
 
 
 
 

 
 

Centre for Efficiency and Productivity Analysis 
 
 
 
 
 

Working Paper Series 
No. WP07/2013 

 
 
 
 
 

 
Using Fieldwork, GIS and DEA to Guide Management of Urban Stream Health 

 
H. K. Millington, J. E. Lovell and C. A. K. Lovell 

 
 
 

Date:  
November 2013 

 
 
 

School of Economics 
University of Queensland 

St. Lucia, Qld. 4072 
Australia 

 
 

ISSN No. 1932 - 4398 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43378665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


0 
 

 
 
 
 

 
 

Using Fieldwork, GIS and DEA to Guide Management  
of Urban Stream Health 

 
 

H. K. Millington,a J. E. Lovell and C. A. K. Lovellb,* 
 
a Australian Rivers Institute, Griffith University, Nathan QLD 4111, Australia 
b CEPA, School of Economics, University of Queensland, Brisbane QLD 4072, Australia 

 
 
 

Abstract 
 

Aquatic ecosystems are vulnerable to threats from human activity. Urban 
stream ecosystems are especially vulnerable to urbanisation of surrounding land 
use, and interest continues to grow in improving the health of urban streams. We 
study 30 sites along two highly urbanised streams in Brisbane, Australia. Field 
research generated a suite of stream health indicators at each site. Spatially explicit 
geographic information system (GIS) techniques were used to determine metrics of 
nearby land use that put stress on stream health at each site. Population density is 
also considered as a stressor. Data Envelopment Analysis (DEA) is applied to 
individual health indicators (one at a time) and multiple stress indicators to construct 
a suite of best-practice frontiers, from which ecological efficiencies and response 
elasticities are calculated at each site. DEA is also used to aggregate stream health 
indicators into a stream health index for each site, and to aggregate land use stress 
indicators into a land use stress index for each site. A second round of DEA is then 
applied to the stream health index and multiple stress indicators, and a third round of 
DEA is then applied to the stream health and land-use stress indices to create an 
overall ecological performance index for urban streams (EPIUS). Empirical findings 
show significant deviations beneath best practice, wide variation in response 
elasticities, and numerous dominance relationships in all three exercises. Each of 
these findings can provide guidance to those responsible for allocating scarce 
resources in an effort to improve the management of the health of Brisbane’s urban 
streams. 
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Using Fieldwork, GIS and DEA to Guide Management of Urban Stream Health 

 
 
 
1. Introduction 

Many local catchment groups and local governments invest time and money 
into protecting and rehabilitating urban streams and urban riparian zones. It is 
therefore important from the outset to know what constitutes a realistic target and to 
identify which areas will be most responsive so that scarce resources can be 
allocated for maximum benefit. In this paper we develop an analytical framework that 
incorporates measures of both urban stream health and land use stress. The 
framework identifies sites most in need of attention and generates response 
elasticities of alternative stream health measures to changes in alternative land use 
stress measures. We provide an empirical application to two highly urbanized 
streams in Brisbane, Australia to illustrate how the framework achieves these 
objectives. 

Addressing stream health and stream stress factors 

Due to the complex nature of urban stream ecosystem processes, the 
mechanisms by which land cover and hydrological alteration impact urban stream 
health have not been directly demonstrated although correlations have been 
illustrated. Ecosystem health impacts on urban streams, such as altered hydrology 
and channel morphology, habitat fragmentation and loss, high nutrient levels, 
pollutants, and invasive species of plants and animals have been collectively 
referred to as the “urban stream syndrome” (Allan 2004, Meyer et al. 2005, Walsh et 
al. 2005b). However in different locations the relative importance of these urban 
stream stressors varies. For example, in-stream connectivity was found to be very 
important to fish assemblage, pollution levels and habitat quality in Puerto Rico 
(Ramírez et al. 2012), hydrological alteration associated with levels of catchment-
scale impervious surface was found to be the most important land-cover feature 
impacting macroinvertebrate and fish community structure in Victoria, Australia 
(Walsh et al. 2005a) and in Georgia, USA (Roy 2004), and intact riparian tree cover 
at the reach scale was found to have a detectable benefit on macroinvertebrate 
community structure in Victoria (Thompson and Parkinson 2011).  

The most common approach to planning and prioritising stream rehabilitation 
projects is based on ‘available land opportunities’, with the result that most stream 
rehabilitation activities are undertaken in headwaters and small tributaries, although 
the habitat and land use changes which are most severe are commonly in lowland 
floodplains and deltas (Bernhardt et al. 2005, Hermoso et al. 2012). Inspired by the 
systematic conservation planning used for reserve design (Ardron et al. 2010, 
Margules and Pressey 2000), a systematic planning approach for river rehabilitation 
has been recommended (Hermoso et al. 2012). This “efficient planning” approach 
proposed by Hermoso et al. (2012) allows for the efficient selection of areas for 
rehabilitation based on socio-economic constraints and facilitates decision-making 
by integrating and prioritising the trade-offs among multiple rehabilitation actions 
using multiple objective optimisation (Czyzak and Jaszkiewicz 1998). Systematic 
planning has not been applied in many rehabilitation projects (Hermoso et al. 2012), 
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and the few examples that exist (see Llewellyn et al. 2005, Peters and Marmorek 
2001, Steel 2008) have not used multiple-objective optimisation methods. 

Ecosystem processes at the whole-catchment scale are fundamental to 
systematic rehabilitation planning. However the scale of planning and the scale of 
implementation of rehabilitation measures do not have to be the same (Hermoso et 
al. 2012), and in light of evidence of the different scales of key drivers of impact on 
urban stream health in different areas and under different climatic conditions (Walsh 
et al. 2005a, Thompson and Parkinson 2011, Engman and Ramírez 2012), tools to 
help identify the appropriate scales to target management intervention are required. 
Failure to apply river management intervention at a scale appropriate to capture the 
driving processes has been blamed for the poor performance of many rehabilitation 
activities (Hermoso et al. 2012, Bernhardt et al. 2005). 

Proponents of systematic planning have not yet articulated an analytical 
framework of how such an approach would be applied to river rehabilitation. Indeed, 
there is a need for a framework which allows easier integration and comparison of 
alternative rehabilitation actions for managers to consider and which address the 
driving ecosystem processes. The aim of the present study is to further elucidate 
options for protection and rehabilitation of freshwater urban ecosystems as well as 
the scale of mitigation efforts that might be required. It is possible that at some 
locations in the current study the freshwater urban ecosystem might not be a priority 
to protect for its own biotic integrity due to the high levels of stress it might be under.  

The south east Queensland approach 

Healthy Waterways is a not-for-profit, non-government organisation devoted 
to the protection and improvement of waterways in South East Queensland (SEQ), 
Australia (www.healthywaterways.org). It operates an Ecosystem Health Monitoring 
Program (EHMP) that monitors whether the health of regional waterways is 
improving or deteriorating. It uses a broad range of biological, physical and chemical 
indicators of ecosystem health, including fish and invertebrate biodiversity metrics, 
ecosystem process metrics and water quality metrics. The EHMP indicators have 
been selected to capture reach, local and catchment-scale processes.  

The EHMP was fully implemented in 2002/03. 135 freshwater stream sites in 
SEQ are sampled twice annually (in spring and autumn), their health indicators are 
measured, and report cards are made public in annual reports. The overall health of 
a site is measured relative to an agreed reference condition (Bunn et al. 2010). The 
EHMP sites include relatively pristine, forested sites as well as rural sites and a small 
number of urban sites. Many local councils use the results of the EHMP as a guide 
to how well they are protecting their creeks. However, depending on the level of 
urbanisation or rural land cover, returning streams to good health may not be 
feasible. For example, it may require returning a substantial percentage 
(approximately 80%) of hydrologically-active land to mid-dense forested cover to 
return streams to “healthy” grades (Report Card Grade of B+ to A) (Sheldon et al. 
2012). This may not be realistic in many locations where there is extensive pre-
existing infrastructure. The EHMP does not have tools to aid prioritisation of sites for 
protection or rehabilitation based on the level of stress they are under.  

The general poor health of urban streams in the Lower Brisbane Catchment is 
well documented. In the 2013 EHMP report, the Lower Brisbane Catchment, which 
includes the Norman Creek and Bulimba Creek sub-catchments, received a grade of 
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D-, down from a grade of D+ in 2012 but up from a grade of F in the previous six 
years (www.healthywaterways.org). Grades are based exclusively on stream health 
indicators, and although individual EHMP health indicators help identify the most 
likely stressors, and EHMP acknowledges “significant signs of stress,” particularly at 
urban sites, EHMP does not consider stressors in the calculation of report card 
grades. 

Effective management of urban stream health requires an understanding of 
the interrelationships among health indicators, among stressors, and between the 
two. Achieving such an understanding requires an analytical framework that 
incorporates both health indicators and stressors. We introduce such a framework 
below, and we use it throughout the paper. 

Evaluating the relative performance of stream sites  

Data Envelopment Analysis (DEA) is an analytic benchmarking technique 
developed by Charnes et al. (1978). Its linear programming structure makes it an 
accessible and easily understood management tool. Though the most common 
applications are to measure the performance of public agencies and private firms, it 
can be applied to myriad problems that seek to investigate the relative efficiency of 
transforming inputs to outputs. This ecological performance analysis of 30 stream 
sites within the Bulimba and Norman Creek sub-catchments of the Brisbane River is 
the first application of DEA to urban stream ecology.  

A DEA requires “inputs” and “outputs” and a maximising or minimising 
objective. In this urban stream application it is assumed that the objective of decision 
makers is to maximise stream health given the stress levels at specific sites. 
Therefore stream health indicators derived from field research are considered the 
“outputs” to be maximised, and low stress indicators calculated in GIS are the 
“inputs”. Relatively efficient sites are able to achieve better stream health conditional 
on their low stress inputs. A DEA is particularly useful when comparing “like with 
like”, and sites in the Norman Creek and Bulimba Creek sub-catchments have 
relatively homogeneous environmental features (climate, topography, soils, geology 
and natural vegetation), and being contained in the Lower Brisbane Catchment, they 
can all be classed as degraded.  

In contrast to ordinary least squares regression analysis, in which an 
estimated function intersects the data, DEA envelops the data with an estimated 
frontier that determines “best practice”, rather than average practice. DEA sheds 
light on the underlying cause-effect relationships by comparing the ability of similar 
sites to withstand the stresses caused by an urban environment. When the stressors 
are included in the performance analysis, it is possible to measure how “ecologically 
efficient” a site is in achieving its level of health. The ecological performance of an 
inefficient site can be measured by its distance from the best-practice frontier. This 
measure of ecological inefficiency helps to better understand why some sites’ 
ecosystem health measures appear to respond better to the surrounding land use 
and provides a realistic target for stream restoration and protection. 

A commendable feature of DEA is the ability to combine or aggregate multiple 
inputs and multiple outputs that are measured in their own units. This is an important 
simplifying feature when handling the diverse variety of data required in a study of 
ecological performance. 
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It is important to emphasise two features of DEA: (1) it accounts for both 
stream health and stress factors when evaluating sites; and (2) its evaluation of each 
site is relative to the performance of all other sites in the sample, rather than to an 
agreed reference condition. Thus, while the Bulimba and Norman creeks may well 
be in generally poor health, a DEA can distinguish degrees of poor health at the 
sampled sites, and it can relate degrees of poor health to causal stress indicators at 
sampled sites.  

DEA also can complement systematic planning by assisting in both adaptive 
management of rehabilitation projects already implemented (Hermoso et al., 2012, 
Wenger et al., 2009), and proactive management to identify which catchments are 
priorities for future rehabilitation. 

The paper unfolds as follows. In Section 2 we discuss the analytical 
framework we use to relate stream health to the stressors that threaten stream 
health. The framework begins with fieldwork, continues with GIS, and concludes with 
DEA. We describe our data and the processes by which they have been generated 
in Section 3. In Section 4 we discuss our empirical findings. Section 5 concludes. 
 
2. Methods 

2.1 Fieldwork 

Brisbane, the state capital located on the Lower Brisbane River, is the major 
population centre in SEQ with approximately 2.2 million people in the greater 
Brisbane area, while the population in the region is approximately 3.1 million and 
growing at 2.9% per annum in an area of 22,600 km2 (Australian Bureau of Statistics 
2013, Abal et al. 2005). Population growth in SEQ continues to be one of the key 
threats to the sustainability of stream health in the region. SEQ is a sub-tropical 
region with rainfall patterns that are influenced to some degree by the summer 
cyclones but also frequently by the northward extension of temperate weather 
systems. The wet season from October to March delivers approximately twice as 
much rain as the relatively dry season from April to September (Australian Bureau of 
Meteorology 2013). The city of Brisbane has a mean annual rainfall of 1450 mm.  

Stream health data (macroinvertebrate and water quality) were collected for 
30 sites in Bulimba Creek and Norman Creek (BCNC) sub-catchments, southern 
tributaries of the Lower Brisbane River during the post-wet season, April 2010. Sites 
were selected from within the BCNC catchments to include as great a range as 
possible of catchment impervious land cover and associated stormwater drains and 
piping, as well as the greatest range possible in tree, grass and riparian land cover at 
the reach and catchment scales. Sites were also designed to include nested sites 
and longitudinally connected sites that covered an extensive component of the 
catchments. However site selection was constrained by site accessibility and 
therefore sites that were completely piped underground were not included for 
obvious access reasons.  

This focus study of BCNC aims to spatially investigate the role of the riparian 
zone in urban stream health by investigating spatial-scale (reach, local and 
catchment scale) impacts of tree and total vegetation (tree and grass) cover, 
impervious surface and stormwater piping. Because the BCNC study is interested in 
examining in-stream, riparian and catchment processes, it is important to include 
indicators reflective of these processes which might indicate differences due to 
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stressors at different scales. Macroinvertebrate indicators have been associated with 
reach and catchment-scale riparian condition (Bunn et al. 2010) as well as broader 
catchment processes (Walsh et al. 2005b), dissolved oxygen and temperature have 
been more strongly associated with reach and catchment-scale riparian condition 
than broader catchment processes, while pH and conductivity have usually been 
associated most strongly with broader catchment processes (Bunn et al. 2010). 

Therefore, the selected suite of health indicators (a subset of the indicators 
that form the basis of the EHMP (Bunn et al. 2010)) includes: (1) water quality data 
(pH, conductivity, dissolved oxygen diel readings and temperature diel readings); 
and (2) macroinvertebrates. The macroinvertebrate data were analysed for SIGNAL2 
score  (Chessman 2003) (“order-class-phylum” level), EPT (Lenat 1988), and family 
richness (Resh et al. 1995), however only SIGNAL2 was used in subsequent 
analysis because EPT and family richness had too many zero values and an 
insufficient range of values to be useful in the spatial scale analysis. SIGNAL2 is a 
rapid assessment procedure that accounts for pollution grades for each family or 
order-class-phylum level. 

 
2.2 GIS 

A novel feature of this study is the combination of DEA with spatially explicit 
geographic information system (GIS) land-cover metrics tailored to the stressors 
affecting urban stream ecosystem health. GIS techniques were used to determine 
land-cover metrics for different land-cover configurations and population density to 
test which of these variables had the most explanatory power for each of the stream 
ecosystem health variables. ArcGIS 9.3 and 10.0 were used for metric generation. 
The key spatial scales considered were reach, local and catchment scales but 
consideration of land-cover configuration via different spatially-explicit metrics such 
as inverse distance-weighted (IDW) metrics and areal buffer metrics as well as non-
spatial metrics (lumped, i.e. each pixel is weighted equally) facilitated further 
investigation of the dominant processes impacting urban stream health. Custom 
python scripts were developed to generate and automate calculation of these land-
cover metrics (Millington 2013).  

In urban catchments such as these, many streams are piped underground or 
flow under roads and are thus not simply connected on the surface. Hence, in order 
to apply contemporary digital elevation model (DEM)-based hydrologic modeling 
techniques to create a connected stream network that incorporates both surface and 
piped flow, it was necessary to construct an artifical surface stream network by 
treating the piped flow as surface flow. This was achieved by burning (imprinting) 
existing stream and pipe networks into the DEM (Millington 2013). The methods for 
generating the artificial stream network generally follow those of Gironás et al. 
(2010), in which piping, streams and other known drainage are burnt into the DEM, 
with streams burnt in a greater distance than elements of the anthropogenic 
drainage.   

The raw raster land-cover data set initially comprised nine land-cover classes 
which were grouped into three broad land-cover types: impervious surface, standing 
woody vegetation (trees), and a combined vegetation metric (grass and trees) 
(Millington 2013). Based on the land-cover data, impervious surface was considered 
to comprise layer codes 5 (roads/asphalt), 6 (buildings/structures), and 7 (concrete). 
Tree covered surface included layer code 4 (trees), and vegetation was considered 
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to include layers 3 (grass) and 4. Water and bare ground/rock were not included in 
the land-cover calculations in this study as they could not easily be categorised as 
tree, vegetation or impervious surface. The categories of tree and impervious 
surface were required because the study was designed to detect relative importance 
of reach-scale riparian zone and catchment-scale impervious surface. Vegetation 
was included as a further variable because it constituted a large surface area and 
also to consider whether any detected benefit of tree cover was due to shading and 
other processes associated with tree cover or simply the presence of pervious 
surface.    
 
2.3 DEA  

DEA is a linear programming technique developed to compare how efficient 
decision-making units (DMUs) are at achieving key objectives, generally to either 
maximise outputs obtained from a certain level of inputs, or minimise inputs required 
to produce a certain amount of outputs. DEA envelops the data with an estimated 
frontier that determines the “best practice” and provides a benchmark against which 
the relative efficiency of DMUs is measured.1 

Non-marketed goods and services 

Output prices are an important component of many economic performance 
evaluations and aggregation techniques. DEA was originally proposed for use in the 
public sector, where outputs are typically non-marketed and output prices are 
typically missing. Examples include education, health care, emergency and 
corrective services, etc. In the first empirical application of DEA, Charnes et al. 
(1981) were concerned with evaluating the efficiency of a U.S. public school 
education program (“program efficiency”), how it was managed (“management 
efficiency”), and with distinguishing the two. Over 30 years on, DEA programs and 
the vast majority of empirical applications remain independent of prices, whether or 
not they exist. 

Environmental and ecological problems  

Environmental and ecological problems fit into the missing prices framework; 
environmental and ecological variables are not priced on markets. Early applications 
of DEA to environmental issues appeared over 20 years ago (Färe et al. 1989, 
1993). These and many subsequent studies were directed primarily at two closely 
related problems: (1) how best to include undesirable by-products of the production 
of desirable outputs (e.g., air pollutants resulting from electricity generation, or 
methane gases from livestock) into a producer performance evaluation model; and 
(2) how to measure the shadow prices (or marginal abatement costs) of the 
undesirable outputs. Marginal abatement costs are the cost of abating a marginal 
amount of an undesirable output (e.g., the cost of a marginal reduction of CO2 
emissions or of catchment impervious surfaces) without reducing any desirable 
output or increasing any input. The measurement of shadow prices is potentially very 
useful, since shadow prices can be used in place of missing output prices. These 
models have been evaluated by Scheel (2001), and by Dykhoff and Allen (2001), 
who specifically mention “ecologically motivated applications of DEA.” Kuosmanen 
and Kortelainen (2005) provided a more recent evaluation, using DEA to construct 
an “encompassing eco-efficiency index” as the ratio of an economic value added 
index to an environmental damage index created by aggregating environmental 
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pressures, with an application to road transport (which generates environmental 
pressure from CO2, acidification, smog, particle dispersion and noise). 

Among the many applications of DEA to environmental and ecological 
problems, a few are particularly relevant to the present study. Each study measures 
environmental-economic performance by incorporating environmental indicators into 
an economic framework. Some also measure the opportunity cost of sub-optimal 
performance, and some measure shadow prices of environmental variables. 

Hof et al. (2004) used DEA to relate 12 inputs (undesirable forest and 
rangeland condition indicators such as habitat disturbance and toxic chemical 
releases) to 13 outputs (human activity indicators such as timber harvest, livestock 
grazing and outdoor recreation) across 3,011 counties in the USA. Their objective 
was to identify areas where there was maximum potential for improving forest and 
rangeland condition; “areas that are currently under the most stress but could be 
made better simply by managing resource use more efficiently…because 
environmental impacts (as reflected in our condition indicators) could be reduced 
without the economic and social costs associated with reducing economic activity.” 
They concluded that large-scale improvements in environmental condition across 
many indicators were unlikely without a reduction in human activity. 

Macpherson et al. (2010) followed Hof et al. by using a variant of DEA to 
conduct an “environmental-economic” evaluation of 134 watersheds in the USA. 
Their data base contained four inputs (watershed characteristics including per cent 
impervious surface, road density and percent of stream-length with adjacent 
agricultural riparian land cover), four desirable outputs (a mix of socio-economic and 
environmental variables including percent wetland and percent interior forest) and six 
undesirable outputs (environmental problems including pollution and exotic aquatic 
and terrestrial species). They examined four models, each containing different 
combinations of desirable outputs reflecting different management objectives. All 
four models fit the data very well, with efficiency scores clustering closely beneath 
unity, indicating little potential for improvement and making discrimination among 
alternative management objectives difficult.2 

2.3.1 DEA Best-Practice Frontier 

In most production contexts inputs and outputs are positively correlated, in the 
sense that more of any input can produce more of any output. In this stream study, 
good stream health is positively correlated with low levels of stress, but not all 
conventional stream health indicators (outputs) are indicators of good health, and not 
all conventional stress indicators (inputs) are indicators of low stress. Consequently, 
in order to maintain the presumed positive relationship between inputs and outputs, 
some conventional stream health indicators are converted to good health indicators 
and some conventional stress indicators are converted to low stress indicators, prior 
to DEA analysis. We describe the data and the transformations in Section 3.3 

 
A stream health maximising DEA model 

A health maximising problem with r=1,…,s good health indicators yr, i=1,…,m 
low stress indicators xi, and j=1,…,N DMUs, which in this study are stream sites, can 
be stated mathematically as the program: 
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In the primal envelopment program [M.1] the performance of site o is being 
evaluated. xij denotes the level of the ith low stress indicator observed at site j and yrj 
denotes the level of the rth good health indicator observed at site j. j is the weight 
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convexity constraint that permits varying returns to scale (RTS) at different site sizes, 
and allows for the possibility that a given percent increase in the low stress indicators 
might generate a larger or smaller percent increase in the stream health indicators. 
The performance of site o is evaluated relative to a convex combination of adjacent 
best-practice sites. These best-practice sites have similar levels of stress and have 
positive values of , while all other sites have different levels of stress and have zero 
values of . The optimal value of o  1 indicates the potential increase in, or the 
scope to improve, all health indicators at site o without exceeding best practice and 
without increasing any low stress indicator. By convention, the health-oriented 
efficiency of site o is the reciprocal of the optimal value of o, and so 0  ୭
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The non-negative weights attached to each indicator in the dual solution associated 
with [M.2] are multipliers, or normalised shadow prices. They measure the implicit 
value of each indicator, and the ratio i/r measures the impact on good health 
indicator yr of a marginal change in low stress indicator xi. Shadow price ratios are 
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units-dependent, and difficult to compare across indicator pairs. However a ratio can 
be converted to a response elasticity, which is independent of units of measurement 
and easy to compare across indicator pairs, by means of  
 

ri = (yr/xi)×(xi/yr) = (i/r)×(xi/yr).   
 
The s×m response elasticities of each good health indicator with respect to each low 
stress indicator are evaluated at an efficient projection (xi,yr). The sign of the free 
parameter o indicates the nature of scale economies at the efficient projection 
(xo,yo), with o < 0 indicating increasing RTS and o > 0 indicating decreasing RTS, 
also evaluated at an efficient projection. Response elasticities signal the proportional 
impact of a single low stress indicator on a single good health indicator, while the 
magnitude of scale economies signals the proportional impact of all low stress 
indicators on all good health indicators. 
 
Dominance analysis4  

A site (yo,xo)  is said to dominate another site (yn,xn) if it has at least as much 
of each good health indicator and no more of each low stress indicator, i.e., if yo  yn 
and xo  xn. A site that dominates another site is at least as healthy despite facing at 
least as much stress. Efficient sites need not dominate any other sites; they can be 
efficient merely by being different. Conversely, sites need not be efficient to 
dominate other sites; all they have to do is be at least as healthy and face at least as 
much stress. The value of dominance analysis is that a site that dominates many 
sites can provide managerially useful guidance on dealing with stress, and a site 
dominated by many sites has many role models from which to learn. Constructing a 
list of dominators for each site is easily handled with spreadsheet software.  

2.3.2 DEA and Index Generation  

Individual indicators (e.g. of stream health) provide independent, potentially 
conflicting, information, and it is useful to be able to aggregate individual indicators 
into a single index. A crucial issue is how diverse indicators are to be aggregated to 
construct an index. This involves two considerations. The first involves the choice of 
functional form of the aggregator function. There are many to choose from, and the 
choice is independent of the research area. The second involves the choice of 
weights to be applied to each indicator to reflect its relative importance. Most 
economic indices use market prices to weight economic indicators, but most 
ecological-environmental indicators lack market prices, so an alternative weighting 
scheme must be determined in order to construct an ecological-environmental index. 

The aggregation of multiple ecological indicators into a scalar-valued holistic 
ecological index (or composite indicator) has attracted widespread attention, and 
some of the more relevant to the present study are listed below.  

The Environmental Performance Index (EPI) (Emerson et al. 2012) has since 
its inception tracked the environmental performance of nations. Environmental 
performance is measured with an index obtained by aggregating numerous diverse 
environmental indicators. The EPI uses arbitrary weights informed by expert 
judgement, a procedure followed in much of the larger composite indicators 
literature. Zhou et al. (2006a), citing a lack of expert judgement, weighted three 
pollutants (SO2, NO2 and MP10) equally in constructing an air quality index for 
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Chinese cities. In a pair of studies Hajkowicz (2006, 2007) used a variant of multi-
criteria analysis to generate weights with which to aggregate environmental 
indicators in the Great Barrier Reef region into a water-service index, and to conduct 
a hypothetical reallocation of natural resource management funds across regions in 
Queensland. In the former study indicator weights were based on “stakeholder” 
(residents and visitors) preferences, and in the latter study indicator weights were 
provided by “decision makers” (commonwealth, state and regional governing 
bodies). It is worth stressing that in each of these examples weights are determined 
exogenously, prior to and independently of the performance evaluation exercise.5 

There is an alternative to the use of predetermined exogenous weights 
provided by expert judgement, equality or stakeholder preferences in the 
development of aggregate indices. Models have been developed that generate 
endogenous weights as components of solutions to constrained optimisation 
problems. Linear programming is a popular way of formulating a constrained 
optimisation problem, and most variants of DEA are linear programs. 

Tran et al. (2008) formulated a pair of linear programs that simultaneously 
generate endogenous weights with which to aggregate indicators and to rank units 
on the basis of the aggregate index. They applied this linear programming technique 
to the evaluation of the environmental performance of 141 US watersheds based on 
an aggregate index constructed from 50 indicators. 

DEA can be used to aggregate indicators to construct an overall index 
(output, input and performance indices), and it offers some advantages over 
alternative methods. One advantage is that it constructs a best-practice frontier, 
based on indicators or indices, against which to evaluate the performance of each 
unit in the sample. A second is the ability to calculate response elasticities of the 
output indicators or index with respect to the input indicators or index. However for 
our purposes the most important advantage of DEA is that it does not require 
predetermined exogenous weights with which to aggregate individual indicators in 
the construction of an aggregate index; instead endogenously generated shadow 
prices emerge as weights from the dual multiplier program [M.2] above. These 
endogenously generated weights maximise the efficiency score of the unit under 
evaluation in comparison with the other units in the sample. In our context, although 
these weights may not reflect the consensus (if one exists) of ecologists on the 
relative importance of specific health and stress indicators, they do reflect the 
underlying processes that relate stress indicators to health indicators in our sample. 
A site’s endogenously determined weight profile reveals its relative strengths 
(relatively high weights) and weaknesses (negligible or zero weights) and thereby 
provides additional information to managers.6  

Bellenger and Herlihy (2009) used a variant of DEA to construct a pair of 
environmental indices that account for chemical stress and ecological response at 
130 stream sites in a single eco-region of the USA, with streams classified as 
minimally disturbed, moderately disturbed and heavily disturbed. The first index 
aggregates six macroinvertebrate metrics (included in the Environmental Protection 
Agency’s multimetric indicator MMI) into a stream health index. The second index 
aggregates the six macroinvertebrate metrics and three chemical stressors 
originating from non-point sources into an environmental performance index. Both 
indicator weights and performance indices vary across disturbance class. Later 
Bellenger and Herlihy (2010) used a stochastic envelopment technique similar to 
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DEA to evaluate the health of 215 streams in the same eco-region. The primary 
contribution of this study is its use of shadow prices, or “marginal performance 
estimates,” analogous to the multipliers that are obtained from the dual multiplier 
program [M.2] above, to weight each of the six macroinvertebrate metrics by their 
observed contribution to environmental performance. The objective of each study 
was index construction rather than efficiency measurement, because the identity of 
the drivers of environmental performance and the nature of the relationship between 
the two is “largely unknown.”   

Azad and Ancev (2010) used a variant of DEA to measure the environmental 
performance of irrigated enterprises in 17 natural resource management regions (a 
total of 125 observations) within the Murray-Darling Basin of Australia. They 
constructed quantity indices for two inputs (volume of water applied and all costs 
excluding the cost of water), a single desirable output (gross revenue), and two 
undesirable outputs (an ecologically weighted water withdrawal indicator and a 
salinity impact indicator). They defined an environmental performance index as the 
ratio of the desirable to undesirable output quantity indices. The main finding was a 
wide variation in environmental performance across crops and across resource 
management regions. 

 
Using DEA to construct an ecological performance index 

The analysis of a single stream health indicator and multiple low stress 
indicators can be repeated many times over, using different stream health indicators 
and different sets of multiple low stress indicators, to search for common themes. A 
methodologically preferred alternative is to use DEA to aggregate stream health 
indicators into a single overall index of stream health at each site, and to aggregate 
low stress indicators into a single overall index of low stress at each site. This 
procedure combines diverse information provided by alternative health indicators into 
a health index, and combines diverse information provided by alternative low stress 
indicators into a single low stress index, thereby obviating the need to choose from 
among two groups of indicators. After the two indices have been constructed, a DEA 
analysis can be applied to the two indices to evaluate the overall ecological 
performance at each site. 
 
A stream health index 

Following Lovell (1995) and Lovell & Pastor (1999), a stream health index is 
obtained as the solution to the health maximisation program: 
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Program [M.3] aggregates s health indicators into a single health index. Its structure 
is identical to that of program [M.1] apart from the deletion of the m low stress 
constraints. Low stress indicators are ignored in this exclusively health-oriented 
program designed to aggregate multiple stream health indicators into a single stream 
health index. As in program [M.1], optimum o  1 and the stream health index SHIo 
= Yo(y1o,…,yso) = o

-1  1. Site health index values range downward from 1 (the 
healthiest sites in the sample). The stream health index is analogous to the stream 
health report cards produced by EHMP (although it is constructed very differently) 
and the MMI index of Bellenger and Herlihy (2009).  

We specify a DEA stream health maximisation program based on a single 
good health index and m low stress indicators as 
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Program [M.4] is used to estimate the relative efficiencies of sites, and its dual is 
used to estimate response elasticites. Program [M.4] is identical to program [M.1] 
apart from the replacement of s good health indicators with a single good health 
index. As in program [M.1], optimum o  1 and the health index-based efficiency is 0 
 o

-1  1. 
 
A low stress index 

The aggregation of m low stress indicators into a single low stress index is an 
input minimisation problem. The objective is to minimise overall low stress at each 
site, regardless of the stream health at each site. The DEA program for this input-
oriented problem is  
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Program [M.5] aggregates m low stress indicators into a single low stress index. 
Health indicators are ignored in this program designed to aggregate multiple low 
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stress indicators into a single low stress index. Optimum 0  o  1, and the low 
stress index is defined as LSIo = Xo(x1o,…,xmo) = o

-1  1, so that site low stress index 
values range upward from 1, the most stressed sites in the sample, with increases in 
o

-1 signaling reductions in stress. The low stress index is similar to the 
environmental damage index of Kuosmanen and Kortelainen (2005) and the 
ecologically weighted water withdrawal index of Azad and Ancev (2010). 
 
An overall ecological performance index 

Once a good health index and a low stress index have been calculated, DEA 
can be used again to construct a holistic measure of the performance of each site. 
DEA programs [M.1] and [M.2] are used again, with s+m indicators yo and xo 
replaced with two indices SHIo = Yo(y1o,…,yso) and LSIo = Xo(x1o,…,xmo) created in 
programs [M.3] and [M.5]. The overall ecological performance index for urban 
streams (EPIUS) is the solution to the DEA program 
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The optimal value of o  1 indicates the potential increase in, or scope to improve, 
the good health index at site o without exceeding best practice and without 
increasing the low stress index. The health-oriented performance of site o is 0  ୭

ିଵ 
 1, and so the performance index PIo(Xo,Yo) of sites ranges downward from 1. 

 
3. Data 

A sample consisting of 30 sites imposes a degrees of freedom constraint, 
which in turn requires a minimally informative variable list. The first screen was the 
explanatory power that a stream stressor variable exhibited for stream health metrics 
(Millington 2013). The second screen was variability across sites; if a variable 
exhibits little variation across sites, it provides little information and is excluded. A 
stream health metric was included in the DEA only if it exhibited a significant amount 
of variation that could be explained by the land-cover metrics. The third screen was 
based on the objectives of this study; it was desirable for the stream health indicators 
to retain a macroinvertebrate indicator and a water quality indicator, and for the land-
cover and land-use indicators to retain a metric to represent each of three spatial 
scales, reach, local and catchment. On the basis of these screens, the variable list 
can be reduced to a manageable size.  
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From a preliminary analysis of nine stream health metrics and 20 land-
cover/land-use variables, a set of a priori models was formulated for each stream 
health indicator. Candidate explanatory variables for the models were selected 
based on the student t-test (p  0.2). The generalised least squares (GLS) function 
was used to fit the models and maximum likelihood (ML) was used to estimate the 
parameters. The model with the lowest Akaike’s Information Criterion (AIC) statistic 
in the set was regarded as the “best” model, and if no one model clearly stood out as 
the best, inferences were based on the model-averaged parameter estimates. These 
statistical procedures guide selection of the most important explanatory metrics for 
stream health. 

The two stream health indicators selected are a macroinvertebrate metric 
(SIGNAL2, an index that assigns a score to aquatic invertebrate families based on 
their tolerance for/sensitivity to pollution, with scores ranging from 1 for the most 
tolerant to 10 for the most sensitive) and a physical/chemical metric (temprange, 
water temperature range in Celsius). Additional physical/chemical stream health 
metrics exhibited insufficient variation across sites (maximum temperature), failed to 
respond significantly to variation in the selected land-cover metrics (conductivity, 
dissolved oxygen) or remained within healthy bounds at all sites (hydrogen 
concentration, pH).  

The three land-cover/land-use metrics selected are the distance-weighted 
extent of impervious land cover (Eucdis, impervious land cover weighted by inverse 
Euclidean distance to the site), population density (popden, average population 
density from the 2006 Census in the upstream catchment of the site), and the extent 
of tree cover at the reach scale (treerip, percent vegetative cover provided by trees 
in the upstream riparian buffer 30 meters either side of the stream). popden is an 
important metric at the catchment scale for both SIGNAL2 and temprange, Eucdis is 
the only important metric at the local scale for SIGNAL2, and treerip is an important 
metric at the reach scale for both SIGNAL2 and temprange. It should be noted that 
popden may be acting as a surrogate for other land-cover metrics such as those 
which capture the extent of stormwater piping. But because it is the catchment-scale 
metric with the most support in the data it is likely that it also capturing other “largely 
unknown” explanatory factors associated with increased population. Popden and 
Eucdis can be considered as analogous to the socio-economic constraints 
mentioned in the systematic planning literature (e.g., Hermoso et al. 2012).  

The need to define indicators of good health requires the inversion of 
temperature range to an indicator of temperature stability (temprange)-1 because a 
smaller stream temperature range enhances the growth, metabolism, reproduction 
and dispersal of aquatic organisms.7 A similar need to define indicators of low stress 
requires the inversion of population density to population sparsity (popden)-1 and the 
extent of impervious land cover to (Eucdis)-1 because the greater the distance of 
impervious land cover from a stream the greater is the scope for attenuation before 
reaching the stream. Pollutants can be attenuated in the soil and hydrology impacts 
of stormwater flows are reduced.  

Summary statistics for the two good health indicators and the health index, 
and the three low stress indicators and the low stress index, appear in Table 1. The 
two good health indicators have satisfactory inter-quartile ratios of approximately 1.5, 
and two of the three low stress indicators have larger inter-quartile ratios. Although 
(popden)-1 has a smaller inter-quartile ratio, it has a very large max/min ratio. The 
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two indices inherit their inter-quartile ratios from those of their respective component 
indicators. 

 

Insert Table 1 About Here 

 

 
4. Findings and Discussion  
 
4.1 DEA of the Primary Stream Health Indicator  

The output-oriented DEA program [M.1] can be applied to each individual 
health indicator separately with three low stress indicators, or to two health indicators 
with three low stress indicators. We have conducted all three exercises, and to 
illustrate the insights DEA can provide while conserving space, we report the results 
of a DEA on the primary health indicator, SIGNAL2, and three low stress indicators.  

The results appear in Table 2, which reports the output of program [M.1] with 
s=1, m=3, and which contains efficiency scores, scope to improve and response 
elasticities for each site. Additional results appear in Table 3, which reports 
dominance information for each site. Together these two Tables illustrate the wide 
range of information a DEA can provide decision makers.  

The first four columns in Table 2 contain the data for each site. Column (1) 
contains the primary health indicator SIGNAL2, and columns (2)-(4) contain the low 
stress indicators (Eucdis)-1, (popden)-1 and treerip. Columns (5) and (6) contain the 
efficiency score -1 and the scope to improve  for each site. Columns (7)-(9) contain 
the response elasticities of SIGNAL2 with respect to each of the three low stress 
indicators. Sites are ranked according to their efficiency scores.8   

 

Insert Table 2 About Here 

 

Table 2 reports a wide variation in relative efficiency for SIGNAL2, ranging 
from 1.0 (six sites) down to 0.39; the sites in most need of attention are those sites 
with the lowest efficiencies in the shaded region. Sites S_08 and S_25 have the two 
lowest efficiency scores of 0.39 and 0.43 respectively, and if well managed are 
capable of more than doubling their SIGNAL2 scores to 2.59 x 1.67 = 4.33 and 2.31 
x 1.94 = 4.48 respectively, with no reduction in the stresses they face. Their low 
efficiency scores result from their poor health despite their average stress levels. At 
the other extreme, sites S_07, S_12 and S_13 are all best-practice sites, yet their 
health and stress levels differ enormously. S_07 is the healthiest site, and it is also 
one of the least stressed sites. In contrast, S_12 and S_13 are relatively unhealthy 
sites, with SIGNAL2 scores barely into the second quartile, and both are highly 
stressed sites.  

Table 2 also reports wide variation in the response elasticities of SIGNAL2 
with respect to the three low stress indicators. On average, the primary stream 
health indicator is slightly more responsive to marginal change in population density 
than to marginal changes in impervious surface or riparian tree cover, although all 
three response elasticities have mean values less than one. The low stress indicator 
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to which stream health is most responsive at each site is the indicator with the 
largest response elasticity. Densely populated site S_22 illustrates. The high 
elasticity (6.63) with respect to (popden)-1 suggests that if it were possible to reduce 
population density within its watershed, the site would see a huge improvement in its 
stream health. Conversely, and more usefully, this large response elasticity provides 
a warning of the potentially deleterious effect of an increase in population density. 
The low stress indicator to which stream health is least responsive at each site is the 
indicator with the smallest response elasticity, and Table 2 contains many zero 
response elasticities. Sites S_15, S_16 and S_07 illustrate. Sites S_15 and S_16 
have relatively little impervious surface and relatively large riparian tree cover, and 
so have zero response elasticities with respect to marginal improvements in either. 
Both have average population densities, and positive, albeit small, response 
elasticities with respect to marginal changes in population density. Site S_07 has the 
opposite features, and informs management that the primary health indicator 
responds positively to both a reduction in impervious surface and an increase in 
riparian tree cover. If management is interested in rehabilitating this site by 
increasing its SIGNAL2 score, resources would be best allocated to increasing 
riparian tree cover or to reducing impervious surfaces, a difficult task in an 
established urban landscape, but some mitigation steps via making pervious 
surfaces more effective and the use of water sensitive urban design (WSUD) may be 
possible.  

A comment on the pattern of zeros among the response elasticities is 
warranted. Just over half of the 90 calculated response elastitities are zero, and half 
the sites assign zero weights to two of three low stress indicators. Variability of 
weights, or response elasticities, is inherent in DEA, which allows each site to select 
weights that put it in the most favourable light. Nonetheless, some would impose 
weight restrictions on program [M.2] to force them to align more closely with expert 
judgement. Rogge (2012) provides an interesting application to the EPI, in which he 
reports response elasticities and performance scores with and without weight 
restrictions. We have several reasons for not imposing weight restrictions. First, 
weight restrictions are exogenous to the model, and we prefer endogenous weights 
generated by the data and the model. Second, although we have endeavoured to 
compare like with like, sites have widely varying characteristics that are reflected in 
their widely varying response elasticities, and zero response elasticities convey 
important information to those tasked with the responsibility of allocating scarce 
resources in an effort to rehabilitate sites. Finally, several weight restriction models 
exist, and there is no consensus on which is best.  

Table 3 lists the dominators for each site based on the primary health 
indicator SIGNAL2. If the SIGNAL2 score of site i is at least as large as the SIGNAL2 
score of site o and (Eucdis)-1, (popden)-1 and treerip of site i are no greater than 
those of site o, then site i (weakly) dominates site o. Sites are ranked according to 
their efficiency scores, as in Table 2.  

 

Insert Table 3 About Here 

 

The dominator summary in Table 3 shows that ten sites are undominated, but 
only six of these undominated sites are best practice sites, demonstrating that it is 
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not necessary to be best practice to be a useful role model. Site S_04 is not efficient, 
but it is undominated and dominates six other sites. Site S_26 is efficient, and it 
dominates 14 other sites. It has barely 20% tree cover in the reach-scale 200m 
riparian buffer and it has a relatively large impervious surface area, yet its SIGNAL2 
score is higher than sites with more tree cover and smaller impervious surface area, 
demonstrating that an efficient and dominating site need not be a particularly healthy 
site (seven sites have higher SIGNAL2 scores). For example, site S_08 has less 
impervious surface area and over 70% tree cover, yet its SIGNAL2 score of 1.67 
compares poorly with S_26’s score of 3.5. It is dominated by 12 sites and dominates 
none. On both an efficiency criterion and a dominance criterion, site S_26 is a star 
and site S_08 a laggard. On these criteria Tables 2 and 3 show that a few other sites 
qualify as stars and a few qualify as laggards, and also illustrate the heterogeneity 
among stars and among laggards. 

 
 
4.2 DEA of Stream Health, Stream Stress and Stream Performance  
 
 We begin by replicating the analysis summarised in Table 2, replacing the 
primary good health indicator SIGNAL2 with the good health index SHI created by 
program [M.3]. This exercise applies program [M.4], and provides an evaluation of 
the performance of sites based on the three low stress indicators and a broader 
measure of good health. We then aggregate the three low stress indicators into a low 
stress index LSI created by program [M.5], and we re-evaluate the performance of 
sites based on a single good health index and a single low stress index using 
program [M.6] to construct an overall ecological performance index EPIUS. 
 
A stream health index for stream sites 

We have created a stream health index SHI using the output-oriented 
program [M.4], in which the low stress indicators for each site are set to unity and the 
two good health indicators SIGNAL2 and (temprange)-1 are aggregated to the stream 
health index SHI. Table 4 reports the results. The stream health index SHI and the 
three low stress indicators are listed in columns (1)-(4). Efficiency scores and scope 
to improve appear in columns (5) and (6). Response elasticities of SHI with respect 
to the three low stress indicators appear in columns (7)-(9). Sites are ranked 
according to their efficiency scores.  

 Efficiency scores in Table 4 are very similar to those in Table 2, with many of 
the same stars and many of the same laggards. The pattern of response elasticities 
in Table 4 is also very similar to that in Table 2. Both similarities suggest that the 
primary good health indicator SIGNAL2 tracks the holistic stream health index SHI 
very closely. 

 

Insert Table 4 About Here 
 

We consider the response elasticities in somewhat more detail. Starting with 
(Eucdis)-1, more than half of the sites would benefit from a reduction in impervious 
surfaces, and S_13 would benefit most. Continuing with (popden)-1, a third of the 
sites could benefit from a less densely populated watershed, with S_22 the biggest 
beneficiary. If the impacts associated with increased population density (which might 
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include increased catchment scale impervious surface, increased stormwater piping 
infrastructure, increased water pollution associated with increased levels of nutrients 
and heavy metals, or other urbanization stressors) could be mitigated, this site would 
see an improvement in health. Finally, more than a third of the sites report positive 
elasticities with respect to treerip in the reach-scale riparian zone. Planting more 
trees in the 200m reach-scale riparian zone at these sites would improve their 
health. Tree planting within the reach scale would see the best results at S_24 
because its reach-scale tree coverage is the second smallest in the sample. 
Conversely, the 200m reach-scale riparian zone of site S_16 is almost totally 
covered with trees, its response elasticity is zero, and yet it is an unhealthy low 
performing site.  

 
 

Insert Figure 1 About Here 
 
 

Figure 1 provides a spatial presentation of the variation in SHI. The Norman 
Creek catchment is the small area bordered in pink, and the Bulimba Creek 
catchment is the large area also bordered in pink. Both catchments drain to the 
Brisbane River estuary to the north. The darker the area the healthier it is, and most 
healthy areas are upstream. However there are instances of relatively unhealthy 
sites upstream of healthier sites (e.g., S_19, S_20). The mean health in Norman 
Creek (SHI = 0.54) is substantially lower than in Bulimba Creek (SHI = 0.70). The 
mean impervious surface area for the Norman Creek catchment (36%) is higher than 
for the Bulimba Creek catchment (26%). In addition, Norman Creek has extensive 
sections of the creek network piped, and does not have most of its main channel 
maintained as free flowing channel with a relatively natural riparian zone as Bulimba 
Creek does.  
 
A low stress index for stream sites 

We have created a low stress index LSI using the input-oriented program 
[M.5], in which the good health indicators for each site are set to unity and the three 
low stress indicators (Eucdis)-1, (popden)-1 and treerip are aggregated to the low 
stress index LSI.  

Table 5 reports the results, with sites ranked according to their low stress 
index. The stream health index and the low stress index appear in columns (1) and 
(2), efficiency scores appear in column (3), the scale elasticity appears in column (4), 
and dominance information appears in columns (5) and (6). We have already 
discussed SHI. Values of LSI range from 3.26 and 3.27 for the two least stressed 
sites to 1 for the four most stressed sites. A strong association of low stress with 
good health predominates, although not all healthy sites enjoy low levels of stress 
(e.g., S_18), and not all highly stressed sites are in relatively poor health (e.g., S_26, 
an efficient site). These outliers should attract the attention of those responsible for 
the health of these two streams. The scale elasticities in column (4) are all less than 
unity, suggesting that a given reduction in stress is likely to generate a less than 
proportionate improvement in health. The dominance information in columns (5) and 
(6) is very similar to that in Table 3, again suggesting that the primary health 
indicator SIGNAL2 is a reliable proxy for the more inclusive health index SHI. 
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Insert Table 5 About Here 
 

Insert Figure 2 About Here 
 

 
Figure 2 illustrates the spatial distribution of the low stress index. The darker 

the area the lower the stress. Norman Creek is generally more stressed (LSI = 1.22) 
than Bulimba Creek (LSI = 1.53), which is consistent with our finding that it is less 
healthy. The eastern side of Bulimba Creek is generally least stressed, which is 
consistent with it being less developed. Low stress sites are generally found in 
“headwater” sections (i.e., sites further up the catchment), although some sites 
higher in the catchment are highly stressed (e.g., S_12, S_19).  

 
An ecological performance index for stream sites 

We have created an overall ecological performance index EPIUS from output-
oriented program [M.6] using SHI and LSI. The results appear in column (3) of Table 
5. Most high-performing sites are healthy, but S_26 has just average health despite 
facing the highest stress levels in the sample. S_26 also dominates 20 sites, making 
it a star. Conversely, most poor-performing sites are unhealthy, regardless of the 
stress they face. S_20 is a poor performer despite having nearly average stress, and 
is dominated by 13 sites, making it a laggard. 

 

Insert Figure 3 About Here 
 

The spatial distribution of EPIUS values is evident in Figure 3. The darker the 
area the higher is its performance. Best performing sites include S_26 (EPIUS=1), 
which is one of the most stressed sites (LSI=1) but is moderately healthy (SHI=0.74). 
S_07, S_10, S_17 and S_18 also have EPIUS=1. S_07, S_10 and S_17 are classed 
as headwater streams in this study because no other sites are sampled further 
upstream to them and they pick up relatively small catchment areas. S_07 and S_10 
are the two least stressed sites in the study. S_18 is downstream of a site with a 
lower performance index (EPIUS=0.44).  

Apart from S_26, Norman Creek sites as a whole generally have lower EPIUS 
scores (EPIUS = 0.57) than Bulimba Creek sites (EPIUS = 0.80), and one factor that 
a visual inspection of sites highlights is the amount of stream network fragmented 
and piped underground in Norman Creek. Star site S_26 appears to have a high 
level of surrounding grass and trees in the local area both upstream and 
downstream, although there are not a lot of riparian trees directly on the stream 
segment. The presence of local scale grass in the surrounding landscape (both 
upstream and downstream) should therefore be investigated as a possible way to 
improve health.  

 
Health v. Performance 
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 We noted in the introduction that Healthy Waterways operates EHMP, which 
monitors the health of SEQ waterways, using a broad range of biological, physical 
and chemical health indicators. EHMP does not incorporate stress indicators when it 
creates report cards. We have constructed three performance measures that do 
incorporate stress indicators. The first is based on SIGNAL2 and three low stress 
indicators, and is reported in Table 2. The second is based on SHI and three low 
stress indicators, and is reported in Table 4. The third is based on SHI and LSI, and 
is reported in Table 5. We also have calculated three rank correlation coefficients, 
between each health indicator or index and the corresponding performance 
measure. The objective is to determine whether ignoring the stresses confronting 
urban streams, as EHMP does, paints an accurate picture of their relative 
performance. 
 Based on the three rank correlation coefficients, the answer is “on average, 
yes,” but not as significantly as one might expect, and with some large 
discrepancies. The rank correlation coefficients between health and performance 
measures in Tables 2, 4 and 5 are 0.74, 0.73 and 0.92, respectively. Stream health 
tracks stream performance fairly well, especially when low stress indicators are 
aggregated to a low stress index that smooths out some of the variability in the 
component indicators. To cite one example of discrepancy, site S_26 is an efficient 
site in all three exercises, yet its health, as measured by SIGNAL2 and by SHI, 
would warrant a grade of B- or C+ on its report card. 
 
5. Conclusions 
 
Brisbane City Council is interested in data supporting decision making for new 
developments that support ecological, environmental, economic and social benefits 
for Norman Creek (Brisbane City Council 2011, 2013).  
 
Urban stream management 

Urban streams are complex systems making it difficult to identify critical 
stressors and their relationships to urban stream health. There are multiple factors 
interacting at several scales and correlations and regression analysis alone are not 
always able to tease out the stressors and mechanisms by which they impact stream 
health. By comparing the relative ability of similar sites to withstand the stress 
caused by an urban environment DEA allows the researcher to study the 
relationships further. 

DEA can help determine the existing state of the stream and what 
improvements are possible and realistic. The stream health index SHI identifies the 
healthiest streams when stress is not accounted for; it is similar to a report card on 
health. The low stress index LSI identifies the relative stress levels at each site; and 
helps understand why some sites are healthier than others. The overall performance 
index EPIUS identifies best-practice sites on the stream health frontier and quantifies 
the amount of improvement that could be achieved by inefficient sites given the 
existing spatial configuration of their urban landscape (proximity of impervious 
surfaces, reach scale riparian vegetative cover, broader catchment scale impacts 
indicated by population density). When the three indices are mapped using GIS 
software (Figures 1, 2 and 3), the visual presentation can further assist managers in 
their task of identifying the most suitable sites for rehabilitation.  
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The combination of both stressors and health indicators that can be included 
in a DEA offer promise as a tool for management of freshwater ecosystem health. 
Careful selection of the type and scale of the variables used is necessary for an 
ecologically meaningful outcome. This deterministic approach of DEA can be 
coupled with a statistical approach such as model fitting and model averaging to 
provide insights to management from these two perspectives to indicate realistic 
management goals. By exhibiting increased health with increased low stress, the 
results of the DEA analysis support the selection of the stream health and inverse 
stream stress variables used here; this evidence is consistent across Table 2, which 
uses stream health indicator SIGNAL2, and Table 4, which uses the stream health 
index SHI. This evidence also suggests that riparian rehabilitation would benefit 
urban stream ecosystem health at some sites in this study area. However in some 
cases the sites may be too stressed to benefit, and the expected outcomes need to 
be realistic.  

The information in Table 5 raises several questions for management. How do 
some of the more highly stressed sites manage to be relatively healthy? Why are 
some of the low stressed sites relatively unhealthy? How should resources be 
allocated to make the optimal improvement in stream health? By observing the 
situation at best-practice sites and dominator sites, management can get an idea of 
what improvements are feasible for the less efficient sites. Elasticity measures for 
SHI with respect to the low stress index LSI  help to identify the sites most likely to 
respond to changes in stressors and whether there is likely to be a proportionate 
change in health. In Table 5 all elasticities are less than one, suggesting that there 
are decreasing returns to scale; a proportional increase in stream health will be less 
than a proportional reduction in stress. However the elasticities for half the sites are 
close to 1.00 suggesting that in some cases, the changes could be 
equiproportionate. These are the sites that management may want to consider for 
rehabilitation. 

Conversations with representatives from star and laggard sites also provides 
a useful way to consider what might be allowing one site with similar levels of stress 
to be healthier and to pose further hypotheses. Considering possible explanations 
led to further testable hypotheses - does the presence of terrestrial vegetation in the 
local area improve health of this site, and is there a way to measure the in-stream 
longitudinal potential connectivity of these stream sites. It became evident that in-
stream longitudinal connectivity varied greatly among sites, and appeared to be 
especially low for Norman Creek sites, in which extensive sections of the stream 
network are buried or fragmented by concrete and stormwater piping. These 
questions have been addressed (e.g., Hughes et al. 2013) and continue to be 
investigated (Millington 2013). 

Considering an EPIUS that accounted for both health and stress highlighted 
star sites which were healthier for a given level of stress than lower performing sites. 
These results prompted a desktop investigation into which important aspects of land-
cover or land-use were unaccounted for in the BCNC study. Our measure of 
impervious surface is a metric that captures the impervious land cover near the site 
(distance-weighted Euclidean distance, but with a high weighting on the land cover 
close to the site). It might be beneficial to repeat the analysis including instead 
alternative land-cover metrics such as percent piped channel in the upstream 
“effective riparian buffer” 30m either side of stream that captures a more extensive 
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catchment area and would potentially have more differentiation with the reach-scale 
tree cover (Millington 2013).  

Another possible explanation for better performance was the amount of 
terrestrial vegetation in the landscape around sites. This suggests that surrounding 
terrestrial vegetation may be an important explanatory variable, prompting further 
GIS metric development for future studies (Millington 2013). 

Some sampled metrics, such as dissolved oxygen and conductivity, were not 
included in the DEA because they responded positively to measures of increased 
urbanisation, which was unexpected from the literature. However the literature 
reports variability in how these metrics respond to urbanisation, especially in low flow 
situations. The stream health data used in this DEA were collected during one 
season, and as such the sample is a snapshot in time. Sites with very low flows may 
be unable to support as high a level of macroinvertebrate diversity as they could 
when flows are greater. But this assessment provides a starting point for considering 
local and catchment-wide stresses, health and priorities for rehabilitation for these 
streams, which could form part of ad hoc or systematic planning approaches.  

Finally, it would be desirable to narrow the analytical and data gaps between 
our study and EHMP, which has been in place for over a decade. We already have 
noted the analytical gap between health and performance. It would be interesting to 
collect data on an expanded suite of health indicators used in EHMP reports for 
these sites or additional sites. The five categories of stream health measures 
covered by the EHMP were not covered in this study. Effectively only water quality 
and macroinvertebrates were. The EHMP study was only partially concerned with 
urban streams but some of their indicators are still relevant. There are also other 
metrics related to urban sites that are not collected by the EHMP such as heavy 
metals that may be available in other urban stream data sets such as those captured 
by BCC and other urban councils. Larger samples provide more information than 
smaller samples and this study was based on a small sample of 30 urban sites.  

 
  



23 
 

 
 

Variables Labels min Q1 mean Q3 max 

Site Good Health Indicators 

SIGNAL2 y1 1.38 2.19 2.84 3.48 4.81 

temprange  0.7 1.53 2.19 2.4 6.7 

(temprange)-1 y2 0.15 0.42 0.56 0.66 1.43 

Site Low Stress Indicators 

Eucdis  0.07 0.19 0.25 0.32 0.44 

(Eucdis)-1 x1 2.25 3.14 5.21 5.2 14.29 

popden  2.61 14.07 15.17 17.2 21.83 

(popden)-1 x2 0.046 0.058 0.079 0.071 0.383 

treerip x3 0.157 0.474 0.659 0.899 0.998 

Site Health Index 

SHI Y 0.37  0.52  0.67  0.84 1.00 

Site Low Stress Index 

LSI X 1.00 1.09 1.47   1.52   3.27 

 

Table 1 Descriptive Statistics for the Data Set 
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Site ID 
 y1 = 

SIGNAL2 
x1 = 

(Eucdis)-1 
x2 = 

(popden)-1 
x3 = 

treerip -1 
Scope to 
improve 11 12 13 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
S_07 4.81 14.286 0.159 0.895 1.00 1.00 0.07 0.00 0.28 
S_12 2.36 2.253 0.058 0.157 1.00 1.00 1.87 0.00 0.00 
S_13 2.27 2.425 0.047 0.410 1.00 1.00 2.87 1.05 0.00 
S_14 2.90 13.831 0.046 0.935 1.00 1.00 0.00 2.49 0.00 
S_18 4.61 3.602 0.063 0.923 1.00 1.00 0.00 0.03 0.30 
S_26 3.50 2.835 0.050 0.191 1.00 1.00 0.00 1.22 0.00 
S_17 4.60 13.755 0.114 0.886 0.98 1.02 0.00 0.06 0.28 
S_04 3.26 2.790 0.066 0.496 0.96 1.05 1.60 0.00 0.00 
S_05 3.69 3.136 0.059 0.899 0.94 1.07 1.15 0.00 0.00 
S_15 3.92 11.723 0.071 0.932 0.85 1.18 0.00 0.03 0.00 
S_10 3.93 7.375 0.383 0.900 0.84 1.19 0.04 0.00 0.29 
S_30 3.88 3.939 0.072 0.994 0.84 1.19 0.02 0.00 0.00 
S_03 2.92 3.792 0.051 0.414 0.81 1.24 0.00 1.21 0.00 
S_11 2.96 3.769 0.054 0.549 0.77 1.30 0.00 1.20 0.00 
S_28 2.79 2.957 0.068 0.822 0.76 1.32 1.16 0.00 0.00 
S_01 3.42 3.782 0.069 0.962 0.74 1.35 0.02 0.00 0.00 
S_29 2.76 3.418 0.069 0.482 0.70 1.43 0.02 0.00 0.18 
S_24 2.23 3.202 0.059 0.185 0.67 1.48 0.00 0.00 1.90 
S_27 2.37 4.831 0.071 0.265 0.65 1.54 0.00 0.00 0.14 
S_23 2.50 4.167 0.069 0.658 0.59 1.69 0.02 0.00 0.23 
S_06 1.72 2.572 0.059 0.558 0.58 1.74 1.69 0.00 0.00 
S_02 2.00 3.154 0.051 0.793 0.56 1.80 0.00 1.21 0.00 
S_22 1.82 3.169 0.049 0.537 0.54 1.87 0.10 6.63 0.00 
S_20 2.08 3.694 0.063 0.472 0.53 1.89 0.02 0.00 0.18 
S_16 2.42 7.639 0.086 0.998 0.52 1.93 0.00 0.04 0.00 
S_21 2.19 6.369 0.086 0.640 0.52 1.94 0.03 0.00 0.23 
S_09 2.20 5.200 0.091 0.835 0.49 2.05 0.03 0.00 0.28 
S_19 1.38 2.591 0.064 0.343 0.46 2.19 1.68 0.00 0.00 
S_25 1.94 4.787 0.061 0.922 0.43 2.31 0.00 1.17 0.00 
S_08 1.67 5.200 0.070 0.712 0.39 2.59 0.00 0.04 0.24 
mean 2.84 5.208 0.079 0.659 0.74 1.48 0.41 0.55 0.15 

 
Table 2 Efficiency Scores and Response Elasticities in the Primary Stream 

Health Indicator Model [M.1] and [M.2] 
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Site ID -1           Dominators  

S_07 1.00 -               
S_12 1.00 -               
S_13 1.00 -               
S_14 1.00 -               
S_18 1.00 -               
S_26 1.00 -               
S_17 0.98 -               
S_04 0.96 -               
S_05 0.94 -               
S_15 0.85 S_18               
S_10 0.84 -               
S_30 0.84 S_18               
S_03 0.81 S_26               
S_11 0.77 S_26               
S_28 0.76 S_04 S_26             
S_01 0.74 S_05 S_18 S_26            
S_29 0.70 S_26               
S_24 0.67 S_12               
S_27 0.65 S_26               
S_23 0.59 S_03 S_04 S_11 S_26 S_29          
S_06 0.58 S_12 S_13             
S_02 0.56 S_13 S_26             
S_22 0.54 S_13               
S_20 0.53 S_12 S_13 S_24 S_26           
S_16 0.52 S_01 S_03 S_04 S_05 S_11 S_18 S_23 S_26 S_28 S_29 S_30  
S_21 0.52 S_03 S_04 S_11 S_12 S_13 S_24 S_26 S_27 S_29      
S_09 0.49 S_03 S_04 S_11 S_12 S_13 S_23 S_24 S_26 S_27 S_28 S_29  
S_19 0.46 S_12               
S_25 0.43 S_02 S_03 S_05 S_11 S_12 S_13 S_24 S_26       
S_08 0.39 S_03 S_04 S_06 S_11 S_12 S_13 S_20 S_22 S_23 S_24 S_26 S_29

 
Table 3 Dominators in the Primary Stream Health Indicator Model  

[M.1] and [M.2] 
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Site 

ID Y = SHI 

x1 = 

(Eucdis)-1 

x2 =  

(popden)-1 

x3 = 

treerip -1 

Scope to 

improve Y1 Y2 Y3 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
S_05 0.84 3.136 0.059 0.899 1.00 1.00 1.18 0.00 0.00 
S_07 1.00 14.286 0.159 0.895 1.00 1.00 0.00 0.00 0.00 
S_10 1.00 7.375 0.383 0.900 1.00 1.00 0.00 0.00 0.00 
S_12 0.56 2.253 0.058 0.157 1.00 1.00 1.27 0.00 0.00 
S_13 0.51 2.425 0.047 0.410 1.00 1.00 2.35 1.15 0.00 
S_14 0.62 13.831 0.046 0.935 1.00 1.00 0.00 2.34 0.00 
S_17 1.00 13.755 0.114 0.886 1.00 1.00 0.00 0.00 0.00 
S_18 0.96 3.602 0.063 0.923 1.00 1.00 0.05 0.00 0.00 
S_21 1.00 6.369 0.086 0.640 1.00 1.00 0.25 0.00 0.17 
S_26 0.74 2.835 0.050 0.191 1.00 1.00 0.00 1.14 0.00 
S_04 0.71 2.790 0.066 0.496 0.97 1.03 1.21 0.00 0.00 
S_01 0.89 3.782 0.069 0.962 0.92 1.09 0.05 0.00 0.00 
S_30 0.84 3.939 0.072 0.994 0.86 1.16 0.05 0.00 0.00 
S_15 0.83 11.723 0.071 0.932 0.85 1.17 0.00 0.11 0.00 
S_11 0.65 3.769 0.054 0.549 0.80 1.25 0.00 1.13 0.00 
S_03 0.61 3.792 0.051 0.414 0.79 1.27 0.00 1.14 0.00 
S_28 0.59 2.957 0.068 0.822 0.76 1.32 1.20 0.00 0.00 
S_22 0.52 3.169 0.049 0.537 0.72 1.38 0.08 5.93 0.00 
S_24 0.50 3.202 0.059 0.185 0.71 1.42 0.00 0.00 1.42 
S_09 0.68 5.200 0.091 0.835 0.69 1.46 0.07 0.00 0.00 
S_29 0.58 3.418 0.069 0.482 0.69 1.45 0.16 0.00 0.15 
S_02 0.49 3.154 0.051 0.793 0.65 1.54 0.00 1.14 0.00 
S_27 0.51 4.831 0.071 0.265 0.65 1.53 0.00 0.00 0.19 
S_08 0.59 5.200 0.070 0.712 0.62 1.61 0.00 0.31 0.17 
S_16 0.61 7.639 0.086 0.998 0.61 1.64 0.00 0.13 0.00 
S_23 0.55 4.167 0.069 0.658 0.60 1.66 0.18 0.00 0.19 
S_06 0.37 2.572 0.059 0.558 0.56 1.77 1.23 0.00 0.00 
S_19 0.37 2.591 0.064 0.343 0.55 1.82 1.23 0.00 0.00 
S_20 0.44 3.694 0.063 0.472 0.52 1.93 0.17 0.00 0.14 
S_25 0.45 4.787 0.061 0.922 0.48 2.08 0.00 1.11 0.00 
mean 0.67 5.208 0.079 0.659 0.80 1.32 0.36 0.52 0.08 

 
Table 4 Efficiency Scores and Response Elasticities in Model [M.4] 
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Site ID 

Y = 
SHI 

X = 

LSI 

-1 = 

EPIUS 

RTS = 

YX 

# of DOMINATORS 

for this site 

# of sites this site  

DOMINATES 

 
(1) (2) (3) (4) (5) (6) 

S_10 1.00 3.27 1.00 0.00 3 0 
S_07 1.00 3.26 1.00 0.00 2 1 
S_17 1.00 2.40 1.00 0.00 1 2 
S_09 0.68 1.94 0.68 0.00 8 0 
S_16 0.61 1.85 0.61 0.00 10 0 
S_21 1.00 1.81 1.00 0.13 0 5 
S_30 0.84 1.53 0.85 0.12 3 2 
S_15 0.83 1.53 0.85 0.12 3 2 
S_08 0.59 1.49 0.60 0.11 9 0 
S_23 0.55 1.48 0.57 0.11 11 0 
S_01 0.89 1.46 0.91 0.11 1 6 
S_27 0.51 1.41 0.53 0.11 11 0 
S_29 0.58 1.40 0.60 0.11 8 2 
S_18 0.96 1.33 1.00 0.10 0 9 
S_20 0.44 1.32 0.46 0.92 13 0 
S_25 0.45 1.30 0.48 0.92 12 1 
S_28 0.59 1.27 0.64 0.92 6 6 
S_05 0.84 1.25 0.92 0.92 0 11 
S_04 0.71 1.21 0.80 0.91 1 9 
S_11 0.65 1.14 0.78 0.91 1 8 
S_19 0.37 1.14 0.44 0.91 9 0 
S_06 0.37 1.11 0.46 0.91 8 1 
S_24 0.50 1.08 0.63 0.91 6 4 
S_03 0.61 1.08 0.76 0.90 2 10 
S_02 0.49 1.08 0.62 0.90 5 4 
S_22 0.52 1.05 0.67 0.90 3 7 
S_26 0.74 1.00 1.00 0.90 0 20 
S_14 0.62 1.00 0.84 0.90 1 16 
S_12 0.56 1.00 0.75 0.90 2 10 
S_13 0.51 1.00 0.68 0.90 3 6 
Mean 0.67 1.47 0.74 0.52 5 5 

 
Table 5 Overall Ecological Performance EPIUS, Response Elasticities and 

Dominance in Index Model [M.6]
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Figure 1  The Spatial Arrangement of the Stream Health Index SHI 
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Figure 2  The Spatial Arrangement of the Low Stress Index 

 

 

 

 

 



30 
 

 

 

Figure 3  The Spatial Arrangement of the Overall Performance Index EPIUS  
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Endnotes 

                                            
1 Cooper et al. (2000) provide a comprehensive survey of DEA and its uses. 
2 Macroeconomic applications are also popular, in part due to the availability of relevant 
OECD data. Zhou et al. (2006b) used a variant of DEA to study the environmental-economic 
performance of 30 OECD countries, and to calculate the opportunity costs of environmental 
regulations that constrain performance, using two inputs (primary energy supply and 
population), one desirable output (gross domestic product, GDP) and one undesirable output 
(CO2 emissions). Zhou et al. (2007b) used a different variant of DEA to study the 
environmental-economic performance of 26 OECD countries, using two inputs (labour force 
and primary energy consumption), one desirable output (GDP) and four undesirable outputs 
(CO2, SOx, NOx and CO emissions). Sahoo et al. (2011) used several specifications of DEA 
to study the environmental-economic performance of 22 OECD countries, using two inputs 
(capital and labour) to produce one desirable output (GDP) and one undesirable output 
(greenhouse gases). 
3 DEA provides a radial efficiency measure, and is not appropriate in the presence of 
undesirable outputs such as indicators of bad health. This leaves two options. We have 
chosen to convert indicators of bad health to indicators of good health prior to employing 
DEA to estimate efficiency. The alternative is to retain indicators of good and bad health and 
resort to a non-radial efficiency measurement method based on hyperbolic or directional 
distance functions. Färe et al. (1989) based their analysis on hyperbolic distance functions, 
while Bellenger and Herlihy (2009, 2010) and Macpherson et al. (2010) based their analysis 
on directional distance functions. Similar reasoning applies to the treatment of high stress 
and low stress indicators.  
4 Deprins et al. (1984) introduced the notion of dominance to production analysis, a 
contribution that was fleshed out in subsequent studies by Tulkens. 
5 An information server on composite indicators and ranking systems, not all of which use 
expert judgement to weight indicators, is http://ipsc.jrc.ec.europa.eu/?id=739. 
6 The first use of DEA to construct an aggregate index was Lovell (1995), who used DEA to 
aggregate macroeconomic indicators into an aggregate macroeconomic performance index 
for a number of Asian economies. Returning to the EPI, Zanella et al. (2013) developed 
alternative specifications of DEA to generate alternative aggregations of the 25 indicators in 
the EPI, and they compared their rankings with those in the EPI. Despite visibly different 
rankings, they found statistically significant positive rank correlations. Zhou et al. (2007a) are 
among many others who have used variants of DEA to aggregate environmental indicators 
to construct composite environmental indices across countries. At the macroeconomic level 
these environmental-economic output quantity indices are generalisations of Okun’s Misery 
Index, Calmfors’ Index and the OECD’s Magic Diamond popularised by The Economist. 
7 Justification for this and other health indicators can be found in the Healthy Waterways 2006-2007 
Annual Report at 
http://www.healthywaterways.org/EcosystemHealthMonitoringProgram/ProductsandPublications/Annu
alTechnicalReports.aspx  

8 The software used to run the DEA models is available in the R package “Benchmarking 
with DEA and SFA,” by Bogetoft and Otto (2011).   
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