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Abstract

The discovery of regions of interest in city groups is increasingly important in
recent years. In this light, we propose and investigate a novel problem called
Region Discovery query (RD query) that finds regions of interest with respect
to a user’s current geographic location. Given a set of spatial objects O and
a query location q, if a circular region ω is with high spatial-object density
and is spatially close to q, it is returned by the query and is recommended to
users. This type of query can bring significant benefit to users in many useful
applications such as trip planning and region recommendation. The RD query
faces a big challenge: how to prune the search space in the spatial and density
domains. To overcome the challenge and process the RD query efficiently, we
propose a novel collaboration search method and we define a pair of bounds to
prune the search space effectively. The performance of the RD query is studied
by extensive experiments on real and synthetic spatial data.
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1. Introduction

With the rapid development of GPS-equipped mobile device (e.g., smart
phones, car navigation systems, and PDAs) and online map services (e.g.,
Google Maps1 and Bing Maps2), people can easily acquire their current geo-
graphic location in real time and can retrieve spatial information relevant to
their trips[6]. In this light, we propose and study a novel query called Region

1http://maps.google.com/
2http://www.bing.com/maps/
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Figure 1: An example of region discovery query

Discovery query (RD query) that identifies regions of interest with respect to a
user’s current geographic location. Spatial objects can be geo-tagged tweets and
micro-blog posts from location-based social media, such as Twitter3, Weibo4,
and Foursquare5[3, 27].

A region ω is a circular area defined by a center point ω.c and a radius ω.r.
We define two thresholds to identify qualified regions: (1) a size threshold τ.s,
i.e., a region should contains at least a threshold number of spatial objects;
(2) a radius threshold τ.r, i.e., the radius of the region should not exceed a
radius threshold. Given a query location q, if a region ω is with dense spatial-
object distribution and is spatially close to q, the region ω is returned by the
query and is recommended to users. The region discovery query (RD query) is
useful in many popular mobile applications such as trip planning and location
recommendation. For example, when traveling overseas, travelers may wish
to know about regions of interest (e.g., commercial districts and dining areas)
around him/her. Intuitively, regions with high spatial-object density (e.g., geo-
tagged tweets, micro-blog posts, and points of interest) are assumed to be more
attractive to users. Also, a region located close to a user’s current location is
more attractive than a far-away region.

To the best of our knowledge, this is the first work that study the region
recommendation problem while taking both spatial distance and spatial-object
density into account. Previous studies (e.g., nearest neighbor query [10, 9,
11, 23]) only use spatial distance as the sole factor when computing the query
results. In contrast, the RD query takes both spatial distance and density
distribution into account. A linear combination method [18, 17] is adopted to
combine the spatial and density domains.

3https://twitter.com/
4http://weibo.com/
5https://foursquare.com/
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An example of the RD query is shown in Figure 1. Here, q is a query point,
and vertices p1, p2, and p3 are the center points of regions ω1, ω2, and ω3, re-
spectively. The distance between a region and a query point is defined by the
shortest network distance between the region center point and the query point
(e.g., dist(ω2, q) = dist(p2, q)). If considering the spatial distance only (e.g., the
same as the nearest neighbor query [9]), ω2 is the region closest to q. However,
when considering both spatial distance and the density of spatial objects, ω2

is less attractive than ω3 because of its sparser spatial-object distribution. Al-
though ω3 is not as good as ω2 according to spatial distance, we still consider ω3

as the best choice for region recommendation when taking both spatial distance
and spatial-object density into account.

The RD query is applied in spatial networks, since in a large number of prac-
tical scenarios, travelers move in spatial networks (e.g., road networks) rather
than in a Euclidean space[25, 26, 19, 21, 20]. To enable efficient processing of
the RD query, for each vertex p, we pre-compute the number of spatial objects
that are covered by a circular region defined by (p, τ.r), where p is the center
point and τ.r is the radius. These counts are useful in pruning the search space
during query processing. Based on the pre-computation results, we develop
an adaptive collaboration algorithm to compute the RD query efficiently. The
search process is conducted in the spatial and density domains concurrently. A
pair of upper and lower bounds are defined to prune the search space.

To the best of our knowledge, there is no existing approach that can compute
the RD query efficiently. To sum up, the main contributions of this work are as
follows:

• We define a novel region discovery (RD) query, and it is useful in many
mobile applications such as trip planning and location recommendation.

• We propose a set of new metrics to evaluate the distance-and-density score
of regions.

• We develop an adaptive collaboration algorithm to compute the RD query
efficiently.

• We conduct extensive experiments on real and synthetic data to study the
performance of RD query.

The rest of the paper is organized as follows. Related work is covered in
Section 2. Section 3 introduces spatial networks and the distance metrics used
in the paper; and it also gives problem definitions. The collaboration search
method is covered in Section 4, which is followed by the experimental results in
Section 5. Conclusions are drawn in Section 6.

2. Related Work

Spatial queries in advanced traveler information system continue to prolif-
erate in recent years. Nearest Neighbor(NN) query is considered as an im-
portant issue in such kind of applications. This kind of query aims to re-
trieve the closest neighbor to a query point from a set of given objects. Based
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on different constraint conditions, NN query processing can be classified into
three categories, such that in Euclidean spaces (e.g. [14, 7]), in spatial networks
(e.g. [10, 9, 11, 23, 22]), and in higher dimensional spaces (e.g. [8, 2]).

As a variant of NN queries, Continuous Nearest Neighbor queries (CNN) [1,
13, 24, 15, 16] report the kNN results continuously while the user is moving
along a path. This type of queries aims to find the split points on the query
path where an update of the kNN is required, and thus to avoid unnecessary re-
computation. In [13], Mouratidis et al. investigate the CNN monitoring problem
in a road network, in which the query point moves freely and the data objects’
positions are also changing dynamically. The basic idea of [13] is to maintain a
spanning tree originated from the query point and to grow or discard branches
of the spanning tree according to the data objects and query point’s movements.

To the best of our knowledge, there is no existing approach that can compute
the RD query efficiently. Previous studies only use spatial distance as the sole
factor when computing the query results, and the density of spatial objects is
not taken into account. In contrast, the RD query takes both spatial distance
and density distribution into account. A linear combination method [18, 17] is
adopted to combine the spatial and density domains.

3. Preliminaries

3.1. Network Modeling and Preprocessing

In this work, spatial networks are modeled by connected and undirected
planar graphs G(V,E), where V is the set of vertices and E is the set of edges.
A weight can be assigned to each edge to represent its length or application
specific factors such as traveling time obtained from historical traffic data [5].
Given two points a and b in road networks, the network distance between them is
the length of their shortest network path (i.e., a sequence of edges linking a and
b where the accumulated weight is minimal). The data points are distributed
along roads and if a data point is not located at a road intersection, we treat the
data point as a vertex and further divide the edge that it lies on into two edges.
Thus, we assume that all data points are in vertices for the sake of clarity. We
assume that each spatial object (e.g., geo-tagged tweets, geo-tagged photos) is
attached to its nearest vertex. For each vertex p ∈ G.V , the number of spatial
objects that are attached to p is maintained as an attribute of p, denoted by p.g.
A vertex and its attached spatial objects make up the minimum unit in spatial-
object density computations, and thus we do not need to access individual
spatial objects during RD query processing.

3.2. Problem Definition

A region ω is a circular area defined by a center point ω.c and a radius ω.r.
We define two thresholds to identify qualified regions: (1) a size threshold τ.s,
i.e., a region should contains at least a threshold number of spatial objects;
(2) a radius threshold τ.r, i.e., the radius of the region should not exceed a
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radius threshold. A region ω has an associated subgraph ω.G, which contains
the vertices ω.V and edges ω.E from G that are in the circular region.

The density ω.ρ of region ω is defined as

ω.ρ =

∑
p∈ω.V

p.g∑
e∈ω.E

W (e)
, (1)

where p is a vertex in ω.V and p.g is the number of spatial objects that are
attached to p; and e is an edge in ω.E and W (e) is its weight.

Given a region ω and a query point q, a distance function Es(ω, q) and a
density function Ed(ω) are defined in Equations 2 and 3, respectively. We use
Sigmoid function [12] to normalize the values of Es(ω, q) and Ed(ω) to [0, 1].

Es(ω, q) =
2

1 + e−sd(ω.c,q)
− 1 (2)

Ed(ω) =

{
2

1+eω.ρ − 1 if ω.r ≤ τ.r ∧ ω.s ≥ τ.s

1 if ω.r > τ.r ∨ ω.s < τ.s
(3)

Here, ω.c is the center point of region ω, and sd(ω.c, q) is the shortest path
distance between ω.c and q, and τ.r and τ.s are region radius and size thresholds,
respectively.

By combining Equations 2 and 3, the distance-and-density function Esd(c, τ)
is defined by

Esd(ω, q) = α · Es(ω, q) + (1− α) · Ed(ω), (4)

where parameter α ∈ [0, 1] is used to adjust the relative importance of the den-
sity and the distance. We allow users to adjust the parameter α at the query
time.

Problem Definition
Given a set of spatial objects O, a query point q, a region size threshold τ.s
and a region radius threshold τ.r, and an importance parameter α, the region
discovery (RD) query finds the region ω with the minimum value of Esd(ω, q)
and ω.s ≥ τ.s and ω.r ≤ τ.r, such that ∀ω′(ω′ �= ω ∧ ω′.s ≥ τ.s ∧ ω′.r ≤ τ.r ⇒
Esd(ω, q) ≤ Esd(ω

′, q)).

4. Query Processing

To enhance the performance of RD query processing, a density based pre-
computation technique is applied at first. For each vertex p ∈ G.V , we pre-
compute the number of spatial objects that are covered by the circular region
defined by (p, τ.r), where p is the center point and τ.r is the radius.

The collaboration search algorithm is conducted in the spatial and density
domains concurrently. In the spatial domain, we use network expansion to
explore the spatial network. In the density domain, regions are sorted according
to their density, and they are scanned from the highest density to the lowest
density. We define a pair of upper and lower bounds to prune the search space
in Section 4.1. The collaboration search algorithm is detailed in Section 4.2.

5
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Figure 2: An example of the collaboration search

4.1. Basic Idea

Consider the example in Figure 2. In the spatial domain, point q is a query
point. To explore the spatial network and find regions close to the query point
(i.e., with the smaller values of sd(p, q), and p is the center point of ω), Dijk-
stra’s expansion [4] is adopted. From q, network expansion is performed using
Dijkstra’s algorithm. The explored region is a circular area (as shown in Fig-
ure 2), where the radius is the shortest network distance from q to the expansion
boundary, denoted as r.

For the vertices inside the scanned region, such as p in Figure 2, we have its
exact network distance to q (i.e., sd(p, q)). On the other hand, for the vertices
outside the scanned region, such as p′ in Figure 2, we estimate the lower bound
of sd(p′, q) by

sd(p′, q).lb = r, (5)

where r is the radius of the scanned region. As Dijkstra’s algorithm always
selects the vertex with the minimum distance label for network expansion; thus
for any p′ outside the scanned region, we have sd(p′, q) > r = sd(p′, q).lb.

By substituting Equation 5 into Equation 2, the lower bound of Es(ω, q) is
estimated by {

Es(ω, q) =
2

1+e−sd(ω.c,q) − 1

r < sd(ω.c, q)

2

1 + e−sd(ω.c,q)
− 1 >

2

1 + e−r
− 1 = Es(ω, q).lb, (6)

where ω.c is outside the scanned region (e.g., p′ in Figure 2).
In the density domain, we establish a heap H to maintain the lower bounds

of the density score Ed(ω).lb. The items in H are sorted from the minimum
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to the maximum (i.e., from the highest density to the lowest density). Given a
region ω, the upper bound of its density is estimated by

ω.ρ.ub =
p.m

p.a
≥ ω.ρ, (7)

where vertex p is the center point of region ω (ω.c = p), p.m is the number of
spatial objects covered by a circular region (p, τ.r), and p.a is the control area
of vertex p (i.e., the area occupied by the spatial objects that are attached to
p). The value of p.m is the maximum number of spatial objects that region ω
may have, while the value of p.a is the minimum area that region ω may occupy.
Thus, a density upper bound can be obtained by dividing p.a by p.m. For each
vertex p ∈ G.V , the values of p.m and p.a are pre-computed. By substituting
Equation 7 into Equation 3, the lower bound of the density score Ed(ω).lb is
computed by

Ed(ω) ≥ 2

1 + ep.m/p.a
− 1 = Ed(ω).lb. (8)

For each vertex p ∈ G.V , the value of Ed(ω).lb (where ω.c = p) is pre-computed
and inserted into a heap H. Thus the size of H is equal to that of G.V . The
search process in the density domain is performed from the minimum to the
maximum (from the highest density to the lowest density). Intuitively, a region
with a smaller value of Ed(ω).lb has a higher possibility to be the region with
the minimum density score.

Once a region is fully scanned in both the spatial and density domains (e.g.,
ω is scanned in the density domain, and ω.c is scanned in the spatial domain),
we compute its exact spatial-density score according to Equation 4. Among all
scanned regions, we define a global upper bound UB as

UB = min
ω∈Rs

{Esd(ω, q)}, (9)

where Rs is a set of fully scanned regions.
If a region ω is unscanned in the density domain, the lower bound of its

density score E′d(ω).lb is defined by

E′d(ω).lb = Ed(ωi).lb, (10)

where i is an iterator. The regions are sorted by their density lower bounds,
and they are scanned from the minimum to the maximum. There are total i
regions are scanned. Thus, for an unscanned region ω, we can use the value of
Ed(ωi).lb to estimate its density lower bound.

By combining Equations 7, 8 and 10, we define a lower bound for spatial-
density score Esd(ω, q).

Esd(c, q).lb =

⎧⎨
⎩

α · Es(ω, q) + (1− α) · E′d(ω).lb if C1

α · Es(ω, q).lb+ (1− α) · Ed(ω).lb if C2

α · Es(ω, q).lb+ (1− α) · E′d(ω).lb if C3

(11)

C1: the center point of region ω is scanned in the spatial domain and unscanned
in the density domain.
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C2: the center point of region ω is unscanned in the spatial domain and is
scanned in the density domain.
C3: the center point of region ω is unscanned in both the spatial and density
domains.

For partly scanned regions (i.e., a region ω is scanned in the spatial domain
or in the density domain) and non-scanned regions, we define a global lower
bound LB to estimate their spatial-density scores.

LB = min
ω∈Rpu

{Esd(ω, q)} (12)

Here, Rpu is a set of unscanned and partly scanned regions.
If the value of LB exceeds that of UB , the collaboration search terminates.

The global upper bound UB and the corresponding region are returned. Other
regions can be pruned safely.

4.2. Algorithm

Data: G(V,E), O, q
Result: UB and the corresponding ω
LB ← 0;UB ← +∞; i← 1;1

while true do2

//in the spatial domain3

p← expand(q);4

if ω.c = p then5

compute Es(ω, q) and all related parameters;6

end7

if p is scanned in the two domains then8

compute Esd(c, q);9

update LB and UB ;10

if LB > UB then11

break;12

end13

end14

//in the density domain15

if ω.c = pi then16

compute E′
d(ω).lb and all related parameters;17

i← i+ 1;18

end19

if p is scanned in the two domains then20

compute Esd(c, q);21

update LB and UB ;22

if LB > UB then23

break;24

end25

end26

end27

return UB and the corresponding ω;28

Algorithm 1: Collaboration Search Algorithm
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The collaboration search algorithm is detailed in Algorithm 1. Initially, the
default value of global lower bound LB is set to 0, and the default value of
global upper bound UB is set to +∞. The iterator i is set to 1. In the spatial
domain, we explore the spatial network and find the regions spatially close to
the query point q using Dijkstra’s algorithm. For each newly scanned vertex
p, we compute the value of Es(ω, q) (ω.c = p) and all related parameters. If p
has been fully scanned , we compute its distance-and-density score Esd(c, q).lb.
Then, we update the values of UB and LB . If the value of LB exceeds that
of UB , the search process terminates (lines 1–14). In the density domain, the
search is performed from the minimum to the maximum. In each step, the
iterator i is incremented by 1. For each newly scanned vertex pi, we compute
the lower bound of its density score E′d(ω).lb and all related parameters. If
vertex p has been fully scanned, we update the values of UB and LB and check
whether they meet the the search-stop criteria. By integrating these results, the
region with the minimum value of Esd(ω, q) is found (lines 15–28).

5. Experimental Results

In this section, we conducted extensive experiments on real and synthetic
spatial data sets to study the performance of RD query processing. The data
set used in our experiments were Beijing Road Network (BRN) and Oldenburg
City Road Network (ORN)6, which contain 28,342 vertices and 6,105 vertices
respectively, stored as adjacency lists. In BRN, we use the real location based
social media data (i.e., 100,000 points of interest). In ORN, the synthetic data
were used (i.e., 10,000 points of interest). All algorithms were implemented in
Java and tested on a Windows platform with Intel Core i7-3520M Processor
(2.90GHz) and 8GB memory. All experimental results were averaged over 10
independent tests with different query inputs. For the purpose of comparison,
a baseline method called spatial-first algorithm is also implemented. In the
spatial-first algorithm, we search the regions spatially close to the query point
q, and then we compute its corresponding density score. By combining the
computation results, we find the region with the minimum spatial-density score.

5.1. Effect of τ.s

Figure 3 presents the performance of the algorithms with varying size thresh-
old τ.s. Since the total number of spatial objects is fixed, a higher size threshold
means fewer qualified regions. The sparser the region distribution, the larger the
required search space, and thus the performance of query processing decreases.
In Figure 3, the CPU time increases as the size threshold increases. It is clear
that the CPU time required by the spatial-first search is 3–5 times higher than
those needed by the collaboration search.

6www.cs.fsu.edu/ lifeifei/SpatialDataset.htm
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Figure 3: Effect of τ.s

5.2. Effect of τ.r

Next, we vary the radius thresholds τ.r. With a fixed value of size threshold,
a larger radius threshold leads to more qualified regions. Intuitively, the denser
the region distribution, the smaller the required search space, and thus the
queries are expected to be faster. In Figure 4, the CPU time decreases as the
radius threshold increases. The collaboration search outperforms the spatial-
first search by factors of 3–5 in terms of CPU time.
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5.3. Effect of α

Parameter α is used to adjust the relative importance of the spatial distance
and density. In the extreme case where α = 1, the query is conducted in the
spatial domain only. And when α = 0, density is the sole factor for the query.
Figure 5 shows the performance of the algorithms for different values of α. For
the collaboration algorithm, it is clear that the search effort required in the
spatial domain is higher than that required in the density domain.
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6. Conclusion

In this paper, we propose and investigate a novel problem called Region Dis-
covery (RD) query to find regions of interest with respect to a user’s current
geographic location. This type of query can bring significant benefits to users
in many popular applications such as trip planning and location recommenda-
tion. To compute the query efficiently, a collaboration search algorithm was
developed. A pair of upper and lower bounds were defined to prune the search
space effectively. Finally, the performance of RD query was studied by extensive
experiments on real and synthetic spatial data.
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