Accepted Manuscript

Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt

Pengfei Li, Min Sun, Gideon Rosenbaum, Keda Cai, Yang Yu

PII: S0191-8141(15)30026-2

DOI: 10.1016/j.jsg.2015.08.008

Reference: SG 3258

To appear in: Journal of Structural Geology

Received Date: 21 May 2015

Revised Date: 15 August 2015

Accepted Date: 20 August 2015

Please cite this article as: Li, P., Sun, M., Rosenbaum, G., Cai, K., Yu, Y., Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt, *Journal of Structural Geology* (2015), doi: 10.1016/j.jsg.2015.08.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	
3	Structural evolution of the Irtysh Shear Zone (northwestern China) and implications
4	for the amalgamation of arc systems in the Central Asian Orogenic Belt
5	
6	Pengfei Li ¹ , Min Sun ¹ , Gideon Rosenbaum ² , Keda Cai ³ , Yang Yu ¹
7	¹ Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong,
8	China
9	² School of Earth Sciences, The University of Queensland, Brisbane 4072, Queensland,
10	Australia
11	³ Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and
12	Geography, Chinese Academy of Sciences, Urumqi 830011, China
13	
14	*Corresponding author: Department of Earth Sciences, The University of Hong Kong,
15	Pokfulam Road, Hong Kong, China. Email: pengfei@hku.hk; pengfeili2013@gmail.com
16	
17	r

18	Abstract: The NW-SE Irtysh Shear Zone is a major tectonic boundary in the Central Asian
19	Orogenic Belt (CAOB), which supposedly records the amalgamation history between the
20	peri-Siberian orogenic system and the Kazakhstan/south Mongolia orogenic system. However,
21	the tectonic evolution of the Irtysh Shear Zone is not fully understood. Here we present new
22	structural and geochronological data, which together with other constraints on the timing of
23	deformation suggests that the Irtysh Shear Zone was subjected to three phases of deformation
24	in the late Paleozoic. D_1 is locally recognized as folded foliations in low strain areas and as an
25	internal fabric within garnet porphyroblasts. D_2 is represented by a shallowly dipping fabric
26	and related ~NW-SE stretching lineations oriented sub-parallel to the strike of the orogen. D_2
27	foliations are folded by ~NW-SE folds (F_3) that are bounded by zones of mylonitic foliations
28	(S_3) with evidence for sinistral/reverse kinematics. These fold and shear structures are
29	kinematically compatible, and thus interpreted to result from a transpressional deformation
30	phase (D ₃). Two samples of mica schists yielded youngest detrital zircon peaks at ~322 Ma,
31	placing a maximum constraint on the timing of D_1 - D_3 deformation. A ~NE-SW granitic dyke
32	swarm (~252 Ma) crosscuts D_3 fold structures and mylonitic fabrics in the central part of the
33	shear zone, but is displaced by a mylonite zone that represents the southern boundary of the
34	Irtysh Shear Zone. This observation indicates that the major phase of D_3 transpressional
35	deformation took place prior to ~252 Ma, although later phases of reactivation in the
36	Mesozoic and Cenozoic are likely. The late Paleozoic deformation (D ₁ -D ₃ at ~322-252 Ma)

37	overlaps in time with the collision between the Chinese Altai and the intra-oceanic arc system
38	of the East Junggar. We therefore interpret that three episodes of late Paleozoic deformation
39	represent orogenic thickening (D_1) , collapse (D_2) , and transpressional deformation (D_3)
40	during the convergence between the Chinese Altai and the East Junggar. On a larger scale,
41	late Paleozoic sinistral shearing (D_3) , together with dextral shearing farther south,
42	accommodated the eastward migration of internal segments of the western CAOB, possibly
43	associated with the amalgamation of multiple arc systems and continental blocks during the
44	late Paleozoic.
45	
46	Key words: Central Asian Orogenic Belt; Irtysh Shear Zone; Chinese Altai; Junggar;
47	Accretionary Orogen; Structural synthesis
48	
49	1. Introduction
50	The Central Asian Orogenic Belt (CAOB) is the largest Phanerozoic orogenic collage in the
51	world. It was subjected to a prolonged history of accretion from the late Mesoproterozoic to
52	Mesozoic, following the closure of the Paleo-Asian Ocean (Zonenshain et al., 1990; Şengör
53	et al., 1993; Khain et al., 2002; Xiao et al., 2003; Yakubchuk, 2004; Windley et al., 2007;
54	Van der Voo et al., 2015; Xiao et al., 2015). Tectonic reconstructions of the CAOB are
55	relatively poorly constrained, but it is generally agreed that orogenesis during the Paleozoic

56	involved progressive accretion of continental and oceanic components along the convergent
57	plate margins, followed by the collision and amalgamation of Siberian, Baltica, Tarim and
58	North China cratons (Windley et al., 2007; Wilhem et al., 2012; Xiao and Santosh, 2014).
59	This process has been accompanied by voluminous input of juvenile magma (Jahn et al.,
60	2000; Jahn, 2004; Li et al., 2013; Kröner et al., 2014), oroclinal bending (Şengör et al., 1993;
61	Van der Voo, 2004; Levashova et al., 2007; Lehmann et al., 2010; Xiao et al., 2010;
62	Bazhenov et al., 2012), and the development of large scale strike-slip fault systems (e.g.
63	Şengör and Natal'in, 1996).
64	
65	One interesting characteristic of the CAOB is its vast width (>1000 km), which may have
66	resulted from terrane accretion (Windley et al., 2007; Xiao and Santosh, 2014; Han et al.,
67	2015), oroclinal bending (Van der Voo, 2004; Levashova et al., 2007; Lehmann et al., 2010;
68	Xiao et al., 2010) and/or the lateral duplication of orogenic segments by strike-slip faulting
69	(Laurent-Charvet et al., 2003; Buslov et al., 2004a). The role of strike-slip faults is important
70	not only for understanding the orogenic width, but also for reconstructing the paleogeography
71	of each orogenic segment that may have been displaced laterally. A large number of
72	strike-slip faults and shear zones were developed in the Paleozoic (Allen et al., 1995;
73	Laurent-Charvet et al., 2003; Buslov et al., 2004a; Alexeiev et al., 2009; Glorie et al., 2012b;
74	Rolland et al., 2013), either in response to the amalgamation of arc systems or as a result of

ACCEPTED MANUSCRIPT Page | 5

75	reactivation of inherited structures accommodating the relative movement of continental
76	blocks in the Paleozoic (Allen et al., 2001; Xiao et al., 2009a; Glorie et al., 2011b; Han et al.,
77	2011; Eizenhöfer et al., 2014). In the Mesozoic to Cenozoic, the western CAOB was
78	subjected to intracontinental deformation, as constrained by low temperature
79	thermochronolgical data (Dumitru et al., 2001; Jolivet et al., 2007; Vassallo et al., 2007;
80	Jolivet et al., 2009; Jolivet et al., 2010; Glorie and De Grave, 2015). During this period,
81	major Paleozoic faults and shear zones were reactivated (e.g. Glorie et al., 2011a; Glorie et al.,
82	2011b; Glorie et al., 2012a; Glorie et al., 2012b).
83	
84	The Irtysh Shear Zone (also known as Erqis, Irtishi, Ertix) or Irtysh Tectonic Belt, is one of
85	the largest strike-slip shear zones in the CAOB (Fig. 1) (Şengör et al., 1993; Briggs et al.,
86	2007). The surface-exposed shear zone extends >1000 km from NE Kazakhstan to NW China,
87	and is connected to the Bulgan Fault in western Mongolia. The Irtysh Shear Zone represents
88	the tectonic boundary between the peri-Siberian orogenic system and the Kazakhstan/south
89	Mongolian orogenic system (Fig. 1) (Ren et al., 1980), which were separated from each other
90	by the Ob-Zaisan Ocean (part of the Paleo-Asian Ocean), as recorded by ophiolites within the
91	shear zone (Buslov et al., 2001; Wang et al., 2012 and reference therein). The exact active
92	time of the Irtysh Shear Zone is not well constrained. ⁴⁰ Ar/ ³⁹ Ar thermochronological data
93	along the Irtysh Shear Zone indicate that sinistral movements occurred at ~290-265 Ma in the

94	Kazakhstan segment (Buslov et al., 2004b, and references therein; Vladimirov et al., 2008),
95	and at ~290-244 Ma in the Chinese segment (Laurent-Charvet et al., 2003; Briggs et al., 2007;
96	Li et al., 2015b). Constraints on the timing of regional exhumation are available from apatite
97	fission track data from the Kazakhstan segment of the Irtysh Shear Zone and the Chinese
98	Altai to the north of the Irtysh Shear Zone, which yielded Cretaceous to Tertiary ages that are
99	likely related to sinistral reactivation of the Irtysh Shear Zone (Yuan et al., 2006; Glorie et al.,
100	2012b).
101	
102	The Chinese segment of the Irtysh Shear Zone is well exposed in the Fuyun area (Figs. 1 and
103	2) in northern Xinjiang. This segment has been described as a crustal-scale fault system
104	(Wang et al., 2003) that records the amalgamation between the Chinese Altai (part of
105	peri-Siberian orogenic system) and the intraoceanic arc system of the West/East Junggar (part
106	of the Kazakhstan/south Mongolian orogenic system) (Xiao et al., 2009b; Zhang et al., 2012).
107	However, the deformation history of the Chinese segment of the Irtysh Shear Zone is
108	controversial. It has been proposed that the shear zone accommodated sinistral shearing and a
109	contractional component in response to oblique convergence between the Chinese Altai and
110	the East/West Junggar (Qu, 1991; Qu and Zhang, 1991; Zhang and Zheng, 1993; Qu and
111	Zhang, 1994; Laurent-Charvet et al., 2002; Laurent-Charvet et al., 2003). In contrast, Briggs
112	et al. (2007; 2009) interpreted the so-called Irtysh Shear Zone to be a thrust belt, based on the

113	local recognition of reverse faults. Structural fabrics that predated sinistral shearing were also
114	reported within the shear zone (Qu and Zhang, 1991), but the origin and tectonic significance
115	of such structures remain unclear due to insufficient structural and geochronological
116	constraints.
117	
118	We conducted structural analysis across the Chinese segment of the Irtysh Shear Zone with
119	the aim of better understanding its deformational history and geodynamic significance. Our
120	structural investigation was complemented by a geochronological study, which together with
121	published chronological data (e.g. Briggs et al., 2007), allows us to link the deformation
122	process with the tectonic evolution of the CAOB. Our results show that the Irtysh Shear Zone
123	was subjected to three phases of late Paleozoic deformation (D_1-D_3) , with the D_3 sinistral
124	transpressional deformation likely associated with the late Paleozoic amalgamation of
125	multiple arc systems and continental blocks. Our study mainly focuses on the late Paleozoic
126	tectonic history of the Irtysh Shear Zone, with less emphasis on the role of Mesozoic and
127	Cenozoic reactivation (e.g. Glorie et al., 2012b).
128	
129	2. Geological setting

130 The Chinese Altai records the Paleozoic accretion history along the margin of the Siberian
131 Craton (Windley et al., 2002; Safonova, 2013). In the latest Paleozoic, the Chinese Altai, as

132	part of peri-Siberian orogenic system (Fig. 1a), was amalgamated with the Kazakhstan/south
133	Mongolian orogenic system that is partly represented by the intra-oceanic arc system of the
134	West/East Junggar (Fig. 1) (Windley et al., 2007; Xiao et al., 2008; Xiao et al., 2009b). The
135	Irtysh Shear Zone is considered to represent the suture marking the amalgamation of these
136	two orogenic systems (e.g. Xiao et al., 2015).
137	
138	The Chinese Altai is characterized by a series of fault-bounded sedimentary/volcanic units
139	(He et al., 1990; Windley et al., 2002) (Fig. 1b). In the northern Chinese Altai, Devonian to
140	Carboniferous meta-sedimentary/volcanic rocks are separated by a normal fault from the rest
141	of the Chinese Altai. The central Chinese Altai is occupied by Cambrian to Silurian
142	marine-facies turbiditic and pyroclastic rocks of the Habahe Group and the Kulumuti Group
143	(Windley et al., 2002), which were interpreted to be an early Paleozoic accretionary complex
144	(Long et al., 2012). Rocks in the central Chinese Altai were metamorphosed up to
145	amphibolite facies, giving rise to dome-shaped metamorphic zonal sequences centered by
146	granitic intrusions (Zhuang, 1994). Late Ordovician to Devonian felsic volcanic rocks of the
147	Dongxileke Formation and marine-facies clastic rocks of the Baihaba Formation
148	unconformably overlie the Habahe Group in the northwestern corner of the Chinese Altai
149	(Fig. 1b) (Long et al., 2010). In the southern Chinese Altai, Devonian volcanic rocks of the
150	Kangbutiebao Formation and the volcanic and sedimentary sequence of the Altai Formation

151	were subjected to high temperature metamorphism, locally up to granulite facies (Wang et al.
152	2009; Li et al., 2014b). Metamorphic zircons in these rocks yielded both middle Devonian
153	and Permian ages (Long et al., 2007; Jiang et al., 2010; Li et al., 2014b; Wang et al., 2014c;
154	Yang et al., 2015), indicating two episodes of metamorphism. The Irtysh Complex is the
155	southernmost unit of the Chinese Altai. This unit, which mainly contains schist, para- and
156	ortho-gneiss, amphibolite, migmatite, quartzite and chert (Qu and Zhang, 1991; Briggs et al.,
157	2007), was interpreted to represent a Paleozoic accretionary complex (O'Hara et al., 1997;
158	Xiao et al., 2009b). The Irtysh Complex is locally overlain by Permian non-foliated
159	sedimentary and volcanic rocks with an unconformable contact (Fig. 2) (BGMRX, 1978).
160	
161	The Irtysh Complex in the southern Chinese Altai was strongly deformed by the sinistral
162	Irtysh Shear Zone (Fig. 1b). A mylonitic zone (the Irtysh Fault) in the southern Irtysh Shear
163	Zone (Fig. 1b) was interpreted to be the boundary between the Chinese Altai and the
164	intraoceanic arc system of East/West Junggar in China (Ren et al., 1980). Farther west in
165	Kazakhstan, two sinistral faults, the Chara Shear Zone (also termed the Gornostaev shear
166	zone, Şengör et al., 1993) and North-East Fault (Fig. 1a), splay from the Irtysh Shear Zone
167	(Buslov et al., 2001) (Fig. 1a).

168

169 The majority of granitic intrusions in the Chinese Altai (Fig. 1b) are Devonian and Permian in

170	age (Wang et al., 2006; Yuan et al., 2007; Sun et al., 2008; Cai et al., 2011a; Tong et al., 2014)
171	The Devonian granitoids are widely distributed throughout the Chinese Altai and are
172	normally represented by orthogneiss or granitic gneiss, possibly in response to an episode of
173	ridge subduction along an active continental margin (Sun et al., 2009; Cai et al., 2011b). In
174	contrast, the Permian granitoids generally occur in the southern Chinese Altai and are
175	predominantly undeformed (Fig. 1b). These granitoids have been linked to the collision of the
176	Chinese Altai with the arc system of East/West Junggar (e.g. Tong et al., 2014). In addition,
177	the Chinese Altai was intruded by Mesozoic anorogenic granitoids (Li et al., 2013; Wang et
178	al., 2014b).
179	
180	3. Deformation along the Irtysh Shear Zone
181	We have mapped a series of ~NW-SE mylonitic zones (Mylonite Zones 1-4) within the Irtysh
181 182	We have mapped a series of ~NW-SE mylonitic zones (Mylonite Zones 1-4) within the Irtysh Shear Zone (Figs. 3-5). Mylonite Zone 1 is normally referred to as the Fuyun-Xibodu Fault
181 182 183	We have mapped a series of ~NW-SE mylonitic zones (Mylonite Zones 1-4) within the Irtysh Shear Zone (Figs. 3-5). Mylonite Zone 1 is normally referred to as the Fuyun-Xibodu Fault that separates the Irtysh Complex from the Altai Formation to the north in the area of Fig. 5,
181 182 183 184	We have mapped a series of ~NW-SE mylonitic zones (Mylonite Zones 1-4) within the Irtysh Shear Zone (Figs. 3-5). Mylonite Zone 1 is normally referred to as the Fuyun-Xibodu Fault that separates the Irtysh Complex from the Altai Formation to the north in the area of Fig. 5, whereas Mylonite Zone 4 is commonly referred to as the Irtysh Fault separating the Irtysh
181 182 183 184 185	We have mapped a series of ~NW-SE mylonitic zones (Mylonite Zones 1-4) within the Irtysh Shear Zone (Figs. 3-5). Mylonite Zone 1 is normally referred to as the Fuyun-Xibodu Fault that separates the Irtysh Complex from the Altai Formation to the north in the area of Fig. 5, whereas Mylonite Zone 4 is commonly referred to as the Irtysh Fault separating the Irtysh Complex from the Devonian to Carboniferous meta-volcanic/sedimentary rocks of the East
181 182 183 184 185 186	We have mapped a series of ~NW-SE mylonitic zones (Mylonite Zones 1-4) within the Irtysh Shear Zone (Figs. 3-5). Mylonite Zone 1 is normally referred to as the Fuyun-Xibodu Fault that separates the Irtysh Complex from the Altai Formation to the north in the area of Fig. 5, whereas Mylonite Zone 4 is commonly referred to as the Irtysh Fault separating the Irtysh Complex from the Devonian to Carboniferous meta-volcanic/sedimentary rocks of the East Junggar arc system (Figs. 3 and 4). Two additional mylonite zones (Zones 2 and 3) occur

188

189	The map area was divided into two structural domains with Mylonite Zone 3 as the domain
190	boundary that is roughly close to the Irtysh River. The northern domain is characterized by
191	two folded zones bounded by Mylonite Zones 1-3 (Fig. 5). Rocks in this domain have
192	penetrative axial planar fabric and are dominantly represented by quartzofeldspathic gneiss,
193	which is interlayered with pelitic gneiss/schist, migmatite and amphibolite (Fig. 5). In
194	contrast, the southern domain is bounded by Mylonite Zones 3 and 4, and is characterized by
195	the occurrence of macroscopic fold structures. Lithologically, rocks in the southern domain
196	are represented by interlayered mica schist, banded gneiss, amphibolite, gneissic granitoids
197	and migmatite (Figs. 3 and 4). Dark narrow amphibolite layers can be recognized in a
198	satellite image (Appendix A) and in the field (Figs. 3 and 4), and were used for the structural
199	synthesis.
200	

3.1. Pre-shearing deformation (D₁ and D₂)

202 **3.1.1. D**₁

201

D₁ fabric is locally recognized in the southern domain, where rootless F_2 folds show evidence of folded S_1 (Fig. 6a). The S_1 foliation is illustrated by interlayered dark cleavage domains and microlithons of composite quartz bands. The cleavage domains are occupied by micas that are normally transposed to be sub-parallel with S_2 . Garnet porphyroblasts with an internal fabric defined by the alignment of quartz inclusion trails were also recognized. The

208	internal fabric, interpreted as S_1 , is oriented at high angle relative to the external S_2 fabric
209	(Fig. 6b).
210	
211	3.1.2. D ₂
212	S_2 is the dominant foliation in the southern domain of the Irtysh Shear Zone (between
213	Mylonite Zone 3 and Mylonite Zone 4, Figs. 3 and 4). It is parallel to the axial plane of F_2
214	isoclinal folds (Fig. 6a), and is associated with a stretching lineation that shallowly plunges to
215	ESE (L ₂ , Figs. 3f and 4f) and is parallel to the strike of the orogenic belt. L_2 is commonly
216	defined by preferred alignment of amphiboles and quartz aggregates (Fig. 6c, d). On a larger
217	scale, S_2 shows variable orientations and defines a series of macroscopic antiforms and
218	synforms (F_3 , Section 3.2). Metamorphism associated with D_2 in the southern domain
219	generally exhibits an increasing grade toward the core of the antiforms, where S_2 is
220	commonly associated with migmatization or the growth of high temperature metamorphic
221	minerals (e.g., sillimanite, Fig. 6e).
222	
223	3.2. Shearing deformation and folding (D₃)
224	3.2.1. Shearing deformation
225	Shearing deformation is most evident in the four mylonite zones (Mylonite Zones 1-4).

226 Mylonitic fabric (S_3) within Mylonite Zones 1-3 is steeply dipping to the north (Fig. 5c, e),

227	whereas the mylonitic fabric in Mylonite Zone 4 is sub-vertical, and dips to north or south
228	(Figs. 3c, 4c). Stretching lineation (L_3 , Fig. 6f) within each mylonite zone is shallowly
229	plunging to ESE (Figs. 3d, 4d, 5d, f), which together with asymmetric folds, σ -type
230	porphyroblasts, and S-C fabric (Figs. 6g-h and 7a-c), indicates a sinistral-dominant
231	deformation with a reverse component (particularly for Mylonite Zones 1-3). Outcrop-scale
232	folds with hinges subparallel to the stretching lineation (L_3) were also recognized within the
233	mylonite zones, and these folds were interpreted to be A-type folds. Permian granitic dykes
234	(e.g. Zhang et al., 2012) cut Mylonite Zones 2 and 3 (Figs. 3-5), but are displaced by
235	Mylonite Zone 4 in a map view (Fig. 3), indicating multiple stages of sinistral shearing along
236	the Irtysh Shear Zone.
237	
238	3.2.2. Folding
239	In the southern domain of the Irtysh Shear Zone, the dominant fabric (S_2) is folded by both
240	outcrop-scale and macroscopic F_3 folds (Figs. 3, 4 and 7d, e). In the hinge zone of
241	macroscopic F_3 folds, S_2 curves progressively without involving intense secondary folds and
242	axial planar fabrics (Figs. 3 and 4), indicating moderate shortening strain during F_3 folding.
243	The hinges of F_3 folds (Figs. 3g and 4g) are sub-parallel to the L_2 stretching lineation
244	(Section 3.1.2). A deflection of L_2 by F_3 folds is locally observed in outcrops (Fig. 7f). On a
245	larger scale, F_3 macroscopic folds were defined by variations in the orientation of S_2 , which

246	correspond to a β axis of 11-101 (Fig. 3e) or 33-114 (Fig. 4e). These orientations roughly
247	match the mean orientation of outcrop-scale F_3 fold hinges (B_{32}) in two areas of the southern
248	domain (Figs. 3 and 4), which are 12-102 (Fig. 3g) and 27-120 (Fig. 4g), respectively. We use
249	the β axis of F ₃ together with the map-view trace of F ₃ to calculate the axial plane (dip angle
250	and dip azimuth) of macroscopic F_3 folds in the southern domain (70-015, Fig. 3h; and
251	69-037, Fig. 4h).
252	
253	In the northern domain of the Irtysh Shear Zone, the dominant fabric in two folded zones (Fig.
254	5a) commonly involves migmatization, and is steeply dipping to NNE with a mean
255	orientation of 77-022 (Fig. 5g). Outcrop-scale folds are predominantly isoclinal (Fig. 7g) with
256	axial planes parallel to the dominant fabric. Stretching lineation associated with the dominant
257	fabric is rarely recognized, unlike the S_2 fabric in the southern domain, which is associated
258	with a well-developed stretching lineation (L ₂). In addition, we observed a well-developed
259	shallowly plunging stretching lineation within folded earlier fabrics in the northern domain
260	(Fig. 7h), which is consistent with the characteristics of D_2 structures in the southern domain.
261	Based on these observations, we interpret the dominant fabric in the northern domain to be an
262	axial plane cleavage (S_3) associated with F_3 folding. The ~NNE dipping S_3 fabric in the
263	northern domain is roughly compatible with the axial plane of F_3 (70-015 or 69-037) in the
264	southern domain, thus indicating that F_3 folds in both the northern and southern domains

265	result from the same deformation event. The hinge of outcrop-scale F_3 in the northern domain
266	is shallowly plunging to west (Fig. 5h), which is different from the consistently ESE plunging
267	F ₃ in the southern domain.
268	
269	F_3 structures are cut by Permian ~NE-SE granitic dykes (Figs. 3-5). In the southern domain,
270	granitic dykes show relatively linear features truncating F_3 macroscopic folds (Figs. 3 and 4).
271	Granitic dykes in the northern domain cut the axial plane fabric of F_3 folds, but their
272	orientations show a slight variation from ~NE to ~N-S (Fig. 5).
273	
274	3.2.3. Relationship between shearing and folding
275	Our results show that the axial plane of macroscopic F_3 folds in the southern domain and
276	axial planar S_3 fabric in the northern domain are roughly parallel to the mylonitic fabric (S_3).
277	Given the kinematic compatibility, we suggest that F_3 folds developed in association with
278	sinistral-reverse shearing deformation (D_3). This is further supported by constraints on the
279	timing of deformation of the major phase of F_3 folding and D_3 shearing in the late Paleozoic
280	(see Section 5.1). The stretching lineation (L_3) is well developed within the mylonite zones
281	(Mylonite Zones 1-4), but it is weakly developed within the S_3 axial planar fabric in the
282	northern domain. This may suggest that D_3 transpressional deformation was partitioned
283	across the shear zone, with a dominant simple shear component in the mylonite zones and a

- 284 dominant pure shear component in the fold zones.
- 285

286 4. Geochronology

287 4.1. Sample description

- 288 Two mica schist samples were analyzed by U-Pb zircon geochronology in order to constrain
- the ages of protoliths within the Irtysh Complex and to provide a maximum time constraint
- for deformation. A mica schist sample (L14FY04; GPS: 46°58'1.22"N /89°19'21.59"E) was
- collected from the southern domain of the Irtysh Shear Zone (Fig. 3). The rock has a mineral
- assemblage of quartz, feldspar and biotite, and shows penetrative S_2 and L_2 fabrics. Sample
- L14FY137 (GPS: 47°0'26.42"N/89°24'38.02"E) is a garnet mica schist from Mylonite Zone 2
- in the northern domain (Fig. 5). This sample mainly comprises quartz, feldspar, garnet and
- 295 minor oxide, and is characterized by a sinistral mylonitic fabric (S_3) .
- 296

297 **4.2. Methods**

298 Zircon grains were separated with conventional crushing, heavy liquid and magnetic

- techniques. The grains were mounted in epoxy resin and polished to expose equatorial section.
- 300 Cathodoluminescence (CL) images were taken at the Department of Earth Sciences, the
- 301 University of Hong Kong. Zircon U-Pb geochronology was conducted by employing a Nu
- 302 Instruments MC-ICP-MS attached to a Resonetics Resolution M-50-HR Excimer Laser

303	Ablation System at the Department of Earth Sciences, the University of Hong Kong. The
304	analytical procedure and instrument parameters are described in Xia et al. (2011) and Geng et
305	al. (2014). Data processing was done using the ICPMSDataCal software (Liu et al., 2010) and
306	the weighted mean age calculation and concordia plots were done using the ISOPLOT
307	program (Ludwig, 2003).
308	
309	4.3. Results
310	Representative CL images of analyzed zircons are shown in Appendix B, and U-Pb analytical
311	results are presented in Appendixes C and D. Concordant ages (<10% discordance) are
312	presented in histogram/probability density plots (Fig. 8). The reported weighted mean
313	206 Pb/ 238 U ages of metamorphic zircons from sample L14FY137, which typically have a 0.6%
314	error (95% c.l.), are forced to 1% to account for external errors
315	
316	Zircons from mica schist (L14FY04) from the southern domain of the Irtysh Shear Zone are
317	characterized by euhedral to subeuhedral shape and oscillatory zoning (Appendix B),
318	indicating a predominant igneous origin. The analyses for this sample yielded two major age
319	peaks of 322 Ma and 342 Ma, and two minor age peaks of 357 Ma and 390 Ma (Fig. 8a),
320	which represent the major populations of detrital zircons in this sample.

321

322	Most zircons from the garnet mica schist (L14FY137) show a core-rim structure (Appendix
323	B). The zircon rim shows a dark luminescence without zoning, which together with low Th/U
324	ratios (0.003-0.024), indicates a metamorphic origin. 11 analyses of zircon rims gave a
325	weighted mean age of 295.7±3.0 Ma (MSWD=0.56; Figs. 8b). In contrast, most zircon cores
326	show regular zoning, and a few cores are characterized by dark luminescence with a weak
327	zoning, which together with variable ages, are interpreted to represent a detrital zircon
328	population. The analyses of zircon cores clustered at 326, 341, 358, 392, 406, 444, 472 and
329	506 Ma (Fig. 8b). Eight additional core analyses yielded Precambrian ages.
330	
331	5. Discussion
332	5.1. Protolith ages and timing of deformation
333	The youngest age obtained from detrital zircons of the two mica schist samples is ~322 Ma.
334	This indicates that the protolith age is younger than ~322 Ma, consistently with the
335	occurrence of a Pennsylvanian fossil assemblage (Punctatisporites sp., Granulatisporites sp.,
336	Calamospora sp., Retusotriletes sp., Lueckisporites sp) (BGMRX, 1978). Older gneissic
337	granitoids (~450 Ma) have also been reported from the Irtysh Complex (Briggs et al., 2007).
338	This indicates that the Irtysh Complex, which was interpreted to be an accretionary complex
339	(O'Hara et al., 1997; Briggs et al., 2007; Xiao et al., 2009b), incorporated pre-Carboniferous
340	lithostratigraphic associations. Late Carboniferous rocks of the Irtysh Complex contain

341	detrital zircons with similar age peaks (e.g. 444, 472 and 506 Ma) as rocks in the central
342	Chinese Altai (Long et al., 2007), indicating a genetic link of the Irtysh Complex with the rest
343	of the Chinese Altai.
344	
345	The timing of D_1 and D_2 remains poorly constrained, but must be younger than the ~322 Ma
346	detrital zircon age. A large number of geochronological data have been reported along the
347	Irtysh Shear Zone to constrain the timing of sinistral shearing (D_3) . In Kazakhstan, the
348	sinistral deformation was constrained to ~290-265 Ma based on 40 Ar/ 39 Ar cooling ages of
349	hornblende, muscovite and biotite from the shear zone (Buslov et al., 2004b, and references
350	therein). An undeformed granodiorite intruded into the Kazakhstan segment of the Irtysh
351	Shear Zone, yielded a zircon U-Pb age of ~252 Ma (Zhang et al., 2012), thus providing a
352	minimum age constraint on the timing of shearing. The D_3 shearing in the Chinese segment
353	of the Irtysh Shear Zone was constrained at an age range of ~290-244 Ma, which was mainly
354	based on ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ cooling ages of rocks along the shear zone (Fig. 2) (Laurent-Charvet et al.,
355	2003; Yan et al., 2004; Briggs et al., 2007; Briggs et al., 2009; Zhang et al., 2012; Li et al.,
356	2015b). These ages roughly overlap with chronological constraints from the Kazakhstan
357	segment of the Irtysh Shear Zone. Our structural observations are indicative of two stages of
358	sinistral shearing (D ₃). The early phase of shearing occurred prior to the occurrence of
359	~NE-SW granitic dykes that cut Mylonite Zones 2 and 3 (Figs. 3 and 4). A later phase of

360	shearing is recorded by Mylonite Zone 4, which cut the granitic dykes (Fig. 3). The published
361	ages of these granitic dykes have a large range, but variably clustered at ~252 Ma (Zhang et
362	al., 2012) and 298-274 Ma (Briggs et al., 2007). We suggest that these ages constrain the
363	early phase of D_3 shearing, which terminated prior to ~252 Ma. New metamorphic zircons
364	from Mylonite Zone 2 yielded an age of ~295 Ma, which given the poor constraint on the
365	growth of metamorphic zircons with respect to the deformation fabrics, is interpreted to
366	represent the timing of either D_2 or D_3 .
367	
368	Overall, available geochronological data suggest that D_1 - D_2 of the Irtysh Shear Zone
369	occurred after ~322 Ma but before ~290 Ma, and the major phase of D_3 sinistral shearing may
370	have occurred in the Permian (~290-252 Ma). Both F_3 macroscopic folds in the southern
371	domain of the Irtysh Shear Zone and F_3 axial plane fabric in the northern domain are cut by
372	the relatively linear granitic dykes (Figs. 3-5; Section 3.2.2) that constrain the major phase of
373	F_3 folding to pre- ~252 Ma. This time constraint is consistent with the observation that F_3
374	folding involves an axial plane fabric associated with migmatization, which indicates high
375	temperature conditions during F_3 that evolved into a more brittle setting prior to the intrusion
376	of granitic dykes in ~252 Ma. Pre-Mesozoic F_3 folding are overlapped in time with the major
377	phase of sinistral shearing in the Permian, further supporting the interpretation that D_3
378	transpressional deformation occurred in the late Paleozoic.

379

380	Based on our data, the role of Mesozoic to Cenozoic reactivation of D_3 structures is poorly
381	constrained. Apatite fission track data record fast cooling of basement rocks within the
382	Kazakhstan segment of the Irtysh Shear Zone in the Late Cretaceous (~100-70) and Late
383	Oligocene (~25 Ma), which were interpreted to reflect the reactivation of the Irtysh Shear
384	Zone (Glorie et al., 2012b). In the Chinese Altai, apatite fission track data from Paleozoic
385	basement rocks to the north of the Irtysh Shear Zone also show fast cooling during the
386	Cretaceous and Cenozoic (~Miocene), possibly as a result of increased uplift and erosion of
387	the Altai Mountains (Yuan et al., 2006). The role of the Chinese segment of the Irtysh Shear
388	Zone in response to these uplift events remains enigmatic. Our structural observations show
389	sinistral shearing of Mylonite Zone 4 after the Permian, which was possibly associated with
390	the Cretaceous and Cenozoic uplift events. Permian granitic dykes show slight strike
391	variations (Fig. 5; Section 3.2.2), which either represent a primary structure or a later folding
392	event.
393	
394	5.2. Structural evolution of the Irtysh Shear Zone
395	Three episodes of deformation $(D_1 - D_3)$ were recognized within the Irtysh Shear Zone. The
396	earliest deformation (D_1) is strongly overprinted by D_2 , so the geometry of its associated

 $\label{eq:structures} \mbox{ (e.g., } F_1 \mbox{ folds}) \mbox{ remains unknown. The orientation of } S_2 \mbox{ prior to } D_3 \mbox{ was likely}$

398	shallowly dipping based on the observations of shallowly plunging F_3 fold hinges (B ₃₂) (Figs.
399	3e, g and 4e, g), steeply dipping F_3 axial planes (Figs. 3h and 4h), and nearly-symmetric F_3
400	macroscopic folds (Figs. 3 and 4). The original shallowly dipping $S_{2,}$ together with the
401	evidence for shallowly plunging L ₂ , which is oriented ~NW-SE subparallel to the orogenic
402	strike, suggest that this fabric formed by sub-vertical flattening and orogen-parallel stretching
403	during D ₂ . Similar observations of flat-lying foliations and orogen-parallel stretching
404	lineations were recognized in other orogens (such as the Himalayan Orogen and the Eastern
405	Alps; Brun et al., 1985; Frisch et al., 2000; Scharf et al., 2013; Xu et al., 2013), and were
406	attributed to orogen-parallel extension possibly driven by gravitational potential energy (e.g.
407	Dewey, 1988; Selverstone, 2004). Accordingly, we interpret D ₂ structures to represent a phase
408	of orogen-parallel extension associated with the collapse of an over-thickened orogen. In the
409	context of this explanation, D_1 can be interpreted as a contractional phase of deformation that
410	led to crustal-thickening prior to D ₂ extension.
411	

D₃ in the Irtysh Shear Zone was characterized by transpressional deformation, which was
partitioned into orogen-parallel shearing and orogen-perpendicular folding. The overall
geometry of the Irtysh Shear Zone in the Fuyun area (i.e., D₃ structures, Fig. 9a) is consistent
with the observations by Qu and Zhang (1991; 1994), who described a series of NW-SE
folded zones bounded by mylonite zones. Briggs et al. (2007) measured a striation at 65-340

417	on a local oblique fault of 72-055 (pitching 65° to north; based on one measurement) within
418	the Irtysh Shear Zone (Fig. 2), and thus these authors interpreted the Irtysh Shear Zone to be
419	a SW-directed thrust belt. We note, however, that the oblique reverse fault observed by Briggs
420	et al. (2007) is located in a restraining bend zone of Mylonite Zone 4 (Figs. 2, 3 and 4), where
421	one structural measurement may not be representative for the kinematics of the shear zone.
422	Furthermore, sinistral shearing fabrics with sub-horizontal stretching lineations were
423	observed along the whole southern Chinese Altai from the Qinhe area, through the Fuyun
424	area (this study), to the Chonghuer area (Fig. 1b) (Laurent-Charvet et al., 2002;
425	Laurent-Charvet et al., 2003; Jiang et al., 2015; Zhang et al., 2015), consistently showing
426	sinistral kinematics of the shear zone.
427	
428	The timing of major phase of deformation of the Irtysh Shear Zone (~322-252 Ma) roughly
429	overlaps with the convergence between the Chinese Altai and the intra-oceanic arc system of
430	the East/West Junggar (Cai et al., 2012; Li et al., 2014a; Li et al., 2015a). The youngest
431	subduction-related igneous rocks in the Chinese Altai yielded an age of \sim 313 \pm 13 Ma (Cai et
432	al., 2012), which is roughly consistent with the youngest age peak of the accretionary
433	complex (i.e. Irtysh Complex) at ~322 Ma, suggesting that closure of the Ob-Zaisan Ocean
434	between the Chinese Altai and the East/West Junggar took place in the late Carboniferous.
435	Therefore, we interpret that D_1 - D_3 of the Irtysh Shear Zone in the Fuyun area represents three

436	stages of convergence of the Chinese Altai with the East Junggar, which is characterized by a
437	cycle of crustal thickening (D_1) , extensional collapse (D_2) and transpressional thickening (D_3)
438	(Fig. 9b). Alternatively, the whole convergence process was possibly oblique, involving
439	oblique convergence during D_1 and D_3 , between which D_2 represents an intermittent episode
440	of orogen-parallel extension.
441	
442	On a larger scale, the Irtysh Shear Zone activated during the convergence of the peri-Siberian
443	orogenic system (the Chinese Altai) and the Kazakhstan orogenic system (Fig. 1a). Sinistral
444	deformation of the Irtysh Shear Zone (D_3) , together with the other shear zones (i.e. Chara
445	Shear Zone and North-East Shear Zone, Fig. 1a), accommodates the left-lateral displacement
446	of the peri-Siberian orogenic system with respect to the Kazakhstan orogenic system. In
447	contrast, a large number of shear zones developed to the south of the Irtysh Shear Zone with
448	right-lateral displacement (Shu et al., 1999; Laurent-Charvet et al., 2003; Wang et al., 2008;
449	Lin et al., 2009; Wang et al., 2010; Wang et al., 2014a). Available chronological data
450	constrain the dextral shearing in an age range of ~290-240 Ma (Shu et al., 1999;
451	Laurent-Charvet et al., 2003; Wang et al., 2014a), which overlaps with sinistral deformation
452	of the Irtysh Shear Zone. Coeval dextral and sinistral shearing accommodates the eastward
453	migration of the internal orogenic segments within the Kazakhstan orogenic system in the
454	late Paleozoic (e.g., the West Junggar-North Tianshan segment, Figs. 1a and 10).

456	The geodynamic driving mechanism that led to lateral migration of internal segments of the
457	Kazakhstan orogenic system in the late Paleozoic remains enigmatic. Previous studies have
458	proposed that the late Paleozoic wretch tectonics was possibly genetically linked with the late
459	Paleozoic convergence of Baltica, Tarim and Siberian cratons (e.g., Choulet et al., 2011).
460	Indeed, the closure of the paleo-Asian Ocean and the following continental convergence
461	occurred simultaneously with the late Paleozoic wretch tectonics. The Ob-Zaisan Ocean,
462	between the peri-Siberian and the Kazakhstan orogenic systems, may have been closed since
463	the late Carboniferous as discussed above. In the southwestern CAOB, the closure of the
464	South Tianshan Ocean, between the Kazakhstan orogenic system and the Tarim Craton, is
465	possibly dischronous, initiating in the late Carboniferous and lasting until Early Triassic (Han
466	et al., 2011; Xiao et al., 2013; Alexeiev et al., 2015). To the west, the collision between the
467	Kazakhstan orogenic system and the Baltica Craton initiated in the middle to late
468	Carboniferous (Filippova et al., 2001; Windley et al., 2007). Given the time overlap between
469	strike-slip faulting and the continental assembly, we consider that the lateral migration of the
470	West Junggar-North Tianshan segment and the Yili Block (Fig. 1a), assisted by strike-slip
471	shearing, occurred during the assembly/collision of the Siberian, Baltica and Tarim cratons, to
472	adjust relative movements of these cratons. A lateral extrusion model has been proposed to
473	explain the coeval dextral and sinistral shearing in the western CAOB in the late Paleozoic

474	(Wang et al., 2008), similarly as the lateral escape of SE Asia in response to the India-Asian
475	collision (Tapponnier and Molnar, 1976; Tapponnier et al., 1982). However, we consider that
476	the late Paleozoic amalgamation of the western CAOB involves the assembly of three
477	continental cratons of Siberia, Tarim and Baltica at a similar time, which is not comparable to
478	the escape tectonics associated with the indentation of the Indian plate into the Asia (e.g.
479	Tapponnier et al., 1982). Alternatively, the eastward migration of orogenic segments of the
480	western CAOB was possibly associated with the coeval convergence of Siberian, Tarim and
481	Baltica cratons in the late Paleozoic, during which the ongoing subduction in the eastern
482	CAOB could provide spatial freedom for the material migration towards east (Fig. 10).
483	However, this model is based only on limited chronological and structural data, and further
484	work, particularly on the kinematics and timing of major faults in Kazakhstan, is required.
485	
486	In the Mesozoic to Cenozoic, the Irtysh Shear Zone and other Paleozoic structures in the
487	western CAOB were reactivated, possibly as a result of the far-field response to collision of
488	the Cimmerian terrane and India with the southern margin of Eurasia (Dumitru et al., 2001;
489	De Grave et al., 2007; Glorie and De Grave, 2015). Under this tectonic interpretation, the
490	Chinese Altai was subject to ~NE-SW shortening in the Mesozoic to Cenozoic. The ~NW-SE
491	F_3 folds of the Irtysh Shear Zone are compatible with ~NE-SW shortening, but it is unclear
492	whether F ₃ macroscopic folds were amplified in the Mesozoic to Cenozoic to accommodate

493	this shortening. Given the evidence that the major phase of F_3 folding occurred prior to
494	Mesozoic (Section 5.1), it is concluded that such fold amplification must have been limited.
495	Alternatively, ~NE-SW shortening in the Mesozoic to Cenozoic may have been
496	accommodated by a series of ~NW-SE reverse faults in the southern Chinese Altai (Fig. 2).
497	
498	6. Conclusions
499	Three episodes of late Paleozoic deformation were recognized for the Chinese segment of the
500	Irtysh Shear Zone in Central Asia. S_1 is locally recognized and transposed to be parallel to S_2 .
501	S_2 was shallowly dipping prior to D_3 and associated with ~NW-SE shallowly plunging
502	stretching lineation that is subparallel to the orogenic strike, and thus was interpreted to
503	represent an orogen-parallel extensional event. D_3 is characterized by transpressional
504	deformation, which is represented by a series of sinistral mylonitic zones and bounded F_3 fold
505	zones. Chronological data constrain D_1 - D_2 and major phase of D_3 within a time range of
506	~322-252 Ma, and a later phase of reactivation of D_3 structures may have occurred in the
507	Mesozoic to Cenozoic. Late Paleozoic activity of D_1 - D_3 is overlapped in time with the
508	convergence between the Chinese Altai and the East Junggar. Therefore, we interpret that late
509	Paleozoic deformation of the Irtysh Shear Zone represents three stages of convergence of the
510	Chinese Altai with the East Junggar, which was characterized by a cycle of crustal thickening
511	(D_1) , extensional collapse (D_2) , and transpressional thickening (D_3) . On a larger scale,

512	sinistral shearing (D_3) in the late Paleozoic, together with dextral shearing farther south,
513	accommodated the eastward migration of internal orogenic segments of the western CAOB,
514	possibly associated with the amalgamation of multiple arc systems and continental blocks
515	during the late Paleozoic.
516	
517	Acknowledgements: This study was financially supported by the Major Basic Research
518	Project of the Ministry of Science and Technology of China (Grant: 2014CB448000 and
519	2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P),
520	National Science Foundation of China (41273048), HKU CRCG grants and a HKU small
521	grant (201309176226). We thank Rod Holcombe for the discussion with the structural
522	interpretation, and Jianhua Li and Arnaud Broussolle for the helpful comments. Jean Wong
523	and Hongyan Geng are acknowledged for their help during the geochronological analysis.
524	This work is a contribution of the Joint Laboratory of Chemical Geodynamics between HKU
525	and CAS (Guangzhou Institute of Geochemistry), IGCP 592 and PROCORE France/Hong
526	Kong Joint Research Scheme.

527 **References**

528	Alexeiev, D.V., Cook, H.E., Buvtyshkin, V.M., Golub, L.Y., 2009. Structural evolution of the
529	Ural–Tian Shan junction: A view from Karatau ridge, South Kazakhstan. Comptes
530	Rendus Geoscience 341, 287-297.
531	Alexeiev, D.V., Biske, Y.S., Wang, B., Djenchuraeva, A.V., Getman, O.F., Aristov, V.A.,
532	Kröner, A., Liu, H., Zhong, L., 2015. Tectono-Stratigraphic framework and
533	Palaeozoic evolution of the Chinese South Tianshan. Geotectonics 49, 93-122.
534	Allen, M.B., Şengör, A.M.C., Natal'in, B.A., 1995. Junggar, Turfan and Alakol basins as Late
535	Permian to ?Early Triassic extensional structures in a sinistral shear zone in the Altaid
536	orogenic collage, Central Asia. Journal of the Geological Society 152, 327-338.
537	Allen, M.B., Alsop, G.I., Zhemchuzhnikov, V.G., 2001. Dome and basin refolding and
538	transpressive inversion along the Karatau Fault System, southern Kazakstan. Journal
539	of the Geological Society 158, 83-95.
540	Amante, C., Eakins, B.W., 2009. ETOPO1 1 arc-minute global relief model: procedures, data
541	sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. 19 pp
542	Bazhenov, M.L., Levashova, N.M., Degtyarev, K.E., Van der Voo, R., Abrajevitch, A.V.,
543	McCausland, P.J.A., 2012. Unraveling the early-middle Paleozoic paleogeography of
544	Kazakhstan on the basis of Ordovician and Devonian paleomagnetic results.
545	Gondwana Research 22, 974-991.

546	BGMRX, 1978. Geological Map of the Fuyun Sheet: scale 1:200,000. Unpublished.
547	Briggs, S.M., Yin, A., Manning, C.E., Chen, ZL., Wang, XF., Grove, M., 2007. Late
548	Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications
549	for the development of the Central Asian Orogenic System. Geological Society of
550	America Bulletin 119, 944-960.
551	Briggs, S.M., Yin, A., Manning, C.E., Chen, ZL., Wang, XF., 2009. Tectonic development
552	of the southern Chinese Altai Range as determined by structural geology,
553	thermobarometry, 40Ar/39Ar thermochronology, and Th/Pb ion-microprobe monazite
554	geochronology. Geological Society of America Bulletin 121, 1381-1393.
555	Brun, JP., Burg, JP., Ming, C.G., 1985. Strain trajectories above the Main Central Thrust
556	(Himalaya) in southern Tibet. Nature 313, 388-390.
557	Buslov, M.M., Saphonova, I.Y., Watanabe, T., Obut, O., Fujiwara, Y., Iwata, K., Semakov, N.,
558	Sugai, Y., Smirnova, L., Kazansky, A.Y., 2001. Evolution of the Paleo-Asian Ocean
559	(Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived
560	terranes with the southern marginal part of the Siberian continent. Geosciences
561	Journal 5, 203-224.
562	Buslov, M.M., Fujiwara, Y., Iwata, K., Semakov, N.N., 2004a. Late Paleozoic-Early
563	Mesozoic Geodynamics of Central Asia. Gondwana Research 7, 791-808.
564	Buslov, M.M., Watanabe, T., Fujiwara, Y., Iwata, K., Smirnova, L.V., Safonova, I.Y.,

	~	\sim	~	1 21
P	d	g	e	1 2 1
		0	-	-

565	Semakov, N.N., Kiryanova, A.P., 2004b. Late Paleozoic faults of the Altai region,
566	Central Asia: tectonic pattern and model of formation. Journal of Asian Earth
567	Sciences 23, 655-671.
568	Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X., Wu, F., 2011a. Prolonged
569	magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China:
570	Evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids. Journal of
571	Asian Earth Sciences 42, 949-968.
572	Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X., Wu, F., 2011b. Geochronology,
573	petrogenesis and tectonic significance of peraluminous granites from the Chinese
574	Altai, NW China. LITHOS 127, 261-281.
575	Cai, K., Sun, M., Yuan, C., Xiao, W., Zhao, G., Long, X., Wu, F., 2012. Carboniferous
576	mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for
577	geodynamic change of the accretionary orogenic belt. Gondwana Research 22,
578	681-698.
579	Chen, JF., Han, BF., Ji, JQ., Zhang, L., Xu, Z., He, GQ., Wang, T., 2010. Zircon U-Pb
580	ages and tectonic implications of Paleozoic plutons in northern West Junggar, North
581	Xinjiang, China. LITHOS 115, 137-152.
582	Chen, S., Pe-Piper, G., Piper, D.J.W., Guo, Z., 2014. Ophiolitic mélanges in crustal-scale fault
583	zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China.

584	Tectonics, 2013TC003488.
585	Choulet, F., Chen, Y., Wang, B., Faure, M., Cluzel, D., Charvet, J., Lin, W., Xu, B., 2011.
586	Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon
587	paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences
588	42, 867-884.
589	Choulet, F., Cluzel, D., Faure, M., Lin, W., Wang, B., Chen, Y., Wu, F.Y., Ji, W., 2012. New
590	constraints on the pre-Permian continental crust growth of Central Asia (West Junggar,
591	China) by U–Pb and Hf isotopic data from detrital zircon. Terra Nova 24, 189-198.
592	De Grave, J., Buslov, M.M., Van den haute, P., 2007. Distant effects of India–Eurasia
593	convergence and Mesozoic intracontinental deformation in Central Asia: Constraints
594	from apatite fission-track thermochronology. Journal of Asian Earth Sciences 29,
595	188-204.
596	Dewey, J.F., 1988. Extensional collapse of orogens. Tectonics 7, 1123-1139.
597	Dumitru, T.A., Zhou, D., Chang, E.Z., Graham, S.A., Hendrix, M.S., Sobel, E.R., Carroll,
598	A.R., 2001. Uplift, exhumation, and deformation in the Chinese Tian Shan, in:
599	Hendrix, M.S., Davis, G.A. (Eds.), Paleozoic and Mesozoic tectonic evolution of
600	central and eastern Asia - from continental assembly to intracontinental deformation.
601	Geological Society of America Memoir 194, pp. 71-100.
~~~	

602 Eizenhöfer, P.R., Zhao, G., Zhang, J., Sun, M., 2014. Final closure of the Paleo-Asian Ocean

	~	$\sim$	~	1 22
P	d	g	e	1 33
		0		

603	along the Solonker Suture Zone: Constraints from geochronological and geochemical
604	data of Permian volcanic and sedimentary rocks. Tectonics 33, 441-463.
605	Filippova, I., Bush, V., Didenko, A., 2001. Middle Paleozoic subduction belts: the leading
606	factor in the formation of the Central Asian fold-and-thrust belt. Russian Journal of
607	Earth Sciences 3, 405-426.
608	Frisch, W., Dunkl, I., Kuhlemann, J., 2000. Post-collisional orogen-parallel large-scale
609	extension in the Eastern Alps. Tectonophysics 327, 239-265.
610	Geng, H., Brandl, G., Sun, M., Wong, J., Kröner, A., 2014. Zircon ages defining deposition of
611	the Palaeoproterozoic Soutpansberg Group and further evidence for Eoarchaean crust
612	in South Africa. Precambrian Research 249, 247-262.
613	Glorie, S., De Grave, J., Buslov, M., Zhimulev, F., Stockli, D., Batalev, V., Izmer, A.,
614	Vanhaecke, F., Elburg, M., 2011a. Tectonic history of the Kyrgyz South Tien Shan
615	(Atbashi-Inylchek) suture zone: The role of inherited structures during deformation-
616	propagation. Tectonics 30, TC6016, doi:6010.1029/2011TC002949.
617	Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Izmer, A., Vandoorne, W., Ryabinin,
618	A., Van den haute, P., Vanhaecke, F., Elburg, M.A., 2011b. Formation and Palaeozoic
619	evolution of the Gorny-Altai–Altai-Mongolia suture zone (South Siberia): Zircon
620	U/Pb constraints on the igneous record. Gondwana Research 20, 465-484.
621	Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Elburg, M.A., Van den haute, P.,

P	а	σ	e	34
	u	8	C	1 37

622	2012a. Structural control on Meso-Cenozoic tectonic reactivation and denudation in
623	the Siberian Altai: Insights from multi-method thermochronometry. Tectonophysics
624	544–545, 75-92.
625	Glorie, S., De Grave, J., Delvaux, D., Buslov, M.M., Zhimulev, F.I., Vanhaecke, F., Elburg,
626	M.A., Van den haute, P., 2012b. Tectonic history of the Irtysh shear zone (NE
627	Kazakhstan): New constraints from zircon U/Pb dating, apatite fission track dating
628	and palaeostress analysis. Journal of Asian Earth Sciences 45, 138-149.
629	Glorie, S., De Grave, J., 2015. Exhuming the Meso–Cenozoic Kyrgyz Tianshan and Siberian
630	Altai-Sayan: A review based on low-temperature thermochronology. Geoscience
631	Frontiers.
632	Han, BF., He, GQ., Wang, XC., Guo, ZJ., 2011. Late Carboniferous collision between
633	the Tarim and Kazakhstan–Yili terranes in the western segment of the South Tian
634	Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China
635	Earth-Science Reviews 109, 74-93.
636	Han, Y., Zhao, G., Sun, M., Eizenhöfer, P.R., Hou, W., Zhang, X., Liu, D., Wang, B., Zhang,
637	G., 2015. Paleozoic accretionary orogenesis in the Paleo-Asian Ocean: Insights from
638	detrital zircons from Silurian to Carboniferous strata at the northwestern margin of the
639	Tarim Craton. Tectonics 34, doi:10.1002/2014TC003668.

640 He, G., Han, B., Yue, Y., Wang, J., 1990. Tectonic division and crustal evolution of Altay
	~	$\sim$	~	1 2 5
P	d	g	e	1 33
		0		

641	orogenic belt in China. Geoscience of Xinjiang 2, 9-20 (In Chinese with the English
642	abstract).
643	Jahn, BM., Wu, F., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and
644	continental growth in the Phanerozoic. Transactions of the Royal Society of
645	Edinburgh Earth Sciences 91, 181-193.
646	Jahn, BM., 2004. The Central Asian Orogenic Belt and growth of the continental crust in the
647	Phanerozoic. Geological Society, London, Special Publications 226, 73-100.
648	Jiang, Y., Sun, M., Zhao, G., Yuan, C., Xiao, W., Xia, X., Long, X., Wu, F., 2010. The ~ 390
649	Ma high-T metamorphic event in the Chinese Altai: A consequence of
650	ridge-subduction? American Journal of Science 310, 1421-1452.
651	Jiang, Y., Štípská, P., Sun, M., Schulmann, K., Zhang, J., Wu, Q.H., Long, X., Yuan, C.,
652	Racek, M., Zhao, G., Xiao, W., 2015. Juxtaposition of Barrovian and migmatite
653	domains in the Chinese Altai: a result of crustal thickening followed by doming of
654	partially molten lower crust. Journal of Metamorphic Geology 33, 45-70.
655	Jolivet, M., Ritz, JF., Vassallo, R., Larroque, C., Braucher, R., Todbileg, M., Chauvet, A.,
656	Sue, C., Arnaud, N., De Vicente, R., Arzhanikova, A., Arzhanikov, S., 2007.
657	Mongolian summits: An uplifted, flat, old but still preserved erosion surface. Geology
658	35, 871-874.

659 Jolivet, M., De Boisgrollier, T., Petit, C., Fournier, M., Sankov, V., Ringenbach, J.C., Byzov,

660	L., Miroshnichenko, A., Kovalenko, S.N., Anisimova, S., 2009. How old is the Baikal
661	Rift Zone? Insight from apatite fission track thermochronology. Tectonics 28.
662	Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y., Wang, Q., 2010. Mesozoic and
663	Cenozoic tectonic history of the Central Chinese Tian Shan: Reactivated tectonic
664	structures and active deformation. Tectonics 29.
665	Khain, E., Bibikova, E., Kröner, A., Zhuravlev, D., Sklyarov, E., Fedotova, A.,
666	Kravchenko-Berezhnoy, I., 2002. The most ancient ophiolite of the Central Asian fold
667	belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan,
668	Siberia, and geodynamic implications. Earth and Planetary Science Letters 199,
669	311-325.
670	Kröner, A., Lehmann, J., Schulmann, K., Demoux, A., Lexa, O., Tomurhuu, D., Štípská, P.,
671	Liu, D., Wingate, M.T., 2010. Lithostratigraphic and geochronological constraints on
672	the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic
673	rifting followed by late Paleozoic accretion. American Journal of Science 310,
674	523-574.
675	Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann,
676	R., Alexeiev, D.V., Hoffmann, J.E., Wong, J., Sun, M., Cai, K., Wang, T., Tong, Y.,
677	Wilde, S.A., Degtyarev, K.E., Rytsk, E., 2014. Reassessment of continental growth
678	during the accretionary history of the Central Asian Orogenic Belt. Gondwana

679	Research 25, 103-125.
680	Laurent-Charvet, S., Charvet, J., Shu, L., Ma, R., Lu, H., 2002. Palaeozoic late collisional
681	strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China. Terra
682	Nova 14, 249-256.
683	Laurent-Charvet, S., Charvet, J., Monié, P., Shu, L., 2003. Late Paleozoic strike-slip shear
684	zones in eastern Central Asia (NW China): New structural and geochronological data.
685	Tectonics 22.
686	Lehmann, J., Schulmann, K., Lexa, O., Corsini, M., Kröner, A., Štípská, P., Tomurhuu, D.,
687	Otgonbator, D., 2010. Structural constraints on the evolution of the Central Asian
688	Orogenic Belt in SW Mongolia. American Journal of Science 310, 575-628.
689	Levashova, N.M., Mikolaichuk, A.V., McCausland, P.J.A., Bazhenov, M.L., Van der Voo, R.,
690	2007. Devonian paleomagnetism of the North Tien Shan: Implications for the
691	middle-Late Paleozoic paleogeography of Eurasia. Earth and Planetary Science
692	Letters 257, 104-120.
693	Li, D., He, D., Santosh, M., Tang, J., 2014a. Petrogenesis of Late Paleozoic volcanics from
694	the Zhaheba depression, East Junggar: Insights into collisional event in an
695	accretionary orogen of Central Asia. LITHOS 184, 167-193.
696	Li, D., He, D., Ma, D., Tang, Y., Kong, Y., Tang, J., 2015a. Carboniferous–Permian tectonic
697	framework and its later modifications to the area from eastern Kazakhstan to southern

698	Altai: Insights from the Zaysan-Jimunai Basin evolution. Journal of Asian Earth
699	Sciences, in press.
700	Li, P., Yuan, C., Sun, M., Long, X., Cai, K., 2015b. Thermochronological constraints on the
701	late Paleozoic tectonic evolution of the southern Chinese Altai. Journal of Asian Earth
702	Sciences, in press.
703	Li, S., Wang, T., Wilde, S.A., Tong, Y., 2013. Evolution, source and tectonic significance of
704	Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central
705	segment). Earth-Science Reviews 126, 206-234.
706	Li, Z., Yang, X., Li, Y., Santosh, M., Chen, H., Xiao, W., 2014b. Late Paleozoic tectono-
707	metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt:
708	Constraints from metamorphic P-T pseudosection and zircon U-Pb dating of
709	ultra-high-temperature granulite. LITHOS 204, 83-96.
710	Lin, W., Faure, M., Shi, Y., Wang, Q., Li, Z., 2009. Palaeozoic tectonics of the south-western
711	Chinese Tianshan: new insights from a structural study of the
712	high-pressure/low-temperature metamorphic belt. International Journal of Earth
713	Sciences 98, 1259-1274.
714	Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D., 2010. Continental and Oceanic Crust
715	Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–
716	Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal

717	of Petrology 51, 537-571.
718	Long, X., Sun, M., Yuan, C., Xiao, W., Lin, S., Wu, F., Xia, X., Cai, K., 2007. Detrital zircon
719	age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai:
720	Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic
721	Belt. Tectonics 26.
722	Long, X., Yuan, C., Sun, M., Xiao, W., Zhao, G., Wang, Y., Cai, K., Xia, X., Xie, L., 2010.
723	Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the
724	Chinese Altai, NW China: new constrains on depositional age, provenance and
725	tectonic evolution. Tectonophysics 480, 213-231.
726	Long, X., Yuan, C., Sun, M., Xiao, W., Wang, Y., Cai, K., Jiang, Y., 2012. Geochemistry and
727	Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai,
728	Central Asia: Evidence for a northward-derived mafic source and insight into Nd
729	model ages in accretionary orogen. Gondwana Research 22, 554-566.
730	Ludwig, K.R., 2003. Isoplot/Ex Version 3.0: A geochronological toolkit for Microsoft Excel.
731	Berkeley. 70 pp
732	Natal'in, B.A., Şengör, A.C., 2005. Late Palaeozoic to Triassic evolution of the Turan and
733	Scythian platforms: the pre-history of the Palaeo-Tethyan closure. Tectonophysics 404,
734	175-202.

735 O'Hara, K.D., Yang, X.-Y., Guoyuan, X., Li, Z., 1997. Regional δ18O gradients and

fluid-rock interaction in the Altay accretionary complex, northwest China. Geology 25,

736

737	443-446.
738	Qu, G., 1991. Deformational structure of tectonic division of the Altaides, Xinjiang.
739	Geoscience of Xinjiang 3, 132-144 (in Chinese with the English abstract).
740	Qu, G., Zhang, J., 1991. Irtys structural zone. Geoscience of Xinjiang 3, 115-131 (in Chinese
741	with the English abstract).
742	Qu, G., Zhang, J., 1994. Oblique thrust systems in the Altay orogen, China. Journal of
743	Southeast Asian Earth Sciences 9, 277-287.
744	Ren, J.S., Jiang, C.F., Zhang, Z.K., Qin, D.Y., 1980. Geotectonic Evolution of China. Science
745	Press, Beijing. 124 pp
746	Rolland, Y., Alexeiev, D.V., Kröner, A., Corsini, M., Loury, C., Monié, P., 2013. Late
747	Palaeozoic to Mesozoic kinematic history of the Talas–Ferghana strike-slip fault
748	(Kyrgyz West Tianshan) as revealed by 40Ar/39Ar dating of syn-kinematic white
749	mica. Journal of Asian Earth Sciences 67–68, 76-92.
750	Safonova, I., 2013. The Russian-Kazakh Altai orogen: An overview and main debatable
751	issues. Geoscience Frontiers, 537-552.
752	Scharf, A., Handy, M.R., Favaro, S., Schmid, S.M., Bertrand, A., 2013. Modes of
753	orogen-parallel stretching and extensional exhumation in response to microplate
754	indentation and roll-back subduction (Tauern Window, Eastern Alps). International

755	Journal of Earth Sciences 102, 1627-1654.
756	Selverstone, J., 2004. Are the Alps collapsing? Annual Review of Earth and Planetary
757	Sciences 33, 113.
758	Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic collage
759	and Palaeozoic crustal growth in Eurasia. Nature 364, 299-307.
760	Şengör, A.M.C., Natal'in, B.A., 1996. Turkic-type orogeny and its role in the making of the
761	continental crust. Annual Review of Earth and Planetary Sciences 24, 263-337.
762	Shu, L., Charvet, J., Guo, L., Lu, H., Laurent-Charvet, S., 1999. A large-scale Palaeozoic
763	dextral ductile strike-slip zone: the Aqqikkudug-Weiya zone along the northern
764	margin of the central Tianshan Belt, Xinjiang, NW China. Acta Geologica Sinica 73,
765	148-162.
766	Sun, M., Yuan, C., Xiao, W., Long, X., Xia, X., Zhao, G., Lin, S., Wu, F., Kröner, A., 2008.
767	Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:
768	progressive accretionary history in the early to middle Palaeozoic. Chemical Geology
769	247, 352-383.
770	Sun, M., Long, X., Cai, K., Jiang, Y., Wang, B., Yuan, C., Zhao, G., Xiao, W., Wu, F., 2009.
771	Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change
772	in zircon Hf isotopic compositions. Science in China Series D: Earth Sciences 52,
773	1345-1358.

774	Tapponnier, P., Molnar, P., 1976. Slip-line field theory and large-scale continental tectonics.
775	Nature 264, 319-324.
776	Tapponnier, P., Peltzer, G., Le Dain, A.Y., Armijo, R., Cobbold, P., 1982. Propagating
777	extrusion tectonics in Asia: New insights from simple experiments with plasticine.
778	Geology 10, 611-616.
779	Tong, Y., Wang, T., Jahn, B.M., Sun, M., Hong, D.W., Gao, J.F., 2014. Post-accretionary
780	permian granitoids in the Chinese Altai orogen: Geochronology, petrogenesis and
781	tectonic implications. American Journal of Science 314, 80-109.
782	Van der Voo, R., 2004. Paleomagnetism, oroclines, and growth of the continental crust. GSA
783	Today 14, 4–9.
784	Van der Voo, R., van Hinsbergen, D.J., Domeier, M., Spakman, W., Torsvik, T.H., 2015.
785	Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A
786	paleomagnetic and seismological-tomographic analysis. Geological Society of
787	America Special Papers 513, doi:10.1130/2015.2513(1119).
788	Vassallo, R., Jolivet, M., Ritz, JF., Braucher, R., Larroque, C., Sue, C., Todbileg, M.,
789	Javkhlanbold, D., 2007. Uplift age and rates of the Gurvan Bogd system (Gobi-Altay)
790	by apatite fission track analysis. Earth and Planetary Science Letters 259, 333-346.
791	Vladimirov, A., Kruk, N., Khromykh, S., Polyansky, O., Chervov, V., Vladimirov, V., Travin,
792	A., Babin, G., Kuibida, M., Vladimirov, V., 2008. Permian magmatism and

793	lithospheric deformation in the Altai caused by crustal and mantle thermal processes.
794	Russian Geology and Geophysics 49, 468-479.
795	Wang, B., Faure, M., Shu, L., de Jong, K., Charvet, J., Cluzel, D., Jahn, B.m., Chen, Y.,
796	Ruffet, G., 2010. Structural and geochronological study of high-pressure metamorphic
797	rocks in the Kekesu section (northwestern China): Implications for the late Paleozoic
798	tectonics of the Southern Tianshan. The Journal of Geology 118, 59-77.
799	Wang, B., Cluzel, D., Jahn, Bm., Shu, L., Chen, Y., Zhai, Y., Branquet, Y., Barbanson, L.,
800	Sizaret, S., 2014a. Late Paleozoic pre-and syn-kinematic plutons of the Kangguer-
801	Huangshan Shear zone: Inference on the tectonic evolution of the eastern Chinese
802	north Tianshan. American Journal of Science 314, 43-79.
803	Wang, T., Hong, D.W., Jahn, B.M., Tong, Y., Wang, Y.B., Han, B.F., Wang, X.X., 2006.
804	Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai
805	Mountains, Northwest China: implications for the tectonic evolution of an
806	accretionary orogen. The Journal of Geology 114, 735-751.
807	Wang, T., Jahn, Bm., Kovach, V.P., Tong, Y., Wilde, S.A., Hong, Dw., Li, S., Salnikova,
808	E.B., 2014b. Mesozoic intraplate granitic magmatism in the Altai accretionary orogen,
809	NW China: Implications for the orogenic architecture and crustal growth. American
810	Journal of Science 314, 1-42.

811 Wang, W., Wei, C., Wang, T., Lou, Y., Chu, H., 2009. Confirmation of pelitic granulite in the

D	-	<i>a</i>	0	11
P	a	g	e	44

812	Altai orogen and its geological significance. Chinese Science Bulletin 54, 2543-2548.
813	Wang, W., Wei, C., Zhang, Y., Chu, H., Zhao, Y., Liu, X., 2014c. Age and origin of sillimanite
814	schist from the Chinese Altai metamorphic belt: implications for late Palaeozoic
815	tectonic evolution of the Central Asian Orogenic Belt. International Geology Review
816	56, 224-236.
817	Wang, Y., Mooney, W.D., Yuan, X., Coleman, R.G., 2003. The crustal structure from the Altai
818	Mountains to the Altyn Tagh fault, northwest China. Journal of Geophysical Research:
819	Solid Earth 108, 2322.
820	Wang, Y., Li, J., Sun, G., 2008. Postcollisional Eastward Extrusion and Tectonic Exhumation
821	along the Eastern Tianshan Orogen, Central Asia: Constraints from Dextral
822	Strike-Slip Motion and 40Ar/39ArAr40/Ar39 Geochronological Evidence. The
823	Journal of Geology 116, 599-618.
824	Wang, Y., Wang, J., Wang, L., Long, L., Tang, P., Liao, Z., Zhang, H., Shi, Y., 2012. The
825	Tuerkubantao ophiolite mélange in Xinjiang, NW China: New evidence for the Erqis
826	suture zone. Geoscience Frontiers 3, 587-602.
827	Wilhem, C., Windley, B.F., Stampfli, G.M., 2012. The Altaids of Central Asia: A tectonic and
828	evolutionary innovative review. Earth-Science Reviews 113, 303-341.
829	Windley, B.F., Kröner, A., Guo, J., Qu, G., Li, Y., Zhang, C., 2002. Neoproterozoic to
830	Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and

831	Tectonic Evolution. The Journal of Geology 110, 719-737.
832	Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., Badarch, G., 2007. Tectonic models for
833	accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164,
834	31-47.
835	Xia, X., Sun, M., Geng, H., Sun, Y., Wang, Y., Zhao, G., 2011. Quasi-simultaneous
836	determination of U-Pb and Hf isotope compositions of zircon by excimer
837	laser-ablation multiple-collector ICPMS. Journal of Analytical Atomic Spectrometry
838	26, 1868-1871.
839	Xiao, W., Windley, B.F., Hao, J., Zhai, M., 2003. Accretion leading to collision and the
840	Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian
841	orogenic belt. Tectonics 22, 1069.
842	Xiao, W., Han, C., Yuan, C., Sun, M., Lin, S., Chen, H., Li, Z., Li, J., Sun, S., 2008. Middle
843	Cambrian to Permian subduction-related accretionary orogenesis of Northern
844	Xinjiang, NW China: implications for the tectonic evolution of central Asia. Journal
845	of Asian Earth Sciences 32, 102-117.
846	Xiao, W., Windley, B., Huang, B., Han, C., Yuan, C., Chen, H., Sun, M., Sun, S., Li, J., 2009a.
847	End-Permian to mid-Triassic termination of the accretionary processes of the southern
848	Altaids: implications for the geodynamic evolution, Phanerozoic continental growth,
849	and metallogeny of Central Asia. International Journal of Earth Sciences 98,

Xiao, W., Windley, B., Yuan, C., Sun, M., Han, C., Lin, S., Chen, H., Yan, Q., Liu, D., Qin, K.,

Li, J., Sun, S., 2009b. Paleozoic multiple subduction-accretion processes of the

- southern Altaids. American Journal of Science 309, 221-270.
- Xiao, W., Huang, B., Han, C., Sun, S., Li, J., 2010. A review of the western part of the Altaids:
- A key to understanding the architecture of accretionary orogens. Gondwana Research
- **856** 18, 253–273.
- Xiao, W., Windley, B.F., Allen, M.B., Han, C., 2013. Paleozoic multiple accretionary and
- 858 collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research
- 859 23, 1316-1341.
- Xiao, W., Santosh, M., 2014. The western Central Asian Orogenic Belt: A window to
- accretionary orogenesis and continental growth. Gondwana Research 25, 1429–1444.
- 862 Xiao, W., Windley, B., Sun, S., Li, J., Huang, B., Han, C., Yuan, C., Sun, M., Chen, H., 2015.
- A Tale of Amalgamation of Three Collage Systems in the Permian–Middle Triassic in
- 864 Central-East Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of
- Earth and Planetary Sciences 43, doi: 10.1146/annurev-earth-060614-105254.
- 866 Xu, Z., Wang, Q., Pêcher, A., Liang, F., Qi, X., Cai, Z., Li, H., Zeng, L., Cao, H., 2013.
- 867 Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late

868 Oligocene and Miocene. Tectonics 32, 191-215.

869	Yakubchuk, A., 2004. Architecture and mineral deposit settings of the Altaid orogenic collage:
870	a revised model. Journal of Asian Earth Sciences 23, 761-779.
871	Yan, S., Chen, W., Wang, Y., Zhang, Z., Chen, B., 2004. ⁴⁰ Ar/ ³⁹ Ar dating and its significance
872	of the Ertix gold metallogenic belt in the Altay orogen, Xinjiang. Acta Geologica
873	Sinica, 500-506 (in Chinese with the English abstract).
874	Yang, T., Li, J., Liang, M., Wang, Y., 2015. Early Permian mantle–crust interaction in the
875	south-central Altaids: High-temperature metamorphism, crustal partial melting, and
876	mantle-derived magmatism. Gondwana Research 28, 371-390.
877	Yuan, C., Sun, M., Xiao, W., Li, X., Chen, H., Lin, S., Xia, X., Long, X., 2007. Accretionary
878	orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical
879	Geology 242, 22-39.
880	Yuan, W., Carter, A., Dong, J., Bao, Z., An, Y., Guo, Z., 2006. Mesozoic–Tertiary exhumation
881	history of the Altai Mountains, northern Xinjiang, China: New constraints from
882	apatite fission track data. Tectonophysics 412, 183-193.
883	Zhang, C.L., Santosh, M., Zou, H.B., Xu, Y.G., Zhou, G., Dong, Y.G., Ding, R.F., Wang, H.Y.,
884	2012. Revisiting the "Irtish tectonic belt": Implications for the Paleozoic tectonic
885	evolution of the Altai orogen. Journal of Asian Earth Sciences 52, 117-133.
886	Zhang, J., Zheng, Y., 1993. A Thrust-wrench Model for the Altay Orogenic Belt. Acta
887	Scicentiarum Naturalum Universitis Pekinesis 29, 745-753 (in Chinese with English

abstract).

889	Zhang, J., Sun, M., Schulmann, K., Zhao, G., Wu, Q., Jiang, Y., Guy, A., Wang, Y., 2015.
890	Distinct deformational history of two contrasting tectonic domains in the Chinese
891	Altai: their significance in understanding accretionary orogenic process. Journal of
892	Structural Geology 73, 64-82.
893	Zhuang, Y.X., 1994. The pressure-temperature-space-time (PTSt) evolution of metamorphism
894	and development mechanism of the thermal-structural-gneiss domes in the Chinese
895	Altaids. Acta Geologica Sinica 68, 35-47 (In Chinese with the English abstract).
896	Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., Page, B.M., 1990. Geology of the USSR: a
897	plate-tectonic synthesis. American Geophysical Union 21, 242. pp
898	CERTIN

**Figure captions** 

899

900	Fig. 1. (a) A simplified tectonic map of the western CAOB after Şengör et al. (1993) and
901	Windley et al. (2007) and Chen et al. (2014). The inset topographic image is from Amante
902	and Eakins (2009). In this paper, we refer the south Mongolia orogenic system (SMOS) to
903	represent the intra-oceanic arc systems in the East Junggar and southern Mongolia (Xiao et
904	al., 2008; Kröner et al., 2010); the Kazakhstan orogenic system (KOS) and the peri-Siberian
905	orogenic system (PSOS) to represent arc systems to the south and north of the Irtysh/Chara
906	shear zones, respectively. Note that major late Paleozoic strike-slip faults were highlighted.
907	ISZ: Irtysh Shear Zone; BF: Bulgan Fault; NEF: North-East Fault; CSZ: Chara Shear Zone;
908	CKF: Central Kazakhstan Fault; NNF: Nikolaiev-Nalati Fault; CANTF:
909	Chingiz-Alakol-North Tian Shan Fault; MTSZ: Main Tianshan Shear Zone. (b) Geological
910	map in the area of the Chinese Altai after Choulet et al. (2012), Li et al. (2014a) and Li et al.
911	(2015b). The time range of granitoids is based on the summary by Tong et al. (2014) and
912	Chen et al. (2010), whereas major faults are based on Qu et al. (1994), Laurent-Charvet et al
913	(2003), Briggs et al. (2007), Jiang et al. (2015) and Zhang et al. (2015).
914	
915	Fig. 2. Geological map in the Fuyun area of the southern Chinese Altai based on 1:20 000

916 geological maps. Note that the map highlights major structural elements and published

917 geochronological data (Laurent-Charvet et al., 2003; Briggs et al., 2007; Li et al., 2014b; Li

918	et al., 2015b). M1-M4 represents Mylonite Zones 1-4. The red star with white fill shows the
919	observed location by Briggs et al. (2007)
920	
921	Fig. 3. (a-b) Geological map and transect of the southern domain of the Irtysh Shear Zone.
922	See the location in Fig. 2. (c-h) Stereonet plots (lower hemisphere, equal area) for the
923	mylonitic fabric and stretching lineation of Mylonite Zone 4, $S_2$ fabric and associated $L_2$
924	lineation, as well as the hinge (B ₃₂ ) and axil plane of F ₃ . S ₂ in this area defines a $\beta$ axis at
925	11-101 (Fig. 3e), which together with the trace of axial plane of antiform/synform (~ $105^{\circ}$
926	trending) defines an axial plane of $F_3$ at 70-015 (Fig. 3h). Note that granitic dykes are
927	displaced by Mylonite Zone 4.
928	
929	Fig. 4. (a-b) Geological map and transect of the southern domain of the Irtysh Shear Zone to
930	the east of Fig. 3. The location is indicated in Fig. 2. (c-h) Stereonet plots (lower hemisphere,
931	equal area) for the mylonitic fabric and stretching lineation of Mylonite Zone 4, $S_2$ fabric and
932	associated $L_2$ lineation, and the hinge (B ₃₂ ) and axial plane of F ₃ . S ₂ in this area defines a $\beta$
933	axis at 33-114 (Fig. 4e), which together with the trace of axial plane of antiform/synform at
934	$127^{\circ}$ constrains an axial plane of F ₃ at 69-37 (Fig. 4h).
935	

Fig. 5. (a-b) Geological map and transect of the northern domain of the Irtysh Shear Zone 936

937	(see the location in Fig. 2). (c-h) Stereonet plots (lower hemisphere, equal area) for mylonitic
938	fabrics and stretching lineations of Mylonite Zone 1-3, and axial planar fabric and hinge of $F_3$ .
939	Note that granitic dykes cut D ₃ shearing fabrics of Mylonite Zones 2-3.
940	
941	<b>Fig. 6.</b> Photographs of representative structures in the Irtysh Shear Zone. (a) Folded $S_1$ fabric
942	with axial plane parallel to $S_2$ ; (b) A $S_1$ fabric defined by preferred alignment of quartz
943	inclusions within garnet, which shows a high angle with the external $S_2$ fabric; (c) A $L_2$
944	stretching lineation defined by preferred alignment of amphiboles; (d) A $L_2$ stretching
945	lineation defined by stretching quartz aggregate; (e) Preferred alignment of sillimanite
946	indicating syn-S ₂ growth; (f) A quartz rod defining $L_3$ stretching lineation within Mylonite
947	Zone 3; (g-h) Asymmetric fold and $\sigma$ -type quartz grains demonstrating sinistral shearing of
948	Mylonite Zones 1 and 2.
949	
950	Fig. 7. Photographs of representative structures in the Irtysh Shear Zone. (a-c) $\sigma$ -type quartz
951	and S-C fabric illustrating sinistral shearing of Mylonite Zone 3 and 4; (d) $F_3$ folds with
952	steeply dipping axial planes in the southern domain of the Irtysh Shear Zone; (e) A
953	asymmetric $F_3$ fold in the southern domain; (f) $L_2$ stretching lineations slightly deflected by
954	$F_3$ folds in the southern domain. (g) Isoclinal $F_3$ folds in the northern domain; (h) Local
955	occurrence of $L_2$ stretching lineations within folded $S_2$ layers in the northern domain.

95	56
----	----

**Fig. 8.** Age probability diagrams of zircons from two mica schists of the Irtysh Complex.

958

- 959 Fig. 9. (a) A schematic diagram showing the geometry of the Irtysh Shear Zone. (b-d)
- 960 Schematic cartoons showing a possible scenario for late Paleozoic tectonic evolution of the
- 961 Irtysh Shear Zone in response to the convergence between the Chinese Altai and the
- 962 intraoceanic arc system of the East/West Junggar.
- 963
- **Fig. 10.** A simplified reconstruction of the CAOB in the late Paleozoic after Şengör et al.
- 965 (1993), Natal'in and Şengör (2005) and Xiao et al. (2015). Note that the convergence of the
- 966 Siberian, Tarim and Baltic cratons is possibly linked with the late Paleozoic development of
- 967 major strike-slip shear zones and the lateral migration of internal segments within the western
- 968 CAOB as illustrated in the inset cartoon.
- 969

....

970

971

972



Fig. 1



Fig. 2



Fig. 3



Fig. 4













#### a) 3D diagram of the Irtysh Shear Zone



b) Three-stage evolution of the Irtysh Shear Zone



Fig. 9



#### **Research highlights**

The Irtysh Shear Zone is a major tectonic boundary in the Central Asia Orogenic Belt;

Three episodes of late Paleozoic deformation (D1-D3) were recognized;

D1-D3 were associated with convergence of arc systems;

D1-D3 represent orogenic thickening, collapse and transpressional deformation;

D3 was possibly reactivated in the Mesozoic to Cenozoic.

			Rat	io					A	ge (Ma	)			
Sample #	Pb207/Pb206	lσ	Pb207/U235	1σ	Pb206/U238	1σ	Pb207/Pb 206	lσ	Pb206/U 238	1σ	Pb207/U 235	1σ	Disc%	Th/U
L14FY4_1	0.0533	0.0003	0.4184	0.0054	0.0569	0.0006	339	13	357	4	355	4	-1	0.261
L14FY4_2	0.1144	0.0005	0.7895	0.0048	0.0501	0.0003	1872	7	315	2	591	3	88	0.369
L14FY4_3	0.0586	0.0002	0.3783	0.0031	0.0468	0.0003	554	7	295	2	326	2	11	0.437
L14FY4_4	0.0772	0.0015	0.4415	0.0106	0.0413	0.0003	1126	39	261	2	371	7	42	0.134
L14FY4_5	0.0908	0.0015	0.5697	0.0095	0.0455	0.0003	1443	30	287	2	458	6	60	0.162
L14FY4_6	0.0750	0.0009	0.4596	0.0096	0.0443	0.0004	1133	25	279	2	384	7	38	0.150
L14FY4_7	0.0609	0.0009	0.3790	0.0089	0.0449	0.0004	637	64	283	2	326	7	15	0.152
L14FY4_8	0.0571	0.0002	0.4093	0.0034	0.0520	0.0004	494	9	327	3	348	2	7	0.409
L14FY4_9	0.0566	0.0005	0.3979	0.0042	0.0510	0.0004	476	19	321	2	340	3	6	0.325
L14FY4_10	0.0531	0.0002	0.3741	0.0027	0.0512	0.0004	332	7	322	2	323	2	0	0.500
L14FY4_11	0.0533	0.0002	0.3999	0.0042	0.0544	0.0005	339	7	341	3	342	3	0	0.332
L14FY4_12	0.0549	0.0002	0.4707	0.0044	0.0621	0.0005	409	9	389	3	392	3	1	0.329
L14FY4_13	0.0548	0.0002	0.4074	0.0034	0.0538	0.0004	467	7	338	2	347	2	3	0.412
L14FY4_14	0.0535	0.0005	0.3731	0.0056	0.0505	0.0003	350	20	317	2	322	4	1	0.242
L14FY4_15	0.0530	0.0002	0.4009	0.0040	0.0550	0.0006	328	12	345	4	342	3	-1	0.345
L14FY4_16	0.0797	0.0004	0.4477	0.0056	0.0408	0.0005	1189	5	258	3	376	4	46	0.256
L14FY4_17	0.0554	0.0003	0.3962	0.0052	0.0518	0.0005	428	9	326	3	339	4	4	0.266
L14FY4_18	0.0531	0.0001	0.3989	0.0043	0.0545	0.0006	345	7	342	4	341	3	0	0.320
L14FY4_19	0.0545	0.0003	0.3890	0.0046	0.0517	0.0005	391	8	325	3	334	3	3	0.298
L14FY4_20	0.0743	0.0005	0.4799	0.0049	0. 0468	0.0003	1050	14	295	2	398	3	35	0.300
L14FY4_21	0.0578	0.0003	0.4050	0.0042	0. 0508	0.0004	524	5	319	2	345	3	8	0.331
L14FY4_22	0.0536	0.0003	0.3765	0.0033	0.0509	0.0003	354	11	320	2	324	2	1	0.406
L14FY4_23	0.0534	0.0001	0.4014	0.0041	0.0546	0.0006	343	6	343	3	343	3	0	0.341
L14FY4_24	0.1040	0.0027	0. 5974	0.0072	0.0442	0.0010	1698	48	279	6	476	5	70	0.220
L14FY4_25	0.0636	0.0004	0.4428	0.0081	0.0502	0.0007	728	13	316	4	372	6	18	0.175
L14FY4_26	0.1107	0.0041	0.7382	0.0252	0.0487	0.0004	1811	67	306	2	561	15	83	0.068
L14FY4_27	0.0555	0.0002	0.4147	0.0033	0.0542	0.0004	432	3	340	2	352	2	3	0.424

Table S1. U–Pb analyses of zricons from the Irtysh Complex. *Excluded from age calculation

			Rat	io					A	ge (Ma	1)			
Sample #	Pb207/Pb206	lσ	Pb207/U235	lσ	Pb206/U238	1σ	Pb207/Pb 206	lσ	Pb206/U 238	1σ	Pb207/U 235	lσ	Disc%	Th/U
L14FY4_28	0.0559	0.0005	0.4026	0.0061	0.0522	0.0006	456	25	328	3	344	4	5	0.226
L14FY4_29	0.1111	0.0057	0.8206	0.0553	0.0508	0.0011	1817	95	320	7	608	31	90	0.032
L14FY4_30	0.0545	0.0002	0.3858	0.0045	0.0513	0.0006	394	40	322	3	331	3	3	0.305
L14FY4_31	0.0689	0.0014	0.4149	0.0085	0.0437	0.0002	896	43	276	1	352	6	28	0.165
L14FY4_32	0.0920	0.0024	0.5674	0.0175	0.0444	0.0004	1533	50	280	2	456	11	63	0.088
L14FY4_33	0.0570	0.0005	0.4007	0.0071	0.0508	0.0005	494	25	319	3	342	5	7	0.195
L14FY4_34	0.0598	0.0009	0.3836	0.0056	0.0466	0.0003	594	31	293	2	330	4	12	0.245
L14FY4_35	0.0543	0.0002	0.4049	0.0033	0.0542	0.0005	383	9	340	3	345	2	1	0.417
L14FY4_36	0.0566	0.0005	0.3955	0.0085	0.0505	0.0007	476	19	317	4	338	6	7	0.161
L14FY4_37	0.0555	0.0003	0.4003	0.0051	0.0524	0.0007	432	11	329	4	342	4	4	0.269
L14FY4_38	0.0558	0.0003	0.3973	0.0025	0.0518	0.0005	443	11	325	3	340	2	4	0.542
L14FY4_39	0.0728	0.0006	0.5657	0.0067	0.0563	0.0005	1009	21	353	3	455	4	29	0.231
L14FY4_40	0.0577	0.0003	0.4578	0.0069	0.0573	0.0007	520	11	359	4	383	5	7	0.208
L14FY4_41	0.0563	0.0006	0.3897	0.0086	0.0497	0.0006	465	22	313	4	334	6	7	0.159
L14FY4_42	0.0982	0.0008	0.8739	0.0232	0.0641	0.0013	1591	15	401	8	638	13	59	0.080
L14FY4_43	0.0750	0.0005	0.5874	0.0107	0.0571	0.0010	1133	12	358	6	469	7	31	0.145
L14FY4_44	0.0533	0.0002	0.4000	0.0044	0.0545	0.0006	339	9	342	3	342	3	0	0.316
L14FY4_45	0.0530	0.0002	0.4067	0.0063	0.0556	0.0009	332	7	349	5	346	5	-1	0.219
L14FY4_46	0.0568	0.0003	0.4029	0.0035	0.0514	0.0004	483	14	323	2	344	3	6	0.392
L14FY4_47	0.0547	0.0004	0.3899	0.0070	0.0514	0.0007	467	15	323	4	334	5	4	0.195
L14FY4_48	0.0539	0.0002	0.4609	0.0073	0.0620	0.0010	369	6	388	6	385	5	-1	0.196
L14FY4_49	0.0535	0.0004	0.3698	0.0051	0.0501	0.0005	350	17	315	3	320	4	1	0.265
L14FY4_50	0.0645	0.0010	0.5474	0.0226	0.0594	0.0015	759	31	372	9	443	15	19	0.067
L14FY4_51	0.0737	0.0018	0. 5335	0.0186	0.0512	0.0007	1035	49	322	4	434	12	35	0.081
L14FY4_52	0.0531	0.0002	0.3762	0.0039	0.0513	0.0005	332	6	323	3	324	3	0	0.345
L14FY4_53	0.0585	0.0005	0.4119	0.0074	0.0509	0.0007	550	17	320	4	350	5	9	0.187
L14FY4_54	0.0820	0.0023	0.6129	0.0251	0.0519	0.0008	1256	54	326	5	485	16	49	0.063
L14FY4_55	0.0529	0.0002	0.3775	0.0041	0.0518	0.0006	324	14	325	3	325	3	0	0.329

			Rati	io					A	Age (Ma				
Sample #	Pb207/Pb206	1σ	Pb207/U235	1σ	Pb206/U238	1σ	Pb207/Pb 206	1σ	Pb206/U 238	1σ	Pb207/U 235	lσ	Disc%	Th/U
L14FY4_56	0.0538	0.0002	0.4108	0.0051	0.0555	0.0007	361	11	348	4	349	4	0	0.275
L14FY4_57	0.0683	0.0006	0.4740	0.0045	0.0505	0.0005	876	17	317	3	394	3	24	0.323
L14FY4_58	0.1667	0.0025	1.3983	0.0282	0.0610	0.0006	2525	25	382	4	888	12	133	0.084
L14FY4_59	0.0546	0.0003	0.3902	0.0051	0.0518	0.0006	398	13	326	4	335	4	3	0.268
L14FY4_60	0.0537	0.0002	0.4148	0.0059	0.0559	0.0008	367	9	351	5	352	4	0	0.235
L14FY4_61	0.0537	0.0002	0.4023	0.0050	0.0543	0.0006	367	9	341	4	343	4	1	0.274
L14FY4_62	0.0529	0.0002	0.3719	0.0034	0.0510	0.0004	324	5	321	2	321	3	0	0.395
L14FY4_63	0.0532	0.0003	0.3795	0.0044	0.0518	0.0006	339	11	325	4	327	3	0	0.310
L14FY4_64	0.0579	0.0004	0.4114	0.0102	0.0512	0.0009	524	15	322	6	350	7	9	0.136
L14FY4_65	0.0533	0.0002	0.3805	0.0044	0.0518	0.0006	343	5	325	4	327	3	1	0.313
L14FY4_66	0.0544	0.0003	0.3849	0.0039	0.0514	0.0005	387	11	323	3	331	3	2	0.350
L14FY4_67	0.0536	0.0002	0.4572	0.0097	0.0618	0.0013	354	6	386	8	382	7	-1	0.149
L14FY4_68	0.0550	0.0004	0.3837	0.0062	0.0505	0.0006	413	17	318	4	330	5	4	0.218
L14FY4_69	0.0535	0.0003	0.3807	0.0049	0.0516	0.0006	350	11	324	4	328	4	1	0.276
L14FY4_70	0.0539	0.0003	0.4007	0.0067	0. 0539	0.0008	365	19	338	5	342	5	1	0.206
L14FY4_71	0.0561	0.0003	0.3927	0.0101	0.0504	0.0011	457	11	317	7	336	7	6	0.136
L14FY4_72	0.0729	0.0007	0.4361	0.0041	0.0434	0.0003	1009	19	274	2	367	3	34	0.342
L14FY137_1	0.0526	0.0001	0.3437	0.0044	0.0474	0.0006	309	8	299	4	300	3	0	0.004
L14FY137_2	0.0534	0.0001	0.3446	0.0021	0.0468	0.0002	346	6	295	2	301	2	2	0.009
L14FY137_3	0.0527	0.0001	0.3462	0.0050	0.0477	0.0007	322	6	300	4	302	4	1	0.024
L14FY137_4	0.0539	0.0001	0.3472	0.0047	0.0467	0.0006	365	4	294	4	303	4	3	0.006
L14FY137_5	0.0533	0.0002	0.4201	0.0059	0.0571	0.0008	343	3	358	5	356	4	-1	0.801
L14FY137_6	0.0544	0.0001	0.4229	0.0099	0.0562	0.0013	387	1	353	8	358	7	2	0.103
L14FY137_7	0.0584	0.0001	0.6112	0.0070	0.0760	0.0009	546	4	472	6	484	4	3	0.596
L14FY137_8	0.0566	0.0002	0.6022	0.0084	0.0771	0.0011	476	6	479	6	479	5	0	0.636
L14FY137_9	0.0529	0.0001	0.3795	0.0050	0.0520	0.0007	324	6	327	4	327	4	0	0.128
L14FY137_10	0.0537	0.0003	0.4180	0.0070	0.0565	0.0009	367	11	355	6	355	5	0	0.380
L14FY137_11	0.0561	0.0003	0.4170	0.0050	0.0540	0.0006	454	18	339	4	354	4	4	0.927

			Rat	io					A	Age (Ma	.)			
Sample #	Pb207/Pb206	1σ	Pb207/U235	lσ	Pb206/U238	1σ	Pb207/Pb 206	1σ	Pb206/U 238	1σ	Pb207/U 235	lσ	Disc%	Th/U
L14FY137_12	0.0541	0.0003	0.5677	0.0061	0.0761	0.0007	372	11	473	4	457	4	-3	0.649
L14FY137_13	0.0566	0.0001	0.5537	0.0041	0.0710	0.0005	476	1	442	3	447	3	1	0.160
L14FY137_14	0.0578	0.0002	0.6456	0.0063	0.0811	0.0008	524	7	502	5	506	4	1	0.473
L14FY137_15	0.0541	0.0003	0.4271	0.0055	0.0573	0.0007	376	15	359	4	361	4	1	0.616
L14FY137_16	0.0665	0.0002	1.1658	0.0138	0.1273	0.0016	822	6	772	9	785	6	2	0.628
L14FY137_17	0.0556	0.0001	0.5738	0.0075	0.0749	0.0010	435	4	466	6	460	5	-1	1.158
L14FY137_18	0.0546	0.0002	0.4462	0.0076	0.0592	0.0010	398	9	371	6	375	5	1	0.650
L14FY137_19	0.0567	0.0002	0.4295	0.0038	0.0549	0.0005	483	6	345	3	363	3	5	0.101
L14FY137_20	0.0570	0.0001	0.5625	0.0038	0.0715	0.0005	500	6	445	3	453	2	2	0.400
L14FY137_21	0.0707	0.0001	1.3945	0.0118	0.1431	0.0012	946	3	862	7	887	5	3	0.534
L14FY137_22	0.0536	0.0001	0.3654	0.0039	0.0495	0.0006	354	6	311	3	316	3	2	0.061
L14FY137_23	0.0555	0.0002	0.4831	0.0068	0.0631	0.0008	432	3	394	5	400	5	1	0.446
L14FY137_24	0.0556	0.0002	0.3852	0.0065	0.0503	0.0009	435	7	316	5	331	5	5	0.019
L14FY137_25	0.0687	0.0001	1.3127	0.0099	0.1385	0.0010	900	4	836	6	851	4	2	0.050
L14FY137_26	0.0536	0.0001	0.3994	0.0062	0. 0539	0.0008	367	6	339	5	341	5	1	0.115
L14FY137_27	0.0569	0.0004	0.4049	0.0043	0.0516	0.0004	487	17	325	3	345	3	6	0.312
L14FY137_28	0.0534	0.0001	0.3472	0.0057	0.0471	0.0007	346	6	296	5	303	4	2	0.018
L14FY137_29	0.0561	0.0002	0.4823	0.0037	0.0624	0.0006	457	7	390	4	400	3	2	0.753
L14FY137_30	0.0540	0.0003	0.4200	0.0052	0.0564	0.0006	372	8	354	4	356	4	1	0.585
L14FY137_31	0.0560	0.0001	0.5883	0.0081	0.0762	0.0011	454	1	474	6	470	5	-1	0.609
L14FY137_32	0.0542	0.0002	0.4017	0.0048	0.0538	0.0006	389	7	338	4	343	3	2	0.668
L14FY137_33	0.0537	0.0001	0.3987	0.0048	0. 0538	0.0006	367	6	338	4	341	3	1	0.749
L14FY137_34	0.0922	0.0001	3.2944	0.0408	0.2593	0.0033	1472	-30	1486	17	1480	10	0	0.430
L14FY137_35	0.0535	0.0002	0.3509	0.0037	0.0476	0.0005	350	10	300	3	305	3	2	0.010
L14FY137_36	0.0528	0.0001	0.3411	0.0038	0.0468	0.0005	320	6	295	3	298	3	1	0.014
L14FY137_37	0.0562	0.0003	0.4459	0.0069	0.0574	0.0007	457	11	360	4	374	5	4	0.572
L14FY137_38	0.0554	0.0002	0.4739	0.0054	0.0621	0.0007	428	7	388	4	394	4	1	0.726
L14FY137_39	0.0547	0.0001	0.4327	0.0066	0.0573	0.0008	467	6	359	5	365	5	2	0.159

	Ratio				Age (Ma)									
Sample #	Pb207/Pb206	1σ	Pb207/U235	1σ	Pb206/U238	1σ	Pb207/Pb 206	1σ	Pb206/U 238	1σ	Pb207/U 235	lσ	Disc%	Th/U
L14FY137_40	0.0675	0.0016	0.4119	0.0096	0.0444	0.0003	854	51	280	2	350	7	25	0.805
L14FY137_41	0.0692	0.0004	0.5738	0.0047	0.0602	0.0004	906	10	377	3	460	3	22	0.461
L14FY137_42	0.0523	0.0001	0.3381	0.0035	0.0468	0.0005	298	6	295	3	296	3	0	0.008
L14FY137_43	0.0576	0.0001	0.6491	0.0076	0.0817	0.0010	517	-1	506	6	508	5	0	0.474
L14FY137_44	0.0546	0.0001	0.4090	0.0048	0.0543	0.0006	398	38	341	4	348	3	2	0.847
L14FY137_45	0.0534	0.0002	0.3989	0.0050	0.0543	0.0007	346	7	341	4	341	4	0	0.528
L14FY137_46	0.0531	0.0001	0.3985	0.0056	0.0544	0.0007	345	6	341	5	341	4	0	0.255
L14FY137_47	0.0534	0.0001	0.4035	0.0041	0.0548	0.0005	346	6	344	3	344	3	0	0.673
L14FY137_48	0.0538	0.0002	0.4309	0.0056	0.0581	0.0008	361	9	364	5	364	4	0	0.737
L14FY137_49	0.0542	0.0001	0.4278	0.0064	0.0572	0.0009	389	6	359	5	362	5	1	0.290
L14FY137_50	0.0566	0.0002	0.3630	0.0082	0.0463	0.0010	476	5	292	6	314	6	8	0.006
L14FY137_51	0.0531	0.0001	0.3458	0.0041	0.0473	0.0006	332	8	298	4	302	3	1	0.003
L14FY137_52	0.0680	0.0002	1.1054	0.0050	0.1178	0.0006	878	4	718	3	756	2	5	0.525
L14FY137_53	0.0614	0.0001	0.5315	0.0039	0.0627	0.0004	654	4	392	2	433	3	10	0.411
L14FY137_54	0.0599	0.0005	0.3847	0.0082	0.0462	0.0008	598	14	291	5	331	6	14	0.050
L14FY137_55	0.0567	0.0003	0.4041	0.0032	0.0519	0.0005	480	11	326	3	345	2	6	0.654
L14FY137_56	0.0720	0.0008	0.8379	0.0062	0.0849	0.0007	985	24	525	4	618	3	18	0.392
L14FY137_57	0.0535	0.0002	0.3440	0.0047	0.0465	0.0006	350	12	293	3	300	4	2	0.007
L14FY137_58	0.0548	0.0002	0.4840	0.0060	0.0641	0.0008	406	7	400	5	401	4	0	1.075
L14FY137_59	0.0534	0.0002	0.3420	0.0048	0.0464	0.0006	343	3	292	4	299	4	2	0.011
L14FY137_60	0.0532	0.0001	0.3826	0.0046	0.0522	0.0006	345	6	328	4	329	3	0	0.225
L14FY137_61	0.0581	0.0002	0.6066	0.0075	0.0760	0.0011	532	6	472	6	481	5	2	0.511
L14FY137_62	0.0549	0.0002	0.4378	0.0063	0.0578	0.0008	409	-23	362	5	369	4	2	0.769
L14FY137_63	0.0572	0.0001	0.5167	0.0043	0.0654	0.0005	502	4	409	3	423	3	4	0.525
L14FY137_64	0.0564	0.0001	0.5751	0.0061	0.0740	0.0008	478	4	460	5	461	4	0	0.351
L14FY137_65	0.0565	0.0003	0.4203	0.0027	0.0541	0.0005	472	11	340	3	356	2	5	1.120
L14FY137_66	0.0538	0.0002	0.4216	0.0053	0.0569	0.0007	361	7	357	4	357	4	0	0.373
L14FY137_67	0.0548	0.0001	0.3739	0.0024	0.0495	0.0003	467	4	311	2	323	2	4	0.220

	Ratio				Age (Ma)									
Sample #	Pb207/Pb206	lσ	Pb207/U235	lσ	Pb206/U238	1σ	Pb207/Pb 206	1σ	Pb206/U 238	1σ	Pb207/U 235	1σ	Disc%	Th/U
L14FY137_68	0.0580	0.0001	0.7123	0.0087	0.0891	0.0011	528	4	550	6	546	5	-1	0.524
L14FY137_69	0.0536	0.0002	0.4095	0.0056	0.0554	0.0007	354	9	347	4	349	4	0	0.166
L14FY137_70	0.0569	0.0002	0.5083	0.0031	0.0647	0.0004	487	6	404	2	417	2	3	0.695
L14FY137_71	0.0690	0.0001	1.3888	0.0119	0.1461	0.0013	898	4	879	8	884	5	1	0.265
L14FY137_72	0.0838	0.0001	2.6643	0.0392	0.2304	0.0034	1289	6	1336	18	1319	11	$^{-1}$	0.374
L14FY137_73	0.0696	0.0004	0.5600	0.0056	0.0587	0.0007	917	13	368	4	452	4	23	0.302
L14FY137_74	0.0628	0.0001	0.6100	0.0055	0.0706	0.0007	702	4	440	4	484	3	10	0.234
L14FY137_75	0.0540	0.0001	0.4208	0.0039	0.0565	0.0006	372	2	355	3	357	3	1	0.541
L14FY137_76	0.0544	0.0002	0.4194	0.0067	0.0558	0.0009	387	3	350	5	356	5	2	0.312
L14FY137_77	0.0616	0.0002	0.5558	0.0061	0.0654	0.0007	657	42	408	4	449	4	10	0.303
L14FY137_78	0.0603	0.0002	0.6265	0.0045	0.0755	0.0007	617	14	469	4	494	3	5	0.487
L14FY137_79	0.0815	0.0018	0.6839	0.0173	0.0610	0.0007	1235	43	382	4	529	10	39	1.363
L14FY137_80	0.0701	0.0007	0.4322	0.0046	0.0447	0.0002	931	20	282	1	365	3	29	1.136

comments	
Discordance*	
Discordance*	
Discordance*	
Discordanco*	
Discordance*	
Discordance*	
DISCOLUATICE*	
comments	
------------------------------	--
Discordance*	
Discordance* Discordance*	
Discordance*	
Discordance*	
Discordance* Discordance*	
Discordance* Discordance*	
Diagondones*	

comments	
Discordance*	
Discordance*	
Discordance*	
Rim	
Rim	
Rim	
core	
core	
core	
core	
-	
core	

R		

comments	
core	
Rim mixed with core*	
core	
Rim mixed with core*	
core	
core	
core	
Rim	
core	
K1m D:	
Kım	
core	
core	
core	

comments	
Discordance*	
Discordance*	
Rim	
core	
Rim*	
Rim	
core	
core	
Discordance*	
core	
Discordance*	
Rim	
core	
Rim	
core	
Rim mixed with core*	

comments
core
Discordance*
core
Discordance*
Discordance*

CORPUS CORRES

ACCEPTED MANUSCRIPT



Fig. S1. Cathodoluminescence images (CL) of selected zircon crystals.

Circles indicate locations of U-Pb analyses, and black lines represent a scale of 75  $\mu m.$ 



Fig. 2S. Concordia diagrams for zircon U-Pb analyses