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Abstract 

In this study, we employ a Monte Carlo simulation technique for estimating the conditional 
probability of victory at any stage in the first or second innings of a one-day international 
(ODI) cricket match.  This model is then used to test market efficiency in the Betfair ‘in-play’ 
market for large sample of ODI matches.  We find strong evidence of overreaction in the first 
innings.  A trading strategy of betting on the batting team after the fall of a wicket produces a 
significant profit of 20%.  We also find some evidence of underreaction in the second innings 
although it is less economically and statistically significant than the first innings overreaction.  
We also implement trades when the discrepancy between the probability of victory implied 
by current market odds differs substantially from the odds estimated by our Monte Carlo 
simulation model.  We document a number of trading strategies that yield large statistically 
significant positive returns in both the first and second innings.   
 
 
Keywords: in-play betting markets; Trading strategies; ODI Cricket; web-scraping; Monte 
Carlo simulation 
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1. Introduction  

According to Thaler and Ziemba (1988), betting markets provide an ideal setting in which to 

test market efficiency. Betting markets have a key advantage over stock exchanges – the 

uncertainty surrounding the outcome of a sporting wager is definitively resolved at a well-

defined termination point.  The key difficulty in testing the efficiency of stock markets is that 

the “true” price of the stock is never revealed, meaning that efficiency is generally tested as 

part of a joint hypothesis with rational expectations or a particular asset pricing model.  This 

problem does not arise in sports betting markets, where the outcome is revealed at the 

completion of the match/game.   

Moreover, it is possible to examine sports betting markets for the same types of 

systematic effects that have been documented in stock markets.  For example, various authors 

have documented an overreaction in stock prices to certain announcements of important 

news.  In the context of sports betting, one can examine how the “in-play” odds react to 

important events (e.g., the loss of a wicket in a cricket match or the scoring of a goal in a 

football match).   

Similarly, in stock markets semi-strong form efficiency can be tested by considering 

whether publicly available information can be processed in a way that leads to exploitable 

trading opportunities.  However, one can never be sure that the risk of the trading strategy 

was accurately quantified.  A cleaner test is available in sports betting markets whereby 

publicly available information can be used to construct a betting rule, and the outcome of 

each bet is revealed with certainty at the end of each game.  That is, the odds available on a 

sporting bet provide an unambiguous estimate of the market’s perceived probability of an 

event occurring.  If the market systematically misestimates these probabilities, then profitable 

trading strategies can be constructed.   
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To this end, we analyse the efficiency of the Betfair1 ‘in-play’ market relating to one-

day international cricket (ODI).  Specifically, we examine the efficiency of the market 

reaction to significant value-relevant events (specifically, the fall of a wicket), via the 

execution of a trading rule based on a comprehensive linear programming model that uses 

publicly available information. We find some evidence of systematic inefficiencies that are 

closely analogous to similar effects that have been documented in stock markets.       

ODI cricket is a “bat and ball” sport in which one team bats and sets a total score in 

the first innings, and the opposing team then takes its turn to bat and “chases” the set score in 

the second innings.  The main cricket playing nations are Australia, New Zealand, England, 

South Africa, India, Pakistan, Sri Lanka, Bangladesh and the West Indies.  Each team would 

play an average of approximately 20 ODIs per year.  A major World Cup is held every four 

years.  Readers unfamiliar with the game of cricket are directed to Section A.1 of the 

appendix, which summarises the rules that are central to our paper.   

There are a number of potential factors that influence a ODI cricket team’s expected 

score. The more resources a team has available, the more runs they are likely to score 

throughout the remainder of the innings.  The value of each of these resources on a team’s 

expected score is dependent on the amount of the other resources available.2  In this sense, 

any attempt to model or predict the outcome of a cricket innings must account for the 

interaction between the available resources.  

We develop a more sophisticated and more accurate approach to modelling these 

interactions than achieved in the previous literature.  In particular, we develop a 

                                                
1 Betfair is an on-line betting exchange on which bettors are able to post “back” and “lay” odds in precisely the 
same way that traders place “bid” and “ask” quotes when trading stocks.  In-play betting occurs when bettors are 
able to trade during the course of the game, as it evolves.  Anyone with a (free) Betfair account and access to the 
Internet can place a bet.  However, in private communications, Betfair have advised that customers in the 
following countries are blocked from betting on their exchange: the US, China, France, Hong Kong, Japan, 
Singapore, South Africa and Turkey. Betfair retains a 5% commission on winning bets. 
2 For example, having six wickets remaining in the very last over of a team’s innings is of little benefit in aiding 
its push towards victory. Similarly, having 20 overs remaining (i.e. 40% of the maximum batting time) is of 
little benefit to a team that has already lost nine wickets. 
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comprehensive dynamic programming model that models the ball-by-ball evolution of the 

match through to its conclusion.  We implement this model using a Monte Carlo simulation 

approach that tracks the ball-by-ball evolution of the match through to its conclusion, via 

many simulations; an approach that provides the basis for a number of tests of statistical 

significance.  Notably, our study is the first to test the efficiency of the ‘in-play’ market with 

a model that accounts for differences in team skill and the first to use ball-by-ball data. 

Accordingly, our model should have a much higher likelihood of identifying any market 

inefficiency and any exploitable mispricing.   

Brooker and Hogan (2011) create a model that includes variables for match conditions 

and run rate required (based on a large sample of 310 games), but their model is restricted to 

the second innings only.3 Importantly, our model can estimate the probability of victory at 

any point throughout either innings of a cricket match. Further, we partition the innings into 

multiple segments and separately estimate the model coefficients for each, thereby capturing 

non-linearities in the data.  Compared to Brooker and Hogan (2011), we condition on four 

additional variables – current run rate, current batter score and the career batting averages and 

strike rates of all 22 players in the match – which we argue will improve the predictive ability 

of the model.  Because of the additional complexity associated with accounting for each 

individual player, our method is based on Monte Carlo simulation. Finally, we have a very 

large sample comprising 1,101 ODI matches and utilise highly granular ball-by-ball data.  

There are considerable benefits of testing efficiency in an ‘in-play’ market compared 

with traditional studies of pre-match odds or financial markets.  In particular, ‘in-play’ sports 

betting markets are not affected by the problem of private information because once a match 

has begun, any new information about the state of the game is instantly observed by all. As 

                                                
3 That is, they model only the probability of the second team winning, conditional on the score set by the team 
that batted first. 
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such, we would expect changes in the odds to accurately and speedily reflect the market’s 

interpretation of the information arrival.  

Our out-of-sample dataset contains ball-by-ball scores and odds for 186 ODI matches, 

producing a total of 101,176 ‘news-events’ which represent the outcome of every ball that is 

bowled in the game.  Having detail at a ball-by-ball level means that we are able to place 

hypothetical wagers immediately after any ball is bowled as opposed to being restricted to 

betting at the conclusion of any given over.  Our model also includes several variables that 

aim to capture the ability of each individual player.   

 Our key findings can be summarised as follows. We find strong evidence of 

overreaction in the first innings.  A trading strategy of betting on the batting team after the 

fall of a wicket under strict trading restriction results in a profit of 20.8% that is significant at 

the 1% level.  We also find some evidence of underreaction in the second innings although it 

is less economically and statistically significant than the first innings overreaction.  We also 

implement trades when the discrepancy between the probability of victory implied by current 

market odds differs substantially from the odds estimated by our Monte Carlo simulation 

model.  We document a number of trading strategies that yield large statistically significant 

positive returns in both the first and second innings. 

 The remainder of this paper organised as follows. In Section 2, we present a brief 

background and literature review. Section 3 then outlines the research method, while the 

results are presented and discussed in Section 4. Section 5 concludes. 

2. Background and Literature Review 

2.1 Cricket Literature 

Clarke (1988) is one of the first attempts at modelling a team’s total score with a dynamic 

programming model. Simple in nature, it is based on the idea that the average run rate 

targeted by a team is inversely related to the probability of getting out.  Duckworth and Lewis 
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(1998) developed a model for forecasting expected runs based on a two-factor relationship 

between wickets in hand and overs remaining.  Bailey and Clarke (2006) use a multiple linear 

regression model that incorporates variables such as experience, quality, form and home 

advantage.  Unlike Duckworth and Lewis (1998), this model only predicts the expected total 

score from the start of the innings.  Once the innings has begun, they adjust their predicted 

score based on the quantity of resources used according to the Duckworth and Lewis (1998) 

tables.4   

Swartz, Gill and Muthukumarana (2009) develop a model for predicting potential 

outcomes for each delivery. They use a single latent variable for determining both the runs 

and wickets process which assumes that the expected run rate is inversely related to the 

probability of a wicket. Their model does not provide a good empirical fit to the data, 

particularly in the later stages of an innings.  Brooker and Hogan (2011) use Bayes’ rule to 

estimate the impact of ground conditions on the distribution of first innings scores.     

2.2 Efficiency of Sports Betting Markets 

One of the most frequently analysed sports betting markets is horse racing.  The general 

consensus is that the racetrack market is very efficient – probabilities implied by the market 

odds match very closely to the true probabilities. However, several anomalies have been 

uncovered.  For example, one of the earliest documented is that punters systematically 

underestimate the chances of short-odds horses and overvalue those of long odds horses – the 

so-called, ‘favourite-longshot’ bias (Griffith, 1949; McGlothlin, 1956; Ali, 1977; Weitzman, 

1965; Snyder, 1978; Asch, Malkiel and Quandt, 1982; Ziemba and Hausch, 1987).   

                                                
4 Clarke (1988) also develops a dynamic programming model to determine the optimal scoring rate.  His 
analysis suggests that a good strategy is to score quickly at the beginning of the innings and slow down if 
wickets are lost.  A number of papers since then have used similar dynamic programming models (Johnston, 
Clarke and Noble, 1993; Preston and Thomas, 2000; Norman and Clarke, 2007, 2010; Brooker, 2009) and 
analysed optimal strategy (Preston and Thomas, 2000). Other aspects of cricket strategy that have been studied 
include the analysis of the optimal batting order to maximise expected runs (e.g. Ovens and Bukiet, 2006; 
Norman and Clarke, 2007, 2010) The general conclusion is that adjusting the batting order to suit the match 
conditions results in an increase in the probability of winning (on average). 
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The structure of the horse racing market differs from the cricket betting market in 

three key ways.  First, relatively high commissions are charged by the racetracks – for 

example, Asch, Malkiel and Quandt (1982) report a commission of 18.5%. In our study, 

commissions are much less influential since the maximum charged by Betfair is 5%, paid on 

winning bets only.  Second, anecdotal evidence about racetrack bettors being more concerned 

with having a fun day out at the track as opposed to being strictly rational expected utility 

maximisers, is much less likely to apply to our setting.5  We argue this because of the online 

nature of the exchange in which the majority of bets are placed by people who are not 

actually at the game.  Third, for horse-racing there is no in-play market – all bets must be 

placed before the beginning of the race.  Moreover, horse racing also involves more relevant 

information at the venue (e.g., the condition of the track and other horses) making on-line 

betting relatively less attractive.       

Tests of market efficiency and investor rationality have been conducted in many 

professional sports betting markets around the world. The spreads betting market in the 

National Football league (NFL) in the US has been shown to exhibit several biases.  For 

example, Golec and Tamarkin (1991) find that the market underestimates the home team 

advantage and has a bias against underdogs.  However, these biases have been shown to have 

diminished over time (Gray and Gray, 1997).  Dare and Holland (2004) believe that previous 

models suffer from collinearity problems because the home team is twice as likely to be the 

favourite and these variables are therefore not independent as the model assumes.  Using a 

new specification that corrects for this bias, they report the renewal of a bias favouring bets 

on home underdogs.6 

                                                
5 Indeed, the horse-racing favourite/longshot bias has been explained in terms of “bragging rights” associated 
with backing a longshot winner. 
6 The betting markets of many other international sports have been used for testing market efficiency including 
golf (Docherty and Easton, 2012); soccer (Demir, Danis and Rigoni, 2012); tennis (Forest and McHale, 2007); 
Australian Rugby League and Australian Football League (Brailsford, Gray, Easton and Gray, 1995) and Major 
League Baseball (Paul and Weinbach, 2008). 
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In short, the message we gain from this brief coverage of the sports betting literature 

is that efficiency anomalies of various types, have been identified across a wide range of 

sports betting markets. As we will see in the next section, in a more limited way this is also 

true of the cricket betting markets and, thus, we argue that much more extensive and 

powerful testing  is possible than is currently achieved in existing studies. Our paper steps up 

to provide such an extension to this literature.   

2.3 Cricket Betting Markets  

There is a large volume of money wagered on most ODIs relative to other sports.  For 

example, Ryall and Bedford (2010) report that the average amount of money bet ‘in-play’ on 

Betfair for an Australian Football League (AFL) match is $80,000, while blockbuster games 

such as the grand final can attract up to $140,000.  Notably, for the 186 out-of-sample ODIs 

in our study the average amount bet was over $8 million, with some games drawing in excess 

of $20 million.  One reason for the higher betting volumes in ODI cricket games is that 

cricket is viewed by an international audience, particularly in India where ODI matches are 

broadcast on cable TV channels.  Also, ODI cricket matches are played out over a period of 

8-9 hours and, thus, often involve considerable swings in the relative position of the two 

teams, making them ideal candidates for in-play betting.  Moreover, for almost every ODI, 

instant updates on the position of the game are available on-line and via mobile devices.   

Bailey (2005) is the first study to look for inefficiencies in the cricket betting market, 

analysing “head-to-head” match-ups in the 2003 World Cup.  A head-to-head match-up is an 

exotic bet where bettors have to predict which of two players they think will score more runs 

in the match.  Bailey’s (2005) models take into account many factors: batting position, 

experience, home country advantage, match time, innings sequence, opposition, performance, 

and form.  The most successful of the models achieved an ROI of 35%, suggesting that the 

head-to-head market may be inefficient.  Notably, the head-to-head market is a pre-match 
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market – that is, bets are not made once the game has commenced – and so is not directly 

comparable to the ‘in-play’ analysis of our study. 

Using a ball-by-ball dataset of market odds for 15 ODI cricket matches, Easton and 

Uylangco (2006) analyse the changes in odds in response to the outcome of each ball bowled. 

From our perspective, their most interesting finding is the association between the outcome of 

a particular ball and the payoffs of the six preceding balls.  They suggest that this is evidence 

that the market has some ability to predict the outcome of future deliveries.  Overall this 

study is more of a description of how the in-play prices react to certain outcomes as opposed 

to a definitive test of market efficiency.  Absent a model for the probability of victory, they 

are silent on the question of mispricing.      

2.4 In-Play Betfair Market 

In-play markets, like Betfair, allow customers to bet on the outcome of a sporting event while 

it is in progress as opposed to a traditional market where bets can only be placed prior to the 

game commencing. Betfair operates in a similar way to a stock exchange. Opposing bets are 

matched anonymously by Betfair with a commission being charged on the winning bet (see 

the Appendix).7 The advantage of the stock exchange style business model from Betfair’s 

perspective is that they are not exposed to any risk with regard to the outcome of the games 

as would be a traditional bookmaker. They allow punters to decide how much they are 

willing to bet and at what odds.8   

The Betfair interface shows users the odds that are currently available to ‘back’ or 

lay’ each team as well as the market depth for each selection (see Figure A1 in the 

Appendix). To illustrate the difference between a ‘back’ and ‘lay’ wager we provide, in 

Figure A2 of the Appendix an example of the payoffs to a variety of bets placed using the 

                                                
7 We assume for the purposes of our study that we have no Betfair points and thus pay the full commission rate.   
8 A traditional bookmaker determines the odds at which punters can bet and they adjust the odds in an attempt to 
‘balance their book’ which essentially involves having an even amount of money at stake on each result to 
ensure that they make a profit.  
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odds shown in Figure A1.  A lay bet is analogous to short selling in the stock market.  If a 

punter wants to bet on a particular team winning the game they can either place a back bet on 

that team or lay odds for the opposition.9 

Three key existing papers test the efficiency of in-play betting markets and they all 

use Betfair data. Ryall and Bedford (2010) analyse the in-play market for the 2009 AFL 

season, Docherty and Easton (2012) analyse the 2008 Ryder Cup Golf Tournament, while 

Brown (2012) analyses the 2008 Wimbledon final between Roger Federer and Rafael Nadal.  

2.5 Our Contribution 

In the context of the preceding review of the key relevant work, we make a number of 

contributions to the existing literature.  First, we construct a detailed dynamic programming 

model to forecast (a) the total score of the batting team during the first innings of the match, 

and (b) the probability that the chasing team will win the match.  Previous research has, at 

most, considered the probability of a chasing team victory, conditional on the target score 

already set by the first-batting team.  Our model also conditions on the score of the current 

“not out” batsmen (e.g., it is less likely that a batsman will be dismissed if they have already 

compiled a substantial score than if they are just beginning their own innings).   

Another key difference between our model and the previous models is that we 

partition each innings into various segments based on the number of overs and wickets 

remaining and we estimate model parameters separately for each of the segments.  We show 

that this conditioning approach produces more accurate predictions, since the relative 

importance of both wickets and overs remaining depend on the match situation.  In summary, 

our first contribution is a more detailed and accurate dynamic programming model.  We 

implement this model using a Monte Carlo simulation approach that tracks the ball-by-ball 

                                                
9 If a punter places a $100 lay bet on a particular team, they receive the $100 stake upfront but must pay an 
amount equal to $100 multiplied by the agreed odds if that team wins.  So the potential loss can be greater than 
the original $100 stake. 
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evolution of the match through to its conclusion, over many simulations.  This approach 

provides the basis for a number of tests of statistical significance.  

Our second contribution is the application of our model to a large sample of in-play 

exchange betting markets.  No prior studies have analysed the rich and deep in-play exchange 

betting data for ODI cricket matches. Moreover, we develop a number of tests of efficiency.  

In particular, we examine the possibility of overreaction and momentum effects, as have been 

documented in other financial markets. Finally, we introduce a number of methodological 

innovations that are likely to be of use in future research.  For example, we develop 

techniques for (a) synchronising odds and game score data from separate data feeds, and (b) 

calibrating model estimates to account for cases where one of the teams is a strong pre-game 

favourite.      

 

3. Research Design 

3.1 Hypotheses  

We test the betting markets version of weak-form efficiency suggested by Thaler and Ziemba 

(1988), namely, that ‘no bets should have positive expected values’ as opposed to the strong 

form which says that ‘all bets should have negative expected profits equal to the amount of 

commission’. De Bondt and Thaler (1985) document empirical evidence of overreaction to 

recent news in stock price data.  They find that stocks that have extreme price movements in 

one direction tend to be followed by subsequent price movements in the opposite direction.  

In a similar fashion, we seek to test for evidence of overreaction in a sports betting market.  

This leads to our first hypothesis: 

H1: Overreaction Hypothesis The Betfair ‘in-play’ market overreacts to the outcome 
of certain (“high news”) ODI balls in a systematic way. 
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We also examine the market for evidence of momentum effects similar to those found in 

stock price returns (Jegadeesh and Titman, 1993):10 

H2:   Underreaction Hypothesis: The Betfair ‘in-play’ market underreacts to the 
outcome of certain (“high news”) ODI balls in a systematic way. 

 
Hypotheses 1 and 2 look for “irrational” behaviour of the market around significant 

ODI ‘news’ events.  We also test if the market systematically misevaluates the current state 

of the match independent of any under or overreaction to recent events.  We do this by 

comparing the probability of victory determined by our model, with the probability of victory 

implied by the market odds; executing a trading strategy when the discrepancy between the 

two models crosses a certain threshold. 

H3:  Mis-estimated Probability of Victory Hypothesis: The Betfair ‘in-play’ market 
systematically misestimates the probability of victory during an ODI cricket 
match. 

 

3.2 Data 

Several extensive datasets are created and merged in this study.  The first dataset contains 

ball-by-ball information for 1,101 one-day internationals from June 2001 to March 2013, 

excluding all games between non-test playing nations and any games shortened due to rain or 

other interruptions.11 In total there are 601,744 balls recorded, each containing the following 

information: the over number; the ball number; the number of runs scored; the number of 

extras; whether the batsman was out; the batsman’s name; the bowler’s name; the match 

number; the innings number; the date; and the required run rate (for second innings only). 

Table 1 shows the frequency of each ball outcome in our sample. We obtain these unique 

                                                
10 In stock markets, there tends to be consistent evidence of reversals – both at the short-term end (less than four 
weeks) and longer-term (12-36 months) and of momentum over the intermediate term straddled by these two 
(maximising at about the six-month horizon). 
11 Since test playing nations comprise the best teams in world cricket, games involving non-test playing nations 
tend to be very one-sided. Accordingly, other things being equal, such one-sided games are less attractive to 
potential bettors. 
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data by executing a web-scraping program in Python.12 This program reads the ball-by-ball 

text commentaries available on Cricinfo,13 and extracts the relevant information.   

We also obtain data from Fracsoft, a company that records live prices offered by 

Betfair.  This sample covers 186 one-day internationals played from June 2006 to September 

2012. Notably, these odds data are available after every ball, rather than only after every over 

as in previous studies.  Although the Betfair dataset contains a time stamp, it does not contain 

the current score in the cricket match at that time.  Perversely, although the ball-by-ball 

Cricinfo dataset described above contains the scores it does not have a timestamp. Moreover, 

to the best of our knowledge this combined timestamp/score information is not publicly 

available in any form.  Accordingly, we obtain a third dataset from Opta, another sports data 

provider containing the timestamp for every ball that was bowled for each of the 186 matches 

for which we have the live odds data.  Thus, exploiting all three data sources (Cricinfo, 

Fracsoft and Opta) we match up each ball with the corresponding live odds that were 

available at that time.  We also require the career batting average and strike rate of every 

player in every match in our sample, as well as the batting order for each game.  Again we 

extract this information from Cricinfo using the Python web-scraping algorithm. 

It is well established that testing a model against the same data that was used to 

estimate the parameters will result in over-fitting.  Accordingly, the 186 matches for which 

we have live odds information from the original ball-by ball dataset are quarantined as the 

out-of-sample dataset for testing our trading rules.  All other games in the ball-by-ball dataset 

constitute the “in-sample” component for estimating the model parameters. 

  

                                                
12 Python is a widely used general-purpose, high-level programming language (see www.python.org).  
13 Cricinfo (www.espncricinfo.com) is the world’s leading cricket website and in the top five single-sport 
websites in the world. Its content includes live news and ball-by-ball coverage of all Test and one-day 
international matches. 
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3.3 Modelling  

3.3.1 Core Features of the Dynamic Programing Model  

Dynamic programming models applied to cricket, take on board all the available conditioning 

information to produce a probability for every possible outcome of the next ball bowled. 

Such models used by Carter and Guthrie (2004) only condition on balls remaining and 

wickets in hand, while Brooker and Hogan (2011) also add in the run rate required and a 

conditions variable.  Our model extends the dynamic program in several key ways from the 

previous literature.  First, previous work only models the probability of victory for the second 

innings (conditioned on the score having been set by the first batting team), whereas our 

model considers ball-by-ball at any time in the ODI. Second, we allow the probability of a 

batsman getting out or scoring a particular number of runs to vary as a function of their own 

current score.  It is a widely held belief among cricket experts and fans that a batsman takes 

time to get their ‘eye-in’ and their performance generally improves the longer they have been 

batting.14  

Another key difference between our model and the previous models is that we split 

each innings up into various segments based on the number of overs and wickets remaining 

and we estimate model parameters separately for each of the segments.  This allows the 

intercepts and slope coefficients to vary throughout the innings in a non-linear way.  We 

argue that this conditioning approach produces more accurate predictions, since the relative 

importance of both wickets and overs remaining depend on the match situation.15   

We develop separate models for the first and second innings.  For the first innings we 

allow the outcome of any particular delivery to be influenced by six factors: (1) Balls (b) – 

number of balls remaining in the innings; (2) Wickets (w)– number of wickets remaining for 

                                                
14 We do not include the conditions variable used by Brooker and Hogan (2011) because it uses the result of the 
match to adjust the distribution of second innings scores.   
15 For example, the difference between being 3/250 or 6/250 off 45 overs is not the same as the difference 
between being 3/100 or 6/100 after 20 overs. 
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the batting team; (3) Run Rate (RR) – current run rate per over of the batting team achieved in 

the innings to date; (4) Score (s) – current score of the batsman on strike; (5) Average (a) – 

career batting average of the batsman on strike; and (6) Strike Rate SR (k) – career strike rate 

of the batsman on strike.16 

It is important to note that the combination of our dynamic programming model and 

Monte Carlo simulation approach means that complexity and computing time increases 

exponentially with each additional variable.  Consequently, our approach is to expand on the 

previous literature by including a carefully chosen subset of variables that we consider are 

most likely to have the greatest explanatory power.  Specifically, these included variables 

relate to the current score of the “not out” batsman (because there is strong evidence that a 

batsman who is “set” is more likely to score more runs and less likely to lose his wicket) and 

the quality of the batsman (based on his batting average and batting strike rate).   

While we also considered counterpart variables relating to bowlers, we deemed them 

to be less important (and, hence expendable) since each bowler is limited to just 10 overs per 

ODI. Moreover, ignoring the bowling-related variables is broadly supported by the widely-

held belief that ODI cricket is a “batsmen’s game” (e.g., see Dasgupta, 2013).17  We also 

rejected the inclusion of information about the circumstances of the game – for example, 

whether one of the teams was playing at a favoured home ground or whether the game was a 

final or a less important qualification game.  While these variables are also likely to be 

relevant initially, their informativeness, relative to the observed score, is likely to decline as 

the match progresses.   

                                                
16 Importantly, we use the career statistics of each batsman up until the start of the game in question to ensure 
that we are not conditioning on information that occurred subsequently to the game being modelled.   
17 Indeed, there is a fundamental asymmetry in ODI cricket. While an individual batsman is allowed to bat for 
the entire 50 overs allotted to his team with no limit on his score, no one bowler can bowl more than 20% of the 
total overs available in any given ODI innings.  Thus, an individual batsman is more likely to have a greater 
impact on the game than is any single bowler.  For example, only 2 of the top 40 ODI man-of-the match winners 
are predominately bowlers – Shaun Pollock and Wasim Akram.  See 
http://stats.espncricinfo.com/ci/content/records/283705.html (accessed 9 July 2015).  
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For each ball bowled, one of three general outcomes are possible: (1) a wide or no-

ball (i.e., an illegal delivery) with probability E; (2) if the ball is not a wide or no-ball then a 

wicket will fall with probability �(�,�, ��, �, 	, 
); or (3) if the ball is not a wide or no-ball 

and a wicket has not fallen, the batsman scores � runs with probability	�(�; �, �, ��, �, 	, 
), 
where	�	�	{0,1,… 6}.18 For modelling expediency, we assume that (a) each of these outcomes 

are mutually exclusive; (b) only one run is scored when a wide or no-ball is bowled; and  (c) 

byes and leg byes are runs scored by the batsman.19    

We wish to estimate �(�; �,�, ��, �1, �2, �, �1,�2, �,�) which represents the 

probability of scoring � or fewer runs from the remaining �	deliveries, with �	wickets in 

hand, a current run rate of	��, batsman one on a score of	�1, batsman two on a score of 	�2, a 

dummy variable	�	equal to 1 if batsman one is facing, p1 (p2) batting position of batsman one 

(two), career average A and strike rate K of every player in the team. Accordingly, the 

distribution function for the first innings is described by the following equation: 

	�(�; �, �, ��, �1, �2, �, �1, �2, �, �) =																																																																										 
																																												� × �(� − 1; �, �, ��∗ , �1, �2, �, �1, �2,�,�)							   

+	(1 − �) ∙ �(�, �, � ∙ �1 + (1 − �) ∙ �2, 	∗/
∗) 
																																																× �(�; � − 1,� − 1,��∗, �1 − � ∙ �1, �2 − (1 − �) ∙ �2, �∗, �1∗, �2∗, �, �) 

							+	(1 − �)&1 −�'�, �,� ∙ �1 + (1 − �) ∙ �2, 	∗/
∗() 

× * �'�; �,�, ��∗,� ∙ �1 + (1 − �) ∙ �2, 
∗(
+,(-,.,..0)

 

																																					× 	�(� − �; � − 1,�, ��∗ , �1 + � ∙ �, �2 + (1 − �) ∙ �, �∗, �1,�2,�, �)  (1) 

 

                                                
18 While it is possible seven runs can be scored if the batsman hits a six off a no-ball, to keep our modelling 
more manageable, this highly unusual event is excluded. 
19 Since these events they happen so infrequently, our simplifications have minimal impact on the estimation 
procedure while greatly simplifying the modelling process.   
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where	� and	� are 11 × 1 vectors containing the career average and strike rate, respectively, 

of each player in the team, 	∗	= career average of the batsman on strike, 
∗	= career strike 

rate of the batsman on strike and the remaining variables are as defined above.   

For notational convenience, ��∗	denotes the new run rate after scoring	1	runs off the 

given ball and �∗	denotes the updated value for	�	which will change to (1 − �)	 if the 

batsman scores an even number of runs on the last ball of the over or an odd number of runs 

on any other ball.  The model for the second innings is essentially the same except that we 

use the run rate required for victory, RRR, instead of the run rate achieved in the innings to 

date.  The other main difference will be that the distribution will be capped at the target score, 

given victory defined by the rules of cricket.20 

3.3.2 Probability of Losing a Wicket 

We estimate the probability of losing a wicket on a given ball using a probit model, as a 

function of Balls, Wickets, Score, and Av/SR.  To illustrate, the results of running the 

regression for each of the 15 first innings segments is displayed in Table 2.21 The table shows 

that the estimated coefficients on balls remaining are not significant for seven out of the first 

eight innings segments but are significantly negative for all but one of the last seven 

segments.  The negative signs are consistent with the idea that the more balls that are 

remaining in the innings, the higher the cost of losing a wicket because the batting team runs 

the risk of not using up all of their available overs.  In the latter stages of the innings 

however, the cost of losing a wicket is lower because the potential number of overs wasted is 

much smaller and so teams take a more aggressive approach and, therefore, the likelihood of 

a wicket falling is higher.   

                                                
20 For the purposes of estimating the probability of a wide or no ball, we assume that the chances of the bowler 
conceding a wide or no-ball is identical for all match situations and is independent of the conditioning variables 
used for the wickets and run scoring processes.  The results are not sensitive to this assumption given the 
relatively low frequency of these events. 
21 To conserve space, we do not tabulate the second innings counterpart – details are available from the authors 
upon request. 
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 Only five out of the 15 coefficients on wickets remaining are significant, but this does 

not mean that wickets remaining is unimportant factor in determining the likelihood of a 

wicket falling.  This is because we have split the sample up into different segments based on 

the number of wickets in hand and so, by construction, we have reduced the variation in the 

wickets remaining variable, which naturally decreases the likelihood of finding significant 

coefficients. Eight of 15 cases show a significant coefficient on batter score – in all cases 

taking a positive sign. This suggests that, other things equal, the higher the batters score the 

more likely a wicket will fall – a well understood phenomenon especially for very high 

scores. Notably, the coefficients on the Av/SR variable are negative and statistically 

significant for all 15 innings segments.  As predicted, a player with a higher ratio of average 

to strike rate is relatively less likely to get out on a particular ball holding all else equal.   

3.3.3 Runs Process 

We employ an ordered probit model for estimating the run scoring process (0, 1, …, 6), using 

a similar set of explanatory variables22 as we used for estimating the probability of a wicket: 

Balls, Wick, RR, Score, SRate in the first innings (with RRR substituting for RR in the second 

innings).   The ordered probit model estimates a conditional distribution for the number of 

runs scored off the next delivery conditional on the batsman not being out and on the ball 

being a fair delivery.  Similar to the regular probit model, we split our sample up into various 

innings segments to capture non-linearities.  

 To illustrate, the coefficient estimates for this model applied to the second innings are 

presented in Table 3.23 The three most influential variables are required run rate, batter’s 

score and strike rate. The batter score coefficients are positive and statistically significant for 

all 30 innings segments. The positive sign is consistent with the appealing idea that batsmen 

                                                
22 This assumption is a natural consequence of the observation that a batsman’s scoring rate and probability of 
getting out are positively correlated (Clarke, 1988).   
23 To conserve space, we do not tabulate the first innings counterpart – details are available from the authors 
upon request. 
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become more comfortable at the crease the longer they have been there, and are subsequently 

able to score at a faster rate relative to a batsman on a lower score.  The coefficients on the 

strike rate variable are positive and significant in 29 out of the 30 innings segments, 

consistent with the notion that more runs are likely to be scored if an historically faster-

scoring player is on strike. 

3.3.4 Monte Carlo Simulation Strategy 

Armed with the estimates of the transition probabilities from the modelling described above, 

we can obtain the distribution function for runs scored in the innings.  In prior papers, this 

step has been done by the process of backward induction. One of the main drawbacks of 

backward induction and dynamic programming models generally, is that the number of 

possible permutations increases exponentially with the number of input variables required at 

each state.  This ‘curse of dimensionality’ makes backward induction computationally 

impossible with more than a few input variables.    

For example, as Carter and Guthrie (2004) only condition on balls and wickets 

remaining, they are able to backward solve for the distribution function.  Our model, 

however, has six values that can change states on any ball.  Our RR variable, being 

continuous, complicates matters even further. Indeed, even if discretise it into say 10 possible 

values, there are still over 500 billion24 possible match situations per innings and for each of 

those situations we would need to trace every possible path to the end of the innings.  Clearly, 

given the magnitude of the calculations required, the curse of dimensionality is prohibitive.   

Our solution is to use Monte Carlo simulation to approximate the distribution 

function.  For any given set of input values we can then simulate each of the remaining balls 

until the end of the innings, recording the number of runs scored.  Repeating this process 

numerous times, we obtain a distribution of possible innings scores for that initial match 

                                                
24 Based on the assumption of a maximum innings score of 400 and a maximum batter score of 150, the number 
of match situations can be calculated as:  400 × 300 × 10 × 10 × 150 × 150 × 2 = 500,400,000,000 
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situation. Having obtained this distribution we can estimate a projected score by taking the 

average value of the distribution.  This allows us to track the projected score throughout an 

innings as illustrated in the example presented in Figure 1 – the ball-by-ball projected score 

for Sri Lanka’s first innings, played on 17 June, 2006.   

We select an evenly spaced subset of the possible input values and construct a grid for 

which simulation is both feasible and meaningful. Specifically, for each of the 101,177 balls 

in our 186-game sample we run 1,000 simulations from that point until the end of the 

innings.25 We repeat a similar simulation process as described above to obtain the distribution 

of scores at any given point in the second innings.  The main difference is that the second 

innings ends when Team 2 surpasses the score made by Team 1, which means that the 

distribution of scores for Team 2 will be right-side truncated.  

3.3.5 Probability of Victory 

We convert our distribution of innings scores into probabilities of victory.  For the second 

innings, which is the simpler case, we substitute the current values of the input variables 

�, �, ���, �1, �2, �, �	and	� into our simulation algorithm to obtain a distribution of scores.  

We then calculate the proportion of simulated scores that are greater than or equal to Team 

1’s score and this is our estimated probability of victory for Team 2.   

Estimating the probability of victory at any point during the first innings requires 

some additional steps.  Specifically, for each of these simulated scores we simulate 10,000 

second innings attempts at chasing that score.  While at first it might seem intractable to 

perform 10,000 additional simulations for each of the first innings simulations, the problem 

becomes much more manageable when we recognise that most of the input variables will be 

the same at the start of the second innings regardless of what happened in the first innings.  

                                                
25 To perform this mammoth simulation exercise once took around 12 (24/7) days of solid computing time. 
Although this seems like a prohibitively long time, it only takes a few seconds to run 1,000 simulations from a 
given state of any one ODI game. Given that the time elapsed between each ball usually a minimum of 30 
seconds (and these are the least interesting “dot” balls), this leaves ample time for the purposes of placing 
wagers as part of our trading strategies. 
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So we set b=300, w=10, s1=0, s2=0, f=1 and then just vary RRR in order to obtain a 

distribution of simulated scores for chasing each possible target. We assume that the 

probability of chasing any target over 500 is equal to zero.26  

We can now take each simulated first innings score and look up the corresponding 

probability of Team 2 chasing it and subtract one to obtain the probability of victory for 

Team 1.  Finally, we take the average of all of those probabilities to obtain our estimate of the 

probability of victory for Team 1.  It is important to point out the order in which we do this: 

we calculate the probability of chasing each simulated score and then take the average of 

those probabilities.  This subtle difference, recognising Scwartz’ inequality, is likely to have a 

non-negligible effect on the final estimate of the probability of victory. 

 

3.4 Trading Strategies 

We construct a range of trading strategies with varying levels of restrictions.  All of our 

strategies revolve around looking for discrepancies between the odds offered by the market 

and the implied odds suggested by our model.  The most basic trading strategy executes a 

trade whenever the discrepancy between our model and the market odds reaches some 

threshold level, which we call ‘delta’.  More stringent trading rules only place trades when 

the odds are particularly favourable.   

To illustrate, Figure 2 shows a comparison of the market and model implied 

probabilities of victory for the first innings of ODI #3207 between England and India on 

October 23, 2011. The figure shows that there are situations throughout the match where 

there is a substantial discrepancy between the market and model implied probabilities of 

victory, particularly around the fall of a wicket.  It is in these situations that we seek to place 

trades. 

                                                
26 Given that there has only ever been one successful run chase of over 400 runs in over 3,000 ODIs we do not 
expect this to affect the results. 
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We impose a trading restriction to limit the number of trades that can be placed per 

innings.  This is to ensure that we do not end up with a strategy unduly influenced by the 

outcome of a single match.  Another restriction involves only betting on games where the 

initial odds discrepancy at the start of the game falls within some threshold.  In some sample 

games, there is a large initial discrepancy due to un-modelled factors which are likely to lead 

to poor bets.27   

We also implement a series of strategies that adjust our model odds to account for the 

initial discrepancy.  As the match progresses we expect that the market will place a greater 

weight on the current state of the match and less on any pre-match differences in skill.  

Accordingly, we make an adjustment equal to the initial discrepancy multiplied by the 

percentage of the match that is left to be played (1st and 2nd innings, respectively): 

adjustment = initial	discrepancy × &1 − 0.5 × DEFFGHI	JDKFG
LFKMGDIGN	JDKFG) (2a) 

adjustment = initial	discrepancy × &0.5 − 0.5 × DEFFGHI	JDKFG
LFKMGDIGN	JDKFG) (2b) 

The rationale behind these adjustments are as follows. In the case of (2a), at the start of the 

game, we assume that the market odds are correct, whereas with (2b) we start out half way 

between the model and initial odds. 

Our trading strategies need to take into consideration two further factors.  First, for 

any bet, we need to calculate whether it is more advantageous to ‘back’ one team or ‘lay’ the 

other.  For example, if we believe that the market underestimates the probability of Team 1 

winning we should place a back bet on Team 1 if the following relationship holds:28 

	 1
back	1 	< 	 R1 −

1
lay	2S 

                                                
27 Such unmodelled factors include: uneven team strength and local conditions. 
28 Back 1 represents the odds available to back Team 2. Lay 2 represents the odds available to lay Team 2. 
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Otherwise we should lay odds for Team 2.29   

The second important consideration to make when trading on an exchange-style 

betting market is the size of the spread between the available prices on either side of a trade.  

In traditional financial markets this is known as the ‘bid-ask’ spread, whereas in our context it 

is the ‘back-lay’ spread.  The size of the spread from the mid-point essentially represents a 

transaction cost when placing any bet.  Consequently we avoid placing bets when this spread 

is ‘overly’ large.  Our trading strategies will employ a variety of different thresholds to see if 

we can enhance our returns by only trading in liquid markets where the transaction costs are 

low.  We calculate the combined probability of Team 1 or Team 2 winning that is implied by 

the available back and lay prices.  While in a perfect market with no fees or transaction costs 

we would expect this to equal 100%, in any market with a non-zero spread it exceeds 100%.   

Finally, we note that for us to refrain from betting, the combined probability implied 

by the back and lay odds must be greater than the threshold level for both Team 1 and Team 

2.  As explained earlier, we can replicate any strategy of backing or laying Team 2 by 

backing or laying Team 1.  So as long as one of the pairs of back-lay spreads is below the 

threshold we can still place a trade.  There are situations where we select the odds from the 

wider spread because it is a more enticing opportunity.   

4. Results  

4.1 Preliminaries  

Unlike a typical regression situation, we do not have ‘off-the-shelf’ standard errors that we 

can use to determine whether the returns generated by our trading strategies are statistically 

significant.  We want our p-value to represent the probability of obtaining our results purely 

                                                
29 When ‘laying’ odds on a particular team, if that team ends up winning, you are liable to pay the wagered 
amount multiplied by the odds at which the bet was laid.  To maintain our strategy of placing a $100 bet on each 
game, we lay an amount such that our net exposure is equivalent to a ‘back’ bet of $100.   
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by chance if the null hypothesis is in fact true (i.e., the Betfair market is efficient).  We do 

this using a bootstrap simulation procedure described below.   

For each trading strategy, we simulate the payoff of an identical strategy that places 

the same bets on the same team at the same odds.  The key difference is that instead of the 

payoff of each bet being determined by the actual outcome of the match, the result is 

randomly generated such that the probability of each team winning matches the probability 

implied by the market odds.  For example, if we back Team 1 at odds of $2.50, the implied 

probability of victory is 40%.30 We then generate a uniformly distributed random number 

between zero and one and if that number is less than 40%, we treat that as a win for Team 1 

and the $250 payoff is credited to the random strategy.   

We repeat this procedure for every bet placed by a given trading strategy and 

aggregate the payoffs to get the total payoff for one random sample.  We then repeat this 

process 1,000 times to get a distribution of possible payoffs for a given set of bets.  The p-

value is then calculated as the proportion of those random payoffs that are greater than the 

actual payoff of the strategy.  In other words it is an estimate of the probability of achieving 

the observed returns of a strategy purely by chance if the market odds are an unbiased 

estimate of the true probability of victory.   

  

                                                
30

 prob(Team	1	win) = .
KNNJ	IK	WXDY	ZGX[	. =

.
\.]- = 40%. 



  

  
 

26 
 

4.2 Testing the Overreaction Hypothesis (H1)  

The first strategy we implement assesses hypothesis (H1) that the Betfair ‘in-play’ market 

overreacts to significant news events.  If the market overreacts in a manner similar to De 

Bondt and Thaler (1985), a strategy of betting on the batting team immediately after the fall 

of a wicket should yield positive returns.  Table 4 reports the results of following this trading 

rule, placing $100 wagers in the first innings under a variety of trading restrictions.31 

The table shows a clear monotonically increasing relationship between the strictness 

of the probability restriction and the return to the trading strategy.  An unrestricted strategy 

(i.e., any probability of victory at the fall of a wicket) generates a return of -12.3% from 

1,232 bets placed.  The most restrictive probability bracket of 40-60% (i.e., quite an even 

standing game at the fall of a wicket) yields a return of 20.8% from 300 bets placed, 

significant at the 1% level.  This is strong evidence to suggest that the market overreacts to 

the fall of a first-innings wicket in an economically exploitable fashion – and notably in 

circumstances where the fall of the wicket is meaningful in the sense that the outcome of the 

game hangs in the balance.  Another interesting result from Table 4 is that the return 

increases when going from an unrestricted strategy on the back-lay spread to a restriction of 

less than 100.75% for all five win probability segments.  That is, avoiding trades with large 

transaction costs, enhances returns.32 

  The results from Table 4 are consistent with the idea that the market overweights 

news events that occur early in the match.  Given that a one-day international is usually 

                                                
31 Throughout the paper, we examine the profitability of $100 bets and we quantify the number of bets, the total 
payoffs and the return on those bets in the tables. However, what about “scalability” – what happens if a “large 
stakes” wager is placed? Unfortunately, the data currently available to us include only the best three “back” and 
“lay” odds at any time.  That is, since we do not have the entire order book in our study, it is not possible herein 
to formally assess the very interesting question of whether (or to what extent) a very large bet could have been 
absorbed by the market.  As such, while we acknowledge this as a limitation of our study, we identify several 
countervailing factors including those mentioned briefly below. First, it is possible that a larger offer on one side 
of the market may induce additional volume on the other side of the market that would not be observable to us 
even if the entire order book was available.  Also, we understand that large “informal” on-line betting networks 
do exist that are able to absorb relatively large bets with minimal “price impact”.   
32 Unlike the first innings, we find no evidence of overreaction in the second innings – these results are not 
reported to conserve space. Details are available from the authors upon request. 
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played over a nine-hour period, there is plenty of opportunity for the momentum to shift 

between the two teams and it is not uncommon for favouritism to shift from one side to 

another multiple times throughout a match.  It is possible that the market gets carried away 

with an early wicket ignoring the fact that a large portion of the match is yet to be played. 

4.3 Testing the Underreaction Hypothesis (H2)  

Our second hypothesis (H2) assesses whether the market underreacts to significant news 

events as documented by Jagadeesh and Titman (1993) for stock market returns.  For this 

momentum trading strategy we place a bet on the fielding team when a wicket is taken either 

through backing the fielding team or laying odds for the batting team. The (untabulated) 

results of this test for the first ODI innings, shows no economic or statistical significance of 

underreaction.33 This is not surprising given that we documented strong evidence of 

overreaction, and it would be unlikely that both momentum and contrarian strategies could 

both prove profitable under similar trading specifications on the same innings.   

Table 5 contains the results for these underreaction-based strategies in the second 

innings. The results show some evidence of underreaction in the second innings with 11 out 

of 15 cases generating positive returns, though only 3 of these are significant at the 10% 

level.  The most profitable strategy involves no restriction on the back-lay spread, with trades 

only placed when the model probability of victory was between 10 and 90 percent. 

  

4.4 Testing the Misestimated Victory Probability Hypothesis (H3) 

In line with hypothesis H3, we test whether the market systematically misestimates the 

probability of victory at various stages throughout an ODI cricket match, independent of the 

reaction to any particular event.  The trading strategy is based on betting when big differences 

occur between our model odds and the market odds.  

                                                
33 These results are not reported to conserve space. Details are available from the authors upon request. 
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 The first set of trading strategies focus on the first innings using a delta of 10%, with 

no adjustment made to account for the initial odds discrepancy.  Each strategy has a different 

combination of restrictions placed in terms of the overs in which a bet can be placed, the 

interval in which the probability of victory must lie and whether or not we restrict trades 

whose initial discrepancy crosses a certain threshold.  The results of these strategies are 

reported in Table 6. 

An unrestricted strategy of placing a bet whenever the discrepancy between the 

market implied probability of victory and the model probability of victory crosses 10%, 

yields a return of 10.3% (significant at the 10% level).  If we implement a similar strategy, 

but refraining from trading on games where the initial discrepancy between the market and 

the model is greater than 15%, the return increases to 17.4% (now significant at the 5% 

level).  That is, when there is no strong favourite at the beginning of the match, our model of 

the potential game outcome (which is based only on the state of the game in question) is more 

informative.  As we increase the strictness of the restrictions in terms of the overs and 

probability interval, the number of eligible bets that can be placed diminishes and the returns 

are no longer statistically significant.34 

As discussed earlier, there is often a discrepancy between the market odds and our 

model odds at the start of a match due to un-modelled factors that might affect the outcome 

of the game.  Table 7 reports the results of trading strategies that make an adjustment for this 

initial difference in the odds as detailed earlier. The trading strategies shown in this table 

display positive returns ranging from 7-36%.  The strategies that restrict bets from being 

placed outside of overs 15-35 have large positive returns but the majority are not statistically 

                                                
34 In unreported analysis, by increasing the delta required before placing a bet the profitability of the trading 
strategies improves relative to those reported in Table 6.  In particular, the trading strategies with a restriction on 
the initial discrepancy now yield returns ranging from 25.5-32.8% with statistical significance at the 5% or 10% 
level for the 0-50 over strategies.  Although the strategies with no restriction on the initial discrepancy now have 
a higher return than in Table 6, because there are fewer bets placed, the majority of are not statistically 
significant. 
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significant at the 10% level, again likely due to the reduction in the number of bets relative to 

the unrestricted strategies.  All ten unrestricted strategies are statistically significant at a 

minimum 10% level.  Interestingly, a strategy that restricts bets to when the probability of 

victory is between 40 and 60 percent, yields a return of 36.2% which is significant at the 1% 

level.  This is strong evidence that inefficiencies may exist in the ‘in-play’ Betfair market for 

ODIs. 

When the Table 7 analysis is repeated for a delta of 15% (unreported), no strategy is 

statistically significant at the 10% level.  This result is not surprising given that a delta of 

15% is going to occur much less frequently than in Table 7, since we have adjusted the model 

odds to account for the initial discrepancy between the market and the model.  With such a 

reduction in the number of bets in each strategy, it is much more difficult to find significant 

results. 

In our final test, a similar set of trading strategies on the second ODI innings are 

analysed and Table 8 reports the results for the 10% delta case, with no initial odds 

adjustment. While all trading strategies show positive economic returns, only the strategies 

that restrict bets from being placed outside of overs 15-35 are statistically significant.35  One 

possible explanation for this is that the latter stages of the second innings will likely be 

influenced by game specific factors that are not taken into account in our model.36     

A further reason that our model might not perform as well towards the very end of the 

game is that the career batting averages and strike rates in our model will convey limited 

information in the final stages of a game.  By then, the majority of players will have batted 

                                                
35 In unreported analysis, we apply an initial odds adjustment to the second innings sample in a comparable way 
to Table 7 for the first innings. This produces a negative return to all trading strategies for the second innings.  
This is not unexpected since the relative importance of any pre-match differences in skill that were factored in to 
the market odds at the start of the match will diminish as the match progresses. 
36 For example, if a team requires 20 runs off 2 overs to win the game, factors such as the ‘Death bowling’ 
ability of the remaining bowlers and the ability of the batsman to play under pressure becomes important.  While 
we would expect the market to take these factors into account, capturing this would be difficult as it would 
require the model to keep track of how many overs each bowler has bowled, as well as having some sort of 
death bowling and pressure batting rating for each player. 
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and most of the overs will have been completed so that the career statistics are of little 

consequence.   

5. Conclusions 

This study tests a range of trading strategies using the ‘in-play’ Betfair market for ODI 

cricket games.  Unlike a traditional financial market, such sports betting markets provide an 

ideal setting for these tests because the true value of the asset is revealed at a definite ending 

point.  An ‘in-play’ cricket betting market is especially comparable to a traditional financial 

market because there is regular sequence of ‘news events’ (in the form of the outcome of 

each delivery) that must be priced by the market.  This allows us to unambiguously measure 

the market’s perception of the impact of the information arrival to determine if the market 

reacts in a rational and efficient manner.  Our method utilises information at the ball-by-ball 

level to estimate the model parameters. While ball-by-ball histories been recorded for all one-

day internationals since 2001, it is only with major advances in computer technology in very 

recent times, that there is now sufficient accessible data to obtain reliable parameter 

estimates. But as explained in the paper, simulation of game scenarios with the richness/depth 

of models that we employ is no trivial task and our solutions to these challenges represent 

major breakthroughs in this literature. 

We construct a series of momentum and contrarian strategies designed to exploit any 

systematic biases in the markets reaction to the outcome of each ball. We also examine if the 

market systematically misestimates the probability of victory throughout a cricket match 

independent of their reaction to a single news event.  To the best of our knowledge, ours is 

the first study to factor in player-specific characteristics of any sort to determine the 

probability of victory at any point in a match. To achieve this last goal we require a model to 

estimate what impact a particular news event should have on the market odds.  Specifically, 
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we develop a Monte Carlo simulation procedure to estimate a distribution of scores from any 

possible match situation.  Our key results are summarised below.   

The most successful strategy in terms of both economic and statistical significance is 

achieved in the first innings by placing bets when the batting side had a probability of victory 

between 40 and 60 percent and when the combined spread was less than 100.75%.  This 

overreaction-based strategy yields an after-commission return of 20.8%, significant at the 1% 

level.  In the second innings we find evidence that the market underreacts to the fall of a 

wicket. The most profitable return is achieved by betting on the fielding team to win 

immediately after the fall of a wicket as long as the batting team’s probability of victory is 

between 20 and 80 percent and the combined spread is less than 100.50%.  This strategy 

achieves an after-commission return of 9.3%.   

Regarding whether the market systematically misestimates the probability of victory, 

we document several profitable trading strategies in the first and second innings.  The most 

profitable first innings trading strategy is achieved with a delta of 10% and a restriction on 

placing bets when the model probability of victory is outside of the 40 to 60 percent range.  

This strategy generates a return of 38.6%, significant at the 1% level.  Overall, these results 

suggest that the ‘Betfair’ market does not satisfy the definition of weak-form efficiency 

suggested by Thaler and Ziemba (1988). 

In ongoing research, we are considering a number of ways to further refine our 

dynamic programming model.  First, whereas we condition on the full career average score of 

each batsman (which we argue to be a substantial and an important improvement on existing 

models) there might be additional relevant information in more recent batting “form”, such as 

the batting average over the last six or twelve months or over the previous dozen matches.  

Inclusion of this “batting form” variable would allow us to examine behavioural biases such 

as the tendency to over-weight more recent observations.  Second, whereas we currently 

condition on the “quality” of each batsman, the model could be extended to also condition on 



  

  
 

32 
 

the quality of each bowler.  As argued above, such a bowling focus is expected to have a 

smaller effect.  Third, we also note that the rules relating to “power plays” varied over our 

sample period.37  Whether or not a team has used its power play could be included as an 

additional conditioning variable in the model.  Finally, the model could also be extended to 

incorporate variables that relate to the general circumstances of the game – for example, 

whether one of the teams is playing at home, whether the game is “alive” or just part of series 

that has already be decided, and whether the game is a standard fixture or some sort of final.  

 

 

 

   

 

 

 

  

                                                
37 In ODIs, the batting team receives a five-over “power play”, during which the fielding team is restricted in the 
number of fielders it is allowed to place near the boundary of the playing field.  This feature is designed to allow 
the batting team to score at a faster rate than is otherwise possible. 
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Figure 1:  Current vs. projected score for Sri Lanka in ODI played 17 June, 2006 

This figure shows a comparison of the current score versus the projected score throughout Sri Lanka’s first 

innings in ODI #2384 played on June 17, 2006.  The blue line represents their actual score throughout the 

innings, with the black asterisks denoting the fall of each wicket.  The red line is the mean of the distribution of 

simulated scores obtained from our Monte Carlo procedure described in the main text.  

 
Figure 2:  Market versus model probability of victory – ODI #3207 – England vs. India 

This figure shows a comparison of the probability of victory implied by the current market odds (red line) with the estimated 
probability given by our model (black line) for the first innings of ODI # 3207. The blue asterisks represent the fall of each 
wicket.  
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Table 1: Distribution of Ball Outcomes 
This table presents the observed frequency of ball outcomes in our full sample of 1,101 ODI 
matches played between June 2001 and March 2013.  Byes and leg byes are treated as runs 
scored by the batsman. 

  Innings 1   Innings 2   

Outcome Frequency %   Frequency % 
Total 

No. Obs 

Wicket 8,629 2.7%   7,249 2.6% 15,878 

Wide 6,399 2.0%   5,639 2.0% 12,038 

No-ball 1,342 0.4%   1,305 0.5% 2,647 

0 runs 157,068 48.6%   138,657 49.8% 295,725 

1 run 103,218 31.9%   84,497 30.4% 187,715 

2 runs 18,463 5.7%   15,262 5.5% 33,725 

3 runs 2,480 0.8%   2,309 0.8% 4,789 

4 runs 22,090 6.8%   20,241 7.3% 42,331 

5 runs 504 0.2%   468 0.2% 972 

6 runs 3,256 1.0%   2,621 0.9% 5,877 

7 runs 22 0.0%   25 0.0% 47 

              

Total 323,471     278,273   601,744 
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Table 2:  Estimates for the Wickets Process for ODI Innings 1 
This table shows the coefficient estimates for the probit model, modelling the likelihood of a wicket occurring 
on the next ball bowled.  The explanatory variables are: Balls – number of balls remaining in the innings; Wicket 
– number of wickets remaining for the batting team; Score – current score of the batsman on strike; Av/SR – on 
strike batsman's career batting average divided by his career strike rate.  The coefficients are separately 
estimated for each of the 15 innings/wickets segments.  The first column shows the number of sample 
observations that occur in each bivariate segment in the actual dataset. ***, ** and * indicate significance at 1%, 
5% and 10% levels, respectively.  

Seg 
Num 

# Obs 
Over 

Segment 
Wicket 

Segment 
constant 

(β0) 
Balls 

(β1) 
Wicket 

(β2) 
Score 

(β3) 
Av/SR 

(β4) 

1     34,507  1-15 0 -1.015 -0.002 - 0.001 -0.013*** 

2     40,227  1-15 1-2 -1.506 -0.001 0.026 -0.001 -0.013*** 

3       8,522  1-15 3-9 -1.976 -0.001 0.109** 0.008** -0.012*** 

4     43,409  16-35 0-2 -1.848 0.000 0.018 0.001* -0.009*** 

5     44,565  16-35 3-4 -1.941 0.001** -0.008 0.003*** -0.008*** 

6     20,503  16-35 5-9 -1.566 0.000 -0.022 0.003** -0.011*** 

7       8,716  36-40 0-3 -1.856 -0.004 0.074* 0.001 -0.007** 

8     10,445  36-40 4-5 -1.578 -0.004 0.071 0.003** -0.015*** 

9       6,525  36-40 6-9 -0.939 -0.007* -0.061* 0.002 -0.010** 

10       9,607  41-45 0-4 -1.706 -0.005* 0.067** 0.002** -0.007*** 

11       9,464  41-45 5-6 -1.404 -0.005 -0.005 0.001 -0.007** 

12       5,395  41-45 7-9 -1.154 -0.007** -0.040 0.003 -0.010** 

13       8,050  46-50 0-5 -1.245 -0.007*** 0.005 0.002*** -0.006*** 

14       8,290  46-50 6-7 -1.168 -0.021*** 0.072* 0.002** -0.008*** 

15       5,288  46-50 8-9 -0.900 -0.027*** 0.020 -0.001 -0.007* 
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Table 3:  Estimates for the Runs Process for ODI Innings 2 
This table shows the coefficient estimates for the ordered probit model, modelling the runs process for the next ball 
bowled (assuming that a wicket will not fall).  The dependent variable takes the integer values 0, 1, …, 6.  The 
explanatory variables are: Balls – number of balls remaining in the innings; Wicket – number of wickets remaining for the 
batting team; RRR – required run rate for the batting time; Score – current score of the batsman on strike; SRate – career 
strike rate of the batsman on strike.  The coefficients are separately estimated for each of the 30 innings/wickets 
segments.  The first column shows the number of sample observations that occur in each bivariate segment. ***, ** and * 
indicate significance at 1%, 5% and 10% levels, respectively.  
 

Seg 
Num 

# Obs 
Over 

Segment 
Wicket 

Segment 
Balls 
(β1) 

Wicket 
(β2) 

RRR 
(β3) 

Score 
(β4) 

SRate 
(β5) 

1    19,659 1-5 0 -0.0081*** - 0.0111 0.0146*** 0.0129*** 
2      5,989 1-5 1 -0.0061** - 0.0447*** 0.0211*** 0.0063*** 
3      1,511 1-5 2-9 0.0006 -0.0130 -0.0158 0.0277*** 0.0112** 
4      9,044 6-10 0 0.0063*** - 0.0233*** 0.0131*** 0.0083*** 
5    10,234 6-10 1 -0.0007 - 0.0279*** 0.0119*** 0.0070*** 
6      7,647 6-10 2-9 0.0021 0.0096 0.0177 0.0172*** 0.0051** 
7      4,465 11-15 0 -0.0021 - 0.0331*** 0.0059*** 0.0125*** 
8      7,923 11-15 1 -0.0032** - 0.0268*** 0.0077*** 0.0110*** 
9    14,219 11-15 2-9 0.0001 0.0568*** 0.0213*** 0.0107*** 0.0079*** 

10      7,505 16-20 0-1 -0.0030* 0.0446 0.0214*** 0.0052*** 0.0063*** 
11    13,351 16-20 2-3 0.0000 0.0210 0.0379*** 0.0061*** 0.0078*** 
12      5,367 16-20 4-9 -0.0013 0.0283 0.0286*** 0.0116*** 0.0082*** 
13    10,758 21-25 0-2 -0.0019 -0.0113 0.0319*** 0.0043*** 0.0081*** 
14    10,027 21-25 3-4 -0.0016 0.0869*** 0.0356*** 0.0055*** 0.0087*** 
15      4,462 21-25 5-9 -0.0026 0.0221 -0.0020 0.0093*** 0.0060*** 
16      7,107 26-30 0-2 -0.0020 0.0163 0.0339*** 0.0030*** 0.0088*** 
17    10,223 26-30 3-4 -0.0024* 0.0515** 0.0353*** 0.0051*** 0.0072*** 
18      6,586 26-30 5-9 0.0008 -0.0119 -0.0123* 0.0090*** 0.0099*** 
19      4,662 31-35 0-2 0.0010 -0.0102 0.0536*** 0.0042*** 0.0094*** 
20      8,915 31-35 3-4 -0.0007 0.0911*** 0.0256*** 0.0044*** 0.0076*** 
21      8,736 31-35 5-9 -0.0002 0.0203* 0.0239*** 0.0084*** 0.0053*** 
22      5,947 36-40 0-3 -0.0042** -0.0002 0.0476*** 0.0025*** 0.0111*** 
23      6,706 36-40 4-5 -0.0033** 0.0115 0.0362*** 0.0035*** 0.0101*** 
24      7,377 36-40 6-9 -0.0039** 0.0365** 0.0174*** 0.0060*** 0.0102*** 
25      5,118 41-45 0-4 -0.0085*** 0.0262 0.0369*** 0.0025*** 0.0055** 
26      5,437 41-45 5-6 -0.0053*** 0.0008 0.0210*** 0.0045*** 0.0069*** 
27      6,076 41-45 7-9 -0.0027 0.0630*** 0.0097*** 0.0059*** 0.0104*** 
28      1,319 46-50 0-4 -0.0041 -0.0283 0.0001 0.0027*** 0.0047 
29      4,101 46-50 5-7 -0.0083*** -0.0074 -0.0013** 0.0033*** 0.0092*** 
30      3,743 46-50 8-9 -0.0108*** 0.1270*** -0.0003 0.0028*** 0.0154*** 
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Table 4: Testing Market Overreaction Hypothesis (H1), First ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the first innings of ODI matches in our 
sample.  A hypothetical trade is placed at the fall of every wicket in every first innings.  We place a $100 bet on Team 1 to win 
either by placing a $100 back bet on Team 1 or placing a lay bet on Team 2 that has a $100 exposure.  Pr(win) represents the 
probability of victory implied by our model. Back-Lay spread represents the combined probability of victory of Team 1 or Team 2 
winning implied by the back-lay odds available.  Net $P/L is the profit after adjusting for the 5% commission charged by Betfair on 
the profit of each winning bet. The p-value represents the probability of obtaining a profit greater than or equal to the actual profit 
observed, assuming that the market odds represent the true probability of victory. ***, **, * indicate significance at the 1%, 5% 
and 10% levels, respectively. 

Pr(Win) 
Back-Lay 

Spread 
Number  
of bets 

Total Bet 
Total 

Payoff 
Gross $P/L 

Net 
$P/L 

Return p-value 

0-100% -         1,232 $123,200 $110,878 -$12,322 -$15,111 -12.3% 0.991
0-100% <100.75%         1,041 $104,100 $99,389 -$4,711 -$7,286 -7.0% 0.861
0-100% <100.50%            682 $68,200 $66,517 -$1,683 -$3,373 -4.9% 0.717
10-90% -         1,119 $111,900 $106,559 -$5,341 -$8,064 -7.2% 0.891
10-90% <100.75%            979 $97,900 $96,104 -$1,796 -$4,311 -4.4% 0.663
10-90% <100.50%            661 $66,100 $65,228 -$872 -$2,553 -3.9% 0.624
20-80% -            949 $94,900 $94,571 -$329 -$2,737 -2.9% 0.557
20-80% <100.75%            842 $84,200 $87,183 $2,983 $729 0.9% 0.188
20-80% <100.50%            596 $59,600 $62,236 $2,636 $1,034 1.7% 0.170
30-70% -            692 $69,200 $73,937 $4,737 $2,845 4.1% 0.054* 

30-70% <100.75%            599 $59,900 $66,508 $6,608 $4,897 8.2% 0.010** 

30-70% <100.50%            453 $45,300 $49,996 $4,696 $3,432 7.6% 0.013** 

40-60% -            353 $35,300 $41,905 $6,605 $5,489 15.6% 0.005*** 

40-60% <100.75%            300 $30,000 $37,211 $7,211 $6,226 20.8% 0.001*** 

40-60% <100.50%            234 $23,400 $27,764 $4,364 $3,666 15.7% 0.004*** 
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Table 5: Testing Market Underreaction Hypothesis (H2), Second ODI Innings   
This table shows the summary results from implementing a series of trading strategies on the second innings of ODI matches in our 
sample.  A hypothetical trade is placed at the fall of every wicket in every second innings.  We place a $100 bet on Team 2 to win 
either by placing a $100 back bet on Team 2 or placing a lay bet on Team 1 that has a $100 exposure.  Pr(win) represents the 
probability of victory implied by our model. Back-Lay spread represents the combined probability of victory of Team 1 or Team 2 
winning implied by the back-lay odds available.  Net $P/L is the profit after adjusting for the 5% commission charged by Betfair on 
the profit of each winning bet. The p-value represents the probability of obtaining a profit greater than or equal to the actual profit 
observed, assuming that the market odds represent the true probability of victory. ***, **, * indicate significance at the 1%, 5% 
and 10% levels, respectively. 

Pr(Win) 
Back-Lay 

Spread 
Number  
of bets 

Total Bet 
Total 

Payoff 
Gross $P/L Net $P/L Return  p-value 

0-100% - 1,074 $107,400 $114,936 $7,536 $5,269 4.9% 0.1410 
0-100% <100.75% 810 $81,000 $77,383 -$3,617 -$4,796 -5.9% 0.5830 
0-100% <100.50% 527 $52,700 $50,623 -$2,077 -$2,763 -5.2% 0.3550 
10-90% - 500 $50,000 $55,545 $5,545 $4,127 8.3% 0.033** 
10-90% <100.75% 410 $41,000 $42,470 $1,470 $452 1.1% 0.2690 
10-90% <100.50% 229 $22,900 $24,451 $1,551 $968 4.2% 0.2050 
20-80% - 352 $35,200 $37,606 $2,406 $1,461 4.2% 0.1680 
20-80% <100.75% 285 $28,500 $29,032 $532 -$205 -0.7% 0.419 
20-80% <100.50% 177 $17,700 $19,851 $2,151 $1,644 9.3% 0.083* 
30-70% - 221 $22,100 $24,843 $2,743 $2,066 9.3% 0.076* 
30-70% <100.75% 182 $18,200 $18,295 $95 -$410 -2.3% 0.443 
30-70% <100.50% 124 $12,400 $13,473 $1,073 $704 5.7% 0.212 
40-60% - 98 $9,800 $11,144 $1,344 $1,027 10.5% 0.140 
40-60% <100.75% 89 $8,900 $10,175 $1,275 $986 11.1% 0.157 
40-60% <100.50% 63 $6,300 $6,791 $491 $302 4.8% 0.288 
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Table 6: Testing the Misestimated Probability of Victory Hypothesis (H3) – No Odds 

Adjustment, First ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the first innings of ODI matches 
in our sample. No adjustment is made to account for the initial discrepancy in odds between the market and our model. A 
hypothetical trade is placed when the discrepancy between the market implied probability of victory and the estimated 
probability of victory given by our model is greater than 10%.  Only one bet is placed per innings in any given match. 
Pr(win) represents the probability of victory implied by our model. Net $P/L is the profit after adjusting for the 5% 
commission charged by Betfair on the profit of each winning bet. The p-value represents the probability of obtaining a 
profit greater than or equal to the actual profit observed, assuming that the market odds represent the true probability of 
victory. ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively.  

Overs pr(win) 
Initial 

Discrepancy 
Num 
bets 

Total Bet 
Total 

Payoff 
Gross 
$P/L 

Net $P/L Return p-value 

0-50 0-100% - 148 $14,800 $16,770 $1,970 $1,521 10.3% 0.064 * 

0-50 0-100% < 15% 97 $9,700 $11,682 $1,982 $1,687 17.4% 0.017 ** 

0-50 10-90% - 146 $14,600 $16,530 $1,930 $1,483 10.2% 0.067 * 

0-50 10-90% < 15% 96 $9,600 $11,562 $1,962 $1,668 17.4% 0.018 ** 

0-50 20-80% - 138 $13,800 $15,336 $1,536 $1,104 8.0% 0.111   

0-50 20-80% < 15% 88 $8,800 $10,367 $1,567 $1,289 14.6% 0.057 * 

0-50 30-70% - 129 $12,900 $14,066 $1,166 $753 5.8% 0.162   

0-50 30-70% < 15% 79 $7,900 $9,085 $1,185 $926 11.7% 0.106   

0-50 40-60% - 109 $10,900 $11,876 $976 $607 5.6% 0.193   

0-50 40-60% < 15% 64 $6,400 $7,311 $911 $691 10.8% 0.136   

15-35 0-100% - 113 $11,300 $11,603 $303 -$7 -0.1% 0.330   
15-35 0-100% < 15% 67 $6,700 $7,481 $781 $592 8.8% 0.172   
15-35 10-90% - 108 $10,800 $10,980 $180 -$124 -1.1% 0.366   
15-35 10-90% < 15% 62 $6,200 $6,858 $658 $475 7.7% 0.198   
15-35 20-80% - 104 $10,400 $10,477 $77 -$222 -2.1% 0.409   
15-35 20-80% < 15% 58 $5,800 $6,352 $552 $374 6.5% 0.233   
15-35 30-70% - 89 $8,900 $8,409 -$491 -$751 -8.4% 0.564   
15-35 30-70% < 15% 49 $4,900 $5,099 $199 $44 0.9% 0.354   
15-35 40-60% - 69 $6,900 $5,869 -$1,031 -$1,215 -17.6% 0.774   
15-35 40-60% < 15% 39 $3,900 $3,996 $96 -$28 -0.7% 0.440   
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Table 7: Testing the Misestimated Probability of Victory Hypothesis (H3) – Initial Odds 

Adjustment, First ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the first innings of ODI 
matches in our sample. An adjustment is made to account for the initial discrepancy in odds between the market and our 
model, as outlined in the main text. A hypothetical trade is placed when the discrepancy between the market implied 
probability of victory and the estimated probability of victory given by our model is greater than 10%.  Only one bet is 
placed per innings in any given match. Pr(win) represents the probability of victory implied by our model. Net $P/L is 
the profit after adjusting for the 5% commission charged by Betfair on the profit of each winning bet. The p-value 
represents the probability of obtaining a profit greater than or equal to the actual profit observed, assuming that the 
market odds represent the true probability of victory. ***, **, * indicate significance at the 1%, 5% and 10% levels, 
respectively.  

Overs pr(win) 
Initial 

Discrepancy 
Number   
of bets 

Total Bet 
Total 

Payoff 
Gross 
$P/L 

Net $P/L Return p-value 

 0-50  0-100% - 129    $12,900     $14,796  $1,896 $1,526 11.8% 0.0430** 

 0-50  0-100% < 15% 88      $8,800     $10,966  $2,166 $1,882 21.4% 0.0130** 

 0-50  10-90% - 119    $11,900     $13,567  $1,667 $1,309 11.0% 0.0799* 

 0-50  10-90% < 15% 83      $8,300     $10,256  $1,956 $1,678 20.2% 0.0280** 

 0-50  20-80% - 113    $11,300     $13,011  $1,711 $1,355 12.0% 0.0460** 

 0-50  20-80% < 15% 79     $7,900       $9,857  $1,957 $1,684 21.3% 0.0300** 

 0-50  30-70% - 92      $9,200     $11,495  $2,295 $1,951 21.2% 0.0240** 

 0-50  30-70% < 15% 64      $6,400       $8,385  $1,985 $1,736 27.1% 0.0250** 

 0-50  40-60% - 73      $7,300     $10,269  $2,969 $2,651 36.3% 0.0040*** 

 0-50  40-60% < 15% 52      $5,200       $7,303  $2,103 $1,883 36.2% 0.0110** 

 15-35  0-100% - 68      $6,800       $7,478  $678 $495 7.3% 0.1758  

 15-35  0-100% < 15% 45      $4,500       $5,357  $857 $724 16.1% 0.0799* 

 15-35  10-90% - 61      $6,100       $6,753  $653 $476 7.8% 0.1868  

 15-35  10-90% < 15% 42      $4,200       $4,999  $799 $669 15.9% 0.1069  

 15-35  20-80% - 54      $5,400       $6,078  $678 $509 9.4% 0.1638  

 15-35  20-80% < 15% 38      $3,800       $4,587  $787 $663 17.4% 0.0949* 

 15-35  30-70% - 48      $4,800       $5,495  $695 $535 11.2% 0.1838  

 15-35  30-70% < 15% 33      $3,300       $3,985  $685 $571 17.3% 0.1259  

 15-35  40-60% - 38      $3,800       $4,738  $938 $791 20.8% 0.1179   

 15-35  40-60% < 15% 26      $2,600      $3,345  $745 $643 24.7% 0.1009   
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Table 8: Testing the Misestimated Probability of Victory Hypothesis (H3) – No Odds 

Adjustment, Second ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the second innings of ODI 
matches in our sample. No adjustment is made to account for the initial discrepancy in odds between the market and our 
model. A hypothetical trade is placed when the discrepancy between the market implied probability of victory and the 
estimated probability of victory given by our model is greater than 10%.  Only one bet is placed per innings in any given 
match. Pr(win) represents the probability of victory implied by our model. Net $P/L is the profit after adjusting for the 
5% commission charged by Betfair on the profit of each winning bet. The p-value represents the probability of obtaining 
a profit greater than or equal to the actual profit observed, assuming that the market odds represent the true probability of 
victory. ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively.  

Overs pr(win) 
Initial 

Discrepancy 
Number   
of bets 

Total Bet 
Total 

Payoff 
Gross 
$P/L 

Net $P/L Return p-value 

 0-50  0-100% - 123 $12,300 $13,678 $1,378 $1,034 8.4% 0.122   

 0-50  0-100% < 15% 64 $6,400 $6,792 $392 $227 3.6% 0.246   

 0-50  10-90% - 118 $11,800 $13,199 $1,399 $1,059 9.0% 0.116   

 0-50  10-90% < 15% 62 $6,200 $6,712 $512 $347 5.6% 0.234   

 0-50  20-80% - 102 $10,200 $11,771 $1,571 $1,233 12.1% 0.127   

 0-50  20-80% < 15% 51 $5,100 $5,794 $694 $530 10.4% 0.186   

 0-50  30-70% - 89 $8,900 $10,348 $1,448 $1,131 12.7% 0.119   

 0-50  30-70% < 15% 42 $4,200 $4,922 $722 $571 13.6% 0.175   

 0-50  40-60% - 72 $7,200 $8,659 $1,459 $1,171 16.3% 0.115   

 0-50  40-60% < 15% 34 $3,400 $4,268 $868 $729 21.5% 0.143   

 15-35  0-100% - 89 $8,900 $10,981 $2,081 $1,807 20.3% 0.075 * 

 15-35  0-100% < 15% 43 $4,300 $5,669 $1,369 $1,225 28.5% 0.058 * 

 15-35  10-90% - 79 $7,900 $9,923 $2,023 $1,757 22.2% 0.075 * 

 15-35  10-90% < 15% 38 $3,800 $5,064 $1,264 $1,126 29.6% 0.063 * 

 15-35  20-80% - 65 $6,500 $8,631 $2,131 $1,874 28.8% 0.057 * 

 15-35  20-80% < 15% 29 $2,900 $4,157 $1,257 $1,130 39.0% 0.037 ** 

 15-35  30-70% - 52 $5,200 $6,448 $1,248 $1,041 20.0% 0.118   

 15-35  30-70% < 15% 23 $2,300 $3,355 $1,055 $943 41.0% 0.058 * 

 15-35  40-60% - 42 $4,200 $5,238 $1,038 $861 20.5% 0.115   

 15-35  40-60% < 15% 21 $2,100 $2,737 $637 $545 26.0% 0.130   
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Appendix 

A1. Brief Description of One-day Cricket 

Due to the complicated nature of one-day international cricket, only rules central to this paper 

will be explained.  A one-day international is contested between two teams of 11 players 

each.  The game is split into two main phases known as “innings”.  In each innings, the 

batting team is allotted 50 overs (each over consisting of 6 legal deliveries or “balls” bowled 

to them by the opposing team) and 10 wickets with which to score as many runs as possible.  

When either 50 overs have been bowled or 10 wickets have been lost, the innings is complete 

and the teams switch roles for the second innings.  While an individual batsman is allowed to 

bat for the entire 50 overs allotted to his team with no limit on his score, no one bowler can 

bowl more than 20% of the total overs available in any given ODI innings.   

For each ball bowled, the outcome will either be a wicket, no run, one run, two runs, 

three runs, four runs (the ball is hit into the boundary after bouncing first), or six runs (the 

ball is hit over the boundary without bouncing first), or the ball is deemed to be “illegal” 

(either a “no-ball” or a “wide”) in which case the batting team receives one run and the ball 

must be re-bowled.   

Throughout this paper we will refer to the team that bats first as ‘Team 1’ and the 

other team as ‘Team 2’.  In an uninterrupted match, the winning team is the one that scores 

the most runs from their allotted 50 overs.  During each team’s batting innings the two most 

obvious resources that they possess are the number of balls remaining and the number of 

wickets in hand. For a more complete list of rules, see http://www.icc-

cricket.com/about/38/rules-and-regulations 
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A2. Betfair Example 

 

Figure A1:  Betfair User Interface  

 

 

Figure A2:  Profit from back and lay bets 

 

Opposing bets are matched anonymously by Betfair with a commission being charged 

on the winning bet according the formula: 

Commission = Net	Probit × 5% × (1 − Discount)  (A1) 

where discount represents a reduction in commission that increases with the number of 

Betfair points accrued.   

 


