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Highlights 
We established and characterised the first humpback whale fibroblast cell lines. 
Cell lines have a stable karyotype with 2n=44. 
Exposure to p,p’-DDE resulted in a concentration-dependent loss of cell viability. 
p,p’-DDE sensitivity differed considerably from human fibroblasts. 
Exposure to a whale blubber extract showed higher sensitivity than to p,p’-DDE alone. 
 
 
Abstract 
This paper reports the first successful derivation and characterization of humpback whale 

fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin 

biopsies, cultured at 37°C and 5% CO2 in the standard mammalian medium DMEM/F12 

supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were 

established from two different animals and designated HuWa1 and HuWa2. The cells have a 

stable karyotype with 2n = 44, which has commonly been observed in other baleen whale species. 

Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to 

plastic and positive immunoreaction to vimentin. Population doubling time was determined to be 

~41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been 

propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37°C, but show the 

highest rate of proliferation at 37°C. Short-term exposure to para,para’-



 

dichlorodiphenyldichloroethylene (p,p’-DDE), a priority compound accumulating in humpback 

whales, resulted in a concentration-dependent loss of cell viability. The effective concentration 

which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times 

greater than the EC50 value for the same chemical measured with human dermal fibroblasts. 

HuWa1 exposed to a natural, p,p’-DDE-containing, chemical mixture extracted from whale 

blubber showed distinctively higher sensitivity  than to p,p’-DDE alone. Thus, we provide the first 

cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a 

unique in vitro model for the study of the whales’ sensitivity and cellular response to chemicals 

and other environmental stressors. 

Keywords: Megaptera novaeangliae; p,p,’-DDE; Antarctica; Persistent Organic Pollutants (POPs), 
karyotype, cell line characterization. 
 
 
 
Introduction 

Humpback whales (Megaptera novaeangliae) belong to the family of baleen whales 

(Balaenopteridae). Southern hemisphere (SH) populations feed in the productive waters 

surrounding Antarctica, primarily on Antarctic krill (Euphausia superba). They build up large fat 

reserves during summer feeding to sustain their high energy needs and undertake long-term 

migration, associated with periods of voluntary fasting. Current anthropogenic threats to SH 

humpback whales include physical impacts, such as the resumption of whaling, net entanglements 

and boat strikes, as well as chemical pollution, such as exposure to persistent organic pollutants 

(POPs). 

POPs are a group of man-made chemicals defined by their persistence, their toxicity, their 

potential for long range environmental transport and their tendency to bioaccumulate in organisms 

and bio-magnify along food chains. Historical or “legacy” POPs, such as organochlorine 

pesticides, have represented a major concern in environmental toxicology for decades. These 

POPs are semi-volatile and undergo temperature related long-range environmental transport, 

moving to progressively colder climates such as polar environments (Wania and Mackay, 1996). 

Cetaceans are among the organisms with the greatest potential for accumulating toxic levels of 



 

POPs due to their long lifespan, their position at the top of the food web and their high proportion 

of body-fat, in which these lipophilic compounds accumulate.   

The energy demanding annual migrations of SH humpback whales lead to a depletion of 

accumulated lipid reserves and serve to redistribute and concentrate the lipophilic POP burdens in 

remaining lipid stores. Average population levels of individual POPs in SH humpback whale 

blubber have been observed to increase by up to 50 times between early and late migration 

(Bengtson Nash et al., 2013). Recently characterized POP profiles of SH humpback blubber 

revealed appreciable levels of chemical residues including para,para’-

dichlorodiphenyldichloroethylene (p,p’-DDE) (Bengtson Nash et al., 2013), the main metabolite 

of the well-known insecticide, dichlorodiphenyltrichloroethane (DDT).  

Measuring the toxicological impact of POPs on wild populations of humpback whales is 

challenging. Adult stranding events are rare and timely collection of useful tissue samples is often 

impossible. Investigations on free ranging animals using non-lethal approaches represent a 

logistically challenging and cost intensive undertaking with limited tissue accessibility. 

Consequently, Australian policy, in line with the International Whaling Commission (IWC), has 

called for the development of improved in vitro models for cetacean chemical risk assessment 

(Australian Government, 2010, IWC, 2010). 

To date, only a few studies have addressed chemical burdens in southern hemisphere humpback 

whales (Bengtson Nash et al., 2013) or biomarkers of chemical effects in the species as a whole 

(Bengtson Nash et al., 2014, Jauniaux et al., 2011, Waugh et al., 2011). In other cetacean species, 

a number of cell lines have been developed in order to assess viral impact (Cecil and Nigrelli, 

1970, Nielsen et al., 1989, Kadoi et al., 1992) and the effects of contaminants (Wang and Pfeiffer, 

2001, Fossi et al., 2006, Li Chen et al., 2009, Carvan et al., 1995, Spinsanti et al., 2008, Wise et 

al., 2010, Gauthier et al., 1999, Pine et al., 2007). Toxic effects in humpback whales are, however, 

still poorly understood and there are, to date, no established methods to study toxicological 

sensitivity. In order to bridge this information gap, better tools for deriving species-specific data 

are required. This study aims to develop and assess an in vitro toxicity approach for SH humpback 

whales using newly established fibroblast cell lines.  



 

 

Materials and methods 

Reagen ts  
All chemicals were ordered from Sigma Aldrich (Castle Hill, Australia) and all cell culture ware, 

buffers and media from Life Technologies (Mulgrave, Australia), unless otherwise stated. 

Mycoplasma testing was done using the MycoAlert detection kit (Rockland, USA). 

Skin  b iopsy  co l lec t ion  
Skin samples were obtained from healthy free-swimming individual humpback whales in Moreton 

Bay Marine Park, North Stradbroke Island (27° 26 S, 153° 34 E), categorized as breeding stock 

E1 by the IWC. Animals were sampled during their southward migration from northern breeding 

grounds to southern ocean feeding grounds. Samples were obtained with biopsy flotation darts 

(3.5 x 0.7cm) fired from a Paxarm™ air-rifle. Sampling was conducted under Griffith University 

Animal Research Ethics Committee (GU Ref No: ENV/17/10/AEC) approval. Biopsies consisted 

of skin and blubber, and were processed immediately following collection: a tissue piece of 1.5 

cm × 0.7 cm interfacing epidermis and subcutaneous tissue was dissected and stored in complete 

sterile growth medium as described below. During the 6-8 h transport, the samples were stored on 

ice and upon arrival at the laboratory were immediately processed under sterile conditions.  

Process ing  o f  s k in  b iops ies  
Samples were processed according to the protocol of Whitworth et al. (2012). In brief, the tissue 

was rinsed with 1 x Dulbecco's Phosphate-Buffered Saline (DPBS) and separated into epidermis, 

dermis and blubber. The dermal tissue was cut into small sections (~1 mm3) using a scalpel blade 

and tweezers. Approximately eight sections of tissue, covering about 0.5 cm2, were transferred 

into a well of a 6-well tissue culture plate. Tissue fragments were covered with a sterile glass 

cover slip and light pressure applied to ensure tight contact to culture plates. A general fibroblast 

cell culture medium was chosen and cells were maintained at standard mammalian conditions at 

37°C with 5% CO2. Specifically, the medium is composed of DMEM/F12 (50:50 mixture of 

Dulbecco’s modified Eagle’s medium and Ham’s F12) containing 10 % Fetal Bovine Serum 

(FBS), 0.1 mM non–essential amino acids, 1 mM sodium pyruvate and 100 μg/ml Primocin 



 

(InvivoGen, Toulouse, France). Tissue fragments were incubated in 3 ml medium per well with 50 

% replacement every 48 h.  

Is ola t ion  o f  t i s sue  f r ag ments  
After 32-38 days of incubation, primary cells were isolated from the residual tissue as follows: 

tissue fragments were washed 2 x with 5ml of 1 x DPBS, followed by incubation with 1 ml of 

trypsin (TrypLETM) for ~4 min. Thereafter, cells were dissociated from the well bottom and 

coverslip by pipetting 3 x 3 ml of medium and using a scraper blade. The resulting suspension 

was passed through a mechanical sieving unit (70 μm) and collected cells were centrifuged (200 x 

g, 4 min) before being re-seeded in T25 tissue culture flasks (Corning, Tewksbury, USA). 

Subsequent passaging was conducted similarly, washing with 5 ml of 1 x DPBS, incubation with 

2 ml trypsin for ~4 min, neutralization by adding 5 ml medium and pipetting the resulting cell 

suspension into vials for centrifugation. Cells were re-suspended in fresh medium with a final 

splitting ratio of 1:3 or 1:2. After two passages, Primocin was replaced with 1% of 5.000 U/ml 

penicillin-streptomycin (P/S).  

Kar yo t ype   
Karyotyping was conducted with cells isolated from two different animals, i.e. in cells from 

HuWa1/passage 3 (P3) and of HuWa1 (P3) recovered after cryo-preservation. Cells were analyzed 

by Sullivan-Nicolaides Pathology (Taringa, Qld, Australia) using standard G- and C-banding 

procedures. 

Im munoc ytochemis t r y  
Immunocytochemical staining was used for cell-type specific identification. In short, samples 

were fixed with 4% paraformaldehyde in DPBS for 20 min, permeabilised in 0.1% Triton X-100 

in DPBS for 20 min, blocked with 4% goat serum in DPBS and incubated overnight with primary 

antibodies at 4°C. The following primary antibodies were applied; 1:500 monoclonal rabbit 

Vimentin (Abcam ab92547), 1:50 monoclonal mouse Cytokeratin AE1/AE3 (Dako M3515), 

1:200 polyclonal rabbit Collagen I (Abcam ab292), 1:200 polyclonal rabbit Collagen IV (Abcam 

ab6586). Subsequently, samples were incubated with secondary antibodies: 1:1000 Alexa Fluor® 

488 Goat Anti-Rabbit IgG (H+L) and 1:1000 Alexa Fluor® 488 Goat Anti-Mouse IgG (H+L). 

Nuclei were stained with DAPI before mounting under coverslips. Negative controls were 



 

incubated with blocking buffer instead of primary antibody. CaCo-2 cells (Fogh, 1975) were used 

as a positive control for cytokeratin immunostaining. 

Growth  k ine t ic s   
For growth characterization, cells were seeded in 24 well plates and fresh complete medium was 

added every two days. Seeded cells were grown under the following conditions: Incubation at 30, 

33.5 and 37°C, FBS concentration of 0, 5, 10, 15, 20 % and supplementation of 0, 1, 3, 6 and 12 x 

additional Minimum Essential Medium (MEM) amino acid solution or MEM vitamin solution. 

The fluorescent dye Alamar BlueTM (AB) shows a linear correlation of fluorescence with cell 

number (Ganassin, 2000) and was used to calculate the cell number. To obtain an appropriate 

standard curve of AB fluorescent units vs. cell number, cells were seeded at different cell densities 

and fluorescence was measured after ten hours. The medium was discarded, cells were washed 

with DPBS and incubated for 30 min with 5% (v/v) AB in DPBS and fluorescence was measured 

at excitation/emission wavelengths of 530/595 nm using an Infinite M200 plate reader (Tecan, 

Switzerland). The obtained standard curve was used to calculate cell number: 

(1) Y= 0.02 x + 8.3; R2 = 0.96  

with Y= AB fluorescence unit and x= seeded cell number/ml.  

Population Doubling Time (PDT) was calculated from the log phase of the growth curve as  

(2) PDT = log2 / (logN2 – logN1)*t  

with N1= cell number/ml at the beginning and N2= cell number/ml at the end, with t= 96h.  

Cryopreserv a t ion  and  recov ery   
Approximately 1 x 106 of HuWa1 cells (P2) were used for cryopreservation. Cells were washed 

with 5 ml of 1 x DPBS, trypsinized with 2 ml trypsin and centrifuged. The pellet was re-

suspended in freezing medium containing 90% FBS and 10% dimethyl sulfoxide (DMSO). 

Cryotubes were frozen overnight to -80°C using an isopropyl alcohol freezing container and final 

storage was conducted in the vapor phase of liquid nitrogen. For recovery, frozen cells were 

rapidly thawed to room temperature and re-suspended in pre-warmed medium. Before plating in 

cell culture flasks, survival was measured by using the Trypan blue exclusion assay. 



 

p ,p , ’ -DD E and  hu mpb ack wha le  b lub ber  ex t rac t  p repara t ion  
Stock solutions were prepared by dissolving p,p,’-DDE directly in DMSO (≥99.9%) and 

sonicating 3 times for 5 min at 20°C. Working solutions were freshly prepared in DMSO and 

added to the cell culture system to achieve final concentrations ranging from 0.3 μg/l (9.4x10-4 

μM) to 2.4 mg/l (7.5 μM) and 0.25% solvent content.  

For blubber extract preparation, blubber was obtained from a male adult humpback whale 

stranded on the Gold Coast (Queensland; Australia) in 2007. The blubber tissue had been wrapped 

in aluminum foil and stored in a zip-lock bag at -20°C for long-term storage. The blubber extract 

was prepared according to the extraction and clean-up method described in Bengtson Nash et al. 

(2013) without addition of internal standards. In brief, the tissue was homogenized and dried with 

mortar and pestle and anhydrous Na2SO4. The dried sample was extracted with cyclohexane:ethyl 

acetate (1:1) on a cold column and further cleaned by gel permeation chromatography, alumina 

oxide and silica columns. Finally the solvent was exchanged to 100 μl of DMSO. The blubber 

tissue had previously been analyzed for a range of POP compounds by high resolution-gas 

chromatography/high resolution mass spectrometry (HRGC/HRMS). The extract concentration is 

expressed as p,p,’-DDE equivalent. 467 ng/gBlubber p,p,’-DDE was measured and 1.3 g of blubber 

was extracted to a final stock solution of 6.05 x 103 μg/l (19.03 μM) p,p,’-DDE equivalent. For 

exposure, the stock solution was pre-warmed to room temperature and working solutions were 

prepared by diluting the stock 1:2, 1:20, 1:200 and 1:2000 in DMSO. The exposure procedure 

using the blubber extract was identical to that for the p,p,’-DDE stock solution except that the 

final DMSO content was  1%. The applied DMSO concentration did not affect cell viability 

compared to a non-DMSO control as quantified and described below.  

Cel l  v iab i l i t y   
Cell viability upon exposure to p,p,’-DDE was assessed for HuWa1 (P8 - P16) cells and sub-

cultured primary human fibroblast cells (HFb) (P5 - 8). HFb were obtained from the Australian 

Institute for Bioengineering and Technology (AIBN), The University of Queensland, (Brisbane; 

Australia). The primary cells from which this cell line was gained were isolated from the skin 

tissue of a healthy female donor. HFb were maintained in DMEM/high glucose containing 10% 

FBS, 0.1 mM non–essential amino acids, 1 mM sodium pyruvate, 6 mM L-glutamine and 1% 



 

penicillin/ streptomycin. Cell viability upon exposure to blubber extract was measured in HuWa1 

(P7) cells.  

Cells were seeded at a density of 2 x 104 cells/ml in 24 well plates and cultured for 48 h prior to 

treatment. HuWa1 and HFb exhibited plating efficiencies of about 85%. Thereafter, HuWa1 cells 

were exposed to p,p’-DDE or blubber extract for 24 h in DMEM/F12 without FBS. Exposure to 

HFb was conducted in DMEM high glucose without FBS. Minor metabolic differences following 

the use of DMEM/F12 and DMEM high glucose as exposure media cannot be excluded but are 

unlikely to play a major role for the applied time frame of 24 h. Response was assessed using the 

fluorescent dye, 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), indicating 

membrane integrity as described in Schirmer et al. (1997). Briefly, after treatment, exposure 

medium was discarded, cells were washed with DPBS and incubated for 30 min with 4 μM 

CFDA-AM in DPBS. Fluorescence was measured at excitation/emission wavelengths of 493/541 

nm. The results were expressed as percentage of the solvent control, which was set to 100%. 

Concentration-response curves were fitted using non-linear regression (sigmoidal dose-response, 

variable slope, top= 100% and bottom= 0% constrained) and the concentrations or dilutions 

causing a 50% impact on cell viability (EC50 values) calculated using GraphPad Prism 6 software.  

Sta t is t i ca l  ana l ys is  
Data for p,p,’-DDE cell viability assessment is presented as the mean of three independent 
experiments and the error bars represent the standard deviation. The concentration-response 
curves were compared using the F-test and significant difference between the logEC50 was tested. 
The analysis was done using GraphPad Prism 6 software.  
 
Results and discussion 

Cel l  cu l tu re  es tab l ish ment  
A total of nine skin biopsies were obtained from free-swimming individual humpback whales 

(Tab.1). Biopsies included skin (epidermis, dermis) and the upper layer of subcutaneous tissue 

(blubber). All tissue fragments were explanted. The first single primary cells were observed after 

14 days of culture as outgrowths from dermal samples. By day 25, some dermal fragments were 

surrounded by partly confluent monolayers of fibroblastic cells (Fig.1A-C). Cells were only 

observed from tissue fragments tightly fixed between the base of the well and the cover slip. No 



 

cells grew in tissue fragments of dissected epidermal tissue or fat. The main cell type in dermal 

connective tissue lying between the epidermis and hypodermal fat are fibroblasts. The layer of 

connective tissue measured between 0.1 and 0.3 cm in depth and appeared slightly pink in 

colouration. These tissue fragments exhibited the highest capacity to grow spindle-shaped 

fibroblasts. However, in the connective tissue fragments 29S13 – 32S13, lipid droplets were 

present and only constrained cell growth was observed. We hypothesize that abundant lipid 

content may have inhibited proliferation of primary cells. Outgrowth occurred in five biopsy 

samples from three young animals (2x yearling, 1x calf) and two adults. The tissue of younger 

animals appeared to be softer and attached more readily to the plates. Overall, the cell yield was 

low. Of the five biopsies which showed primary cell outgrowth, only two lines were successfully 

isolated and, at the time of paper submission, passaged to P30 (2S13; designated HuWa1) and P10 

(27S13; designated HuWa2), respectively. During passaging no signs of senescence, 

morphological variation or changes in growth behavior were observed. All subsequent 

experiments were carried out with HuWa1 except for karyotyping and growth rate determination, 

which were also conducted with HuWa2.  

Kar yo t ype  
Cells of HuWa1 (P3) in their metaphases were used for G- and C-banding (Fig. 2A). Cells 

exhibited diploid chromosome pairings with 2n=44 including 21 pairs of autosomes and 1 pair of 

sex chromosomes. HuWa1 were of male origin. The chromosome number is identical in HuWa2 

cell (P7) (data not shown) and the C-banded chromosomes of Megaptera novaeangliae shown in 

O'Brien et al. (2006). 

30 metaphase spreads of HuWa1 (P3) were fully karyotyped and about ~95% were diploid. 

Further C-banding indicated the presence of occasional tetraploidy in approximately 5% of cells 

examined with 2n=88 chromosomes (Fig. 2B). Tetraploidy in cetacean cells was also observed for 

blue whales (Arnason et al., 1985). HuWa1 cryopreserved cell cultures (P3) were analyzed for 

possible chromosomal rearrangements as a result of cryopreservation (Fig. 1C). The chromosomes 

did not display any visible rearrangements. 



 

Cel l  t ype  iden t i f i ca t ion  
Two protein markers were selected to determine if isolated cells are indeed fibroblasts. Vimentin 

is an intermediate filament indicating mesenchymal origin such as endothelial cells, smooth 

muscle cells and fibroblasts. Therefore it is a typical and widely applied fibroblast marker 

(Richards et al., 1995, Sappino et al., 1990). Cytokeratin is an intermediate cytoskeleton filament 

produced by cells of epithelial origin. HuWa1 exhibited strong immunoreactivity to vimentin (Fig. 

3A) and no immunoreactivity to cytokeratin (Fig. 3B). Although the technical control for 

cytokeratin was positive (Fig. 3B, inset), no humpback whale-specific positive control was 

available. However, cytokeratin has shown to be positively expressed in other cetacean species 

(Pine et al., 2004, Yu et al., 2005). These results therefore lend strong support that spindle-shaped 

HuWa1 cells are indeed fibroblasts. Collagen type I (Col I) is the abundant fibre-forming 

component in the extracellular matrix (Ricard-Blum and Ruggiero, 2005) and Collagen type IV 

(Col IV) is the abundant component of the basement membrane, both of which can be synthesized 

by fibroblasts. HuWa1 cells showed strong immunostaining for Col I (Fig. 3C) and weak 

immunostaining for Col IV (Fig. 3D).  

Recov ery a f te r  c ryopreserv a t ion  
Cryopreservation enables long-term preservation and backup in case of morphological or genetic 

variations, senescence or contamination. Samples of passage two of HuWa1 cells were thawed to 

study their ability to recover from preservation. At the tested cell density of 8 x 105 cells/ml, 

~90% were viable as assessed by Trypan blue staining. Further, cells regained their growth 

characteristics on continued culture (see below).  

Growth  of  HuW a1 and  2  
Jin et al. (2013) reports the establishment of humpback dolphin fibroblast cultures and assessed 3-

5 days of proliferation until cells reached confluency when passaged 1:3. The same study 

observed reduced proliferation starting from P10 and finally senescence with P17. Contrary to the 

dolphin fibroblasts, HuWa1 and HuWa2 reach confluency within ~16 days when split at 1:3. 

Growth properties of both HuWa cell lines are stable and no growth reduction or senescence was 

observed to date (P30). The generated growth curves (Fig. 4) indicate no major differences 

between HuWa1 (P9) and HuWa2 (P6). Population doubling time of HuWa1 was 41 h compared 



 

to 31 h for human fibroblasts cultured in the same setup. HuWa1 cells that were cryopreserved 

and thawed exhibited slightly lower growth rates in passage one after thawing. However, after two 

passages, the growth rate returned to pre-cryopreservation levels.  

In f luence  o f  te mpera tu re ,  s e ru m,  v i ta mins  and  essen t ia l  a min o  
ac ids  
Conventional mammalian cell culturing is conducted at 37°C and 5% CO2 under standard 

conditions. Sperm whale (Wise et al., 2012) and right whale (Chen et al., 2009) fibroblasts are 

reported to be cultured at 33°C (doubling time of 36 h). Body temperature of humpback whales 

was estimated to be ~36°C (Morrison, 1962). The average habitat temperature of sampled SH 

humpback whales varies from tropical through to temperate and polar regions. The HuWa cell 

lines were derived from under-perfused tissue situated outside the thermoregulatory blubber. 

Therefore, we tested the temperature tolerance of HuWa1 cells. Cells proliferated at all tested 

temperatures (30, 33.5 and 37°C) and did not show any morphological variation. This indicates 

temperature tolerance down to at least 30°C. However, the cells grew in a temperature dependent 

manner and exhibited greater proliferation capacity at higher temperatures. At 37°C growth was 

most effective (Fig. 5A).  

Serum, such as FBS, is one of the essential medium components providing nutrients, hormones 

and growth factors. Thus, HuWa1 cells were tested for their specific FBS requirements (Fig. 5B). 

In the absence of FBS, cell numbers decreased over time and senescence was observed by 

microscopy. In contrast, cell numbers increased in a serum concentration-dependent manner from 

5 to 20 % of FBS.  

Carvan et al. (1994) and Pine et al. (2004) used specific cetacean culture medium (CCM) enriched 

with additional vitamins and amino acids to grow epithelial cell lines. HuWa1 cells incubated with 

medium containing 0 – 10 fold the vitamins in MEM exhibited no difference in growth over time 

(Fig. 5C). Addition of essential amino acids, however, inhibited cell growth. From day six 

onwards, all concentrations of added amino acids led to decreased cell numbers compared to the 

control (Fig. 5D). This experiment demonstrates that HuWa1 cells do not require enriched CCM. 

The decrease in cell proliferation may be explained due to media requirements being specific for 

different cetacean cell types. In the case of HuWa1, high concentrations of single amino acids or a 



 

change of the amino acid composition exceeding the optimum concentrations may lead to a 

decline of cell proliferation. 

Impac t  on  ce l l  v iab i l i t y  o f  p ,p ’- DDE  and  b lubber  ex t rac t  
Both HuWa1 and HFb were clearly impacted in their viability upon exposure for 24 h to the 

highest applied concentration of p,p’-DDE, which was 2400 μg/l (7.6 μM). However, the lowest 

observed effect concentration for HuWa1 cells was 1500 μg/l (4.7 μM), while for HFb was 120 

μg/l (0.3 μM) (Fig. 6A). The calculated EC50 value for HFb was about six-fold lower compared to 

HuWa1 (Fig. 6B). The hill slope of the dose response curves were -1.7 and -11.65 for HFb and 

HuWa1 cells, respectively. Varying hill slopes may indicate different species sensitivity or 

different mode of action (Rodier, 1994). These results suggest a species-specific response and 

point out that data cannot be transferred comprehensively between these two mammalian species. 

The average p,p,’-DDE concentration detected in the blubber of southward migrating humpback 

whales of 15.2 ng/gblubber (15.2 μg/l) (Bengtson Nash et al., 2013) did not appear to affect cell 

viability. In nature chemical exposure does not, however, occur to single chemicals in isolation, 

but to complex chemical mixtures. In order to test a more environmentally relevant exposure 

mixture, HuWa1 cells were finally exposed to a chemical extract from the blubber of a stranded 

humpback whale. The p,p,’-DDE content of this extract was measured previously and thus the 

extract concentrations are expressed as p,p,’-DDE equivalents. The concentration-response 

relationship of the POP extract was clearly shifted to the left compared to p,p’-DDE alone and the 

assessed EC50 values were 1880-times lower (Fig. 6). SH humpback whales accumulate 

potentially interacting mixtures of lipophilic chemicals including PCBs, DDTs, chlorobenzenes, 

chlordanes, cyclodienes and toxaphenes (Bengtson Nash et al., 2013). Elevated sensitivity may be 

due to the mixture of identified chemicals but also unidentified chemicals, which may elute in the 

same fraction but which have not been quantified in this individual, e.g. polybrominated diphenyl 

ethers. Therefore we presume that exposure to the chemical mixture also reflects additive, 

synergistic and/or antagonistic effects. Further toxicological studies are required and a wider 

range of chemicals with different modes of action needs to be tested to provide further evidence 

regarding responsiveness of this cell line and differences to other cetacean or human cell lines. 



 

Summary and Conclusion 

We have established the first cell lines from humpback whales. Both HuWa1 and HuWa2 cells 

were identified as fibroblasts stemming from male individuals with a karyotype of 2n=44, which 

has commonly been observed in other baleen whale species e.g. blue whales. The sensitivity of 

the HuWa cells to a typical POP differs considerably from human fibroblasts and a natural POP 

mixture emphasizing the importance for species-specific toxicity evaluation and the role of in 

vitro methods to evaluate those. Future research will focus not only on toxicity aspects but also on 

the development of immortalised HuWa cell lines to enable long-term maintenance and use. The 

establishment of HuWa cell lines provides the unique opportunity to develop advanced 

approaches for an integrated toxicity risk assessment geared toward humpback whales with 

enhanced environmental relevance. 
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Figure Captions 
Figure 1: Phase contrast appearance of HuWa1 cells. (A) Primary cells growing out of connective 
tissue fragments, (B) detailed morphology of fibroblastic cells and (C) isolated primary cells 
forming a semi-confluent layer observed at the edge of a T75 cell culturing flask (P1). Mean size 
of HuWa1 varied from 50-200 μm in length and suspended cells exhibited an average diameter of 
20-22 μm. The scale bar indicates 300 µm. 
(2-column image; color) 
Figure 2: Karyogram of Megaptera novaeangliae cell cultures. G-banded chromosomes of (A) 
HuWa1 (P3) show chromosome numbers 2n= 44 and male gender (arrow). (B) Combined G and 
C-banding of HuWa1 indicates tetraploidy in some cells and (C) cryopreserved HuWa1 (P3) show 
no evidence of chromosomal rearrangements. 
(3-column image; color) 
Figure 3: Assessment of selected protein markers in the HuWa1 cells. Cells exhibited positive 
expression for intracellular Vimentin (A, green), no reactivity of Cytokeratin (B), positive 
immunoreaction with Col I (C, red) and weak immunoreaction with Col IV (D, red). The inset in 
(B) shows CaCo-2 cells as technical positive control for Cytokeratin (green). Cell nuclei were 
counterstained with DAPI (blue). The scale bar indicates 50 µm. 
(2-column image, color) 



 

Figure 4: Growth curves of HuWa cell lines. HuWa1 and HuWa2 indicate similar growth 
properties and slightly reduced growth of cryopreserved HuWa1 (P3) for the first passage directly 
after thawing. Data represent the mean of three technical replicates and the error bars represent the 
SD.  
(1-column image; color) 
Figure 5: Assessment of the influence of varying temperatures (A), FBS concentrations (B), 
vitamin concentrations (C) and essential amino acids concentrations (D) on the proliferation 
capacity of HuWa1. Data represent the mean of three technical replicates and the error bars 
represent the SD.  
(2-column image; color) 
Figure 6: Cell viability assessment upon exposure to p,p,’-DDE and a POP mixture. (A) HuWa1 
(P8-P15) and HFb (P5-8) exposed to p,p,’-DDE, and HuWa1 (P8) exposed to an extracted POP 
mixture, the latter of which is expressed as p,p,’-DDE equivalents (lower X-axes). Data for p,p,’-
DDE is presented as the mean of three independent experiments and the error bars represent the 
standard deviation, whereas data for the POP mixture depict the mean of three technical replicates. 
The vertical dotted line indicates the average p,p,’-DDE concentration in the fat of southward 
migrating humpback whales (Bengtson Nash et al., 2013). (B) EC50 values as assessed from 
corresponding concentration-response curves. 
(1-column image; color) 

 



 



 



 



 

 

 

 

Tables 

Table 1. Overview of sampled humpback whales and success of primary cell isolation.  

ID Animal Age a Transport (t) Primary Cells b,c Passage Designation 
2S13  Yearling (1-2 years) 6 h + > P 30 HuWa1 

15S13 Adult (Female) 8 h - n.a.  

16S13 Yearling (1-2 years) 6 h + (P1) e  

27S13 Adult (Male)  8 h + > P 10 HuWa2 

28S13 Calf (< 1year) 8 h + (P1) e  

29S13  Adult (Male) 7.5 h - d n.a.  

30S13 Adult (Male) 7.5 h - d n.a.  

31S13  Adult (Male) 7.5 h + d (P3) e  

32S13  Adult (Male) 7.5 h - d n.a.  

a The age and gender of biopsied animals was estimated by size and group composition   of 
migrating cohorts 



 

b + or - indicates the presence or absence of primary cells 
c Primary cells were isolated after 32 to 38 days in culture 
d Presence of abundant lipid droplets  
e Non-successful passaging; at the number given in brackets cells stopped proliferation  
 


