
PHYSICAL REVIEW B 92, 125103 (2015)

Shear viscosity of strongly interacting fermionic quantum fluids
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Eighty years ago, Eyring proposed that the shear viscosity of a liquid η has a quantum limit η � n� where n is
the density of the fluid. Using holographic duality and the anti–de Sitter/conformal field theory correspondence
in string theory, Kovtun, Son, and Starinets (KSS) conjectured a universal bound η

s
� �

4πkB
for the ratio between

the shear viscosity and the entropy density s. Using dynamical mean-field theory, we calculate the shear viscosity
and entropy density for a fermionic fluid described by a single-band Hubbard model at half-filling. Our calculated
shear viscosity as a function of temperature is compared with experimental data for liquid 3He. At low temperature,
the shear viscosity is found to be well above the quantum limit and is proportional to the characteristic Fermi
liquid 1/T 2 dependence, where T is the temperature. With increasing temperature and interaction strength U ,
there is significant deviation from the Fermi liquid form. Also, the shear viscosity violates the quantum limit
near the crossover from coherent quasiparticle-based transport to incoherent transport (the bad metal regime).
Finally, the ratio of the shear viscosity to the entropy density is found to be comparable to the KSS bound for
parameters appropriate to liquid 3He. However, this bound is found to be strongly violated in the bad metal
regime for parameters appropriate to lattice electronic systems such as organic charge-transfer salts.
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I. INTRODUCTION

The viscosity of a fluid is a measure of its resistance to
externally applied shear or tensile stress. The shear viscosity
of a fluid measures the resistance of a fluid to shear flows,
where adjacent layers of a fluid move parallel to each other but
with different speeds. The differential speed between different
layers will give rise to friction between different layers which
will resist their relative motion. This is known as the viscous
drag. For example, the viscous drag force per unit area in
the x direction τxy due to velocity gradient ∂ux(y)/∂y in the
perpendicular y direction is given by

τxy = −η
∂ux(y)

∂y
, (1)

where η is the coefficient of shear viscosity. The SI unit of
shear viscosity is Pascal-seconds (Pa · s) equivalent to Newton-
second per square meter (N · s m−2). The shear viscosity of
water is about 10−3 (Pa · s) at room temperature whereas the
shear viscosity of highly viscous fluids such as glasses near
the glass transition temperature can be as large at 1013 Pa · s.

For fluids η can be measured through Stokes law for sound
attenuation [1]:

α = 2ω2η

3ρc3
s

, (2)

where α is the rate of attenuation, ρ is the mass density of
the fluid, ω and cs are the frequency and velocity of sound
in the medium, respectively. This equation has been used to
determine the shear viscosity as a function of temperature
for liquid 3He (a correlated neutral fermion fluid). Extensive
experimental data have been reviewed by Huang et al. [2].
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The shear viscosity for an electron gas in metals, calculated
from solution of the Boltzmann equation, is given by [3]

η = 1
5n�kF 	, (3)

where n is the density of electrons, kF is the Fermi velocity,
and 	 is the electronic mean-free path, respectively. In the
quasiparticle regime of transport kF 	 � 1, i.e., the mean-free
path is much larger than the lattice spacing a ∼ k−1

F . Hence,
in analogy with the Mott-Ioffe-Regel (MIR) limit, σMIR = e2

ha
,

for minimum metallic conductivity, we can conjecture a lower
limit for the shear viscosity ηq :

ηq = 1
5n� (4)

corresponding to the case where the electronic mean-free path
becomes comparable to lattice spacing. Also, a comparable
limit η � n� was proposed by Eyring [4] almost 80 years
ago. For a large class of strongly correlated systems such as
3d transition-metal oxide compounds, organic charge-transfer
salts such as κ-(BEDT-TTF)2X, the MIR limit is violated
[5–7] and the coherent quasiparticle-based transport picture
breaks down, i.e., 	 < a. Similarly, we might expect that in
the incoherent regime of transport, the shear viscosity η could
violate the quantum limit to coherent transport, i.e., η < ηq .

Recently, a string theory based approach has been proposed
to understand incoherent quantum transport in strongly corre-
lated electron systems, especially the strange metal regime of
doped cuprates [8–12]. The key idea of this method is to map
a strongly coupled conformal field theory (CFT) to weakly
coupled gravity in the anti–de Sitter (AdS) space in higher
dimension [13]. This is known as the holographic duality
or AdS/CFT correspondence. Furthermore, event horizon
dynamics of a black hole in the anti–de Sitter space can
be mapped to the dynamics of classical fluids. Using the
AdS/CFT correspondence, Kovtun, Son, and Starinets (KSS)
[14] calculated the ratio η/s of the shear viscosity (η) and the
entropy density (s) in a specific string theory model (type IIB)
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and proposed a universal lower bound for the ratio

η

s
� �

4πkB

(5)

in any material or field theory. This bound is found to be well
respected in classical fluids such as water and quantum fluids
such as the quark-gluon plasma created in the relativistic heavy
ion collider (RHIC) [15], ultracold atomic Fermi gases in the
unitary limit of scattering [16], and by theoretical calculations
for graphene [17] and for ultracold atomic Fermi gases [18,19].
It has recently been found that for the strongly interacting
Fermi gas, both experimentally [20] and theoretically [21],
that the viscosity-entropy ratio is a minimum, not at unitarity,
but on the BEC side, with a minimum value of �0.2�/kB .
Possible violations of the KSS bound have been discussed for
higher derivative versions of gravity and with the inclusion of
massive quarks [22].

In a recent calculation we tested a related but distinct bound
on charge diffusivity D � �v2

F

kBT
, where vF is the Fermi velocity,

proposed by Hartnoll [11]. We found [23] clear violation
of this bound in the strong coupling (bad metal) regime of
the Hubbard model. In this paper, we calculate the shear
viscosity in a single-band Hubbard model and explore possible
violations of the conjectured quantum bounds on η and η/s.

Overall, we find that the scale of the viscosity in a correlated
band system with a lattice constant a in d dimensions is set by

ηb
0 ≡ �

ad

(
m

mb

)2[
π

2d(d − 1)

]
, (6)

where m is the free-fermion mass and mb ≡ �
2/(a2Eb) is

a mass scale determined by some energy scale Eb defined
by the band structure, such as the half-bandwidth W or the
rescaled hopping integral t∗ for a hypercubic lattice. A detailed
derivation of the expression in Eq. (6) will be provided in the
following sections. We show that for a lattice system ηb

0 is
the relevant scale for the analog of the Mott-Ioffe-Regel limit.
We will see that the presence of this new scale, absent in a
conformally invariant system, can increase the likelihood of
violation of the KSS bound.

The organization of the paper is as follows. In Sec. II,
we introduce the Kubo formula for calculation of the shear
viscosity using linear-response theory. In Sec. III, we briefly
describe the dynamical mean-field theory (DMFT) approach
for calculating properties of a single-band Hubbard model and
the iterated perturbation theory (IPT) based approach used
to treat the DMFT self-consistency for the associated single-
impurity Anderson model. In the same section, we introduce
calculation of the shear viscosity and entropy density in DMFT.
In Sec. IV, we first briefly review experimental results for the
temperature dependence of the shear viscosity of liquid 3He
and its possible description by a Hubbard model. In Sec. V,
we show our results for the Hubbard model on the Bethe and
hypercubic lattices at half-filling. Similar results are obtained
for both lattices. We compare our calculations to experimental
results for liquid 3He. The temperature dependence of the
ratio of the viscosity to the entropy density is calculated. It
is found that in the bad metal regime near the Mott metal-
insulator transition this ratio can be smaller than the KSS
bound. In Sec. VI, we discuss about experimental measurement

of shear viscosity in charged systems and finally we conclude
in Sec. VII.

II. SHEAR VISCOSITY

Nonrelativistic simple fluids are characterized by the
conserved mass density ρ, the momentum density π , and the
energy density E . These quantities will satisfy the following
conservation laws [24]:

∂ρ

∂t
= −∇ · π , (7)

∂πi

∂t
= −∇j�ij (8)

∂E
∂t

= −∇ · j ε, (9)

where �ij is the momentum current density that the fol-
lowing discussion shows is central to the shear viscosity.
As a consequence, in analogy with the case of Ohm’s law
for electrical conductivity, je

α = σαβEβ ≡ −σαβ∂βφ(r), the
generalized Newton’s law for shear flow is

�αβ = −ηαβγ δ(T )∂γ uδ(r), (10)

where ηαβγ δ is a viscosity tensor. In particular, the momentum
current density �xy in the presence of a transverse velocity
gradient ∂ux (y)

∂y
is given by [25]

�xy = −η
∂ux

∂y
, (11)

where η ≡ ηxyxy is the coefficient of shear viscosity for an
isotropic fluid.

The velocity field ux(y) gives rise to a perturbation with
Hamiltonian

H ′ = −
∫

d3r ux(y)π̂x(r) = 1

iω

∂ux

∂y

∫
d3r �̂xy. (12)

To derive Eq. (12) we have used the conservation law in
Eq. (8), integration by parts, and π̂ (r,t) = exp(−iωt)π̂(r). The
momentum current density �xy induced by the perturbation
Ĥ ′ can be calculated from linear-response theory. The shear
viscosity is then obtained by taking the limit ω → 0:

η = − lim
ω→0

Im
�(ω)

ω
(13)

with [24,26]

�(ω) = −i
�

ν

∫
d3r dt eiωt θ (t)〈[�̂xy(r,t),�̂xy(0,0)]〉, (14)

where ν = a3 is the unit-cell volume and θ (t) is the Heaviside
step function. This formula is the analog of the Kubo
expression for the electrical conductivity involving the current-
current correlation function.

For a Fermi gas with a quadratic energy dispersion, the
momentum current density operator is given by [25]

�̂xy = 1

(2π )3

∫
d3p

p̂xp̂y

m
δf, (15)

where δf ≡ fk − f 0
k is the deviation of the distribution

function from local equilibrium. For Bloch electrons in a
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crystal lattice [27] in a Bloch state ψkn(r) = 〈r|n,k〉, with
energy εn(k):

∂εn(k)

∂kα

= �

im

∫
dr ψ∗

kn(r)
∂ψkn(r)

∂rα

= 1

m
〈n,k|p̂α|n,k〉,

(16)

where εn(k) is the energy dispersion of the nth energy band.
Then, (15) can be written

�xy = m

(2π )3

∫
dk vkx

vky
δf (17)

with vkα
= 1

�

∂εk
∂kα

being the velocity of the Bloch electron.
Using deformation potential theory [28], a similar result was
found by Khan and Allen [29] when investigating sound
attenuation by electrons in metals.

It should be pointed out that in a general fluid there are
two terms in the stress energy tensor: one associated with the
kinetic energy and the second with the interparticle interaction.
In dense classical liquids, the terms in the Kubo formula due to
the interaction term dominate and are associated with Einstein-
Stokes relation where the viscosity is inversely proportional to
the particle self-diffusion constant. In contrast, in dilute gases
and fluids the kinetic term dominates and the shear viscosity
scales with the diffusion constant and scattering time [30].
However, for a zero-range interaction, as in the unitary Fermi
gas (and presumably in the Hubbard model), it can be shown
that the potential term in the stress tensor does not contribute
to the shear viscosity. For a discussion of the above, see around
Eq. (7) in Ref. [31].

III. DYNAMICAL MEAN-FIELD THEORY

We consider the single-band Hubbard model with nearest-
neighbor hopping, described by the Hamiltonian

H =−t
∑
〈ij〉,σ

(c†iσ cjσ + H.c.) − μ
∑
i,σ

niσ + U
∑

i

ni↑ni↓, (18)

where niσ = c
†
iσ ciσ , t is the hopping amplitude, μ is the

chemical potential, and U is the Coulomb repulsion when
a given site is doubly occupied by two fermions with opposite
spin configuration. Despite its simplicity, this model has no
exact solution except in one dimension. The study of this
model in higher dimension involves various approximations.
However, as in the case of classical mean-field theory for the
nearest-neighbor Ising model, in the limit of large dimension
d → ∞, the model reduces to an effective single-site model
provided we do the scaling t → t∗/

√
2d on a d-dimensional

hypercubic lattice [32]. Under this approximation we neglect
all spatial fluctuations yet fully retain local quantum dynamics.
The self-energy �ij (ω) for the lattice model then becomes
local, i.e., �ij (ω) = �(ω)δij . This is known as the dynamical
mean-field theory [33] (DMFT) approximation.

It has been found that DMFT gives a good description of the
correlation-driven Mott metal-insulator transition observed in
3d transition-metal oxides and the crossover from a coherent
Fermi liquid to incoherent bad metal state with increasing
temperature [5]. Furthermore, DMFT has also been found
to provide quantitative description of the resistivity [34] and

the frequency-dependent optical conductivity [35] for organic
charge-transfer salts that can be described by a half- filled
two-dimensional Hubbard model on an anisotropic triangular
lattice [36]. DMFT combined with electronic-structure calcu-
lations based on density functional theory (DFT) has given an
excellent description of a large class of transition-metal and
rare-earth compounds [37].

The lattice problem under DMFT can be mapped onto an
effective single-impurity Anderson model [33]:

Himp =
∑
l,σ

(ε̃l − μ)c†lσ clσ +
∑
l,σ

(Vlc
†
lσ d0σ + H.c.)

−μ
∑

σ

nd0σ + Und0↑nd0↓, (19)

where nd0σ = d
†
0σ d0σ . The operators d

†
0σ and d0σ characterize

a local site and {c†lσ ,clσ } characterizes the effective bath arising
from fermions at all other sites. It is important to mention that
the fictitious bath dispersion ε̃l has no relation to the lattice
dispersion εk.

The solution of the impurity problem is the toughest
part and usually involves use of numerical methods such as
quantum Monte Carlo (QMC), exact diagonalization (ED), or
the numerical renormalization group (NRG). We use iterated
perturbation theory (IPT) [38,39] as it is semianalytical, easy to
implement, computationally cheap, and fast. Yet, IPT captures
the essential physics in the parameter regime U < 0.8Uc,
where Uc is the critical value of U at which the zero-
temperature Mott metal-insulator transition happens. Except
in close proximity of the Mott transition, IPT was found to
be in good agreement with results from other impurity solvers
such as the numerical renormalization group (NRG) [40] and
continuous-time quantum Monte Carlo (CTQMC) [41]. In the
next subsection, we discuss DMFT self-consistency using IPT.

We briefly mention why it is appropriate to compare
the results of AdS/CFT to a calculation involving DMFT.
The latter becomes exact in infinite dimension. Generally,
AdS/CFT is concerned with finite-dimensional quantum field
theories. However, it is found that in certain parameter regimes
DMFT can accurately give a quantitative description of quasi-
two-dimensional metals near the Mott insulator. Furthermore,
connections have been made between the results of AdS/CFT
and the infinite-dimensional limit of a model for a gapless
spin liquid [42]. We know that the DMFT approximation
reduces a lattice problem to an effective local impurity problem
which captures local correlation effects. On the other hand, the
AdS/CFT correspondence maps a strongly coupled field theory
to a problem of fluid mechanics and fluids are characterized
by short-range correlations. So, we might expect a DMFT
based description of quantum transport of lattice electronic
systems will be closely related to quantum transport in the
hydrodynamic regime of a strongly coupled field theory.

A. Iterated perturbation theory

The irreducible self-energy in IPT is approximated using
the second-order (in U ) polarization bubble involving fully in-
teracting bath Green’s function G0(ω). The self-energy under
this approximation can be shown (using moment expansion
of the interacting density of states) to smoothly interpolate
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between the atomic limit t = 0 and the weak-coupling limit
U → 0. In the following paragraph we briefly discuss DMFT
self-consistency using IPT as the impurity solver. As we are
interested in calculating transport properties we work with real
frequencies, as against the imaginary frequency formulation
that requires analytical continuation of imaginary frequency
data to real frequency.

(i) For a given lattice density of states N0(ε) and self-
energy �(ω), the local Green’s function is given by

G(ω) =
∫ +∞

−∞

N0(ε)dε

ω+ + μ − ε − �(ω+)
, (20)

where μ is the local chemical potential and ω+ = ω + iδ with
δ > 0.

(ii) From the knowledge of the local Green’s function
G(ω), we can calculate the bath hybridization function �(ω)
by using

�(ω) = ω+ + μ − �(ω) − G−1(ω). (21)

(iii) Subsequently using bath hybridization we can calcu-
late bath Green’s function as

G0(ω) = 1

ω + μ0 − �(ω)
. (22)

The parameter μ0 = μ − Un is the bath chemical potential
and it vanishes at half-filling for the particle-hole symmetric
case, which we consider in this study.

(iv) The new self-energy can be calculated using IPT ansatz
[39] as

�(ω) = Un + A�(2)(ω)

1 − B�(2)(ω)
, (23)

where

A = n(1 − n)

n0(1 − n0)
; B = U (1 − n) − μ + μ0

n0(1 − n0)U 2
(24)

and n, n0 are the local and bath particle numbers, respectively.
�(2)(ω) is the self-energy from second-order perturbation
theory and is given by

�(2)(ω) = U 2
∫ +∞

−∞

3∏
i=1

[dεiρ0(εi)]

[
nF (−ε1)nF (ε2)nF (−ε3)

ω + iδ − ε1 + ε2 − ε3

+ nF (ε1)nF (−ε2)nF (ε3)

ω + iδ − ε1 + ε2 − ε3

]
, (25)

where ρ0(ω) = − 1
π

Im[G0(ω+)] and δ → 0+. We iterate (i)–
(iv) until the desired self-consistency in self-energy and
other physical quantities are achieved. Here, we consider the
particle-hole symmetric case at half-filling n = 1. In this case
μ = U

2 for all U and T .

B. Shear viscosity in DMFT

Using the self-consistent self-energy, we can calculate the
shear viscosity. In the limit of d → ∞, all vertex corrections
to two-body correlation functions drop out [43] and the
temperature-dependent coefficient of shear viscosity η(T ),
given by the Kubo formula (13), can be calculated using a

simple polarization bubble as

η(T ) = π�

ν

∫ +∞

−∞
dω

[
−∂nF (ω)

∂ω

] ∫ +∞

−∞
dε �xy(ε)A2(ω,ε),

(26)

where ν = ad is the volume of the unit cell of a d-dimensional
hypercubic lattice with lattice constant a,

A(ω,ε) = − 1

π
Im

[
1

ω+ + μ − ε − �(ω+)

]
, (27)

nF (ω) = 1

eβω + 1
(28)

are the spectral density and Fermi function, respectively,

�xy(ε) = m2

N

∑
k

v2
kxv

2
kyδ(ε − εk) (29)

with vkα = 1
�

∂εk
∂kα

is the transport density of states for the shear
viscosity, and N is the number of lattice sites. Following
a similar procedure to that in Ref. [44], we can show that
the transport density of states for shear viscosity for a d-
dimensional hypercubic lattice with nearest-neighbor hopping
is given by

�xy(ε) = γ 2

2d(d − 1)

[
−3

2
M3(ε) + 2εM2(ε)

+
(

4dt2 − 1

2
ε2

)
M1(ε) − 4t2εM0(ε)

]
, (30)

where γ = ma2

�2 and

Mn(ε) ≡
∫ ε

−∞
znN0(z)dz, (31)

where N0(ε) = ∑
k δ(ε − εk) is the density of states per spin.

In the Appendix, we give a detailed derivation of this important
result. In the following subsections, we explicitly evaluate this
expression for the hypercubic lattice and Bethe lattice cases.

One should consider how the vertex corrections could
modify the DMFT results in finite dimensions. For the unitary
Fermi gas vertex corrections increase the viscosity by a
factor of about 2.6 [compare the discussion below Eq. (54)
in Ref. [31]]. For the quark-gluon plasmon in the theory of
quantum chromodynamics (QCD) at high temperatures vertex
corrections significantly increase the viscosity, changing the
functional dependence on the coupling constant [compare
Eqs. (4.25) and (4.26) in Ref. [45]]. In a two-dimensional
Fermi liquid, the vertex corrections have been shown [46] to
be of the order of [ln(EF /T )]3. For a doped Hubbard model,
it was found in a dynamical cluster approximation calculation
based on a four-site cluster that the vertex corrections to
the optical conductivity were not significant, except very
close to the Mott insulator [47]. A study of the same model
using a two-particle self-consistent approach found that vertex
corrections changed the calculated resistivity by less than a
factor of 2 [48]. In light of the above, it seems unlikely that
vertex corrections would increase the viscosity by more than
an order of magnitude compared to the DMFT results.
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1. Hypercubic lattice case

For hypercubic lattice in the limit of d → ∞, we have
N0(ε) = 1√

πt∗ exp[−ε2/t∗2] for the density of states. It is
important to mention that the chosen density of states in the
limit d → ∞ requires the scaling 2t → t∗/

√
d . The transport

density of states for the shear viscosity is then given by

�xy(ε) = γ 2t∗3

2d(d − 1)
[−3I3(ε̃) + 4ε̃I2(ε̃) − ε̃2I1(ε̃)

+ 2I1(ε̃) − 2ε̃I0(ε̃)], (32)

where

In(x) = 1√
π

∫ x

−∞
une−u2

du (33)

are the dimensionless integrals and ε̃ = ε/t∗ is the dimension-
less energy.

We define the scaled dimensionless transport density of
states for the shear viscosity �̄(ε̃) as

�̄xy(ε̃) = −3I3(ε̃) + 4ε̃I2(ε̃) − (ε̃2 − 2)I1(ε̃) − 2ε̃I0(ε̃).

(34)

Using the exact integrals∫ ε

−∞

(
z2 − 1

2

)
e−z2

dz = −1

2
εe−ε2

, (35)

∫ ε

−∞
ze−z2

dz = −1

2
e−ε2

, (36)

∫ ε

−∞
z3e−z2

dz = −1

2
(ε2 + 1)e−ε2

, (37)

we get

�̄xy(ε̃) = 1

2
N0(ε̃) = 1

2
√

π
e−ε̃2

. (38)

In Fig. 1(a), we show transport density of states for viscosity
for hypercubic lattice. Interestingly, the transport density of
states for electrical conductivity for hypercubic lattice also
follows a relation similar to Eq. (38), as shown in Ref. [44].

The shear viscosity is then given by

η = ηb
0

∫ +∞

−∞
dω̃

[
−∂nF (ω̃)

∂ω̃

] ∫ +∞

−∞
dε̃ �̄xy(ε̃)A2(ω̃,ε̃), (39)

where the dimensionful prefactor ηb
0 is given by Eq. (6) with

mb = �
2

a2t∗ and ω̃ = ω/t∗ is the dimensionless energy.

2. Bethe lattice case

We consider the Bethe lattice (Cayley tree) with coordi-
nation number z. In the limit of infinite coordination number
(z → ∞), the density of states has semicircular form [49]

N0(ε) = 2

πW 2

√
W 2 − ε2 θ (W − |ε|), (40)

where θ (x) is the Heaviside step function, W = 2t∗ is the
half-bandwidth, and the nearest-neighbor hopping amplitude
(t) in this case is scaled as t → t∗/

√
z. For a Bethe lattice with

coordination number z, the connectivity K = z − 1 while that
for a d-dimensional hypercubic lattice is 2d. So, in the limit
of large coordination number we can always do the mapping

-4 -3 -2 -1 0 1 2 3 4
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_

_

_
_

Hypercubic
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FIG. 1. (Color online) Density of states N0(ε) and scaled dimen-
sionless transport density of states for shear viscosity �̄xy(ε) for the
hypercubic lattice [panel (a)] and for the Bethe lattice [panel (b)].
�̄xy(ε) for the Bethe lattice shows additional structures near the band
edges, but for the hypercubic lattice it is just proportional to the
density of states. �̄xy(ε) for the Bethe lattice has been multiplied by
a factor of 10 to show both curves in the same panels. Energies have
been scaled by the effective hopping amplitude t∗ in the case of the
hypercubic lattice and by the half-bandwidth W in the case of the
Bethe lattice.

z ↔ 2d. Because of its treelike structure, the Bethe lattice has
no closed loop and hence no energy dispersion with Bloch
wave vector k. However, by invoking the f -sum rule we can
still calculate �xy(ε). For the given density of states we then
have the following exact integrals [44]:

M0(ε) = 1

2
εN0(ε) + 1

2
+ 1

π
tan−1

[
ε√

W 2 − ε2

]
, (41)

M1(ε) = −1

3
(W 2 − ε2)N0(ε), (42)

M2(ε) = −ε(W 2 − 2ε2)

8
N0(ε) + W 2

8

+ W 2

4π
tan−1

[
ε√

W 2 − ε2

]
, (43)

M3(ε) = 1

120
N0(ε)[18ε4 − 5ε2W 2 − 16W 4]. (44)

Then, by replacing these exact analytical integrals into the ex-
pression in Eq. (30) for �xy(ε) and using W = 2t

√
2d we get

�xy(ε) = γ 2

240d(d − 1)
N0(ε)[8W 4 − 25ε2W 2 + 26ε4]. (45)

It is interesting to mention that the constant term as well as
the tan−1 [ ε√

W 2−ε2 ] term cancels out in the final expression for
�xy(ε).
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In Fig. 1(b), we show the scaled dimensionless transport
density of states �̄xy(ε̃):

�̄xy(ε̃) = 1
120N0(ε̃)(8 − 25ε̃2 + 26ε̃4) (46)

with ε̃ = ε/W for the Bethe lattice. Near the band edges
(ε̃ = ±1) �̄xy(ε̃) shows nonmonotonic structures in contrast
to the density of states N0(ε̃) = 2

π

√
1 − ε̃2, which is always

monotonic near the band edges.
The expression in Eq. (26) for the shear viscosity for the

Bethe lattice is then given by Eq. (39) where the dimensionful
prefactor ηb

0 is given by Eq. (6) with mb = �
2

a2W
and ω̃ = ω/W

is the dimensionless energy.

C. Entropy density

The total internal energy in DMFT is given by [50]

E(T )

N
= kBT

∑
n,σ

∫ +∞

−∞
dε

εN0(ε)

iωn + μ − �σ (iωn) − ε

+ 1

2

∑
n,σ

�σ (iωn)Gσ (iωn), (47)

where N is the total number of particles in the system, ωn =
(2n + 1)πkBT is the Matsubara frequency, and N0(ε) is the
noninteracting density of states. In the paramagnetic state,
Eq. (47) can be expressed as a real frequency integral

E(T )

N
= 2

∫ +∞

−∞
dω nF (ω)(ω + μ)A(ω)

+ 1

π

∫ +∞

−∞
dω nF (ω)Im[�(ω+)G(ω+)], (48)

where A(ω) = − 1
π

Im[G(ω+)] is the spectral function.
From E(T ) we can calculate the specific heat using

Cv(T ) = ( ∂E(T )
∂T

)
v

and then we can calculate the local entropy
density s(T ) as

s(T ) = 1

ν

∫ T

0

Cv(T ′)
T ′ dT ′, (49)

where ν is the volume of the system. The temperature
dependence of the specific heat and the entropy for the half-
filled Hubbard model have both been calculated previously
using a range of impurity solvers including IPT and quantum
Monte Carlo [50–52]. It is found that in the metallic phase, the
entropy density is linear in temperature below the Fermi liquid
coherence temperature Tcoh and becomes of order nkB ln(2)
for T ∼ Tcoh, where n is number density of fermions.

D. Quantum limits

The quantum limit of the shear viscosity ηq = 1
5n� is based

on the free-particle dispersion Ek = �
2k2

2m
in the continuum

limit. For a discrete lattice model, we need to derive an
appropriate quantum limit for shear viscosity.

For temperatures and frequencies much less than the
coherence scale (i.e., T � Tcoh, ω � kBTcoh where Tcoh is
the coherence temperature which is of the order of the Kondo
temperature for the corresponding single-impurity Anderson

model), the self-energy �(ω) has the Fermi liquid form

�(ω,T ) = ω

(
1 − 1

Z

)
− iC[ω2 + (πkBT )2], (50)

where Z is the quasiparticle renormalization factor and C is a
positive constant.

Following the procedure in Ref. [5] used to estimate the
Mott-Ioffe-Regel limit for the conductivity we can show that
at low temperature (T � Tcoh), the shear viscosity for the
hypercubic lattice is given by

η(T ) = ηb
0�̄xy(0)I01π

2t∗τ (T )/�, (51)

where I01 � 0.08 is a dimensionless integral and �/τ (T ) =
−Im[�(ω = 0,T )] is the quasiparticle decay rate. The quan-
tum limit to shear viscosity will then correspond to t∗ ∼
�/τ (T ) and we will have the quantum limit to shear viscosity

ηlat
q = 1

2
√

π
ηb

0 (52)

for the hypercubic lattice and

ηlat
q = 2

15π
ηb

0 (53)

for the Bethe lattice.

IV. PARAMETERS FOR LIQUID 3He

We consider liquid 3He because of the availability of
extensive experimental data for the temperature and pressure
dependence of the shear viscosity, recently reviewed and
parametrized by Huang et al. [2]. First, we review how liquid
3He might be described as a lattice gas with a Hubbard model
Hamiltonian.

Low-temperature properties of liquid 3He can be described
by Landau’s Fermi liquid theory. The effective mass of
the quasiparticles (as deduced from the specific heat) is
about three times the bare mass m at 0 bar pressure and
increases to six times at 33 bar, when the liquid becomes
solid. The compressibility is also renormalized and decreases
significantly with increasing pressure. This led Anderson and
Brinkman to propose that 3He was an “almost localized” Fermi
liquid. Thirty years ago, Vollhardt worked this idea out in
detail, considering how these properties might be described
by a lattice gas model with a Hubbard Hamiltonian [53].
The system is at half-filling with U increasing with pressure,
and the solidification transition (complete localization of the
fermions) then has some connection to the Mott transition.
All of the calculations of Vollhardt were at the level of the
Gutzwiller approximation (equivalent to Kotliar-Ruckenstein
slave-boson mean-field theory). A significant result from the
theory is that it describes the weak pressure dependence and
value of the Sommerfeld-Wilson ratio of the spin susceptibility
to the specific heat (which is related to the Fermi liquid
parameter Fa

0 ). At ambient pressure U was estimated to about
80% of the critical value Uc for the Mott transition. Vollhardt,
Wolfle, and Anderson [54] also considered a more realistic
situation where the system is not at half-filling. Then, the
doping (band filling) is determined by the ratio of the molar
volume of the liquid to the molar volume of the solid (which
by definition corresponds to half-filling). Finite-temperature
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extension to Volhardt theory was done by Seiler, Gros, Rice,
Ueda, and Vollhardt [55]. Later, Georges and Laloux [56]
argued 3He is a Mott-Stoner liquid, i.e., one also needs to
take into account the exchange interaction and proximity to a
Stoner ferromagnetic instability. If this Mott-Hubbard picture
is valid for 3He, then one should also see a crossover from
a Fermi liquid to a “bad metal” with increasing temperature.
Specifically, above some “coherence” temperature Tcoh, the
quasiparticle picture breaks down. For example, the specific
heat per atom should increase linearly with temperature up
to a value of order kB around Tcoh, and then decrease with
increasing temperature. Indeed, one does see this crossover in
experimental data (compare Fig. 1 in Ref. [57]).

We now consider what Hubbard model parameters are
appropriate for 3He. The density at a pressure of 1 bar,
n � NA/(37 cm3) (where NA = 6.023 × 1023 is the Avogadro
number) increases monotonically to n � NA/(26 cm3) at
33 bar (near the solidification pressure) (see Table III in
Ref. [58]).

The band mass mb can be written in terms of EF =
�

2k2
F /(2m), the noninteracting Fermi energy, and the band

energy Eb as

m

mb

= 1

2
(akF )2 Eb

EF

= 1

2
(3π2)2/3 Eb

EF

� 4.8
Eb

EF

, (54)

where we have used the fact that n = 1/a3 = k3
F /(3π2).

There are several ways to estimate the band energy scale.
If we have a Bethe lattice, then Eb = W = EF , at half-filling.
Alternatively, we can compare the noninteracting density of
states per spin at the Fermi energy N0(0). This has the
value of 3/(4EF ), 2/(πW ), and 1/(

√
πt∗) for the cases of a

parabolic band (free fermions), Bethe lattice, and hypercubic
lattice, respectively. Setting these equal gives Eb ≡ W =
8EF /(3π ) � 0.85EF and Eb ≡ t∗ = 4EF /(3

√
π) � 0.75EF .

Using the density at 1 bar and the noninteracting expression
EF = �

2k2
F /(2m), we estimate TF � 4.95 K, and so t∗ �

3.72 K.
In the following sections, we compare some of our

calculations of the shear viscosity with experimental data
for 3He. Huang et al. [2] showed that the shear viscosity of
saturated liquid 3He from 3 mK to 0.1 K follows the Fermi
liquid relation η ∝ 1/T 2. Furthermore, they showed that the
shear viscosity data in the range from 3 mK to near the critical
point at 3.31 K, collected over the past 50 years from various
experimental groups, can be fitted to the empirical form

η(T ) = c1

T 2
+ c2

T 1.5
+ c3

T
+ c4 (55)

with c1 = 2.897×10−7 Pa·s K2, c2 = −7.02×10−7Pa · s K1.5,
c3 = 2.012 × 10−6 Pa · s K, and c4 = 1.323 × 10−6 Pa · s. We
note that at low temperatures, Eq. (55) has a Fermi liquid
term. At high temperatures, Eq. (55) has the asymptotic value
of c4 which is comparable to n� � 1.6 × 10−6 Pa · s at 1 bar
pressure. It should be pointed out that this is for data along the
liquid-vapor curve and so the pressure gradually increases with
temperature. However, as the critical pressure is about 100 kPa,
much less than the melting pressure, this pressure dependence
is not significant. The viscosity decreases by a factor of at
most 10 as the pressure increases from 1 kPa to 3 MPa (the
melting pressure) for all temperatures below 1 K. Huang et al.

fitted all the available experimental data to an expansion in
terms of Chebyshev polynomials and used this to plot the
temperature dependence for pressures ranging from 1 kPa to
20 MPa (compare Fig. 8 in Ref. [2]). For pressures larger than
about 500 kPa, the viscosity has a nonmonotonic temperature
dependence with a minimum around a temperature of 1 K.

V. RESULTS

We consider the case of half-filling, n = 1, i.e., each site
on the average is occupied by one fermion. We study the shear
viscosity and the entropy density as a function of correlation
strength U and temperature T .

In Figs. 2(a) and 2(b), we show the scaled shear viscosity
η(T )/ηb

0 as a function of temperature for various interaction
strengths U , for the hypercubic and the Bethe lattice, respec-
tively. Similar results are obtained for both lattices.
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(a) Hypercubic
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FIG. 2. (Color online) Shear viscosity η(T )/ηb
0 as a function of

temperature for a range of interaction strengths U . Results are shown
for both the hypercubic lattice [panel (a)] and the Bethe lattice [panel
(b)]. Solid lines correspond to DMFT based numerical results. T and
U are measured in units of W for the Bethe lattice and in units of
t∗ for the hypercubic lattice case. Note that as the Mott insulator is
approached, the shear viscosity becomes extremely small. The dashed
lines are the quantum limits given by Eqs. (52) (hypercubic lattice)
and (53) (Bethe lattice).
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FIG. 3. (Color online) Shear viscosity η(T ) on a log-log plot
clearly shows 1/T 2 behavior in the low-temperature region, char-
acteristic of a Fermi liquid. At high temperatures, there is significant
deviation from the Fermi liquid behavior as the Mott transition is
approached. The upper dashed line corresponds to experimental data
for saturated liquid 3He parametrized by Eq. (55). The lower dashed
line is at a higher pressure. The results are shown for the hypercubic
lattice case with the parameters t∗ = 3.72 K and mb/m = 3.6. Both
T and U are measured in units of t∗.

A. Quantum limits

We consider violation of quantum limit of shear viscosity.
In the weakly correlated hypercubic lattice system with
U = 0.5, the shear viscosity is always above quantum limit
ηlat

q � 0.28ηb
0, but as we increase the interaction strength U ,

the shear viscosity smoothly goes below the quantum limit
with increasing temperature T . This corresponds to the fact
that at low temperatures (T � Tcoh), the quantum transport is
due to coherent quasiparticle states but at high temperatures
(T > Tcoh) the transport becomes incoherent in nature. This
is the analog of how in bad metals the resistivity smoothly
increases above the Mott-Ioffe-Regel limit.

B. Low-temperature behavior

Figure 3 clearly shows that the shear viscosity fol-
lows Fermi liquid characteristic 1/T 2 behavior in the low-
temperature region (T � Tcoh). The range of Fermi liquid
behavior decreases with increasing U . This is because the
coherence scale (and Kondo temperature for the corresponding
single-impurity Anderson model) decreases with increasing
correlation strength U . The 1/T 2 behavior is similar to the
low-temperature behavior of the electrical conductivity and
the quantum transport in this region can be characterized by
coherent quasiparticle states.

Our calculated shear viscosity shows qualitative behavior
consistent with experimental data for liquid 3He, using param-
eters estimated in the previous section. There is qualitative
as well as quantitative agreement at low temperatures but
not at higher temperatures. Interestingly, our calculated shear
viscosity for U = 2 for the hypercubic lattice nearly fits with
the experimental results at low temperatures. Our calculation
suggests 3He is a moderately correlated system with U/Uc ∼

0.5 (Uc ∼ 4.0 for the hypercubic lattice) as against the
suggestion of Volhardt [53] that 3He is a nearly localized Fermi
liquid with U/Uc ∼ 0.8 at 1 bar pressure and U/Uc ∼ 0.9
close to the melting pressure. It is important to mention that
Gutzwiller based static mean-field theory overestimates local
correlation effects but the self-consistent treatment of dynamic
correlation effects in DMFT renormalizes local correlation
effects.

C. High-temperature behavior

In the high-temperature region T � Tcoh, the shear viscos-
ity shows significant deviation from the low-temperature Fermi
liquid behavior as can be observed from Figs. 2 and 3. The
quantum transport in this region is incoherent in nature. For
the weakly and moderately correlated systems, the deviation
is smooth and monotonic but for strongly correlated systems
for U = 2.5 and above the deviation is much sharper and
nonmonotonic. This is due to the sharp crossover between
the Fermi liquid fixed point and the local moment fixed point
in the strongly correlated regime. A similar nonmonotonic
temperature dependence is seen in the electrical resistivity
from DMFT calculations and in organic charge-transfer salts
close to the Mott insulator [5,23,34].

D. Entropy density

In Fig. 4, we show the entropy density s(T ) as a function
of temperature for various interaction strengths. At high
temperatures, the entropy density approaches ln(4) which
arises due to local charge and spin fluctuations. As the
temperature decreases, charge fluctuations freeze-out and the
model can be described by localized weakly interacting spin
1
2 ’s with characteristic entropy density ln(2). Finally, in the
Fermi liquid state the local spin degrees of freedom are

0 0.2 0.4 0.6 0.8 1

T
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0.5

1

1.5

s(
T

)/
n

k B

U = 0.5
U = 1.0
U = 1.5
U = 2.0
U = 2.5
U = 3.0
U = 3.5

ln(4)

ln(2)

Hypercubic
U = 0.5

U = 3.5

FIG. 4. (Color online) Entropy density s(T ) (in units of nkB ) as a
function of temperature T for various interaction strength U . Below
the coherence temperature Tcoh, the entropy is linear in temperature,
characteristic of a Fermi liquid. The crucial point is that for T > Tcoh,
the entropy is of order nkB . The kinklike feature for U = 2.5 and
above corresponds to the formation of poorly screened local moment
and its position is closely related to Tcoh. The calculation is for the
hypercubic lattice and both T and U are measured in units of t∗.
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FIG. 5. (Color online) Dimensionless scaled ratio ζ (T ) of the
shear viscosity and entropy density. [See Eq. (56) for definition
of ζ (T ).] It is shown as a function of temperature T for various
interaction strength U . Dashed and dotted-dashed lines correspond
to the Kovtun-Son-Starinets (KSS) limit for 3He and typical lattice
electronic systems, respectively. For electronic systems, there is
strong violation of the quantum bound for T � Tcoh. The calculation
is for the hypercubic lattice case and both T and U are measured in
units of t∗.

dynamically screened and the entropy density vanishes linearly
in temperature. For weakly and moderately correlated electron
system, the entropy density smoothly crosses over ln(2).
But, for strongly correlated electron systems with U = 2.5
and above, a kinklike feature develops. This corresponds to
formation of poorly screened local moment. The position of the
kink in the specific heat versus temperature curve is related to
the coherence temperature Tcoh [59]. For extremely correlated
systems with U = 3.0 and above, the entropy density given by
iterated perturbation theory (IPT) is underestimated. Conse-
quently, the specific heat in the coherent-incoherent crossover
region becomes negative, which is unphysical. This is due to an
incorrect total energy estimate in IPT which has been reported
in earlier literature (see, for example, Fig. 7 in Ref. [52])
[60]. In the unphysical temperature range we set the specific
heat to zero and the calculated entropy density, which is an
integrated quantity, will deviate by not more than 5% from the
actual value. Such a small error has little effect on whether the
Kovtun-Son-Starinets (KSS) bound is violated.

E. Possible violation of the KSS bound

Finally, we consider the dimensionless scaled shear viscos-
ity η(T ), entropy density s(T ), ratio

ζ (T ) ≡ η(T )

s(T )

4πkB

�

(
mb

m

)2

. (56)

At the KSS bound ζ (T ) = (mb

m
)2 (for d = 3). As stressed

before, this depends on the material properties t∗ and a as
well as the mass of the fermion m.

In Fig. 5, we show ζ (T ) and compare to its value against the
Kovtun-Son-Starinet (KSS) limit for parameters appropriate

for 3He and typical lattice electronic systems such as cuprates
and organic superconductors.

For cuprates [61], the hopping integral t � 0.18 eV, a =
3.9 Å and for organic charge-transfer salts [36] t � 0.05 eV,
a = 8 Å. For these systems d = 2 and hence t∗ = 2t

√
d ≡

2
√

2t . This will give m/mb � 1.0 for cuprates and m/mb �
1.2 for organics, as compared to m/mb � 3.6 for liquid 3He.
As a result, the shear viscosity for these lattice electronic
systems will be smaller by a factor of about 10 than for
the charge-neutral fermionic fluid 3He. Straub and Harrison
considered a simple model for the hopping integral for d

bands in transition metal [62]. This gives for d-sigma bands
m/mb � 2.8(rd/a)3, where rd is approximately the d-state
radius and of the order of the radius transition metal atom,
∼1 Å. In principle then for a system with a large lattice
constant, the bandwidth can be very small and values of m/mb

even smaller than unity are possible. In an ultracold fermionic
atom system in an optical lattice one could in principle then
make m/mb, and thus the viscosity, extremely small.

From Fig. 5, we can clearly see that for all U < 3.0 and for
3He parameters ζ (T ) is above the KSS limit. For extremely
correlated system U = 3.5, there is strong violation of the
limit in the crossover region, but even for this system at high
temperature the bound seems to be respected [within numerical
error in calculation of entropy density s(T )]. Also, in the high-
temperature region, the scaled ratio seems to approach some
universal limit.

For electronic lattice systems, the limit is well respected in
the coherent quasiparticle regime of transport but the limit is
violated in the region T > Tcoh. This is due to reduction of the
shear viscosity by a factor of 10 compared to 3He parameters.
The violation is as large as 1000% for these systems, when
they are close to the Mott transition.

VI. EXPERIMENTAL DETERMINATION OF
η IN ELECTRONIC SYSTEMS

Given our result that the KSS bound can be violated in a
bad metal, it is highly desirable that experimental measure-
ments be performed on candidate strongly correlated electron
materials such as organic charge-transfer salts and cuprates.
Unfortunately, at present there is no direct measurement of the
shear viscosity for electronic systems. Recently, an indirect
estimate of η/s was made from angle-resolved photoemission
spectroscopy (ARPES) experiments in cuprates [63] giving
a value comparable to the KSS limit. However, it should
be stressed that neither the viscosity nor the entropy were
directly measured. Rather, the ARPES line shape was used to
estimate the quasiparticle lifetime and the state occupation.
The viscosity was then estimated from the lifetime. The
entropy was estimated from an expression in terms of the
state occupations in a noninteracting fermion system. In
the incoherent regime of transport, this method will not be
applicable. It is important to mention that our calculation
showed that in the coherent quasiparticle regime of transport,
η/s is always above the KSS bound and hence our result is
consistent with these experimental results.

A more direct way to measure the viscosity of the electron
fluid in a metallic crystal is through the attenuation of sound,
as first emphasized by Mason [64]. A more sophisticated and
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general theory was developed by Kahn and Allen [29]. The
connection between shear viscosity and ultrasound attenuation
can be loosely motivated by Stokes law, given in Eq. (2). In a
metal, provided the wavelength of sound is much larger than
the electronic mean-free path, then one is in the hydrodynamic
limit, and the attenuation is given by a similar expression to
Stokes law (with appropriate indices for crystal axes), with
ρ the solid density, not that of the electron fluid. In a simple
free-electron model, Eq. (3) shows that the electronic viscosity
is proportional to the scattering time, just like the electrical
conductivity. Hence, the ultrasound attenuation should scale
with the conductivity. Indirect evidence for this idea was found
from the temperature dependence of ultrasound attenuation in
aluminium [65], including the predicted quadratic frequency
dependence. In clean metals, the attenuation (and viscosity)
becomes very large at low temperatures, making it easier to
measure. Also, for high-frequency ultrasound, one can reach
the “quantum regime” where the mean-free path becomes
comparable to the sound wavelength. Pippard worked out a
general theory describing the crossover from the hydrody-
namic regime to this quantum regime [66]. In bad metals, could
one experimentally measure the small electronic viscosity of
the order of n�? First, the small mean-free path, characteristic
of bad metals, means one will always be in the hydrodynamic
regime. However, the small viscosity means that the sound
attenuation due to the electron fluid will be small and possibly
dominated by other sources of attenuation such as crystal
dislocations. A rough estimate for an electron viscosity of
order of n� and a sound frequency of 1 GHz give an attenuation
of less than 0.1 cm−1, of the order of typical sensitivity, such
as in measurements for heavy-fermion compounds [67].

Resonant ultrasound spectroscopy (RUS) [68–70] has been
used to make measurements on strongly correlated electron
systems [71–73]. The spectrum is determined by the resonant
elastic modes of the sample; they are determined by the sample
shape and orientation, elastic constants, and dissipation. RUS
allows determination of the elastic constant tensor Cij from
measurements on small samples (<1 mm3 volume). In the
regime where the attenuation of the ultrasound is dominated
by coupling to the electrons, rather than fluctuations associated
with phase transitions, the viscosity could be determined from
the damping (frequency width �ω) of the resonances. We
estimate �ω/ω ∼ ηω/Cij [1] and so for the MHz frequencies
typically used in RUS, the damping associated with a viscosity
of order n� requires an oscillator Q factor of order 1010 and
so is unlikely to be observable.

Recently, several new approaches have been suggested to
experimentally measure the viscosity of the electron fluid in
a metallic crystal. Forcella, Zaanen, Valentinis, and van Der
Marel [74] considered electromagnetic properties of viscous
charged fluids, finding signatures due to the viscosity such
as negative refraction, a frequency-dependent peak in the
reflection coefficient, and a strong frequency dependence of the
phase. However, they note that these effects may be difficult to
observe for viscosities of the order of n�. Tomadin, Vignale,
and Polini [75] considered a two-dimensional electron fluid
in a Corbino disk device in the presence of an oscillating
magnetic flux. They showed that the viscosity could be
determined from the dc potential difference that arises between
the inner and the outer edges of the disk. In particular, for

viscosities of the order of n� the potential difference varied
significantly oscillation frequencies in the MHz range. Levitov
and Falkovich [76] recently considered the flow of an electron
fluid in a micrometer scale channel in the hydrodynamic
regime, where the electron-electron collision rate is much
larger than the momentum relaxation rate. They found that
when the viscosity to resistance ratio is sufficiently large, vis-
cous flow occurs producing vorticity and a negative nonlocal
voltage. Spatially resolved measurements of the voltage allow
determination of the viscosity. Torre, Tomadin, Geim, and
Polini [77] considered the electron liquid in graphene in the hy-
drodynamic regime and showed that the shear viscosity could
be determined from measurements of nonlocal resistances in
multiterminal Hall bar devices. Although these proposals are
promising for the two-dimensional electron fluids in graphene
and semiconductor heterostructures fabrication of the relevant
micron-scale devices may be particularly challenging for bad
metals such as cuprates and organic charge-transfer salts.

VII. CONCLUSIONS

We have studied the shear viscosity, the entropy density, and
their ratio for a single-band Hubbard model using single-site
dynamical mean-field theory. Similar results were obtained
for the density of states associated with both hypercubic and
Bethe lattices. We compared our results for the temperature
dependence of the shear viscosity to experimental results for
liquid 3He. The calculated shear viscosity shows qualitative
as well as quantitative behavior consistent with experimental
results. At low temperatures, the shear viscosity is propor-
tional to 1/T 2 corresponding to coherent quasiparticle-based
transport in the Fermi liquid state. At high temperatures, the
shear viscosity shows significant deviation from Fermi liquid
state behavior. This corresponds to crossover from coherent
quasiparticle-based transport to incoherent transport (the “bad
metal”). With increasing interaction strength U , the shear
viscosity becomes less than conjectured quantum limits of
shear viscosity, of the order of n�. Finally, we considered
the scaled dimensionless ratio between shear viscosity and
entropy density. This ratio in the Hubbard model depends on
the energy scale t∗, length scale a, and the free-fermion mass
m. This is in contrast to the universal limit �

4πkB
predicted by

Kovtun, Son, and Starinets using the AdS/CFT correspondence
in a conformally symmetric field theory model. For 3He
parameters, the ratio is above the universal bound but for
parameters appropriate for electronic lattice systems, such as
cuprate and organic metals, this bound is found to be strongly
violated, in the bad metal regime near the Mott metal-insulator
transition. We hope that our results will stimulate experimental
measurements of the shear viscosity in bad metals.
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APPENDIX: TRANSPORT DENSITY OF STATES
FOR SHEAR VISCOSITY

In the limit d → ∞, the viscosity will involve the following
transport function:

�xy(ε) = m2
∑

k

v2
xv

2
yδ(ε − εk). (A1)

For a d-dimensional hypercubic lattice

�xy(ε) = m2(2t)4a4

�4

∑
k

sin2(kx) sin2(ky)δ(ε − εk). (A2)

To evaluate this, we first we define the Fourier transform

Y (ω) =
∫ +∞

−∞
�xy(ε)e−iωεdε

= γ 2(2t)4
∑

k

sin2(k1) sin2(k2)
d∏

α=1

ei2tω cos(kα)

= γ 2(2t)4J d−2
0 (2tω)

[
J1(2tω)

2tω

]2

= (2tγ )2

ω2
J d−2

0 (2tω)[J1(2tω)]2, (A3)

where γ ≡ ma2

�2 .
Using relations for Bessel functions

[J0(2tω)]d−2[J1(2tω)]2

= 1

(2t)2d(d − 1)

d2J d
0 (2tω)

dω2

+ 1

d − 1
J d

0 (2tω) − 1

2t(d − 1)

1

ω
[J0(2tω)]d−1J1(2tω)

(A4)

we can rewrite Y (ω) as

Y (ω) = γ 2

d(d − 1)

1

ω2

d2J0(2tω)

dω2
+ (2tγ )2

(d − 1)

1

ω2
J d

0 (2tω)

− 2tγ 2

(d − 1)

1

ω3
[J0(2tω)]d−1J1(2tω)

≡ Y1(ω) + Y2(ω) + Y3(ω). (A5)

We can Fourier transform back to calculate �xy(ε) as

�xy(ε) = 1

2π

∫ +∞

−∞
Y (ω)eiωεdω. (A6)

Using the convolution theorem, we can easily show that each
term of Y (ω) has the following form:

�(α)
xy (ε) =

∫ +∞

−∞
Fα(ε − z)Gα(z)dz, α = 1, . . . ,3 (A7)

where

Fα(ε) = 1

2π

∫ +∞

−∞
F̃α(ω)eiωεdω,

(A8)

Gα(ε) = 1

2π

∫ +∞

−∞
G̃α(ω)eiωεdω,

and Yα(ω) = F̃α(ω)G̃α(ω).
For the first term

Fα(ε) = 1

2π

∫ +∞

−∞

1

ω2
eiωεdω

= 1

2π
· πi · iε sgn(ε) = −ε

2
sgn(ε), (A9)

Gα(ε) = 1

2π

∫ +∞

−∞

d2[J0(2tω)]d

dω2
eiωεdω

= −ε2N0(ε), (A10)

where we have used

d[J0(2tω)]d

dω
eiωε

∣∣∣∣
+∞

−∞
= 0,

(A11)
[J0(2tω)]deiωε

∣∣+∞
−∞ = 0.

Finally, we get

�(1)
xy (ε) = γ 2ε

d(d − 1)

∫ ε

−∞
z2N0(z)dz − (2tγ )2ε

4(d − 1)

− γ 2

d(d − 1)

∫ ε

−∞
z3N0(z)dz, (A12)

where we have used
∫ +∞
−∞ z2N0(z)dz = ∑

k ε2
k = 2t2d and∫ +∞

−∞ z3N0(z)dz = 0.
A similar exercise for the second term will give

�(2)
xy (ε) = − (2tγ )2ε

(d − 1)

∫ ε

−∞
N0(z)dz + (2tγ )2ε

2(d − 1)

+ (2tγ )2

(d − 1)

∫ ε

−∞
zN0(z)dz. (A13)

For the third term we have

F3(ε) = 1

2π

∫ +∞

−∞

1

ω3
eiωεdω

= lim
ω→0

1

2π
πi

1

2!

d2

dω2
[eiωε]sgn(ε)

= −i
ε2

4
sgn(ε) (A14)

and

G3(ε) = − 1

2π

2tγ 2

(d − 1)

∫ +∞

−∞
[J0(2tω)]d−1J1(2tω)dω

= 1

2π

γ 2

d(d − 1)

∫ +∞

−∞

d[J0(2tω)]d

dω
dω

= −i
γ 2

d(d − 1)
εN0(ε). (A15)
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Finally, we have

�(3)
xy (ε) = − γ 2ε2

2d(d − 1)

∫ ε

−∞
zN0(z)dz − (2tγ )2ε

4(d − 1)
+ γ 2ε

d(d − 1)

∫ ε

−∞
z2N0(z)dz − γ 2

2d(d − 1)

∫ ε

−∞
z3N0(z)dz. (A16)

Collecting and rearranging all the terms, we obtain Eq. (30).
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