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Abstract: Total factor productivity (TFP) is often defined as the ratio of an aggregate output to an 
aggregate input.  This definition naturally leads to TFP indexes that can be expressed as the ratio of 
an output quantity index to an input quantity index.  In this paper, such index numbers are said to be 
multiplicatively complete.  Complete indexes can be shown to satisfy important axioms from index 
number theory.  This paper formally defines what is meant by completeness and demonstrates that i) 
the class of complete TFP index numbers includes Törnqvist, Konus and Moorsteen-Bjurek indexes, 
ii) the popular Malmquist TFP index of Caves, Christensen and Diewert (1982a, p.45) is incomplete, 
iii) any complete TFP index can be decomposed into measures of technical change, technical effi-
ciency change, mix efficiency change, and scale efficiency change, and iv) profitability change can 
be broken into these same components plus a component representing the change in the terms of 
trade.  An artificial data set is used to illustrate the decomposition of the Moorsteen-Bjurek TFP in-
dex.   

1.   INTRODUCTION 

Effective economic and business policy-making requires the accurate measurement of total factor productivity 
(TFP) change and its components.  Economists use numerous measures for this purpose, including Laspeyres, 
Fisher, Törnqvist, Bennet and Malmquist TFP indexes, and measures of cost, technical, allocative and scale 
efficiency, to name just a few.  Added to this list are the Solow (1957) growth accounting models frequently 
used to decompose economic growth into measures of input growth and technical change.  Empirical researchers 
sometimes have difficulty choosing one concept or measure over another, and it is not helpful that the relation-
ships between many of them are unclear.  One of the aims of this paper is to present these numerous efficiency 
and productivity concepts, models and measures within a coherent unifying framework.   

The framework I propose is both conceptually and mathematically simple.  This simplicity is achieved by 
defining index numbers in terms of aggregate quantities and prices.  The idea of defining index numbers in terms 
of aggregates has been around for a long time.  More than twenty-five years ago, for example, Caves, Christen-
sen and Diewert (1982b, p.73) recognised that “a key development in the economic theory of index numbers has 
been the demonstration that numerous index number formulas can be explicitly derived from particular aggrega-
tor functions”.  Surprisingly, they did not derive their Malmquist TFP index in this way.  Except in restrictive 
                                                           
1 This paper was completed while the author was visiting the Universitat Autònoma de Barcelona.  The project was financially supported by 
the Generalitat de Catalunya.  Helpful comments were provided by Marcel Timmer, Bert Balk, Knox Lovell, Prasada Rao, Antonio Perache 
and Emili Grifell-Tatje. 
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special cases, their TFP index fails to satisfy a sufficient condition for an unambiguous decomposition of 
productivity change, namely that it can be written as a function of aggregate quantities and prices. 

There are essentially two main approaches to decomposing TFP growth.  In the bottom-up approach, researchers 
define generic measures of efficiency and technical change and then combine them to form a TFP index – see, 
for example, Balk (2001).  In the top-down approach, they start with a recognizable TFP index and then attempt 
to decompose it in a meaningful way – see, for example, Fare, Grosskopf, Norris and Zhang (1994), Ray and 
Mukherjee (1996) and Kuosmanen and Sipiläinen (2009).  This paper combines the main features of both 
approaches.  I start with input and output aggregator functions that are consistent with axioms from index 
number theory, then build up to measures of efficiency and technical change, and eventually to recognizable TFP 
indexes.  Such TFP index numbers are said to be complete.  Because of the manner of their construction, they 
can be easily decomposed into meaningful measures of technical change and efficiency change.  The class of 
complete TFP indexes includes Fisher and Törnqvist indexes, but not the Malmquist index of Caves, et al. 
(1982a).  TFP indicators of the type proposed by Bennet (1920) are also complete. 

The paper is divided into several sections.  Section 2 is used to show how Fisher, Törnqvist, Konus and Malm-
quist price and quantity indexes can be motivated without resort to assumptions concerning either the level of 
competition in product markets or the returns to scale properties of the production technology.  All that is 
assumed is that non-negative input and output price vectors exist2.  Section 3 is used to develop a simple two-
dimensional geometric representation of TFP and profitability for a multiple-input multiple-output firm.  This 
section is also used to formally define the terms multiplicative completeness and additive completeness in the 
context of TFP indexes.  Completeness is a crucial requirement for an economically-meaningful decomposition 
of TFP change.  The fact that the Malmquist index of Caves, et al. (1982a) is not complete implies that, except in 
special cases, it is a biased measure of TFP change – see Grifell-Tatje and Lovell (1995).  A further implication 
is that the popular Fare, et al. (1994) decomposition of that index generally yields unreliable estimates of 
technical change and/or efficiency change.   Section 4 is used to show that important measures of technical, scale 
and mix efficiency can be defined in terms of quantity aggregates.  Measures of revenue, cost, profit and 
allocative efficiency can also be defined in terms of these aggregates, but these measures are not strictly neces-
sary for a useful decomposition of TFP or profitability change.  Section 5 draws all of these concepts together 
and shows that any multiplicatively complete TFP index can be decomposed into unambiguous measures of 
technical change and technical efficiency change, as well as natural measures of mix and scale efficiency 
change.  Profitability change can be decomposed into these same components plus a component measuring the 
change in the terms of trade.  Recently, Kuosmanen and Sipiläinen (2009) have used this relationship between 
profitability, TFP and the terms of trade to write the Fisher TFP index as a product of technical change, effi-
ciency change and price change “effects”.  Section 6 uses panel data to illustrate the decomposition of the 
multiplicatively-complete Moorsteen-Bjurek TFP index.   The paper is concluded in Section 7.  

The contributions of the paper are four-fold.  First, it shows how numerous efficiency and productivity concepts 
can be represented in a coherent aggregate quantity-price framework.  Second, it shows that there exists a large 
class of well-known TFP index numbers that can be decomposed into measures of technical change and effi-
ciency change.  These decompositions are exact, they do not necessarily involve measures of profitability change 
or changes in the terms of trade, and all components except the technical change component can be unambigu-
ously interpreted as measures of efficiency change.  Until now, only the Malmquist TFP index of Caves, et al. 
(1982a) has been decomposed in this way3.  Third, the paper demonstrates that popular decompositions of the 
Malmquist TFP index are generally unreliable, if only because the Malmquist index itself is an incomplete 
                                                           
2  I define and decompose TFP change in a way that is valid even when goods are not priced.  However, prices are necessary for the
computation of most TFP indexes (e.g., Paasche, Laspeyres, Fisher, Tornquist, Konus) and for the definition and decomposition of
profitability change. 
3 The Kuosmanen and Sipiläinen (2009) decomposition of the Fisher TFP index involves a measure of price change, but this price “effect” is 
not a measure of efficiency change.   As this paper demonstrates, measures of price change are not necessary for the decomposition of a 
concept that is defined in terms of quantities only.  The  Ray and Mukherjee (1996) decomposition of the Fisher index also includes a scale 
effect that is not an efficiency change effect. 
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measure of TFP change.  Finally, the paper demonstrates that the Moorsteen-Bjurek index can be decomposed in 
a way that  Balk (1998, p.114) had suggested was impossible.  More recently, Balk (2005) had described this 
index as being “decomposition resistant”.  Lovell (2003) has decomposed the Moorsteen-Bjurek index into 
measures of technical change and technical efficiency change, as well as scale and mix effects.  However, these 
scale and mix effects do not lie in the unit interval and cannot be interpreted as efficiency effects.  More seri-
ously, Balk (2005, p.25) appears to show that the Lovell (2003) decomposition is mathematically incorrect.   

2.   PRICE AND QUANTITY INDEXES 

There are two main approaches to the construction of index numbers – the axiomatic (or test) approach and the 
functional (or economic-theoretic) approach.  In this section I motivate some important formulas associated with 
each approach, list their desirable and undesirable properties, and identify conditions under which they are 
equivalent.  To save space, attention is focused on indexes that can be expressed as ratios rather than as differ-
ences.  To avoid repetition, and also because the Divisia and Törnqvist indexes are most easily motivated in a 
time-series context, most of this material is presented using the language of inter-temporal comparisons.  Also to 
avoid repetition, I only explicitly deal with the construction of input quantity and/or price indexes.   

The Axiomatic Approach 

Let N
tx ���  and N

tw ���  denote vectors of observed input quantities and prices in period t.  Also let 
0 0( , )t tX X x x� and 0 0( , )t tW W w w�  denote indexes that measure changes in input quantities and prices between 

periods 0 and t using period 0 as a base.  Different formulas are often assessed in terms of whether they satisfy 
certain axioms or tests.  In the case of indexes that can be expressed as ratios, these include4:

A.1 Monotonicity axiom5: 0 0( , ) ( , )m tX x x X x x�  if m tx x�  and 0( , ) ( , )t m tX x x X x x�  if 0 .mx x�
A.2 Linear homogeneity axiom: 0 0( , ) ( , )t tX x x X x x	 
 	  and 0 0( , ) ( , )t tW w w W w w	 
 	 for 0.	 �
A.3 Identity axiom: ( , ) ( , ) 1.t t t tX x x W w w
 

A.4 Homogeneity of degree 0 axiom: 0 0( , ) ( , )t tX x x X x x	 	 
  and 0 0( , ) ( , )t tW w w W w w	 	 
 for 0.	 �
A.6 Proportionality axiom: 0 0( , )X x x	 
 	  and 0 0( , )W w w	 
 	  for 0.	 �

T.1 Transitivity (or circular) test: 0 0 0 0; .t i it t i itX X X W W W
 

T.2 Time reversal test: 0 0 0 01/ ; 1/ .t t t tX X W W
 

T.3 Product test: 0 0 0 .t t tC W X

T.4 Factor reversal test: 0 0 0t t tC W X
  where 0tW and 0tX  have the same functional form. 
T.6 Consistency in aggregation test: an aggregate index 0( , )tX x x  can also be constructed as an index of sub-

aggregates, where all indexes have the same functional form. 
T.7 Equality test: if indexes of sub-aggregates are all equal to 	  then 0( , ) .tX x x 
 	

where 0 0/t tC C C
  is a simple cost index and t t tC w x�
  is total cost in period t.  There are a number of inherent 
conflicts between these axioms and tests.  For example, Balk (1995, pp.76, 86) claims there are no price indexes 
that simultaneously satisfy A.3, T.1 and T.4, and that the only price-quantity index pairs that satisfy A.2, A.6, 
T.3, T.6 and T.7 are the Paasche-Laspeyres and Laspeyres-Paasche pairs.  Of course, not all axioms and tests are 
equally important in all empirical contexts.  For example, the transitivity test T.1 is usually regarded as being 
especially important in a cross-section context where there is no natural ordering of the data points; the factor 
reversal test T.4 is mathematically convenient but is arguably of little practical value if a price-quantity index 
number pair already satisfies the product test T.3; and the product test T.3 is itself something of an empty test 
because, given any price (quantity) index number, an implicit quantity (price) index can be trivially defined so 
that T.3 is satisfied.   

                                                           
4 For more details, see Balk (1995, pp.71-85) 
5 The notation m tx x�  means that im itx x� for all 1,...,i N
 and there exists at least one value � 1,...,i N�  where .im itx x�
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It is useful to begin a discussion of specific index number formulas by noting that the ratios 0 0 0tw x w x� �  and  
0t t tw x w x� �  only depart from unity as tx  departs from 0.x   This property makes them natural measures of input 

quantity change.  They are, in fact, the Laspeyres and Paasche input quantity indexes, and their geometric 
average is the Fisher6 input quantity index: 

(2.1)  � �1/ 2

0 0 0
F P L
t t tX X X
    where (Fisher) 

(2.2)  0 0 0 0
L
t tX w x w x� �
     and (Laspeyres) 

(2.3) 0 0
P
t t t tX w x w x� �
        (Paasche) 

The Fisher input price index 0
F
tW  can be obtained from 0

F
tX  by interchanging the roles of prices and quantities.  

The Fisher index is “ideal” in the sense it satisfies almost all axioms and tests, including the factor reversal test.  
However, it does not satisfy the transitivity (circularity) test. 

If prices and quantities are measured at discrete points in time, the percentage change in costs between periods 0 
and t is 0 0( ) / .tC C C�  It is well-known that the Paasche and Laspeyres indexes can be derived from two 
alternative decompositions of this percentage change (see Appendix A).  On the other hand, if prices and 
quantities are viewed as continuous functions of time, the percentage change in costs is / .tC C�   Divisia input 
quantity and price indexes can be derived from a decomposition of this percentage change (see Appendix B)
without imposing any restrictions on market behaviour or the structure of the production technology. In particu-
lar, input markets do not need to be competitive, firms do not need to minimise costs, technical change does not 
need to be Hicks-neutral, and the technology does not need to exhibit constant returns to scale7.  The practical 
usefulness of the Divisia index is nevertheless limited by the fact that it is a continuous-time index.  Discrete-
time approximations are available, although they can only be viewed as such if i) they are used in a time-series 
context, and ii) they are used to make comparisons between quantities in adjacent periods of time. Perhaps the 
best-known approximation is the Törnqvist index: 

   

(2.4) � �, 1
1, , 1

1
exp ln ln

2

N
nt n tT

t t nt n t
n

s s
X x x�

� �



� � �� �� �
 �� �� �
� �� �� �
�     (Törnqvist) 

where /nt nt nt ts w x C
  is the n-th input cost share in period t.  To make comparisons between periods that are not 
adjacent, the Törnqvist index can be chained:  

(2.5) 0 01 12 1,... .T T T T
t t tX X X X �
  (chained Törnqvist) 

                                                           
6 The idea of using the geometric mean of the Paasche and Laspeyres indexes can be traced back at least as far as Pigou (1912).  However, it 
was Fisher (1922) who examined the properties of the resulting index and deemed it (almost) ideal.  
7 This is contrary to some claims made in the literature - see, for example,  Nadiri and Nandi (1999, p.488).  The confusion may be due to the 
fact that some restrictions are required for the Divisia index to satisfy certain invariance axioms, including, for example, path invariance.  
Path invariance means that “the index at time t depends on the [input] levels at time t, and not on the historical route by which the levels were 
attained”  – Richter (1966, p.751).  It can be seen from the definitions in Appendix B that Divisia aggregate prices and quantities are line 
integrals – they are areas under functions that describe the time paths of prices and quantities.  Thus, they will not generally be path invariant.  
Hulten (1973) establishes sufficient conditions under which a Divisia quantity index is path invariant, and one of these conditions is that the 
technology exhibits constant returns to scale.  If the paths are sectionally smooth, then constant returns to scale is also a necessary condition 
for path invariance.  Whether or not any of these types of invariance axioms are desirable or not is another matter.  For example, Richter 
(1966) seeks output indexes that are invariant to movements along the boundary of a production possibilities frontier – after all, he says, “we 
are only changing the mix of outputs, so it is not clear why an output index [or productivity] should change” - Richter (1966, pp.742-743).  
Nowadays, such movements are regarded as important components of measured productivity change – see, for example, Balk (2005, p.2). 
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The chained Törnqvist direct input price index 0
T
tW  is obtained from 0

T
tX  by interchanging the roles of prices 

and quantities.  The Divisia index satisfies the factor reversal test (see Appendix B) but the Törnqvist index does 
not.   Like the Fisher index, the Törnqvist index fails the transitivity test. 

The Functional Approach 

The functional approach to index number construction exploits various alternative representations of the 
production technology, including the cost, revenue, profit and input and output distance functions: 

(2.6) 
0

( , ) min{ : ( , ) }
t

k k
t t t t t tx

C w q w x x q T
�

�
 �     (cost function) 

(2.7) 
0

( , ) max{ : ( , ) }
t

k k
t t t t t tq

R p x p q x q T
�

�
 �     (revenue function) 

(2.8) 
0, 0

( , ) max { : ( , ) }
t t

k k
t t t t t t t tx q

p w p q w x x q T
� �

� �� 
 � �     (profit function) 

(2.9) ( , ) max{ 0 : ( , ) }k k
I t t t tD x q x q T

 

  �  �     (input distance function) 

(2.10) ( , ) min{ 0 : ( , ) }k k
O t t t tD x q x q T

!

 ! � ! �     (output distance function) 

where M
tq ���  and M

tp ��� are vectors of output quantities and prices, and kT denotes the period-k production 
possibilities set.   The cost function gives the minimum cost of producing the output vector given input prices; 
the revenue function gives the maximum revenue that can be produced using an input vector and given output 
prices; the profit function gives the maximum profit that can be achieved given input and output prices; the input 
distance function gives the maximum factor by which a firm can radially contract its input vector and still 
produce the same outputs; and the output distance function gives the inverse of the largest factor by which a firm 
can radially expand its output vector while using the same inputs.  The duality relationships between these 
functions have been established by Shephard (1953, 1970) and Fare and Primont (1994).  If the production 
technology is regular then these functions possess a number of important properties.  With a view to eventually 
decomposing TFP indexes, perhaps the most important of these properties are that the cost and revenue functions 
are non-negative and linearly homogeneous and non-decreasing in prices, while the output and input distance 
functions are non-negative and linearly homogeneous and non-decreasing in output quantities and input quanti-
ties respectively. 

To motivate cost-based index formulas, observe that the ratios 0( , ) / ( , )t t
t t tC w q C w q  and 0 0

0 0 0( , ) / ( , )tC w q C w q
only depart from unity as tw  departs from 0 ,w  making them natural measures of input price change8.  Indeed, 
they are isomorphic to the true cost of living index described by Konus (1924) and discussed in a survey article 
by Frisch (1936, pp.10-13).  What I refer to in this paper as the Konus input price index is the geometric average 
of these two ratios: 

(2.11) 
1/ 20

0
0 0

0 0 0

( , ) ( , )
( , ) ( , )

t
K t t t
t t

t

C w q C w q
W

C w q C w q
� �


 � �
� �

 (Konus) 

The associated (implicit) input quantity index is 0 0 0/ .K K
t t tX C W
   Thus, by construction, 0

K
tW  and 0

K
tX  satisfy 

the product test.  According to Balk (1998), the Konus input price index has a number of theoretically and 
intuitively appealing properties, but it does not satisfy the transitivity or factor reversal tests, and cannot be 
computed without knowing something about the cost function.  It is common to either i) estimate the cost 
function using parametric or non-parametric techniques, or ii) make use of specific functional form and behav-
ioural assumptions to express the index in terms of observable quantities, such as prices and cost shares. 

To motivate distance-based formulas, observe that the ratios 0( , ) / ( , )t t
I t t I tD x q D x q  and 0 0

0 0 0( , ) / ( , )I t ID x q D x q
only depart from unity as tx  departs from 0 ,x  making them natural measures of input quantity change.  Caves, 
                                                           
8 Simpler versions of these ratio’s are available in the restrictive special case where the technology exhibits input homotheticity.  In that case, 
both ratios are independent of output quantities – see, for example, Balk (1998). 
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et al. (1982a) note that they are the producer analogues of a distance-based index measure first suggested in a 
consumer context by Malmquist (1953).  The Malmquist input quantity index is the geometric average of these 
two ratios: 

(2.12) 
1/ 20

0
0 0

0 0 0

( , ) ( , )
( , ) ( , )

t
M I t t I t
t t

I t I

D x q D x q
X

D x q D x q
� �


 � �
� �

 (Malmquist)  

This input quantity index can, of course, be used to obtain an implicit input price index: 0 0 0/ .M M
t t tW C X
   Again, 

by construction, these indexes satisfy the product test   However, their theoretical appeal is again overshadowed 
by the fact that they do not satisfy the transitivity or factor reversal tests, and they cannot be computed without 
knowing something about the production technology.  Again, it is common to either i) estimate the period 0 and 
period t distance functions using parametric or non-parametric techniques, or ii) make use of specific functional 
form and behavioural assumptions to express them in terms of observable quantities.  

Exact and Superlative Index Numbers 

Earlier in this section, the axiomatic approach to index number construction was used to motivate the use of 
Törnqvist indexes for intertemporal comparisons.   However, Törnqvist indexes are also frequently used in a 
multilateral (cross-section) context where, for example, the index number for comparing the input levels of firms 
0 and t takes the form: 

 (2.13) � �0
0 0

1
exp ln ln

2

N
T nt n
t nt n

n

s s
X x x




� � �� �
 �� �� �
� �� �

�     (Törnqvist) 

One rationale for using the Törnqvist formula for multilateral comparisons is provided by Caves, et al. (1982a, 
p.1398).  These authors establish that if i) firms use positive amounts of all inputs, ii) firms are cost minimizers, 
and iii) the input distance functions (.)t

ID  and 0 (.)ID  are translog functions with identical second-order coeffi-
cients, then the Törnqvist input quantity index given by (2.13) is equal to the Malmquist input quantity index 
given by equation (2.12).   They also establish an analogous result for output quantity indexes, namely that if i) 
firms produce positive amounts of all outputs, ii) firms are revenue maximisers, and iii) the output distance 
functions (.)t

OD  and 0 (.)OD  are translog functions with identical second-order coefficients, then the Törnqvist 
output quantity index is equal to the Malmquist output quantity index.  To use the terminology of Diewert 
(1976), the Törnqvist index is exact for a translog functional form.   Moreover, because the translog is a second-
order flexible functional form, the Törnqvist index is superlative.    

These results are of enormous practical value insofar as they provide conditions under which theoretically-
appealing Malmquist indexes can be computed without having to estimate the parameters of the production 
technology.  However, the positivity and functional form conditions are restrictive.  The positivity conditions 
may be especially restrictive in industries such as agriculture where firms often rationally choose not to use some 
inputs in the production process (e.g., pesticides), and where outputs are often zero.  The functional form 
conditions are restrictive insofar as the output and input distance functions cannot both be translog unless the 
technology exhibits constant returns to scale.  In that case, there is no unique input-output combination that both 
maximises revenue and minimises cost.  One implication for TFP measurement is that the ratio of Törnqvist 
output and input indexes cannot be exact for the ratio of Malmquist output and input indexes unless the technol-
ogy exhibits constant returns to scale – see Caves, et al. (1982a, pp.1404,1407).   

Analogous results are available for other output and input quantity and price indexes.  For example,  Caves, et al. 
(1982a) establish that if i) firms are cost minimizers, and ii) the cost functions (.)tC  and 0 (.)C  are translog 
functions with identical second-order coefficients, then the Törnqvist input price index is equal to the Konus 
input price index.  This result is more powerful than the Malmquist result because it does not require positive 
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amounts of all inputs.   As a final example, Diewert (1976) shows that the Fisher index is superlative for a 
quadratic mean of order two functional form9.

3.   PRODUCTIVITY AND PROFITABILITY INDEXES 

Any of the foregoing index number formulas can be used to build intertemporal or multilateral indexes of 
productivity and profitability change.  In this section, I persist with the vocabulary of cross-sectional compari-
sons and consider the problem of comparing the productivity and profitability of two firms: a reference firm that 
faces prices 0 0( , )w p  and selects the input-output combination 0 0( , )x q  from the production possibilities set 0 ,T
and a comparison firm that faces prices ( , )t tw p  and selects ( , )t tx q  from the production possibilities set .tT
Any results that are peculiar to intertemporal comparisons are relegated to footnotes. 

Total Factor Productivity Indexes 

For single-input single-output firms, total factor productivity (TFP) is almost always defined as the output-input 
ratio.  It is also possible to define TFP as the output minus the input, but this is much less common, partly 
because it yields an index that is sensitive to units of measurement.  Both measures can be generalized to the 
multiple-output multiple-input case.  For example, the TFP of a multiple-output multiple-input firm is commonly 
defined as the ratio of an aggregate output to an aggregate input – see Jorgenson and Grilliches (1967, p.252, 
eq.253) and Good, Nadiri and Sickles (1997, p.17-19).  This is the definition of TFP used throughout this 
section. 

Let ( )t tQ Q q�  and ( )t tX X x�  denote the scalar aggregate output and input associated with the vectors tx  and 
.tq   Then the TFP of firm t is simply / .t t tTFP Q X
   The associated TFP index number that measures the 

change in TFP between firms 0 and t is 0 0 0 0/ /t t t tTFP TFP TFP Q X
 
 where 0 0/t tQ Q Q
  and 0 0/t tX X X
  are 
indexes measuring changes in aggregate outputs and inputs10.  Clearly, if inputs are held fixed then 0 1tX 
  and 

0tTFP  is a measure of output change.  If firms also happen to be fully efficient in production then 0tTFP  corre-
sponds to the Caves, et al. (1982a, p.1401) concept of an output-based productivity index; if outputs are held 
fixed and firms are fully efficient then 0tTFP  corresponds to their concept of an input-based productivity index.   

According to Balk (2003), the idea of measuring TFP change as the ratio of an output quantity index to an input 
quantity index can be traced back at least as far as Copeland (1937).  Figure 1 depicts this long-standing measure 
of TFP change in aggregate quantity space.  In this figure, the TFP for firm t is given by the slope of the ray 
passing through the origin and point A, while the TFP for firm 0 is given by the slope of the ray passing through 
the origin and point Z.  Let a and z denote the angles between the horizontal axis and the rays passing through 
points A and Z.  Then the change in TFP between firms 0 and t can be conveniently written 

0 slope 0A slope 0Z tan / tan .tTFP a z
 
   Being able to write a TFP index as the ratio of (tangent) functions of 
angles in aggregate quantity space is particularly useful for conceptualising alternative decompositions of TFP 
change.  To illustrate, let e denote the angle between the horizontal axis and the ray passing through the origin 
and any non-negative point E in aggregate quantity space.  Then the change in TFP between firms 0 and t can be 
decomposed as 0 tan / tan (tan / tan )(tan / tan ).tTFP a z a e e z
 
  Within this framework, an infinite number of 
points E can be used to effect a decomposition of TFP change.  Section 4 below will focus on points that feature 
in the empirical measurement of efficiency and technical change.   

                                                           
9 Diewert attributes the proof to Byushgens (1925), Konus and Byushgens (1926), Frisch (1936, p.30), Wald (1939, p.331), Afriat (1972, 
p.45) and Pollack (1971). 
10 In the continuous-time case, the growth rate in TFP is usually defined as the difference between the growth rate of outputs and the growth 
rate of inputs: / / / .TFP TFP Q Q X X
 ��� �   See, for example, Jorgenson and Grilliches (1967, p.252, eq.254).  To see the relationship 
between the discrete and continuous time definitions of TFP growth/change, first note that if the variable Z is a continuous function of time 
then the rate of growth in Z is / ln .Z Z d Z dt
�   Two alternative discrete-time approximations to this growth rate are 

1 1 1( )t t t t tZ Z Z Z Z� � �" 
 �  and 1ln ln ln .t t tZ Z Z �" 
 �  In a cross-section context, corresponding measures of the difference between tZ  and 

0Z  are 0 0 0( ) 1t tZ Z Z Z� 
 �  and 0 0ln ln lnt tZ Z Z� 
  where 0 0/ .t tZ Z Z�
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In practice, computing a TFP index implicitly involves choosing output and input quantity aggregator functions 
(.)Q  and (.)X  from a limited range of functional forms.  The menu of functional forms is limited by the 

requirement that the indexes 0 0/t tQ Q Q
  and 0 0/t tX X X
  should satisfy as many as possible of the axioms 
and tests discussed in Section 2.  Axioms A.1 to A.6 limit the class of admissible input quantity aggregator 
functions to those that are non-negative and non-decreasing and linearly homogeneous in inputs.  If we have 
information on prices, quantities and the production technologies used by firms 0 and t then the following are 
just four of the non-negative non-decreasing linearly-homogenous aggregator functions that are available for 
aggregating the inputs of firm {0, }:k t�

(3.1)   0( )k kX x w x�
              (Laspeyres) 

(3.2)   ( )k t kX x w x�
              (Paasche)    

 (3.3)   0
0( ) ( , )k I kX x D x q
             (Malmquist) 

(3.4)   ( ) ( , )t
k I k tX x D x q
            (Malmquist)

The intuition behind the linear aggregator functions (3.1) and (3.2) is that we should take a weighted sum of 
individual inputs, using weights that reflect the relative importance, or value, of each input to the firm.  The 
aggregator function (3.1) uses the prices paid by firm 0 as weights, while the aggregator function (3.2) uses 
prices paid by firm t as weights.  The aggregator functions (3.3) and (3.4) can be viewed as non-linear aggregator 
functions that are rooted in the available technology and use firm 0 outputs and firm t outputs as weights. The 
practical disadvantage of these distance aggregator functions is that they must be estimated.   Other non-negative 
linearly-homogeneous functions that must also be estimated but have nevertheless been used to implicitly 
aggregate input prices and quantities for firm {0, }k t�  include: 

(3.5)  0
0( ) ( , )k kW w C w q
            (Konus) 

(3.6)  ( ) ( , )t
k k tW w C w q
            (Konus) 

(3.7)  � �0
0

1
( ) exp ln ln

2

N
nt n

k nt n
n

s s
X x x x




� � �� �# �� �� �
� �� �

�        (Törnqvist) 

(3.8) 
1/

/ 2 / 2

1 1
( )

rN N
r r

k nh nk hk
n h

X x x x

 


� �

 $� �
� �
��          (quadratic mean) 

(3.9) 
1

( ) n

N

k nk
n

X x x$




� �

 � �
� �
%  where 

1
1.

N

n
n

$ 
�         (Cobb-Douglas) 

The aggregator functions given by (3.1) and (3.2) are referred to as Laspeyres and Paasche aggregator functions 
because if the input vectors of firms 0 and t are both aggregated using these function then the resulting input 
quantity indexes are respectively the Laspeyres and Paasche indexes defined by equations (2.2) and (2.3).  Not 
surprisingly, the geometric mean of the Laspeyres and Paasche aggregator functions is itself a non-negative non-
decreasing and linearly-homogeneous aggregator function that yields the Fisher index.  The aggregator functions 
(3.3) and (3.4) are referred to as Malmquist aggregator functions because they yield the firm 0 and firm t
Malmquist input indexes of Caves, et al. (1982a, p.1396).  If inputs are aggregated using the geometric mean of 
(3.3) and (3.4) then we obtain the Malmquist input quantity index defined in equation (2.12).  The Konus 
aggregator functions (3.5) and (3.6) lead to the Konus input price index defined in (2.11), while the Törnqvist 
aggregator function (3.7) leads to the multilateral Törnqvist index given by (2.13).  Of course, the Törnqvist 
index is only theoretically meaningful in a cross-section context if the functional form and positivity restrictions 
of Caves, et al. (1982a) hold11.  Good, et al. (1997, p.24) observe that the quadratic mean of order r aggregator 

                                                           
11  In a time-series context, the following aggregator function is available: 
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function (3.8) nests the generalized Leontief (r = 1), quadratic (r = 2), translog ( 0),r &  constant elasticity of 
substitution ( 0nh$ 
  for all )n h'  and Cobb-Douglas ( 0nh$ 
  for all n h'  and 0)r &  functional forms as 
special cases.  The constant returns to scale Cobb-Douglas aggregator function (3.9) was used by Solow (1957) 
in his seminal paper on decomposing economic growth.  The Solow (1957) model is discussed in more detail in 
Section 5. 

The foregoing demonstrates that ratio-type output and input indexes are underpinned by specific output and input 
aggregator functions.  In turn, TFP indexes can be formed by taking ratios of these output and input indexes.  
Although it is possible to construct a TFP index by, for example, dividing a Fisher output quantity index by a 
Törnqvist input quantity index, it is much more common12 to select output and input quantity indexes that have 
the same functional form.  In keeping with that tradition, the Fisher, Törnqvist and Konus TFP indexes, for 
example, are  

(3.10) 
1/ 2 1/ 2

0 0 0 0 0
0

0 0 0 00

F
F t t t t t
t F

t t t tt

Q p q p q w x w x
TFP

p q p q w x w xX
� � � �� � � �


 
 � � � �� � � �� � � �
   (Fisher) 

(3.11) � � � �0 0 0
0 0 0

1 10

exp ln ln ln ln
2 2
 


� � � �� � � �
 
 � � �� �� � � �
� � � �� �

� �
T M N

T t mt m nt n
t mt m nt nT

m nt

Q r r s sTFP q q x x
X

 (Törnqvist) 

(3.12) 
1/ 2 1/ 20 0

0 0 0 0 0
0 0 0 0

0 0 0 0 0

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

K t t
K t t t t t
t tK t t

t t t t t

Q R p x R p x C w q C w q
TFP

X R p x R p x C w q C w q
� � � �


 
  � � � �
� � � �

     (Konus) 

where /mt mt mt tr p q R
  is the m-th revenue share for firm t and 0t  is an index of profitability change formally 
defined in equation (3.16) below.  Perhaps surprisingly, taking the ratio of Malmquist output and input quantity 
indexes does not result in the Malmquist productivity indexes of Caves, et al. (1982a).  Rather the ratio of the 
Malmquist output index to the Malmquist input index given by (2.12) results in an index suggested by 
Moorsteen (1961) and Bjurek (1996)13:   

(3.13) 
1/ 2 1/ 20 0

0 0 0 0 0
0 0 0

0 0 0 0 0

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

M t t
BM t O t t O t I t I
t M t t

t O t O I t t I t

Q D x q D x q D x q D x q
TFP

X D x q D x q D x q D x q
� � � �


 
 � � � �
� � � �

  (Moorsteen-Bjurek) 

Difference-type output and input indexes of the type proposed by Bennet (1920) are also underpinned by specific 
output and input aggregator functions, including, for example, the directional distance (or shortage) function of 
Luenberger (1992).  In turn, these difference-type input and output indexes can be used to construct Bennet-type 
TFP indexes.  These difference-type indexes and the ratio-type indexes given by (3.10) to (3.13) satisfy a 
fundamentally important precondition for a meaningful decomposition of productivity change, namely com-
pleteness.  Two types of completeness can be defined corresponding to the ratio- and difference-type index 
frameworks: 

                                                                                                                                                                                         

� �, 1
1 , 1

1

( ) ( ) exp ln ln
2

N
nt n t

t t nt n t
n

s s
X x X x x x�

� �



� � �� �� �
 �� �� �
� �� �� �
�

If this function is used to aggregate input quantities in adjacent periods then we obtain the Tornquist index defined by equation (2.4).   
12 This common practice is not always theoretically desirable.  For example, the ratio of Tornquist output and input quantity indexes cannot 
be regarded as a superlative TFP index in the sense of Diewert (1976) unless the technology exhibits constant returns to scale (see Section 2). 
13 Lovell (2003) refers to the Moorsteen-Bjurek index as the Malmquist total factor productivity index, and to the Caves, et al. (1982a) 
Malmquist index as the Malmquist productivity index .  Bjurek (1996) uses the term Malmquist index in reference to both indexes.   Diewert 
(1992) suggests that the index might also have been suggested by Hicks (1961).  I follow Balk (2005) and refer to it as the Moorsteen-Bjurek 
index. 
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D.1.  Multiplicative Completeness: Let 0 0( , , , )t tTFP x q x q  denote an index number that measures the 
difference in TFP between firms/periods 0 and t using firm/period 0 as a base.  0 0( , , , )t tTFP x q x q  is 
multiplicatively complete if and only if it can be expressed in the form 

    0 0
0 0

( ) / ( )
( , , , )

( ) / ( )
t t

t t
Q q X x

TFP x q x q
Q q X x




where (.)Q  and (.)X are non-negative non-decreasing linearly-homogeneous functions. 

D.2. Additive Completeness: Let 0 0( , , , )t tTFP x q x q  denote an index number that measures the difference in 
TFP between firms/periods 0 and t using firm/period 0 as a base.  0 0( , , , )t tTFP x q x q  is additively com-
plete if and only if it can be expressed in the form 

     0 0 0 0( , , , ) ( ) ( ) ( ) ( )t t t tTFP x q x q Q q Q q X x X x
 � � �

where (.)Q  and (.)X are non-negative non-decreasing functions satisfying the translation property 
( ) ( )Q q Q q	 
 	 � and ( ) ( ).X x X x	 
 	 �

Multiplicatively complete TFP indexes are theoretically plausible insofar as they satisfy the index number 
axioms A.1 to A.6.  Additively complete TFP indexes satisfy a similar set of axioms.  Importantly, completeness 
is a sufficient condition for decomposing a TFP index to into measures of technical change, technical efficiency 
change, scale efficiency change and mix efficiency change.  In this paper I provide details for multiplicatively 
complete TFP indexes.   

Even though Caves, et al. (1982a) proposed the use of Malmquist output and input quantity indexes of the form 
given by equation (2.12), they did not use ratios of those indexes to construct a complete TFP index – that idea 
was first taken up seriously by Bjurek (1996).  Instead, Caves, et al. (1982a) defined indexes that are complete if 
and only if the technology is of a restrictive form. The most popular forms of the Caves, et al. (1982a) Malm-
quist indexes are14:

(3.14) 
1/ 20

0 0
0 0 0 0

( , ) ( , )
( , ) ( , )

t
OM O t t O t t
t t

O O

D x q D x q
TFP

D x q D x q
� �


 � �
� �

 (output-oriented Malmquist) 

(3.15) 
1/ 20

0 0 0 0
0 0

( , ) ( , )
( , ) ( , )

t
IM I I
t t

I t t I t t

D x q D x q
TFP

D x q D x q
� �


 � �
� �

 (input-oriented Malmquist) 

Fare, Grosskopf and Roos (1998, p.136) show that the output-oriented Malmquist index given by (3.14) equals 
the Moorsteen-Bjurek index given by (3.13) if and only if the technology is inversely homothetic and exhibits 
constant returns to scale15.   Unless these conditions hold, the Malmquist index is a systematically biased 
measure of changes in productivity – see Grifell-Tatje and Lovell (1995). 

Profitability Indexes 

Associated with the output and input quantity aggregates discussed above are price aggregates ( )t tP P p�  and 
( ).t tW W w�   Not only must the aggregator functions (.)P  and (.)W  be non-negative and non-decreasing and 

linearly homogeneous in prices, they must be chosen in such a way that any quantity-price aggregator function 
pairs satisfy the product rules t t t tPQ p q�
  and .t t t tW X w x�
   Eichhorn (1978, p.144) deomonstrates that if the 

                                                           
14 See, for example, Fare, Grosskopf, Lindgren and Roos (1992, p.90) and Lovell (2003, p.440). 
15 Fare, et al. (1998) attribute the proof to Fare, Grosskopf and Roos (1996).  A technology is said to exhibit inverse homotheticity if 

( , ) ( , ) / ( ( , ))O O ID x q D a q F D x a
  where F is increasing and a  is an arbitrary vector.   If the technology exhibits constant returns to scale 
then F is the identity function.  
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price aggregator functions (.)P  and (.)W  depend only on prices and not on quantities, and if the quantity 
aggregator functions (.)Q  and (.)X  depend only on quantities and not on prices, there are no price-quantity 
aggregator function pairs that satisfy the product rules.  However, the product rules can be easily satisfied if both 
prices and quantities are permitted to enter each aggregator function.  Indeed, the non-negativity, monotonicity, 
linear homogeneity and product rule requirements can all be trivially satisfied by choosing /t t t tP p q Q�
  and 

/ .t t t tW w x X�
   Henceforth, I will assume all aggregate prices and quantities are chosen to satisfy the product 
rules. 

A common measure of business performance is profitability, defined as the ratio of revenue to cost:  /t t tR C 

where t t tR p q��  and .t t tC w x��  The associated index number that measures the change in profitability between 
firms 0 and t is 0 0 0 0/ /t t t tR C 
   
  where 0 0/t tR R R
  and  0 0/t tC C C
  are simple revenue and cost 
indexes.   If the product rules are satisfied then 

(3.16)  0 0 0 0
0 0

0 0 0 0

t t t t
t t

t t t t

R P Q P
TFP

C W X W
 
 
 
 (      ("profitability = "TFP ( "terms of trade) 

Thus, the change in profitability between firms 0 and t can be decomposed into the product of indexes measuring 
the change in TFP and the change in the terms of trade16.  In the productivity literature it is not uncommon to re-
arrange (3.16) and compute an “indirect” TFP index as a deflated revenue index divided by a deflated cost 
index17:   

(3.17)  0 0
0

0 0

/
.

/
t t

t
t t

R P
TFP

C W

    

It is clear that if profitability is unchanged (e.g., if input and output markets are both perfectly competitive) then 
a TFP index can be computed as the inverse of the change in the terms of trade: 0 0 0 .t t tTFP W P
   On the other 
hand, if the terms of trade are unchanged (e.g., in a cross-section context where all firms face identical prices) 
then 0 0t tP W
  and TFP change is equal to profitability change18: 0 0 .t tTFP 
     
   
Other monetary measures of business performance are available, including profit: .t t tR C� 
 �   Grifell-Tatje and 
Lovell (1999) consider an additively complete TFP index and show how profit change can be (additively) 
decomposed into six components representing technical efficiency change, technical change, scale change, 
resource-mix change, product-mix change, and price change.  Sahoo and Tone (2008) implement a variant of this 
decomposition using non-radial data envelopment analysis (DEA).  In this paper I focus on the profitability 
measure, partly because it lends itself to a very simple multiplicative decomposition,19 and partly because it is 
invariant to units of measurement.  These two properties are illustrated geometrically in Figure 2.  This figure 
shows that profitability for firm t can be decomposed into the product of a tangent function of the angle a
(measuring TFP) and a tangent function of the angle j (measuring the terms of trade).  Profitability is invariant to 
units of measurement as evidenced by the fact it does not depend on the lengths of the rays passing through the 
quantity and price points A and J – it only depends on the angles between those rays and the horizontal axis.  In 
contrast, profit has the dimension of money because it is a function of the lengths of those rays – it is propor-
tional to the length of the ray passing through A, where the factor of proportionality depends on the length of the 
ray passing through J.   Profit is only invariant to units of measurement in the special case where the price and 

                                                           
16 In continuous time, the growth rate in profitability can be written as the growth rate in TFP plus the  difference between the growth rates of 
output and input prices: / / / / .TFP TFP P P W W  
 � �� � ��
17 See, for example, Balk (2003, p.19). 
18 Note that profitability can be unchanged even when markets are uncompetitive, and terms of trade can be unchanged even when firms face 
different prices.  Furthermore, if both input and output markets are perfectly competitive and all firms face identical prices, then 1.stTFP 

19 Aside from simplicity, multiplicative decompositions are attractive because they are preserved under an EKS (transitivity) transformation, 
which, in the present context, means that 0 0 0 0/ .EKS EKS EKS EKS

t t t tTFP P W 
 (
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quantity vectors are orthogonal, in which case profits are zero20.     

4.   EFFICIENCY CONCEPTS 

As a precursor to decomposing multiplicatively complete TFP indexes into various components, it is necessary 
to define conventional efficiency concepts in terms of some of the output and input aggregates introduced in 
Section 3.  In a multiplicative world, efficiency is defined as the (inverse of the) ratio of an observed quantity to 
some maximum or minimum possible.  For example, cost efficiency is the inverse of the ratio of observed cost to 
the minimum cost possible holding input prices and output quantities fixed.  In this section, I define ratio 
measures of technical, scale and mix efficiency for a firm that selects the input-output combination ( , )t tx q  from 
the period-t production possibilities set. Technical and pure scale efficiency measures are defined in terms of 
technically-feasible input and output vectors that can be written as scalar multiples of tx and ,tq  which is to say 
the input and output mixes are held fixed.  Mix efficiency measures are then defined in terms of input and output 
vectors that are technically feasible when the input and output mixes are free to vary. 

Technical Efficiency 

Since the work of Farrell (1957), the most-widely accepted measure of output-oriented technical efficiency
(OTE) has been the ratio of observed aggregate output to the maximum aggregate output possible while holding 
the input vector and the output mix fixed21.  Similarly, the conventional measure of input-oriented technical 
efficiency (ITE) can be defined as the inverse of the ratio of the observed aggregate input to the minimum 
aggregate input possible holding the output vector and the input mix fixed.  The scalar aggregates associated with 
the vectors tx  and tq  are ( )t tX X x
 and ( )t tQ Q q
  where (.)Q  and (.)X  are non-negative linearly homoge-
neous aggregator functions.  Thus, the maximum aggregate output that is technically feasible when using tx to 
produce a scalar multiple of tq is / ( , ),t

t t O t tQ Q D x q�  while the minimum aggregate input possible when using a 
scalar multiple of tx  to produce tq  is / ( , ).t

t t I t tX X D x q�   Thus, Farrell-type measures of technical efficiency 
can be formally written 

 (4.1)  ( , )tt
t O t t

t

Q
OTE D x q

Q

 
   and  1( , ) .tt

t I t t
t

X
ITE D x q

X
�
 
    

To represent these concepts graphically, first consider the special case where the firm uses 1 2( , )t t tx x x �
  to 
produce 1 2( , )t t tq q q �
  and where, without loss of generality, the input and output aggregator functions are both 
linear22: 1 1 2 2( )t t tX x x x
 �$ $  and 1 1 2 2( ) .t t tQ q q q
 �) )   Figure 3 depicts this special case in input space. The 
curved line passing through point B in Figure 3 traces out all technically-efficient input combinations that can 
produce ,tq  while the dashed line passing through point A is an isoinput line that maps out all points that have 
the same aggregate input as the firm operating at point A (previously referred to as firm t, but henceforth also 
referred to as firm A).  If both the input mix and output vector are held fixed then firm A can minimize aggregate 
input use by radially contracting inputs to point B.  Indeed, the ratio of the distance 0B to the distance 0A in 
Figure 3 is the input-oriented measure of technical efficiency defined in equation (4.1): .t t tITE X X B A
 
    
Figure 4 depicts the input-output choice of firm A in output space.  In Figure 4, the curved line passing through 
point C is a production possibilities frontier, while the dashed line passing through point A maps out all points 
that have the same aggregate output as firm A.  Firm A can increase its aggregate output by radially expanding 

                                                           
20 In Euclidean geometry, the length or norm of the vector z is given by z z z�
  (Pythagoras’s Theorem).  For any conformable vectors y
and z, the inner product can be written ' cosy z y z
 *  where * is the angle between y and z.  If y and z are orthogonal (denoted )y z+
then the angle between them is 90,.   The cosine of 90,  is zero, so ' 0.y z y z+ - 
   In terms of Figure 2, if the rays through A and J are 
orthogonal then the projection of J onto A (point C) is the origin.
21 Technical efficiency can also be defined in terms of non-radial movements in inputs and outputs – see Fare, Grosskopf and Lovell (1985, 
ch.7).  These alternative technical efficiency measures will not be discussed in this paper.  In this paper, non-radial movements in inputs and 
outputs will be accommodated using measures of scale and mix efficiency.  
22 The Laspeyres and Paasche output aggregator functions are examples of linear aggregator functions.   
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outputs until it reaches point C.  When written in terms of vector norms, the output-oriented measure of technical 
efficiency defined in equation (4.1) is .t t tOTE Q Q A C
 
   If the linear aggregator functions are non-
negative and non-decreasing in quantities then, irrespective of the values of the parameters of the aggregator 
functions, output- and input-oriented measures of efficiency will be given by the ratios of aggregate outputs in 
(4.1). 

Figures 3 and 4 provide useful insights into technical efficiency measurement in the two-output two-input case.  
However, for firms that produce many outputs using many inputs, an alternative graphical representation is 
required.  In this paper I have chosen to map feasible input and output combinations into aggregate quantity 
space.  Figure 5 presents such a mapping for the input-output combinations represented by points A, B and C in 
Figures 3 and 4.  In Figure 5, the point A represents the input-output combination ( , ),t tx q  while the curve 
passing through points B and C represents the frontier of a restricted production possibilities set.  The production 
possibilities set is restricted insofar as it only contains (aggregates of) input and output vectors that can be written 
as scalar multiples of tx and .tq  Output-oriented technical efficiency is a measure of the vertical distance from 
point A to point C, while input-oriented technical efficiency is a measure of the horizontal distance from point A 
to point B.   

Figure 5 is especially important because it illustrates that measures of technical efficiency can be written as ratios 
of measures of TFP, and therefore as ratios of tangent functions of angles.  This idea underpins the TFP and 
profitability decompositions presented later in the paper and already mentioned in connection with Figure 1.  
Figure 5 is also important because it shows how the production choices available to a multiple-input multiple-
output firm can be represented on a single graph.  However, for reasons given later in this section, Figure 5 
cannot always be used to define and graphically illustrate efficiency concepts in the same way similar figures are 
used in the case of single-input single-output firms. 

Scale Efficiency 

It is clear from Figure 5 that improvements in technical efficiency imply increases in TFP, and yet the TFP of 
Firm A is not maximized by moving to either of the technically efficient points B or C.  If the input and output 
mixes are held fixed, Firm A will maximize its TFP by moving to a point where a ray through the origin is 
tangent to the restricted production possibilities frontier23.  This point is represented by point D in Figure 6, and 
will be referred to as the point of mix-invariant optimal scale (MIOS).  Pure scale efficiency is a measure of the 
difference between TFP at a technically efficient point and TFP at the point of MIOS.  I use the term pure here 
because input and output mixes are being held fixed, so this change in TFP is a pure scale effect.  Later I will 
define a scale efficiency measure that is contaminated by changes in the output and/or input mix.  For now, 
measures of pure output-oriented scale efficiency (OSE) and pure input-oriented scale efficiency (ISE) are given 
by

(4.2)  
/
/

t t
t

t t

Q X
OSE

Q X

 � �   and  

/
/

t t
t

t t

Q X
ISE

Q X

 � �     

where tQ� and tX�  denote the (output-mix and input-mix preserving) aggregate output and input quantities at the point 
of MIOS.   Technically, t t tQ Q
 	� � and t t tX X
  � �  where 

(4.3)  � 
0, 0

( , ) arg max / : ( , ) .t
t t t tx q T

	�  �
	  
 	   	 �� �

Two observations are in order.  First, it is clear from Figure 6 that, like the measures of technical efficiency given by 
equation (4.1), the measures of scale efficiency given by equation (4.2) can be written as ratios of measures of TFP 
(slopes of rays through the origin). Again, this is fundamentally important for the TFP decompositions presented in 

                                                           
23 Or, in the case of a constant returns to scale technology, a point where a ray through the origin coincides with the frontier.
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Section 5.  Second, the technology constraint in the optimization problem (4.3) can be written ( , ) 1.t
O t tD x q	  .   This 

constraint will be binding at the optimum, which means the problem (4.3) reduces to the problem of finding the value 
  that minimizes ( , ).t

O t tD x q    Thus, we can write:24

(4.4)  
inf ( , )( , )

( , ) ( , )

tt
O t tO t t

t t t
O t t O t t

D x qD x q
OSE

D x q D x q
     


 

� �

which corresponds to the measure of output scale efficiency defined by Balk (2001, p.164).  See Balk (2001) for 
related discussion concerning the elasticity of scale. 

Mix Efficiency 

The efficiency measures discussed to this point have been defined with reference to a restricted production 
frontier – consideration has only been given to (aggregates of) input and output vectors that can be written as 
scalar multiples of tx and .tq  Mix efficiency is a measure of the change in productivity when restrictions on the 
input and output mixes are relaxed.  I use the term mix efficiency instead of allocative efficiency to avoid 
confusion with similar but potentially distinct value-based allocative efficiency measures defined later in the 
paper. 

Relaxing restrictions on input and/or output mix leads to an expansion in the production possibilities set.  The 
boundary of this expanded set is an unrestricted production frontier that envelops restricted frontiers of the type 
depicted in Figure 6.  To illustrate the way in which the production possibilities set expands, again consider the 
special case where firm A uses 1 2( , )t t tx x x �
  to produce 1 2( , )t t tq q q �
  and where the input and output aggrega-
tor functions are linear.  Recall that Figures 3 and 4 were previously used to depict measures of technical 
efficiency in this special case.  Figures 7 and 8 are identical to Figures 3 and 4 except they have been embellished 
with representations of input mix and output mix effects.  Recall that if both the input mix and output vector are 
held fixed then firm A can minimize aggregate input use by radially contracting inputs to point B in Figure 7.  If 
restrictions on input mix are then relaxed, firm A can further reduce aggregate input use by moving to point U.  
This corresponds to a horizontal movement to a point that lies to the left of point B in Figure 6.  Figure 8 depicts 
a similar expansion in output space.  If the input vector and the output mix are held fixed, the best firm A can do 
is move to point C in Figure 8.   However, if restrictions on output mix are removed, Firm A can further increase 
aggregate output by moving to point V in Figure 8, which corresponds to a vertical movement to somewhere 
above point C in Figure 6.  Figure 9 is a version of Figure 6 that represents the unrestricted production frontier as 
the curved line passing through points U and V.   

Pure mix efficiency is a measure of the difference between TFP at a technically efficient point on the (mix-) 
restricted frontier, and TFP at a point on the unrestricted frontier, holding either the input vector or the output 
vector fixed.  Again, I use the term pure here because either the input vector or the output vector (i.e., the scale) 
is fixed, so this change in TFP is a pure mix effect.  In terms of Figure 9, pure output-oriented mix efficiency
(OME) is the difference between TFP at points C and V, while pure input-oriented mix efficiency (IME) is the 
difference between TFP at points B and U.  Mathematically: 
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where ˆ ˆ( )t tQ Q q
 and ˆ ˆ( )t tX X x
  are aggregates of 

                                                           
24 Since the technology constraint is binding at the optimum, 1( , ) .t

O t tD x q �	 
  � � Equation (4.4) follows from the linear homogeneity of the 
output distance function and the definitions of ,t tQ Q� and .tX�    
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Figures 7, 8 and 9 can together be used to illustrate a fundamentally important property of an aggregate quantity 
representation of the production technology, namely that many different input-output combinations can map to the 
same point in aggregate quantity space.   For example, all firms operating on either the dashed line through point A in 
Figure 7 or on the dashed line through point A in Figure 8 plausibly map to the single point A in Figure 9.  Equally 
important is the fact that, except in restrictive special cases, only the firm operating at point A in Figure 3 and at point 
A in Figure 4 will face the restricted production possibilities frontier depicted by the curved line passing through 
points B and C in Figure 9.  For example, a different firm operating at point R in Figure 7 is an input-mix efficient 
firm that will be represented by point A in Figure 9, but will face a restricted production possibilities frontier that 
touches the unrestricted frontier at point U.  Likewise, an output-mix efficient firm operating at point S in Figure 8 will 
face a restricted production possibilities frontier that touches the unrestricted frontier in Figure 9 at point V.  In more 
mathematical terms, the restricted frontiers associated with the points ( , )t tx q  and  ( , )s sx q  may differ because the 
equalities ( ) ( )t sX x X x
  and ( ) ( )t sQ x Q x
  are not enough to ensure equality between the restricted production 
possibilities sets {( , ) : ( , ) , 0, 0}t

t t t tx q x q T� � �	  	  	   and {( , ) : ( , ) , 0, 0}.t
s s s sx q x q T� � �	  	  	   Relatedly, 

even if the production technology exhibits constant returns to scale, the existence of scope economies (the mix effect). 
means that the unrestricted frontier in Figure 9 will not generally be a straight line. 

Residual Scale Efficiency 

Observe from Figure 9 that improvements in technical and mix efficiency imply increases in TFP, but the TFP of 
firm A is not maximized by moving to either of the technically- and mix-efficient points V or U.  Rather, Firm A 
will maximize its TFP by moving to a point where a ray through the origin is tangent to the unrestricted produc-
tion possibilities frontier.  This point is represented by point E in Figure 10, and will be referred to as the point of
maximum productivity (MP).  Residual scale efficiency is a measure of the difference between TFP at a techni-
cally- and mix-efficient point and TFP at the point of MP.  I use the term scale because any movement around an 
unrestricted production frontier is a movement from one mix-efficient point to another, so any improvement in 
TFP is essentially a scale effect.  However, I also use the term residual because, even though all the points on the 
unrestricted frontier are mix-efficient, they may nevertheless have different input and output mixes (e.g., points V 
and U)25.  Thus, what is essentially a measure of scale efficiency may contain a residual mix effect.  The term 
residual is also appropriate in the sense that if we are interested in decomposing the difference between TFP at 
the observed point A and TFP at the point of maximum productivity E, then residual scale efficiency is the 
component that remains after we have accounted for pure technical and pure mix efficiency effects. Mathemati-
cally, measures of residual output-oriented scale efficiency (ROSE) and residual input-oriented scale efficiency
(RISE) are 

(4.6)  * *
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That is, *
tQ  and *

tX  are the aggregate output and input quantities at the point of maximum productivity.  TFP at 
that point is denoted * * * .t t tTFP Q X
    

                                                           
25 Observe from Figure 9 that the aggregate input at point V is the same as the aggregate input at point A, so Firm V could easily have the 
same input mix as Firms A and B.  However, from Figure 7, the input mix at point B differs from the input mix at point U.  .
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Residual Mix Efficiency 

Residual mix efficiency (RME) is a measure of the difference between TFP at the point of mix-invariant optimal 
scale (MIOS) and TFP at the point of maximum productivity (MP): 

(4.8)  * *

/
/

t t
t

t t

Q X
RME

Q X



� �
   

where the aggregate quantities in this equation have already been defined.  This change in TFP is represented in 
Figure 11 by a movement from point D on the restricted (mix-invariant) production frontier to point E on the 
unrestricted frontier.  The use of the term mix is self-evident – the movement from point D to point E is a 
movement from an optimal point on a mix-restricted frontier to an optimal point on an unrestricted frontier, so 
the difference in TFP is essentially a mix effect.  Again, I use the term residual because i) the movement from 
point D to point E may also involve a change in scale, and ii) in the context of comparing TFP at points A and E, 
this measure can be viewed as the component that remains after accounting for pure technical and pure scale 
efficiency effects.   

Other Efficiency Measures 

Several other efficiency measures are defined in the productivity literature, but none are vital to the decomposi-
tion of either productivity or profitability change.   Among these are measures of cost efficiency, revenue 
efficiency, profit efficiency, and associated measures of allocative efficiency.  Cost efficiency (CE) is essentially 
the ratio of minimum cost to observed cost, revenue efficiency (RE) is the ratio of observed revenue to maximum 
revenue, and profit efficiency (PE) is the ratio of observed profit to maximum profit.  More formally, 
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where it is noteworthy that t t t tPQ p q�
  and t t t tW X w x�
  owing to the fact that the quantity-price aggregator 
function pairs satisfy the product rules.  To define two associated measures of allocative efficiency, recall that 

tX  denotes the minimum aggregate input possible when using a scalar multiple of tx  to produce ,tq and tQ
denotes the maximum aggregate output that is possible when using tx to produce a scalar multiple of .tq Then
cost allocative efficiency (CAE)26 can be defined as the ratio of minimum cost to the cost of ,tX  while revenue 
allocative efficiency (RAE) can be defined as the inverse of the ratio of maximum revenue to the value of .tQ
Mathematically: 

(4.12) 
( , )t
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A simple algebraic manipulation of equations (4.1), (4.9) and (4.10) reveals that the measures of cost and revenue 
efficiency given by (4.9) can be decomposed into the product of measures of technical efficiency and allocative 
efficiency: 

                                                           
26 Farrell (1957) uses the term price efficiency.
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(4.13) t t tCE ITE CAE
 (  and  t t tRE OTE RAE
 (

To help visualise these concepts, the cost efficiency decomposition is depicted in Figure 12.  The points A, B and 
U in Figure 12 correspond to the points A, B and U in Figure 7, which was previously used to depict the concept 
of mix efficiency for a two-input firm where inputs were aggregated using the linear aggregator function 

1 1 2 2( ) .t t tX x x x
 �$ $   Recall that Firm A was able to increase its TFP by moving from point A to the techni-
cally-efficient but mix-inefficient point B, and was able to maximise its TFP by moving from point B to the 
technically- and mix-efficient point U.  Each of these movements was associated with a reduction in aggregate 
input use, and Figure 12 now confirms that each of these movements is associated with a reduction in cost.  In 
Figure 12, the dashed lines passing through points A, B and L are isocost lines with the same slope 1 2/t tw w�  but 
different intercepts:  2 2 2/ / ( , ) /t

t t t t t t t t tW X w W X w C w q w� �  which implies ( , ).t
t t t t t tW X W X C w q� �   Figures 7 

and 12 together reveal that i) Firm A can minimize cost by moving to the technically- and allocatively-efficient 
point L, ii) mix-efficient points of production do not necessarily coincide with allocatively-efficient points of 
production, and iii) a mix-efficient firm will also be allocatively-efficient, and vice versa, if the input aggregator 
function takes the Paasche form: 1 1 2 2( ) .t t t t tX x w x w x
 �   It is straightforward to map allocatively-efficient points 
such as point L to points in aggregate quantity space: point L in Figure 12 maps to a point on the horizontal line 
segment UB in Figure 9; on the revenue side, an allocatively-efficient point would map to a point on the vertical 
line segment VC in Figure 9.   
One last visual example is provided in the form of Figure 13, which depicts the profit efficiency measure in 
aggregate output space.  The points A, B, C, E, U and V in Figure 13 all correspond to the same points in Figures 
9 to 11.  In Figure 13, the dashed lines passing through points A and K are isoprofit lines with the same slope 

/t tW P  but different intercepts.   Among other things, Figure 13 illustrates that i) Firm A maximizes profit at the 
technically-efficient but scale-inefficient point K, ii) the profit-maximizing point of production does not necessar-
ily coincide with the TFP-maximizing point of production, iii) the profit efficiency of Firm A can be decomposed 
into a component measuring the change in profits as Firm A moves to maximize TFP (at point E), and a further 
change in profits as Firm A moves to maximize profits (at point K), and iv) the profit- and TFP-maximizing 
points coincide (at point E) if and only if maximum TFP (the slope of the ray through point E) equals the inverse 
of the terms of trade (the slope of the isoprofit line) (i.e., if * */ / tan ).t t t tQ X W P e
 


5.   DECOMPOSING PRODUCTIVITY AND PROFITABILITY CHANGE 

Any input-output combination can be mapped to a point in aggregate quantity space.  Such a mapping is useful 
because i) it provides for a single two-dimensional graphical representation of the production opportunities 
available to multiple-input multiple-output firms, and ii) multiplicatively complete indexes of total factor 
productivity and conventional ratio-type measures of efficiency can be expressed very simply in terms of angles.  
Both of these properties provide for any number of conceptually and mathematically simple decompositions of 
TFP change.  For example, the previous section examined the case of a firm that selected the input-output 
combination ( , )t tx q  from the period-t production possibilities set .tT   That firm was mapped to point A in 
Figures 5, 6, 9, 10 and 11.  In terms of aggregate quantities and angles, the TFP of this firm was measured as 

tan ;t t tTFP Q X a
 
  the maximum TFP possible holding the input vector and output mix fixed was 
tan ;t tQ X c
  the maximum TFP possible holding the input vector fixed but allowing the output mix to vary 

was tan ;t tQ X v
  and the maximum TFP possible using any technically feasible inputs and outputs was 
* * * tan .t t tTFP Q X e
 
    These definitions imply that the difference between TFP at the point ( , )t tx q  and TFP 

at the point of maximum productivity can be decomposed as: 

 (5.1)  TFPEt = *

tan tan tan tan .
tan tan tan tan

t

t

TFP a a c v
e c v eTFP


 
        (TFP efficiency) 

Of course, there are at least as many ways to decompose so-called TFP efficiency as there are points in the 
period-t production possibilities set.  This particular decomposition is an output-oriented decomposition insofar 
as the input vector is, as far as possible, held fixed.  In visual terms, it traces out the path A-C-V-E in Figure 13.  
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The intermediate points C and V were chosen for this example only because they feature in definitions of 
Farrell-type measures of technical and mix efficiency.  It is clear that if the same type of decomposition is used 
for a firm that selects the input-output combination 0 0( , )x q  from the period-0 production possibilities set, then 
the ratio-type productivity index 0 0/t tTFP TFP TFP
  can be decomposed into output-oriented measures of 
technical and mix efficiency, plus a measure of the difference between points of maximum productivity.  In this 
section I consider a small number of such decompositions and their relationships to other TFP decompositions in 
the literature. 

Productivity Change 

The decomposition given by equation (5.1) is one of two output-oriented decompositions of TFP efficiency that 
utilise the efficiency measures defined in Section 4.  Equation (5.1) traces out the path A-C-V-E in Figure 13, 
while the second decomposition traces out the path A-C-D-E in Figures 11 and 13.  In terms of the measures of 
efficiency defined in equations (4.1) to (4.8), these two output-oriented decompositions are: 

(5.2)   * * *
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t t t t
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Geometric averages of equations (5.2) and (5.3) are also valid, as are geometric averages of their input-oriented 
counterparts.  Importantly, analogous relationships hold for the reference firm 0.  Even if we restrict our atten-
tion to this small number of decompositions, it is clear that the TFP index 0 0t tTFP TFP TFP
  can be decom-
posed in very many valid ways.  Four possibilities are: 
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The output-oriented decompositions given by (5.4) and (5.5) are likely to be most relevant in empirical contexts 
where inputs are held fixed (i.e., contexts where researchers tend to estimate output-distance functions).  The 
input-oriented decompositions (5.6) and (5.7) are likely to be most meaningful in industries where outputs are 
held fixed (i.e., contexts where researchers tend to estimate input-distance and cost functions).  In contexts where 
inputs and outputs are both free to vary, geometric averages of any of the output- and input-oriented decomposi-
tions are available. Of course, if the technology exhibits constant returns to scale, then many of the input-
oriented components are equal to the output-oriented components.   

Common to the decompositions (5.4) to (5.7) is the ratio * *
0/ .tTFP TFP   This term measures the difference 

between i) the maximum productivity possible when choosing from the production possibilities set tT  and ii) the 
maximum productivity possible when choosing from the production possibilities set 0.T   Thus, it is a natural 
measure of technical change.  In terms of Figure 11, it measures the change in the slope of the ray passing 
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through point E.  In contrast, in their decomposition of the Malmquist TFP index, Fare, et al. (1994) measure the 
change in the slope of the ray passing through point D.  Thus, the Fare, et al. (1994) measure of technical change 
includes a mix effect and will typically vary from firm to firm. 

The remaining terms in equations (5.4) to (5.7) are ratio measures of technical efficiency change, pure mix 
efficiency change, pure scale efficiency change, and residual measures of mix and scale efficiency change.  
Importantly, the decompositions given by these equations are complete in the sense that there is no unexplained 
component.  Equally importantly, these equations were derived without any assumptions concerning firm 
optimising behaviour, the structure of markets, or returns to scale.  They can be used in cases where prices are 
determined by market competition, by the firm, or by a regulator, and they can be used when technologies 
exhibit constant or variable returns to scale.  In theory, any multiplicatively complete TFP index can be decom-
posed in this way (and any additively complete TFP index can be decomposed in a similar way) 

Profitability Change 

Recall from Section 3 that profitability change can be decomposed into the product of a TFP index and an index 
measuring the change in the terms of trade (see equation 3.16).  The decompositions given by equations such as 
(5.4) to (5.7) now provide for any number of meaningful decompositions of profitability change.  For example, 
multiplying the terms of trade index by the geometric average of equations (5.4) and (5.6) leads to the following 
decomposition: 

 (5.10) 
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Decompositions of profit change are also available.   To get a sense of the difference between profit and profit-
ability change, let the price and quantity vectors 0 0( , )p w  and 0 0( , )x q  be mapped to aggregate price and quantity 
points G and H superimposed on Figure 2.  Profitability change would then be measured as  

0 (tan / tan )(tan / tan ),t a g j f/ 
  whereas profit change would be measured as 
0 cos(180 ) cos(180 ).t A J a j G F h f� � � 
 � � � � �

Growth Accounting 

The term growth accounting is usually associated with the work of Solow (1957) and is mainly used in econom-
ics to refer to models where measures of economic growth are decomposed into measures of input growth and 
technical change.   Any decomposition of this type necessitates a description of the production technology, and a 
logical starting point is an aggregate production function of the form 

(5.11) ( , )t tQ f x t.

where the inequality sign reflects possible inefficiency and (.)f  is, among other things, non-decreasing in 
inputs.  The pioneering work of Solow (1957) was underpinned by the assumptions that technical change is 
Hicks-neutral and the technology exhibits constant returns to scale.  Technical change is defined to be Hicks-
neutral if and only if ( , )tf x t can be written in the form ( , ) ( ) ( ).t tf x t A t X x
   The technology will exhibit 
constant returns to scale if the function (.)X  is linearly homogeneous.  With these two assumptions equation 
(5.11) becomes 

(5.12) ( ) ( )t tQ A t X x.
   
where ( )tX x  is a non-decreasing linearly homogenous (aggregator) function.  It is clear that ( )A t only provides 
an upper bound on / ( ),t t tTFP Q X x�  so nothing can be said about TFP growth without being more explicit 
about the nature of inefficiency.  The usual way forward is to implicitly assume away any technical and mix 
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inefficiency.  There is no scale inefficiency because the technology is already assumed to exhibit constant returns 
to scale.  With these assumptions, equation (5.12) holds with equality and TFP growth can be measured using 

(5.13) 0
( )
(0)t

A tTFP
A




This measure of TFP growth is frequently reported in the literature.  Applied researchers should note carefully 
that (5.13) is only a legitimate measure of productivity growth if i) technical change is Hicks neutral, ii) the 
technology exhibits constant returns to scale, iii) firms are technically efficient, iv) firms are input-mix efficient, 
and v) firms are output-mix efficient.  In any empirical application, the joint probability of meeting all of these 
requirements may be near zero.  Of course, if these requirements are not met then TFP growth can be measured 
as the ratio of an output quantity index to an input quantity index, and decomposed using (geometric averages of) 
equations (5.4) to (5.7).    

6.   EMPIRICAL EXAMPLE 

Coelli, Rao, O'Donnell and Battese (2005) use fifteen observations on hypothetical single-input single-output 
firms to illustrate the Fare, et al. (1994) decomposition of the Malmquist TFP index.  This section uses similar 
data to illustrate the decomposition of the multiplicatively-complete Moorsteen-Bjurek index.  The data is 
presented in Table 1 and comprises observations on the outputs and inputs of five hypothetical firms over four 
time periods.    

Estimates of output- and input-oriented measures of technical, scale and mix efficiency are reported in Table 2.  
These estimates were computed using data envelopment analysis (DEA) programs that allow for variable returns 
to scale and technical regress27.  They confirm patterns of efficiency that are also clearly evident in the data.  It 
will be useful to consider these patterns one period at a time. 

First, the period-1 results indicate that every firm is fully-mix efficient, reflecting the fact that all firms in this 
period have the same output mix and the same input mix (each firm produces half as much output 1 as output 2 
and uses half as much input 1 as input 2).  Firm 3 is also the only firm that is found to be fully technically-, mix- 
and scale-efficient, reflecting the fact that it produces more of any output per unit of any input than any other 
firm (it is the TFP-maximizing firm in this period).  The plausibility of these efficiency estimates is also evident 
from Figure 14 where all period-1 observations are depicted in relation to the estimated variable returns to scale 
production frontier.  This two-dimensional graphical representation is made possible by the fact that there are no 
mix effects, so that any aggregate output (input) will be proportional to the amount of output 1 (input 1)28.   
Because the amounts of output 1 and input 1 are identical to the period-1 outputs and inputs listed in Coelli, et al. 
(2005, p.296), Figure 14 is isomorphic to their Figure 11.1.   Observe from Figure 14 that firms 1 and 5 are fully 
technically efficient, so, in view of the fact that they are also fully mix-efficient, the entire TFP shortfall is 
attributed to scale inefficiency.   At the same time, the outputs and inputs of firms 2 and 4 place them inside the 
boundary of the production frontier, so TFP shortfalls are plausibly attributed to both technical inefficiency and 
scale inefficiency.   

Second, observe that in period 2 all firms have been able to double their outputs without any increases in input 
use.  It follows that the period-2 production frontier is isomorphic to the period-1 frontier depicted in Figure 14, 
and all measures of technical, scale and mix efficiency in the two periods must be identical.    

Third, the inputs used by all firms in period 3 are the amounts that had been used by firm 3 in period 2 (the most 
productive firm in that period).  However, different firms can be seen to produce outputs in different amounts 

                                                           
27 See O'Donnell (2009) for the motivation and a full description of these and related DEA programs. 
28 The labels along the axes reflect the fact that aggregate inputs and outputs are only identified up to an arbitrary positive constant.
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and proportions.  Firm 3 is still the best-practice benchmark and is still found to be fully technically-, scale- and 
mix-efficient.  Firm 1 is the only other firm that is found to be fully-mix efficient, due to the fact that it is the 
only other firm that has the same (TFP-maximizing) output mix as firm 3.  However, firm 1 only produces half 
as much output as firm 3, so it is plausibly only 50% technically efficient  All other firms have a different output 
mix to firm 3 and are therefore found to be mix-inefficient using an output-oriented measure.  Observe that 
Firms 4 and 5 have the same output mix and are therefore found to be equally mix-inefficient.   

Finally, in period 4, all firms are found to be fully output-mix and input-mix efficient, reflecting the fact that all 
firms produce the same outputs and have the same input mix (the two inputs are used in equal amounts).  Firm 1 
is found to be fully technically-, scale- and mix-efficient, reflecting the fact that it has now surpassed firm 3 as 
the most productive firm in the sample.  The plausibility of the remaining technical and scale efficiency esti-
mates can be established with the aid of Figure 15, where all observations are seen lie on the boundary of a 
rectangular variable returns to scale production frontier.  From an output-oriented perspective, all firms are 
technically-efficient, so all shortfalls in TFP are attributed to scale inefficiency.  From an input-oriented perspec-
tive, all firms are scale-efficient, so all shortfalls in TFP are attributed to excess input usage (i.e., technical 
inefficiency). 

The efficiency estimates reported in Table 2 have been used to compute corresponding estimates of efficiency 
change, and these are reported in Table 3.  Also reported in Table 3 are estimates of technical change, the 
Moorsteen-Bjurek index of TFP change, and estimates of residual efficiency change.   The measure of technical 
change and the TFP index were computed using DEA problems presented in O'Donnell (2009), while the 
residual efficiency change measures were computed as precisely that – residuals.  The values reported for each 
firm in each period are non-cumulative firm-specific index numbers, which is to say they measure period-on-
period changes for individual firms.  For example, the row corresponding to observation 20 reveals that the TFP 
of firm 5 in period 4 was only 42% of the TFP of that same firm in the previous period, and that this productivity 
decline was due to a large fall in efficiency.  

Tables 4 and 5 present estimates of efficiency, efficiency change and TFP change under the assumption the 
technology exhibits constant returns to scale.  The plausibility of these results is easily established with the aid of 
Figures 14 and 15, where the constant returns to scale frontiers are represented by the dashed rays passing 
through the origin and the points of maximum productivity.  Observe from Table 4 that all firms are fully scale-
efficient.  By chance, estimates of mix efficiency are identical to the estimates obtained under the variable 
returns to scale assumption. 

The technical change estimates reported in Tables 3 and 5 are noteworthy in several respects.  First, observe that 
estimates of the rate of technical change are invariant to the returns to scale assumption.  This is because the 
constant- and variable-returns-to-scale DEA problems identify a TFP-maximizing data point that is common to 
both frontiers.  Second, it can be seen that, in any period, the measure of technical change is identical for every 
firm. A theoretical explanation for this outcome was provided in Section 5.  It is an intuitively plausible outcome 
insofar as, in any period, every firm has access to the same production possibilities set, so expansions or contrac-
tions in that set should impact on all firms equally.  Third, the technical change estimates reported in the first 
five rows of column B reveal that the maximum TFP possible in period 2 was twice the maximum TFP possible 
in period 1.  This is consistent with our earlier observation that there were no changes in technical, scale or mix 
efficiency between these two periods, and yet firms were able to double their outputs without any increase in 
input use.  Fourth, the estimates reported in the next five rows reveal there was no technical change between 
periods 2 and 3.  This is consistent with our observation that firm 3 was the best-practice benchmark in both 
periods, and in each period it used the same inputs to produce the same outputs.   Finally, the rate of technical 
progress between periods 3 and 4 was 12.5%.  This is an estimate of technical change that accounts for the 
change in TFP-maximising input mix between the two periods.   

For purposes of comparison, estimated Malmquist TFP index numbers and associated estimates of the compo-
nents of TFP change are reported in Table 6.  These estimates were obtained using the DEA methodology 
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described in Fare, et al. (1994).  The Fare, et al. (1994) methodology involves estimating the distance functions 
in equations (3.14) and (3.15) under the assumption that the technology exhibits constant returns to scale.   

It is not surprising that the Malmquist index numbers reported in Table 6 differ from the Moorsteen-Bjurek index 
numbers reported in Table 5, even though both were computed under the assumption of constant returns to scale.  
After all, the Moorsteen-Bjurek index is multiplicatively complete, but the Malmquist index is not.  Nor is it 
surprising that the estimated components of TFP change differ.  The Moorsteen-Bjurek components are com-
puted under the assumption that the technology exhibits constant returns to scale, but, even though the Malm-
quist TFP index is computed under that same assumption, the Malmquist measures of technical and scale 
efficiency change are computed under a variable returns to scale assumption. In fact, the Malmquist measures of 
technical and scale efficiency change are those used in the decomposition of the Moorsteen-Bjurek index when 
the technology is assumed to exhibit variable returns to scale.  This partly explains why the Malmquist index 
numbers reported in Table 6 are identical to the Moorsteen-Bjurek index numbers reported in Table 3.  Those 
two sets of numbers are identical because the technical change and scale efficiency change components are 
identical, and because combined measures of technical and mix efficiency change are by chance identical for this 
small data set.  In general, the Malmquist TFP index will differ from the Moorsteen-Bjurek TFP index.  For 
example, the equality we observe in this example can be broken by simply augmenting the data set with an 
additional input that takes the value one for every firm in every time period.  Another example involving a large 
agricultural data set is found in O'Donnell (2009). 

7.   CONCLUSION 

This paper uses an aggregate price-quantity framework to show that there exist large classes of TFP index 
numbers that can be decomposed into measures of technical change, technical efficiency change, mix efficiency 
change and scale efficiency change.  Alternative decompositions involving measures of revenue, cost and profit 
efficiency change are also available, but each of these alternative decompositions involves at least one measure 
of efficiency that does not yet feature prominently in the economics literature.  There are, in fact, at least as 
many decompositions of TFP growth as there are points in the production possibilities set, but only a handful of 
these exclusively contain components that are economically interesting.  Importantly, none of these decomposi-
tions rely on assumptions concerning market structure, so they can be used in industries where prices are 
determined by market competition, regulatory agencies, or by the firm itself.  Nor is there any requirement that 
the technology exhibit constant returns to scale.   

An important contribution of the paper has been to explain why the Malmquist TFP index of Caves, et al. 
(1982a) may be an unreliable measure of TFP change.  This is because it is neither additively nor multiplica-
tively complete.  It is ironic that the “[Malmquist] index has achieved much greater popularity than the [Moor-
steen-Bjurek] index [partly because] it decomposes into various sources of productivity change” (Lovell, 2003, 
p.438) and yet, unless the technology is inversely homothetic and exhibits constant returns to scale, it is the latter 
index, not the former, that can be decomposed in an economically-meaningful way.  Perhaps this is the most 
important contribution of the paper – to show that, irrespective of the returns to scale and scope properties of the 
production technology, the Moorsteen-Bjurek index can be meaningfully decomposed into any number of 
measures of technical change and efficiency change.   The paper demonstrates that several input- and output-
oriented decompositions can be empirically implemented using the DEA programs in O'Donnell (2009). 
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Appendix A 

Consider the following decomposition of 0 :tC C�
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Further manipulation yields: 
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Appendix B 

Let prices and quantities be non-negative continuous functions of time so that, for example, cost is also a non-
negative continuous function of time.  To emphasise this continuous dependence on time I use the notation 

(B.1)
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Total differentiation of (B.1) with respect to time yields (e.g. Caves, Christensen and Swanson, 1980, p.168): 
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where ( ) ( ) ( ) / ( ).n n ns t w t x t C t�   Equivalently, using Newton’s notation29:
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It follows that 
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where ( )X t  and ( )W t  are the Divisia aggregate output quantities and prices in period t (e.g., Usher, 1974, p. 
274, eqs. 1,2; Hulten, 1973, p.1017, footnote.2): 
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and where X(0) and W(0) are arbitrary (but commonly normalised to unity).  Of course, for any function ( )C t
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Together, equations (B.4) and (B.7) imply that i) a simple cost index can be decomposed into the product of a 
Divisia input quantity index and a Divisia input price index, and ii) Divisia quantity and price indexes satisfy the 
factor reversal test.  

                                                           
29 Newton's notation for differentiation, also called the dot notation, places a dot over the function name to represent a derivative.  If ( )y f t


then y�  and y�� denote the first and second derivatives of y with respect to t.  This notation is used almost exclusively for time derivatives.
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Figure 1.  Total Factor Productivity Change 

Figure 2.  Profit and Profitability 
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Figure 3. Input-Oriented Technical Efficiency for a Two-Input Firm 

     
Figure 4.  Output-Oriented Technical Efficiency for a Two-Output Firm 
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Figure 5. Input- and Output-Oriented Technical Efficiency for a 

 Multiple-Input Multiple-Output Firm 

    
Figure 6.  Output- and Input-Oriented Scale Efficiency for a 

 Multiple-Input Multiple-Output Firm 
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Figure 7. Input-Oriented Mix Efficiency for a Two-Input Firm 

     

Figure 8. Output-Oriented Mix Efficiency for a Two Output Firm 
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Figure 9.  Output- and Input-Oriented Mix Efficiency for a 

 Multiple-Input Multiple-Output Firm 

    
Figure 10.  Residual Output- and Input-Oriented Scale Efficiency for a 

 Multiple-Input Multiple-Output Firm 
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Figure 11.  Residual Mix Efficiency for a 
 Multiple-Input Multiple-Output Firm 

Figure 12. Cost and Cost-Allocative Efficiency for a Two-Input Firm 
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Figure 13.  Profit Efficiency for a Multiple-Input Multiple-Output Firm 

Figure 14.  Observed Outputs and Inputs in Period 1 
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Figure 15.  Observed Outputs and Inputs in Period 4 
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 Table 1.  DATA  
  ___________________________________________________________  

                                Outputs            Inputs          
                               __________        __________    

   Obs    Year   Firm           1      2          1      2   
  ___________________________________________________________  

     1      1      1            1      2          2      4   
     2      1      2            2      4          4      8   
     3      1      3            3      6          3      6   
     4      1      4            4      8          5     10   
     5      1      5            5     10          6     12   

     6      2      1            2      4          2      4   
     7      2      2            4      8          4      8   
     8      2      3            6     12          3      6   
     9      2      4            8     16          5     10   
    10      2      5           10     20          6     12   

    11      3      1            3      6          3      6   
    12      3      2            6      3          3      6   
    13      3      3            6     12          3      6   
    14      3      4            6      6          3      6   
    15      3      5            3      3          3      6   

    16      4      1            3      6          2      2   
    17      4      2            3      6          4      4   
    18      4      3            3      6          6      6   
    19      4      4            3      6          8      8   
    20      4      5            3      6         10     10   
  ___________________________________________________________  
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  Table 2. MEASURES OF TECHNICAL, SCALE and MIX EFFICIENCY (ASSUMING VRS)  
  _______________________________________________________________________________________________________________________________________________  

   Obs    Year   Firm                                      OTE       OSE       OME                 ITE       ISE       IME     
                                                           (D)       (E)       (F)                 (H)       (I)       (J)          
  _______________________________________________________________________________________________________________________________________________ 

     1      1      1                                      1.000    0.5000     1.000               1.000    0.5000     1.000   
     2      1      2                                     0.5455    0.9167     1.000              0.6250    0.8000     1.000   
     3      1      3                                      1.000     1.000     1.000               1.000     1.000     1.000   
     4      1      4                                     0.9231    0.8667     1.000              0.9000    0.8889     1.000   
     5      1      5                                      1.000    0.8333     1.000               1.000    0.8333     1.000   

     6      2      1                                      1.000    0.5000     1.000               1.000    0.5000     1.000   
     7      2      2                                     0.5455    0.9167     1.000              0.6250    0.8000     1.000   
     8      2      3                                      1.000     1.000     1.000               1.000     1.000     1.000   
     9      2      4                                     0.9231    0.8667     1.000              0.9000    0.8889     1.000   
    10      2      5                                      1.000    0.8333     1.000               1.000    0.8333     1.000   

    11      3      1                                     0.5000     1.000     1.000               1.000    0.5000     1.000   
    12      3      2                                      1.000     1.000    0.5000               1.000     1.000     1.000   
    13      3      3                                      1.000     1.000     1.000               1.000     1.000     1.000   
    14      3      4                                      1.000     1.000    0.6667               1.000     1.000     1.000   
    15      3      5                                     0.5000     1.000    0.6667               1.000    0.5000     1.000   

    16      4      1                                      1.000     1.000     1.000               1.000     1.000     1.000   
    17      4      2                                      1.000    0.5000     1.000              0.5000     1.000     1.000   
    18      4      3                                      1.000    0.3333     1.000              0.3333     1.000     1.000   
    19      4      4                                      1.000    0.2500     1.000              0.2500     1.000     1.000   
    20      4      5                                      1.000    0.2000     1.000              0.2000     1.000     1.000   

   Firm     1      A                                     0.8409    0.7071     1.000               1.000    0.5946     1.000   
   Firm     2      B                                     0.7385    0.8051    0.8409              0.6648    0.8944     1.000   
   Firm     3      C                                      1.000    0.7598     1.000              0.7598     1.000     1.000   
   Firm     4      D                                     0.9608    0.6583    0.9036              0.6708    0.9428     1.000   
   Firm     5      E                                     0.8409    0.6105    0.9036              0.6687    0.7676     1.000   

   Year     1                                            0.8718    0.8016     1.000              0.8913    0.7841     1.000   
   Year     2                                            0.8718    0.8016     1.000              0.8913    0.7841     1.000   
   Year     3                                            0.7579     1.000    0.7402               1.000    0.7579     1.000   
   Year     4                                             1.000    0.3839     1.000              0.3839     1.000     1.000   

   Mean                                                  0.8712    0.7047    0.9276              0.7431    0.8262     1.000   
   Minim                                                 0.5000    0.2000    0.5000              0.2000    0.5000     1.000   
   Maxim                                                  1.000     1.000     1.000               1.000     1.000     1.000   
  _______________________________________________________________________________________________________________________________________________ 
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  Table 3. DECOMPOSITION OF MOORSTEEN-BJUREK TFP INDEX (ASSUMING VRS)  
  _______________________________________________________________________________________________________________________________________________  

                                                                                       Components of Efficiency Change                       
                                                         ________________________________________________________________________________________  

                             TFP      Tech      Eff                                                                                       
    Obs    Year   Firm      Index =  Change x  Change      dOTE      dOSE      dOME     dROSE      dITE      dISE      dIME     dRISE      dRME    
                             (A)       (B)       (C)       (D)       (E)       (F)       (G)       (H)       (I)       (J)       (K)       (L)    
  _______________________________________________________________________________________________________________________________________________  

     6      2      1        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
     7      2      2        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
     8      2      3        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
     9      2      4        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
    10      2      5        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   

    11      3      1        1.000     1.000     1.000    0.5000     2.000     1.000     2.000     1.000     1.000     1.000     1.000     1.000   
    12      3      2        2.000     1.000     2.000     1.833     1.091    0.5000     2.182     1.600     1.250     1.000     1.250     1.000   
    13      3      3        1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
    14      3      4        1.250     1.000     1.250     1.083     1.154    0.6667     1.731     1.111     1.125     1.000     1.125     1.000   
    15      3      5       0.6000     1.000    0.6000    0.5000     1.200    0.6667     1.800     1.000    0.6000     1.000    0.6000     1.000 
   
    16      4      1        2.121     1.125     1.886     2.000     1.000     1.000    0.9428     1.000     2.000     1.000     1.886    0.9428   
    17      4      2       0.5303     1.125    0.4714     1.000    0.5000     2.000    0.2357    0.5000     1.000     1.000    0.9428    0.9428   
    18      4      3       0.3536     1.125    0.3143     1.000    0.3333     1.000    0.3143    0.3333     1.000     1.000    0.9428    0.9428   
    19      4      4       0.2652     1.125    0.2357     1.000    0.2500     1.500    0.1571    0.2500     1.000     1.000    0.9428    0.9428   
    20      4      5       0.4243     1.125    0.3771     2.000    0.2000     1.500    0.1257    0.2000     2.000     1.000     1.886    0.9428   

   Firm     1       A       1.619     1.310     1.235     1.000     1.260     1.000     1.235     1.000     1.260     1.000     1.235    0.9806   
   Firm     2       B       1.285     1.310    0.9806     1.224    0.8171     1.000    0.8012    0.9283     1.077     1.000     1.056    0.9806   
   Firm     3       C      0.8909     1.310    0.6799     1.000    0.6934     1.000    0.6799    0.6934     1.000     1.000    0.9806    0.9806   
   Firm     4       D      0.8719     1.310    0.6654     1.027    0.6607     1.000    0.6479    0.6525     1.040     1.000     1.020    0.9806   
   Firm     5       E      0.7985     1.310    0.6094     1.000    0.6214     1.000    0.6094    0.5848     1.063     1.000     1.042    0.9806   

   Year     2               2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
   Year     3               1.084     1.000     1.084    0.8693     1.247    0.7402     1.685     1.122    0.9666     1.000    0.9666     1.000   
   Year     4              0.5372     1.125    0.4775     1.320    0.3839     1.351    0.2679    0.3839     1.320     1.000     1.244    0.9428   

   Mean                     1.052     1.310    0.8030     1.047    0.7823     1.000    0.7671    0.7552     1.084     1.000     1.063    0.9806   
   Minim                   0.2652     1.000    0.2357    0.5000    0.2000    0.5000    0.1257    0.2000    0.6000     1.000    0.6000    0.9428   
   Maxim                    2.121     2.000     2.000     2.000     2.000     2.000     2.182     1.600     2.000     1.000     1.886     1.000   
  _______________________________________________________________________________________________________________________________________________  
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  Table 4. MEASURES OF TECHNICAL, SCALE and MIX EFFICIENCY (ASSUMING CRS)  
  _______________________________________________________________________________________________________________________________________________  

   Obs    Year   Firm                                      OTE       OSE       OME                 ITE       ISE       IME        
                                                           (D)       (E)       (F)                 (H)       (I)       (J)           
  _______________________________________________________________________________________________________________________________________________ 

     1      1      1                                     0.5000     1.000     1.000              0.5000     1.000     1.000   
     2      1      2                                     0.5000     1.000     1.000              0.5000     1.000     1.000   
     3      1      3                                      1.000     1.000     1.000               1.000     1.000     1.000   
     4      1      4                                     0.8000     1.000     1.000              0.8000     1.000     1.000   
     5      1      5                                     0.8333     1.000     1.000              0.8333     1.000     1.000  

     6      2      1                                     0.5000     1.000     1.000              0.5000     1.000     1.000   
     7      2      2                                     0.5000     1.000     1.000              0.5000     1.000     1.000   
     8      2      3                                      1.000     1.000     1.000               1.000     1.000     1.000   
     9      2      4                                     0.8000     1.000     1.000              0.8000     1.000     1.000   
    10      2      5                                     0.8333     1.000     1.000              0.8333     1.000     1.000   

    11      3      1                                     0.5000     1.000     1.000              0.5000     1.000     1.000   
    12      3      2                                      1.000     1.000    0.5000               1.000     1.000     1.000   
    13      3      3                                      1.000     1.000     1.000               1.000     1.000     1.000   
    14      3      4                                      1.000     1.000    0.6667               1.000     1.000     1.000   
    15      3      5                                     0.5000     1.000    0.6667              0.5000     1.000     1.000   

    16      4      1                                      1.000     1.000     1.000               1.000     1.000     1.000   
    17      4      2                                     0.5000     1.000     1.000              0.5000     1.000     1.000   
    18      4      3                                     0.3333     1.000     1.000              0.3333     1.000     1.000   
    19      4      4                                     0.2500     1.000     1.000              0.2500     1.000     1.000   
    20      4      5                                     0.2000     1.000     1.000              0.2000     1.000     1.000   

   Firm     1      A                                     0.5946     1.000     1.000              0.5946     1.000     1.000   
   Firm     2      B                                     0.5946     1.000    0.8409              0.5946     1.000     1.000   
   Firm     3      C                                     0.7598     1.000     1.000              0.7598     1.000     1.000   
   Firm     4      D                                     0.6325     1.000    0.9036              0.6325     1.000     1.000   
   Firm     5      E                                     0.5133     1.000    0.9036              0.5133     1.000     1.000   

   Year     1                                            0.6988     1.000     1.000              0.6988     1.000     1.000   
   Year     2                                            0.6988     1.000     1.000              0.6988     1.000     1.000   
   Year     3                                            0.7579     1.000    0.7402              0.7579     1.000     1.000   
   Year     4                                            0.3839     1.000     1.000              0.3839     1.000     1.000   

   Mean                                                  0.6139     1.000    0.9276              0.6139     1.000     1.000   
   Minim                                                 0.2000     1.000    0.5000              0.2000     1.000     1.000   
   Maxim                                                  1.000     1.000     1.000               1.000     1.000     1.000   
  _______________________________________________________________________________________________________________________________________________ 
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  Table 5. DECOMPOSITION OF MOORSTEEN-BJUREK TFP INDEX (ASSUMING CRS)  
  _______________________________________________________________________________________________________________________________________________  

                                                                                       Components of Efficiency Change                       
                                                         ________________________________________________________________________________________  

                             TFP      Tech      Eff                                                                                       
    Obs    Year   Firm      Index =  Change x  Change      dOTE      dOSE      dOME     dROSE      dITE      dISE      dIME     dRISE      dRME    
                             (A)       (B)       (C)       (D)       (E)       (F)       (G)       (H)       (I)       (J)       (K)       (L)    
  _______________________________________________________________________________________________________________________________________________  

     6      2      1        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
     7      2      2        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
     8      2      3        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
     9      2      4        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
    10      2      5        2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   

    11      3      1       0.8165     1.000    0.8165     1.000     1.000     1.000    0.8165     1.000     1.000     1.000    0.8165    0.8165   
    12      3      2        2.309     1.000     2.309     2.000     1.000    0.5000     2.309     2.000     1.000     1.000     1.155     1.155   
    13      3      3        1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
    14      3      4        1.614     1.000     1.614     1.250     1.000    0.6667     1.936     1.250     1.000     1.000     1.291     1.291   
    15      3      5       0.8485     1.000    0.8485    0.6000     1.000    0.6667     2.121    0.6000     1.000     1.000     1.414     1.414   

    16      4      1        3.674     1.125     3.266     2.000     1.000     1.000     1.633     2.000     1.000     1.000     1.633     1.633   
    17      4      2       0.6495     1.125    0.5774    0.5000     1.000     2.000    0.5774    0.5000     1.000     1.000     1.155     1.155   
    18      4      3       0.3536     1.125    0.3143    0.3333     1.000     1.000    0.9428    0.3333     1.000     1.000    0.9428    0.9428   
    19      4      4       0.2296     1.125    0.2041    0.2500     1.000     1.500    0.5443    0.2500     1.000     1.000    0.8165    0.8165   
    20      4      5       0.3286     1.125    0.2921    0.4000     1.000     1.500    0.4869    0.4000     1.000     1.000    0.7303    0.7303   

   Firm     1       A       1.817     1.310     1.387     1.260     1.000     1.000     1.101     1.260     1.000     1.000     1.101     1.101   
   Firm     2       B       1.442     1.310     1.101     1.000     1.000     1.000     1.101     1.000     1.000     1.000     1.101     1.101   
   Firm     3       C      0.8909     1.310    0.6799    0.6934     1.000     1.000    0.9806    0.6934     1.000     1.000    0.9806    0.9806   
   Firm     4       D      0.9050     1.310    0.6906    0.6786     1.000     1.000     1.018    0.6786     1.000     1.000     1.018     1.018   
   Firm     5       E      0.8231     1.310    0.6282    0.6214     1.000     1.000     1.011    0.6214     1.000     1.000     1.011     1.011   

   Year     2               2.000     2.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000   
   Year     3               1.209     1.000     1.209     1.084     1.000    0.7402     1.506     1.084     1.000     1.000     1.115     1.115   
   Year     4              0.5765     1.125    0.5124    0.5065     1.000     1.351    0.7489    0.5065     1.000     1.000     1.012     1.012   

   Mean                     1.117     1.310    0.8525    0.8190     1.000     1.000     1.041    0.8190     1.000     1.000     1.041     1.041   
   Minim                   0.2296     1.000    0.2041    0.2500     1.000    0.5000    0.4869    0.2500     1.000     1.000    0.7303    0.7303   
   Maxim                    3.674     2.000     3.266     2.000     1.000     2.000     2.309     2.000     1.000     1.000     1.633     1.633   
  _______________________________________________________________________________________________________________________________________________  
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   Table 6. DECOMPOSITION OF MALMQUIST TFP INDEX  
  _________________________________________________________________________________________________________________  

                                                              Fare et al (1994) Components of Efficiency Change      
                                                         __________________________________________________________  

                             TFP      Tech      Eff        Pure     Scale                          Pure     Scale    
   Obs    Year   Firm       Index =  Change x  Change      OTE  x    Eff                           ITE   x   Eff     
                             (A)       (B)       (C)       (D)       (E)                           (H)       (I)     
  _________________________________________________________________________________________________________________  

     6      2      1        2.000     2.000     1.000     1.000     1.000                         1.000     1.000   
     7      2      2        2.000     2.000     1.000     1.000     1.000                         1.000     1.000   
     8      2      3        2.000     2.000     1.000     1.000     1.000                         1.000     1.000   
     9      2      4        2.000     2.000     1.000     1.000     1.000                         1.000     1.000   
    10      2      5        2.000     2.000     1.000     1.000     1.000                         1.000     1.000   

    11      3      1        1.000     1.000     1.000    0.5000     2.000                         1.000     1.000   
    12      3      2        2.000     1.000     2.000     1.833     1.091                         1.600     1.250   
    13      3      3        1.000     1.000     1.000     1.000     1.000                         1.000     1.000   
    14      3      4        1.250     1.000     1.250     1.083     1.154                         1.111     1.125   
    15      3      5       0.6000     1.000    0.6000    0.5000     1.200                         1.000    0.6000   

    16      4      1        2.121     1.061     2.000     2.000     1.000                         1.000     2.000   
    17      4      2       0.5303     1.061    0.5000     1.000    0.5000                        0.5000     1.000   
    18      4      3       0.3536     1.061    0.3333     1.000    0.3333                        0.3333     1.000   
    19      4      4       0.2652     1.061    0.2500     1.000    0.2500                        0.2500     1.000   
    20      4      5       0.4243     1.061    0.4000     2.000    0.2000                        0.2000     2.000   

   Firm     1       A       1.619     1.285     1.260     1.000     1.260                         1.000     1.260   
   Firm     2       B       1.285     1.285     1.000     1.224    0.8171                        0.9283     1.077   
   Firm     3       C      0.8909     1.285    0.6934     1.000    0.6934                        0.6934     1.000   
   Firm     4       D      0.8719     1.285    0.6786     1.027    0.6607                        0.6525     1.040   
   Firm     5       E      0.7985     1.285    0.6214     1.000    0.6214                        0.5848     1.063   

   Year     2               2.000     2.000     1.000     1.000     1.000                         1.000     1.000   
   Year     3               1.084     1.000     1.084    0.8693     1.247                         1.122    0.9666   
   Year     4              0.5372     1.061    0.5065     1.320    0.3839                        0.3839     1.320   

   Mean                     1.052     1.285    0.8190     1.047    0.7823                        0.7552     1.084   
   Minim                   0.2652     1.000    0.2500    0.5000    0.2000                        0.2000    0.6000   
   Minim                    2.121     2.000     2.000     2.000     2.000                         1.600     2.000   
  _________________________________________________________________________________________________________________  
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