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Abstract 
 

The five-year survival rate for patients with head and neck squamous cell carcinoma 

(HNSCC) has remained at ~50% for the past 30 years despite advances in treatment. 

EBC-46 is a novel diterpene ester developed by QBiotics Pty Ltd that induces HNSCC cell 

death in vitro.  

The aims of this study were to identify a human HNSCC xenograft that responds poorly to 

intratumoural injection of EBC-46, improve efficacy of EBC-46 treatment by altering 

different administration parameters, and confirm the molecular mechanism of HNSCC cell 

death in vivo following intratumoural treatment with EBC-46. 

Subcutaneous xenografts of HNSCC cell lines were grown in BALB/c Foxn1nu and 

NOD/SCID mice and treated with intratumoural injection of 30 µg EBC-46 or a control 

solution. A difficult cell line was identified and administration parameters were adjusted in 

an attempt to overcome treatment resistance. Treated tumours were stained for 

endothelial cell, macrophage and neutrophil markers. In vitro cytotoxic assays were 

employed to further investigate the mechanism by which EBC-46 works. 

A tongue SCC cell line (SCC-15) was identified as the most resistant cell line. A single 30 

µg bolus in 40% propylene glycol was the most efficacious administration. 

Immunohistological staining of treated tumours in BALB/c Foxn1nu mice identified tumour 

vessel disruption, red cell influx, and recruitment of macrophages and neutrophils following 

treatment with EBC-46. At 24 hr after treatment most of the cells present at the treated site 

were neutrophils. In contrast, no neutrophil infiltration was present in treated tumours at 24 

hr in NOD/SCID mice. EBC-46 at doses comparable to the concentration administered in 

vivo rapidly killed tumour cells by necrosis in vitro. Simultaneous treatment with the pan-

PKC inhibitor BIS-1 did not completely prevent EBC-46’s action. Dual fluorescence 

labelling observed under the confocal microscope revealed that mitochondrial potential 

was lost before uptake of propidium iodide.  

In conclusion, high dose EBC-46 killed tumour cells in vitro by necrosis, associated with 

loss of mitochondrial potential. The picture is more complex in vivo.  Disruption of tumour 

vasculature seen in tissue sections indicated a process of hemorrhagic necrosis. The 

difference in efficacy between BALB/c Foxn1nu and NOD/SCID mouse models indicated a 

requirement for neutrophils in the host and merits further investigation such as ablation of 

neutrophils in BALB/c Foxn1nu. These results provide new insight into the mechanism of 

action of EBC-46 and extend the number of HNSCC models further supporting the use of 

EBC-46 is a suitable agent for progression to human clinical trials in HNSCC. 
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CHAPTER ONE: General 
 
1.1 Introduction  

 

As the fifth commonest cancer worldwide, there are over 600,000 new patients diagnosed 

with cancer of the head and neck annually [1]. Head and neck squamous cell carcinoma 

(HNSCC) is responsible for 90% of all head and neck cancers.  

HNSCC is a heterogenous disease, despite the common origin of aerodigestive tract 

squamous epithelium. There are many factors that contribute to the variation seen 

clinically. Firstly, the anatomy of the head and neck region is made up of many defined 

structural subsites that have distinct arterial supply, lymphatic and venous drainage, and 

inherent microscopic features. Secondly, aetiological risk factors are different for the 

different subsites, although HNSCC can occur in patients who are young and have no 

known risk factors. Finally, there is evidence for tumour biological heterogeneity 

independent of the subsite [2]. 

 

Decisions regarding the treatment of a patient with HNSCC involve a large 

multidisciplinary team of surgeons, radiation and medical oncologists, radiologists, 

pathologists, speech therapists, dietitians and dentists. Treatment usually includes a 

combination of surgical resection followed by radiation therapy and/or chemotherapy 

tailored specifically to the patient’s preference, disease characteristics and co-morbidities. 

Despite sophisticated advances in surgical technique, targeted radiotherapy and drug 

discovery, the 5 year survival rate has remained low at 50% for the past 30 years [3]. 

Unfortunately, the median time of survival following loco-regional recurrence or metastatic 

disease is only six months [4]. Consideration of further surgical resection or radiation 

therapy following recurrence is precluded at times due to their associated high morbidity 

on previously treated patients. It has therefore been imperative to investigate novel 

therapies that can offer increased survival for HNSCC patients with low associated 

morbidity.  

 

Recently, much focus has been placed on the discovery of diterpene esters, protein kinase 

C (PKC) activators, which have been shown to induce tumour senescence in vitro and in 

vivo [5-9]. Specifically, EBC-46, a novel diterpene ester and PKC activator discovered by 

QBiotics Pty. Ltd (Queensland, Australia), has recently been found to successfully ablate 

subcutaneous xenografts of 2 different human HNSCC cell lines in nude mice by 
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intratumoural injection [10]. This body of work aimed to optimise intratumoural injection of 

HNSCC mouse models with EBC-46 in conjunction with further investigation into the 

drug’s mechanism of action, to facilitate the progression of EBC-46 into clinical trials. 

  

 

1.2 HNSCC 
 

1.2.1 Epidemiology and risk factors 

 

As the fifth most common cancer by incidence, and the sixth most common cancer for 

cancer-related mortality worldwide, head and neck cancer is a significant global health 

issue [11]. Head and neck cancer includes tumours arising from cutaneous sites, lips, oral 

cavity, salivary glands, nose, paranasal sinuses, nasopharynx, oropharynx, hypopharynx 

and larynx. Head and neck cancer includes melanoma, carcinoma, lymphoma and 

sarcoma. HNSCC comprises approximately 90% of all head and neck tumours [2 12]. 

Laryngeal cancer is more prevalent in South America, southern and eastern Europe, and 

western Asia. In comparison, south-central Asia, western and southern Europe, Southern 

Africa, and Melanesia are high risk regions for oral cavity cancer [1]. Males have an 

greater incidence (3:1), compared to their female counterparts and the median age at time 

of diagnosis is within the sixth decade [1 13]. 

 

The most salient risk factors identified are excessive alcohol consumption and tobacco 

use, which appear to increase risk synergistically and have been implicated in 75% of all 

HNSCC [2 14]. Chewing tobacco or betel nut products is also associated with increased 

risk of oral cavity cancer [15]. Other less common risk factors for HNSCC include cancer 

susceptibility syndromes such as Fanconi’s anaemia, hereditary non-polyposis colorectal 

cancer, ataxia telangiectasia and Li-Fraumeni syndrome [16 17]. Within HNSCC, there is a 

subset lesions which are becoming more prevalent in male patients under 60 years, and 

are caused by high-risk types of human papillomavirus (HPV), 16 and 18. HPV-16 is found 

in  greater than 90% of HPV-positive oropharyngeal tumours [18]. HPV positivity can be 

detected with p16 immunohistochemistry and in situ hybridisation of tumour tissue, with 

the strongest association seen with HNSCC of the palatine and lingual tonsils [19]. 

Patients with HPV-positive tumours generally respond better to chemotherapy and/or 

radiation therapy and usually have a more favourable outcome [20]. HPV-16 and HPV-18 
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both encode oncoproteins E6 and E7 which cause alterations in the cell cycle and promote 

carcinogenesis [21]. 

 

In Australia, the incidence of lip, oral cavity, and pharyngeal cancers for males and 

females has been slowly declining from 1991-2008 at a rate of 1.6% pa and 2.8% pa, 

respectively [22]. This is postulated to be a consequence of the almost 40% reduction in 

the prevalence of tobacco smokers over the age of 14, from 24% in 1991 to 15% in 2010 

[23]. The overall alcohol consumption per capita in Australia has shown a biphasic trend, 

with an increase from 9.4 L pa in 1960 to 13.0 L pa in 1980. This rate has declined to 10.1 

L in 2009, however it is still reported that 20% of Australians over the age of 14 consume 

alcohol at a harmful rate [23]. In contrast, tonsil and base of tongue cancer incidence rates 

have increased 3-4% pa since 1982 and may reflect the increasing prevalence of HPV 

infection.  

 

1.2.2 Staging 

 

The diagnostic gold standard for HNSCC is a tissue biopsy of the primary lesion or fine 

needle aspiration of a neck lymph node. In a case where the location of the primary lesion 

is unknown, an endoscopic examination under general anaesthetic is performed and 

biopsies from potential sources are taken. There are seven neck lymph node levels that 

are anatomically catergorized, each one receiving lymph from a known consistent subsite, 

for example, the anterior tongue lymphatics drain to level I lymph nodes (Figure 1.1). This 

allows clinicians to treat the respective lymph node level(s) when treating a HNSCC at a 

specific subsite. 
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(a) 

 
(b)  

 
 

Figure 1.1 Cervical lymph node levels I through V (a). Level II is divided into regions A 

and B by the accessory nerve (cranial nerve XI). Anterior lymph node levels I, 

VI, and VII (b) [24]. 
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Clinical examination of the head and neck in combination with computed tomography (CT) 

and/or magnetic resonance imaging (MRI) determines lymph node involvement. 

Synchronous second primary tumours are identified in 10-15% of HNSCC patients and 

can occur in the lungs, thyroid, stomach, colon and pancreas [25]. Positive emission 

tomography (PET) with fluoro-2-deoxyglucose (FDG) are becoming more widely available 

and useful in determining the metabolic activity of suspected malignant lesions [26 27].  

 

Staging of HNSCC is determined using the 7th edition of American Joint Committee on 

Cancer (AJCC) TNM classification [28]. The T classification refers to the characteristics of 

the primary lesion at the specific site. The N classification refers to the involvement of any 

lymph nodes. The M classification refers to whether there are any distant metastases 

present. The resultant stage of a patient’s disease then allows the multidisciplinary team of 

clinicians to determine their subsequent prognosis and treatment regime.  

 

1.2.3 Prognosis 

 

Improvements in surgical technique, targeted radiotherapy, medical management, and 

reconstruction since the 1970s have resulted in better functional outcomes for patients in 

areas such as swallowing and speech. However, despite these improvements, the overall 

survival rate remains approximately 50% [3 12]. Prognosis is also influenced by patient 

age, smoking status, co-morbidities, tumour size and histology, HPV status, nodal 

involvement and evidence of perineural spread [29]. Unfortunately, approximately two-

thirds of HNSCC patients already have lymph node involvement at the time of diagnosis 

[30]. For long term survivors, the annual risk of developing a second primary is 4.6% [31]. 

Furthermore, the median survival following locally recurrent or metastatic disease is only 

six months [4]. 

 

 

 
 
 
 
1.3 Treatment 
 

1.3.1 Surgery 
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Surgical resection has an important role the treatment of HNSCC. An exception is noted 

for more advanced (> T2, N1) HPV-positive oropharyngeal lesions which are often treated 

with primary chemoradiation [32]. Surgical resection aims to remove the diseased tissue 

with clear margins, whilst maintaining head and neck structures that have important 

functional roles. With the majority of patient’s exhibiting cervical nodal involvement at the 

time of diagnosis, surgical resection frequently also includes nodal clearance.  

 

In 1906, Crile first described a radical neck dissection (RND) where en bloc removal of 

cervical nodal levels I-V were accompanied by the resection of the internal jugular vein, 

accessory nerve, and sternocleidomastoid muscle [33]. Preservation of any of these 

additional structures is referred to as a modified radical neck dissection (MRND), and has 

a superior functional outcome for the patient. A selective neck dissection, where one or 

more nodal levels are preserved, can be performed based on the known pattern of 

lymphatic spread from the affected subsite.  For patient’s with N0 disease, an elective 

neck dissection is frequently offered if the risk of nodal disease is significant. For example, 

in oral SCC, the strongest predictor of nodal disease is depth of invasion, with tumours 

>2mm having a 3.7 fold increased risk [34 35]. 

 

Following surgical resection, a team of reconstructive surgeons cover and  restore the 

resected areas in an attempt to preserve form and function. Histological characteristics of 

the resultant specimen allows the multidisciplinary team of clinicians to further determine 

prognosis and choose the best post-operative treatment options. Poor histological 

prognostic factors include: positive margins [36], perineural spread [37], size of nodal 

deposit(s) and presence of extracapsular spread [38]. 

 

 

 

 

 

1.3.2 Radiation Therapy 

 

Since the 1970s, radiation therapy has played an important role in the treatment of 

HNSCC. Early stage glottic, tonsil and base of tongue lesions are often treated with 

definitive radiotherapy alone resulting in high tumour control and cure rates [30]. 
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The schedule for conventional radiation therapy is 2 Gray (Gy) in a single fraction daily, 5 

days a week for 7 weeks to give a total of 70 Gy, although this has changed in recent 

times with hyperfractionated or accelerated radiotherapy schedules [39]. Post-operative 

radiotherapy is often commenced six weeks postoperatively, allowing for adequate tissue 

healing, and delivers 60-66 Gy [30].  The advent of intensity-modulated radiation therapy, 

allows radiation oncologists to deliver radiation in 3 dimensions using CT-planning thus 

targeting specific sites and avoiding structures at risk such as the optic nerves, brain stem, 

spinal cord, salivary glands, inner ear, swallowing structures and mandible [40].  

 

Radiotherapy can also be delivered with concurrent chemotherapy with or without prior 

surgery. A large meta-analysis of data from more than 15,000 participates with HNSCC 

demonstrated that addition of concurrent chemotherapy to radiotherapy in both definitive 

and adjuvant postoperative settings led to a 19% reduction in the risk of death, and an 8% 

improvement in the 5-year survival rate in comparision to treatment with radiotherapy 

alone [41].  

 

Unfortunately, radiotherapy is not without its adverse effects. Patient’s commonly suffer 

from xerostomia, dysphagia, and hearing loss, whilst osteoradionecrosis of the mandible, 

radiation-induced nerve palsy, and cerebral radiation necrosis are much less common 

[40]. Salvage surgery for recurrent disease is also made difficult in a previously irradiated 

region, secondary to significant fibrosis and loss of normal tissue planes. 

 

1.3.3 Chemotherapy  

 

Chemotherapy alone or in combination with radiotherapy may be given in the treatment of 

HNSCC. The most commonly used agents are platinum-based, such as cisplatin or 

carboplatin with 5-flurouracil, with response rates documented between 13-32% [42 43]. 

 

A landmark trial published in 1991, demonstrated that in cases of laryngeal SCC, induction 

cisplatin in combination with radiotherapy resulted in laryngeal preservation and a survival 

rate comparable to that of laryngectomy with radiotherapy in 64% of the patients [44]. The 

use of cytotoxic agents, such as cisplatin, is limited by their ototoxicity, nephrotoxicity, 

haematological toxicity and drug resistance in a subset of HNSCC patients [13 45]. A 

recent group of researchers have tried to circumvent the toxicity of systemic cisplatin by 

injecting cisplatin bound to a nanoconjugate directly into mouse models of HNSCC. Their 
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results demonstrated that the nanoconjugate group had a 40% partial response rate and a 

10% complete response rate in comparison to a 10% partial response rate seen in the 

systemic cisplatin group [13]. The decreased efficacy of systemic chemotherapeutic 

agents can also be attributed to their relatively poor penetration into the locoregional 

tumour tissue, resulting in only a small proportion of the agent reaching the tumour tissue 

or lymph nodes. 

 

1.3.4 Targeted therapy 

 

Recent times have seen much research aimed at more selective, and less systemically 

toxic therapies for targeting cancer cells. Therapy methods have included monoclonal 

antibodies (MAbs), gene therapy, tumour vaccines, and small molecule inhibitors [46].  

 

For HNSCC, the most successful agent to date has been Cetuximab (C225, Erbitux® 

[Bristol-Myers Squibb, New York, NY), a monoclonal antibody that targets the extracellular 

ligand binding domain of epidermal growth factor receptor (EGFR), a transmembrane cell 

surface receptor that is integrally involved in cell growth, differentiation and development. 

Although limited as a monotherapy, a review of recent studies concluded that Cetuximab 

has improved locoregional control and overall survival when administered in conjuction 

with definitive radiotherapy in locally recurrent HNSCC [47]. Prolonged survival was also 

seen when Cetuximab was used in addition to platinum-based chemotherapeutic agents in 

recurrent or metastatic HNSCC. Unfortunately, a large proportion of patients have intrinsic 

or acquired resistance to Cetuximab, a phenomenon not predicted by the preclinical 

research [48]. Several mechanisms of resistance and potential overcoming adjuncts have 

been purported [49 50]. In Australia, Cetuximab is currently subsidised by the 

Pharmaceutical Benefits Scheme for initial or continuing treatment of stage III, IVa or IVb 

SCC of the oropharynx, hypopharynx, or larynx in conjunction with radiotherapy, only in 

cases where cisplatin was not tolerated or contraindicated. 

  

 
1.4 Molecular biology of HNSCC 
 

1.4.1 Pathophysiology of HNSCC 
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The majority of research aimed at identifying the pathogenesis of HNSCC has been 

performed with oral SCC, likely secondary to their high frequency and ease of sample 

availability. Oral leukoplakia can be a precursor lesion of oral SCC, with a prevalence of 

<0.5%, and presents as a mucosal white patch of keratosis that cannot be mechanically 

scraped off. The malignant transformation rate is estimated to be 1-2% per year [51]. 

Whilst leukoplakia is a macroscopic indicator of precursor mucosal changes, there is 

evidence that many other precursor changes are unable to be seen clinically.  

 

Field cancerization is a concept of the presence of one of more mucosal regions that have 

been exposed to carcinogens and/or have carcinoma-associated genetic alterations which 

renders them preneoplastic [52 53]. These regions may show histological changes, i.e. 

leukoplakia, but frequently do not, and are believed to be the source of local recurrences 

(< 2 cm from primary tumour or occurs within 3 years) or multiple primary lesions (>2 cm 

from or occurs >3 yrs after the primary tumour) [2]. The preneoplastic regions do not 

exhibit invasive or metastatic behaviour and require further genetic aberrations to 

transform into carcinoma.  

 

This accumulation of genetic aberrations over time, leading to the transformation of a 

normal cell into a cancer cell, forms the basis of the multistep carcinogenesis model that is 

applied to HNSCC [54 55]. The discovery of patches of mucosal epithelium within the 

preneoplastic regions or ‘fields’, with TP53 mutations, leading to changes of the tumour 

suppressor p53, and its function in the cell cycle, has led to the evolution of the 

hypothetical patch-field-tumour-metastasis model for HNSCC development [2 56]. The 

model is demonstrated in Figure 1.2. 
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Figure 1.2 An integrated model of head and neck squamous cell carcinoma development 

in which the genes and pathways involved are depicted. Adapted from Leemans et al [2]. 

 

The progression of cells through this model is thought to be facilitated by the acquisition of 

the major cancer-related phenotypes: limitless replicative potential; changes in growth 

factor signalling; and evasion of apoptosis, invasion and metastasis, and angiogenesis  

[2].  

 

In order to overcome cellular senescence (permanent cell-cycle arrest) in response to 

endogenous and exogenous stressors, crucial genes within the p53 and RB pathways are 

targeted [56]. Inactivation of p53, has been identified in 60-80% of HNSCC cases, caused 

by somatic mutations in HPV-negative tumours and HPV16 E6 in HPV-induced tumours [2 

56]. In vitro studies have demonstrated that overexpression of altered p53, telomerase 

reverse transcriptase (TERT), cyclin D1 or CDK4 resulted in an immortalised oral 

keratinocyte cell line [57].  

 

Growth factor signalling in epithelial cells involves epidermal growth factor receptor 

(EGFR), a cell surface tyrosine kinase which activates downstream signals through the 

Ras-MAPK, Phospholipase C, and PI3K-PTEN-AKT pathways in response to ligand-

binding. EGFR can also translocate to the nucleus if bound by EGF and act as a 

transcription factor of many genes, including CCND1 which encodes cyclin D1, an 

important player in the regulation of the cell cycle. EGFR is overexpressed in 80-90% of 

HNSCC cases, [58 59]. Downregulation of transforming growth factor-β (TGFβ), an 
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inhibitory growth factor which phosphorylate the SMAD family of transcription factors has 

also been implicated in the development of HNSCC [60 61]. 

 

The phosphoinositide 3-kinase, phosphatase and tensin, protein kinase B (PI3K-PTEN-

AKT) pathway is involved in the activation of transcription factors, cell cycle inhibitors, and 

apoptosis inhibitors, that promote cell proliferation and survival. Copy number amplification 

and mutations of the oncogene PIK3CA, the encoding gene for one of the PI3K subunits, 

have been identified in 31% of oral SCC cases [62]. 

 

For invasion and metastasis of HNSCC, cells must change from an epithelial phenotype to 

a mesenchymal phenotype through a process called epithelial-mesenchymal transition 

(EMT) [63]. EGF and TGFβ have been implicated in the progress of EMT by regulating a 

set of transcription factors that directly regulate the genes responsible for cellular 

adhesion, invasion and migration [63 64]. In a population of HNSCC patients treated with 

primary chemoradiotherapy, those with NF-kB/p65 nuclear expression confirmed in 

pretreatment tumour biopsies showed significantly higher rates of lymphatic and 

haematogenous metastasis, and decreased overall survival [65]. 

 

Solid tumours employ angiogenesis to develop new blood vessels that can provide 

oxygen, anabolites and dispose of catabolites for them. The production of angiogenic 

factors, such as vascular endothelial growth factor (VEGF) has been linked as a poor 

prognostic factor in HNSCC [66]. 

 

1.4.2 Protein Kinase C 

 

First discovered in 1977, the protein kinase C (PKC) family is a multigene group of 

phospholipid-dependent protein kinases that phosphorylate serine and threonine residues 

on a large group of proteins and are therefore involved in numerous cell signaling 

pathways [67]. 

 

There are nine PKC genes, which encode for twelve isozymes divided into three main 

classifications: classical PKCs, novel PKCs, and atypical PKCs (Figure 1.3).  
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Figure 1.3  A schematic diagram of PKC isozymes. Classical PKC enzymes, exhibit 

variable 1 (V1) through variable 5 (V5) sequences, an auto- inhibitory 

pseudosubstrate motif, DAG ⁄ TPA-binding C1 domains, a calcium-binding 

C2 domain, an ATP-binding C3 domain, and a protein substrate interacting 

C4 domain. All PKC enzymes have the pseudosubstrate, C3, C4 and at least 

one C1 domain. Adapted from Denning [68]. 

 

Classical PKCs (cPKCs: PKCα, PKCβI, PKCβII, and PKCγ) can be activated by calcium 

and phorbol esters or the lipid diacylglycerol (DAG). Novel PKCs (nPKCs: PKCδ, PKCε, 

PKC η and PKCθ) can only be activated, independent of calcium, by phorbol esters or 

DAG. Atypical PKCs (aPKCs: PKCζ and PKCτ) are also calcium independent, and are 

activated by cis-unsaturated fatty acids [8]. Each PKC isozyme has a catalytic carboxy-

terminal region and a regulatory amino-terminal region. When inactive, the conserved 

regulatory (C1 and C2 domains) region is bound to the catalytic region and prevents 

activity of the isozyme. An increase in plasma membrane DAG concentration triggers 

intracellular relocalization and activation of PKC isozymes (Figure 1.4).  
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Figure 1.4  Mechanisms of activation and inactivation of protein kinase C [8]. 

 

The binding of endogenous ligand DAG results in the capping the hydrophilic cleft in the 

C1 domain of PKC. This confers hydrophobic properties which then facilitates PKC 

docking onto membranes and interacting with respective substrates before they are 

degraded by proteolytic enzymes [8]. 

 

The past twenty years has seen a large body of work dedicated to the discovery of the 

roles and functions of the different PKC isozymes. This goal has been complicated by the 

discovery that most PKC isozymes are expressed in all tissue types at all stages of 

development in a ubiquitous fashion [69 70]. However, there is compelling evidence that 

PKC isozymes have specific and sometimes opposing cell signaling roles in both normal 

physiological and pathological disease state [71 72]. In particular, PKC isozymes have 

been found to upregulate gene transcription and translation, regulate cell proliferation and 

cell death, modify cell morphology and migration [73].  

 

Increased activation of particular PKC isozymes has been implicated in certain types of 

cancer [8 68], ischaemic heart disease and heart failure [74 75], lung disease [76], 

diabetes [77], and kidney disease [78]. 
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Considerable cancer research has been focused on identifying PKC isozymes that are 

involved in tumour cell senescence, with the hypothesis that manipulation of this 

interaction could eventually be used therapeutically. Cozzi and colleagues [79] 

demonstrated that activation of a branch of the mitogen activated protein kinase (MAPK) 

cascade by PKC-activators led to growth inhibition in a melanoma cell line. The MAPK 

cascade, which involves the kinases Raf, MAPK/ERK kinase (MEK), and ERK/MAPK, links 

stimuli at the cell surface with alteration of cellular function [80]. Therefore, the cascade 

plays a central role in regulating cell proliferation, differentiation, survival and apoptosis 

[81]. Nagpala and colleagues demonstrated that permeability was induced by activation of 

PKC- β in endothelial cells[82].  

 

 

1.4.3 Ras guanyl nucleotide releasing proteins (RasGRPs) 

 

Recent research has also discovered other protein families, which also have C1 domains 

that can be bound and subsequently activated by DAG or DAG analogues [8]. Of note are 

the RasGRPs, a family of four proteins that are involved in the upstream activation of Ras 

and other related GTPases that are involved in intracellular signalling. Interestingly, there 

is also evidence that these proteins can also be activated by PKC phosphorylation [83]. 

RasGRP1 has been found to be involved in differentiation of immature CD4 and CD8 cells 

into mature cells in a process called β-selection. RasGRP2 is an activator in platelet 

aggregation. RasGRP3 is thought to be involved in B cell proliferation and may play a role 

in macrophage phagocytosis. RasGRP4 is activated by DAG/DAG analogues only, not 

PKC-mediated phosphorylation, and appears to be mast cell specific [84]. Furthermore, 

RasGRP1 and RasGRP3 were shown to confer phorbol ester sensitivity in several 

lymphoma cell lines, leading to growth arrest [85 86].  

 

1.4.4 Diterpene Esters 

 

Diterpene esters are exogenous analogues of the endogenous ligand diacylglycerol (DAG) 

that activates cPKC and nPKC isozymes by binding to the conserved C1 domain. One 

such compound is ingenol-3-angelate (I3A, ingenol mebutate), extracted from the sap of 

Euphorbia peplus, a traditional medicine used for many conditions, including skin cancer. 

Picato® (Leo Pharma Inc, New Jersey, USA) is a topical preparation of I3A (PEP-005) that 

was recently approved by the Federal Drug Administration (USA) for the treatment of the 
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SCC precursor, actinic keratosis [87]. In a phase I/II clinical study, a complete clinical 

response was identified in 50% of SCCs treated topically with Picato® [88]. The compound 

was also found to be effective in the eradication of subcutaneous xenografts of SCC cell 

lines LK2 and PAM212 grown in nude mice [5 89]. Challacombe and colleagues [90] 

identified haemorrhagic necrosis, neutrophil recruitment and antibody-dependent cellular 

cytotoxicity as the mechanisms of action that provided recurrence-free eradication of their 

tumour models. 

 

1.5 EBC-46 

 

Derived from the seed of a native Northern Queensland plant, Fontainea picrosperma, 

EBC-46 (12-Tigloyl-13-(2-methylbutanoyl)-6,7-epoxy-4,5,9,12,13,20-hexahydroxy-1-

tigliaen-3-one; 562.65 g/mol) is a novel diterpene ester and PKC-activator that has been 

extracted by collaborators QBiotics Ltd (Queensland, Australia) and the Queensland 

Institute of Medical Research Berghofer (QIMRB, Queensland, Australia). Veterinary 

clinical trials, involving over 100 horses, dogs and cats with solid tumours showed very 

promising results with the majority of tumours eradicated without recurrence by 

intratumoural injection of EBC-46 (Peter Parsons, pers communication).  

 

This early success led to the hypothesis that this compound could be relevant in human 

HNSCC. Research demonstrated that EBC-46 did not have the same cytotoxic effects as 

TPA and Picato® in HNSCC cell lines CAL 27 (tongue) and FaDu (hypopharyngeal), with 

only a 31.6% and 28.9% reduction in cell survival in vitro at concentrations of 10,000 

ng/ml, respectively [91]. Following this, CAL 27 and FaDu xenografts were grown in 

BALB/c Foxn1nu mice and subsequently treated with intramural injection of 30 µg of EBC-

46. Within 24 hours of intratumoural injection with EBC-46, the xenografts had become 

haemorrhagic lesions, which progressed to an eschar within 8-10 days. By 21 days, there 

was scar tissue present at the treatment site only. All of the tumours treated with EBC-46 

in vivo were eradicated and no recurrence was seen by 90 days. The discrepancy seen 

between the efficacy of EBC-46 in vitro and in vivo lead to the hypothesis that the host's 

own immune system may provide a synergistic effect. Supporting this hypothesis were the 

findings that human inflammatory cytokines IL-1β and IL-8 were upregulated in FaDu cells, 

whilst macrophages and neutrophils were recruited to the treatment site following EBC-46 

treatment in vivo.  
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A landmark paper on EBC-46 by Boyle et al., (2014) demonstrated that a single 

intratumoural dose of EBC-46 caused haemorrhagic necrosis and tumour ablation in a 

melanoma mouse model in addition to the HNSCC models. EBC-46 was also found to 

induce a respiratory burst from human polymorphonulear cells, and cause increased 

permeability of human umbilical vein endothelial cells. Furthermore, its action was found to 

be PKC-dependent, by inhibition with the pan-PKC inhibitor bisindolylmaleimide-1 (BIS-1). 

 

Experiments with EBC-46 so far have used buffered propylene glycol as the standard 

vehicle for intratumoural injection. Little is known about whether efficacy is improved with 

alternative suitable excipients, such as γ-cyclodextrin or 2-hydroxypropyl-β-cyclodextrin.  

 

 

1.6 Project Outline 
 

It has been established that intratumoural injection of the novel PKC-activating drug EBC-

46 ablates subcutaneous xenografts of 2 different human HNSCC cell lines in BALB/c 

Foxn1nu mice [10]. Localised hemorrhagic necrosis appeared to be the overt mechanism 

of action, however the molecular subtleties behind this and the potential to exploit them for 

enhancing efficacy still need to be investigated. In the aforementioned study, the 

xenographs were well vascularised and uniform in shape, factors that may confer 

favourable permanent ablation outcomes. Clinically, however, HNSCC tumours can be 

irregular in shape and may have variable blood supply, especially post radiotherapy 

treatment. 

 

1.6.1 Aims and Hypotheses 

 

Therefore, the first aim of this study was to identify a human HNSCC xenograft that 

responds poorly to intratumoural injection of EBC-46. This would allow identification of 

tumour characteristics that potentially could predict good or poor outcomes following 

treatment. 
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Hypothesis 1: 

 

The efficacy of intratumoural treatment with EBC-46 of different human HNSCC xenografts 

is variable. 

 

The second aim of this study was to improve efficacy of EBC-46 treatment by altering 

different administration parameters: dose administration, excipient, volume and 

with/without prior tumour priming. 

 

Hypothesis 2: 

 

The efficacy of intratumoural treatment with EBC-46 can be altered dependent on its 

administration. 

 

The third aim of this study was to confirm the molecular mechanism of HNSCC cell death 

in vivo following intratumoural treatment with EBC-46. 

 

Hypothesis 3: 

 

Following treatment with EBC-46, HNSCC cell death in vivo occurs by PKC-dependent 

haemorrhagic necrosis. 
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CHAPTER TWO: General Materials and Experimental Techniques 
 

2.1 Materials 
 
All chemicals were of analytical quality. 

 

 

2.1.1 General Reagents and Chemicals 
 

2.1.1.1 Biologicals 

 

Bisindolylmaleimide-1 (BIS-1)   Sigma-Aldrich 

DC101 (VEGFR-2 Antibody)   GeneTex 

Foetal bovine serum (FBS)    CSL Biosciences 

Penicillin      CSL Biosciences 

RNase      Sigma-Aldrich 

Streptomycin      Invitrogen 

Trypsin      Invitrogen 

 

2.1.1.2 Chemicals 

 

EBC-46      QBiotics 

Ethanol      Sigma-Aldrich 

Formalin      BDH Chemicals 

Isopropanol      BDH Chemicals 

MilliQ H2O      Millipore 

Propidium iodide     Sigma-Aldrich 

Propylene glycol     Sigma-Aldrich 

Sodium Chloride     Ajax Finechem 

SYTOX® Green     Invitrogen 

TMRM      Invitrogen 

Trypsin      Sigma-Aldrich 
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2.1.2 Buffers and Solutions 
 
Cell Lysis Buffer: 20% (w/v) glycerol, 1% (w/v) SDS, 10 mM Tris-HCl (pH 7.4). 2mM PMSF 

and 1% (w/v) protease inhibitor cocktail added just prior to use. 

10x Phosphate Buffered Saline (PBS) Solution: 1.5 M NaCl, 100 mM Na2HPO4, 30 mM 

KH2PO4 in MilliQ H2O 

RPMI 1640 media: 10% (v/v) foetal calf serum, 100 µg/ml streptomycin, 60 µg/ml penicillin, 

1 mM pyruvate, 0.2 mM nicotinamide, and 3 mM 4-(2-hydroxyethyl)piperazine-1-

ethanesulphonic acid) 

SRB Solution: 0.4% in 1% acetic acid; 0.8g in 200 ml 1% acetic acid 

 

 

2.1.3 Sources 
 

Ajax Finechem  Ajax Finechem, Seven Hills, NSW, Australia 

BDH Chemicals  BDH Merck Pty, Kilsyth, VIC, Australia 

CSL Biosciences  CSL Biosciences Ltd, VIC, Australia 

GeneTex   GeneTex Inc, Irvine, CA, USA 

Invitrogen   Invitrogen Australia, Mount Waverly, VIC, Australia 

Millipore   Millipore Pty Ltd, North Ryde, NSW, Australia 

Roche    Roche Diagnostics GmbH, Mannheim, Germany 

Sigma-Aldrich  Sigma-Aldrich, St Louis, MO, USA 

QBiotics   QBiotics Ltd, Yungaburra, QLD, Australia 

  

 

2.2 Methods 
 
2.2.1 Human Cell Culture 
 

2.2.1.1 Human Cell Lines 

 

The cell lines used in this project were all of human origin and are listed in Table 2.1. 
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Table 2.1. Human cell lines used in current study. 

 

Cell Line Description Source 

SCC-9 Tongue SCC ATCC No. CRL-1629 

SCC-15 Tongue SCC ATCC No. CRL-1623 

SCC-25 Tongue SCC ATCC No. CRL-1628 

 

 

2.2.1.2  Cell culture and passaging 

 

All cell lines were cultured in Roswell Park Memorial Institute (RPMI 1640) media 

containing 10% (v/v) foetal bovine serum (FBS; CSL Biosciences), 100 µg/ml streptomycin 

(Invitrogen), 60 µg/ml penicillin (CSL Biosciences), 1 mM pyruvate, 0.2 mM nicotinamide, 

and 3 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulphonic acid).  All cell lines were then 

incubated at 37°C with 5% CO2 and 95% humidity. Cultured cell lines were passaged 

biweekly to maintain log phase growth of cells. Once a cell line had reached 80% 

confluence in the containing flask, media was removed, cells washed with PBS, then 

detached using trypsin with versene. Cells were then cut 1:10 into new flasks with RPMI 

1640. 

 

2.2.1.3 Cryopreservation 

 

Once greater than 80% confluence was achieved, cells could be harvested by removal of 

media and trypsinized. Cells were then pelleted down by centrifugation for 5 min (1,500 

rpm, room temperature). Cell pellets were then resuspended in 1.5 ml of RPMI 1640 and 

1.5 ml of 20% dimethyl sulfoxide. Aliquots of 1 ml were added to cryovials, frozen to -80°C, 

and maintained in liquid nitrogen.  

 

2.2.1.4 Resuscitation from Cryopreservation 

 

Cryovials were transferred from liquid nitrogen to -70°C, followed by immersion in warm 

tap water to thaw. Cells were then diluted 1:10 with RPMI 1640 at 37°C and then pelleted 
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by centrifugation for 5 min (1,500 rpm, room temperature). Pellets were then resuspended 

in 5 ml RPMI 1640 and transferred to a 25 cm2 flask. 

 
2.2.2 In vitro cytotoxicity of EBC-46 
 

2.2.2.1 Sulforhodamine B proliferation assay 

 

The sulforhodamine B (SRB) proliferation assay was used to measure drug–induced 

cytotoxicity [92]. Initially, 5000 cells/well were seeded in flat-bottomed 96-well microtitre 

plates and then treated with dose dilutions of a compound for set periods of time. Cell 

proliferation was then allowed for 5-7 days at 37 °C. The media was then tipped off and 

cells washed with PBS. Cells were fixed with methylated spirits for at least 5 min.  

 

Following removal of the methylated spirits, cells were washed once gently with tap water 

and stained with 100 µl/well of 2% SRB solution in 1% acetic acid for 1 hr. The SRB 

solution was tipped off and cells quickly washed twice with 1% acetic acid. Finally, 100 µl 

of 10 mM Tris base (unbuffered, pH > 9) was added to each well to release the dye bound 

to cell protein. The absorbance of the wells was read on an ELISA reader (VERSA max 

microplate reader; Molecular Devices) at 564 nm with 10 sec prior shaking. Cell survival 

was plotted as percentage of control well absorbance. 

 

2.2.2.2 Propidium iodide uptake  

 

Using 5 x 104 SCC-15 cells/well in a flat-bottomed 96-well microtitre plate, propidium 

iodide (PI) was added to the RPMI media to give a final concentration of 5 µg/ml. Triplicate 

wells were treated with EBC-46 in EtOH (50 - 300 µg/ml) for 2 – 60 min alongside negative 

controls (2 µl EtOH) and positive controls (10 µl of 1% Triton X-100). Imaging was then 

performed using the AMG EvosFl inverted fluorescence microscope at 10x magnification.  

 

Counting of cells with PI uptake was performed using the OpenCFU software [93]. The 

percentage of cells with PI uptake at each concentration of EBC-46 compared to the total 

number of cells present (estimated by positive control) was calculated and plotted and as 

survival as a function of time. 
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2.2.2.3 Time-lapse tumour cell killing by EBC-46 

 

Overnight, 1 x 105 SCC-15 cells/well were allowed to adhere to a flat-bottomed 8-well plate 

in 200 µl RPMI media. The following day, 20 µM tetramethylrhodamine methyl ester 

(TMRM, Invitrogen) and 50 µM SYTOX® Green (Invitrogen) nucleic acid stain was added 

to fresh 200 µl RPMI media to assess mitochondrial membrane potential (ψm) and cell 

viability, respectively. The plate was immediately viewed with a Zeiss confocal microscope 

at 37 °C. Using the associated Zeiss Imaging Software (Zen version 2.0), cell imaging was 

performed every 30 sec for five minutes prior to the addition of EBC-46. Without moving 

the plate, 4 µl 20 mg/ml EBC-46 in EtOH was added to the well. Imaging was continued 

every 30 sec for 30 – 120 min following treatment, depending on continued cell viability.  

 

 

2.2.3 Subcutaneous inoculation of mice with human cancer cell lines 
 

All experimental work was approved by the QIMRB Animal Ethics Committee (Project 

number: P345). Five week old BALB/c Foxn1nu and NOD/SCID mice were housed under 

pathogen-free conditions in the QIMRB Animal Facility on a 12 hr light/dark cycle, with 

freely available water and food. All procedures were performed in with aseptic technique in 

a laminar flow hood in accordance with institutional standard operating protocols.  

 

In preparation for subcutaneous inoculation, tumour cells from serial passaging of 6-12 

T175 flasks were harvested using trypsin/versene in Dulbecco’s solution. The number of 

cells per ml was estimated using a haemocytometer and subsequently facilitated the 

calculation of the number of cells required for inoculation. The cell lines, cell number per 

inoculation, and mice used for each experiment are outlined below (Table 2.2). 

 

Following centrifugation at 1,500 rpm for 5 min at 37°C, the resulting cell pellet was 

resuspended in the pre-calculated volume of RPMI-1640 media with 10% FBS and placed 

on ice for transportation to the Animal Facility. For experiments using NOD/SCID mice, the 

fur over their hindquarters was removed with battery-operated clippers (Wahl) prior to 

inoculation. Inoculation was performed using Terumo® U-100 Insulin 31G x ½” needles to 

inject 50 µl of the cell suspension just below the dorsal skin of the mouse’s hind quarter on 

the right side, into the subcutaneous space. This was repeated on the left side. The 

appearance of a translucent bleb following injection confirmed correct placement of the 
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cells into the subcutaneous space. Mice were ear tagged for future identification and 

housed in air-filtered cage containing sterile water and food. They were subsequently 

monitored for tumour size and overall wellbeing.  

 

 

Table 2.2 Mouse model parameters. 

 

Cell line 
Cell density per 
inoculation site 

Mouse strain No of inoculation sites 

SCC-9 2 x 106/50 µl BALB/c Foxn1nu 2 

SCC-15 
2 x 105/50 µl and 2 x 

106/50 µl 

BALB/c Foxn1nu and 

NOD/SCID 
2 

SCC-25 2 x 106/50 µl BALB/c Foxn1nu 2 

 

 

 

2.2.5 Intratumoural injection with EBC-46 
 

Tumours were monitored until they reached the desired volume of approximately 100 

mm3. Mice in the treated groups received 50-100 µl of 0.3-0.6mg/ml EBC-46 (30 µg; 

dissolved in 40% propylene glycol or cyclodextrin) to each tumour site using a Terumo® U-

100 Insulin syringe with a 29G x ½” needle. Mice in the control groups received 50-100 µl 

of 40% propylene glycol or cyclodextrin. The mice continued to be regularly monitored for 

adverse reactions and tumour size. 

 

 

2.2.6 Infrared temperature analysis 
 

The surface temperature of tumours and surrounding skin was measured using a FLIR 

E60 handheld infrared camera and FLIR Tools Software (FLIR Systems, Inc, USA). The 

average surrounding skin temperature was calculated using at least four normal skin 

regions surrounding each tumour. The difference between the surface tumour temperature 

and the average surrounding skin temperature was then calculated (tumour °C – normal 

skin °C). 
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2.2.7 Mouse monitoring and tumour measurements 
 

Individual tumour dimensions, length (l), width (w) and height (h), were measured biweekly 

with digital vernier callipers (Kinachrome) and the resulting tumour volume (mm3) 

estimated using the formula (l x w x h). Once total tumour burden reached 1000 mm3 per 

mouse, mice were euthanized by CO2 inhalation.  

 

The raw measurement data was recorded and the average volume calculated using 

Microsoft Excel. The average volume and associated standard deviation (SD) were then 

plotted against days since treatment. Kaplan-Meier survival curves were prepared in 

GraphPad Prism 5. Mice were monitored for up to 10 months after tumour treatment.  

In addition, digital photographs were taken to document tumour progression. Qualitative 

measures of tumour characteristics and overall mouse distress were also made. 

 

2.2.8 Immunohistochemistry 
 

Mice were euthanised by CO2 inhalation at 0 - 24 hr following a single intratumoural 

injection of EBC-46 or 40% PG to their tumours or normal skin. The treated sites were 

excised using sterile surgical instruments and fixed in 10% phosphate buffered formalin for 

24 hr at 4°C. They were then transferred into 70% ethanol. Tumours were paraffin 

embedded and stained for haemotoxylin and eosin, neutrophils (LyG6, MPO), 

macrophages (F4/80), and endothelial cells (CD31) by the QIMRB Histology Facility. 

Slides were scanned at 40x magnification using the Aperio XT Scanscope. 
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CHAPTER THREE: Optimising intratumoural treatment of head and neck squamous cell 

carcinoma mouse models  

 

3.1 Introduction 
 

In the clinical setting, head and neck tumours may exhibit irregular physical characteristics 

and/or aggressive tumour biology and thus may be more inherently resistant to 

intratumoural treatment of any therapeutic compounds. It was therefore important to 

identify a head and neck cancer mouse model that was difficult to ablate and adjust the 

parameters of treatment with EBC-46 in an attempt to overcome this inherent resistance. 

 

Previous work performed by D’Souza [94] confirmed that 30 µg of EBC-46 (50 µl of 600 

µg/ml EBC-46 in 40% propylene glycol) successfully ablated B16-F0 mouse melanoma in 

C57BL/6J mice in 75-80% of cases compared to 0% of those treated with 10 µg of EBC-46 

or propylene glycol alone (P < 0.0001).  In addition, Adams [91] established human 

hypopharyngeal (FaDu) and tongue SCC (CAL 27) xenografts using BALB/c Foxn1nu mice 

and was able to successfully ablate tumours with a single intratumoural injection of 30 µg 

of EBC-46. 

 

The aim of this chapter was to optimize the efficacy of intratumoural injection of EBC-46 in 

a head and neck cancer mouse model. Therefore, 30 µg of EBC-46 in 40% propylene 

glycol was used as the standard treatment for the purposes of this project and treatment 

parameters were then subsequently altered to try to increase the proportion of 

successfully ablated tumours.  

 

 

3.2 Results 
 

3.2.1 Identification of a head and neck cancer cell line resistant to intratumoural 
treatment of EBC-46. 
 

Intratumoural treatment with 30 µg of EBC-46 successfully ablated FaDu and CAL 27 

xenografts in BALB/c Foxn1nu as previously discussed. In an attempt to identify a cell line 

that displayed more resistance to EBC-46 treatment, three additional tongue SCC cell 

lines were obtained from ATCC: SCC-9, SCC-15, and SCC-25. Xenografts of the three cell 
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lines were established by subcutaneously injecting ten five-week old BALB/c Foxn1nu mice 

for each group with 2 x 106 cells at two sites as described in Section 2.2.3. Xenografts took 

8 days to reach a treatable size (~100 mm3) in the SCC-15 group, compared to 17 days 

for SCC-9 and SCC-25. Of the ten mice in each group, five were treated with 30 µg of 

EBC-46 (50 µl of 600 mg/ml EBC-46 in 40% propylene glycol) at both tumour sites, whilst 

the remaining five mice were injected with 50 µl of 40% propylene glycol only (Figure 3.1).  

 

In all three xenograft groups treated with EBC-46, the previously described localized 

haemorrhagic response and subsequent eschar formation occurred (Figure 3.2). This was 

not seen in the groups treated with the vehicle control. Average tumour volumes for both 

groups were calculated and plotted against time (Figure 3.3). Average tumour volumes 

showed a steady decline following treatment with EBC-46. SCC-15 xenografts were 

completely ablated by day six post treatment with EBC-46, compared to day 14 post 

treatment for SCC-9 and SCC-25.   

 

In contrast, the control groups for all three xenografts continued to have tumour growth 

following intratumoural injection with the vehicle control. Mice were euthanized once total 

tumour burden had reached approximately 1000 mm3 per mouse. Figure 3.4 depicts the 

resulting Kaplan-Meier graphs, which confirmed that EBC-46 treatment led to a statistically 

significant increase in survival time. 

 

 

 

 

 

 

 



 

27 

 
 

Figure 3.1 SCC-15 subcutaneous xenografts in BALB/c Foxn1nu mice and subsequent 

intratumoural treatment. 

 

 

 
 

Figure 3.2 Time-lapse SCC-15 subcutaneous xenografts in BALB/c Foxn1nu mice 

following subsequent intratumoural treatment with 40% propylene glycol (left) 

and 30 µg EBC-46 (right). Maximum tumour burden was reached within two 

weeks for the mice treated with 40% propylene glycol and therefore they 

were euthanized and not included in day 11 and 13 photos. 
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B 

 
 

C 

 
 

 

Figure 3.3 Tumour volume of SCC-9 (A), SCC-15 (B) and SCC-25 (C) tumours in 

BALB/c Foxn1nu mice treated with EBC-46 and compared to treatment with 

40% PG vehicle control (n = 10 per group). Error bars represent ±SEM. 
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Figure 3.4  Kaplan-Meier plot comparing the differences in survival of BALB/c Foxn1nu 

mice treated for SCC-9 (A), SCC-15 (B), and SCC-25 (C) tumours with EBC-

46 or 40% PG vehicle control. 
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Recurrences was seen at two tumour sites (2/10) for SCC-9 xenografts, and one tumour 

site (1/10) for SCC-25 xenografts 19 days following treatment with EBC-46.  Three 

recurrences (3/10) in the SCC-15 group were identified day 17 post-initial treatment with 

EBC-46. Of the total six recurrences seen across the groups, three tumours were re-

treated with 30 µg EBC-46 resulting in complete ablation. Mice were monitored for ten 

months and no further recurrences were seen. Given the greatest proportion of 

recurrences, SCC-15 was identified as the most resistant cell line to treatment with EBC-

46 and therefore selected to be the cell line of utilized for further optimisation of EBC-46 

efficacy. 

 
 
3.2.2 Efficacy of EBC-46 treatment of tongue SCC xenografts in a different mouse 
model. 
 

The majority of the previous works investigating the efficacy of EBC-46 in the treatment of 

head and neck cancer mouse models have used BALB/c Foxn1nu mice.  BALB/c Foxn1nu 

nude mice are athymic and thus cannot produce mature T lymphocytes [95]. This results 

in the inability of the mice to mount cell-mediated immune responses (CD8+ T cells) as 

well an antibody formation (CD4+T cells). However, B-cells and natural killer (NK) cells 

maintain normal function.  

 

In order to see whether the suboptimal efficacy of EBC-46 seen in SCC-15 xenografts 

were specific to the nude mouse model, xenografts were established in non-obese 

diabetic severe combined immunodeficient (NOD/SCID) mice for comparison. NOD/SCID 

mice have impaired development and function of T-cells, B-Cells and NK cells [96].  

 

 

3.2.2.1 Intratumoural injection of EBC-46 to large tongue SCC xenografts in 
NOD/SCID mice 

 

Ten five-week old male NOD/SCID mice were subcutaneously inoculated with 2 x 106 

SCC 15 cells/site as described in Section 2.2.3. Tumour growth occurred very quickly in 

comparison to the nude mice xenografts, with an average tumour volume of 159 mm3 (± 

65 mm3 SD) seven days following initial inoculation. On day seven, five mice were 

intratumourally injected with the previously established treatment of 30 µg EBC-46 and five 
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mice with 50 µl of the vehicle control 40% PG. Tumour growth and Kaplan Meier survival 

graphs for both groups are represented in Figures 3.5 and 3.6.  

 

The mice injected with the vehicle control continued to display exponential tumour growth, 

similar to that seen in the BALB/c Foxn1nu mice cohort. In comparison, tumour growth in 

the group treated with the previously established dosing regimen of 30 µg EBC-46 did not 

mirror that seen in the nude mice. On average, tumour growth was suppressed by 

approximately 50%, and no tumours were successfully ablated (0/10). Mice reached 

maximum tumour burden and were culled at day 14 and day 21, for the control and treated 

groups, respectively. 
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Figure 3.5  Tumour volumes of large (>150 mm3) SCC-15 tumours in NOD/SCID mice 

treated with EBC-46 and compared to treatment with 40% PG vehicle 

control. 

 

 
 
 
 
 
Figure 3.6 Kaplan-Meier plot comparing the differences in survival of NOD/SCID mice 

treated for large (>150 mm3) SCC-15 tumours with EBC-46 or 40% PG 

vehicle control. Five mice per treatment group. Error bars represent ±SEM. 
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3.2.2.2 Intratumoural injection of EBC-46 to small tongue SCC xenografts in 
NOD/SCID mice 

 

The reduced efficacy of EBC-46 treatment seen in the larger SCC-15 xenografts in 

NOD/SCID mice potentially could have been attributed to the larger average tumour size 

at the time of treatment (159 mm3 ± 65 mm3). The dose of EBC-46 may have been 

inadequate for the number of tumour cells, and/or local spread of tumour cells may have 

already occurred to a site outside the treatment field.  

 

In an attempt to overcome this reduced efficacy to EBC-46 treatment, 25 NOD/SCID mice 

were inoculated with 2 x 105 cells/site and treated at a reduced mean tumour volume (67 

mm3 ± SD 35 mm3). Within the group of 25 mice with smaller tumours: five were treated 

with 50 µl of 40% PG vehicle control and five treated with 30 µg EBC-46 in a single bolus 

injection (Figures 3.7 and 3.8). Of the five mice treated with EBC-46 with 40% PG, only 

two mice had successfully ablated tumours. The remaining tumours showed initial 

clearance but developed local recurrence two weeks following EBC-46 treatment.  

 

 

3.2.2.3 Single versus divided dose administration of EBC-46. 
 

To investigate whether more tumour cells could be targeted with a dose given in each 

tumour quadrant, compared to the single dose, five mice were treated with a total 30 µg 

EBC-46 given in four divided doses (RoD = ring of death). Upon administration of the 

divided doses, there was a significant amount of leakage of the solution out of the 

preceding needle puncture sites, thus potentially reducing the overall concentration of 

EBC-46 in the tumour tissue. Solution leakage was also seen in tumours that appeared to 

be particularly necrotic. As depicted in Figure 3.8, mice treated with divided doses rather 

than the single dose of EBC-46 had significantly reduced survival (P = 0.001). No tumours 

were successfully ablated.  

A pilot study using a tattooing apparatus to administer EBC-46 was discontinued because 

of difficulty in delivering a sufficient, known amount into the tumour. 
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3.2.2.4 Propylene glycol compared to cyclodextrin as an excipient for EBC-46 
administration. 

 

Initial experiments with EBC-46, dissolved the compound into PEG400 for injection into 

B16-F0 mouse melanoma in C57BL/6 mice. Whilst the tumours were successfully ablated, 

it was subsequently established that using aqueous propylene glycol (PG) as an excipient 

displayed similar results and would be more appropriate for clinical intratumoural treatment 

(D’Souza, 2014).  

 

Cyclodextrins are a family of cyclic oligosaccharides used widely in the food, agricultural, 

and pharmaceutical industries. The ring-like structure of these compounds provides a 

hydrophobic inner and a hydrophilic outer region, facilitating the inclusion of 

hydrophobic/lipophilic compounds and potentially increasing their bioavailability when 

used as a drug excipient [97]. To compare the efficacy of EBC-46 dissolved in 2-

hydroxypropyl-β-cyclodextrin or 40% PG, five of the 25 NOD/SCID mice with smaller 

tongue SCC-15 tumours were treated with a single dose of 30 µg EBC-46 in 4% 2-

hydroxypropyl-β-cyclodextrin. A further five mice were treated with 4% 2-hydroxypropyl-β-

cyclodextrin alone as a vehicle control. Overall, EBC-46 in 2-hydroxypropyl-β-cyclodextrin 

did not significantly improve survival compared to EBC-46 in 40% PG (p = 0.0293, Figures 

3.7 & 3.8). Two mice had successfully ablated tumour sites. These results confirmed the 

hypothesis that 2-hydroxypropyl-β-cyclodextrin was no more effective as an excipient as 

40% PG. 
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Figure 3.7 Tumour volume of small SCC-15 tumours in NOD/SCID mice treated with 

single or multiple doses EBC-46 and with 40% PG or 2-hydroxypropyl-β-

cyclodextrin as a vehicle control. RoD = ring of death (multiple doses). Error 

bars represent ±SEM. 

 

 
 
 
 
Figure 3.8 Kaplan-Meier plot comparing the differences in survival of NOD/SCID mice 

with SCC-15 tumours treated with single or multiple doses EBC-46 and with 

40% PG or 2-hydroxypropyl-β-cyclodextrin as a vehicle control. 
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3.2.2.5 Efficacy of EBC-46 with tumour priming 
 

Challacombe and colleagues [90] showed that topical treatment with a related diterpene 

ester, Picato ® (PEP005, ingenol-3-angelate) was associated with a significant neutrophil 

infiltration in BALB/c Foxn1nu mice with skin tumours, indicating an acute T-cell 

independent inflammatory response. A reactive neutrophil infiltration was also seen 

following intratumoural injection of EBC-46 in a melanoma mouse model (D’Souza, 2014). 

Furthermore, depletion of peripheral neutrophils with the neutrophil-neutralizing 

monoclonal antibody anti-Ly6G resulted in tumour relapse in approximately ~40% of sites. 

 

The role of neutrophil extracellular traps (NETs) in cancer progression is currently 

controversial and incompletely understood. In response to cytokines, such as interleukin 8 

(IL-8) and tumour necrosis factor-α (TNF-α) neutrophils extrude their nuclear DNA, which 

then binds proteins and peptides [98]. Initially, these were known to have antimicrobial 

effects but NETs are now proposed to facilitate either a pro or anti-tumourigenic 

microenvironment. Interestingly, NET production (NETosis) can also be induced by 

phorbol esters, such as PMA [99].  

 

It was therefore hypothesized that priming tumour infiltrated neutrophils with a small dose 

of EBC-46 may increase the tumour concentration of NETs and subsequently influence 

tumour growth. Twenty 5-week old NOD/SCID mice were utilized to establish SCC-15 

xenografts with 2 x 105 cells/site as previously described (Section 2.2.3). Tumours were 

treated at an average volume of 75 mm3. Five mice were treated with a 6 µg bolus of EBC-

46 24 hours prior to the previously established treatment regimen of 30 µg. Another five 

mice received the priming dose 4 hours prior to standard treatment. For comparison, five 

mice were treated with no priming dose prior to 30 µg EBC-46 and five received 40% PG 

as a vehicle control.  

 

Of those mice treated with a 6 µg bolus 24 hours prior to a 30 µg bolus, one mouse 

demonstrated complete ablation at both tumour sites 34 days following treatment (Figure 

3.9). Comparatively, tumour ablation occurred in three mice treated with 30 µg bolus only. 

Overall survival was not significantly different between the two groups (P = 0.4902). All 

mice treated with a 6 µg priming dose 4 hours prior to standard treatment showed 

continued tumour growth, no successful ablations, and significantly reduced survival (P = 

0.0048). 
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Thirty-four days following initial treatment with EBC-46, the four mice that had primary 

tumour clearance, were noted to have bilateral inguinal lymphadenopathy approximately 

10-15 mm in diameter, requiring euthanasia (Figure 3.10). A representative mouse was 

dissected to display the lymph nodes in question and specimens were sent to histology to 

confirm metastatic SCC (Figure 3.11). 
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Figure 3.9 Tumour volume of SCC-15 tumours in NOD/SCID mice treated (*) with 6 µg 

pre-dose of EBC-46 4 hours or 24 hours prior to 30 µg bolus compared to 

standard 30 µg bolus of EBC-46 alone. 

 
 
 

 
 
 
 
Figure 3.10 Kaplan-Meier plot comparing the differences in survival of NOD/SCID mice 

with SCC-15 tumours treated with 6 µg pre-dose of EBC-46 4 hours or 24 

hours prior to 30 µg bolus compared to standard 30 µg bolus of EBC-46 

alone. 
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Figure 3.11 Inguinal lymph node metastases before (A) and during (B) dissection. H&E 

staining confirmed the presence of metastatic SCC (C). 
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3.2.2.6 Efficacy of EBC-46 delivered in larger volume 
 

As previously mentioned, during administration of 30 µg of EBC-46 in 50 µl of vehicle to 

some xenografts in NOD/SCID mice, significant leakage of the solution from necrotic areas 

of the tumour occurred and subsequent reduced tumour infiltration was noted. Those 

particular tumours often were not successfully ablated likely due to the overall reduced 

concentration of EBC-46 at the tumour site or reduced treatment field area.  

 

It was therefore proposed that increasing the solution volume, with the same dose (30 µg) 

could potentially minimize dose wastage from leaking and improve tumour infiltration. 

SCC-15 xenografts were established in NOD/SCID mice (Section 2.2.3) and treated with 

40% PG alone (5), 30 µg EBC-46 in 50 µl with 40% PG (5), or 30 µg EBC-46 in 100 µl with 

40% PG (5).  Following EBC-46 treatment, the resulting haemorrhagic region surrounding 

the tumour appeared moderately more extensive for those treated with 30 µg EBC-46 in 

100 µl with 40% PG (Figure 3.12). No additional adverse effects were noted during routine 

mouse and tumour monitoring. 

 

No significant difference in tumour growth or survival was apparent between the two EBC-

46 treated groups Figures 3.13 and 3.14).  

 

 

 

 

 

 
 
 
 
 
 
 

 
 

Figure 3.12 Photographs of NOD/SCID SCC-15 xenografts seven days following 

treatment with 30 µg bolus EBC-46 in 100 µl of 40% PG vehicle control 

(right) compared to 30 µg bolus EBC-46 in 50 µl of 40% PG (left). 
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Figure 3.13 Tumour volume of SCC-15 tumours in NOD/SCID mice treated with 30 µg 

bolus EBC-46 in 100 µl of 40% PG vehicle control compared to 30 µg bolus 

EBC-46 in 50 µl of 40% PG. 

 
 

 
 
 

Figure 3.14 Kaplan-Meier plot comparing the differences in survival of NOD/SCID mice 

with SCC-15 tumours treated with 30 µg bolus EBC-46 in 100 µl of 40% PG 

vehicle control compared to 30 µg bolus EBC-46 in 50 µl of 40% PG. 
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3.3 Discussion 
 
The aim of this chapter was to identify a head and neck SCC mouse model that was 

inherently difficult to treat with EBC-46 and try to overcome this resistance using variations 

of dose administration, excipient, volume and tumour priming. 

 

SCC-15, a tongue SCC cell line, demonstrated the most resistance to intratumoural EBC-

46 treatment with ~30% relapse rate in BALB/c Foxn1nu mice, however repeated dosing 

with EBC-46 led to cure with no sign of recurrence ten months later. Greater tumour 

resistance was seen in SCC-15 xenografts grown on NOD/SCID mice, which indicated 

involvement of the host’s innate immune system in EBC-46’s mechanism of action. 

BALB/c Foxn1nu mice are more immunocompetent than their NOD/SCID mice 

counterparts. Whilst both strains have impaired B-cell and T-cell lymphocyte development, 

NOD/SCID mice have an additional impairment of their macrophages, natural killer (NK) 

cells and complement components [96].  

 

Using the difficult tongue SCC mouse model, EBC-46 administration parameters were 

then adjusted in an attempt to overcome this inherent resistance. It was shown that a 

single bolus dose of 30 µg EBC-46 in 50 µl 40% PG, to a tumour site led to a greater 

ablation rate compared to divided doses of the novel drug. Potentially this was due to 

additional leakage of the solution out of preceding needle holes in a relatively small tumour 

volume, thus reducing the overall concentration of the drug at the tumour site. In a clinical 

scenario, a tumour may be large and/or irregularly shaped, thus requiring more than a 

single intratumoural dose of EBC-46.  

 

Despite the hypothesis that 2-hydroxypropyl-β-cyclodextrin could potentially carry EBC-46 

in its hydrophobic centre and remain at the tumour site for an extended period of time, the 

use of this compound as an excipient yielded no improved survival or further reduction in 

tumour growth. This study confirmed that 50 µl 40% PG as an excipient for EBC-46 

appeared to be the most efficacious, however, with the gaining popularity of other 

excipients, such as nanoparticles, it may be prudent to investigate these compounds in 

future experiments. 

 

Tumour priming with a small dose of EBC-46 was hypothesized to potentially cause a 

release of pro-inflammatory cytokines and chemokines at the tumour site, thus recruiting 
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more host macrophages and neutrophils. It was theorized that the amplification of the 

host’s innate immune response would then facilitate cell death of a larger proportion of 

tumour cells following treatment with EBC-46. However, no significant improvement in 

survival or tumour ablation was found in the present study. 

 

Overall, this chapter confirmed that 30 µg EBC-46 in 50 µl 40% PG given intratumourally 

as a single bolus dose without prior priming was the most efficacious treatment for a 

tongue SCC mouse model. The greater efficacy of EBC-46 treatment in the BALB/c 

Foxn1nu mice potentially indicates the additional role of the host’s innate immune system.  

The following chapters focused on characterization of the host’s innate immune response 

to EBC-46 treatment, using salient immunohistochemical markers, and further 

investigation of the mechanism by which EBC-46 caused tumour cell death. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 



 

44 

CHAPTER FOUR: Histological analysis of SCC-15 xenografts following 
intratumoural treatment with EBC-46 
 

4.1 Introduction 
 

Boyle et al (2014) observed that intratumoural treatment of hypopharyngeal SCC (FaDu) 

xenografts with EBC-46 in BALB/c Foxn1nu mice led to a loss of tumour vasculature 

integrity and red blood cell extravasation within 2- 4 hours. Notably, these effects were not 

seen in normal skin of BALB/c Foxn1nu mice treated with PG or EBC-46.  

 

Tumour blood vessel disruption was also seen following topical treatment with PEP005 

(now known as Picato®), a related diterpene ester [90]. In addition, there was an 

associated infiltration of neutrophils in BALB/c Foxn1nu mice with skin tumours, indicating 

an acute T-cell independent inflammatory response. In a melanoma mouse model, a 

reactive macrophage and neutrophil infiltration was seen 4 hr following intratumoural 

injection of 30 µg EBC-46. A moderate increase of neutrophils was noted at 8 hr and they 

continued to be present 48 hr following treatment (D’Souza, 2014). Interestingly, tumour 

relapse in approximately 40% of sites occurred when peripheral neutrophils were depleted 

with the neutrophil-neutralizing monoclonal antibody anti-Ly6G. 

 

To investigate whether a similar response occurred following treatment of SCC-15 

xenografts in both BALB/c Foxn1nu and NOD/SCID mice, and whether a recruitment of 

macrophages and/or neutrophils also occurred, immunohistochemistry was performed for 

general morphology and salient markers following EBC-46 treatment. 

 

 

4.2 Results 
 
4.2.1 Immunohistochemistry of BALB/c Foxn1nu SCC-15 xenografts  
 

Twenty BALB/c Foxn1nu mice were inoculated with 2 x 105 SCC-15 cells and tumours 

grown to approximately 100 mm3 prior to intratumoural treatment with 30 µg EBC-46 or 50 

µL 40% PG. A control mouse was left untreated to represent the 0 hr time point. Mice were 

culled 2, 4, 8 and 24 hr following treatment, tumours excised and placed in PBS or 

formalin for 24 hr at 4 °C. Specimens in PBS were processed into single-cell suspensions 
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with 100 µl collagenase A for 30 min at 37 °C, spun at 13,200 rpm for 5 min at room 

temperature and the supernatant collected for haemoglobin concentration estimation 

(Section 4.2.3). Establishment of an ex vivo culture was attempted however; the plating 

efficiency of the controls was too low and variable to obtain reproducible results. 

 

Tumour specimens were then transferred from formalin into 70% ethanol and transported 

to the QIMRB Histology Department for paraffin processing and immunohistochemical 

analysis. Staining for haematoxylin and eosin (H & E), endothelial cells (CD31), 

macrophages (F4/80) and neutrophils (LyG6, MPO) was performed. 

 

4.2.1.1 General histology 

 

Two hours following intratumoural injection of 30 µg EBC-46, a change of vasculature 

integrity and a small influx of red blood cells were demonstrated (Figure 4.1). These 

features continued to be amplified as time progressed, with almost complete destruction of 

general tissue morphology and significant extravasation of red blood cells by 24 hr post 

treatment. No significant change to tissue morphology, tumour vasculature or red blood 

cell presence was noted in tumour tissue treated with 40% PG alone. 

 

4.2.1.2 Endothelial cells 

 

Immunohistochemical staining for endothelial cells with CD31 (platelet endothelial cell 

adhesion molecule, Figure 4.2) showed dilatation of the vessels (66.0 ± 32.9 µm) after 2 

hours following EBC-46 administration, compared to 40% PG (32.0 ± 38.9 µm). Disruption 

of the endothelial cells’ integrity was also apparent, with incomplete vascular walls and 

complete destruction by 24 hours. No vasculature damage was seen in the specimens 

treated with 40% PG. 

 

 



 

46 

 
 

Figure 4.1 Photomicrographs of SCC-15 tumour sections in BALB/c Foxn1nu mice 

stained for haematoxylin and eosin following single intratumoural injection of 

30 µg EBC-46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 

hr. Destruction of general tissue morphology and significant extravasation of 

red blood cells was seen by 24 hr post treatment with EBC-46. 
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Figure 4.2 Photomicrographs of SCC-15 tumour sections in BALB/c Foxn1nu mice 

stained for endothelial cells (CD31) following single intratumoural injection of 

30 µg EBC-46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 

hr. Following EBC-46 administration, dilatation of blood vessels, disruption of 

the endothelial cells’ integrity was apparent from 2 hours. Scale bar = 90 µm. 
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24 hr 
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4.2.1.3 Macrophages 

 

Staining for murine macrophage-expressed glycoprotein F4/80, was consistent amongst 

tumours treated with 40% PG and comparable to that of the untreated tumour (Figure 4.3). 

Tumours that were treated with 30 µg EBC-46 demonstrated a peak in the number of 

macrophages 4 hr following intratumoural injection with a resolution by 8 hr. No 

appreciable change in macrophage presence was seen in specimens injected with 40% 

PG. 

 

4.2.1.4 Neutrophils 

 

Immunohistochemical staining was performed for LyG6, a myeloid differentiation antigen 

present on peripheral neutrophils in addition to myeloperoxidase (MPO), a lysosomal 

protein expressed in neutrophil granules. Both stains identified the presence of neutrophils 

in the tumour; however, MPO could also potentially identify sites of recent neutrophil 

degranulation. 

 

A substantial infiltration of neutrophils into tumour tissue was apparent 24 hr after 

intratumoural treatment with EBC-46 (Figure 4.4). Evidence of this infiltration was 

supported with a similar response seen in MPO staining at 24 hr (Figure 4.5).  

No neutrophil infiltrations or areas of degranulation were demonstrated in tumour tissue 

treated with 40% PG. 
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Figure 4.3 Photomicrographs of SCC-15 tumour sections in BALB/c Foxn1nu mice 

stained for macrophages (F4/80) following single intratumoural injection of 30 

µg EBC-46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. 

An infiltration of macrophages were seen 4 hours following EBC-46 

treatment. Scale bar = 90 µm. 
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Figure 4.4 Photomicrographs of SCC-15 tumour sections in BALB/c Foxn1nu mice 

stained for neutrophils (LyG6) following single intratumoural injection of 30 

µg EBC-46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. A 

large infiltration of neutrophils occurred 24 hours after EBC-46 treatment. 

Scale bar = 90 µm. 
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Figure 4.5 Photomicrographs of SCC-15 tumour sections in BALB/c Foxn1nu mice 

stained for neutrophils (MPO) following single intratumoural injection of 30 µg 

EBC-46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. An 

infiltration of neutrophils 24 hours after EBC-46 treatment was seen. Scale 

bar = 90 µm. 
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4.2.2 Immunohistochemistry of NOD/SCID SCC-15 xenografts  
 
To identify any histological differences following EBC-46 treatment between BALB/c 

Foxn1nu and NOD/SCID mice with xenografts, the experiment described in Section 4.2.1 

was replicated with NOD/SCID mice. However, given that the administration of 40% PG 

alone did not yield any appreciable histological change in the BALB/c Foxn1nu specimens, 

this control arm was omitted from the current experiment for ethical reasons.  

 

4.2.1.1 General histology 

 

Similar to the pattern seen in BALB/c Foxn1nu mice, there was apparent loss of 

vasculature integrity and significant extravasation of red blood cells into the tumour 

progressively from 2 hr onwards (Figure 4.6). Significant disruption to general tissue 

morphology was present at 24 hr. 

 

4.2.1.2 Endothelial cells 

 

Staining for CD31 demonstrated that tumour vasculature diameter was on average 13 ± 

4.5 µm in unstained tumour tissue (Figure 4.7). Following EBC-46 treatment, the average 

diameter progressively increased to 62 ± 27.7 µm (2 hr), 68 ± 30.3 µm (4 hr), and 160 ± 

191.7 µm (8 hr) with an associated loss of endothelial cell integrity. Twenty-four hours after 

treatment, tumour tissue integrity was so disrupted that blood vessel diameters could not 

be measured. 

 

4.2.1.3 Macrophages 

 

A moderate infiltration of macrophages into the tumour tissue presented 4 hr following 

treatment with EBC-46 (Figure 4.8). Evidence of this infiltration was still present at 8 hr but 

demonstrated resolution by 24 hr. 
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Figure 4.6 Photomicrographs of SCC-15 tumour sections in NOD/SCID mice stained for 

haematoxylin and eosin following single intratumoural injection of 30 µg EBC-

46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. 

Vasculature disruption and red blood cell infiltration was noted from 2 hours 

post treatment. Scale bar = 90 µm. 
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Figure 4.7 Photomicrographs of SCC-15 tumour sections in NOD/SCID mice stained for 

endothelial cells (CD31) following single intratumoural injection of 30 µg 

EBC-46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. 

Progressive blood vessel dilatation is demonstrated (arrow). Scale bar = 90 

µm. 
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Figure 4.8 Photomicrographs of SCC-15 tumour sections in NOD/SCID mice stained for 

macrophages (F4/80) following single intratumoural injection of 30 µg EBC-

46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. A 

macrophage infiltration was seen 4 hours following treatment. Scale bar = 90 

µm. 
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4.2.1.4 Neutrophils 

 

Although present in BALB/c Foxn1nu mice, no infiltration of neutrophils or evidence of 

increased sites of neutrophil degranulation were identified following treatment with EBC-46 

(Figures 4.9 and 4.10). LyG6 and MPO staining across all time points were similar to that 

seen in the untreated tumour tissue. 
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Figure 4.9 Photomicrographs of SCC-15 tumour sections in NOD/SCID mice stained for 

neutrophils (LyG6) following single intratumoural injection of 30 µg EBC-46 

per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. No neutrophil 

infiltration was demonstrated. Scale bar = 90 µm. 
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Figure 4.10 Photomicrographs of SCC-15 tumour in NOD/SCID mice sections stained for 

myeloperoxidase (MPO) following single intratumoural injection of 30 µg 

EBC-46 per tumour or 50 µL 40% PG vehicle control from 0 hr to 24 hr. No 

neutrophil infiltration was demonstrated. Scale bar = 90 µm. 
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4.2.3 Effect of EBC-46 on normal skin of NOD/SCID mice 
 
No significant histological change was noted following the subcutaneous injection of EBC-

46 into normal skin from BALB/c Foxn1nu mice [10]. To confirm this was also the case with 

NOD/SCID mice, Section 4.2.1 was replicated again using normal skin from NOD/SCID 

mice.  

 

As expected, the injection of 40% PG or EBC-46 had minimal effect on the normal 

NOD/SCID skin morphology within the 24 hours measured. Average counts of endothelial 

cells, macrophages, and neutrophils did not vary significantly. 

 

 

4.2.4 Haemoglobin concentration of lysed SCC-15 xenografts 
 

Histology revealed the presence of red cells following treatment with EBC-46. We 

therefore wished to quantitate the presence of red cells following treatment. Tumours were 

treated with EBC-46, and then harvested.  

 

Tumours of approximately similar volumes were processed into single cell suspensions, 

lysed with 1% SDS and the supernatant collected. To estimate the concentration of 

haemoglobin in each sample, 80 µl duplicate samples were placed into a 96-well plate 

along with solutions of known haemoglobin concentrations. Samples were read on an 

ELISA plate reader at 540 nm and haemoglobin concentrations estimated using the 

constructed standard curve (Figures 4.11 and 4.12).  

 

Tumours excised from the NOD/SCID mice demonstrated a near linear relationship 

between haemoglobin concentration and time from treatment, with a peak concentration of 

1.7 mg at 24 hr. In contrast, the haemoglobin concentration in tumours from BALB/c 

Foxn1nu mice appeared to peak at 8 hours (0.7 mg/ml) post treatment and then decreased 

to 0.2 mg/ml at 24 hr.  
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Figure 4.11 Absorbance of samples with a known haemoglobin concentration. 

 

 

 
 

Figure 4.12 Estimated haemoglobin concentrations of supernatant from lysed SCC-15 

tumours in BALB/c Foxn1nu mice. 
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4.2.5 Differences between tumour and surrounding skin temperatures following 
EBC-46 treatment. 

 

Following the findings that endothelial cells lost integrity following EBC-46 and red blood 

cells extravasated into the tumour tissue, it was hypothesised that an increase in tumour 

temperature, compared with the surrounding normal skin, may occur as a result of the 

inflammation. 

 

Using a handheld infrared camera (FLIR Systems, Inc, USA), skin temperatures of 

tumours and their surrounding normal skin were recorded at the different time points in 

Section 4.2.1, prior to euthanasia of the BALB/c Foxn1nu mice (Figure 4.13). Average 

surrounding normal skin temperatures were calculated from four peripheral regions and 

were compared to that of each tumour and the difference calculated (Table 4.1).  

 

Tumour temperatures were 1.7 - 1.8 ºC less than their surrounding skin (Table 4.1). 

Following EBC-46 treatment, tumour temperature increased at 4 hr and 24 hr. This is in 

contrast to a rapid decrease in tumour temperature of approximately 5 ºC seen in a dog 

mast cell tumor (Stewart Lowdon, personal communication). 

 

 

Table 4.1 Mean skin surface temperature differences (normal skin ºC – tumour ºC) 

between SCC-15 tumours and surrounding normal skin in BALB/c Foxn1nu 

mice. 

 

Time post 

treatment (hr) 
Temperature difference  

(normal skin ºC – tumour ºC) 
40% PG 30 µg EBC-46 

0 1.24 ± 0.46 
2 1.7 ± 0.12 1.64 ± 0.68 
4 1.73 ± 0.62 0.29 ± 0.30 
8 2.07 ± 0.46 1.46 ± 0.39 

24 1.76 ± 0.44 0.8 ± 0.33 
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A 

 
B 

 
 

Figure 4.13 Infrared (A) and plain imaging (B) of BALB/c Foxn1nu mice with SCC-15 

xenografts 2 hours following EBC-46 treatment 
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4.3 Discussion 
 

The aim of this chapter was to identify histological changes that occurred in SCC-15 

tumour tissue following treatment with EBC-46 in both BALB/c Foxn1nu and NOD/SCID 

mouse models. Within two hours following intratumoural treatment with EBC-46, SCC-15 

xenografts grown on BALB/c Foxn1nu mice and NOD/SCID mice demonstrated blood 

vessel dilatation, decreased structural integrity of tumour vasculature and subsequent 

extravasation of red blood cells into the surrounding tissue. The progressive increase in 

red blood cell extravasation with time was further supported by the increasing 

concentration of haemoglobin in the supernatant of tumour-derived single cell suspensions 

from NOD/SCID mice. Despite histological evidence of considerable red blood cell 

extravasation 24 hr following EBC-46 treatment in BALB/c Foxn1nu mice, the 

corresponding haemoglobin concentration did not correlate. This may have been due to 

sampling error during the harvesting of tumours for single-cell suspension preparation and 

may not reflect the actual concentration of haemoglobin from lysed extravasated red blood 

cells in the tumour tissue. 

 

These histological results further confirmed the findings of Boyle et al (2014) where 

intratumoural treatment of hypopharyngeal SCC (FaDu) xenografts with EBC-46 in BALB/c 

Foxn1nu mice led to a loss of tumour vasculature integrity and red blood cell extravasation 

within 2 - 4 hr. Furthermore, blood vessel dilatation was noted by the researchers 30 min 

following treatment. In the same study, cultured monolayers of HUVEC (human umbilical 

vascular endothelial) cells exposed to 600 µg/ml EBC-46 for 30 min, with or without the 

addition of BIS-1, showed PKC-dependent increased permeability (p = 0.0013). Although 

there was a reduction in permeability, it was not totally blocked by BIS-1 potentially 

indicating alternative targets or mechanisms of EBC-46 action. 

 

The disruption of tumour vasculature by EBC-46 may result in an overall decrease in the 

difference between tumour skin surface temperature and surrounding normal skin as 

evident by the use of infrared imaging in this study. This pilot temperature data raises the 

possibility of a biphasic response: temperature increase due to inflammation accompanied 

by influx of macrophages seen at 4 hr, which subsides to initial tumor temperature by 8 hr 

and then by 24 hr reverts close to normal skin temperature due to ablation of the tumour 

mass. However, this technique was performed on a small sample size and would need to 

be repeated on a larger scale to increase statistical power. 



 

64 

 

Infiltrations of macrophages and neutrophils were noted in the tumour tissue 4 hr and 24 

hr following EBC-46 treatment, respectively, providing evidence of an acute T-cell 

independent inflammatory response. A comparable reactive neutrophil infiltration was also 

seen following intratumoural injection of EBC-46 in a melanoma mouse model (D’Souza, 

2014) and in BALB/c Foxn1nu mice with skin tumours, topically treated with PEP005 (now 

known at ingenol mebutate or Picato® [90].  

 

The most interesting finding of this chapter was the absence of a comparative infiltration of 

neutrophils in the NOD/SCID group at 24 hr post treatment. This appears to be first 

objective evidence for the NOD/SCID strain of having defective homing of pro-

inflammatory cells, alluded to in several descriptions of the strain [100 101]. The lack of 

neutrophil recruitment in the NOD/SCID mice could potentially contribute to the reduced 

efficacy of EBC-46 seen in this mouse model (Section 3.2.2). With a reduced number of 

neutrophils present in the tumour tissue following injection with EBC-46, the concentration 

of NETs and neutrophil-produced cytokines and chemokines in the tumour 

microenvironment may be substantially lower, thus leading to reduced tumour cell killing. 
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CHAPTER FIVE: Mechanism of action. 
 

5.1 Introduction 
 

In recent studies, the cytotoxic effects of EBC-46 in vitro were found to be inferior to that of 

the structurally related compound 12-myristate 13-acetate (PMA) in several cell lines 

particularly sensitive to PKC activators. However, EBC-46 was found to have better 

efficacy against tumours in vivo using the head and neck cancer cell lines FaDu 

(hypopharyngeal) and CAL 27 (tongue SCC) [10 91].  

 

In conjunction with the finding of neutrophils recruited to the region following EBC-46 

treatment (D’Souza, 2014), it was hypothesised that the host’s immune response was 

responsible for the discrepancy in efficacy seen between in vitro and in vivo experiments. 

This also aligned with Challacombe and colleagues’ [90] finding that the mechanism by 

which Picato®, a related diterpene ester, worked involved initial tumour ablation followed 

by a neutrophil-dependent antibody-dependent cell cytotoxicity-mediated eradication of 

residual disease. In neutrophil-depleted BALB/c Foxn1nu mice with LK2 (UV-induced 

mouse squamous cell carcinoma line) xenografts, a relapse rate to 83% was observed in 

comparison to only 8.3% in mice with normal neutrophil counts (p = 0.005).  

 

Accordingly, this chapter focused on further investigating the mechanism by which EBC-46 

caused tumour cell death both in vitro and in vivo. 

 

 

5.2 Results 
 
5.2.1 Cytotoxicity of EBC-46 in vitro 
 

To determine the effect of EBC-46 on SCC-15 cells in vitro, several cytotoxic assays were 

performed. A 96-well flat-bottomed plate was seeded with 5 x 103 SCC-15 cells per well 

and left overnight to allow cell adhesion. The following day, media was removed and 

replaced with media containing 0 – 300 µg/ml EBC-46 diluted from EtOH, a dose range 

achieveable by intratumoural injection in vivo. Cells were exposed to EBC-46 for 0 – 60 

min, after which media was replaced to cease the cytotoxic effects of EBC-46. Cells were 

then incubated for 6 – 7 days in 5% CO2 at 37 °C (Forma Scientific Water-Jacketed 
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Incubator). When control wells were approximately 90% confluent, media was removed 

and a sulforhodamine B (SRB) protein stain was performed as described in Section 

2.2.2.1. Assays were performed in triplicate and the average concentration of cell protein 

was expressed as a percentage of the control wells to estimate cell survival (Figure 5.1). 

At 300 µg/ml, EBC-46 exposure for 30 min resulted in no detectable tumour cells present 6 

days later. Cell survival was impacted even at 50 µg/ml, however, a fairly minimal time 

response was seen. At all doses, exposure to EBC-46 for as little as 2 min inhibited 

subsequent cell growth.  Importantly, the addition of 2 µl EtOH (0 µg/ml EBC-46) had no 

appreciable effect on the percentage of tumour cell survival. 

 

 

 
 

Figure 5.1  Growth inhibition of SCC-15 cells by high doses of EBC-46. Averages of six 

replicates are shown with ±SD.  

 

 

5.2.2 Cytotoxicity of propylene glycol in vitro 
 

Due to its hydrophobicity, EBC-46 requires an appropriate excipient to solubilise it for 

intratumoural treatment in an aqueous solution.  As discussed in Chapter Three, 40% 

propylene glycol was found to be the most efficacious excipient. To ensure that propylene 

glycol itself did not have cytotoxic effects and contribute to EBC-46’s action in vitro, a 96-

well flat-bottomed plate was seeded with 5 x 103 SCC-15 cells and exposed to different 

concentrations of PG. Cells were exposed to PG for 0 – 60 min and then left to grow until 
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confluent. A SRB assay was performed as previously described and the average 

percentages of viable cells present are depicted in Figure 5.2. 

 

The addition of 40% PG resulted in the death of nearly all tumour cells. This cytotoxicity 

was significantly reduced with reducing PG concentrations. PG concentrations less than 

6.7% had a minimal effect on tumour cell survival after 60 min exposure. 

 

 

 
 

 

Figure 5.2  Dose response of acute cytotoxicity of propylene glycol in SCC-15 cells. 

 
 
5.2.3 Propidium iodide uptake in SCC-15 cells following exposure to EBC-46 
 

The main limitation of SRB assays is that cellular protein content in the well is bound by 

the dye from both viable and dead cells [102], thus many cell doublings are allowed after 

treatment before staining. The outcome reflects clonogenic survival, an important factor in 

antitumour therapy, but gives no information about the immediate effects of a compound. 

To investigate the short-term action of EBC-46 on SCC-15 cells in vitro by, a cytotoxic 

assay was performed with the inclusion of propidium iodide. Propidium iodide is positively 

charged and cannot enter a cell until the plasma membrane is compromised, upon which 

propidium iodide intercalates with DNA. It then becomes fluorogenic, and can be used to 

visually demonstrate cell death over time in vitro [103].  
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A 96-well flat-bottomed plate was seeded with 5 x 104 SCC-15 cells per well with RPMI 

media. The following day, fresh media with 5 µg/ml propidium iodide was added to the 

wells. Cells were then treated with EBC-46 (50 – 300 µg/ml) for 2 – 60 min alongside 

negative controls (2 µl of 100% EtOH) and positive controls (10 µl of 1% Triton X-100; 

rapidly lyses 100% of cells). Cells were imaged using an AMG EvosFl inverted 

fluorescence microscope (Figure 5.3). Propidium iodide-bound cells were then counted 

using OpenCFU software [93] and represented as a percentage of the positive controls 

(Figure 5.4A).  

 

Concentrations of EBC-46 200 µg/ml or less resulted in minimal cell death, as judged by 

less than 40% of SCC-15 cell nuclei becoming fluorescent after 60 min exposure. 

Significantly more cell death was demonstrated at 300 µg/ml EBC-46. After 15 - 30 min 

exposure, approximately 40% of cells had died, however this rose to nearly 75% after 60 

min. Nearly all of the fluorescent nuclei were intact, with no evidence for the formation of 

apoptotic bodies. 

Boyle and colleagues [10] recently demonstrated that EBC-46 acted in a PKC-dependent 

manner. The respiratory burst induced by EBC-46 treatment of purified human 

polymorphonuclear cells was prevented with prior treatment with 1 µM 

bisindolylmaleimide-1 (BIS-1) a pan-PKC inhibitor. Furthermore, BALB/c Foxn1nu mice 

xenografted with B16-F0 mouse melanoma cells and treated intratumourally with 10 µg 

EBC-46 in the presence of 5 µM BIS-1 showed decreased proportion of tumours ablated 

(17%) compared to no BIS-1 treatment (75%). 

 

To ascertain whether a PKC-dependence would be seen in EBC-46 acute killing of SCC-

15 cells, the same propidium iodide assay was performed with the exposure of 4 µM BIS-1 

in the media for 5 min (Figure 5.4B). When treated with 300 µg/ml EBC-46 for 60 min, the 

percentage of cells with propidium iodide uptake appeared to be moderately reduced to 

approximately 50%. No appreciable difference in uptake was noted at other concentrations 

or time intervals. These results indicate that PKC may play a significant role in tumour cell 

killing; however, inhibition of PKC did not completely prevent all cell death caused by EBC-

46 therefore suggesting that another mechanism may be involved. 

Tumour cells are also known to produce reactive oxygen species (ROS) via membrane-

associated NADPH oxidase. The constant presence of ROS is carcinogenic, with the 

promotion of cellular proliferation and angiogenesis in the tumour microenvironment [104]. 
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ROS also act to attract T-cells, macrophages, and neutrophils to the region. However, 

excessive ROS are cell damaging and can result in cell death. 

 

Phorbol esters are known to potently increase NADPH oxidase activity in neutrophils and 

B-lymphocytes [105]. Given the partial inhibition of EBC-46’s cytotoxicity with BIS-1 pre-

treatment, it was hypothesised that NADPH oxidase activation may also be a pathway 

through which EBC-46 acts. Therefore, SCC-15 cells were pre-treated for 60 min with 10 

µM diphenyleneiodonium chloride (DPI, Invitrogen), an irreversible NADPH oxidase 

inhibitor, prior to treatment with EBC-46 (Figure 5.4C). Interestingly, the pre-treatment of 

SCC-15 cells with DPI did not make any appreciable difference to the percentage of cells 

with propidium iodide uptake.  
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Figure 5.3 Serial photomicrographs of SCC-15 cells treated with 300 µg/ml EBC-46 (A) 

compared to controls (B) in vitro and stained with propidium iodide. 
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A  

 

B  

       
C 

Figure 5.4 Uptake of propidium iodide by SCC-15 cells following treatment with EBC-46 

alone (A), or with the addition of BIS-1 (B) or DPI (C). Averages from 3 well 

replicates were used. Error bars are ±SEM. 
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5.2.4 Time-lapse tumour cell killing by EBC-46 
 

To further characterise in vitro tumour cell killing, a time-lapse assay using a Zeiss 

confocal microscope was performed. A six-well plate seeded with 1 x 105 SCC-15 cells 

were used with the addition of tetramethylrhodamine methyl ester (TMRM) and SYTOX® 

Green dyes in the RPMI media. TMRM is a red fluorescent probe that is bound by active 

mitochondria. Mitochondria lose the dye when their membrane potential is lost [106]. In 

comparison, SYTOX® Green is a nucleic acid stain that is membrane impermeable, 

therefore, like propidium iodide, can only bind DNA upon cell death [107].  

 

Before and after the addition of high dose EBC-46 (400 µg/ml) to the well, images were 

taken every 30 sec for 5 min to capture any cellular uptake changes of the two dyes, in 

addition to differential interference contrast using visible light (Figure 5.5). Approximately 

15 -17 min following the addition of EBC-46 to the cells, the SCC-15 cells began to form 

intracellular vacuoles and lose their TMRM staining, indicating the loss of mitochondrial 

membrane potential (Figure 5.6). Following this, cells rapidly began to swell and then burst 

(Figures 5.7 and 5.8). The inclusion of SYTOX® Green at this point indicated the cells 

were no longer viable. The completion of these changes appeared to occur quite rapidly 

following EBC-46 treatment, with all cells within the field of view dead within 30 min (Figure 

5.9). No appreciable change in mitochondrial membrane potential or cell viability was 

noted in wells with EBC-46 absent. 

 

The pre-treatment of the cells with 5 µM BIS-1 for 60 min did not prevent cell death, 

however, it did appear to reduce the rapidity at which it occurred. The addition of 10 µl 1% 

TX-100 showed a different pattern with loss of cellular adhesion to the well followed by 

rapid cell swelling and uptake of SYTOX® Green dye.  
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Figure 5.5 Photomicrographs of time-lapse tumour cell killing assay (63x). Prior to 

treatment of SCC-15 cells with 400 µg/ml EBC-46. Mitochondrial membrane 

potential was identified with the red fluorescent probe TMRM. Cell viability 

was determined using SYTOX© (not visible).  
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Figure 5.6  Photomicrographs of time-lapse tumour cell killing assay (63x). SCC-15 

cells 13 min post treatment with 400 µg/ml EBC-46. Multiple mitochondrial 

vacuoles containing TMRM are observed. 
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Figure 5.7  Photomicrographs of time-lapse tumour cell killing assay (63x). SCC-15 

cells 17 min post treatment with 400 µg/ml EBC-46. Black arrow highlights 

cellular plasma membrane swelling prior to rupture and subsequent 

SYTOX® Green uptake by cell nucleus). Mitochondrial membrane potential 

(red) has largely gone. 
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Figure 5.8  Photomicrographs of time-lapse tumour cell killing assay (63x). SCC-15 

cells 18 min post treatment with 400 µg/ml EBC-46. Following cell membrane 

rupture, cell nuclei bind SYTOX® Green indicating the loss of cell viability. 
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Figure 5.9  Photomicrographs of time-lapse tumour cell killing assay (63x). SCC-15 

cells 38 min post treatment with 400 µg/ml EBC-46. All cells demonstrate 

lack of viability with SYTOX® Green nuclear uptake. As found with propidium 

iodide uptake, there was no evidence for nuclear fragmentation. 

 
 
5.2.5 EBC-46 treatment of BALB/c Foxn1nu mice xenografted with SCC-15 cells in 
the presence of BIS-1. 
 

Considering the killing of SCC-15 cells showed some PKC-dependence in vitro, the next 

step was to see if this was also apparent in vivo. Twenty BALB/c Foxn1nu mice (5 mice per 

group) xenografted with SCC-15 cells were treated with 30 µg EBC-46 in the presence or 
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absence of 40 µM BIS-1, co-injected with the EBC-46. Overall, the co-injection with of BIS-

1 did not impact tumour growth or survival significantly (Figure 5.10).  

 
 

 

Figure 5.10 Kaplan-Meier plot comparing the differences in survival of BALB/c Foxn1nu 

mice with SCC-15 tumours treated with 30 µg bolus EBC-46 in 50 µL of 40% 

PG, with or without co-injection of 40 µM BIS-1.   

 

 

5.2.6 Neutrophil recruitment in NOD/SCID mice  
 
Neutrophil-depleted BALB/c Foxn1nu mice bearing LK2 tumours treated with an ingenol-

type diterpene ester Picato® showed an increased rate of relapse [90]. A similar 

experiment used mouse melanoma xenografts and intratumoural treatment with EBC-46, 

and found no statistically significant difference in relapse rates [10]. An alternative 

approach was used here, based on the report that an antiangiogenic antibody DC101 

enhanced access of proinflammatory leukocytes to tumours in NOD/SCID mice [100]. 

 

To determine if neutrophil recruitment would improve tumour ablation efficacy and relapse 

rates in NOD/SCID SCC-15 xenografts, 25 mice (5 mice/group) were injected 

intraperitoneally with 600 µg antiangiogenic monoclonal antibody DC101 (or an isotype 

antibody) -6, -3 days and at the time of EBC-46 treatment [100]. Survival data was 

recorded and showed that the addition of DC101 antibody did not significantly increase 

mouse survival when treated with EBC-46 (Figure 5.11) 
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Figure 5.11 Kaplan-Meier plot comparing the differences in survival of NOD/SCID mice 

with SCC-15 tumours treated with 30 µg bolus EBC-46 in 50 µL of 40% PG, 

with prior DC101 or isotype control antibody. 

 

 

5.3 Discussion 
 

The aim of this chapter was to further investigate the mechanism by which EBC-46 causes 

tumour cell death. In a SRB, clonogenic-type assay, the exposure of EBC-46 at high 

doses in vitro resulted in near total tumour cell death within 30 min. Propylene glycol 

demonstrated high cytotoxicity at 40%, the level in which EBC-46 is injected into tumors, 

but showed negligible cytotoxicity at the lower levels assumed to be present in the tumour 

microenvironment as the injectate rapidly diffuses into the surroundings.  

 

Rapid tumor cell kill was also seen using propidium iodide uptake as a marker for cell 

death, however, only ~75% of cells showed uptake after 60 minutes of EBC-46 exposure. 

This discrepancy potentially may be attributed to different analysis methods for each 

assay, or to detachment and loss from analysis of some of the treated cells. For the SRB 

assay, triplicate wells were read on an ELISA plate reader and then the absorbance 

averaged and compared to that of triplicate control wells. In comparison, to measure the 

propidium iodide uptake, three fields of view at 20x magnification were taken for each 

triplicate well, counted using OpenCFU software [93] and then averaged.  Therefore, it 

would be possible to underestimate the total number of cells with propidium uptake in each 
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well, resulting in an overall reduced estimated percentage of cells dead compared to the 

control wells. Measuring the total fluorescence emitted by each well using a fluorescence 

plate reader potentially would have gained more accurate readings. 

 

Previously studies have indicated that EBC-46’s cytotoxicity was PKC-dependent, 

however, we were unable to completely prevent cell death by inhibiting PKC activation 

with BIS-1 in vitro with SCC 15 cells. Furthermore, no significant difference in tumour 

growth or survival was seen in a tongue SCC mouse model treated with EBC-46 in the 

presence or absence of BIS-1. The lack of PKC-related effects seen in vivo in this study, 

may be due to the relatively large dose of EBC-46 given (30 µg) compared to previous 

studies (10 µg; Boyle et al. 2014) which showed reduced EBC-46 efficacy with the addition 

of BIS-1. It is also unclear at the present time as to how quickly and effectively BIS-1 

inhibits PKC when co-injected into the tumor with EBC-46. In addition, no difference in 

EBC-46’s cytotoxicity was seen with inhibition of the ROS-producing NADPH oxidase. 

These results provide evidence that EBC-46 may facilitate some of its cytotoxic effects 

using a PKC-dependent mechanism, however, there appear to be other pathways 

involved. The mode of cell death, rapid loss of plasma and mitochondrial membrane 

function with retention of intact nuclei, resembles a form of necrosis, rather than apoptosis. 

Further studies using an array of different protein inhibitors in conjunction with EBC-46 

both in vitro and in vivo would provide useful information regarding the pathway(s) EBC-46 

utilises to cause tumour cell death. 
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CHAPTER SIX: FINAL DISCUSSION 
 

6.1 Final discussion 
 

The five-year survival rate for patients with HNSCC has remained at approximately 50% 

for the past 30 years despite advances in surgical technique, chemotherapy agents and 

radiation therapy technology. Consequently, there is a great need for the discovery and 

optimisation of another treatment modality that can be used to improve patient outcome. 

The novel diterpene ester, EBC-46, can be intratumourally injected and provides an 

opportunity to treat head and neck cancer patients whom are unable to undergo the 

traditional multi-modality treatment of surgical resection and/or chemotherapy and/or 

radiation therapy. A patient’s disease burden or co-morbidities may render them 

unsuitable for the traditional treatment options or they may present with recurrent disease.  

 

The initial aim of this project was to identify a head and neck SCC mouse model that was 

inherently difficult to treat with EBC-46. Once identified, we attempted to overcome this 

resistance by adjusting several variables: dose administration, excipient, volume and 

with/without prior tumour priming. 

 

The most inherently resistant cell line was SCC-15 (ATCC® CRL-1623™), a tongue SCC 

cell line from a 55 year-old male [108]. In nude mice, a single bolus dose of 30 µg EBC-46 

in 50 µl 40% PG to an SCC-15 tumour site led to an 70% long term ablation rate, 

confirming the potential of EBC-46 for local treatment of HNSCC, but lower than ablation 

rates obtained with the FaDu and Cal27 xenografts [91].    In NOD/SCID mice, dividing the 

dose of the compound into multiple injections of the same tumor did not improve survival, 

nor was further reduction in tumour growth found with the use of 2-hydroxypropyl-β-

cyclodextrin as an excipient. Additional use of a priming dose prior to treatment, an 

attempt to attract pro-inflammatory cells to the site, also gave no additional benefit.  

 

The mechanism of action of EBC-46 was therefore investigated, hoping to find clues to 

how efficacy could be improved. Immunohistochemical analysis of SCC-15 tumours 

following EBC-46 treatment in the BALB/c Foxn1nu mouse model confirmed the presence 

of a macrophage and neutrophil infiltration within 24 hr. Blood vessel dilatation, disrupted 

endothelial cell integrity, and red blood cell extravasation was also demonstrated. A 

reduction in the temperature difference between the tumour skin and surrounding normal 
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skin also indicated a disruption to tumours’ blood supply. These features were also seen 

following intratumoural treatment of hypopharyngeal SCC (FaDu) xenografts with EBC-46 

in BALB/c Foxn1nu mice [10]. 

 

Interestingly, a greater degree of tumour resistance was seen in SCC-15 xenografts in a 

more immunodeficient mouse model. NOD/SCID mice have impaired B-cells and T-cells, 

similar to BALB/c Foxn1nu, however, with an additional dysfunction of their macrophages, 

natural killer cells and complement components [96]. A reactive macrophage infiltration 

was seen histologically in the NOD/SCID, however there was a notable absence of a 

neutrophil infiltration. This difference may allude to the mechanism by which EBC-46 kills 

tumour cells. Previous researchers have proposed that another PKC activating diterpene 

ester PEP005/Picato has a biphasic mechanism of action; primary necrosis of tumour cells 

followed by activation of the host’s innate immune system [90]. Furthermore, neutrophil-

depleted mice bearing SK-MEL-28 tumours treated with EBC-46 had a 40% tumour 

recurrence rate compared to no recurrences in mice with normal neutrophil counts [10]. 

 

The other focus on mechanism was further investigation into the mechanism by which 

tumour cells are killed in vitro by EBC-46 (12-20 µg) yielded evidence of necrosis with loss 

of mitochondrial membrane potential, plasma membrane swelling and eventual cell rupture 

within 30 min. The aim was to reproduce in culture the high local concentration range 

expected from injection 30 µg EBC-46 into the tumour. Previously studies have indicated 

that EBC-46’s cytotoxicity was PKC-dependent, however, we were unable to prevent cell 

death by inhibiting PKC activation with BIS-1 in vitro. No significant difference in tumour 

growth or survival was seen in a tongue SCC mouse model treated with EBC-46 in the 

presence or absence of BIS-1. In the mouse model, BIS-1, a water-soluble compound, 

was co-injected with EBC-46, which has known hydrophobicity, potentially confounding the 

findings because of a mis-match in tissue uptake. It is unknown how long BIS-1 was 

maintained in the tumour microenvironment before diffusing away from the region and 

whether it’s pan-PKC inhibiting action was readily reversed.  

 

Additionally, no difference to EBC-46’s cytotoxicity in vitro was seen with inhibition of the 

ROS-producing NADPH oxidase. These results provide evidence that EBC-46 may 

facilitate some of its cytotoxic effects in a PKC-dependent mechanism, however, there 

appear to be other pathways involved. The latter may involve other proteins with a C1 
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region, or disruption of the plasma and/or mitochondrial membranes by insertion of EBC-

46 into lipid structures. 

 

 

6.2 Future directions 
 
Further investigation is required to establish a complete understanding of the mechanism 

by which EBC-46 works in vivo. Strong evidence from previous publications exists to 

suggest that EBC-46 works at least partly in a PKC-dependent manner. The current body 

of work was unable to confirm EBC-46’s PKC-dependence in tumour cell killing in vivo, 

though this may be attributed to the method of administration of BIS-1. Additional 

experimentation with BIS-1 and other PKC-inhibitors would be warranted to confirm PKC’s 

role in EBC-46’s mechanism of action.  Also, the in vitro and in vivo potencies for cell 

killing of a range of EBC-46 analogues differing in their levels of PKC isoform activation 

could be compared. 

 

The involvement of RasGRPs required further validation. These intracellular signalling 

proteins, containing a C1 sequence, have been shown to be targets of Picato® and 

induced apoptosis in a human lymphoma cell line [109]. Other potential pathways need to 

be considered, specifically, those that may be involved in the instigation or maintenance of 

a reactive neutrophil infiltration into tumour tissue following intratumoural injection. 

Furthermore, the presence of NETs in the tumour microenvironment and their role in 

tumour cell killing would be an interesting avenue to pursue. 

 

In this thesis, only 2-hydroxypropyl-β-cyclodextrin was trialled as an alternative to the 

vehicle propylene glycol. It would be interesting to expand this further and investigate the 

use of other potential excipients. For example, other types of cyclodextrin as well as EBC-

46-loaded nanoparticles could be considered. This type of preparation would ideally 

maintain the compound’s concentration in the tumour microenvironment whilst reducing 

systemic effects. 

 

At the time of publication, Phase I clinical trials for EBC-46 in a palliative subset of patients 

with head and neck cancer were underway in Victoria, New South Wales and Queensland. 

Patients that demonstrate a good response to treatment will be able to apply for further 

compassionate treatment.  
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With satisfactory performance in clinical trials, it is hoped that EBC-46 will be approved for 

the treatment of selected patients with head and neck cancer as an adjunct or stand-alone 

treatment option. 
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