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ABSTRACT 

This study has examined bulk and compound specific organic carbon isotopes (δ13Corg) and 

lipid n-alkanes of modern plants and a wetland sediment sequence from the central Tibetan 

Plateau and explores the usefulness of these two methods for palaeoenvironmental 

reconstructions. Results show that a combination of δ13Corg values and n-alkane indices can 

help differentiate organic matter from C3 terrestrial plant, C4 terrestrial plant and submerged 
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macrophytes, the three main sources of organic matter in the study area. The analyses of 

total organic carbon, δ13Corg values and n-alkane indices for the sediment sequence imply 

that a wetland habitat was established about 8000 years ago, and the wetland conditions 

were largely stable with dominantly C3 wetland herbs covering the wetland. However, small 

fluctuations in the dominant organic matter supply between vascular and aquatic plants are 

revealed, suggesting short duration changes in the extent of open water area within the 

wetland or variations in the productivity of submerged macrophytes and aquatic plants 

within the wetland ecosystem, which reflects variations in the strength of precipitation and 

evaporation. 

Keywords: 

Organic carbon isotopes, n-alkane indices, alpine wetland, monsoon climate change, Tibetan 

Plateau 

 

1. Introduction 

Organic carbon geochemical methods have been widely applied for 

palaeoenvironmental studies from lake sediments (e.g. Meyers and Ishiwatari, 1993; Meyers 

et al, 1994; Lamb et al, 2004). Earlier studies tend to use the total organic matter (TOC), 

ratios of total carbon to total nitrogen (C/N), and later organic carbon isotopes (δ13Corg), that 

are preserved in sediments as indicators for the identification of organic carbon sources and 
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thus vegetation changes associated with palaeoclimatic histories (Kohn, 2010; Wang et al., 

2002). To reveal large scale climatic fluctuations such as glacial-interglacial changes, these 

methods have proven very useful because changes commonly involve alterations between 

dry and wet environmental conditions, and thus TOC can show high or low productivity of 

organic matter, C/N ratios can indicate changes between aquatic and non-aquatic 

environments, and δ13Corg can detect variations of C3 and C4 plant communities (Huang et al., 

2001; Tieszen et al., 1979). However, when these methods are applied to studies of the 

generally stable Holocene period, further understanding of these methods is required. In 

particular, interpretations of organic geochemical data must be made according to regional 

context. Recently, organic biomarkers such as n-alkane distributions have also been added to 

the tool-box for palaeoenvironmental reconstructions (e.g. Aichner et al., 2010; Lin et al., 

2008; Mügler et al., 2010; Wang et al., 2014). These new methods need to be tested in many 

different climatic regions. In this study, we collected plant samples from central Tibetan 

Plateau, analysed their δ13C ratios and n-alkane distributions, and then applied these organic 

geochemical techniques to a sediment core obtained from an alpine wetland of the study 

area and evaluated the methods in order to improve palaeoenvironmental reconstructions in 

high altitude regions. 

 

2. Study site, materials and methods 
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The Tibetan Plateau with an average elevation above 4000 m covers an area of 1.22 

million km2 (Fig. 1a). Due to its high altitude and the massive extent of this plateau, it draws 

moisture northwards from the Indian Ocean during the summer. In the winter, the 

mid-latitude jet stream from the northwest has a strong influence on the plateau 

environment.  The combination of the two atmospheric systems and the high mountain 

ranges on the plateau creates a high diversity amongst plant biomass and ecosystems across 

the region (Fig. 2). At present, alpine forest only occurs along river valleys and mountain 

slopes on the southern and eastern edges of the Plateau. For instance, Cupressaceae, 

Populus, Salix and other shrubs are common around 3600 m above sea level (a.s.l.) within 

the Yarlung Tsangpo valley. Such vegetation extends upstream to a little higher at 3840 m 

(a.s.l.) west of Shigatse, with Salix occurring as high up as 4330 m (a.s.l.) at Lhaze and 4310 m 

(a.s.l.) around Tingri. No trees are seen at altitudes >4500 m (a.s.l) in these areas. Also within 

river valleys and around lakesides, such as Yamdrok Yum Cuo, 4500 m (a.s.l), extensive 

marshes are found in which the wetland herbs Asteraceae, Cyperaceae, Poaceae, 

Leguminosae, Plantaginaceae and Ranunculaceae dominate. On the hill slopes, however, 

dry-land herbs such as Artemisia, Cyperaceae and Poaceae are sparsely distributed. In the 

northwestern half of the Plateau the dry-land herbs communities are increasingly dominated 

by Chenopodiaceae, together with Artemisia. Also in the northwestern half of the Plateau 

wetland communities can still be found along lakesides. For instance, at Zhari Nam Co and 
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Dawa Co (4700 m a.s.l), Cyperaceae and Poaceae are common along streams and lakesides. 

Within some freshwater lakes, aquatic plants (Potamogeton, Myriophyllum, Batrachium and 

Hippuris) and submerged macrophytes (Chara sp.) are found (e.g. Aichner et al., 2010). 

To understand the organic carbon signatures of organic matters, plant samples (leaves) 

including trees, shrubs and herbs have been collected from the central area of the Plateau 

(Fig. 1a). This sampling strategy was designed to test if organic geochemical signatures from 

these plants samples can reflect the environmental or climatic conditions where they live, 

prior to palaeenvironmental reconstructions. In total, thirty-four terrestrial plant leaves 

including 7 trees, 4 shrubs, 19 herbs with C3 photosynthesis pathways and 4 herbs with C4 

photosynthesis pathways were collected in this study (Table 1). Together with analyses of 

macrophytes by Aichner et al. (2010), these samples form a data set that fully represents the 

alpine vegetation of the study area.  

A sediment core was obtained from a valley-floor wetland on the southeastern side of 

the Nyaninqentanglha Mountain Range, about 10 km northeast of Dangxiong (Fig. 1b). It is 

an inter-montane valley fed by melt-water from ice-caps on the surrounding mountain peaks. 

According to the local weather station, the mean annual precipitation is 480 mm, and the 

mean annual temperature is 1.7 °C. Summer temperature (May to September) can be up to 

9.2°C at present. In the field, a Russian-type hand drilling auger was used to extract a peat 

sequence (CN01) c. 100 m into the wetland. A small open water area was still present at the 
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centre of the wetland. The sediment sequence is 5.80 m long and undisturbed. It was 

wrapped in tin foil and stored at low temperature to keep the organic sediment from 

oxidation and contamination. 

Fresh leaves from plant samples were selected and the sediment core was subsampled 

every 3 cm for analyses. All samples were freeze dried and grounded into powder. About 1 

mg of each plant sample and 3 mg of each sediment sample were combusted within capsules 

in an Elemental Analyzer linked to an Isotope Ratio Mass Spectrometer (EA-IRMS), from 

which total organic carbon (TOC), total nitrogen (TN) and stable isotope ratios (δ13Corg) of 

each sample were measured. The rest of the dry material from each sample was digested 

into soluble organic matter using organic solvent with HPLC grade dichloromethane (DCM) 

and methanol (MeOH) mixture by an ultrasonic extractor. The extraction processes were 

repeated three times, and the total lipid extracts were then dried and saponified with 6% 

KOH/MeOH to separate the acidic and neutral lipid fractions. This was followed by lipids 

being separated in a silica gel column chromatography eluting with n-hexane, DCM and 

MeOH to isolate different polar compositions in neutral fractions. Finally, the extracts were 

injected into a gas-chromatograph coupled with flame ionisation detection (GC-FID) for 

n-alkane identification. The lipid n-alkanes analysis in aliphatic fractions was performed in a 

GC. The GC oven programme was set as follows, rinsing from the initial temperature of 60 °C 

to 250 °C at a rate of 20 °C/min, then to 270 °C at a rate of 5 °C/min and finally to 310 °C at a 
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rate of 2 °C/min and holding isothermally for 15 minutes. A mixture of external standards of 

n-C21, n-C25, n-C27, n-C29, n-C31 and n-C33 was used to identify the n-alkanes peaks while 

n-C36 standard of a known concentration was used to quantify the n-alkanes compounds.  

40 samples from different depths of the core were further analysed for the stable 

isotope ratios of organic compounds in a GC-IRMS. The GC was set on splitless injection and 

used helium as the carrier gas. The temperature was first held at 50 °C for 2 minutes, and 

increased to 200 °C at a rate of 20 °C /min, then to 300 °C at a rate of 3 °C /min and 

subsequently held isothermally for another 10 minutes. A standard mixture from n-C16 to 

n-C30 was employed for the identification of n-alkanes peaks for isotopic measurement in 

the IRMS. Results were expected to help differentiate organic sources between C4 plant 

matter and C3 aquatic organic matter.  

In order to elucidate the relationship between n-alkane compounds and 

palaeoenvironmental conditions, the relative abundance of the most concentrated 

compound (Cmax) from each sample was identified from the GC outputs, with carbon 

preference index (CPI), average chain length (ACL) and proportion of aquatic plants n-alkane 

(Paq) calculated according to the equations below, 

       CPI = ((C23+C25+C27+C29+C31) / (C24+C26+C28+C30+C32) +            

              (C25+C27+C29+C31+C33) / (C24+C26+C28+C30+C32)) / 2 

              (according to Allan and Douglas, 1977) 
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       ACL23-31 = (C23x23+C25x25+C27x27+C29x29+C31x31) / (C23+C25+C27+C29+C31)     

              (modified after Poynter, 1989 to include C23 and C25) 

       Paq = (C23+C25) / (C23+C25+C29+C31)          

              (according to Ficken et al., 2000) 

Seven samples of plant fragments were selected from different depths for radiocarbon 

dating analysis. Each date was calibrated to calendar years before present (1950 AD) with 

CALIB 5.10 (Stuiver et al., 1998).  

 

3. Results and interpretation 

3.1. Plant samples 

A total of 34 plant samples were analysed in this study. Details of their species, habitats 

and altitude information, organic carbon isotope (δ13Corg) values and n-alkane indices are 

listed in Table 1, along with results of submerged macrophyte samples from the study area 

provided by Aichner et al. (2010). The data are arranged by species and grouped into tree, 

shrubs, C4 herbs, C3 herbs and submerged macrophytes for interpretation and discussion.  

Bulk δ13Corg values for tree samples fall into a narrow range of -26.1±0.7 ‰, and the 

values for shrubs are around -25.8±0.6 ‰. Samples of herbs show two distinctive groups, 

with the values for C4 herbs ranging narrowly between -13.3 ‰ and -15.3 ‰ (-13.9±0.9 ‰), 

whilst the values for C3 herbs vary from -25.0 ‰ to -27.9 ‰ (-26.4±0.9 ‰). In order words, 
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there is very little difference in the δ13Corg values among samples of trees, shrubs and C3 

herbs analysed in this study. These C3 plant specimens are from different altitudes between 

3600 m and 6100 m, i.e. there is no relationship between plant δ13Corg values and their 

altitudes. Furthermore, there is no difference between C3 herbs from dry surface (hill slope, 

sand dune and raised terraces) and wet surface (lakeside and river/streamside). The four C4 

herbs are of Cyperaceae, which appear sparsely as patches on the dryer mountain slope of 

middling altitudes (3800–4700 m). The bulk δ13Corg values for submerged macrophytes are 

similar to those of C4 herbs. 

The carbon number with maximum n-alkanes concentration (Cmax) from the plant 

samples reveals an interesting pattern (Table 1). The Cmax of trees varies greatly but centres at 

27. The Cmax of shrubs is concentrated at 29. For herbs in wetland or dryland habitats, the 

Cmax is at either 29 or 31. Submerged macrophytes, however, have a much lower Cmax of 23. 

The ACL index closely follows the Cmax, i.e. variable ACL23-31 for trees, similar ACL23-31 for 

shrubs and herbs, and much lower ACL23-31 for submerged macrophytes. CPI for trees is 

mostly higher than 20, with C3 wetland herbs around 12 and C3 dryland herbs mostly lower 

than 10. CPIs for shrubs, C4 herbs and submerged macrophytes are all highly variable. Paq 

seems to be a useful index for differentiating submerged macrophytes from herbaceous 

plants, as the majority of herbs has a <0.2 Paq whilst the values for most submerged 

macrophytes are mostly >0.7.  Nevertheless none of these indices show any correlation 
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with altitude. 

Table 2 shows the average values of plant δ13Corg at major odd carbon chain lengths. As 

expected, the values for C4 herbs and submerged macrophytes are significantly enriched in 

all carbon chains at around -22‰ compared with those from trees, shrubs and C3 herbs 

generally between -30‰ and -33‰. Secondly, the variation among the δ13Corg values of 

different odd carbon chain lengths for trees, shrubs and C3 herbs is not as significant as 

those of C4 herbs and submerged macrophytes. Thirdly, the δ13Corg values for C4 herbs and 

submerged macrophytes are depleted progressively with longer carbon chains, and there is 

no progressive depletion with longer carbon chains for trees, shrubs and C3 herbs.  

3.2. Core sediment 

The lithostratigraphy of the 5.8m-long core is presented in Table 3, and is composed of 

three sedimentary units. The basal unit (5.22–5.80 m) contains sandy silt and small pebbles, 

with little organic matter, as indicated by the close-to-zero TOC values (Fig. 3a, b). Towards 

the top end of this unit, organic matter increases as sandy material decreases. The middle 

unit (0.95–5.20 m) consists of almost pure organic matter, and its organic carbon content 

remains around 35% and becomes a little lower in 1.80–0.95 m. An increase in silt is noted in 

the top unit (0.28–0.95 m). The sedimentary chronology developed based on the 7 AMS 

radiocarbon dates from plant fragments (Table 4) suggests the sedimentation started at least 

c. 10,000 years ago. The calibrated ages yield a polynomial age-depth relationship for the 
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core. From the base of the core to about 6000 Cal. yrs BP covering the thin, basal gravelly 

sand layer and the transition into the middle sedimentary unit, a lower sedimentation rate (c. 

0.27 mm/a) is observed. Between 6000 and 2000 Cal. yrs BP which include the bulk of the 

middle sedimentary unit, a higher sedimentation rate (c. 0.85 mm/a) was recorded. During 

the final 2000 years or in the top sedimentary unit, the sedimentation rate slowed down a 

little to c. 0.64 mm/a. On average, sub-samples at 3 cm intervals represent a roughly 50-year 

resolution for the core. 

The bulk δ13Corg values from the sediment (Fig. 3c) fluctuate between -24.8‰ and 

-27.8‰. Together with the lithostratigraphy and TOC, the variations in bulk δ13Corg value of 

the core suggest eight stages of environmental change. Stages I, III, V and VII are associated 

with relative enrichment in bulk δ13Corg, whilst more depleted values are noted in Stages II, IV, 

VI and VIII. Compound specific δ13Corg values from these stages are summarized in Table 5, 

which shows no significant variation throughout the core. 

The sediment samples from core CN01 contain n-alkanes from carbon chain lengths 

between n-C18 and n-C35, from which most samples express their maximum n-alkanes 

concentration at various carbon number (Cmax), ranging from n-C21 to n-C31 (Fig. 3d). The 

Cmax from lower section of the core appears to be generally at n-C21, and it progressively 

increases from n-C25 to n-C31 towards the upper section of the core. In Stages IV and VIII, 

some samples have their Cmax at n-C29 and n-C31. Variations of ACL23-31 and Paq follow a 
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pattern similar to the bulk δ13Corg curve (Fig. 3c, e, f). Higher values of ACL23-31 appear in 

Stages IV, VI and VIII, corresponding to the more depleted bulk δ13Corg values. In these three 

stages, relatively lower Paq values are also recorded. The pattern of CPI is slightly different, 

although variations of CPI values follow the general trend of bulk δ13Corg values between 

stages (Fig. 3g).  

 

4. Discussion 

4.1. δ13Corg values and n-alkane indices from modern plants 

Some previous researchers have proposed that, altitudinal change could affect the bulk 

δ13Corg values of vascular plants (Korner et al, 1988; Sparks and Ehleringer, 1997; Menot and 

Burns, 2001). Furthermore, some studies suggested that C4 herbs are distributed according 

to altitude (Menot and Burns, 2001; Stevenson et al, 2005; Wang, 2003) and geographic 

location (Korner, 1991; Wang et al, 2004). In our study the two most common species, 

Cyperaceae and Poaceae, occur between 3600 m and 6100 m across the central Tibetan 

Plateau (Table 1), and the result shows no altitudinal relationship with the δ13Corg values 

among both C3 and C4 herbs. The δ13Corg values of C3 and C4 herbs do not vary according to 

latitude and longitude either, despite C3 herbs dominating wetland vegetation in the east 

and southeast parts of the Plateau, whilst C4 herbs are more common in the west and 

northwest parts of the Plateau.  
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As Table 1 illustrates, modern plant samples fall into two distinctive groups. C4 herbs 

and submerged macrophytes have a δ13Corg value centered about -15.0‰. Trees, shrubs and 

C3 herbs have their δ13Corg values varying between -25.0‰ and -28.0‰. The difference 

between these two end members is significant, suggesting that δ13Corg signatures from plants 

can be used for differentiating these two sources of organic matter. For lake or wetland 

sediment, however, δ13Corg values alone are insufficient to help differentiating organic matter 

sources between C4 herbs and submerged macrophytes because they share a similar δ13Corg 

signature. To solve this problem, additional data are needed. In this study, we have found 

n-alkane indices useful.  

n-alkanes exist widely in epicuticula waxes of plant with a function of maintaining water 

in leaves. Positive correlation is considered to exist between the melting point of a leaf wax 

and the highest leaf temperature (Eglinton and Hamilton, 1967; Sachse et al., 2006). Previous 

researchers suggest that n-alkane distributions of aquatic algae and bacteria generally 

maximize at n-C17 and distinctly differ from vascular plants which mainly contain n-alkanes 

of mid to long chains in n-C21-C31 (Cranwell, 1987; Rieley, 1991; Ficken, 2000). Within the 

group of vascular plants, submerged and floating macrophytes are believed to contain large 

proportions of n-C21, n-C23 and n-C25 alkanes (Aichner et al., 2010), whilst terrestrial plants 

have abundant n-C27, n-C29 and n-C31 alkanes (Cranwell, 1984; Ficken, 2000). In other 

words, n-alkanes can be an ideal addition to the δ13Corg ratios for differentiating organic 
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matter sources between terrestrial and aquatic plants. Our results from the central Tibetan 

Plateau shows such potential, because C4 herbs and submerged macrophytes are clearly 

separated by Cmax, as the former is grouped with other terrestrial herbs at C29 and C31, 

whilst the latter concentrates at C23 and C25 (Fig. 4a).  

When the δ13Corg values are plotted against Paq, submerged macrophytes can be clearly 

distinguished from C4 herbs (Fig. 4b). This is because the Paq index for floating/submerged 

macrophytes tends to have a higher value between 0.45 and 1.00, whilst terrestrial vascular 

plants commonly have a value <0.45 (Ficken et al., 2000; Mead et al., 2005). Hence, the 

combination of δ13Corg values and Paq is useful tool for paleaoenvironmental reconstructions 

from lake or wetland sediments. Similarly, several studies suggest a possible relationship 

between ACL and wet/dry climate conditions (e.g. Huang et al., 2000; Hughen et al., 2004; 

Ratnayake et al., 2006). Our results show that the ACL values of dryland and wetland herbs 

and shrubs overlap and range between 31 and 27 (Fig. 4c). ACL for trees and submerged 

macrophytes varies mostly between 28 and 24. To some extent, therefore, ACL can be used 

as an index to depict wet/dry habitat conditions, or it can be seen as an index for 

precipitation/evaporation ratios. 

Previous studies suggest that epicuticular waxes of terrestrial plants usually have CPI 

values >5 (Cranwell, 1984; Eglinton and Hamilton, 1967). However, other studies indicate the 

limitations of CPI values for differentiating vegetation types (Luo et al, 2012; Rao et al, 2009). 
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Our results show clear groupings that suggest potential of CPI for palaeoenvironmental 

reconstructions. CPI of tree samples is mostly >20 (Fig. 4d), whilst shrubs, herbs and 

submerged macrophytes between 5 and 15. Therefore, CPI may be a useful index to depict 

whether or not trees are present in the environment. 

As discussed above, each of the δ13Corg value and n-alkane indices has its own utility in 

revealing sources of organic matter, and a combination between these two methods can be 

much more useful in palaeoenvironmental reconstructions. The potential of this approach is 

demonstrated when these methods are applied to a sediment core (CN01) which is collected 

also from the study area. 

4.2. δ13Corg values and n-alkane indices from core CN01 

As suggested above, the sediment sequence from core CN01 can be divided into eight 

stages (Fig. 3). These stages represent periods of small changes in habitat conditions 

throughout the past 9,000 years. In other words, core CM01 provides an excellent 

opportunity for testing the usefulness of bulk and compound specific organic carbon isotopes 

and n-alkanes in assessing the relative contributions of organic sources between terrestrial 

vascular plants and aquatic macrophytes in the alpine meadow sediment sequence. The 

δ13Corg values and n-alkane indices from core CN01 show some small fluctuations between 

stages, suggesting minor changes in the habitat conditions. 

Stage I was under fluvial conditions as the coarse sediment implies. The TOC is very low, 
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and thus its organic carbon result is less reliable. Nevertheless, the bulk δ13Corg values within 

this stage are relatively more enriched, suggesting an input of aquatic organic matter rather 

than C4 herbs because of the low Cmax and high Paq values (Fig. 3c, d, e). From Stage I to 

Stage II saw a change from sandy sediment to organic rich silt and clay, with TOC increased to 

around 40%, suggesting the establishment of a wetland habitat. This development is 

confirmed by the pollen data (e.g. Cheung et al., 2014), which indicate a change of 

vegetation from a Poaceae-Cyperaceae-Artemisia community to a Cyperaceae-dominated 

community. A significant increase in wetness of the site is also indicated by the PCA axis 1 of 

the pollen data (Fig. 3h).  

Above Stage II, the sedimentation rate increased, and the bulk δ13Corg varies narrowly 

between -24.8‰ and -27.8‰ (Fig. 3c). These values are very close to that of the C3 

terrestrial plant end member (Table 1), indicating C3 terrestrial plant as the dominant source 

of organic matter. In Stages III, V and VII, the bulk δ13Corg are slightly enriched. As the Paq 

values in these Stages are all >0.45 (Fig. 3e), indicating an input of organic matter from 

submerged macrophytes rather than C4 herbs. Comparatively, the bulk δ13Corg in Stages IV, VI 

and VIII are more depleted, which coincides with lower Paq values, implying a reduction of 

organic input from submerged macrophytes. The changes in both the bulk δ13Corg and Paq 

values may suggest that despite the fact that the wetland was largely covered by C3 wetland 

herbs such as sedges, a relatively larger open water area within the wetland in Stages III, V 
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and VII, during which slightly more submerged macrophytes were present. In Stages IV, VI, 

and VIII, the area of open water within the wetland may have been smaller, thus 

proportionally smaller amount of submerged macrophyes was present. 

The above interpretation is supported by further evidence. Firstly, the dominant 

wetland herb community is made of Cyperaceae, which accounts for >60% of the total land 

pollen during Stage II through to Stage VII (e.g. Cheung et al., 2014). These Cyperaceae are 

predominantly C3 as the mostly depleted bulk and compound specific δ13Corg values (Table 5) 

suggest. A field survey also reported that C4 herbs are sparse in the central Tibetan Plateau 

(Wang, 2003). Secondly, the CPI23-31 index is below 20 for all the stages (Fig. 3g), indicating 

very few trees were present around the wetland. In fact, tree pollen is <3% of total land 

pollen throughout the core (Cheung et al., 2014). Finally, the occasional increase of organic 

input from submerged macrophytes possibly due to an increase in the size of open water 

area or in the productivity of submerged macrophytes within the wetland is supported by the 

ACL23-31 index. This index shows weaker evaporation during Stages III, V and VII and stronger 

evaporation in Stages IV, VI and VIII (Fig. 3f). Despite the usefulness of the combined δ13Corg 

and n-alkanes methods, a note of caution must be mentioned. At present, the n-alkane 

indices from sediments should be used in palaeoenvironmental reconstructions qualitatively 

rather than quantitatively, because there are still uncertainties surrounding n-alkanes 

production from various types of plant, their transportation and deposition, as well as 
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post-depositional processes. In this respect, the higher or lower than 0.45 values of Paq in the 

sediment core should only be interpreted as an indication of an increase or reduction in 

aquatic plant matter input. 

4.3. Comparison of regional records 

The reconstructed environmental history from core CN01 shows some similarity and 

differences with palaeo-environmental records from both the Asian monsoon dominated 

region (i.e. along the eastern edge of Tibetan Plateau and areas east and southeast of the 

Plateau) and the westerlies dominated region (i.e., northwestern Tibetan Plateau and areas 

north and northwest of the Plateau). Firstly, in the Asian monsoon dominated region, 

palaeo-records indicate generally a stable climate in the Holocene. For instance, peat 

accumulation has continued throughout the Holocene at Zoige-Hongyuan peatland (e.g. Yan 

et al., 1999; Hong et al., 2003; Zhao et al., 2011). The total organic carbon from a core from 

the Zoige Basin shows a similar trend as the core CN01, i.e. high and stable TOC during the 

middle Holocene and large fluctuations (e.g. Zhao et al., 2011) or a significant decline (e.g. 

Zheng et al., 2007) in TOC during the late Holocene (Fig. 5a, d). This trend implies a relatively 

stable precipitation throughout the Holocene till the last 2000 years, which seems follow 

largely the precipitation history recorded at the Dongge Cave (e.g. Wang et al., 2005) (Fig. 5g). 

However, a major difference between central Tibet and the Asian monsoon dominated 

region appears in the onset time of peat accumulation, about 2000 years earlier at 
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Zoige-Hongyuan peatland than that in central Tibet (Fig. 5a, d, g). The late start in peat 

accumulation in central Tibet may be caused by the strong influence of the Westerlies which 

had led to a low water level (even dry out, e.g. Chen et al., 2008) in many lakes in the 

Westerlies dominated region before 8000 cal. yrs BP of the Holocene. In other words, the 

coarse basal sediment in core CN01 is a result of the dry climate influenced by the strong 

Westerlies in the early Holocene, during which the Asian monsoon dominated region had 

already received strong supply of moisture from the summer monsoon.  

Secondly, the multiple changes in δ13Corg values and n-alkanes indices swinging between 

terrestrial dominated and aquatic dominated end members throughout the Holocene (Fig. 

5b, c) are also observed from a peat core from Hongyuan-Zoige peatland (e.g. Hong et al., 

2003; Zheng et al., 2007) (Fig. 5e, f). Such fluctuations in δ13Corg values and n-alkanes indices 

in both central Tibet and Hongyuan-Zoige peatland suggest small-scale changes in the 

strength of precipitation and evaporation to these study sites. The short-duration 

precipitation/evaporation changes may reflect the fact that: although the precipitation 

history of the study area was controlled largely by the Asian monsoon precipitation as the 

TOC records indicate, the variability of North Atlantic climate was also transmitted to the 

study area by the Westerlies resulting in these multiple small-scale dry events recorded in 

central Tibet and the monsoon dominated region. It is noted that these short-term dry 

events are also reported from the Dongge Cave (e.g. Wang et al., 2005). 
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5. Conclusions 

This study examined both the bulk and compound specific organic carbon isotopes and 

lipid n-alkanes from plants and a sediment core from the central Tibetan Plateau. Both the 

organic carbon isotopes and n-alkanes indices from the modern plants indicate some 

distinctive differences between terrestrial plants and aquatic plants. Their organic carbon 

isotope and n-alkanes signatures, therefore, can assist with palaeoenvironmental 

reconstructions. Our results suggest a combination of these indices can help expand the 

potential of these methods and greatly improve palaeoenvrionmental studies.  

The combined studies of organic carbon isotopic ratios and the n-alkanes indices in the 

sediment core provide details of the environmental history for the Dangxiong wetland, a 

representative of the Holocene climatic history for central Tibet. This wetland recorded a 

change from fluvial conditions to a wetland habitat around 8000 years ago, which was 

followed by a stable wetland environment throughout the middle-late Holocene with some 

significant changes during the last 2000 years. Our combined organic carbon isotopes and 

n-alkanes methods provide further details of the environmental history for the past 8000 

year period, during which there have been small-scale changes in the wetland in the form of 

expansion and contraction of open water area or in the productivity of submerged 

macrophytes/aquatic plants within the wetland ecosystem. These changes may be caused by 
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external influence such as global climate change or internal processes in organic matter 

production and deposition.    
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Figure captions 

Fig. 1. (a) A map indicating the study area in the central Tibetan Plateau, location of the 

sediment core and details of the landscape around the coring site CN01. (b) A cross-section 

showing the valley floor of the Dangqu River. 

 

Fig. 2. Vegetation zones across the Tibet and sampling locations of modern plants in this 

study.  

 

Fig. 3. (a) Lithostratigraphy and chronology of core CN01, (b) total organic carbon (TOC%), 

(c) bulk organic carbon isotope ratios (δ13Corg), (d) carbon number of maximum alkane 

concentration (Cmax), (e) proportion of aquatic plant n-alkanes (Paq), (f) average carbon length 

(ACL(23-31)), (g) carbon preference index (CPI(23-31)), (h) principle component analysis axis 1 of 

the pollen data indicating wetter and dryer conditions, after Cheung et al. (2014). The 

palaeoenvironmental conditions are divided into eight stages. 

 

Fig. 4. Bi-plots between n-alkanes indices and δ13Corg for trees, shrubs, herbs and 

submerged macrophytes. 
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Fig. 5. A comparison between the study site and records from the Asian monsoon 

dominated region. (a) Total organic content from core CN01, (b) organic carbon isotope ratios 

from core CN01, (c) the Paq index from core CN01, (d) total organic carbon content from core 

ZB08-C1 of Zoige-Hongyuan peatland (after Zhao et al., 2011), (e) organic carbon isotop 

ratios from a core of Zoige-Hongyuan peatland (after Hong et al., 2003), (f) Paq index from a 

core of Zoige-Hongyuan peatland (after Zheng et al., 2007), and (g) oxigen isotope ratios 

from Dongge Cave (after Wang et al., 2005). 
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Table 1. Bulk parameters of modern plant samples and their n-alkanes indices 

Type Species Alt. (m) Habitat δ 
13

Corg Cmax ACL(23-31) CPI Paq ID 

Trees Cupressaceae 3800 Riverside -25.5 31 29.7 26.1 0.03 YZ6 

 Populus 3800 Riverside -27.2 29 27.8 21.3 0.12 YZ3 

 Populus 4300 Garden -26.7 27 27.3 13.8 0.21 TG04 

 Salix 3800 Sand dune -25.2 27 26.7 32.4 0.26 YZ5 

 Salix 3800 Sand dune -26.0 27 26.5 35.3 0.28 YZ10 

 Salix 4300 Garden -26.7 25 25.5 44.3 0.73 TG03 

 Salix 4300 Garden -25.6 25 25.4 31.5 0.75 TG02 

Shrubs Rosaceae 3800 Dry slope -24.9 31 29.4 14.8 0.09 YZ7 

 Caragana 3800 Dry slope -23.6 29 27.6 2.9 0.26 YZ13 

 Caragana 3800 Dry slope -25.0 29 28.1 11.9 0.14 YZ12 

 Caragana 4200 Dry slope -24.6 29 27.8 7.9 0.25 CS8B 

C4 herbs Cyperaceae 4200 Dry slope -13.7 31 29.2 10.8 0.14 CS9B 

 Cyperaceae 4200 Dry slope -13.4 31 29.2 6.1 0.17 CS14B 

 Cyperaceae 3800 Dry slope -13.3 31 29.6 20.9 0.04 YZ22 

 Cyperaceae 4700 Dry slope -15.3 29 29.4 7.8 0.07 ZN4B 

C3 herbs Chenopodiaceae 5030 Dry slope -27.1 31 28.8 3.3 0.17 EBC 

(dry) Chenopodiaceae 3800 Dry slope -26.8 31 29.9 8.1 0.01 YZ8 

 Plantago 3800 Sand dune -26.7 31 30.0 6.4 0.03 YZ25 

 Poaceae 4200 Dry slope -26.2 31 29.0 6.4 0.10 CS10B 

 Poaceae 6100 Dry slope -25.7 31 29.5 8.5 0.07 HM8B 

 Cyperaceae 4650 Dry slope -26.1 31 27.5 1.79 0.38 DW8B 

 Cyperaceae 4530 Lakeside -26.1 31 28.9 7.7 0.18 NRP 

 Fabaceae 4700 Dry slope -27.3 29 28.1 7.4 0.18 ZN1B 

C3 herbs Cyperaceae 4200 Lakeside -27.9 31 29.6 11.4 0.18 CS1B 

(wet) Cyperaceae 3800 Riverside -26.2 31 29.7 15.4 0.02 YZ20 

 Fabaceae 4500 Riverside -27.6 31 30.4 14.2 0.02 LK04 

 Poaceae 5300 Riverside -26.0 31 29.5 12.4 0.06 HM5B 

 Poaceae 4700 Riverside -24.9 29 28.3 14.3 0.23 ZN13B 

 Poaceae 5700 Riverside -25.9 29 29.5 16.0 0.06 HM6B 

 Asteraceae 4460 Lakeside -26.1 29 28.4 14.2 0.16 YH02 

 Scrophulariaceae 4280 Lakeside -24.9 29 28.6 6.6 0.10 DX02 

 Cyperaceae 4280 Lakeside -26.7 29 28.0 5.1 0.19 DX01 

 Cyperaceae 4460 Lakeside -25.6 29 28.9 11.2 0.03 YH01 

 Cyperaceae 4460 Lakeside -26.2 29 28.4 12.2 0.12 YH2B 

Submerged Potamogeton 4610 Lake -14.2 23 25.0 9.5 0.74 S-22P 

macrophytes* Potamogeton 2670 Lake -16.6 25 26.4 11.0 0.54 S-26P 
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 Potamogeton 4540 Lake -8.8 23 25.1 9.4 0.74 Kou-Cha 

 Potamogeton 4100 Lake -5.8 23 25.1 24.5 0.73 Donggi 

 Potamogeton 4700 Lake -18.1 23 25.4 13.8 0.70 CTP-35 

 Potamogeton 4430 Lake -15.4 25 25.6 6.3 0.70 LC-10 

 Potamogeton 4720 Lake -7.9 23 25 13.2 0.78 CTP-20 

 Myriophyllum 4610 Lake -9.7 23 24.3 3.3 0.89 S-22M 

 Myriophyllum 2670 Lake -14.3 25 24.9 5.5 0.82 S-26M 

*After Aichner et al. (2010) 
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Table 2. Average δ13C value of odd carbon chain lengths for modern plant samples 

No. samples per group Bulk δ
13

C C21 C23 C25 C27 C29 C31 Ave. 

6 (trees) -26.0  -32.2 -30.8 -30.0 -30.2 -30.2 -30.7 

2 (shrubs) -24.7  -28.9 -31.1 -32.2 -31.3 -31.7 -31.0 

2 (C4 herbs) -13.6 -19.2 -20.2 -25.6 -22.8 -24.1 -24.5 -22.7 

6 (C3 dry-land herbs) -26.7 -33.5 -32.8 -31.3 -33.1 -34.2 -33.1 -33.0 

7 (C3 wetland herbs) 

9 (Submerged macrophytes)* 

-26.4 

-12.7 

 

-21.3 

-31.2 

-19.2 

-32.2 

-20.3 

-33.0 

-22.7 

-32.9 

-23.4 

-32.5 

-25.6 

-32.4 

-22.1 

*After Aichner et al. (2010) 
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Table 3. Lithostratigraphy of core CN01 

Depth (m) Descriptions 

0.00 – 0.28 Fresh herbaceous plants in water 

0.28 – 0.95 

 

Very soft, saturated with water, greyish black humified organic clay with small amount of silt 

and random plant roots  

0.95 – 5.20 Very soft, moist, black peat, with occasional plant roots 

5.20 –5.80 

 

Soft, moist, brownish black fine sand with small pebbles at the base and gradual increase in 

organic matter (blackish peaty material) towards the top of the unit. 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 4. Radiocarbon dates from core CN01 

Depth (m) Material 

14
C date 

(yr BP) 

δ
13

C 

(VPDB) 

Calibrated age  

(yr BP) (2 sigma) 

Median cal. 

age (yr BP)* 

Laboratory 

code 

1.10 Plant fragments 1790±30 -26.1 1620-1820 1720 Beta306051 

1.59 Plant fragments 1930±30 -26.0 1820-1947 1880 Beta315961 

2.39 Plant fragments 2580±30 -26.7 2718-2750 2730 Beta315962 

3.72 Plant fragments 3840±30 -26.0 4151-4407 4280 Beta315963 

4.17 Plant fragments 4220±30 -26.8 4630-4853 4740 Beta315964 

4.71 Plant fragments 5200±30 -26.6 5909-5996 5950 Beta315965 

5.36 Plant fragments 7380±40 -26.3 8084-8329 8190 Beta306052 

*Rounded to nearest decade. 
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Table 5. Average δ13C value for each zone of core CN01 

No. samples per zone δ
13

C C21 C23 C25 C27 C29 C31 Ave. 

6 from Zone VIII -26.2 -31.4 -31.7 -33.8 -33.7 -33.0 -32.7 -31.8 

6 from Zone VII -25.4 -30.9 -31.6 -34.1 -33.2 -33.4 -33.2 -31.7 

2 from Zone VI -26.6 -30.2 -30.6 -31.2 -32.5 -31.2 -31.9 -30.6 

7 from Zone V -25.9 -31.0 -32.0 -34.8 -34.0 -34.1 -33.2 -32.2 

3 from Zone IV -26.9 -30.8 -31.6 -32.5 -33.4 -33.0 -32.8 -31.6 

6 from Zone III -25.9 -30.9 -31.9 -32.9 -32.8 -33.6 -32.6 -31.5 

5 from Zone II -26.6 -32.7 -33.5 -35.0 -35.9 -36.2 -35.1 -33.6 

5 from Zone I -25.9 -30.4 -31.3 -32.9 -33.9 -34.4 -32.1 -31.6 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Highlights: 

 An examination of δ13Corg and lipid n-alkane indices from modern plants 

 Combining δ13Corg and lipid n-alkanes for differentiating sources of organic matter 

 Using n-alkane indices for palaeoenvironmental reconstructions 

 Wetland condition changes under the stable climate of the mid-late Holocene   


