (b) the detailed model developed in this work. It can be seen that the creep value of a certain axle and 

its counterpart on the other bogie are close to each other and change with the same pattern. Also it can be 

seen that the leading axles of each bogie have different dynamics from the other two axles on the same 

bogie. This is possibly because the creep controller takes the maximum value of all axles on a bogie as a 

control index, and provides a reduction of the torque command controlling all axles on the bogie. As the 

creep of the middle and rear axles is lower than the threshold, it doesn’t affect the creep controller output. 

However, the creep value of the front axle on each bogie under acceleration is larger than the threshold and 

therefore the creep controller’s output is directly affected by the creep of the leading axles. It is also shown 

that the creep result in both models is in good agreement before the change of friction condition at 15s. After 

the change of friction condition, it is indicated that, (similar to the results in the previous section), the 

detailed model shows significant random like high frequency oscillations, that are not seen in the simplified 

model result. The variation after the transient on axles other than the leading ones shown in the detailed 

model is caused by the effect of high frequency AC electric motor torque dynamics. This could be associated 

with significant wear or damage on the track. Hence it may be concluded that the simplified simulation has 

high efficiency compared to the detailed model. However, the detailed model is capable of revealing 

significant dynamic features affecting the locomotive performance. 
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Figure 9: Constant speed under change of friction condition: Creep on each axle simulated by (a) the 

simplified and (b) the detailed model 

The time around the change of friction is zoomed in to illustrate details of the creep change on each axle. It is 

also shown that after the change of friction, the creepage increased rapidly to around 0.43. The simplified 

model only takes 0.02s to reach the maximum creep while the detailed model takes roughly 0.13s for the 

increment. After that, the creep controller acts to reduce the creep. In comparison the detailed model delayed 

this process by 0.3s, whereas the simplified model creep controller acted almost instantly. This is likely 

because the simplified model directly controls the torque, while in reality and according to the detailed 

model, the creep controller only controls the electrical signal to the AC dynamics module that outputs the 

change of torque in a delayed response to the traction dynamics in Figure 9. It is shown that the creep 

response has not stabilized after the transient from dry to wet, although additional simulations have been 

performed to the reveal creep response to settle to steady state after 50s as shown in Figure 10. 

 
Figure 10: Velocity of the body and bogies on and after the transient of friction condition 

 

In order to investigate further the longer term response of the detailed AC motor dynamics to a change a 

friction conditions, the creep response was simulated over a longer length of time to steady state as shown in 

Figure 11 and Figure 12. Figure 12 is a zoom in of the time right after the change of friction condition. In 

this case, the system is accelerating before the change of friction condition occurs at 10s. After the initial 2s, 

the creep of all axles, controlled by the creep controller, is reduced below 0.5%.  

dry 

wet 
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Figure 11: Creep on each axle for the entire simulation period 

 
Figure 12: Creep on each axle on and after the change of friction condition (zoomup) 

 

The following creep response has similar characteristics to the case described in Figure 9 in relation to the 

leading axles of each bogie having different dynamics from the other two axles on the same bogie which in 

turn show significant random like high frequency oscillations. However, no obvious high frequency 

oscillations can be seen during the dry condition, except the initial oscillation period (<2s). These high 

frequency oscillations are most likely associated with high frequency modes of the system, such as vibration 

of the wheelset-rail vertical vibration mode (mode frequency ~137Hz in Table 1). They do not appear in the 

vertical displacement response reported in the previous section since the high frequency response is beyond 

the frequency range of the multibody system.  

 

After the change of friction conditions, the creep response can be divided into five stages. The first stage is 

when the creep increases dramatically, for 0.32s. This period of time from Figure 11 is zoomed in and 

plotted in Figure 12. After that (the second stage) the creep responses of all axles start to be reduced by the 

creep controller, while the leading axles of each bogie are kept at maximum/threshold creep 4%. During this 

stage (10.32s ~ 25s), the velocity of the bogies shows oscillations (barely discernable in Figure 10), this is 

mainly caused by the unstable creep response of the axles in this stage. From approximately 25s to 42s a 

steady acceleration stage occurs (the third stage), when the velocity oscillations of the bogies and the body 

are stabilized. The acceleration rate shown in Figure 10 is reduced significantly after the transient compared 

to the dry condition, because of the reduction of adhesion ratio from dry to wet condition. After 42s (the 

fourth stage), the creep of the leading axles start to converge to other axles; and after 45s (the fifth stage), the 

locomotive reached its maximum velocity and creep responses of all axles are stabilized. 

 

2.3. Force response 

The normal force of each axle was also investigated. Figure 13 shows the normal force for the entire 

simulation. 
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Figure 13: Normal force on each axle for the whole time 

 
Similar to the creep response and the vertical displacement discussed previously, it can be seen that the 

normal force of a certain axle and its counterpart are similar. The oscillations on the normal force for each 

axle are approximately 3.7 Hz. It should be noted that the specification of this model is slightly different to 

the model discussed in section 3.1 [8]. The eigenmode analysis of the locomotive is as listed in Table 1. It is 

indicated that the oscillations at 3.7Hz agrees with the bogie vertical vibration mode at 3.72Hz. Since the 

contact between the wheel and rail was simplified as a spring-damper system, the normal force would be 

reflected in the vertical displacement. As a result, the oscillation frequency of the normal force should agree 

with the vertical vibration mode of the axles. The difference in normal force on separated axles results in the 

pitching of the bogies and the locomotive body as discussed in the previous section. It is also shown that the 

maximum amplitude of the normal force oscillation after the transient is approximately 2 kN per axle or 1% 

variation compared to the steady normal force ~220 kN per axle. The variation is considered relatively small 

and the damage to the wheel or the rail caused by such oscillations would be expected to be small.  

 

Figure 14 shows the zoomup of Figure 13 normal force response after the change of the friction conditions. It 

is shown that large oscillations occurred for the first 5s after the transient, which agrees well with the creep 

response. After that, the normal forces stabilized with minor variations at the same frequency (~3.7 Hz). This 

could relate to the variations in creep response, as during 40-50s, when the creepage reduced, the normal 

force of all axles converged to each other.  

 
Figure 14: Normal force on each axle after the transient 

 
Additionally, the traction forces of all axles are plotted in Figure 15 for the entire simulation. It is shown that 

the traction forces of all axles decrease before the change of the friction condition. This agrees with the 

traction curve indicating a hyperbolic relationship between the velocity and the traction effort. It is also noted 

that high frequency oscillations occur during the dry contact period even after the creep of all axles stabilized 

after 3s as shown in Figure 11. Further investigation into these high frequency oscillations shows that the 

frequency is over 1 KHz. This can only be caused by the torque variation of each 1/6 cycle of the AC motor 

ie due to the high frequency motor dynamics. After the change in friction condition, the traction force 

stabilized at the lower value. The reduction of the traction force is obviously caused by the reduction of the 

adhesion ratio from dry to wet. The high frequency oscillations still exist but the amplitude is reduced 

dramatically.  
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Figure 15: Traction force on each axle for the whole time 

 

The traction/longitudinal force response after the change of the friction conditions are zoomed in and plotted 

in Figure 16. 

 
Figure 16: Traction force on each axle after the transient 

 

It is shown that there are periodical oscillations on all axles from 10s to 13s at the frequency of 

approximately 3.7 Hz. This frequency is consistent with the normal force oscillations, and it occurs when the 

normal force oscillations have large amplitude. It can be calculated that the variation of traction force during 

this period of time is approximately 0.4 kN per axle or 0.6% compared to the steady traction force ~60kN per 

axle. The variations of both forces are similar most likely because the creep interaction between traction and 

normal forces. It is demonstrated that the traction force follows the pattern of the creep response after 13s, 

consistent with the creep (Polach) law. The oscillations of both forces continue and are damped out for about 

5s. After that, it is shown that the normal force stabilizes with minor oscillations occurring randomly until 

40s. The random nature is most likely due to the interaction of the creep controller with the high frequency 

dynamics of the traction drive. It is noted that during this period, the locomotive is still under steady 

acceleration. This behaviour is consistent with the creep law and has caused a maximum variation on the 

traction force of 3 kN or 5% compared to the steady traction force ~60kN. This variation is considerably 

larger than that of the normal force but is a decrease from critical values. A small scope sensitivity analysis 

shows this decrease appears to be consistent over changes in speed and controller strength. Such tractional 

oscillations will cause variations in wear and related defects but are expected not to be associated with 

excessive traction defects. However, the initial transients associated with vehicle dynamics (discussed above) 

could exceed critical creep excess traction damage particularly when the quasistatic traction levels are close 

to the limit of full sliding. In this case, these effects appear small to negligible (1%) when the locomotive 

creep controller has been tuned to achieve close to optimum performance. Under non-optimum performance 

and or largely different conditions the transient variations in forces are expected to be larger.  

2. Conclusion and future works 

An integrated dynamic model of a locomotive incorporating interactions between the structural dynamics, 

contact mechanics and traction/controller dynamics has been developed and tuned to investigate the response 
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under a change in frictional conditions. The dynamic response including creep response and forces, of the 

locomotive at and after a change in friction condition are investigated. The oscillation frequencies are 

compared with the eigenmode analysis and the related vehicle structural vibration modes are identified. By 

using the detailed AC motor dynamics model, both normal and traction force oscillations found in the first 3s 

after the change in friction condition are caused by the bogie structural vertical vibration. The amplitudes of 

these oscillations are approximately 1% of the steady force. After these vibrations are damped out, variations 

in creep dominate the changes in the traction force. These variations are relatively larger, up to 5%, 

compared to those caused by structural vibration, however they typically decrease the traction levels. These 

tractional oscillations, although small in this case, could result in dynamic wear defects and associated 

damage particularly when the quasistatic traction levels are close to the limit of full sliding and under less 

optimum creep controller performance. It takes approximately 30s for the creepage to stabilize. In this period 

of time, the locomotive will travel approximately 600m, and the track would possibly be affected by 

excessive transient forces. 

 

Future research could be focused on the validation of the locomotive model dynamic response using field or 

test rig results. The model could also be further developed to simulate a larger range of locomotive models 

(if data is available from industry) and more frictional conditions. The efficiency of the model should be 

further improved to facilitate a sensitivity investigation of controller and locomotive structural parameters to 

dynamic force response. 
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