Authors: Bo Zhou¹, Jason M. Osinski¹, Juan L. Mateo⁴, Ben Martynoga⁵, Fraser J. Sim^{2,3}, Christine E. Campbell¹, Francois Guillemot⁵, Michael Piper⁶ and Richard M. Gronostajski^{1,2}

Institutions: ¹Department of Biochemistry, ²Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY; ³Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY; ⁴Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany; ⁵Division of Molecular Neurobiology, MRC, London, UK; ⁶School of Biomedical Sciences and Queensland Brain Institute, The University of Queensland, Brisbane, Australia

Running Title: NFIX suppresses NSC commitment to oligodendrogenesis

Author's e-mail addresses:

Bo Zhou: bzhou2@buffalo.edu Jason M. Osinski: josinski@buffalo.edu Juan L. Mateo: juan.mateo@cos.uni-heidelberg.de Ben Martynoga: bmartyn@nimr.mrc.ac.uk Fraser J. Sim: fjsim@buffalo.edu Christine E. Campbell: cc59@bufalo.edu Francois Guillemot: fguille@nimr.mrc.ac.uk Michael Piper: m.piper@uq.edu.au Richard M. Gronostajski: rgron@buffalo.edu **Correspondence:** Richard M. Gronostajski, Ph.D., New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott St., B3-303, Buffalo, NY

14203, USA. Telephone: 716-829-3471; Fax: 716-849-6655; e-mail: rgron@buffalo.edu

Abstract

Murine postnatal neural stem cells (NSCs) give rise to either neurons, astrocytes or oligodendrocytes, however our knowledge of the genes that control this lineage-specification is incomplete. Here we show that Nuclear Factor I X (NFIX), a transcription factor known to regulate NSC quiescence, also suppresses oligodendrogenesis (ODG) from NSCs. Immunostaining reveals little or no expression of NFIX in oligodendrocyte (OL)-lineage cells both *in vivo* and *in vitro*. Loss of NFIX from subventricular zone NSCs results in enhanced ODG both *in vivo* and *in vitro*, while forced expression of NFIX blocks NSC differentiation into OLs *in vitro*. RNA-seq analysis shows that genes previously shown to be differentially expressed in OL progenitors are significantly enriched in RNA from *Nfix*^{-/-} vs. wild type NSCs. These data indicate that NFIX influences the lineage-specification of postnatal subventricular zone NSCs, specifically suppressing ODG.

Introduction

Nuclear Factor I (NFI) transcription factors (TFs) regulate the development of many organ systems [1-8]. In vertebrates, 4 alternatively spliced NFI genes (*Nfia, Nfib, Nfic* and *Nfix*) encode proteins that form homo- or hetero-dimers and function as site-specific TFs [7]. All NFI proteins appear to bind to the same DNA recognition motif [7], and either activate or repress gene expression depending on the promoter and cell type [7,9]. Previously we reported that *Nfix*-knockout mice had an expanded cerebral cortex, excess PAX6+ progenitor cells in the subventricular zone (SVZ), fewer subgranular zone (SGZ) neural progenitor cells, and delayed neurogenesis in the hippocampus [10,11]. These findings indicate a role for NFIX in regulating neural stem cells (NSCs) and their differentiation. In addition, we reported that NFIX regulates NSC quiescence *in vitro* [12]. While ChIP-seq analysis has shown that NFIs bind to some genes that regulate the differentiation of NSCs (e.g. Mash1) [12,13], the role of NFIX in oligodendrogenesis (ODG) has not been well studied.

Oligodendrocytes (OLs) are one of two main glial types [14-16]. They myelinate axons of neurons to both protect them and promote signal conduction [17,18]. OL formation begins around birth in mice and peaks at postnatal day 14 (P14) [14,19,20]. Murine OLs are derived mostly from preexisting OL progenitor cells (OPCs) present in multiple locations in the brain [14,21]. However, some OLs are derived from NSCs in the SVZ rather than from existing OPCs [14,21,22]. Indeed, NSC-derived OLs can play a major role in remyelination after brain injury or induced demyelination [23,24], suggesting the potential for NSC-based therapy for brain injury and demyelination diseases. However, the TFs that regulate OL formation from NSCs are only partially defined. Here we show that NFIX expression decreases as NSCs undergo ODG and

that this down-regulation appears essential for normal NSC-derived OL formation. This suggests an important role for NFIX in the lineage-specification of NSCs in postnatal mouse brain.

Material and Methods

Nfix^{-/-} and *Nfix* iKO mice. Germline *Nfix^{-/-}* mice were generated as described previously [11] and were analysed as C57BI/6/129 F1 hybrid animals. This avoided the hydrocephalus seen in inbred C57BI/6 *Nfix^{-/-}* mice. NestinCreERT2/R26R-EYFP/*Nfix^{+/+}* and NestinCreERT2/R26R-EYFP/*Nfix^{flox/-}* or flox (iKO) mice were maintained on a C57BI/6 background and were generated by crossing the appropriate progeny of *Nfix^{+/+}*, *Nfix^{flox/-}* or *Nfix^{flox/flox}* and NestinCreERT2/R26R-EYFP mice (provided by Dr. Amelia J. Eisch [25,26]). Mice were genotyped by PCR and sequences of the primers are available upon request. 180 mg/kg tamoxifen (Sigma, T-5648) in sunflower oil was administered by daily intraperitoneal injection for 4 days into 4-week old NestinCreER^{T2}/R26R-EYFP/*Nfix^{+/+}* and NestinCreERT2/R26R-EYFP/*Nfix^{flox/-}* (or *Nfix^{flox/flox}*) mice [25]. All protocols were approved by the IACUC at Roswell Park Cancer Institute.

Tissue preparation and immunofluorescence. Animals were perfused with 4% PFA and brains were dissected and post-fixed in 4% PFA overnight at 4°C. Serial coronal sections (40-45 μm) through the dentate gyrus were collected and every 6th section was used for staining. Primary antibodies are listed in Suppl. Table 1. Free floating or slide mounted staining was performed as described previously [5]. Images were taken with a Zeiss Observer Z1 with ApoTome 2. For WT and *Nfix* iKO brains, every 6th section starting from Bregma 1.18-0.02 mm was taken for SVZ staining. P12 was chosen as the time to analyse NFIX expression in the DG as it was the latest postnatal time prior to the frank development of hydrocephalus in *Nfix^{-/-}* animals.

Cell culture and staining. Brains were dissected at postnatal day 10 (P10) and a 2 mm coronal slice containing the SVZ was dissociated with 0.05% Trypsin. Cells were seeded onto wells or coverslips at 2X10⁵ cells/cm². For monolayer cultures, wells/coverslips were coated with 0.001% poly I-lysine (Sigma, P8920) and 10 µg/ml laminin (Sigma, L2020) before seeding [27]. Proliferation medium consisted of DMEM/F12 (Gibco), B27 (1:50), 2 mM L-Glutamine, 20 ng/ml human EGF and 20 ng/ml human FGF2 [28,29]. For differentiation, medium was replaced with medium lacking growth factors [28,29]. Neurospheres and monolayer-cultured cells were fixed with 4% PFA and stained with antibodies (see Suppl. Table 1). For O4 staining, live neurospheres or monolayer cells were incubated with primary antibody at 37°C for 1 hour, and then fixed with 4% PFA. Total cell number was assessed by DAPI staining. For quantification of the neurosphere assay, neurospheres with at least 10 TUJ1+ or O4+ cells were counted as TUJ1+ or O4+ neurospheres, respectively. For classifying NFIX expression levels, the average intensity of NFIX staining in each nucleus (area defined by DAPI staining) was quantified using ImageJ. Nuclei with an average intensity value above half the maximum intensity value in the same view were classified as NFIXhigh with the remainder being NFI-low or NFIX negative. P10 was chosen for cell isolation to maximize the number of postnatal NSCs available, which begins to decrease after P10.

Electroporation of *Nfix^{-/-}* **cultured NSCs.** Primary *Nfix^{-/-}* NSCs were expanded for 10 days and electroporated with pCAGGSs plasmids expressing NFIX2-IRES-GFP or IRES-GFP as described previously [12]. Cultures were detached using Accutase and counted using a Nexcelom cell counter. 2X10⁶ cells were mixed with 4 μg plasmid DNA

and electroporation was performed with a Nucleofector II (Lonza VAPG-1004 kit, Program A-33). Cells were seeded in medium containing growth factors on coated coverslipped 24 well plates and shifted to differentiation medium after 24 hrs. Cells were fixed and stained on differentiation day 0, 2 and 4 (D0, D2 and D4) or proliferation day 1, 3 and 5 (Pro1, Pro3 and Pro5).

Brain RNA extraction and RT-qPCR. Brains minus olfactory bulbs and cerebella were dissected, RNA was extracted with TRIzol reagent and cDNA generated by random hexamer-primed cDNA synthesis (iScript, Bio-rad). Transcript levels were assessed by quantitative PCR (qPCR) (Bio-Rad iCycler) using SYBR Green detection as described previously [5]. β2-microglobulin transcript levels were used to normalize expression levels. All primers are listed in Suppl. Table 2.

RNA-seq and ROC analysis. RNA was harvested from proliferating WT and *Nfix^{-/-}* monolayer cells and used for RNA-seq analysis on an Illumina HiSeq2000 with 50 bp single-end sequencing. Data were analysed using Tophat 2.0.7 and Cufflinks 1.3.0 with the mm9 UCSC annotation file [12,30]. Primers used for qPCR are shown in Suppl. Table 2. Analysis was performed with DAVID [31] on GO Fat, Kegg and Panther Pathways with cutoffs of log₂FC (fold change) >1.5 and p<0.05. The top 10 up or down-regulated clusters using gene function classification are shown. Data were deposited in the Gene Expression Omnibus (#GSE65337). The RNA-seq list from Cufflinks was sorted (high to low) by Log₂FC of FPKM values (*Nfix^{-/-}*/WT). This list was compared to gene lists from known OPC gene sets to generate ROC curves. Mouse cell-type specific gene lists were generated by differential gene expression analysis utilizing profiles of

OPCs (PDGF α R⁺), and OLs (GalC⁺ & MOG⁺), astrocytes (S100B⁺) and neuronal populations [32]. Cell-type specific gene lists were generated by comparison against all other cell types using a linear model and regulated genes identified using >5 fold change (FC) and 1% false discover rate (FDR) cut-offs. The gene list of human fetal CD140a⁺ OPCs was generated by comparison against the profile of CD140a⁻ cells (>3FC, 5%FDR) [33]. The gene list of human adult A2B5⁺ OPCs (from subcortical white matter) was generated by comparison with unsorted white matter and the profiles of sorted microglia (CD11b⁺) and astrocytes (GLT1⁺) (>3FC and 5% FDR) [34].

Results

NFIX is expressed in most neural stem and progenitor cells in postnatal DG and SVZ but not in SOX10+ OPCs.

Previously we showed that NFIX is expressed in both the SVZ and DG [10,11], the two main niches for NSCs in adult mice. To assess NFX expression in NSCs and their progeny in the DG, we performed immunostaining on WT postnatal day 12 (P12) DG sections with markers that distinguish the cell types present, as described previously [25,35] (Suppl. Fig. 1). NFIX was expressed in ~65% of NSCs (GFAP+S100B-) (Suppl. Fig. 1A and 1A', white arrows, guantified in Suppl. Fig. 1E), most transit amplifying progenitors (Ki67+DCX-) (Suppl. Fig. 1B and 1B', white arrows), neuroblasts (Ki67+DCX+) (Suppl. Fig. 1B and 1B", yellow arrows) and immature neurons (Ki67-DCX+) (Suppl. Fig. 1B and 1B", cyan arrows). While most mature neurons were NFIX negative (Suppl. Fig. 1C and 1C', yellow arrowheads), ~1/4 expressed NFIX (Suppl. Fig. 1C and 1C", yellow arrows) and few mature astrocytes (GFAP+S100B+) (Suppl. Fig. 1A and 1A"", yellow arrowheads) expressed NFIX. SOX10 is a marker of committed OPCs, and essentially no OLs or OPCs (SOX10+) (Suppl. Fig. 1D and 1D', yellow arrowheads) expressed NFIX. In summary, NFIX was expressed in most NSCs and some of their progeny but not in OLs or OPCs in postnatal DG. This is consistent with previous data in postnatal SVZ [35], indicating a role for NFIX in NSCs at both locations. In addition, the absence of NFIX expression in SOX10+ cells in both DG (Suppl. Fig. 1D&E) and SVZ (0/48, Suppl. Fig. 2A-A' and [35]) showed that NFIX expression is normally down-regulated when NSC progeny commit to the OLlineage.

We next assessed NFIX expression in OL-lineage cells in other regions of the postnatal brain. In P12 corpus callosum (CC), NFIX was expressed in most astrocytes (S100B+) but not in SOX10+ OL-lineage cells (0/50, Suppl. Fig. 2B-C). In the cortex, NFIX expression was seen in most neurons (NEUN+) and a few astrocytes (S100B+) but not in SOX10+ OL-lineage cells (0/71, Suppl. Fig. 2D-E). These data indicate that NFIX expression is suppressed in OL-lineage cells in multiple regions of the postnatal mouse brain.

NFIX expression is lost when NSCs generate OL-lineage cells in vitro.

To assess NFIX expression during NSC lineage-determination *in vitro*, we generated SVZ-derived primary neural stem and progenitor cells from P10 WT brains. The cells were induced to differentiate into multiple lineages by removal of growth factors for 4 days [36] and stained for NFIX and differentiation markers. All presumptive astrocytes showed strong NFIX expression (GFAP+, Fig. 1A-B) while only 16% of neurons strongly expressed NFIX (TUJ1+, Fig. C-D). Consistent with our *in vivo* data, no mature OLs (0/285) were NFIX+ (O4+, Fig. 1E-F), indicating loss of NFIX expression during ODG from NSCs.

To ask when NFIX expression is lost during ODG *in vitro*, we stained cells that had been differentiated for 4 days for markers representing various stages of ODG: OLIG2, expressed in NSCs and very early OPC stages; SOX10, expressed at a later OPC stage and in mature OLs; and MBP, expressed only in myelinating OLs. While ~90% of OLIG2- cells were NFIX+, only ~10% of OLIG2+ cells were NFIX+ (Fig. 1G-H). In addition, while ~80% of SOX10- cells were NFIX+, no (0/580) SOX10+ cells were NFIX+ (Fig. 1I-J). Similarly, no MBP+ cells expressed NFIX (Fig. 1K-L). These data

Loss of NFIX promotes ODG from NSCs in vitro.

NFIX expression is high in proliferating NSCs but very low or absent in cells undergoing ODG, suggesting that NFIX expression may be incompatible with ODG. But is the loss of NFIX expression a cause or an effect of ODG? To address this, we assessed the lineage-specification pattern of P10 WT and *Nfix^{-/-}* SVZ-derived NSCs. >95% of both WT and *Nfix^{-/-}* proliferating NSCs were Nestin+ (data not shown), indicating a uniform high percentage of NSCs in each population. After withdrawal of growth factors for 4 days there was an ~4 fold higher percentage of O4+ cells in *Nfix^{-/-}* vs. WT cultures (Fig. 2A-C). In contrast, the percentage of TUJ1+ and GFAP+ cells was similar in both (Fig. 2D&H, respectively). The lack of a statistically significant decrease in the percentage of TUJ1+ and GFAP+ cells is likely due to the relatively low percentage of O4+ cells present in both populations. Consistent with the increased percentage of O4+ cells, *Nfix^{-/-}* cultures also showed a significantly higher percentage of SOX10+ (Fig. 2E-G) cells vs. WT cultures.

To further assess the lineage-specification properties of *Nfix*^{-/-} NSCs, we generated neurospheres from WT and *Nfix*^{-/-} SVZ and assessed the cell types generated upon growth factor withdrawal. Consistent with the data from monolayer cultures, a significantly higher percentage of *Nfix*^{-/-} neurospheres contained O4+ cells compared to WT neurospheres (Suppl. Fig. 3F) while the fraction of GFAP+ (not shown)

and TUJ1+ neurospheres (Suppl. Fig. 3E) did not differ between *Nfix^{-/-}* and WT cultures. These data suggest that the absence of *Nfix* biases NSCs to choose the OL-lineage.

Forced expression of NFIX blocks ODG of NSCs in vitro

To further assess the role of NFIX in ODG, we induced expression of NFIX in *Nfix*^{-/-} primary cultured NSCs. Electroporation of a control IRES-GFP vector had no observable effect on differentiation vs. non electroporated cells (Suppl. Fig. 4A). Electroporation of *Nfix*^{-/-} NSCs with an NFIX-IRES-GFP expression vector resulted in a significant change in the distribution of cell types generated compared to that seen with the control vector (Fig. 3). The percentage of SOX10+ and O4+ cells was reduced in GFP+ cells of NFIX-IRES-GFP-electroporated cultures vs. GFP+ cells from IRES-GFP cultures (Fig. 3C-D). In addition, a reduced percentage of GFP+ cells in NFIX-IRES-GFP-electroporated cultures vs. GFP- cells in the same cultures (Suppl. Fig. 4B-C). These data support a cell-autonomous role for NFIX in suppressing ODG from NSCs.

In this expression system, NFIX is translated from the first ATG 3' of the transcription start site while GFP is expressed from a downstream internal ribosome entry site (IRES) on the same transcript. Surprisingly, we saw that in the NFIX-GFP electroporated cells all NFIX+ cells were GFP+, but not all GFP+ cells expressed the same level of NFIX. Some GFP+ cells had very strong NFIX expression, some showed weaker NFIX expression and some appeared NFIX negative (NFIX-) (Fig. 3A-A'). We therefore quantified the fraction of OLs from cells expressing high or low levels of NFIX (NFIX-high and NFIX-low) in NFIX-electroporated cultures. In both populations, and particularly in NFIX-high cells, there was a decrease in the percentage of SOX10+ cells

compared to the NFIX- cells in the same cultures (Fig. 3G, see Fig. 3B for example of mutually exclusive SOX10 and NFIX expression). Dual O4/NFIX staining showed that almost none of the NFIX+ cells differentiated into O4+ cells (Fig. 3H). These data indicate that forced expression of NFIX appears sufficient to suppress ODG from NSCs *in vitro*.

When we assessed the percentage of GFP+ cells in other cell lineages, we noted a significant decrease in the percentage of TUJ1+ cells from NFIX-IRES-GFPexpressing cells compared to IRES-GFP cells (Fig. 3E). Thus forced expression of NFIX can also repress neurogenesis. Consistent with the observed decrease in ODG and neurogenesis, the percentage of cells expressing GFAP was increased in NFIXexpressing vs. control cells (Fig. 3F). To further test for a cell-autonomous effect of NFIX on differentiation, we compared NFIX+ and NFIX- cells in the NFIX-IRES-GFPelectroporated cultures. Consistent with the above data, cells expressing NFIX showed reduced neuronal and increased astrocyte marker expression vs. NFIX- cells in the same cultures (Fig. 3I-J). Forced expression of NFIX also appeared to reduce the proliferation of NSCs as shown by a 6-9 fold decrease in Ki67 staining (Suppl. Fig. 4D). These data are consistent with our previous data showing forced expression of NFIX promoted quiescence of the NS5 NSC cell line [12].

Loss of NFIX increases ODG marker expression in vivo.

To determine the role of NFIX in ODG *in vivo*, we first measured the transcript levels of OL and OPC markers in WT and *Nfix^{-/-}* littermate brains from P6 to P10. At P6, the transcript levels of *Olig2*, *Sox10* and *Mbp* were similar in WT and *Nfix^{-/-}* brains (Fig. 4A-C). However, by P8 both the early ODG markers (*Olig2* and *Sox10*) and the late

Page 14 of 51

14

marker *Mbp* were elevated in *Nfix^{-/-}* brains vs. WT littermate controls (Fig. 4A-C, respectively). At P10, the transcript levels of all 3 ODG markers were also elevated in the *Nfix^{-/-}* brains, suggesting precocious ODG in *Nfix^{-/-}* mice *in vivo*.

We did not measure marker transcript levels at later stages of development, as aermline Nfix^{-/-} mice develop severe hydrocephalus from P12 and do not survive weaning. Therefore, to test whether NFIX affects ODG from adult NSCs, we generated 4 week old Nestin-CreER^{T2}/R26R-EYFP/Nfix^{flox/-} (Nfix inducible knock-out (iKO)) mice and lineage-traced the Nestin+ NSCs in vivo using EYFP as a marker (Fig. 5A). Brains were harvested at 1 month, 2 months and 3 months after tamoxifen injection (1M, 2M and 3M, red arrows in Fig. 5B). One month after tamoxifen injection, ~20% of EYFP+ cells in the CC of Nfix iKO mice were co-stained with OLIG2, while very few EYFP+ cells in the CC of NestinCreER^{T2}/R26-EYFP/ Nfix^{+/+} (Nfix^{+/+}) mice were OLIG2+ (Fig. 5D). This difference increased at 2-months and 3-months after injection (Fig. 5D, see 5C for example). At 3 months, 60% of the EYFP+ cells expressed OLIG2 in the CC of Nfix iKO mice while almost no EYFP/OLIG2+ cells were present in the Nfix+/+ CC. Most of the OLIG2-EYFP+ cells in the $Nfix^{+/+}$ CC were S100B+ astrocytes (data not shown). These data indicate that Nestin-Cre-mediated loss of NFIX appears to bias adult NSC lineage-determination towards the OL lineage in vivo. In addition, since only a fraction of Nestin+ NSCs were subject to loss of NFIX in a WT background, these data indicate that NFIX likely suppresses postnatal ODG of NSCs in a cell-autonomous manner.

Loss of NFIX from NSCs increases expression of OPC-specific genes

Both our *in vivo* and *in vitro* data indicate a role for NFIX in suppressing NSC progression into the OL-lineage. To assess possible mechanisms of this suppression

Page 15 of 51

Stem Cells and Development Loss of NFIX transcription factor biases postnatal neural stem/progenitor cells towards oligodendrogenesis. (doi: 10.1089/scd.2015.0136) This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

and examine transcriptome changes in the absence of *Nfix*, RNA-seq was performed on proliferating WT and *Nfix^{-/-}* primary culture NSCs. The quality of these data were tested by qPCR, which confirmed a subset of transcripts whose expression was changed in *Nfix^{-/-}* NSCs (Suppl. Fig. 5). GO analysis using DAVID showed that the most significantly down-regulated gene sets in *Nfix^{-/-}* NSCs were related to cell attachment and proliferation (Fig. 6C-D), consistent with our previous microarray data on the NS5 cell line expressing a dominant repressor form of NFI [12]. In addition, genes whose expression is increased or decreased in *Nfix^{-/-}* NSCs are enriched for NFI binding sites within 50kb of their TSS as assessed from previous NFI ChIP-seq data in NS5 cells (Fig. 6A) [12]. These data suggest that NFIX may directly regulate a large fraction of these genes in NSCs.

We next asked whether the expression of genes associated with early stages of ODG were enriched in the *Nfix*^{-/-} cultured NSC compared to WT controls. When the set of genes differentially expressed in *Nfix*^{-/-} vs. WT NSCs was compared with gene sets differentially expressed in mouse OPCs [32] using Receiver Operating Characteristic (ROC) analysis [37-39], a significant enrichment of PDGF α R+ OPC enriched transcripts was seen in *Nfix*^{-/-} cultured NSCs (p = 4.27e-18) (Fig. 6E). Similarly, human fetal and adult OPC-enriched transcripts were also significantly enriched in *Nfix*^{-/-} cultured NSCs (Fig. 6F-G) [33,34]. This suggests that NFIX may directly regulate OPC-specific gene expression and subsequently repress ODG from NSCs. In contrast, two mature OL-enriched gene sets did not show an apparent enrichment in *Nfix*^{-/-} cultured NSCs (Suppl. Fig. 6), suggesting NFIX may regulate early stage but not late stage ODG.

Discussion

Here we show that cells within the OL-lineage have little or no NFIX expression compared to other NSC-derived cell lineages (Fig. 1 and Suppl. Figs. 1-3). Loss of NFIX from NSCs resulted in increased ODG both *in vivo* and *in vitro* (Figs. 2, 4-5). In addition, forced expression of NFIX appears sufficient to suppress ODG from cultured *Nfix*^{-/-} NSCs *in vitro* (Fig. 3). Gene expression analysis showed increased expression of OPCspecific genes in *Nfix*^{-/-} versus WT cultured NSCs, suggesting that NFIX expression in NSCs is inversely correlated with the expression of OPC markers (Fig. 6E-G). These data are consistent with the model that NFIX directly suppresses the generation of OPCs from NSCs.

NFIX is expressed in most NSCs in postnatal DG and SVZ.

It is of interest that the expression patterns of NFIX differed between NSCs of the SVZ and DG. While almost all SVZ NSCs are NFIX+ [35], only ~half of DG NSCs are NFIX+. While similar markers are expressed in NSCs of both regions (e.g., Nestin, GFAP, GLAST, etc.), the functional properties of NSCs in the two regions differ. For example, only SVZ NSCs normally generate postnatal OPCs and OLs *in vivo* [19,40], although both SVZ and DG NSCs differentiate into OLs *in vitro* [41,42]. Differences between NSCs in the SVZ and DG are believed due, at least in part, to distinct extracellular signalling within the two niches [14,43]. It is possible that the extracellular environment in the SVZ may better promote NSC proliferation and ODG than does the DG. Once the NSCs differentiate into mature astrocytes or neurons that migrate to new locations *in vivo*, signals in the new environment may act to reduce NFIX expression.

NFIX regulates early stages of ODG.

Our data indicate that NFIX biases NSC lineage commitment away from ODG. The lack of NFIX expression in both SOX10+ cells *in vivo* and *in vitro* and OLIG2+ cells *in vitro*, indicates that that NFIX expression is down-regulated at an early step of ODG. In addition, our ROC analysis showed the enrichment of OPC-enriched genes but not OL-enriched genes in *Nfix^{-/-}* NSCs, supporting the model that NFIX may repress an early stage of ODG from NSCs. Consistent with this model, our qPCR analysis showed a significant increase in the levels of *Olig2*, *Sox10* and *Mbp* transcripts in *Nfix^{-/-}* vs. WT brains (Fig. 4). The magnitude of this difference was similar for both early (*Olig2*) and late (*Mbp*) markers of ODG, although the timing of the changes differed. These data are consistent with the germline loss of NFIX promoting precocious ODG, presumably from NSCs.

Forced expression of NFIX blocks ODG of NSCs.

Both monolayer and neurosphere assays indicated that loss of NFIX increases ODG from NSCs. However, loss of NFIX is not sufficient to induce ODG, as only a small fraction of NSCs became OLs upon complete loss of NFIX. Therefore we asked whether loss of NFIX is necessary for ODG from cultured NSCs. In our electroporation system, while all NFIX+ cells were GFP+, the GFP+ cells showed a range of NFIX expression (NFIX-high, NFIX-low and NFIX- cells). When we analysed the NFIX-high and NFIX-low cells separately, we found that almost none of the NFIX-high cells were

Page 18 of 51

18

SOX10+ cells, while ~5% of NFIX-low cells were SOX10+ (Fig. 3F). These data suggest that there may be a dose-dependence of NFIX on suppression of the OL-lineage which likely relates to the observed timing of the drop of NFIX expression during NSC ODG.

It was unexpected to find a decrease in TUJ1+ cells from NFIX-IRES-GFPelectroporated cells compared to controls, as enhanced neurogenesis was not seen in differentiated *Nfix^{-/-}* NSC monolayer or neurosphere cultures. However, these data are consistent with the low fraction of neurons that express high levels of NFIX both *in vivo* and *in vitro*. One possibility is that the effect of NFIX on neurogenesis depends on the precise level of NFIX. In our electroporated cells we estimate that NFIX transcript levels may be as much as 5 fold above the endogenous levels seen in NSCs (data not shown). Thus, while forced expression of NFIX reduces neurogenesis. Alternatively, different functions have been reported for alternatively spliced products of the same *Nfi* gene [44]. Thus it is possible that the *Nfix2* isoform we expressed in NSCs represses neurogenesis, while other isoforms of *Nfix* may not. Further studies are needed to test for specific roles of different *Nfix* isoforms in neurogenesis, astrogenesis and ODG.

In vivo lineage-tracing indicates cell-autonomous regulation on NSC ODG by NFIX.

Our DAVID analysis of genes down-regulated in *Nfix^{-/-}* cultured NSCs suggests that the gene set regulated was related to cell external stimuli. There are a number of growth factors/hormones that are critical for induction of ODG from NSCs and OPC survival, including thyroid hormone (TH), FGF-2, BDNF, IGF-1 and PDGF [45-52]. However, our RNA-seq data indicated that none of these signalling molecules were

affected by loss of NFIX. The level of FGF-5 transcript was decreased in *Nfix^{-/-}* NSCs, however addition of FGF-5 (10 ng/ml) to proliferation and differentiation medium did not affect ODG of NSCs (data not shown). Thus, we have no evidence that apparent suppression of NSC ODG by NFIX is related to secreted signalling molecules.

To test whether NFIX suppresses ODG cell-autonomously *in vivo*, we generated *Nfix* iKO mice and performed lineage-tracing of Nestin+ cells. OPCs produced from adult NSCs in the SVZ normally migrate primarily to the CC [14,21,23,53]. Here we found that *Nfix*^{-/-} NSCs generated a much higher percentage of OLIG2+/EYFP+ OPCs in the CC than did *Nfix*^{+/+} NSCs. These data are consistent with cell-autonomous regulation of ODG by NFIX. However, no OLIG2+/EYFP+ cells were detected in the DG in either *Nfix*^{+/+} or *Nfix* iKO mice (data not shown). These data suggest that NSCs in the SVZ and DG differ in their response to loss of NFIX. Determining whether this difference is cell-intrinsic, or due to the environment of the respective stem cell niches, requires further examination.

Nestin is often used as a NSC marker both *in vivo* and *in vitro* [26,54]. However recent studies have shown some heterogeneity of NSCs *in vivo*, with Nestin marking only a substantial fraction of the NSCs [55,56]. Thus our *in vivo* data indicate only that NFIX appears to suppress ODG from the Nestin+ fraction of SVZ NSCs. To address how well the Nestin-CreERT2 deletion of NFIX reflects the entire NSC population, additional lineage tracing studies using other Cre-expression systems including GLAST-CreERT2 and GFAP-CreERT2 are needed.

Possible mechanisms of NFIX regulation of ODG

There are at least 3 simple models for how NFIX may affect the lineagedetermination of NSCs. First, it is possible that NFIX alone directly or indirectly regulates one or a few key TFs essential for NSCs to progress towards ODG. Second, NFIX alone may directly or indirectly regulate a complex network of TFs and signaling molecules that influences commitment to the OL lineage. Third, NFIX may interact specifically with other NFI family members, including NFIA, to regulate either key factors or networks of factors essential for NSC ODG. Each of these models is at least partially consistent with our data, but some are better supported than others.

Previous studies have shown that enforced expression of OLIG2 or SOX10 in NSCs can promote ODG [57,58]. However, our RNA-seq data show no major changes in the transcript levels of these key TFs in *Nfix^{-/-}* NSCs. In contrast, *Rfx4* is involved in human ODG and oligodendroglial tumor formation [34,58,59] and its expression was increased ~2.8 fold in *Nfix^{-/-}* cultured NSCs. In addition, several other TFs whose transcript levels are weakly altered by loss of NFIX (Fig. 6B) may influence ODG. Knockdown studies on these individual TFs will be necessary to test this model.

The "Network Model" is most consistent with our RNA-seq data. Our ROC analysis showed that a large number of genes differentially expressed in OPCs were also differentially regulated in *Nfix^{-/-}* vs. WT NSC cultures *in vitro*. This correlation of gene expression was seen despite the fact that no SOX10+ cells were detected in proliferating *Nfix^{-/-}* NSCs (data not shown). This co-enrichment of gene sets in mouse and human OPCs and *Nfix^{-/-}* NSCs is the strongest evidence of pre-existing bias in proliferating *Nfix^{-/-}* NSCs towards the OL lineage. However, it is unclear mechanistically how a change in a set of genes related to ODG can bias a cell populations towards

differentiation into the OL lineage, and yet result in only a small fraction of the cells going down this specific lineage *in vitro*.

Previous studies showed increased ODG in postnatal *Nfia^{-/-}* spinal cord and brain [60-62], suggesting that NFIA can also suppress ODG. In addition, NFIA appears to directly suppress neurogenesis and/or promote astrogenesis [63]. Here we show that loss of *Nfix* increases ODG and that forced NFIX expression suppresses ODG and neurogenesis but promotes astrogenesis. There are at least 3 ways that NFIX and NFIA might function together to regulate ODG, A) NFIX may regulate NFIA expression, B) NFIX may hetero-dimerize with NFIA, or C) NFIX may bind to the same regulatory sites and/or interact with the same ODG mediators as does NFIA. However, our RNA-seq data showed that Nfia transcripts were increased only ~1.3 fold in Nfix^{-/-} NSCs vs. WT controls (Fig. 6B), while no changes were seen in *Nfib* and *Nfic* levels. Since all NFIs bind to similar DNA sequences and have similar DNA-binding and dimerization domains [7,64], NFIX may regulate ODG by modulating the same signalling pathway genes and/or by antagonizing the function(s) of the same TFs (e.g. SOX10, OLIG2) as does NFIA [60-62]. However, while both NFIX and NFIA suppress ODG, their mechanisms of action may be distinct. For example, NFIX appears to regulate an early stage of ODG (from NSC to OPC), while NFIA affects multiple stages of ODG [61,62]. Thus it will be important in future studies to determine common vs. unique targets of NFIX and other NFIs in NSCs and OPCs.

Mutations in the human homolog of *Nfix* are seen in the Marshall-Smith and Sotos-like syndromes [65-67] which exhibit delayed brain development, suggesting that NFIX plays important roles in both mouse and human. Moreover, NFIX and other NFIs have been identified as putative oncogenes or tumour suppressor genes in genetic

models of meduloblastoma [68] and glioblastoma [69], and OPCs have been implicated as the cell of origin of glioblastomas [70,71]. Thus, a better understanding of the mechanism by which NFIX regulates NSC ODG may lead to improved therapies for brain injury, demyelinating diseases, developmental syndromes and brain tumors. **Acknowledgement:** This work was supported by NYSTEM contracts C026429 and C026714 to RMG and by National Health and Medical Research Council project grants 1003462, 1057751 and 1022308 to MP. MP was supported by Australian Research Council Future Fellowship FT120100170. We acknowledge the WNYSTEM Stem Cell Sequencing/ Epigenomics Analysis facility for RNA-seq data collection and analysis. We thank Dr. Amelia J. Eisch for the Nestin-CreER^{T2}/R26R-EYFP mice.

Author Disclosure Statement:

The authors have no conflicts of interest to disclose.

Reference

- 1. Kumbasar A, C Plachez, RM Gronostajski, LJ Richards and ED Litwack. (2009). Absence of the transcription factor Nfib delays the formation of the basilar pontine and other mossy fiber nuclei. J Comp Neurol 513:98-112.
- 2. Bachurski CJ, GH Yang, TA Currier, RM Gronostajski and D Hong. (2003). Nuclear factor I/thyroid transcription factor 1 interactions modulate surfactant protein C transcription. Mol Cell Biol 23:9014-9024.
- 3. Wang W, D Mullikin-Kilpatrick, JE Crandall, RM Gronostajski, ED Litwack and DL Kilpatrick. (2007). Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci 27:6115-27.
- 4. Driller K, A Pagenstecher, M Uhl, H Omran, A Berlis, A Grunder and AE Sippel. (2007). Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 27:3855-3867.
- 5. Hsu Y-C, J Osinski, CE Campbell, ED Litwack, D Wang, S Liu, CJ Bachurski and RM Gronostajski. (2011). Mesenchymal Nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation. Dev Biol 354:242-252.
- 6. Neves L, C Duchala, F Godinho, M Haxhiu, C Colmenares, M WB., C Campbell, K Butz and R Gronostajski. (1999). Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci USA 96:11946-11951.
- 7. Gronostajski RM. (2000). Roles of the NFI/CTF gene family in transcription and development. Gene 249:31-45.
- 8. Messina G, S Biressi, S Monteverde, A Magli, M Cassano, L Perani, E Roncaglia, E Tagliafico, L Starnes, CE Campbell, M Grossi, DJ Goldhamer, RM Gronostajski and G Cossu. (2010). Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell 140:554-66.
- 9. Mason S, M Piper, RM Gronostajski and LJ Richards. (2009). Nuclear factor one transcription factors in CNS development. Mol Neurobiol 39:10-23.
- 10. Heng YHE, RC McLeay, TJ Harvey, AG Smith, G Barry, K Cato, C Plachez, E Little, S Mason, C Dixon, RM Gronostajski, TL Bailey, LJ Richards and M Piper. (2014). NFIX regulates neural progenitor cell differentiation during hippocampal morphogenesis. Cereb Cortex 24:261-279.
- 11. Campbell CE, M Piper, C Plachez, YT Yeh, JS Baizer, JM Osinski, ED Litwack, LJ Richards and RM Gronostajski. (2008). The transcription factor Nfix is essential for normal brain development. BMC Dev Biol 8:52-69.
- 12. Martynoga B, JL Mateo, B Zhou, J Andersen, A Achimastou, N Urban, D van den Berg, D Georgopoulou, S Hadjur, J Wittbrodt, L Ettwiller, M Piper, RM Gronostajski and F Guillemot. (2013). Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 27:1769-86.
- 13. Lee SK, B Lee, EC Ruiz and SL Pfaff. (2005). Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev 19:282-94.
- 14. Kriegstein A and A Alvarez-Buylla. (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149-84.
- 15. Qian X, Q Shen, SK Goderie, W He, A Capela, AA Davis and S Temple. (2000). Timing of CNS cell generation: A programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69-80.
- 16. Temple S. (2001). The development of neural stem cells. Nature 414:112-117.

Page 25 of 51

- 17. Hartline DK and DR Colman. (2007). Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17:R29-R35.
- 18. Hartline DK. (2008). What is myelin? Neuron Glia Biol 4:153-163.
- 19. Zuccaro E and P Arlotta. (2013). The quest for myelin in the adult brain. Nat Cell Biol 15:572-5.
- 20. Sauvageot C. (2002). Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12:244-249.
- 21. Menn B, JM Garcia-Verdugo, C Yaschine, O Gonzalez-Perez, D Rowitch and A Alvarez-Buylla. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907-18.
- 22. Baumann N and D Pham-Dinh. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871-927.
- 23. Guzman R, N Uchida, TM Bliss, D He, KK Christopherson, D Stellwagen, A Capela, J Greve, RC Malenka, ME Moseley, TD Palmer and GK Steinberg. (2007). Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA 104:10211-6.
- 24. Xing YL, PT Roth, JA Stratton, BH Chuang, J Danne, SL Ellis, SW Ng, TJ Kilpatrick and TD Merson. (2014). Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J Neurosci 34:14128-46.
- 25. Ables JL, NA Decarolis, MA Johnson, PD Rivera, Z Gao, DC Cooper, F Radtke, J Hsieh and AJ Eisch. (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 30:10484-92.
- 26. Lagace DC, MC Whitman, MA Noonan, JL Ables, NA DeCarolis, AA Arguello, MH Donovan, SJ Fischer, LA Farnbauch, RD Beech, RJ DiLeone, CA Greer, CD Mandyam and AJ Eisch. (2007). Dynamic contribution of Nestin-expressing stem cells to adult neurogenesis. J Neurosci 27:12623-12629.
- 27. Conti L and E Cattaneo. (2010). Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11:176-87.
- 28. Pacey L, S Stead, J Gleave, K Tomczyk and L Doering. (2006). Neural Stem Cell Culture: Neurosphere generation, microscopical analysis and cryopreservation. Protocol Exchange August.
- 29. Conti L, SM Pollard, T Gorba, E Reitano, M Toselli, G Biella, Y Sun, S Sanzone, Q-L Ying, E Cattaneo and A Smith. (2005). Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283.
- Trapnell C, A Roberts, L Goff, G Pertea, D Kim, DR Kelley, H Pimentel, SL Salzberg, JL Rinn and L Pachter. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562-78.
- 31. Dennis G, BT Sherman, DA Hosack, J Yang, W Gao, HC Lane and RA Lempicki. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3.
- 32. Cahoy JD, B Emery, A Kaushal, LC Foo, JL Zamanian, KS Christopherson, Y Xing, JL Lubischer, PA Krieg, SA Krupenko, WJ Thompson and BA Barres. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264-78.
- 33. Sim FJ, C McClain, S Schanz, TL Protack, MS Windrem and SA Goldman. (2012). CD140a identifies a population of highly myelinogenic, migration-competent, and

efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29:934-941.

- 34. Sim FJ, MS Windrem and SA Goldman. (2009). Fate determination of adult human glial progenitor cells. Neuron Glia Biol 5:45-55.
- 35. Heng YHE, B Zhou, L Harris, T Harvey, AG Smith, E Horne, B Martynoga, J Andersen, A Achimastou, K Cato, LJ Richards, RM Gronostajski, G Yeo, F Guillemot, TL Bailey and M Piper. (2014). NFIX regulates proliferation and migration within the murine SVZ neurogenic niche. Cereb Cortex Epub ahead of print.
- 36. Duan X, E Kang, CY Liu, GL Ming and H Song. (2008). Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18:108-115.
- Agarwal A, D Koppstein, J Rozowsky, A Sboner, L Habegger, LW Hillier, R Sasidharan, V Reinke, RH Waterston and M Gerstein. (2010). Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays. BMC Genomics 11:383.
- 38. Wang L, F Sun and T Chen. (2008). Prioritizing functional modules mediating genetic perturbations and their phenotypic effects: a global strategy. Genome Biol 9:R174.
- 39. Daigle BJ, Jr. and RB Altman. (2008). M-BISON: microarray-based integration of data sources using networks. BMC Bioinf 9:214.
- 40. Spassky N, FT Merkle, N Flames, AD Tramontin, JM Garcia-Verdugo and A Alvarez-Buylla. (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10-8.
- 41. Palmer TD, J Takahashi and FH Gage. (1997). The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389-404.
- 42. Gage FH, PW Coates, TD Palmer, HG Kuhn, LJ Fisher, JO Suhonen, DA Peterson, ST Suhr and J Ray. (1995). Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92:11879-11883.
- 43. Malatesta P, I Appolloni and F Calzolari. (2008). Radial glia and neural stem cells. Cell Tissue Res 331:165-78.
- 44. Liu Y, H-U Bernard and D Apt. (1997). NFI-B3, a novel transcriptional repressor of the Nuclear Factor I family, is generated by alternative RNA processing. J Biol Chem 272:10739-10745.
- 45. Chen C, Z Zhou, M Zhong, Y Zhang, M Li, L Zhang, M Qu, J Yang, Y Wang and Z Yu. (2012). Thyroid hormone promotes neuronal differentiation of embryonic neural stem cells by inhibiting STAT3 signaling through TRalpha1. Stem Cells Dev 21:2667-81.
- 46. Ohori Y, S Yamamoto, M Nagao, M Sugimori, N Yamamoto, K Nakamura and M Nakafuku. (2006). Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 26:11948-60.
- 47. Gonzalez-Perez O and A Alvarez-Buylla. (2011). Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67:147-56.
- 48. Van't Veer A, Y Du, TZ Fischer, DR Boetig, MR Wood and CF Dreyfus. (2009). Brainderived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through trkB and the MAP kinase pathway. J Neurosci Res 87:69-78.
- 49. Kühl NM, J De Keyser, H De Vries and D Hoekstra. (2002). Insulin-like growth factor binding proteins-1 and -2 differentially inhibit rat oligodendrocyte precursor cell survival and differentiation in vitro. J Neurosci Res 69:207-216.
- 50. Fruttiger M, L Karlsson, AC Hall, A Abramsson, AR Calver, H Bostrom, K Willetts, CH Bertold, JK Heath, C Betsholtz and WD Richardson. (1999). Defective oligodendrocyte

development and severe hypomyelination in PDGF-A knockout mice. Development 126:457-467.

- Galvez-Contreras AY, RE Gonzalez-Castaneda, S Luquin and O Gonzalez-Perez. (2012). Role of fibroblast growth factor receptors in astrocytic stem cells. Curr Signal Transduct Ther 7:81-86.
- 52. Kalyani AJ, T Mujtaba and MS Rao. (1999). Expression of EGF receptor and FGF receptor isoforms during neuroepithelial stem cell differentiation. J Neurobiol 38:207-224.
- 53. Modo M, K Mellodew, D Cash, SE Fraser, TJ Meade, J Price and SCR Williams. (2004). Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. NeuroImage 21:311-317.
- 54. Bonaguidi MA, MA Wheeler, JS Shapiro, RP Stadel, GJ Sun, GL Ming and H Song. (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142-55.
- 55. DeCarolis NA, M Mechanic, D Petrik, A Carlton, JL Ables, S Malhotra, R Bachoo, M Götz, DC Lagace and AJ Eisch. (2013). In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus 23:708-719.
- 56. Codega P, V Silva-Vargas, A Paul, Angel R Maldonado-Soto, Annina M DeLeo, E Pastrana and F Doetsch. (2014). Prospective identification and purification of quiescent adult neural stem cells from their In vivo niche. Neuron 82:545-559.
- 57. Copray S, V Balasubramaniyan, J Levenga, J de Bruijn, R Liem and E Boddeke. (2006). Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes. Stem Cells 24:1001-10.
- 58. Wang J, SU Pol, AK Haberman, C Wang, MA O'Bara and FJ Sim. (2014). Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proc Natl Acad Sci USA 111:E2885-94.
- 59. Matsushita H, A Uenaka, T Ono, K Hasegawa, S Sato, F Koizumi, K Nakagawa, M Toda, T Shingo, T Ichikawa, Y Noguchi, T Tamiya, T Furuta, T Kawase, I Date and E Nakayama. (2005). Identification of glioma-specific RFX4-E and -F isoforms and humoral immune response in patients. Cancer Sci 96:801-809.
- 60. Deneen B, R Ho, A Lukaszewicz, CJ Hochstim, RM Gronostajski and DJ Anderson. (2006). The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52:953-68.
- 61. Kang P, Hyun K Lee, Stacey M Glasgow, M Finley, T Donti, Zachary B Gaber, Brett H Graham, Aaron E Foster, Bennett G Novitch, Richard M Gronostajski and B Deneen. (2012). Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74:79-94.
- 62. Glasgow SM, W Zhu, CC Stolt, TW Huang, F Chen, JJ LoTurco, JL Neul, M Wegner, C Mohila and B Deneen. (2014). Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nat Neurosci 17:1322–1329.
- 63. Piper M, G Barry, J Hawkins, S Mason, C Lindwall, E Little, A Sarkar, AG Smith, RX Moldrich, GM Boyle, S Tole, RM Gronostajski, TL Bailey and LJ Richards. (2010). NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1. J Neurosci 30:9127-39.
- 64. Fletcher CF, NA Jenkins, NG Copeland, AZ Chaudhry and RM Gronostajski. (1999). Exon structure of the Nuclear Factor I DNA-binding domain from C. elegans to mammals. Mamm Genome 10:390-396.

- 65. Malan V, D Rajan, S Thomas, AC Shaw, H Louis Dit Picard, V Layet, M Till, A van Haeringen, G Mortier, S Nampoothiri, S Puseljic, L Legeai-Mallet, NP Carter, M Vekemans, A Munnich, RC Hennekam, L Colleaux and V Cormier-Daire. (2010). Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay engender either a Sotos-like or a Marshall-Smith syndrome. Am J Hum Genet 87:189-98.
- 66. Priolo M, E Grosso, C Mammì, C Labate, V Naretto, C Vacalebre, P Caridi and C Laganà. (2012). A peculiar mutation in the DNA-binding/dimerization domain of NFIX causes Sotos-like overgrowth syndrome: A new case. Gene 511:103-105.
- 67. Yoneda Y, H Saitsu, M Touyama, Y Makita, A Miyamoto, K Hamada, N Kurotaki, H Tomita, K Nishiyama, Y Tsurusaki, H Doi, N Miyake, K Ogata, K Naritomi and N Matsumoto. (2012). Missense mutations in the DNA-binding/dimerization domain of NFIX cause Sotos-like features. J Hum Genet 57:207-11.
- 68. Genovesi LA, CG Ng, MJ Davis, M Remke, MD Taylor, DJ Adams, AG Rust, JM Ward, KH Ban, NA Jenkins, NG Copeland and BJ Wainwright. (2013). Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups. Proc Natl Acad Sci USA 110:E4325-34.
- 69. Nakamura T. (2005). Retroviral insertional mutagenesis identifies oncogene cooperation. Cancer Sci 96:7-12.
- 70. Liu C, Jonathan C Sage, Michael R Miller, Roel GW Verhaak, S Hippenmeyer, H Vogel, O Foreman, Roderick T Bronson, A Nishiyama, L Luo and H Zong. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209-221.
- 71. Sassi F, A Brunetto, G Schwartsmann, R Roesler and A Abujamra. (2012). Glioma revisited: from neurogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol 2012:537861.

Figure Legends

Fig. 1. Expression of NFIX in differentiated lineages of cultured NSCs *in vitro*. WT NSCs were cultured in differentiation conditions for 4 days and stained for differentiation markers and NFIX. A) All GFAP+ (green cytoplasm) astrocytes express

Page 31 of 51

NFIX (purple nuclei, white arrowheads). C) Most TUJ1+ neurons (green cytoplasm) show no NFIX staining (cvan nuclei, vellow arrows), while some TUJ1+ cells are NFIX+ (white nuclei, cyan arrowhead) Most TUJ1- cells are NFIX+ (purple nuclei, white arrowheads). E-E") O4+ OLs (green nuclei and cytoplasm) are NFIX- (blue nuclei in E, yellow arrows), while most O4- cells are NFIX+ (purple nuclei, white arrowheads). E' & E") O4 and NFIX channels, respectively from E. G, I and K) NFIX (red) and DAPI (blue) combined with OLIG2 (green, G), SOX10 (green, I), or MBP (green, K), respectively. Most OLIG2+ cells, all SOX10+ and all MBP+ cells are uniformly NFIX- (cyan nuclei, yellow arrows in G, I & K). Most OLIG2-, SOX10- and MBP- cells are NFIX+ (purple nuclei, white arrowheads in G, I & K). G', I' & K') NFIX staining (red) channels from G, I & K, respectively. B, D, F, J & L) Quantification of the percentage of NFIX+ cells that are GFAP+ vs. GFAP-, TUJ1+ vs. TUJ1-, O4+ vs. O4-, OLIG2+ vs. OLIG2-, SOX10+ vs. SOX10- and MBP+ vs. MBP-, respectively. H) Quantification of the percentage of OLIG2+ vs. OLIG2- cells that stained strongly for NFIX. Student's t-test was performed. n=3, > 300 cells per sample were analyzed (Scale bars: 50 μ m). $\star\star p$ < 0.001.

Fig. 2. *Nfix^{-/-}* NSCs generate a higher percentage of OL-lineage cells than do WT NSCs.

Primary WT and *Nfix^{-/-}* NSCs were cultured in differentiation conditions for 4 days and stained with anti-O4 (red, A & B) or anti-SOX10 antibodies (red, E & F) and counterstained with DAPI (blue, A, B, E & F). C, D, G & H) Quantification of the percentage of O4+, TUJ1+, SOX10+ and GFAP+ cells in WT and *Nfix^{-/-}* monolayer cultures, respectively. For C, n=7, > 5000 cells per sample were analyzed. For D, G & H, n=3, > 500 cells per sample were analyzed. Scale bars are 50µm. Student's t-test was applied. ***p* < 0.005. N.S., not significant.

Gronostajski, RM Fig. 3 top

Fig. 3. Forced expression of NFIX in *Nfix^{-/-}* NSCs represses ODG.

Proliferating *Nfix^{-/-}* NSCs were electroporated with either control IRES-GFP (GFP) or NFIX-IRES-GFP (NFIX) vectors, placed in differentiation conditions for 0 (D0), 2 (D2) or 4 (D4) days and stained for GFP, NFIX and the indicated markers. A-A') Cells expressing the NFIX-IRES-GFP vector stained for GFP (A, green) and NFIX (A', blue) after 4 days of differentiation. Note that some GFP+ cells showed strong NFIX staining (NFIX-high, cyan arrows), some showed weaker staining (NFIX-low, white arrowheads) and some were NFIX- (yellow arrowheads). The boxes in the upper right quadrant of

each panel are magnified views of the small white boxes. B-B") Cells expressing the NFIX-IRES-GFP vector after 4 days of differentiation were stained for SOX10 (B, red, yellow arrows) and NFIX (B', blue, white arrowheads). B" shows a merged image showing mutually exclusive SOX10 (yellow arrows) and NFIX (white arrowheads) expression. C, D, E & F) The percentage of GFP+ cells that differentiated into SOX10+, O4+, TUJ1+ and GFAP+ cells in cultures expressing the control GFP vector (white bars) or the NFIX-IRES-GFP vector (black bars), respectively. G) In NFIX-IRES-GFP expressing cultures a lower percentage of NFIX-high cells (black bars) and NFIX-low cells (gray bars) differentiate into SOX10+ cells compared to NFIX- cells (white bars) in the same cultures. H, I & J) The percentage of NFIX+ cells (black bars) vs. NFIX- cells (white bars) that differentiated into O4+, TUJ1+ and GFAP+ cells, respectively, in NFIX-IRES-GFP expressing cultures. n=3, > 2000 cells/sample were analyzed for SOX10 staining, > 500 cells/sample for other staining. Scale bars in A and B = 50 μ m, in magnified box in A = 10 μ m. Student's t-test was applied. *p < 0.05, **p < 0.005.

Fig. 4. *Nfix*^{-/-} brains have increased transcript levels of OPC and OL marker genes. Brains of WT and *Nfix*^{-/-} mice were dissected at postnatal days 6 (P6), 8 (P8) or 10 (P10), the olfactory bulbs and cerebella were removed and RNA was prepared and subjected to reverse transcription. A-C) qPCR analysis of relative transcript levels of *Olig2* (A), *Sox10* (B) and *Mbp* (C) in WT (white bars) and *Nfix*^{-/-} (black bars) brains. Note significantly increased expression of *Olig2*, *Sox10* and *Mbp* at both P8 and P10 in *Nfix*^{-/-} brains. n=3. p-value determined by t-test. ******p* < 0.01, *******p* < 0.05. N.S., not significant.

Fig. 5. Deletion of *Nfix in vivo* results in increased commitment of SVZ-derived NSCs into OL-lineage cells in the corpus callosum.

Mice containing Nestin-CreERT2 and Rosa26 flox-stopped EYFP alleles that were either *Nfix*^{+/+} (WT) or homozygous for a floxed *Nfix* allele (iKO) were injected with tamoxifen at 1 month of age and sacrificed at 1, 2 and 3 months of after injection (1m-3m, respectively). Brains were fixed and stained for OLIG2, EYFP and DAPI. A) Diagram showing recombination in Nestin+ cells in *Nfix* iKO mice after tamoxifen (TAM) injection yielding *Nfix*⁻ allele and active EYFP reporter. B) Diagram of time course for TAM-induced deletion of NFIX in Nestin+ cells in 1 month old *Nfix* iKO mice and control mice. C) EYFP (green), OLIG2 (red) and DAPI (blue) staining of WT and *Nfix* iKO CC 2month after TAM injection. C1&5) Combined EYFP, OLIG2 and DAPI staining. White arrows in C5 show co-staining of EYFP and Olig2 in iKO brains. Far fewer of such double-positive cells were detected in WT brains (C1). C2 & C6 show OLIG2 staining

alone, C3 & C7 show EYFP staining alone and C4 & C8 show DAPI staining alone. Scale bar in C4 & C8 = 50 μ m. D) Quantification showing a higher percentage of OLIG2+/EYFP+ cells in *Nfix* iKO (black bars) vs. WT CC (white bars) at 1-3 months post injection. T-test, n=3. **p* < 0.05, ***p* < 0.01.

Fig. 6. Genes differentially expressed in *Nfix^{-/-}* NSCs show enrichment in specific GO terms, NFI binding sites and genes differentially expressed in OPCs.

WT and *Nfix^{-/-}* NSCs were cultured for 10 days then harvested and RNA was prepared and subjected to RNA-seq analysis. A) Venn diagram showing that genes up-regulated and down-regulated upon loss of NFIX are significantly enriched for NFI-binding sites identified previously by ChIP-seq on the NS5 cell line [12]. B) List of ODG-related transcription factors and their expression fold change and False Discovery Rate (FDR) in *Nfix^{-/-}* vs. WT NSCs from RNA-seq data. FDR < 5% is considered significant. C & D) GO classes of genes down-regulated and up-regulated in *Nfix^{-/-}* cultured NSCs compared to WT controls, respectively. E-G) The rank order of genes differentially expressed in *Nfix^{-/-}* vs. WT NSCs was compared to lists of OPC-differentially expressed genes in three human and mouse data sets using Receiver Operator Characteristic (ROC) analysis. ROC curves show that genes differentially expressed in mouse P16 PDGF α R⁺ OPCs (E)[32], human fetal PDGF α R⁺ OPCs (F)[34] and human adult A2B5⁺ OPCs (G)[33] were also differentially expressed in *Nfix^{-/-}* cultured NSCs vs. WT NSCs. Deviation of the line above the diagonal indicates co-enrichment of the same set of genes in the two populations. AUC is Area Under Curve, pAUC is the area under the curve from 0-0.2 and is positive at values >0.02, *p*-values of <0.05 are statistically significant. Stem Cells and Development Loss of NFIX transcription factor biases postnatal neural stem/progenitor cells towards oligodendrogenesis. (doi: 10.1089/scd.2015.0136) This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Gronostajski, RM Suppl. Fig. 1 top

Supplemental Fig. 1. NFIX is expressed in most neural stem and progenitor cells,

few mature astrocytes and neurons, and no OLs or OPCs in postnatal DG.

Postnatal day 12 brains were fixed, sectioned and the DG was stained for the indicated markers. A-A") Panel A is a merged overview showing NFIX (green), GFAP (red) S100B (blue) and DAPI (white) staining and panels. White arrow shows an NFIX+, GFAP+, S100B- NSC, shown in greater detail in A'. White arrowhead shows an NFIX-, GFAP+, S100B- NSC, shown in greater detail in A". Yellow arrowhead shows a NFIX-, GFAP+, S100B+ mature astrocyte, shown in greater detail in A". Individual cells were identified by analysis of Z-stacks of confocal images. The expanded panels A'-A'" show, left: GFAP (red)+DAPI (white), center: NFIX (green), right: GFAP (red)+S100B (blue). NFIX is expressed in most NSCs (GFAP+S100B-, white arrow in A and A', 46/71), but few mature astrocytes (GFAP+S100B+, yellow arrowhead in A and A". 5/93) in the DG. Some NSCs are NFIX- (GFAP+S100B-, white arrowhead in A and A"). B-B") Panel B is a merged overview showing NFIX (green) DCX (red), Ki67 (blue) and DAPI (white) staining and panels B'-B" are expanded regions denoted by the arrows in B-B'". The three expanded panels in B'-B'" show the following, left: DCX (red)+DAPI (white), center: NFIX (green), right: DCX (red)+Ki67 (blue). NFIX is expressed in most transitory amplifying cells (Ki67+DCX-, white arrow in B and B', 72/74), neuroblasts (Ki67+DCX+, yellow arrow in B and B", 90/91) and all immature neurons (Ki67-DCX+, cvan arrow in B and B", 74/74). C-C") Panel C is a merged overview and panels C' & C" are expanded regions denoted by the arrows in C-C". The three expanded panels in C' & C' show the following, left: NeuN (red), center: NFIX (green), right: DAPI (blue). Mature neurons (NEUN+) show either no (yellow arrowhead in C and C', 23/90) or very weak (yellow arrow in C and C") NFIX expression. D-D') Panel D is a merged overview of the expanded region shown in D' showing staining for NFIX (green), SOX10 (red) and DAPI (blue). The three expanded panels in D' show the following, left: SOX10 (red),

center: NFIX (green), right: DAPI (blue). No SOX10+ (red) OLs or OPCs express NFIX (yellow arrowhead in D and D', purple nuclei, 0/53). Cyan nuclei in D are NFIX+ and DAPI+ but SOX10-. E) Quantification of cells of P12 DG stained for NFIX and the indicated markers of neural stem cells, astrocytes, transient amplifying progenitors, neuroblasts, immature neurons, mature neurons and OLs/OPCs. n=3. Scale bars are 50μ m in A, B, C & D and 10μ m in other panels.

Gronostajski, RM Suppl. Fig. 2 top

Supplemental Fig. 2. NFIX is not expressed in SOX10+ cells in postnatal SVZ, CC or cortex.

Postnatal day 12 brains were fixed, sectioned and the SVZ (A-A'), CC (B-C) and cortex

(D-E) were triple-stained for NFIX (green), SOX10 (red) and total DNA (DAPI, blue).

The three panels of A' are an expanded region denoted by the yellow arrowhead in A

Stem Cells and Development Loss of NFIX transcription factor biases postnatal neural stem/progenitor cells towards oligodendrogenesis. (doi: 10.1089/scd.2015.0136) n peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. This article has been peer-reviewed and

and showing the following, left: SOX10 (red), center: NFIX (green) and right: DAPI (blue) staining. Yellow arrowhead in A' shows SOX10+, NFIX- nucleus. B & D) Overview of NFIX (green)/SOX10 (red) /DAPI (blue) triple-staining in the CC and cortex, respectively. C & E are expanded views of the white squares shown in B & D, respectively. NFIX is not expressed in SOX10+ cells in postnatal CC (C yellow arrowhead, purple nuclei) or cortex (E, yellow arrowhead, purple nuclei). All SOX10+ cells are NFIX-. Scale bars are 10µm in A' and 50µm in other panels.

Difference (04)

Supplemental Fig. 3. A higher percentage of differentiated neurospheres from *Nfix^{-/-}* brains contain OLs than do neurospheres from WT brains.

WT and *Nfix*^{-/-} P10 brains were dissected and neurospheres were expanded and placed in differentiation condition for 4 days. A-C) Examples of GFAP (green), Tuj1 (red) and O4 (cyan) expressing cells at the edge of neurospheres labeling astrocytes, neurons and OLs, respectively. D) A differentiated neurosphere containing all 3 cell types. Scale bars are 100µm in D and 20µm in other panels). E) Quantification of the percentage of neurospheres containing O4+ cells from WT vs. *Nfix*^{-/-} brains. F) Quantification of the percentage of neurospheres containing TUJ1+ cells between WT vs. *Nfix*^{-/-} brains. Neurospheres with >10 TUJ1+ or O4+ cells were counted as TUJ1+ or O4+

neurospheres, respectively. n=4, >100 neurospheres per sample were analyzed by

student t-test. *****p < 0.05. N.S., not significant.

Supplemental Fig. 4. Forced expression of NFIX represses ODG and proliferation of NSCs while expression of GFP has no effect on these processes.

A-C) Proliferating *Nfix^{-/-}* NSCs were electroporated with either a control IRES-GFP vector (GFP) or an NFIX-IRES-GFP vector expressing both GFP and NFIX (NFIX) then placed in differentiation conditions for 0 (D0), 2 (D2) or 4 (D4) days and stained for SOX10 (A & B) or O4 (C). A) No difference was seen in the percentage of SOX10+ cells between GFP- (white bars) and GFP+ (black bars) cells in cultures electroporated with the control GFP vector. B & C) A significantly higher percentage of GFP- cells (white bars) differentiate into SOX10+ (B) or O4+ cells (C) compared to GFP+ cells (black bars) in NFIX-IRES-GFP-electroporated cultures. D) Proliferating *Nfix^{-/-}* NSCs were electroporated with either a control IRES-GFP vector (GFP) or an NFIX-IRES-GFP vector expressing both GFP and NFIX (NFIX) and maintained in proliferation conditions for 1 (P1), 3 (P3) or 5 (P5) days and stained for the proliferation marker Ki67. Ki67 staining is reduced in NFIX-IRES-GFP-electroporated cells (black bars) vs. IRES-GFP-electroporated cells (black bars) vs. IRE

Stem Cells and Development Loss of NFIX transcription factor biases postnatal neural stem/progenitor cells towards oligodendrogenesis. (doi: 10.1089/scd.2015.0136) This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Supplemental Fig. 5. QPCR validation of expression levels of genes showing significant change by RNA-seq.

A & B) QPCR verification of transcript levels of 9/9 of genes shown to be up-regulated (A) and 5/5 of genes shown to be down-regulated (B) by RNA-seq using the same samples as used in the RNA-seq analysis. C & D) QPCR verification of transcript levels in 9/9 of genes shown to be up-regulated (C) and 5/5 of genes shown to be down-regulated (D) in RNA-seq data but using independent RNA samples from NSCs derived from inbred C57BI/6 WT and *Nfix*^{-/-} mice. T-test, n=3. *p < 0.05, **p < 0.01.

Supplemental Fig. 6. Genes differentially expressed in OLs vs. whole brain are not differentially expressed in *Nfix^{-/-}* vs. WT RNA-seq data.

A & B) ROC curves showing that genes differentially expressed in mouse MOG^+ (A) and $GalC^+$ (B) OLs in P16 mouse forebrain are not differentially expressed in *Nfix*^{-/-} vs. WT NSCs. The RNA-seq list from Cufflinks was first sorted from high to low by the Log2 FC (fold change) value. The list was then compared to the sorted gene lists from known OL gene sets to generate ROC curves.

Supplemental Table 1. List of antibodies.

Supplemental Table 2. List of qPCR primer sets. F for forward, R for reverse.

Supplemental Table 3. List of all genes showing significant fold change in expression between *Nfix^{-/-}* vs. WT NSCs based on Cuffdiff result from RNA-seq analysis. FDR (False Discovery Rate, q_value) < 5% considered significant.

Antigen	Host	Isoform	Company	Catalog #	Dilution
NFIX	rabbit	IgG	Abcam	ab101341	1:500
NFIX	rabbit	IgG	Thermo Scientific	PA5-30897	1:500
Ki67	mouse	IgG1	BD Biosciences	550609	1:200
Nestin	mouse	IgG1	BD Biosciences	556309	1:400
GFAP	chicken	IgY	Abcam	ab4674	1:200
S100b	mouse	IgG1	Sigma-Aldrich	SAB1402349	1:1000
DCX	goat	IgG	Santa Cruz Biotechnology	sc-8066	1:400
Tuj1	mouse	IgG2a	Covance	MMS-435P	1:600
SOX10	goat	IgG	Santa Cruz Biotechnology	sc-17342	1:100
04	mouse	IgM	R&D Systems	MAB1326	1:100
EYFP	rabbit	IgG	Life Technologies	A11122	1:400
EYFP	chicken	IgY	Aves Labs	GFP-1020	1:1000
NeuN	mouse	IgG1	EMD Millipore	MAB377	1:10
NeuN	chicken	IgY	Aves Labs	NUN	1:20
MBP	chicken	IgY	Aves Labs	MBP	1:500
Olig2	mouse	IgG2a	EMD Millipore	MABN50	1:600

MBP-F	CCCAAGATGAAAACCCAGTAG
MBP-R	CCCTTGTGAGCCGATTTATAG
SOX10-F	CAGGCGGCACGCAGAAAGCTA
SOX10-R	CCCTGGGCTGCCTTCCCGTT
PDGFRa-F	TCACCATTTCTGTCCACGAG
PDGFRa-R	GCCCGGATCAGCTTTAATTTG
Olig2-F	CTCCGCAGCGAGCACCTCAA
Olig2-R	TCGGCGTGGACGAGGACACA
Zim1-F	CCCAGATTAAGTTTGTTCCCTG
Zim1-R	GCTGGTTTGCTGTCTGATC
Fgf5-F	GCTCGGAACATAGCAGTTTC
Fgf5-R	TCCTCGTATTCCTACAATCCC
Bmp6-F	CTTCAGACTACAACGGCAG
Bmp6-R	CAAGGTCTGTACAATGGCG
Bcl2l1-F	GAAAGCGTAGACAAGGAGATG
Bcl2l1-R	CCGTAGAGATCCACAAAAGTG
En2-F	ACTCGGACAGCTCTCAAG
En2-R	CCGCTTGTCCTCTTTGTTAG
Sox7-F	GGACAAGAGTTCGGAAAGC
Sox7-R	TCATCCACATAGGGTCTCTTC
Olfr618-F	GGAGGAACATCATTCGTCACTC
Olfr618-R	CGTCGAGCATTTTGAGACGGG
Etnk2-F	CGGGAGAATGAGGTCAGAAAC
Etnk2-R	TGGATGGTGTGAATCTTAGCC
Nr4a3-F	CATCATCTGGGGGAAGGCACA
Nr4a3-FR	CATCGGTTTCGGCGTCTCT
Hlf-F	TTTGACCCTCGCAAACGGA
Hlf-R	CATGTTGTTCTTTCTGCGCCT
Fgl2-F	ACGCTCCATCTGGTAAATATGA
Fgl2-R	CTAGCACGTAGTGGTCGGAA
Nrxn3-F	TCTTCCTTGCTTTTCTCCCC
Nrxn3-R	GTCTACCTCTTCCCCTGTTTG
Bcan-F	CACACGAAGGAGTTGGGAG
Bcan-R	GGTTCCAGTTTTCATAGAGCAG
Col22a1-F	CAGGAAACCCAGGAGAAAGAG
Col22a1-R	TTTGCCTTCTGTCCCCTC
Ccl20-F	TCTGCTCTTCCTTGCTTTGG
Ccl20-R	TTCATCGGCCATCTGTCTTG
Gldn-F	AGAGACTTTTGGGACTTGGATG
Gldn-R	TGGAAATAATGTGGGAGGTGG
Car9-F	TGCAGGAGAGCCCAGAAGAA
Car9-R	AACACAGTCCAGATGACCCC
Illrll-F	CACACCATAAGGCTGAGAAGG

Il1rl1-R	TCGTTCCGGGTTTTGTAAGG
Gzme-F	TTGTCTCCTTTGCTCTCCTTC
Gzme-R	GCCTCCACAGTATCTCCTATTAC
Npffr2-F	TGGCGGTTCTTTCTCATCCTC
Npffr2-R	TGAGTCCCATTTCTCGCTCA
Wnt8b-F	CCGTGTGCGTTCTTCTAGTC
Wnt8b-R	CAACGGTCCCAAGCAAACTG
Neurog2-F	CTGGAGCCGCGTAGGATG
Neurog2-R	CCTCGTCCTCCTCGT
Crb3-F	CACAAATAGCACAACTCAACCC
Crb3-R	ATGAGCAGAAACAGTCCCAC
Nhedc2-F	TCCTGATGGTGTGTTTCGCT
Nhedc2-R	GCTTCTCTCCGTGGGATCTT

S												
hi	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value sign
T,	ENSMUSG0000018927	Ccl6	chr11:83395557-83437195	WT	КО	OK	87.6346	3.07538	-4.83266	13.7994	0	0 yes
8	ENSMUSG0000047501	Cldn4	chr5:135420995-135422804	WT	ко	ОК	4.62784	0.232125	-4.31737	5,74647	9.11E-09	1.07E-06 ves
0	ENSMUSG0000068428	Gm606	chr16:26957321-26990060	WT	KO	OK	4 80372	0 25105	-4 2581	8 05861	6 66E-16	2 68E-13 ves
τ <u>μ</u>	ENSMUSC00000023006	Cldn6	chr17:22816221-22810412	W/T	KO	OK	1 04614	0.0547416	-4 25620	3 00201	0.002 10	0.0452060 yes
r.		The	chi17.25810551-25815415	VV T	KO	OK	1.04014	0.0347410	-4.25025	0.03304	0.00138110	0.0452505 yes
Ť.	ENSIVIUSGUUUUUUUUUUU		01118:20/105/4-20832825	VV I	KU	UK	99.8897	5.01000	-4.15255	8.37119	0	U yes
Ē	ENSMUSG0000017002	Slpi	chr2:164179805-164214831	WT	ко	OK	11.8006	0.688123	-4.10005	6.22559	4.80E-10	7.49E-08 yes
d G	ENSMUSG0000049382	Krt8	chr15:101827141-101834773	WT	ко	ОК	7.2322	0.427967	-4.07886	6.31535	2.70E-10	4.42E-08 yes
21 S	ENSMUSG0000005800	Mmp8	chr9:7558428-7568486	WT	ко	OK	1.57797	0.0949919	-4.05412	4.77648	1.78E-06	0.00012466 yes
13 0	ENSMUSG0000023043	Krt18	chr15:101858646-101862457	WT	КО	OK	13.2529	0.941022	-3.81594	6.58213	4.64E-11	9.05E-09 yes
ъ. п	ENSMUSG0000041380	Htr2c	chrX:143397055-143631820	WT	ко	OK	0.375176	0.0268206	-3.80615	3.06622	0.00216787	0.0485377 yes
<u>–</u> <u>–</u>	ENSMUSG0000025481	1190003J15Rik	chr7:148020916-148023865	WT	ко	ОК	4,70672	0.369746	-3.67012	4,76584	1.88F-06	0.00013073 ves
<u> </u>	ENSMUSG0000027399	1150005515101	chr2:129123105-129135708	WT	KO	OK	1 26332	0.0992853	-3 66949	3 9/113	8 11E-05	0.00346217 yes
S	ENSMUSC0000027355	Gib2	chr14:57717426-57722520	W/T	KO	OK	0 810760	0.0332633	-2 51785	2 57078	0.0025502	0.0116016 yes
. S 9		0,02	chi14.57717450-577255555	VV T	KO	OK	0.019709	0.0713071	-3.31783	3.37078	0.000333333	1.025.12 yes
< S'	ENSMUSG0000017723	WTOC2	cnr2:164387912-164394010	VV I	KO	OK	25.102	2.58275	-3.28082	7.82157	5.11E-15	1.83E-12 yes
<u>6</u> 2	ENSMUSG00000079293	Clec7a	chr6:129411610-129422790	WT	ко	OK	5.22456	0.560638	-3.22017	5.37405	7.70E-08	7.46E-06 yes
S S	ENSMUSG0000029646	Cdx2	chr5:148112475-148118825	WT	ко	OK	1.01242	0.109913	-3.20337	3.63358	0.00027951	0.0096142 yes
Ols S	ENSMUSG0000029337	Fgf5	chr5:98683202-98706049	WT	КО	OK	0.866058	0.105872	-3.03214	3.70439	0.0002119	0.00779331 yes
<u>_:</u> =	ENSMUSG0000022157	Mcpt8	chr14:56701002-56704053	WT	ко	OK	8.43875	1.04574	-3.01251	4.83171	1.35E-06	9.88E-05 yes
਼ੁਰੂ	ENSMUSG0000063011	Msin	chr17:25885558-25891272	WT	ко	ОК	9,7836	1.23443	-2.98652	5.57223	2.51E-08	2.69E-06 ves
	ENSMUSG0000031927	1700012B09Rik	chr9:14562643-14575474	WT	ко	OK	5 15727	0.662376	-2 96089	4 06284	4 85E-05	0.00221953 ves
. <u>;;</u>		Noffe 2	share-2005 (452,0001,2705	VA/T	KO	01	1.04615	0.002570	2.50005	2 22177	4.052 05	0.00221000 yes
JC IS	EINSIVIOSG00000035528	Nphrz	0115:89956453-90012765	VV I	KU	UK	1.04615	0.138	-2.92234	3.331//	0.00086297	0.024378 yes
Ľ,∃	ENSMUSG0000026981	ll1rn	chr2:24192372-24207014	WI	ко	OK	7.36616	0.973964	-2.91897	6.81047	9.73E-12	2.05E-09 yes
S.T.	ENSMUSG0000029843	Slc13a4	chr6:35217956-35258131	WT	ко	OK	0.709552	0.0943754	-2.91043	3.63603	0.00027687	0.009548 yes
JG 21.	ENSMUSG0000002289	Angptl4	chr17:33910701-33918520	WT	КО	OK	2.66351	0.359188	-2.89052	4.62629	3.72E-06	0.00023763 yes
Ц	ENSMUSG0000015354	Pcolce2	chr9:95519329-95598515	WT	ко	OK	20.7323	2.87783	-2.84882	6.49783	8.15E-11	1.46E-08 yes
<u> </u>	ENSMUSG0000029082	Bst1	chr5:44135854-44234510	WT	ко	ОК	3,92759	0.549049	-2.83864	3,77796	0.00015812	0.005964 ves
54	ENSMUSG0000041607	Mbn	chr18-82644537-82755029	WT	KO	OK	6 26881	0 88/212	-2 82573	7 36684	1 75F-13	5.40F-11 ves
ö.9	ENSMUS C000000 2117	E2200120040	chr10:6020501 60228162	W/T	KO	OK	1 40625	0.004212	2.02575	2 66022	0.00025101	0.000000464 yes
부러		E350015P04NIK	clii 19.00220391-00238103	VV I	KO	OK	1.40055	0.200432	-2.70621	3.00032	0.00025191	0.00882404 yes
ĕĕ	ENSMUSG0000061048	Cdh3	chr8:109034790-109080808	WI	KO	OK	0.543296	0.0797859	-2./6/53	3.30344	0.00095506	0.0263576 yes
ΞÉ	ENSMUSG0000049493	Pls1	chr9:95653060-95745730	WT	ко	OK	6.90254	1.06834	-2.69175	4.83716	1.32E-06	9.66E-05 yes
σg	ENSMUSG0000025804	Ccr1	chr9:123876958-123883525	WT	ко	OK	0.72956	0.118902	-2.61726	3.22813	0.001246	0.0325544 yes
50	ENSMUSG0000030109	Slc6a12	chr6:121293093-121315793	WT	ко	ОК	7.83295	1.27992	-2.6135	6.17495	6.62E-10	1.00E-07 ves
Et.	ENSMUSG0000074227	Snint2	chr7:30041349-30066996	WT	ко	OK	19 8168	3 26894	-2 59983	6 91323	4 74F-12	1 10F-09 ves
60	ENSMUSC0000028228	Ato6v0d2	chr4:10802087-10840752	W/T	KO	OK	2 76502	0.458162	-2 50227	2 12297	0.00172518	0.0412707 yes
S Ĕ		Kenah1	chr2.c4012205_C5182145	VV T	KO	OK	2.70303	0.458102	-2.55557	5.15587	2 115 11	C 255 00 yes
- <u>5</u> - <u>4</u>	ENSIVIUSG0000027827	KCNADI	CNF3:64913305-65182145	VV I	ко	OK	2.78197	0.464285	-2.58303	6.6414	3.11E-11	6.25E-09 yes
r da t	ENSMUSG0000058743	Kcnj14	chr7:53071836-53080117	WT	ко	ОК	1.24096	0.207995	-2.57683	3.68803	0.000226	0.0081538 yes
a s a	ENSMUSG0000022949	Clic6	chr16:92478987-92541488	WT	KO	OK	4.61433	0.782686	-2.55962	4.33074	1.49E-05	0.00078298 yes
e e m	ENSMUSG0000001497	Pax9	chr12:57790904-58298459	WT	ко	OK	0.64204	0.1096	-2.55042	3.4443	0.00057254	0.0172373 yes
E t E	ENSMUSG0000012889	Podnl1	chr8:86649887-86656426	WT	КО	OK	1.69634	0.290099	-2.54781	5.38475	7.25E-08	7.13E-06 yes
ensi:∃	ENSMUSG0000052396	Mogat2	chr7:106367593-106387129	WT	ко	ОК	1.36209	0.238375	-2.51452	3.2205	0.00127966	0.0331189 ves
die K	ENSMUSC0000022622	Clec18a	chr8.112502207-112605088	\A/T	KO	OK	1 07222	0 1822/0	-2 /19020	2 10797	0.00188441	0.0427401 yes
803			clii8.113333337-113003388	VV I	KO	OK	1.02555	0.162249	-2.40929	5.10787	0.00188441	0.0457401 yes
5 H S	ENSI/105G0000091444	AL60/12/.1	CNF11:96325906-96620791	WI	ко	OK	6.15837	1.16977	-2.39633	6.34237	2.26E-10	3.75E-08 yes
りがな	ENSMUSG0000025504	Eps8I2	chr7:148524778-148551009	WT	ко	OK	5.10162	0.978393	-2.38247	3.97185	7.13E-05	0.00310454 yes
Ξ·Ξ Σ	ENSMUSG0000004885	Crabp2	chr3:87752587-87757298	WT	ко	OK	4.4557	0.866866	-2.36177	3.62749	0.00028619	0.00976799 yes
<u>e</u> e	ENSMUSG0000026686	Lmx1a	chr1:169619369-169778872	WT	КО	OK	1.15101	0.225946	-2.34885	3.37608	0.00073526	0.021411 yes
<u> 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>	ENSMUSG0000063767	S100a7a	chr3:90458223-90462052	WT	ко	ОК	6.3489	1.24794	-2.34695	3.66754	0.0002449	0.00864757 ves
SUL	ENSMUSG0000026327	Serninh11	chr1:109258505-109277052	WT	KO	OK	2 03891	0 403202	-2 33822	3 73382	0.0001886	0.00705347 ves
≓್ರೆ	ENSIN 0500000020327	Cdb17	chr4:116952000 105277052	W/T	KO	OK	1 21770	0.2607202	2.33022	2 60260	0.0001000	0.00705547 yes
ਨੋਰੇਰ	EN3W03G0000028217	Cull17	child.11083295-11743042	VV I	KO	OK	1.51/76	0.200729	-2.55749	3.00309	0.00051373	0.0103991 yes
⊂ H n	ENSI/105G0000022156	Gzme	CNF14:56/36455-56/39468	WI	ко	OK	2.51894	0.499075	-2.33549	3.13867	0.00169714	0.0408015 yes
E ž O	ENSMUSG0000074934	Grem1	chr2:113586320-113598803	WT	ко	ОК	37.2428	7.58396	-2.29594	6.57443	4.88E-11	9.40E-09 yes
<u>5</u> <u>-</u>	ENSMUSG0000020836	Coro6	chr11:77275912-77283986	WT	КО	OK	4.22048	0.867791	-2.28199	4.07149	4.67E-05	0.00215349 yes
See	ENSMUSG0000071713	Csf2rb	chr15:78156419-78184277	WT	КО	OK	1.47266	0.312796	-2.23513	3.81795	0.00013457	0.00522402 yes
~ = >	ENSMUSG0000039419	Cntnap2	chr6:45010059-47251368	WT	КО	OK	29.3235	6.31661	-2.21483	6.1918	5.95E-10	9.18E-08 yes
as le	ENSMUSG0000032128	Roho3	chr9.37223253-37240760	WT	ко	OK	2 34071	0 505664	-2 2107	3 56538	0.00036333	0.0117656 yes
p;u	ENSMUSG0000016283	H2-M2	chr17:37617795-37620497	WT	KO	OK	5 18381	1 13629	-2 18968	5 81214	6 17E-09	7 58F-07 ves
tial		112-1012	chi17.37017733-37020437	NV T	KO	01	3.10301	1.13023	-2.18508	5.81214	0.172-03	1.38E-07 yes
at at	ENSI/105G0000026069	11111	cnr1:40496620-40522241	WI	ко	OK	1.86095	0.409387	-2.1845	6.11219	9.83E-10	1.43E-07 yes
<u>ä-D</u>	ENSMUSG0000028463	Car9	chr4:4351/299-43526601	WI	KO	OK	14.1786	3.13/15	-2.1/619	6.15948	7.30E-10	1.09E-07 yes
n, st	ENSMUSG0000027460	Angpt4	chr2:151736942-151771073	WT	ко	ОК	3.41353	0.755903	-2.17499	3.86635	0.00011048	0.00441813 yes
00	ENSMUSG0000032346	Ooep	chr9:78223915-78226532	WT	КО	OK	1.79108	0.39934	-2.16514	3.09115	0.00199385	0.0454827 yes
Ξ	ENSMUSG0000026166	Ccl20	chr1:83113340-83115742	WT	ко	OK	3.40215	0.764216	-2.15439	3.10886	0.00187813	0.0436707 yes
S S	ENSMUSG0000069792	Gm11428	chr11:83517492-83519770	WT	ко	ОК	18.8325	4.24812	-2.14833	4.02685	5.65F-05	0.00252701 ves
S:II	ENSMUSG0000070780	Rhm47	chr5:66407787-66566183	WT	KO	OK	1 96/99	0.446623	-2 1374	3 21189	0.00131867	0.033734 ves
11 11	ENSMUSG0000050250	Sorr1a	chr3:92287876-02280916	W/T	KO	OK	17 4405	A 01275	_7 11070	A 10027	3 005-05	0.00188212 voc
- 7 - 7		5p1118 6100+9	chr3.92287870-92289810	VV T	KO	OK	10 0103	4.01275	-2.11578	4.10832	0.00030304	0.001383312 yes
L L		STOODS	cm 3.304/2332-304/3350	VV I	KU	01	19.9103	4.38345	-2.10904	3.02952	0.00028394	0.003/1031 Yes
9, 2	ENSIVIUSG0000060988	Gaint13	CNF2:54288727-54970720	VV I	KÜ	UK	3.11901	0.726426	-2.1022	3.90609	9.38E-05	0.00387981 yes
ff	ENSMUSG0000038963	Slco4a1	chr2:180190949-180209572	WT	ко	ОК	3.75825	0.880546	-2.09359	4.65178	3.29E-06	0.00021523 yes
gg	ENSMUSG0000044433	2310057J16Rik	chr8:3587449-3621316	WT	КО	OK	0.631517	0.149633	-2.0774	3.25847	0.00112013	0.0297441 yes
цĂ	ENSMUSG0000030789	Itgax	chr7:135273060-135294171	WT	ко	OK	1.37089	0.331659	-2.04734	3.29613	0.00098027	0.0268905 yes
. <u>0</u>	ENSMUSG0000038295	Atg9b	chr5:23870627-23897961	WT	ко	ОК	2.1592	0.5291	-2.02888	3.48789	0.00048685	0.0150325 ves
č Ę.	ENSMUSG0000033453	Adamts15	chr9.30706739-30730037	WT	ко	OK	6 57522	1 61733	-2 02342	4 14711	3 37F-05	0.0016256 yes
EH:		C2	sh=17.57242206 5726756	NAVT.	KO	01	2.07004	0 732470	2.02512	4 15 200	2 275 05	0.0010230 yes
5_3	EN3W03G0000024104	65	chi17.37343390-37307339	VV I	KO	OK	2.97604	0.755478	-2.02134	4.15500	5.27E-05	0.00139714 yes
gg	ENSMUSG00000075602	Lуба	chr15:/482530/-/4828064	WI	ко	OK	6.7271	1.70279	-1.98209	3.15862	0.00158516	0.0386169 yes
ar	ENSMUSG0000000982	Ccl3	chr11:83461345-83462857	WT	ко	OK	14.852	3.77567	-1.97585	3.69504	U.00021985	0.00801915 yes
H-H	ENSMUSG0000033854	Kcnk10	chr12:99672203-99816150	WT	КО	OK	4.20757	1.09259	-1.94524	5.70769	1.15E-08	1.32E-06 yes
e 🗸	ENSMUSG0000001943	Vsig2	chr9:37346839-37351790	WT	КО	OK	3.32763	0.871137	-1.93352	4.08309	4.44E-05	0.00206309 yes
X >	ENSMUSG0000018470	Kcnab3	chr11:69139759-69146544	WT	ко	ОК	3.51739	0.926681	-1.92436	4.21242	2.53E-05	0.00126108 ves
Е́Э	ENSMUSG0000046167	Gldn	chr9:54116384-54189593	WT	ко	OK	1.88367	0,505031	-1 8991	3,5942	0.00032538	0.010937 ves
Z Z	ENSMUSG000000000	Baalc	chr15:38656627-29927721	W/T	KO	OK	6 52207	1 75561	_1 20570	A AA100	8 01E_0C	0.00050707 voc
E e	ENGMUSC000001022290	Eafla2	chr3:10000027-3003//31	VV I	KO	OK	1.03754	1./ 3301	-1.033/9	4.44138	0.910-00	0.00000792 yes
0 T.	ENSIVIUSGUUUUUU16349	Cella2	LIII 2:180882357-180891720	VV I	KU KO	UK	1.02/51	0.276491	-1.89385	3.30409	0.00095286	0.0203504 yes
er	ENSMUSG0000019122	Ccl9	chr11:83386420-83392138	WT	ко	OK	24.7733	6.68472	-1.88985	4.34909	1.37E-05	0.00073481 yes
S Đ	ENSMUSG0000027840	Wnt2b	chr3:104747722-104764627	WT	ко	OK	2.4826	0.673369	-1.88238	3.22485	0.0012604	0.0327481 yes
. 4 4	ENSMUSG0000034570	Inpp5j	chr11:3388229-3404824	WT	КО	OK	0.710389	0.193474	-1.87647	3.4295	0.0006047	0.0181231 yes
I u	ENSMUSG0000046623	Gjb4	chr4:127028329-127031325	WT	ко	ОК	3.21248	0.875949	-1.87477	3.22767	0.00124804	0.0325544 yes
ĕ	ENSMUSG0000028328	Tmod1	chr4:46051806-46209183	WT	ко	ОК	20.5531	5,61908	-1.87095	5,64083	1.69F-08	1.89F-06 ves
Ā	ENSMUSG0000047442	Fam132h	chr1:93263006-93270793	WT	ко	OK	4 23346	1 17020	-1 85/09	3 37081	0.0007/19/16	0.0216284 ves
\mathbf{S}	ENISMUISCO00000077443	lon?	chr2:22240152 222402247	\A/T	KO	04	12 230-0	13 100	1 03005	4 22102	2 2 2 2 5 05	0.0011712
Ja			cm2.32240132-3224331/	VV I	KO	OK	43.2709	12.198	-1.82095	4.23102	2.52E-05	0.0011/13 Yes
		TDC102	LIII 4:4001/201-40003081	VV I	KU KO	UK	7.85918	2.20145	-1./9/13	4.32147	1.55E-U5	0.00080699 yes
ίε	ENSMUSG0000000627	sema4t	cnr6:82861878-82889763	WT	ко	UK	4.13951	1.19438	-1.7932	3.12375	0.0017856	0.0422592 yes
10.												
T												
CO .												

p_value q_var... 4 0 0 γε.. 1.07E-06 γes 2.68E-13 γes 2.045

q_value significant 0 0 yes

\mathbf{s}							
I	ENSMUSG0000044811	AF251705	chr11:114858034-114863194	WT	KO	OK	3.2349
1 t	ENSMUSG0000058624	Gda	chr19:21465796-21547935	WT	KO	OK	1.82167
ü	ENSMUSG0000054409	Tmem74	chr15:43698240-43701575	WT	KO	OK	4.14896
Ĕ,	ENSMUSG0000047230	Cldn2	chrX:136335366-136345925	WT	KO	OK	3.94039
- L	ENSMUSG0000071714	Csf2rb2	chr15:78112946-78136052	WT	КО	OK	0.885584
Ē	ENSMUSG0000054162	Spock3	chr8:65429805-65835900	WT	KO	OK	2.14759
ĒĒ,	ENSMUSG0000081169	Gm12551	chr4:86272978-86277155	WT	КО	OK	13.4133
99	ENSMUSG0000062393	Dgkk	chrX:6356431-6525489	WT	КО	OK	1.39557
<u>5</u>	ENSMUSG0000045777	6330512M04Rik	chr7:149511741-149573943	WT	ко	OK	9.17269
0	ENSMUSG0000026579	F5	chr1:166045394-166150408	WT	КО	OK	1.82855
5. D	ENSMUSG0000041552	Ptchd1	chrX:152007997-152058357	WT	ко	OK	2.93594
<u>– – – – – – – – – – – – – – – – – – – </u>	ENSMUSG0000053519	Kcnip1	chr11:33529338-33998554	WT	КО	OK	15.9895
200	ENSMUSG0000019851	Perp	chr10:18564876-18576879	WT	ко	OK	34.8677
	ENSMUSG0000026259	Ngef	chr1:89373408-89494420	WT	ко	OK	14.3792
S S	ENSMUSG0000051279	Gdf6	chr4:9771518-9789492	WT	ко	OK	5.60416
2°F	ENSMUSG0000025350	Rdh5	chr10:128350648-128361091	WT	ко	OK	12.7418
68 g	ENSMUSG0000022367	Has2	chr15:56497181-56609954	WT	ко	OK	4.0992
89	ENSMUSG0000022512	Cldn1	chr16:26356727-26371927	WT	ко	OK	11.2196
-::=	ENSMUSG0000023886	Smoc2	chr17·14416512-14541797	WT	KO	OK	16.0396
ဝဍ	ENSMUSG0000027338	Prnd	chr2.131735663-131781866	WT	KO	OK	4 90347
- 5	ENSMUSC0000021955	Arbgef?	chr14:28051224-28217090	W/T	KO	OK	3 56400
- <u>;;</u> -	ENSMUSC0000021055	Sev.	chr14.20031224 20217030	NA/T	KO	OK	7 19107
Ja	ENSINGSG00000034101	JLX Kilbala Qa	chi1.12.10210090-70307099	VV I	KO	OK	7.10107
ΞΞ		Cm14004	chr1:134195202-134203934	VV I	KO	OK	19.5198
S D	ENSIVIUSGUUUUUU83089	GIII14094	clif2:133025340-133025950	VV I	KO	UK OK	21.007
P.S.	ENSIVE C00000023571	Familisza	clif4:155336420-155340738	VV I	KO	UK OK	19.0369
E	ENSIVIUSG00000014158	Trpv4	chr5:1150/2160-115108430	VV I	KU	UK	1.47805
ē.	ENSMUSG0000027221	Chst1	chr2:92439863-92455407	WI	KO	OK	11.1904
8°5	ENSMUSG0000089922	3110039M20Rik	chr12:50483679-50508333	WI	KO	OK	7.70947
<u>H</u> H	ENSMUSG0000042988	Notum	chr11:12050/344-120523129	WI	KO	OK	14.675
e D	ENSMUSG0000036136	Fam110c	chr12:31758832-31764802	WT	KO	OK	6.18934
e L	ENSMUSG0000039070	Cpa4	chr6:30518368-30542418	WT	KO	OK	7.73759
28	ENSMUSG0000030144	Clec4d	chr6:123212124-123225286	WT	KO	OK	15.4692
En L	ENSMUSG0000004609	Cd33	chr7:50782825-50788541	WT	KO	OK	2.24751
i H O	ENSMUSG0000000290	ltgb2	chr10:76992996-77028453	WT	KO	OK	9.6745
00	ENSMUSG0000000792	Slc5a5	chr8:73406787-73416656	WT	KO	OK	13.5192
spice	ENSMUSG0000027684	Mecom	chr3:29850235-30039345	WT	KO	OK	0.95303
ц ўр	ENSMUSG0000038642	Ctss	chr3:95330707-95360325	WT	КО	OK	48.169
an X nt	ENSMUSG0000030798	Cd37	chr7:52471122-52494485	WT	ко	OK	3.48563
e o m	ENSMUSG0000039518	Cdsn	chr17:35689072-35694125	WT	КО	OK	10.6401
	ENSMUSG0000044583	Tlr7	chrX:163742860-163768490	WT	ко	OK	1.70605
den in	ENSMUSG0000032679	Cd59a	chr2:103935957-103955511	WT	ко	OK	23.4832
<u> </u>	ENSMUSG0000045083	Lingo2	chr4:35653895-36898780	WT	ко	OK	3.32032
200	ENSMUSG0000030653	Pde2a	chr7:108570211-108661340	WT	ко	OK	32,3007
9 5 C	ENSMUSG0000020435	Osbp2	chr11:3603733-3763906	WT	ко	OK	6.08862
H H O	ENSMUSG0000052270	Enr2	chr17:18024787-18108641	WT	KO	OK	2 13506
pus	ENSMUSG0000032261	Sh3hgrl2	chr9:83441933-83532408	WT	KO	OK	10 6641
<u> 1</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ENSMUSC0000041209	Nkv6-2	chr7:146575007-146768696	W/T	KO	OK	22 2425
2 2 X	ENSMUSC0000062444	An2h2	chr7:88605284_88628811	W/T	KO	OK	5 25505
<u> ದೆ.ದೆ.ದೆ</u>	ENSINUS G0000002444	Arto	chr4:117E09766 117603269	VV I	KO	OK	5.25595
r d d d	ENSMUS C0000028559	Arun Foxe1	chr12;E0492670 E0E09222	VV I	KO	OK	0.77005
<u> </u>	ENSINGSG0000020930	FUXET	chi12.30483079-30308333	VV I	KO	OK	23.5215
t s H	ENSIVIUSG00000038147	C084	CIII1:173769827-173820849	VV I	KU	UK	3.8023
3 L f	ENSIMUSG0000026068	II18rap	cnr1:40572206-40608550	VV I	KÜ	OK	6.63669
S E S	ENSMUSG0000074657	Kit5a	chr10:126662754-126700136	WI	KO	OK	1.82516
s	ENSMUSG0000020911	Krt19	chr11:100002123-100009979	WI	KO	OK	4.83629
n n	ENSMUSG0000020357	FIt4	chr11:49422764-49466241	WI	KO	OK	5.8965
Ela	ENSMUSG0000025044	Msr1	chr8:40667053-40728032	WI	KO	OK	6.83904
at:	ENSMUSG0000022099	Epb4.9	chr14:71001069-71035785	WT	ко	OK	2.14115
20	ENSMUSG0000022415	Syngr1	chr15:79921763-79949931	WT	KO	OK	20.8387
ŋ, st	ENSMUSG0000026475	Rgs16	chr1:155587478-155592598	WT	KO	OK	99.6383
<u> </u>	ENSMUSG0000001827	Folr1	chr7:109006844-109019302	WT	KO	OK	11.2263
ata	ENSMUSG0000068457	Uty	chrY:433303-582202	WT	KO	OK	5.4127
ë.ë	ENSMUSG0000039126	Prune2	chr19:17030607-17298422	WT	КО	OK	15.9241
Jas	ENSMUSG0000025185	Loxl4	chr19:42668471-42687303	WT	KO	OK	5.96991
ral n	ENSMUSG0000032060	Cryab	chr9:50560862-50564738	WT	KO	OK	467.505
70	ENSMUSG0000030748	Il4ra	chr7:132695784-132722986	WT	КО	OK	35.0455
or to	ENSMUSG0000041774	Ydjc	chr16:17139156-17202742	WT	KO	OK	4.67841
<u>5</u> G	ENSMUSG0000041362	4930506M07Rik	chr19:59047847-59150559	WT	KO	OK	3.93698
gg	ENSMUSG0000029304	Spp1	chr5:104864136-104870069	WT	KO	OK	977.174
ЧЧ	ENSMUSG0000001020	S100a4	chr3:90407691-90409967	WT	КО	OK	1631.69
6 <u>6</u>	ENSMUSG0000040640	Erc2	chr14:28435613-29291721	WT	КО	OK	4.05144
ЗБ	ENSMUSG0000045672	Col27a1	chr4:62875037-62996025	WT	КО	OK	3.23936
a II:	ENSMUSG0000020333	Acsl6	chr11:54117299-54178258	WT	ко	OK	28.4826
20	ENSMUSG0000036854	Hspb6	chr7:31324152-31344857	WT	ко	OK	42.0771
ΫË	ENSMUSG0000046318	Ccbe1	chr18:66204955-66479261	WT	ко	OK	4.15822
ra 1 a	ENSMUSG0000022505	Emp2	chr16:10281841-10314061	WT	ко	OK	117.547
e tio	ENSMUSG0000015340	Cvbb	chrX:9012377-9064897	WT	ко	OK	15.2595
Xă	ENSMUSG0000015850	Adamts14	chr3:95480123-95491840	WT	ко	OK	26.2195
Еē	ENSMUSG0000034765	Dusp5	chr19:53603598-53616921	WT	KO	OK	33.0894
ZŽ	ENSMUSG0000028583	Pdpn	chr4:142857333-142889467	WT	KO	OK	201 299
re	ENSMUSG0000032271	Nnmt	chr9:48399981-48413258	WT	KO	OK	16.5242
0 1	ENSMUSG0000032271	Gm2115	chr7:91677484-91726847	WT	KO	OK	47 8205
SS	ENSMUSC00000046619	Olfml2a	chr2-38787407-29910272	\A/T	KO	OK	7 61100
õğ		Crif1	chr2.72017056 72027000	VV I	KU KO		2.04489
L C		Crazinanti	chr0.70020670 71250045	VV I	KU	OK OV	14 1702
ē		Csgainact1	chita://daub/9-/1259045	VV I	KU	UK Oli	14.1/02
þé		F111	chr1:1/330/665-1/3394/34	WV I	KU	UK OK	20.2696
S.		r05IZ	cm5:32438844-32460204	VV I	KÜ	UK	28.////
la	ENSMUSG00000054520	Sh3bp2	cnr5:34868486-34906274	WT	KO	UK	4./0933
	ENSMUSG0000027913	Crct1	cnr3:92818126-92819609	WT	KO	OK	35.8299
ie	ENSMUSG0000025586	Cpeb1	cnr7:88491911-88600351	WT	KO	OK	26.9445
ic							
LT.							
лі;							
Ē							

0.935154

0.52693

1.20111

1.16323

0 26183

0.636063

3.97534

0.414637

2,73561

0.549462

0.885626

4.84178

10.5727

4.3745

1.71322

3.9242

1.26549

3.49712

5.00247

1.54248

1.12253

2.2798

6.32508

6.82434

6.25334

3.69799

2.54952

4.8977

2.0718

2.61193

5.28351

3.35392

4.69956

16.96

1.2402

3.82354

8.57336

1.22277

11.9482

2.30363

0.80909

4.07955

8.56614

2.02464

2.60952

9.79785

1.48887

2.60098

0 720337

1.91629

2.34997

2.73729

8.4465

41.1741

4.64361

2.26741

6.72537

2.55665

200.584

15.1866

2.03851

1.71555

718.941

1.79235

1.43311

12.6028

18.7738

1.86395

52.6954

6.84239

11.7885

14.8823

91,2393

7.49496

21.7587

1.20351

53.2883

6.47625

9.33954

13,3069

2.1791

16.6299

12.539

429

0.866589

0.615897

0.334811

0.774098

0.486696

-1.79045

-1.78958

-1.78838

-1.7602

-1.75548

-1.75452

-1.75093

-1.74548

-1.73461

-1.72905

-1.72351

-1.72155

-1.71679

-1.70979

-1.6991

-1.69564

-1.68178

-1.68092

-1.66855

-1.66678

-1.65529

-1.62578

-1.62211

-1.6061

-1.6026

-1.59745

-1.59641

-1.58319

-1.56677

-1.54983

-1.53774

-1.52834

-1.52441

-1.50918

-1.50597

-1 49085

-1.47653

-1.4699

-1.45369

-1.44117

-1.43477

-1.40221

-1.38628

-1.37667

-1.37629

-1.36983

-1.35265

-1.35141

-1.34128

-1.33558

-1.32722

-1.32104

-1.30497

-1.30284

-1.27496

-1.27357

-1.2553

-1.24353

-1.22345

-1.22078

-1.20643

-1.1985

-1.19842

-1.18764

-1.18243

-1.17658

-1.17656

-1.17634

-1.16432

-1.15749

-1.15713

-1.15326

-1.15277

-1.14161

-1.14059

-1.13604

-1.13596

-1.13036

-1.12963

-1.11789

-1.11277

-1.11179

-1.10738

-1.10357

-1.1576

-1.3755

-1.3999

-1.5789

-1 758

4.81568

4.71251

4.7613

5.60156

4.32016

6.90738

4.44288

5.19338

4.96411

3.54287

3.88014

7.55838

8.39368

4.45972

4.44036 8.98E-06 3.09289 0.00198219

5.75703

5.63765

4.40654

5.89036

5.31464

9.36112

6.00817

4.84057

3.89373

5.17485

5 93054

3.72092

3.25969

4.72242

4.09761

4 03221

5.94122

5.63473

4.71506

6.17458

5.67865

6.90423

7.79037

4.19546

8.99812

4.85849

5.72325

3.92096

8.06788

5.14933

6.23831

4.00117

4.2712

4.14773

4.97775

3.71737 0

4.4789

3.3574

3.27719 0.00104846

3.61498 0.00030038

3.4227 0.00062003

3.6903 0.00022399

3.11289 0.00185263

3.18479 0.00144859

3.41241 0.00064391

3.30863 0.00093752

3.68385 0.00022974

3.40513 0.00066132

3.4355 0.00059146

3.45225 0.00055593

3.49164 0.00048006

3.07886 0.00207792

3.37026 0.00075097

3.12557 0.00177464

1.47E-06 0.00010472 yes

2.45E-06 0.00016407 yes

1.92E-06 0.00013232 yes

1.56E-05 0.00080864 yes

8.88E-06 0.00050792 ves

0.0001044 0.00421306 yes

8.21E-06 0.00047689 yes

8.98E-06 0.00050956 yes

0.0283044 yes

0.0102069 yes

0.0185408 yes

2.31E-06 yes

1.13E-09 yes

1.82E-05 yes

0.0081477 yes 5.52E-05 yes

0.012602 ves

1.29E-11 yes

0.0432568 yes

0.0452969 yes

1.01E-06 yes

0.0363573 ves

0.0225137 yes

0.0191258 yes

0.0261501 yes

0.0082156 yes

0.0195553 ves

0.0177665 yes

0.0168519 yes

0.0148573 yes 4.97E-07 yes

1.01E-05 yes

0.0216284 ves

2.62E-07 yes

9.60E-05 yes

1.99E-05 ves

4.09E-07 ves

0.0074029 yes

0.0296759 yes

3.87E-07 yes

1.92E-06 yes

1.00E-07 ves

1.53E-06 yes

1.14E-09 ves

2.33E-12 yes

8.92E-05 yes

1.22E-06 yes

2.68E-13 ves

2.25E-05 yes

0.0348811 yes

0.0226284 yes

0.0354794 yes

0.0116016 yes

0.0016256 ves

5.21E-05 yes

6.99E-08 ves

0 yes

0.0373533 yes

2.72E-05 0.00135414 yes

8.82E-05 0.00370567 yes 00116992 0.0308196 yes

6.30E-05 0.00278956 yes 1.94E-05 0.00099666 yes

0

3.8251 0.00013072 0.00508964 yes

3.82691 0.00012976 0.00506719 yes

0.0262704 yes

00192136 0.0442112 yes 2.42E-06 0.00016369 yes

0.0420747 yes

0 ves

1.05E-05 0.00058349 yes

1.91E-06 yes

0 yes

3.16168 0.00156862 0.0383547 yes

3.79039 0.00015041 0.00570842 yes

3.06501 0.00217663 0.0486517 ves

2.12F-08

4.94E-12

2.07E-07

6.90E-07

0.0003958

4.09E-14

8.56E-09

1.72E-08

0.0007868

3.68642 0.00022743 0.00816449 yes

3.67829 0.00023481 0.00835794 yes

3.66381 0.00024849 0.00873686 yes

3.8615 0.00011269 0.00449316 yes

3.85E-09

1.07E-07

1.88E-09

1.29E-06

2.28E-07

3 02F-09

0.0001985

2.83E-09

1.75E-08

6.63E-10

1.36E-08

5.05E-12

6.66E-15

1.18E-06

1.05E-08

6.66F-16

2.61E-07

4.42E-10

3.36E-05

6.43E-07

3.10213 0.00192136

3.30617 0.00094579

3.1726 0.00151079

3.24611 0.00116992

3.20005 0.00137402

3.35523 0.00079299

3.1924 0.00141095

3.57034 0.00035652

0.00111533

3.82702 0.00012971 0.00506719 yes

3.57664 0.00034804 0.0114845 yes

0

7.50E-06 0.00043884 yes 00207792 0.0467989 yes

9.87E-05 0.00402042 yes

2.33E-06 0.00015881 yes

4.17E-05 0.00195843 yes

.00020131 0.00745998 yes

5.53E-05 0.00247841 yes

0

proof.

Stem Cells and Development This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.	ENSMUSG00000243687 ENSMUSG0000024694 ENSMUSG0000025163 ENSMUSG0000025163 ENSMUSG0000025163 ENSMUSG00000023622 ENSMUSG00000023621 ENSMUSG00000023621 ENSMUSG0000002671 ENSMUSG00000026721 ENSMUSG00000028762 ENSMUSG00000028762 ENSMUSG00000018139 ENSMUSG00000018339 ENSMUSG00000018339 ENSMUSG00000018339 ENSMUSG0000002424 ENSMUSG00000024424 ENSMUSG00000024424 ENSMUSG0000002513 ENSMUSG0000002513 ENSMUSG0000002513 ENSMUSG00000002762 ENSMUSG00000037846 ENSMUSG0000002553 ENSMUSG0000002727 ENSMUSG0000002727 ENSMUSG00000027844 ENSMUSG00000027848 ENSMUSG00000027848 ENSMUSG00000027848 ENSMUSG00000027848 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG0000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG00000024830 ENSMUSG0000024830 ENSMUSG00000024830 ENSMUSG00000024833 ENSMUSG00000024833 ENSMUSG0000024833	1190005 Ki726b Bhlhe41 Gyrc5C- Laptm5 Khk Penk Maff Pixdc1 Tnfrsf12: Aspa Egf17 Cd200 Chrnb1 Dbp Rnd1 Akr1b8 Sdr39u1 Hsd11b1 Gyx3 Avpi1 Tead4 Ncrna000 Ttc39c Gmpr 2210403 Stard10 Fg3 Stard10 Fg3 Stard10 Fg3 Stard10 Fg3 Stard10 Fg3 Stard10 Fg3 Stard10 Fg3 Stard10 Tc39c Chros Fam189k 0610010 Tc Stard10 Fg3 Chros Stard10 Fg3 Stard10 Fg4 Stard10 Cd3 Stard10 Cd3 Stard10 Fg4 Stard10 Cd3 Stard10 Fg4 Stard10 Cd3 Stard10 Fg4 Stard10 Cd4 Stard1 St
--	--	---

5106Rik	chr8:123132501-123158392	WT	КО	ОК	11.9442	5.59974	-1.09288	3.36762	0.00075821	0.0217894 yes
	chr1:180459255-180862986	WT	КО	OK	2.90106	1.36299	-1.0898	5.27805	1.31E-07	1.20E-05 yes
	chr6:145806762-145814078	WT	KO	OK	17.0021	8.01574	-1.0848	3.66355	0.00024874	0.00873686 yes
	chr4.130469039-130492056	WT	KO	OK	8.8053 16.8981	4.18594 8.04739	-1.07282	3.38193 4.05912	4 93E-05	0.0210961 yes
	chr5:31223928-31233619	WT	ко	OK	10.1899	4.85956	-1.06824	3.51726	0.00043603	0.0137337 yes
	chr4:4060677-4115850	WT	КО	OK	13.8025	6.63835	-1.05604	3.48498	0.00049217	0.0151261 yes
	chr15:79177970-79189502	WT	КО	OK	55.1037	26.7665	-1.04172	3.59774	0.00032099	0.0108167 yes
	chr11:97784551-97847758	WT	КО	OK	1.51451	0.738451	-1.03628	3.79935	0.00014508	0.00557462 yes
a	chr17:23805580-23814416	WT	KO	OK	236.93	116.112	-1.02895	3.09042	0.00199871	0.0454827 yes
	chr11:/3118493-/3140309	WI	KO	OK	7.72168	3.81979	-1.01542	3.19601	0.00139344	0.0352395 yes
	chr16:45282247-45409166	WT	KO	OK	9.65527	4./916/	-1.01079	3.15428	0.00160893 5.27E-06	0.00389813 yes
	chr11:69597537-69609445	WT	ко	OK	9.59271	4.81131	-0.995508	3.17527	0.00149699	0.0371504 yes
	chr7:52960457-52976205	WT	ко	OK	20.6263	10.3782	-0.990928	6.00919	1.86E-09	2.62E-07 yes
	chr15:98493851-98507892	WT	KO	OK	15.1995	7.7236	-0.976677	4.18212	2.89E-05	0.00142542 yes
	chr6:34304118-34318463	WT	КО	OK	48.1462	24.6591	-0.965302	4.17798	2.94E-05	0.00144628 yes
	chr14:56516122-56519069	WT	КО	OK	10.2404	5.28542	-0.954176	3.55698	0.00037514	0.0120307 yes
1	chr1:195029232-195090248	WT	KO	OK	4.72053	2.43652	-0.954125	3.57457	0.0003508	0.0115003 yes
	chr19:42197762-42203549	WT	KO	OK	23.3338 41 7058	21 6542	-0.947049	3 29428	0.00098674	0.00334223 yes
	chr6:128174305-128250841	WT	ко	OK	5.84163	3.04652	-0.939209	3.37604	0.00073536	0.021411 yes
085	chr17:17967682-17979973	WT	ко	OK	24.7856	12.9996	-0.931033	4.01054	6.06E-05	0.00269001 yes
	chr18:12758434-12895559	WT	KO	OK	7.35862	3.86179	-0.930167	4.97813	6.42E-07	5.21E-05 yes
	chr18:50139080-50266827	WT	KO	OK	44.3542	23.4289	-0.920784	7.73841	9.99E-15	3.40E-12 yes
	chr4:135519641-135524093	WT	KO	OK	41.4905	21.9514	-0.918464	5.79756	6.73E-09	8.20E-07 yes
WOAD:	chr13:45602812-45641751	WI	KO	OK	19.0761	10.0952	-0.918102	5.0/83/	3.81E-07	3.20E-05 yes
SKU4KIK	chr7:108465632-108494826	WT	KO	OK	41.1303	9 87252	-0.906913	3.00270	0.00219305	0.0489303 yes
	chr13:49356922-49415680	WT	ко	OK	18.0534	9.63446	-0.905992	4.23299	2.31E-05	0.00116862 yes
	chr9:37335662-37345904	WT	ко	OK	36.9179	19.7598	-0.901752	3.85052	0.00011787	0.00465758 yes
	chr5:124423636-124453223	WT	КО	OK	17.6423	9.48486	-0.895341	3.68631	0.00022753	0.00816449 yes
	chr14:52524945-52533163	WT	КО	OK	35.2776	18.9847	-0.893911	3.10325	0.00191408	0.044205 yes
b	chr3:88987064-88993217	WT	KO	OK	45.4474	24.485	-0.892302	6.39416	1.61E-10	2.75E-08 yes
JO12Rik	chr18:36505272-36562634	WI	KO	OK	/3.6338	40.2186	-0.8/2505	4.14/52	3.36E-05	0.0016256 yes
7F13Rik	chr7:99886167-99889978	WT	KO	OK	1 39967	0 770048	-0.862064	4.12333	1 78E-05	0.00177198 yes
LISTIK	chr6:17147750-17335604	WT	ко	OK	404.922	222.828	-0.861711	6.84484	7.66E-12	1.67E-09 yes
	chr4:128607476-128639686	WT	ко	OK	35.9553	19.9418	-0.850404	5.50502	3.69E-08	3.74E-06 yes
	chr13:64464521-64471614	WT	KO	OK	406.902	225.952	-0.848667	3.85896	0.00011387	0.00452648 yes
	chr2:24780871-24790772	WT	KO	OK	18.5532	10.3296	-0.844883	4.39063	1.13E-05	0.00062009 yes
	chr11:94905787-94938115	WT	KO	OK	154.956	86.6759	-0.838153	4.50654	6.59E-06	0.00038883 yes
p1	chr8:28249244-28285120	WI	KO	OK	3.04528	1./0435	-0.837353	3.18352	0.00145498	0.0364194 yes
	chr7:147136294-147178461	WT	KO	OK	13 3572	7.57092	-0.800434	3 92957	8.51E-05	0.00359819 ves
	chr16:92601711-92826311	WT	ко	OK	11.9235	6.84675	-0.800312	3.19393	0.0014035	0.0354264 yes
	chr3:100844154-100914201	WT	ко	OK	48.15	27.6562	-0.799931	5.19496	2.05E-07	1.81E-05 yes
	chr6:144942354-145024704	WT	КО	OK	30.5339	17.5493	-0.798995	4.99809	5.79E-07	4.75E-05 yes
	chr8:89006158-89104585	WT	КО	OK	14.2195	8.18782	-0.796322	4.67475	2.94E-06	0.00019538 yes
	chr1:193541712-193608134	WT	KO	OK	19.0707	11.0455	-0.7879	3.38544	0.00071065	0.0208745 yes
2	chr19:4154605-4163354	WI	KO	OK	33.4044	19.4056	-0./8356/	5.29953	1.16E-07	1.08E-05 yes
	chr19.27290973-27328721	WT	KO	OK	20 2232	11 7694	-0.781734	4 63458	3 58F-06	0.00132130 yes
	chr9:58135529-58161019	WT	ко	OK	100.081	58.5454	-0.773542	5.43946	5.34E-08	5.38E-06 yes
	chrX:93130673-93152301	WT	ко	OK	40.3885	23.7462	-0.766244	3.07862	0.00207964	0.0467989 yes
	chr10:13219345-13238841	WT	КО	OK	39.7049	23.3817	-0.763938	3.57558	0.00034946	0.0114845 yes
	chr8:123618911-123632292	WT	KO	OK	46.4952	27.3881	-0.763532	5.34681	8.95E-08	8.49E-06 yes
	chr9:107453885-107470746	WT	KO	OK	46.623	27.5221	-0.760451	5.04153	4.62E-07	3.81E-05 yes
	chr2:1213/1264-121632823	WT	KO	OK	4.53423	2.68/72	-0.754474	3.31643	0.00091176 8 88E-16	0.0255389 yes
,	chr10:126727829-126748842	WT	ко	OK	16.4435	9.77636	-0.750148	4.03271	5.51E-05	0.00247841 ves
	chr4:71778175-71861953	WT	КО	OK	28.0217	16.68	-0.74843	12.3236	0	0 yes
	chr5:130487127-130501002	WT	КО	OK	43.4905	26.2939	-0.725971	3.47827	0.00050465	0.0154384 yes
	chr19:55327858-55390522	WT	КО	OK	26.7892	16.198	-0.725836	3.63667	0.00027619	0.009548 yes
	chr15:88953732-88959130	WT	КО	OK	8.45458	5.11317	-0.725514	5.56369	2.64E-08	2.81E-06 yes
	chr1:1/4140024-1/4150026	WI	KO	OK	10.9438	6.6545	-0./1//15	3.68869	1 105 00	0.0081538 yes
	chr19:9062749-9151409	WT	KO	OK	28.8123	11.5985	-0.711231	4.85702	1.19E-06	8.94E-05 yes
	chr15:102065368-102087948	WT	ко	OK	16.1084	9.85629	-0.708696	3.30487	0.00095022	0.0263383 ves
	chr15:3267759-3533492	WT	ко	OK	38.5677	23.6752	-0.704015	4.55134	5.33E-06	0.00032316 yes
	chr7:149646713-149701914	WT	КО	OK	23.888	14.6773	-0.702698	3.90534	9.41E-05	0.00387981 yes
)a	chr11:4086791-4115508	WT	КО	OK	41.1273	25.316	-0.700048	5.58341	2.36E-08	2.55E-06 yes
_	chr7:20488926-20512956	WT	КО	OK	36.3674	22.3988	-0.699223	3.2915	0.00099654	0.0271685 yes
7	chr5:131347951-131783948	WT	KO	OK	8.76666	5.40674	-0.69727	4.40901	1.04E-05	0.00057931 yes
	chr9:1103/9461-11042/683	WT	KO	OK	1.34518	6 77686	-0.693722	3.10547	0.00189978	0.0440198 yes
	chr4:107838041-107851913	WT	ко	OK	11.8607	7.37041	-0.686375	3.87486	0.00010669	0.00429238 ves
	chr7:53698537-53895177	WT	ко	OK	15.2026	9.4504	-0.685874	4.12106	3.77E-05	0.00178828 yes
	chr15:76406787-76438021	WT	ко	ОК	18.9061	11.8405	-0.675117	3.61123	0.00030475	0.010322 yes
	chr2:32163990-32237458	WT	КО	ОК	25.332	16.0297	-0.660217	3.97249	7.11E-05	0.00310454 yes
	chr10:79509910-79519184	WT	KO	OK	522.234	331.224	-0.656886	3.26903	0.00107915	0.0289452 yes
	chr11:55260142 55274744	WT	KO	OK	64.4863	40.9542	-0.654981	5.70497	1.16E-08	1.33E-06 yes
	chr19:18653817-19706270	VV I M/T	KU KO	OK OK	147.646	93.818	-0.654202	3.32155	0.00089518	0.0251803 yes
3	chr4:116885937-116941187	WT	KO	OK	8,56941	5.45422	-0.651822	3.119	0.00181468	0.0427189 ves
	chr11:120479685-120494914	WT	ко	OK	32.0979	20.4815	-0.648157	7.2666	3.69E-13	1.04E-10 yes
	chr7:19669197-19679170	WT	КО	ОК	112.631	72.4112	-0.637325	5.70326	1.18E-08	1.33E-06 yes
	chr2:102651297-102741822	WT	KO	OK	225.26	145.059	-0.634958	12.2535	0	0 yes
	chr2:12845667-12925080	WT	КО	OK	41.4993	26.8071	-0.630472	3.79829	0.0001457	0.00557462 yes

oof.		
s pro		
this	ENSMUSG0000002332	Dhrs1
om	ENSMUSG0000033955 ENSMUSG00000040990	Sh3kbp1
r fr	ENSMUSG00000024501 ENSMUSG00000013539	Dpysl3 D16H22S680E
ffe	ENSMUSG0000089917 ENSMUSG0000024862	Uckl1 Klc2
36) y di	ENSMUSG0000036073	Galt Oshol6
.01 ma	ENSMUSG00000022558	Heatr7a
015 0n 1	ENSMUSG00000032332	Col12a1
d.20 srsi	ENSMUSG0000022656 ENSMUSG0000028266	Pvrl3 Lmo4
/sc 1 ve	ENSMUSG0000032925 ENSMUSG0000038172	ltgbl1 Ttc39b
089 shee	ENSMUSG0000032300	1700017B05Rik
0.10 blis	ENSMUSG00000026347 ENSMUSG00000001524	Gtf2h4
pu [ENSMUSG00000029009 ENSMUSG00000024664	Mthfr Fads3
doi	ENSMUSG00000041801 ENSMUSG00000072812	Phlda3 Ahnak2
is. (e fi	ENSMUSG0000038400	Pmepa1 2310016C088ik
Th	ENSMUSG0000033379	Atp6v0b
on.	ENSMUSG00000024937 ENSMUSG00000008855	Enbp111 Hdac5
scti	ENSMUSG0000039382 ENSMUSG00000051736	Wdr45 1700025K23Rik
den orre	ENSMUSG0000036097	Fam178a Abcc1
t cc	ENSMUSG0000029869	Ephb6
roo	ENSMUSG00000037419 ENSMUSG00000020744	Slc25a19
d p	ENSMUSG0000020388 ENSMUSG0000015745	Pdlim4 Plekho1
ent owa an	ENSMUSG0000066640	Fbxl18
pm ing	ENSMUSG0000040183	Ankrd6
elo cell sdit	ENSMUSG00000047843 ENSMUSG00000029752	Asns
Dev py	ENSMUSG0000009291 ENSMUSG00000051232	Pttg1ip Tmem199
nd I enit	ENSMUSG0000036820 ENSMUSG0000015790	Amdhd2 Surf1
s ar oge	ENSMUSG0000026199	Ankzf1
vp1 n/p1 nde	ENSMUSG00000044117 ENSMUSG00000034751	2900011008Rik Mast4
n C o u:	ENSMUSG0000042675 ENSMUSG00000044864	Ypel3 Ankrd50
ster al s et t	ENSMUSG0000018820 ENSMUSG00000049327	Zfyve27 Setd8
eur Is y	ENSMUSG0000002963	Pnkp
al n t ha	ENSMUSG00000068329	Htra2
bul	ENSMUSG0000034205 ENSMUSG0000033021	Loxl2 Gmppa
osti on,	ENSMUSG0000005514 ENSMUSG00000053291	Por Rab4b
s po	ENSMUSG0000037012	Hk1
ase blic	ENSMUSG0000029578 ENSMUSG00000058835	Abi1
r bi	ENSMUSG00000025875 ENSMUSG00000063506	Tspan17 Arhgap22
for	ENSMUSG0000029108 ENSMUSG0000032604	Pcdh7 Qars
n fa ted	ENSMUSG00000053819	Camk2d Plbd2
cept	ENSMUSG0000023338	Tmem50a
acc	ENSMUSG00000005501 ENSMUSG00000022711	Usp40 Pmm2
nnsc	ENSMUSG0000015126 ENSMUSG00000027472	0610007P22Rik Pdrg1
tra 2d a	ENSMUSG0000019558	SIc6a8
AIX ewe	ENSMUSG0000024012	Mtch1
evi evi	ENSMUSG00000021268 ENSMUSG00000071708	Meg3 Sms
s of sr-r	ENSMUSG0000029581 ENSMUSG0000026767	Fscn1 Fam188a
pec	ENSMUSG00000037351 ENSMUSG00000024909	Actr1b Ffemp?
L čen	ENSMUSG0000018848	Rars
; be	ENSMUSG0000003199 ENSMUSG00000028464	ivipna Tpm2
has	ENSMUSG0000027309 ENSMUSG00000030815	4930402H24Rik Phkg2
cle	ENSMUSG0000013921	Clip3
arti		
Jis		
Ţ		

	chr14:56357856-56364527	WT	ко	OK	268.116	173.423	-0.628561	3.19244	0.00141075	0.0354794 yes
.bp1	chr2:84888178-84913205	WT	ко	OK	104.072	67.5599	-0.623341	3.4494	0.00056183	0.016992 yes
p1	chrX:156065203-156416001	WT	ко	OK	26.6217	17.3377	-0.618694	7.051	1.78E-12	4.62E-10 yes
3	chr18:43480632-43597940	WT	КО	OK	237.516	154.814	-0.617484	5.51643	3.46E-08	3.56E-06 yes
22S680E	chr16:18300917-18348196	WT	КО	OK	16.5714	10.8309	-0.613547	3.37511	0.00073785	0.0214364 yes
	chr2:181303853-181390365	WT	ко	OK	36.0576	23.6436	-0.608852	4.4152	1.01E-05	0.00056657 yes
	chr19:5107745-5118560	WT	ко	OK	25.8465	16.9587	-0.607941	4.848	1.25E-06	9.30E-05 yes
	chr4:41647020-41721120	WT	ко	OK	11.8053	7.78	-0.601592	4.66273	3.12E-06	0.0002051 yes
6	chr2:76244564-76438704	WT	ко	OK	17,3928	11,4723	-0.600327	4.54732	5.43E-06	0.0003279 yes
72	chr15.76210690-76307699	W/T	KO	OK	42 8969	28 3162	-0 599248	3 89747	9 72E-05	0.00397094 yes
/ 4	chr15:/0210050-/050/055	VV T	KO	OK	42.8505	28.3102	0.555248	2 16402	0.00155119	0.00337034 yes
- 1	clii 13.00700882-00844001	VV I	KO	OK	41.5075	27.5278	-0.55612	3.10495	0.00133118	0.0561569 yes
a1	chr9:/9446/9/-/9566638	WI	KO	OK	52.8526	34.9152	-0.59812	3.79865	0.00014549	0.00557462 yes
	chr16:46387818-46498638	WT	ко	OK	86.7111	57.5905	-0.590387	6.54207	6.07E-11	1.15E-08 yes
	chr3:143851010-143868219	WT	ко	OK	165.325	110.192	-0.585284	9.14021	0	0 yes
	chr14:124059192-124374840	WT	ко	OK	9.30083	6.20512	-0.583902	3.50092	0.00046366	0.0144359 yes
b	chr4:82866203-82970159	WT	ко	OK	19.6796	13.1821	-0.578119	4.25757	2.07E-05	0.00105533 yes
017B05Rik	chr9:57100128-57110406	WT	ко	OK	15.2734	10.2712	-0.57242	4.22464	2.39E-05	0.00119908 yes
2	chr1:174430177-174437511	WT	ко	ОК	353,113	237.617	-0.571491	5,23529	1.65E-07	1.48F-05 ves
4	chr17:35804682-35810684	WT	ко	OK	24,3987	16.4441	-0.569231	4.44587	8.75E-06	0.00050313 yes
	chr4.147413185-147433660	WT	ко	OK	19 9662	13 4688	-0 567937	3 528	0 00041872	0.0132998 ves
	chr19:10116037-10134161	W/T	KO	OK	61 4149	41 4615	-0 566817	4 45682	8 32E-06	0.0004802 yes
,	ab-1:127662605 127665712	NA/T	KO	OK	107.001	112 002	0.500017	2 1 6 2 0 1	0.0222 00	0.0004002 yes
3	01111137662695-137665713	VV I	KU	UK	107.031	113.093	-0.56014	3.10381	0.00155719	0.0381453 yes
<2	chr12:114010404-114040868	VV I	KÜ	OK	33./4//	22.953	-0.55611	3.65422	0.00025796	0.00898052 yes
a1	chr2:173049958-173102034	WT	ко	ОК	70.2696	47.8005	-0.555876	6.51378	7.33E-11	1.35E-08 yes
016C08Rik	chr6:29222487-29225446	WT	KO	OK	15.6149	10.6442	-0.552864	3.26076	0.00111115	0.0296239 yes
/Ob	chr4:117556225-117559938	WT	KO	OK	192.368	131.134	-0.552824	7.59439	3.09E-14	9.99E-12 yes
111	chr19:5707375-5726317	WT	КО	OK	14.9923	10.2243	-0.552219	4.62703	3.71E-06	0.00023763 yes
5	chr11:102055745-102091480	WT	ко	OK	55.3465	37.8106	-0.5497	4.34054	1.42E-05	0.00075788 yes
5	chrX:7291458-7305327	WT	ко	ОК	25.6858	17.5546	-0.549119	4.30014	1.71E-05	0.00088181 ves
- 125K23Rik	chr10:38838609-38853720	W/T	KO	OK	9 64175	6 59309	-0 54834	3 95959	7 51E-05	0.00324703 ves
785	chr10:36036003 50033720	W/T	KO	OK	10 2220	12 2224	-0 54624	7 85975	2 77E-15	1 20E-12 voc
/04	chi 15.45005008-45058277	VV I	KO	OK	15.3225	13.2324	-0.54024	7.03073	3.772-13	1.35L-12 yes
_	CNF16:14361650-14475830	VV I	KÜ	OK	35.9958	24.7084	-0.542825	8.59894	0	0 yes
5	chr6:41555480-41570508	WT	ко	ОК	37.6295	25.8564	-0.541345	3.41952	0.00062731	0.0187164 yes
11	chr9:14158433-14185951	WT	ко	OK	17.6189	12.139	-0.537481	3.50542	0.00045588	0.0142753 yes
a19	chr11:115475491-115489595	WT	KO	OK	15.9143	10.972	-0.536493	3.32462	0.00088538	0.0249578 yes
4	chr11:53868429-53882516	WT	ко	OK	122.084	84.5327	-0.530295	3.57751	0.00034688	0.0114845 yes
o1	chr3:95792351-95799924	WT	ко	OK	47.2492	32.8919	-0.522559	3.2668	0.0010877	0.0291156 yes
8	chr5:143628624-143657100	WT	ко	ОК	6.8362	4.78589	-0.514406	3.12209	0.00179571	0.0423474 ves
	chr10:78037244-78047243	WT	ко	ОК	24,4808	17.1766	-0.511205	3.62993	0.0002835	0.00971631 ves
16	chr4.32891009-33037816	WT	ко	OK	15 1602	10 6495	-0 5095	3 08099	0.00206316	0.0467449 ves
	chr5:145002558-145207626	W/T	KO	OK	52 7/06	27.0642	-0 509128	2 55725	0.00027462	0.0120207 yes
	ah-6-7625168 7642254	NA/T	KO	OK	52.7450	42,0222	0.505120	2 71 000	0.00037402	0.0120307 yes
	chiro.7025108-7043254	VV I	KU	UK OK	60.8948	42.8332	-0.507588	3./1080	0.00020171	0.00745998 yes
ip	chr10://044464-//0614//	VV I	KÜ	OK	300.981	211.981	-0.505738	3.90046	9.60E-05	0.00394658 yes
1199	chr11:/8320556-/83256/4	WI	KO	OK	28.367	20.0264	-0.502307	3.22305	0.00126833	0.0328899 yes
id2	chr17:24292799-24300733	WT	ко	OK	27.3038	19.3677	-0.495453	3.11573	0.00183489	0.0430629 yes
	chr2:26768902-26789448	WT	ко	OK	52.4663	37.2694	-0.4934	4.38794	1.14E-05	0.00062522 yes
1	chr1:75188708-75207353	WT	ко	OK	6.76738	4.81512	-0.491026	3.64476	0.00026765	0.00927818 yes
011008Rik	chr16:13981794-14101593	WT	КО	OK	19.4605	13.8493	-0.49074	3.30914	0.00093585	0.0261501 yes
1	chr13:103483637-104124577	WT	ко	OK	14.066	10.028	-0.488188	3.12935	0.00175192	0.0417599 yes
	chr7.133920468-133924028	WТ	ко	OK	28 727	20 4992	-0 486839	3 1507	0.00162878	0.0393187 ves
150	chr3:38348187-38383766	W/T	KO	OK	64 3422	45 9503	-0.485689	3 20417	0.00135451	0.0345178 ves
150 77	chr10:42228440 42260080	NA/T	KO	OK	22.0650	16 4102	0.403005	2 75272	0.00133431	0.0045170 yes
27	ciii 19.42238440-42209080	VV I	KO	OK	22.9039	10.4192	-0.404111	5.75272	0.00017495	0.0003008 yes
	0115:124889938-124912317	VV I	KU	UK	114.321	81.7607	-0.483011	5.38201	7.34E-08	7.17E-06 yes
	chr7:52112508-52118295	WI	KO	OK	45.0241	32.2183	-0.482817	5.89271	3.80E-09	4.97E-07 yes
	chr2:152593051-152657464	WT	ко	ОК	98.1839	70.2735	-0.482505	4.80057	1.58E-06	0.00011114 yes
	chr6:82984166-83007674	WT	ко	OK	48.4604	34.7653	-0.479157	7.06536	1.60E-12	4.25E-10 yes
	chr14:69955207-70166920	WT	ко	OK	204.277	146.843	-0.476251	3.78963	0.00015087	0.00570842 yes
a	chr1:75432504-75439754	WT	КО	OK	57.6833	41.5734	-0.472495	5.91512	3.32E-09	4.45E-07 yes
	chr5:136145902-136211196	WT	ко	OK	131.751	95.0123	-0.471631	10.3295	0	0 yes
2	chr7:27953442-27966176	WT	ко	ОК	56.0433	40.4364	-0.470885	5.07256	3.93E-07	3.28E-05 ves
	chr10:61731602-61842656	WT	ко	OK	93,6208	67.6058	-0.469682	8.68477	0	0 ves
	chr5.142105495-142146542	W/T	KO	OK	41 2697	20 8/07	-0.467222	5 15620	2 5 2 5-07	2 10E-05 vec
	chr3:145105455 145140542	VV T	KO	OK	90 2264	25.0457 CE 193	0.467555	10 115	2.522 07	2.15L 05 yes
17	ab = 12:54900727 54909127	VV I	KO	OK	42 4251	21 7400	-0.45455	2 2715	0 00100077	0.0207510.000
11/	chr14.24027214 24402220	VV I	KU KO		45.4351	51./400	-0.452259	3.2/15	0.00100311	0.0207510 Yes
ip22	cnr14:34027211-34183329	VV I	KO	OK	74.4435	54.4352	-0.451607	3.29696	0.00097738	0.0268668 yes
/	chr5:58109259-58520590	WI	KO	OK	29.1094	21.3234	-0.449047	4.81089	1.50E-06	0.00010668 yes
	chr9:108410335-108418272	WT	ко	OK	113.88	83.4328	-0.448821	4.13916	3.49E-05	0.00167079 yes
2d	chr3:126299219-126547972	WT	ко	OK	106.733	78.2376	-0.448072	3.21846	0.0012888	0.0331964 yes
	chr5:120926539-120953634	WT	ко	OK	72.1967	52.928	-0.447902	4.05571	5.00E-05	0.00226487 yes
150a	chr4:134453763-134470939	WT	ко	OK	89.3573	65.5912	-0.446084	4.61805	3.87E-06	0.00024466 yes
)	chr1:89841695-89905126	WT	ко	ОК	12.5011	9.18835	-0.444176	3.77151	0.00016227	0.00610308 ves
2	chr16:8633976-8657624	WТ	ко	OK	47 084	34 6445	-0 442609	4 41473	1 01E-05	0.00056657 ves
-	chr17:25277114-25202200	W/T	KO	OK	24 6220	18 1567	-0.440085	2 07525	0.00210252	0.0472241 yes
22111	chr2:152024625 152041162	VV T	KO	OK	121 001	07 1200	0.433606	2 22755	0.000210255	0.0472041 yes
D	chrV-70018498 70037044	VV I	KU KO		121.001	57.1209	-0.432000	5.53/55	1 225 40	0.0233/13 Yes
	LIII A:/U918488-/U92/841	VV I	KU KO	UK OK	80.3468	59.5948	-0.431053	0.4239	1.33E-10	2.29E-U8 Yes
12	cnr9:102619001-102635748	W F	KÜ	OK	127.985	95.024	-0.429612	9.82406	0	0 yes
1	chr17:29469016-29484849	WT	КО	OK	463.141	344.032	-0.428906	6.83821	8.02E-12	1.72E-09 yes
	chr12:110779210-110809936	WT	КО	OK	107.655	80.1534	-0.425582	3.71154	0.00020601	0.00759758 yes
	chrX:153881786-153930219	WT	КО	OK	66.8514	49.8322	-0.423879	3.51696	0.00043652	0.0137337 yes
	chr5:143722021-143734864	WT	КО	ОК	678.331	506.232	-0.422191	3.90646	9.37E-05	0.00387981 yes
88a	chr2:12268889-12341096	WT	ко	ОК	94.7773	70.812	-0.420547	4.45923	8.23F-06	0.00047689 ves
h	chr1:36756046-36771267	WT	к <u>о</u>	OK	178 065	133 251	-0 /1825/	3 80061	9 63F-05	0.00394813 vec
- 12	chr19.5473972-5491952	W/T	KO	0r	178 286	321 624	_0 /1252/	7 32/09	2 30E-12	6 90F-11 vor
12	chr11.2E231003 2EC40000	VV I	KU KO	01	420.300	321.024 76 1042	-0.413334	7.52498	2.39E-13	0.30C-11 Yes
	crir11:35621882-35648008	VV I	KÜ	UK	101.315	/6.1843	-0.411286	3.52117	0.00042964	0.0135818 yes
1	cnr1/:56145133-56176058	WT	кО	UK	108.112	81.6414	-0.405157	3.57614	0.00034871	0.0114845 yes
	cnr4:43527582-43536637	WT	ко	OK	241.381	182.716	-0.401709	3.21822	0.0012899	0.0331964 yes
102H24Rik	chr2:130531935-130732142	WT	КО	OK	60.9717	46.1723	-0.401113	3.35237	0.00080123	0.0227793 yes
2	chr7:134716853-134732109	WT	ко	OK	28.7135	21.8405	-0.394719	4.38609	1.15E-05	0.00062797 yes
	chr7:31076690-31093386	WT	КО	OK	185.683	141.345	-0.393629	3.93214	8.42E-05	0.00357128 yes

ENSMUSG0000020263	Appl2	chr10:83062777-83111483	WT	ко	ОК	55.9475	42.6275	-0.392291	3.69578	0.00021922	0.00801797 ves
	Akan12	chr7:92600410 92900405)A/T	KO	OK	15 0459	11 4676	0.301705	2 06002	0.00214762	0.0491654 yes
EN31003G00000000400	AKapis	clii 7.82000419-82899493	VV I	KO	OK	13.0436	11.4070	-0.391793	3.00902	0.00214702	0.0461034 yes
ENSIMUSG00000038845	Pho	cnr11:95528270-95542087	VV I	KÜ	OK	/1.20/	54.5397	-0.384711	3.27414	0.00105986	0.0285431 yes
ENSMUSG0000078440	Dohh	chr10:80847172-80854305	WT	KO	OK	49.2153	37.7039	-0.384394	3.37948	0.00072623	0.0212382 yes
ENSMUSG0000017760	Ctsa	chr2:164656231-164683211	WT	КО	OK	169.767	130.403	-0.380582	5.22989	1.70E-07	1.51E-05 yes
ENSMUSG0000030269	Mtmr14	chr6:113187836-113231386	WT	ко	OK	24.5972	18.8963	-0.38039	3.07904	0.00207668	0.0467989 yes
ENSMUSG0000037902	Sirpa	chr2:129418570-129457964	WT	ко	OK	97.9785	75.3529	-0.378802	4.76316	1.91E-06	0.00013179 ves
ENSMUSG0000068917	Clk2	chr3-88968716-88980843	WТ	ко	OK	34 5297	26 6318	-0 374688	4 24916	2 15E-05	0.00109153 yes
	AtaCan1	chry.71542425 715500045	VV I	KO	OK	34.3237	20.0318	-0.374088	4.24910	2.132-05	0.00109100 yes
ENSIMUSG0000019087	Атрбарт	CNFX:/1542435-/1550060	VV I	KO	OK	317.989	245.654	-0.37235	4.33081	1.49E-05	0.00078298 yes
ENSMUSG0000033788	Dyst	chr6:83958583-84161054	WT	ко	OK	29.7216	22.9649	-0.372083	3.25096	0.00115017	0.0304201 yes
ENSMUSG0000039137	Whrn	chr4:63075943-63157025	WT	ко	OK	14.4245	11.1489	-0.371611	5.39018	7.04E-08	6.97E-06 yes
ENSMUSG0000015714	Lass2	chr3:95111593-95161124	WT	ко	OK	191.232	148.455	-0.365294	5.55174	2.83E-08	2.98E-06 ves
ENSMUSG0000023846	Riok2	chr17·17511295-17532267	WT	ко	OK	19 7238	15 323	-0 364237	3 58682	0 00033474	0.0111666 ves
ENEN4US C00000020640	Mrol12	chr11:12024E026 1202E0270	\A/T	KO	OK	75 6570	E 9 9020	0.363604	2 20746	0.00101007	0.0275055 yes
ENSNI0500000033040	1011 p112	chi 11.120343320-120330373	VV I	KO	OK	75.0375	50.0025	-0.303004	3.28740	0.00101037	0.0273033 yes
ENSMUSG0000027131	Tmem85	cnr2:112105981-112254397	VV I	KÜ	OK	/5.03/6	58.3498	-0.362884	3.15211	0.00162098	0.0392017 yes
ENSMUSG0000005575	Ube2m	chr7:13620586-13623622	WT	ко	OK	210.539	163.718	-0.362876	5.14009	2.75E-07	2.35E-05 yes
ENSMUSG0000020232	Hmg20b	chr10:80808792-80813225	WT	ко	OK	95.4495	74.2521	-0.362306	6.44379	1.17E-10	2.04E-08 yes
ENSMUSG0000030750	Nsmce1	chr7:132611153-132635110	WT	ко	OK	50.8816	39.6162	-0.361052	3.33433	0.00085506	0.024206 ves
ENSMUSG0000039069	Gtnhn5	chr2.179805292-179820607	WТ	ко	OK	7 71044	6 00945	-0 359579	4 08338	4 44F-05	0.00206309 ves
ENSMUSG0000024146	Crint	chr17:97424999-97425150	W/T	KO	OK	12 9166	22 47	-0.258660	4 60707	4 08E-06	0.000200505 yes
	Nana	chi 17.87424885-87455150	VV I	KO	OK	42.9100	140.000	-0.338003	4.00707	4.082-00	0.00023301 yes
EINSIVIOSG00000000024	мара	CIII7:10083800-10703324	VV I	KÜ	UK	190.878	148.893	-0.358377	3.5/5/6	0.00034921	0.0114845 yes
ENSMUSG0000028898	Trnau1ap	chr4:131867677-131885453	WT	КО	OK	33.8051	26.5323	-0.349487	3.20286	0.0013607	0.0346093 yes
ENSMUSG0000024799	Tm7sf2	chr19:6062820-6084944	WT	КО	OK	61.1915	48.0546	-0.348657	7.33964	2.14E-13	6.47E-11 yes
ENSMUSG0000026254	Eif4e2	chr1:89110488-89137063	WT	КО	OK	107.519	84.5619	-0.346506	3.59093	0.0003295	0.0110196 yes
ENSMUSG0000060279	An2a1	chr7.52151448-52184866	WT	ко	OK	154 253	121 485	-0 344517	6 50685	7 67E-11	1 40F-08 ves
ENSMUSC0000004846	Plod2	chr5.127458022-127472518	W/T	KO	OK	118 472	02 2159	-0 244249	1 82702	1 285-06	0.0001001 vec
ENSIN'0300000004840	FIGUS	chi 5.137438033-137472518	VV I	KO	01	222.245	33.3138	-0.344343	4.02793	1.382-00	0.0001001 yes
ENSIMUSG00000038615	NTEZII	CULT:300/8/51-30031585	VV I	KO	OK	233.315	184.992	-0.334818	7.33636	2.19E-13	6.47E-11 yes
ENSMUSG0000060938	Rpl26	chr11:68715084-68720491	WT	ко	OK	280.328	223.226	-0.328609	5.51313	3.53E-08	3.60E-06 yes
ENSMUSG0000005262	Ufd1l	chr16:18780539-18835354	WT	ко	OK	75.2461	60.021	-0.326149	4.34469	1.39E-05	0.00074669 yes
ENSMUSG0000022553	Maf1	chr15:76181723-76184810	WT	КО	OK	62.3768	49.7916	-0.325108	4.3291	1.50E-05	0.0007857 yes
ENSMUSG0000001630	Stk38l	chr6:146673516-146727334	WT	ко	OK	8.65731	6.91087	-0.325051	3.27708	0.00104887	0.0283044 ves
ENGNALIS C00000074247	Dde1	shr8.72002007 74000000	NA/T	KO	01	04 2004	67 4110	0.323005	2 22007	0.00020700	0.0203011 yes
EINSI/105G00000074247	Dual	CIII8:73993097-74009966	VVI	KU	UK	84.3804	67.4119	-0.323905	3.32097	0.00089706	0.0251803 yes
ENSMUSG0000061689	Digap4	chr2:156439440-156590099	WI	ко	OK	92.2658	74.056	-0.31/1/9	3.50262	0.00046071	0.0143925 yes
ENSMUSG0000026927	Sdccag3	chr2:26237045-26244836	WT	КО	OK	65.0943	52.3958	-0.31308	3.5846	0.00033759	0.0112335 yes
ENSMUSG0000028101	Pias3	chr3:96500297-96512483	WT	ко	OK	33.5999	27.1402	-0.308029	3.88195	0.00010362	0.00419456 yes
ENSMUSG0000022150	Dab2	chr15:6249787-6390712	WT	ко	OK	66.1364	53.5269	-0.30518	4.81807	1.45E-06	0.00010429 ves
ENSMUSG0000034211	Mrns17	chr5:130221371-130224750	W/T	ĸŌ	OK	76 5333	62 1951	-0 299287	5 36729	7 99F-08	7 69E-06 ves
ENSINGSG00000034211	lands1	ch-7.72271707 7252224/50	NA/T	KO	01	28 2005	21 1470	0.200100	7 22412	7.55E 00	1.00E 00 yes
ENSIVIUSGUUUUUU15133		CIII7:73371797-73533236	VVI	KU	UK	38.2995	31.1478	-0.298196	7.22412	5.04E-13	1.39E-10 yes
ENSMUSG0000059851	Suv420h2	chr/:4691/16-4699116	WI	ко	OK	31.0239	25.2454	-0.297359	3.23918	0.00119872	0.0313913 yes
ENSMUSG0000028959	Fastk	chr5:23929654-23951105	WT	КО	OK	110.946	90.3375	-0.296461	3.56719	0.00036083	0.0117133 yes
ENSMUSG0000061559	Wdr61	chr9:54546679-54595757	WT	KO	OK	71.0191	58.0176	-0.291717	3.10262	0.00191814	0.0442112 yes
ENSMUSG0000031065	Cdk16	chrX:20265079-20277006	WT	ко	OK	125,708	102.71	-0.291501	3.19678	0.00138972	0.0352125 ves
ENSMUSG0000028973	Abch8	chr5-23899480-23915872	WТ	ко	OK	25 7534	21 1182	-0 28628	3 86667	0.00011033	0.00441813 ves
ENEMUIS C00000028911	Varc	chr4:129967002 129029649	\A/T	KO	OK	01 570	75 5102	0.270102	2 02564	0.000110005	0.00264E04 yes
EN31003G00000028811	Tais	0114.128807003-128938048	VV I	KO	UK	91.379	73.3182	-0.278192	5.92504	8.03E-03	0.00304394 yes
ENSMUSG0000059291	Rp111	chr4:135584179-135609343	WI	KO	OK	283.906	234.559	-0.275461	6.15349	7.58E-10	1.12E-07 yes
ENSMUSG0000020814	Mxra7	chr11:116664375-116689360	WT	ко	OK	68.5702	56.8313	-0.270895	3.97374	7.08E-05	0.00310031 yes
ENSMUSG0000025142	Aspscr1	chr11:120534286-120570761	WT	ко	OK	86.8897	72.2104	-0.266978	3.79618	0.00014694	0.00560615 yes
ENSMUSG0000029106	Add1	chr5:34916312-34974957	WT	ко	OK	186.024	154.657	-0.266412	3.15729	0.00159242	0.0387225 ves
ENSMLISG0000047554	Tmem41h	chr7.117115700-117130443	W/T	KO	OK	56 4565	47 0502	-0.26294	3 78956	0.00015091	0.00570842 yes
ENSINGSG00000047334	Internet10	chi/.11/115/00-11/150445	VV I	KO	OK	110.020	47.0302	-0.20234	2 2200	0.00013031	0.00370842 yes
ENSMUSG0000031392	Iraki	CNFX:/1259252-/12692/5	VV I	KÜ	OK	110.036	92.0733	-0.257123	3.2399	0.0011957	0.0313742 yes
ENSMUSG0000029713	Gnb2	chr5:137923486-137981946	WT	KO	OK	615.239	514.817	-0.257087	6.2861	3.26E-10	5.27E-08 yes
ENSMUSG0000036241	Ube2r2	chr4:41082775-41140413	WT	ко	OK	119.654	100.658	-0.249402	3.21313	0.00131299	0.0336536 yes
ENSMUSG0000039205	Ciz1	chr2:32163990-32237458	WT	ко	OK	63.0171	53.5081	-0.235985	3.52497	0.00042354	0.0134208 yes
ENSMUSG0000022452	1500032L24Rik	chr15:82169371-82179521	WT	ко	OK	163,551	139.649	-0.227936	3.08019	0.00206872	0.0467911 ves
ENSMUSC0000022402	S+12	chr15-91104009-91220507	W/T	KO	OK	120 222	118 907	-0 227702	4 62520	2 56E-06	0.00022052 yes
ENSINGSG00000022405	Nelf	chi 13.01194050 01250507	NA/T	KO	01	71 1070	C1 2200	0.227733	2.17(40	0.00140007	0.00023032 yes
EINSIVIOSG00000006476	Nell	CIII2:24909874-24918401	VV I	KU	UK	/1.18/0	61.3298	-0.215038	3.17649	0.00149067	0.0370631 yes
ENSMUSG0000028882	Ppp1r8	chr4:132382843-132399084	WT	KO	OK	50.1593	44.2852	-0.179692	3.13901	0.0016952	0.0408015 yes
ENSMUSG0000003573	Homer3	chr8:72806725-72826388	WT	КО	OK	67.6859	60.0766	-0.172053	3.12226	0.0017947	0.0423474 yes
ENSMUSG0000048537	Phldb1	chr9:44481315-44543281	WT	KO	OK	154.363	138.042	-0.161216	3.40155	0.00067004	0.0197691 yes
ENSMUSG0000018858	lct1	chr11:115265065-115273988	WT	ко	OK	86.6078	81.1105	-0.0946084	3.11029	0.00186902	0.043535 ves
ENSMUSG0000004151	Ftv1	chr12:39505966-39594802	WТ	ко	OK	17 7771	22 0262	0 3092	-3 9062	9 38F-05	0.00387981 ves
ENEMUIS C00000027066	Col1121	chr3:1127224E7 112022626)A/T	KO	OK	20 2105	25 1075	0 212729	2 00014	0.00200050	0.0454927 yes
EN3M0300000027900	CUIIId1	clii 3.113733437-113923030	VV I	KO	OK	20.5105	55.1975	0.313726	-5.09014	0.00200039	0.0434827 yes
EINSIVIOSG00000032228	1012	0119:71092058-71959020	VV I	KÜ	UK	85.8507	107.264	0.32120	-3.2499	0.00115445	0.0304726 yes
ENSMUSG0000040785	Ttc3	chr16:94580369-94690829	WT	KO	OK	93.8145	120.002	0.355181	-4.36557	1.27E-05	0.00068711 yes
ENSMUSG0000045103	Dmd	chrX:80194208-82451480	WT	ко	OK	36.8998	47.3523	0.359821	-3.09953	0.00193831	0.0445241 yes
ENSMUSG0000028565	Nfia	chr4:97234823-97868605	WT	ко	OK	17.7128	23.2651	0.393376	-7.03942	1.93E-12	4.84E-10 yes
ENSMUSG0000042104	Uggt2	chr14:119384260-119514296	WT	ко	OK	16.3197	21,5376	0.40024	-3.48651	0.00048938	0.0150753 ves
ENSMUSG0000027570	Col9a3	chr2.180332494-180377413	W/T	KO	OK	31 3152	41 5847	0 /0919	-3 83549	0.00012531	0.00492242 ves
ENSMUS C00000E7728	Cono2	chr2:20021070 20006071	\A/T	KO	OK	210 270	421 422	0 429202	10 1 202	0.00012001	0.00152212 yes
EN3100300000037738	Spridz	CIII 2.298210/9-298809/1	VV I	KO	OK	510.579	451.455	0.450595	-10.1202	0 004 205 02	0 yes
ENSMUSG0000025665	Крябкаб	chrX:108501800-108651568	WI	KO	OK	5.46072	7.46007	0.450099	-3.21688	0.00129592	0.0332803 yes
ENSMUSG0000009614	Sardh	chr2:27043912-27103857	WT	ко	OK	35.1336	48.3159	0.459647	-3.36453	0.00076674	0.021987 yes
ENSMUSG0000001036	Epn2	chr11:61330750-61393187	WT	KO	OK	44.8173	61.7301	0.461918	-3.13055	0.00174481	0.0416651 yes
ENSMUSG0000037736	Limch1	chr5:67137073-67448398	WT	ко	OK	21.7169	29.957	0.464074	-4.13971	3.48E-05	0.00167079 ves
ENSMUSG0000041112	Elmo1	chr13:20182487-20698397	WT	ко	OK	2.39299	3,38393	0.499881	-4.54208	5.57F-06	0.00033464 ves
FNSMUSG0000026556	Vangl?	chr1.173931090-172059575	W/T	KO	OK	12 5272	19 2285	0 50151	-4 57249	6 085-05	0.00036056 voc
ENISMUSC00000200004	Rmnf	chr12-28426004 20020002	\A/T	KO	04	7 00 47	11 5077	0.50151	-2 1000	0.00101442	0.044205
EN31VIU3GUUUUUU39U04	ыпро	CIII 13:38430994-38620693	VV I	KU	UK	7.9047	11.58/2	0.551/49	-5.1032	0.00191443	0.044205 yes
ENSMUSG0000081075	Gm13160	cnr4:146120856-146866310	WT	KO	OK	15.885	23.5683	0.569185	-3.11559	0.00183578	0.0430629 yes
ENSMUSG0000048458	6530418L21Rik	chr3:105507516-105523760	WT	KO	OK	37.476	56.2991	0.587145	-5.85163	4.87E-09	6.21E-07 yes
ENSMUSG0000030647	Ndufc2	chr7:104548512-104556312	WT	КО	OK	143.207	217.64	0.603849	-5.27572	1.32E-07	1.20E-05 yes
ENSMUSG0000024238	Zeb1	chr18:5491500-5775465	WT	ко	OK	38.1109	58.4526	0.617064	-4.17086	3.03E-05	0.00148672 ves
ENSMUSG0000024590	Imnh1	chr18:56867466-56913078	WT.	к <u>о</u>	OK	58 173	89 8194	0 627917	-3 1257	0.00171442	0.0410872 vec
2	CodePEa	chr11,2020E604 20404224	\A/T		04	2 0 2 0 2	4 50000	0 6 4 7 7 2 4	2 4507	0.00054272	0.0165007.005
EVICINI ICCUUUUUUUUU		LIII 11.20203004-20404324	VV I	KU	UK CH	2.9290	4.36982	0.04//31	-5.458/	0.000542/8	0.0103007 Yes
ENSMUSG0000032878	Veu2	-1	W/T	кО	OK	15.184	24.3589	0.681899	-3.54412	0.00039393	1111115777 VAC
ENSMUSG00000032878 ENSMUSG00000033721	Vav3	chr3:109143570-109488616								0.0000000000000000000000000000000000000	0.0125727 yes
ENSMUSG0000032878 ENSMUSG00000033721 ENSMUSG00000033214	Vav3 Slitrk5	chr3:109143570-109488616 chr14:112074336-112082356	WT	КО	OK	4.6001	7.46305	0.698102	-3.3548	0.00079422	0.0226284 yes
ENSMUSG0000032878 ENSMUSG00000033721 ENSMUSG00000033214 ENSMUSG00000053062	Vav3 Slitrk5 Jam2	chr3:109143570-109488616 chr14:112074336-112082356 chr16:84774367-84826173	WT WT	КО КО	OK OK	4.6001 41.0686	7.46305 66.9174	0.698102 0.704347	-3.3548 -3.4527	0.00079422 0.00055501	0.0226284 yes 0.0168519 yes
ENSMUSG0000032878 ENSMUSG0000033721 ENSMUSG0000033214 ENSMUSG00000053062 ENSMUSG0000034758	Vav3 Slitrk5 Jam2 Tle6	chr3:109143570-109488616 chr14:112074336-112082356 chr16:84774367-84826173 chr10:81053648-81063818	WT WT WT	ко ко ко	OK OK OK	4.6001 41.0686 10.0909	7.46305 66.9174 16.4981	0.698102 0.704347 0.709239	-3.3548 -3.4527 -3.1717	0.00079422 0.00055501 0.0015155	0.0123727 yes 0.0226284 yes 0.0168519 yes 0.0374001 yes
ENSMUSG0000032878 ENSMUSG0000033721 ENSMUSG0000033214 ENSMUSG00000053062 ENSMUSG0000034758 ENSMUSG00000032200	Vav3 Slitrk5 Jam2 Tle6 Golph3	chr3:109143570-109488616 chr14:112074336-112082356 chr16:84774367-84826173 chr10:81053648-81063818 chr15:12251204-12281346	WT WT WT WT	ко ко ко	OK OK OK OK	4.6001 41.0686 10.0909 58.5053	7.46305 66.9174 16.4981 95.6834	0.698102 0.704347 0.709239 0.7097	-3.3548 -3.4527 -3.1717 -3.17097	0.00079422 0.00055501 0.0015155 0.0015193	0.0226284 yes 0.0168519 yes 0.0374001 yes 0.0374245 yes
ENSMUSG0000032878 ENSMUSG0000033721 ENSMUSG0000033214 ENSMUSG00000034758 ENSMUSG0000034758 ENSMUSG0000022200 FNSMUSG00000018843	Vav3 Slitrk5 Jam2 Tle6 Golph3 Evn	chr3:109143570-109488616 chr14:112074336-112082356 chr16:84774367-84826173 chr10:81053648-81063818 chr15:12251204-12281346 chr10:39088660-39451813	WT WT WT WT	ко ко ко ко	OK OK OK OK	4.6001 41.0686 10.0909 58.5053 112 563	7.46305 66.9174 16.4981 95.6834 185 167	0.698102 0.704347 0.709239 0.7097 0.718097	-3.3548 -3.4527 -3.1717 -3.17097 -10 7104	0.00079422 0.00055501 0.0015155 0.0015193	0.0226284 yes 0.0168519 yes 0.0374001 yes 0.0374245 yes
ENSMUSG0000032878 ENSMUSG0000033721 ENSMUSG0000033214 ENSMUSG00000033062 ENSMUSG00000034758 ENSMUSG00000022200 ENSMUSG00000019843 ENSMUSG00000019843	Vav3 Slitrk5 Jam2 Tle6 Golph3 Fyn Frmd3	chr3:109143570-109488616 chr14:112074336-112082356 chr16:84774367-84826173 chr10:81053648-81063818 chr10:81053648-81063818 chr10:39088660-39451813 chr47:3659337.73848118	WT WT WT WT WT	ко ко ко ко ко	OK OK OK OK	4.6001 41.0686 10.0909 58.5053 112.563 2.40087	7.46305 66.9174 16.4981 95.6834 185.167 3.99962	0.698102 0.704347 0.709239 0.7097 0.718097 0.736308	-3.3548 -3.4527 -3.1717 -3.17097 -10.7104 -4.33649	0.00079422 0.00055501 0.0015155 0.0015193 0 1 455-05	0.0226284 yes 0.0168519 yes 0.0374001 yes 0.0374245 yes 0 yes 0.00076888 yes

F E E Ε E E F E Ε Ε E Ε Ε E E Ε Ε E E Е E E E Ε E E E E E E Ε E Е E Е E E Ε Ε E Ε Е F E Ε Ε E Е Ε E Ε F E E Е Ε E E Ε E E E Ε E E E E

ENSMUSG0000003948	Mmd	chr11:90048997-90139903	WT	КО	OK	14.0896	23.6041	0.744406	-4.80627	1.54E-06	0.0001086 yes
ENSMUSG0000024143	Rhog	chr17:87362421-87424746	WT	ко	OK	67.8525	113.995	0.748498	-3.4158	0.00063595	0.0189315 ves
ENSMUSG0000054555	Adam12	chr7:141074881-141423829	WT	ко	OK	35.8535	61.0328	0.767471	-3.85288	0.00011674	0.00462663 yes
ENSMUSG0000032281	Acsbg1	chr9:54452683-54509677	WT	ко	OK	63.1547	107.547	0.768012	-3.29332	0.00099012	0.0270491 ves
ENSMUSG0000043518	Rai2	chrX:158155000-158217428	WT	ко	OK	1.631	2.79124	0.775154	-11.4997	0	0 ves
ENSMUSG0000047085	Lrrc4b	chr7:51684387-51718721	WT	ко	OK	19.5528	33.8671	0.792509	-3.99185	6.56F-05	0.00289183 ves
ENSMUSG0000058914	C1atnf3	chr15:10882086-10909905	WT	ко	OK	1 93277	3 399	0 814444	-9.03674	0	0 ves
ENSMUSG00000000122	Fafr	chr11:16652205-16818161	W/T	KO	OK	13 8685	24 3919	0.814585	-4 97848	8 29F=07	6 51E-05 ves
ENSMUSG0000020122	Sic15a7	chr16:36750263-36785048	W/T	KO	OK	19.0005	34 4196	0.823231	-/ 13130	3.61E-05	0.0172206 yes
ENSMUSC0000022055	Spate 2	chr1:57831005-58005241	W/T	KO	OK	20 6/08	52 4660	0.023231	-5 9127	6 15E-00	7 58E-07 yes
ENSMUSC0000020218	Wif1	chr10:120471015-120527706	W/T	KO	OK	1 60202	2 04455	0.846711	-3 02006	8 85E-05	0.00270778 yes
	Daki	chr6:26706021 27260194	VV I	KO	OK	1.09295	2 20002	0.840711	-3.32000 2 2000E	0.00122620	0.00370778 yes
	Dgki Nava 2	child:30/90021-3/250184	VV I	KO	OK	1.79305	3.29093	0.870078	-3.20805	1 1 5 0 0	0.0341216 yes
	NIXIIZ SemeCd	chr19:0418/30-0544899	VV I	KO	OK	28.0900	52.7745	0.879201	-4.80333	1.15E-00	8.76E-05 yes
	Serridou	chr2:123915704-124493506	VV I	KO	OK	24.3090	44.8090	0.880050	-0./3205	1.0/E-11	3.42E-09 yes
ENSIVIUSG000000506/1	ISM2	CNF12:88619587-88640655	WI	KO	UK OK	4.7837	8.90427	0.896369	-5./8815	7.12E-09	8.59E-07 yes
ENSIVIUSG00000032826	Ankz	0113:120024524-127111949	VV I	KU	UK	18.0751	34.767	0.896602	-3./190/	0.00019995	0.0074364 yes
ENSMUSG0000020524	Grial	chr11:56824888-5/143/46	WI	KO	OK	12.3223	23.273	0.917389	-4.0134	5.99E-05	0.0026666 yes
ENSMUSG0000000202	Btbd1/	chr11:114652530-114657259	WI	KO	OK	37.8563	/1./422	0.922289	-9.90835	0	0 yes
ENSMUSG0000041119	Pde9a	chr17:31523178-31613255	WT	KO	OK	6.95165	13.2595	0.931597	-4.32585	1.52E-05	0.00079423 yes
ENSMUSG0000040998	Npnt	chr3:132544708-132613255	WI	KO	OK	14./28/	28.5339	0.954045	-5.9788	2.25E-09	3.11E-07 yes
ENSMUSG0000060961	SIc4a4	chr5:89315842-89668678	WT	KO	OK	42.3651	82.462	0.960852	-4.96399	6.91E-07	5.52E-05 yes
ENSMUSG0000029778	Adcyap1r1	chr6:55401971-55451445	WT	КО	OK	8.91517	17.3857	0.963566	-4.89732	9.72E-07	7.53E-05 yes
ENSMUSG0000030283	St8sia1	chr6:142762750-142912972	WT	KO	OK	11.0811	21.6168	0.964054	-4.71271	2.44E-06	0.00016407 yes
ENSMUSG0000000305	Cdh4	chr2:179177135-179634078	WT	KO	OK	22.6305	44.2904	0.968727	-4.06809	4.74E-05	0.00217759 yes
ENSMUSG0000029669	Tspan12	chr6:21721394-21802515	WT	KO	OK	33.9614	66.637	0.972428	-6.7868	1.15E-11	2.38E-09 yes
ENSMUSG0000062980	A430107013Rik	chr6:21935907-22206404	WT	KO	OK	13.0006	25.5577	0.97518	-13.9711	0	0 yes
ENSMUSG0000004872	Pax3	chr1:78097841-78193711	WT	KO	OK	1.46925	2.94485	1.00311	-3.12807	0.00175959	0.0418676 yes
ENSMUSG0000037962	Fam101a	chr5:125483816-125492917	WT	KO	OK	15.4572	31.0591	1.00674	-3.51465	0.00044034	0.0138212 yes
ENSMUSG0000006344	Ggt5	chr10:75024348-75079713	WT	KO	OK	1.07461	2.17808	1.01924	-5.12733	2.94E-07	2.50E-05 yes
ENSMUSG0000005360	Slc1a3	chr15:8584123-8660764	WT	КО	OK	131.201	265.932	1.01928	-4.72225	2.33E-06	0.00015881 yes
ENSMUSG0000043051	Disc1	chr8:127578094-127785758	WT	КО	OK	1.19254	2.43037	1.02714	-3.17264	0.00151059	0.0373533 yes
ENSMUSG0000054263	Lifr	chr15:7079558-7147489	WT	ко	ОК	1.81114	3.76442	1.05553	-5.52129	3.37E-08	3.49E-06 ves
ENSMUSG0000031700	Gpt2	chr8:88016474-88051459	WT	ко	OK	13.3197	27.8905	1.06622	-4.8382	1.31E-06	9.66E-05 yes
ENSMUSG0000056073	Grik2	chr10:48819265-49508572	WT	KO	OK	0 718114	1 50893	1 07124	-3 21816	0.00129015	0.0331964 ves
ENSMUSG0000059974	Ntm	chr9:28802334-29770726	W/T	KO	OK	4 65217	9 94663	1 0963	-4 86585	1 14F-06	8 70E-05 ves
ENSMUSC0000074607	Tox2	chr2:162028860-162149906	W/T	KO	OK	4.05217	10 6587	1 10205	-2 92764	0.00012422	0.0048941 yes
	Charda	ab-1-1-1-240000-103149500	NA/T	KO	OK	4.50542	1 00147	1.10203	-3.03704	0.00012422	0.0048541 yes
ENSIVIUSG00000032649	GILZSUZ	CIII 1:154240959-154357825	VV I	KO	UK OK	0.507422	1.09147	1.10502	-3.5462	0.00039083	0.0125036 yes
ENSMUSG0000020431	Adcyl	chr11:6963491-7078509	VV I	KO	UK	3.15/9/	6.84348	1.115/3	-6.35951	2.02E-10	3.40E-08 yes
ENSMUSG0000051359	NCald	cnr15:3/295929-3//22325	VV I	KO	UK	7.29083	15.9532	1.12969	-4.35/1/	1.32E-05	0.000/1109 yes
ENSMUSG0000056306	6030405A18Rik	chr3:54700989-54719809	WI	KO	OK	2.07728	4.55632	1.1331/	-3.50057	0.00046427	0.0144359 yes
ENSMUSG0000030077	Chil	chr6:103460869-103699671	WI	KO	OK	5.60697	12.3118	1.134/5	-11.1/01	0	0 yes
ENSMUSG0000052889	Prkcb	chr7:129432264-129777916	WT	КО	OK	5.71274	12.6164	1.14304	-5.89069	3.85E-09	4.97E-07 yes
ENSMUSG0000027015	Cybrd1	chr2:70955979-70980983	WT	КО	OK	21.4725	47.4328	1.14339	-3.38733	0.00070577	0.020777 yes
ENSMUSG0000057751	Megf6	chr4:153544838-153649822	WT	KO	OK	6.80131	15.1033	1.15098	-7.10401	1.21E-12	3.28E-10 yes
ENSMUSG0000004902	Slc25a18	chr6:120723785-120744000	WT	KO	OK	31.9449	71.2699	1.15771	-3.13828	0.00169942	0.0408015 yes
ENSMUSG0000058806	Col13a1	chr10:61300983-61441856	WT	KO	OK	0.709749	1.58904	1.16278	-4.19075	2.78E-05	0.00137743 yes
ENSMUSG0000020000	Moxd1	chr10:23943322-24022596	WT	KO	OK	9.731	21.872	1.16843	-3.17707	0.00148772	0.0370631 yes
ENSMUSG0000049690	Nckap5	chr1:127810196-128727376	WT	КО	OK	1.95999	4.42188	1.17381	-3.94443	8.00E-05	0.00342591 yes
ENSMUSG0000039959	Hip1	chr5:135882392-136020992	WT	КО	OK	27.3542	61.8645	1.17735	-3.2865	0.00101442	0.027543 yes
ENSMUSG0000078816	Prkcc	chr7:3303639-3330714	WT	ко	OK	0.677717	1.53548	1.17994	-4.60621	4.10E-06	0.00025561 ves
ENSMUSG0000027188	Pamr1	chr2:102390168-102483198	WT	ко	OK	11.6016	26,2875	1,18005	-4.39524	1.11E-05	0.00061212 yes
ENSMUSG0000071984	Endc1	chr17·7931433-8020167	WТ	ко	OK	2 4136	5 47264	1 18105	-3 1127	0.00185382	0.0432568 ves
ENSMUSG0000071504	Actn1	chr1:160292470-160621917	W/T	KO	OK	4 25139	9 68749	1 18819	-4 05682	4 97F=05	0.0432500 yes
ENSMUSG0000020307	Mylk	chr16:34745295-35002520	WT	KO	OK	4 90112	11 1819	1 18998	-7 689	1.07E 05	4 94F=12 ves
ENSMUSC0000022830	Grin4	chr0:4417808 4706224	VV T	KO	OK	9.50112	E 90722	1 20046	0 27016	1.451-14	4.54L-12 yes
ENSNUS C00000023892	Gild4 Kenneh (clii 5.4417656-4750254	VV I	KO	OK	2.5001	3.69722	1.20040	-9.57910	0 005 00	0 000EC201 view
ENSIVIUSG00000054934	KCHIIID4	chr10:115854916-115912375	VV I	KO	UK OK	7.01164	10.5490	1.23898	-4.41/02	9.98E-06	0.00056381 yes
ENSIVIUSG00000022464	SIC38a4	CNF15:96825253-96886387	WI	KO	UK OK	0.941963	2.24/12	1.25433	-4.55406	5.26E-06	0.00032097 yes
ENSIMUSG0000002266	ZIMI	CNF7:6628153-6649161	VV I	KO	UK	0.383825	0.916416	1.25555	-3.61479	0.00030059	0.0102069 yes
ENSMUSG0000050010	Shisa3	chr5:67999121-68300252	WI	KO	OK	19.369	46.5688	1.26561	-3.1832	0.00145656	0.0364194 yes
ENSMUSG0000055653	Gpc3	chrX:49625602-49972224	WT	KO	OK	32.4744	78.4657	1.27276	-3.30291	0.00095687	0.0263576 yes
ENSMUSG0000046997	Spsb4	chr9:96843900-96922462	WT	КО	OK	9.6475	23.3697	1.27641	-5.43424	5.50E-08	5.49E-06 yes
ENSMUSG0000048022	Tmem229a	chr6:24901140-24906297	WT	KO	OK	5.16776	12.611	1.28708	-3.44688	0.00056711	0.0171124 yes
ENSMUSG0000060548	Tnfrsf19	chr14:61582670-61665692	WT	KO	OK	8.99719	21.964	1.28759	-5.29329	1.20E-07	1.11E-05 yes
ENSMUSG0000068762	Gstm6	chr3:107741764-107772201	WT	KO	OK	1.39125	3.48348	1.32414	-3.90545	9.40E-05	0.00387981 yes
ENSMUSG0000028369	Svep1	chr4:58055313-58219731	WT	KO	OK	1.48692	3.76671	1.34098	-3.24205	0.00118672	0.0312002 yes
ENSMUSG0000042116	Vwa1	chr4:155142257-155150270	WT	KO	OK	8.59252	21.9657	1.3541	-3.49365	0.00047647	0.0147805 yes
ENSMUSG0000058975	Kcnc1	chr7:53651866-53693745	WT	KO	OK	7.91081	20.2605	1.35677	-4.50087	6.77E-06	0.00039759 yes
ENSMUSG0000087060	2810442I21Rik	chr11:16835156-16851285	WT	КО	OK	3.74541	9.73623	1.37824	-7.01879	2.24E-12	5.43E-10 yes
ENSMUSG0000073988	Ttpa	chr4:19935084-19957932	WT	КО	OK	2.57048	6.70093	1.38233	-4.67545	2.93E-06	0.00019538 yes
ENSMUSG0000024598	Fbn2	chr18:58168276-58369580	WT	КО	OK	3.57367	9.35561	1.38843	-3.96188	7.44E-05	0.00322651 yes
ENSMUSG0000068748	Ptprz1	chr6:22825501-23002916	WT	КО	OK	48.4912	127.034	1.38942	-3.55913	0.00037209	0.0120199 yes
ENSMUSG0000035686	Thrsp	chr7:104561447-104566240	WT	ко	ОК	20.8859	55.2125	1.40246	-3.67675	0.00023622	0.00838592 ves
ENSMUSG0000036019	Tmtc2	chr10:104624718-105020930	WT	ко	ОК	3.143	8.32859	1.40593	-4.62463	3.75E-06	0.00023839 ves
ENSMUSG0000029371	Cxcl5	chr5:91188324-91190651	WT	ко	OK	7.66782	20.6873	1,43185	-3.93971	8.16F-05	0.00347156 yes
ENSMUSG0000020297	Nsg2	chr11:31900462-31959202	WT	ко	OK	3.62242	9.81165	1,43754	-3.37251	0.00074486	0.0215929 ves
ENSMUSG0000028766	Alpl	chr4:137297647-137352299	W/T	KO	OK	3,65779	9,95229	1 44406	-4.08607	4.39F-05	0.00205114 ves
ENSMUSG0000026769	ltga8	chr2.12028258-1222207	W/T	KO	OF	12 0055	38 0851	1 44407	-5 57767	3 255-00	3 30F_06 voc
ENSMUSC0000020708	Vach1	chr12.88010640-8802650	\A/T	KO	OK	10 6041	20.0031	1 /200	-5 00775	3 105 00	A 62E-07 VA
ENSMUSC0000021230	vdSII1 Dfv/	chr10.94219702 94200294	VV I	KU KO		13 0015	23.309	1.45098	-5.90725	3.48E-U9	4.02E-07 Yes
	Col22o1	chr15,71626224 74964657	VV I	KU KO	OK OK	1 20000	33.3133	1.40083	81000.0-	7.U/E-12	1.37E-09 Yes
	CUIZZd1	cm 15:/1020224-/180405/	VV I	KU KO	UK CY	1.30099	3.01130	1.4/293	-3.2629	0.001102/9	0.0294602 Yes
EINSIVIUSG00000014773		cnr1/:1550431/-15516439	W ſ	KU	UK	2.53798	7.06248	1.4765	-4.64281	3.44E-06	0.00022369 yes
ENSMUSG0000029838	Ptn	cnrb:36665662-36761361	WT	KO	OK	291.05	814.124	1.48398	-4.60036	4.22E-06	0.00026167 yes
ENSMUSG0000042943	4922501L14Rik	chr3:154374282-154411788	WT	ко	OK	0.4846	1.3644	1.4934	-3.55735	0.00037461	0.0120307 yes
ENSMUSG0000005672	Kít	chr5:75970940-76052747	WT	KO	OK	1.52004	4.30173	1.50081	-3.22681	0.00125177	0.0325877 yes
ENSMUSG0000026249	Serpine2	chr1:79790771-79855271	WT	KO	OK	259.526	740.575	1.51277	-3.3716	0.00074734	0.0216175 yes
ENSMUSG0000063415	Cyp26b1	chr6:84521937-84543740	WT	КО	OK	5.26484	15.2044	1.53003	-5.828	5.61E-09	7.03E-07 yes
ENSMUSG0000022762	Ncam2	chr16:81200941-81624530	WT	KO	OK	0.936446	2.73933	1.54856	-4.81756	1.45E-06	0.00010429 yes
ENSMUSG0000045994	B3gat1	chr9:26541312-26614053	WT	КО	OK	0.938	2.78695	1.57103	-9.0286	0	0 yes
ENSMUSG0000030223	Ptpro	chr6:137200819-137413150	WT	КО	OK	2.16959	6.5246	1.58847	-6.09561	1.09E-09	1.56E-07 yes

USG00000041731	Pgm5	chr19:24757505-24936345	WT	ко	ОК	1.58241	4.76341	1.58987	-3.95502	7.65E-05	0.00329887 yes
USG00000044548	Dact1	chr12:72410870-72422647	WT	KO	OK	4.08032	12.4775	1.61257	-6.63219	3.31E-11	6.55E-09 yes
USG00000010064	Slc38a3	chr9:107552969-107569705	WT	ко	OK	7.18961	22.199	1.62651	-4.39131	1.13E-05	0.00062009 yes
USG00000054342	Kcnn4	chr7:25155281-25170228	WT	KO	OK	2.74909	8.55622	1.63802	-8.14092	4.44E-16	1.90E-13 yes
USG00000032482	Cspg5	chr9:110146286-110165079	WT	KO	OK	14.4981	45.8033	1.65959	-4.61727	3.89E-06	0.00024466 yes
USG00000057722	Lepr	chr4:101390008-101487959	WT	KO	OK	6.20504	19.9907	1.68782	-5.30487	1.13E-07	1.05E-05 yes
USG00000004892	Bcan	chr3:87791452-87804278	WT	KO	OK	18.8905	61.7155	1.70797	-4.66517	3.08E-06	0.00020369 yes
USG00000024552	Slc14a2	chr18:78342882-78405833	WT	KO	OK	0.513722	1.67873	1.70831	-3.17675	0.00148937	0.0370631 yes
USG00000030310	Slc6a1	chr6:114232628-114267516	WT	KO	OK	10.5072	34.9008	1.73188	-5.36535	8.08E-08	7.72E-06 yes
USG00000021953	Tdh	chr14:64111183-64127929	WT	ко	OK	0.48967	1.63167	1.73646	-3.08927	0.00200652	0.0455393 yes
USG00000037754	Ppp1r16b	chr2:158491133-158592070	WT	KO	OK	0.388525	1.3146	1.75854	-3.59272	0.00032724	0.0109716 yes
USG00000066392	Nrxn3	chr12:89961319-91573375	WT	ко	OK	0.884878	3.14366	1.8289	-5.09677	3.45E-07	2.92E-05 yes
USG00000074575	Kcng1	chr2:168085616-168107236	WT	KO	OK	0.305333	1.09786	1.84624	-3.2549	0.00113431	0.0300605 yes
USG00000043631	Ecm2	chr13:49559395-49748124	WT	KO	OK	0.85403	3.07339	1.84747	-3.6538	0.00025838	0.00898052 yes
USG00000029420	Rimbp2	chr5:129266275-129459237	WT	KO	OK	0.310669	1.12678	1.85875	-3.11492	0.00183994	0.0430844 yes
USG00000063297	Luzp2	chr7:62091328-62520736	WT	KO	OK	5.31086	19.4708	1.87429	-4.1053	4.04E-05	0.0019011 yes
USG00000021364	Elovl2	chr13:41277863-41315774	WT	KO	OK	1.42875	5.25466	1.87885	-4.22763	2.36E-05	0.00118771 yes
USG00000025422	Agap2	chr10:126515962-126530225	WT	KO	OK	0.849948	3.20412	1.91448	-3.89106	9.98E-05	0.00405234 yes
USG00000022209	Dhrs2	chr14:55840843-55860272	WT	KO	OK	0.458489	1.735	1.91998	-3.40773	0.00065507	0.0194136 yes
USG00000063142	Kcnma1	chr14:24117982-24622526	WT	KO	OK	0.290659	1.1041	1.92547	-5.0653	4.08E-07	3.38E-05 yes
USG00000039899	Fgl2	chr5:20798778-20930495	WT	KO	OK	0.792439	3.0266	1.93332	-3.79852	0.00014557	0.00557462 yes
USG0000003949	HIf	chr11:90197848-90252231	WT	ко	OK	3.08462	12.0895	1.9706	-5.7631	8.26E-09	9.88E-07 yes
USG00000029189	Sel1I3	chr5:53498322-53604691	WT	ко	OK	1.0868	4.27076	1.97441	-4.07332	4.63E-05	0.00214411 yes
USG00000050840	Cdh20	chr1:106665105-106892058	WT	KO	OK	3.21098	12.864	2.00225	-4.93763	7.91E-07	6.25E-05 yes
USG00000030307	Slc6a11	chr6:114081234-114199880	WT	KO	OK	3.91905	16.8443	2.10368	-5.24722	1.54E-07	1.39E-05 yes
USG00000028753	Vwa5b1	chr4:138121274-138191799	WT	KO	OK	0.390943	1.74029	2.1543	-3.09329	0.00197948	0.0452969 yes
USG00000068735	Trp53i11	chr2:93027704-93041916	WT	ко	OK	19.0869	84.9692	2.15436	-10.5464	0	0 yes
USG00000020723	Cacng4	chr11:107593670-107657296	WT	KO	OK	0.709275	3.20953	2.17795	-3.68335	0.00023019	0.0082156 yes
USG0000001260	Gabrg1	chr5:71142285-71233856	WT	KO	OK	1.53046	7.0776	2.2093	-7.04222	1.89E-12	4.83E-10 yes
USG00000034177	Rnf43	chr11:87476223-87549041	WT	KO	OK	0.422548	1.99674	2.24046	-3.16435	0.0015543	0.0381451 yes
USG00000050272	Dscam	chr16:96813685-97392359	WT	KO	OK	0.171379	0.85273	2.3149	-4.04574	5.22E-05	0.00235543 yes
USG0000004633	Chn2	chr6:53989547-54453762	WT	KO	OK	1.0234	5.35962	2.38876	-6.52487	6.81E-11	1.27E-08 yes
USG00000085541	Gm16010	chr9:96843900-96922462	WT	KO	OK	0.660945	3.46629	2.39079	-3.67333	0.00023941	0.00847638 yes
USG00000046178	Nxph1	chr6:8898430-9199032	WT	KO	OK	1.11762	5.86709	2.39222	-9.06538	0	0 yes
USG00000036218	Pdzrn4	chr15:92227345-92602250	WT	KO	OK	0.753059	3.99602	2.40773	-4.86903	1.12E-06	8.61E-05 yes
USG00000058145	Adamts17	chr7:73984620-74297511	WT	KO	OK	0.170763	0.925145	2.43769	-3.12614	0.00177117	0.0420676 yes
USG00000070644	Etnk2	chr1:135260148-135276913	WT	KO	OK	0.335881	1.82751	2.44386	-3.45655	0.00054714	0.0166614 yes
USG00000049583	Grm5	chr7:94750951-95283417	WT	KO	OK	1.95371	10.6326	2.44421	-10.1038	0	0 yes
USG00000036422	Pcdh8	chr14:80166586-80171119	WT	KO	OK	0.681019	3.71757	2.44859	-4.53684	5.71E-06	0.00033998 yes
USG00000028341	Nr4a3	chr4:48058024-48099319	WT	KO	OK	0.549447	3.04414	2.46998	-6.27919	3.40E-10	5.44E-08 yes
USG0000003436	DII3	chr7:29076672-29087257	WT	KO	OK	0.605482	3.40539	2.49167	-4.95735	7.15E-07	5.68E-05 yes
USG00000041261	Car8	chr4:8068639-8166188	WT	KO	OK	2.11281	12.3011	2.54155	-5.83253	5.46E-09	6.90E-07 yes
USG00000004031	Fam5b	chr1:160175401-160286391	WT	KO	OK	0.546407	3.20196	2.55091	-4.9158	8.84E-07	6.91E-05 yes
USG00000019906	Lin7a	chr10:106708898-106862199	WT	KO	OK	0.45736	2.68096	2.55135	-4.89662	9.75E-07	7.53E-05 yes
USG00000058665	En1	chr1:122499063-122504568	WT	KO	OK	0.335584	1.97272	2.55544	-3.70104	0.00021472	0.0078751 yes
USG00000031803	B3gnt3	chr8:74214654-74225688	WT	KO	OK	0.115312	0.703388	2.60878	-3.65818	0.00025401	0.008875 yes
USG00000057897	Camk2b	chr11:5869646-5966365	WT	KO	OK	3.055	19.9956	2.71044	-11.6202	0	0 yes
USG00000028736	Pax7	chr4:139292976-139388883	WT	KO	OK	0.122739	0.831778	2.7606	-3.97621	7.00E-05	0.00307848 yes
USG00000036699	Zcchc12	chrX:33735898-33739153	WT	KO	OK	0.980385	6.92268	2.81991	-10.6176	0	0 yes
USG00000038156	Spon1	chr7:120909511-121186884	WT	KO	OK	1.38648	10.4666	2.91629	-7.01801	2.25E-12	5.43E-10 yes
USG00000040610	Tlx3	chr11:33100753-33103541	WT	KO	OK	0.131981	1.04008	2.9783	-3.30654	0.00094455	0.0262704 yes
USG00000073945	Olfr618	chr7:110745831-110746788	WT	KO	OK	0.233024	1.83856	2.98003	-3.68805	0.00022598	0.0081538 yes
USG00000032269	Htr3a	chr9:48707318-48719204	WT	KO	OK	0.245273	2.14748	3.13018	-4.53872	5.66E-06	0.00033848 yes
USG00000039095	En2	chr5:28492235-28498706	WT	KO	OK	1.0206	9.47003	3.21395	-6.0999	1.06E-09	1.53E-07 yes
USG00000044681	Cnpy1	chr5:28527358-28572332	WT	KO	OK	1.46598	14.1754	3.27344	-9.12525	0	0 yes
USG0000013523	Bcas1	chr2:170172490-170253345	WT	ко	OK	1.39028	13.9856	3.3305	-11.2238	0	0 yes
USG0000036578	Fxyd7	chr7:31827535-31836481	WT	KO	OK	0.302555	3.66888	3.60007	-4.57986	4.65E-06	0.00028733 yes
USG00000027559	Car3	chr3:14863537-14872351	WT	KO	OK	1.7894	21.7165	3.60124	-6.92488	4.36E-12	1.03E-09 yes
USG0000003411	Rab3b	chr4:108551667-108644682	WT	ко	OK	1.50296	18.3564	3.61041	-8.58342	0	0 yes
USG00000074252	Gm10654	chr8:73455303-73456936	WT	ко	OK	0.0354664	0.887273	4.64485	-3.15432	0.00160872	0.0389813 yes
USG00000091345	AC119951.1	chr9:105758399-105862974	WT	ко	OK	0.080365	3.0779	5.25924	-7.95417	1.78E-15	6.74E-13 yes
USG00000026247	Ecel1	chr1:89044229-89053096	WT	ко	OK	0.472969	0	-1.79769e+308	-1.79769e+30	0.00157675	0.0384825 yes