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Abstract 

Graphene/titanium carbide composites were synthesized by means of sol-gel infiltration and 

spark plasma sintering (SPS). The graphene used in this research was casted into a sponge-like 

shape, composed of a three-dimensional (3D) network of graphene sheets. The sol-gel infiltration 

synthesis method allowed the formation of nanostructured ceramics inside the porous structure of 



 

graphene networks, thus forming composites. The compositions and microstructures of the Ti-O-

C composites changed with the amount of the polymerizable carbon source (i.e. furfuryl alcohol 

(FA)) in the solution. A high carbon ratio was required to maintain the structure of the graphene 

network, as the graphene sheets could become a carbon source to react with TiO2 resulting in a 

lamellar-shaped grain morphology. Samples after SPS showed some toughening effects, such as 

de-bonding, bridging and formation of microcracks. Vickers hardness, electrical resistivity and 

thermal conductivity were examined for the composites. 

Keywords: ceramic matrix composites, sol-gel, spark plasma sintering, titanium carbide, 

nanocomposites 

 

  



 

1. Introduction 

Titanium carbide (TiC) is an ultra-high temperature ceramic (UHTC), with a low density 

(4.93 g/cm
3
), high melting point (3067 °C), high Vickers hardness (28-35 GPa), high Young’s 

modulus (410-450 GPa), low thermal expansion and high electrical and thermal conductivity.
1,2

 

Attributed to these characteristics, TiC has been extensively investigated for many applications, 

including cutting tools, refractory components, electronic elements, aerospace engineering and 

so on.
2,3

 In the last few years, ceramic/carbon composites have attracted tremendous attention 

from researchers due to their excellent mechanical and functional properties compared with the 

monolithic counterparts.
4-7

 

Carbon nanotubes (CNTs) and carbon fibers are often used in the manufacturing of 

ceramic composites.
5-7

 Recently, the interest in the application of another form of carbon, 

graphene, is increasing due to its extraordinary mechanical, electrical and thermal properties.
8
 

The addition of graphene in different ceramics has been investigated.
9-12

 Dusza et al. reported a 

Si3N4-grpaphene platelet (GPL) composite with improved fracture toughness; the presence of 

GPLs played an important role in the toughness enhancement by introducing crack deflection, 

branching and bridging.
9
 Ramirez et al. reported GPL/Si3N4 composites had improved electrical 

conductivity.
10

 Similar studies have been done for other graphene reinforced composites, such as 

GPL/Al2O3.
11,12

 However, to the best of our knowledge, there is few study so far investigating 

the formation and properties of carbide/graphene composites. 

Furthermore, the carbon material used in this work is a there-dimensional (3D) graphene 

network, like a sponge, instead of the traditional two-dimensional (2D) graphene nanosheets. 

This continuous 3D network is composed of multi-layer graphene sheets and has a cork-like 

hierarchical structure (Fig. 1). This material is fabricated through thermal reduction of freeze 



 

casted graphene oxide (GO) and exhibits low density, high porosity, and good electrical 

conductivity and energy absorption efficiency.
13-16

 These extraordinary properties promise a 

wide range of applications of the material, such as electrodes and sensors.
16,17

 But in this paper 

we report its application in the fabrication of ultra high temperature ceramic (UHTC) composites. 

In order to fabricate ceramic composites using this 3D graphene network, traditional 

powder metallurgy approach is not practical, because powders have difficulty to gain full access 

to the micro-sized pores of the graphene network. Therefore, a sol-gel technique was applied in 

this study. TiC was synthesized by direct carbothermal reduction of titanium-oxygen-carbon (Ti-

O-C) precursors. The Ti-O-C precursor is a sol-gel mixture of titanium alkoxide and furfuryl 

alcohol (FA), which is as the carbon source.
18-20

 

In the present work, novel graphene/TiC composites featuring uniformly distributed 

graphene sheets and fine TiC grains (the grain size was less than 100 nm) were synthesized. This 

composite material showed improved toughness and generous energy absorption upon (low-

velocity) impact. 

2. Experimental Procedure 

2.1 Chemicals and synthesis 

To synthesis the Ti-O-C precursor, the sol-gel process started with the poly(ethylene 

oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer Pluronic P123 

(EO20PO70EO20, Mn ~ 5800; Sigma-Adrich). P123 (4.64 g) was dissolved into absolute ethanol 

(C2H5OH, 99.7%) (6.9 g) to form a solution under continuous stirring, to which titanium 

tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4, 97%; Sigma-Adrich) (11.368 g) was added as the 

titania source. Meanwhile, another solution was prepared by mixing with hydrochloric acid (HCl, 



 

10M) (2.0 g) and absolute ethanol (2.3 g). The acid solution was then added dropwise into the 

first solution containing TTIP under vigorous magnetic stirring. After half hour, furfuryl alcohol 

(FA, C5H6O2, 98%; Sigma-Adrich) was added into the mixed solution as a carbon source under 

stirring. Different amounts of FA were added to control the molar ratio of C/Ti in the solutions 

from 0 to 9. The C/Ti ratio in each composition was calculated based on the amount of FA 

without consideration of graphene. The solutions were aged for 3 days at the ambient 

temperature around 25 °C. During the whole process, the continuous stirring was necessary and 

all the bottles were sealed immediately after mixing. The color of the solution changed from 

transparent to brown after mixing with FA and then turned to dark brown after 6 hours ageing, 

indicating the polymerization of FA.  

To synthesis the composite precursor, the prepared solution above was then infiltrated 

into graphene network cells (~ 5 mg/ml) until all the cells were saturated. After that, the solution 

infiltrated graphene were dried in an oven at 80 °C until the solution becoming a gel. The dried 

gel was heated to 550 °C at 5 °C/min for 5 hours under nitrogen in order to achieve a 

mesoporous Ti, O, C matrix with graphene sheets surrounded through pyrolysis of organic 

components, and then the precursor was infiltrated with the prepared solution again followed by 

the next steps, and three cycles were applied. Then the samples were further heated to 1450 °C at 

2 °C/min for 5 hours under argon for carbothermal reduction to form TiC based graphene 

composites. The synthesized composites are denoted as G-xC, and referenced TiC are denoted as 

xC where x indicated the C/Ti ratio in the sol-gel. For example, G-3.8C means sol-gel with C/Ti 

ratio of 3.8 infiltrated graphene composites, while 3.8C means TiC synthesized from sol-gel with 

C/Ti ratio of 3.8C. After calcinations, all the samples were crashed and sintered at 1800 °C for 5 



 

min using SPS, at a maximum heating rate of 200 °C/min under vacuum and a pressure of 40 

MPa. 

2.2 Characterization 

Several characterization methods were used to examine the samples. X-ray diffraction 

(XRD) patterns were recorded from 10° to 80° of the 2θ values, using a step size of 0.02° and a 

scan rate of 2°/min, through a Philips PW1140/90 diffractometer operated with CuKα radiation at 

40 kV and 25 mA. The thermogravimetric analyzer (Perkin-Elmer, Pyris 1) was conducted in air 

to 800 °C at a heating rate of 5 °C/min to obtain the thermogravimetric analyses (TGA) graphs. 

Raman spectra were recorded on a RenishawinVia Raman Microscope with a 514 nm argon ion 

laser at room temperature. A JEOL 7001F microscope operated at 15 kV and FEI Tecnai T20 

operated at 200 kV microscope were employed to take scanning electron microscope (SEM) and 

transmission electron microscope (TEM) images respectively. All the microscopes were 

equipped with EDS for qualitative chemical analysis. The SEM samples were prepared by 

cutting and polishing. The TEM samples were prepared by grinding powders under n-butanol in 

a mortar and placing a drop of the suspension on a holey-carbon grid. Density of the sintered 

samples was measured using a liquid displacement method, Archimedes’ technique. Vickers 

indentation (Duramin A-300 hardness tester) was used to measure the fracture toughness K1C of 

the specimens; the applied load was 5kgf and Shetty equation
21

 was used to calculate K1C. 

Nanoindentation test was performed at room temperature on a TI900 Hysitron Triboindenter to 

measure the hardness (H) and elastic modulus (E) of the samples. The load applied was 100 mN 

and the load function used involves 10s loading to the maximum load, 5s holding at the 

maximum load and 15s unloading. At least 10 indents were repeated on different locations of a 

specimen. 



 

3. Results and Discussion 

3.1 Effect of the C/Ti ratio in the precursor compositions 

3.1.1 Compositions with different C/Ti ratios 

The compositions of the samples after 1450 ºC treatment with different C/Ti ratios were 

analyzed by XRD patterns, TGA curves and Raman spectrums. Fig. 2 shows the XRD results of 

the samples after 1450 ºC treatment with C/Ti ratios varying from 0 to 9. TiC is the major phase 

identified in the XRD patterns for samples with C/Ti ratios over 3.8. A small mount of impurities 

was detected (e.g. peak around 45º for sample G-6C), but was unable to be identified. The 

volume of the impurities was too small to be detected by the EDS. Ti and C are the elements 

identified by EDS. However, for the samples with C/Ti ratios less than 3, both TiC and Ti2O3 

phases are present.  

Theoretically, a carbon to titanium (C/Ti) ratio of 3 is able to fully convert TiO2 to TiC 

based on the chemical equilibrium.
22

 However, due to the evaporation of FA during the initial 

sol-gel process and PFA during drying and calcination processes, a designed C/Ti ratio of 3 in 

the composition was found not sufficient to complete the carbothermal reaction. A complete 

oxidation of TiC to TiO2 would result in a weight gain of 33.3%.
23

 Based on the TGA results 

(Fig. 3), the sample with C/Ti ratio of 3.8 shows a weight gain around 33.3% above ~400 ºC, 

while samples with smaller C/Ti ratios show less weight gains and samples with larger C/Ti 

ratios show a weight loss after the initial weight gain at a higher temperature due to the oxidation 

of excessive carbon in the compositions. The TGA results indicated that 3.8 was the minimum 

C/Ti ratio for a full conversion of TiO2 to TiC in this work. The TGA results are consistent with 

the XRD analysis. 



 

The formation of TiC and Ti2O3 in the samples with zero C/Ti ratio indicated that 

graphene could react with TiO2 as a carbon source, which is also proven by its weight gain 

observed in the TGA curve. However, the amount of graphene was not sufficient for a complete 

reduction, so some partially reduced oxide, Ti2O3 formed as an intermediate product of 

carbothermal reduction. Even for the sample with a C/Ti ratio of 3, there was still a carbon 

shortage, which indicated that the amount of carbon derived from graphene was tiny.  

The status of carbon in the composites was investigated by Raman spectroscopy. Fig. 4 

shows two peaks, at ~1350 and ~1600 cm
-1

, referred as D and G peaks in all the samples. Both D 

and G peaks are related to vibrations of sp
2
-hybridized carbon bonds. Their positions, shape, and 

the ID/IG intensity ratio provide information about the degree of order in the carbon network.
23,24

 

The 2D peak, the overtone of D peak, is normally used to identify the monolayer graphene when 

it is sharp and high, appearing broadly at ~2670 cm
-1

. The combination mode (D+D′) at ~2930 

cm
-1

 is defect activated.
25,26

 The Raman spectrums (Fig. 4) proved the presence of graphene in 

the samples after firing at 1450 ºC with C/Ti ratios of 6 and 9, in which carbon derived from 

PFA was more than enough for a complete carbothermal reduction. The increased ratio of ID/IG 

in samples with a C/Ti ratio of 6 and 9 compared with pure graphene network indicated an 

increased ordering of carbon in the composites.
 23,24

 

3.1.2 Microstructures with different C/Ti ratios in the precursors 

The microstructures of the samples with different C/Ti ratios after 1450 ºC treatment are 

shown in Fig. 5. Graphene sheets can be observed in samples with a C/Ti ratio higher than 3.8. 

The higher the C/Ti ratio, the more graphene sheets can be remained in the final composites, 

based on the SEM analysis. The sample with a C/Ti ratio of 9 had lots of graphene sheets 



 

uniformly distributed in the matrix, but in the sample with a C/Ti ratio of 3.8, there were only a 

few of thin graphene sheets in the sample. No graphene sheets can be found in the samples with 

a C/Ti ratio less than 3. It is difficult to say which form of carbon, between the carbon from the 

decomposed polymer and the graphene, is more reactive in this case. However, the carbon 

derived from PFA is able to uniformly distributed around every TiO2 particle because of the 

polymerization of FA forming a homogenous network (Fig. 5(f)), so that it would be more easily 

for TiO2 particles to react with the carbon derived from PFA. For the samples with an 

insufficient amount of PFA derived carbon, TiO2 grains near graphene sheets would react with 

the graphene for carbothermal reduction, forming TiC or partially reduced Ti2O3 according to the 

XRD results. 

The grains also changed with different amounts of C/Ti ratio in the samples. Samples 

with a higher C/Ti ratio had a smaller grain size. In the samples with C/Ti ratio of 3.8, 6 and 9, 

there was only the TiC phase and the grain size was around 50 to 100 nm. The carbon derived 

from PFA can restrict grain growth of TiC, as it can form a uniform network around each grain. 

Our previous work also proved that after 1450 ºC firing, the amorphous carbon derived from 

PFA can form several graphene-type layers on the surface of TiC grains, which could retard the 

grain growth as well as densification.
27

 The grain size was not uniform for samples with a low 

C/Ti ratio. A bi-model distribution of grains existed, where some grains remained in a nano scale 

and some were coarsened to several microns (Fig. 5 (a, b)). As these samples contained TiC and 

Ti2O3 phases according to XRD results, it was possible that graphene was involved in the 

carbothermal reduction as a carbon source for reducing the contacted TiO2 grains. As graphene 

had a sheet structure, it templated the grain growth of the reduced product of TiO2, i.e. TiC or 

Ti2O3, forming coarsened grains.  



 

This template effect was more obvious in the sample with zero FA, where the only 

carbon source was the graphene sponge. Some lamellar/plate-shaped TiC and reduced titanium 

oxides are observed (Fig. 6), which is very different from the conventional particle-shaped TiC 

or titanium oxides. This microstructure is clearly associated with the intrinsic lamellar structure 

of grapheme. No further investigation was done on this aspect, as it is beyond the scope of this 

research. 

3.2 Microstructures and properties of the densified composites 

Three compositions with a C/Ti ratio of 3.8, 6 and 9 respectively were sintered at 1800 ºC 

for 5 minutes under 40MPa, after carbothermal reduction at 1450 ºC for 5 hours. The XRD 

results proved that TiC and carbon were present in the samples after SPS (Fig. 7). The peak 

intensities for the impurities were weakened compared with the XRD patterns of the samples 

after carbothermal reduction, which could be a result of more complete reaction due to high 

temperature SPS sintering. SEM images of the polished surfaces of the samples after SPS are 

shown in Fig. 8. According to the SEM images, the sample with a C/Ti ratio of 3.8 showed a 

different microstructure compared with that having a higher C/Ti ratio.  

The SPS sintered sample with 3.8 C/Ti had larger grains around 1 µm, and showed no 

obvious sign of the presence of the graphene network. In a high magnification image (Fig. 8(b)), 

some individual thin and small graphene sheets can be observed from the surface pores. The SPS 

sintered samples with a C/Ti ratio of 6 and 9 showed interesting microstructures of a very fine 

TiC grain matrix is dispersed by a uniform carbon network derived from graphene (Fig. 8(c, e)). 

The grain size of TiC remains around 100 nm even after the high temperature sintering, so no 

obvious grain growth happened during sintering, which may be restricted by the excessive 

carbon in the compositions. 



 

A bi-model distribution of the grain size is also observed in these SPS sintered samples. 

Two different sizes of TiC grains were observed in each sample (Fig. 8(b, d, f)). This 

phenomenon may happen due to the fact that in the system, there were two different kinds of 

carbon sources; carbon derived from PFA and graphene network. As what has discussed above, 

graphene sheets was able to template the grain growth of TiC to form coarsened grains. Another 

reason is that some grains especially from the surface during the infiltration may not undertake 

restricted force from graphene network, which facilitates grain growth for these grains.  

Fig. 9 shows the effect of the C/Ti ratio on the porosity and density. It is clearly seen that 

a higher C/Ti ratio resulted in higher apparent porosity and lower density. The amorphous carbon 

derived from PFA has a relatively low density (1.8-2.1 g/cm
3
) and the carbon is very difficult to 

be densified.
28

 The specimens with a higher C/Ti ratio are enriched with carbon and thus have 

lower density and higher porosity. The Young’s modulus E and hardness H values measured 

using the nanoindentation are summarized in Table 1. Both E and H decrease with the increase 

of the C/Ti ratio. The decrease in E and H is likely attributed to the increase of the soft 

amorphous carbon derived from PFA and porosity.   

The composites had quite different properties compared with the reference TiC samples 

prepared by sol-gel synthesis and SPS under same conditions. The presence of graphene in the 

composites not only increased the carbon concentration but also limited the densification of the 

samples, resulting in significantly reduced density and increased porosity, especially for the 

sample with C/Ti ratio of 6. This also produced much lower hardness and elastic modulus for the 

graphene added samples compared with the reference sample. This effect appeared not that 

significant, however, in the samples with lower or higher C/Ti ratios because the overall carbon 

concentration in these samples was either too low or too high to cause a significant difference 



 

between the reference and the graphene containing samples. Both porosity and preserved 

graphene influenced the mechanical properties of the samples. Sample G-9C has similar porosity 

as the reference sample, but shows different hardness and fracture behavior. 

3.3 Toughening and its mechanisms 

The fracture toughness of the SPS sintered G-3.8C specimen was found to be higher than 

that of the reference sample, but it is difficult to estimate the fracture toughness for other 

graphene containing samples with higher C/Ti ratios. The impressions of the Vickers hardness 

indents on SPS sintered samples G-6C and G-9C were examined using SEM. The SEM 

micrographs of the fracture patterns show no regular cone and radial/median cracks (Fig. 10 (a, 

b)) and the indentation-induced cracks are prone to propagate along the graphene sheets and TiC 

grain boundaries (Fig. 10 (c, d)). The fracture behavior of the graphene containing composite 

does not follow the conventional fracture patterns of brittle ceramics, where four straight cracks 

emanate from the four corners of the diamond shaped indentation, which is an indication of 

toughening. However, it is very difficult to quantify the fracture toughness improvement, as the 

toughness measurement using the Vickers indentation technique requires well-defined fracture 

pattern. 

Based on the images in Fig. 10, the indentation depth is small and there are cracks inside 

the indents. No obvious cracks were found outside the indentation. Furthermore, most of cracks 

inside the indents happened along the paths of graphene sheets, resulting in de-bonding of 

graphene sheets. Some bridging effect by the graphene sheets was observed in the SEM images 

(Fig. 10 (c, d)).  

In the two samples that have high carbon contents, the carbon derived from PFA 

protected graphene sheets from reaction with TiO2, resulting in a structure of fine TiC grains 



 

surrounded by the graphene network. In this structure, the graphene sheets acted as a weak phase. 

The wall of the network is consisted of several layers of graphene sheets. Even though there was 

enough carbon derived from PFA for carbothermal reduction, the TiO2 grains attached on the 

surface of the graphene wall could also react with graphene to form TiC, resulting in a strong 

interface between the surface of the graphene wall and the TiC matrix after SPS densification. 

During crack propagation under the indenter, peelings of graphene sheets would occur at the 

surface and the internal of the graphene wall due to weak van der Waals bonding between the 

graphene sheets. The peelings between graphene sheets create lots of new surface areas to absorb 

fracture energy, thus toughen the composites. Bridging is another toughening mechanism in the 

composites (Fig. 10 (c, d)). In this mechanism, the graphene sheets acted as bridges to connect 

both sides of cracks and induced some sort of crack closure. The de-bonding of graphene sheets 

and bridging by graphene were also observed in the fracture surfaces (Fig. 10 (e, f)). 

The peeling of graphene sheets in the graphene walls is proven to be an energy 

comsuming process. The indentation load-displacement curves (P-h curves) shown in Fig. 11 

give insight into this energy absorption effect. The net area enclosed by the P-h curve represents 

the work done on the system and is manifested as plastic deformation as well as elastic energy 

stored within the specimen.
29,30

 For the graphene/TiC samples, the ‘fat belly’ of the P-h curves 

indictes that the composites absorbed some strain energy during loading of stress, while at the 

same time exhibited some elastic recovery upon unloading.
30

 This effect was more obvious for 

G-6C sample because the energy absorption was associated with both increased porosity and 

preserved graphene. For G-3.8C and G-9C samples, the energy absorption effect became less 

significant due to either limited graphene preserved or too much residual carbon resulting high 

porosity. 



 

4. Conclusions 

Graphene/TiC composites have been successfully synthesized using a sol-gel infiltration 

into a novel graphene sponge and spark plasma sintering. Furfurly alcohol (FA) was employed as 

a carbon source. From the carbothermal reduction point of view, the FA was a more desirable 

carbon source than the graphene sheets in the sponge as the polymerized FA formed a uniform 

carbon network around each TiO2 particle. However, if the amount of PFA was insufficient for a 

complete carbothermal reduction, the graphene sheets would react with TiO2 as a carbon source. 

In order to maintain a graphene network in the sample, a high C/Ti ratio is preferred. The 

lamellar shape of the graphene sheets had a template effect on the grain growth of TiC or 

reduced titanium oxide when acting as a carbon source, forming a lamellar shape of ceramic 

grains after 1450 ºC heat treatment. The SPS sintered samples with a C/Ti ratio of 6 to 9 showed 

an interesting microstructure of fine TiC grains surrounded by a graphene network. On the other 

hand, higher C/Ti ratios resulted in lower density and poorer hardness due to the extra carbon in 

the samples. The graphene network in the sample can toughen the materials by peeling of the 

graphene walls and crack bridging, and the composites also showed a potential for shock/impact 

absorption under indentation.  
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Fig.1 (a) SEM and (b) TEM micrographs

  

Graphene/Titanium Carbide Composites Prepared by Sol-Gel Infiltration and Spark 

Plasma Sintering 
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micrographs of the 3D graphene network. 
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Fig.2 XRD patterns of the sol-gel synthesized Ti-O-C-graphene precursors with different C/Ti 

ratios after 1450 ºC treatment in Ar for 5 hours. The carbon to Ti ratio, excluding graphene, for 

each composition is marked in the sample name. 

 



 

 

Fig.3 TGA curves of the sol-gel synthesized Ti-O-C-graphene precursors with different C/Ti 

ratios from 0 to 9 after 1450 ºC treatment for 5 hours in Ar. 

  

 



 

 

Fig.4 Raman spectra of the graphene; and sol-gel synthesized Ti-O-C-graphene precursors with a 

C/Ti ratio of 6 and 9 respectively, after 1450 ºC treatment for 5 hours in Ar.  

  



 

Fig.5 SEM micrographs of sol-gel synthesized Ti

for 5 hours in Ar, with C/Ti ratios of 0 (A), 

image of the matrix of sol-gel synthesized Ti

after 1450 ºC treatment for 5 hours 

 

gel synthesized Ti-O-C-graphene samples after 1450

, with C/Ti ratios of 0 (A), 3 (B), 3.8 (C), 6 (D) and 9 (E), respectively

gel synthesized Ti-O-C-graphene precursors with the 

for 5 hours in Ar (F). 

 

 

after 1450 ºC treatment 

, respectively; A TEM 

the C/Ti ratio of 9 



Fig.6 SEM micrographs of the lamellar

graphene precursors with zero FA after 1450

  

of the lamellar-shaped structure in the sol-gel synthesized Ti

precursors with zero FA after 1450 ºC treatment for 5 hours in Ar. 

 

 

gel synthesized Ti-O-C-



 

 

 

 

Fig.7 XRD patterns of graphene/TiC composites with a Ti/C ratio of 3.8, 6 and 9 respectively 

after SPS at 1800 ºC for 5 min in vacuum. 

  



 

Fig.8 SEM micrographs of graphene

and 9 (e & f) after SPS at 1800 ºC in vacuum for 5 min.

carbon containing samples. 

 

 

graphene/TiC composites with Ti/C ratio of 3.8 (a & b

ºC in vacuum for 5 min. The graphene walls are seen in the high 

 

 

(a & b), 6 (d & d) 

raphene walls are seen in the high 



 

 

 

Fig. 9 Variation of density and porosity of SPS sintered graphene/TiC composites and 

corresponding reference TiC samples with different C/Ti ratios. 

 

  



 

Fig.10 SEM micrographs of Vicker’s hardness indentations

(A) sample G-6C under a 0.3kgf 

cracks inside the indentation on the

SPSed sample G-6C. 

Vicker’s hardness indentations on the graphene/TiC

0.3kgf load; and (B) sample G-9C under a 5kgf load; (C 

the SPSed sample G-9C; (E and F) show fracture surface of 

 

 

 

/TiC composite with 

; (C and D) show 

; (E and F) show fracture surface of 
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Fig.11 The load-displacement (P-h) curves of indentations on graphene/TiC composites with 

different C/Ti ratios; (A) 3.8C; (B) 6C; (C) 9C. The curves in black lines were those obtained 

from indentation on the reference samples.  
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Table 1 Properties of SPS sintered graphene/TiC composites with different C/Ti ratios and 

reference TiC samples 

Samples Hardness (GPa) 
Elastic Modulus 

(GPa) 

Fracture 

Toughness 

(MPa����m
1/2

) 

3.8C (Ref) 28.49 ± 6.09 408.13 ± 48.49 2.09 ± 0.31 

G-3.8C 15.28 ± 4.57 293.27 ± 41.12 2.24 ± 0.33 

6C (Ref) 10.08 ± 4.06 191.56 ± 56.21 4.21 ± 0.58 

G-6C 1.62 ± 0.45 30.33 ± 9.49 --- 

9C (Ref) 1.03 ± 0.06 10.99 ± 0.39 4.98 ± 0.64 

G-9C 0.85 ± 0.09 11.18 ± 0.56 --- 

 

 

 




