
 

 

 

 

 

 

Remote Sensing for Multi-scale Mangrove Mapping 

 

Muhammad Kamal 

BSc. (Hons) (UGM), MGIS. (UQ) 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
A thesis submitted for the degree of Doctor of Philosophy at 

The University of Queensland in 2015 

School of Geography, Planning and Environmental Management 

 

 

  



 

i 

 

Abstract 

 

Understanding the relationships between the size of mangrove vegetation features and the optimum 

image pixel size required to map these features is essential to support effective mapping and 

monitoring activities in this environment. Currently mangroves are under pressure from 

anthropogenic and natural disturbances, and up-to-date and accurate spatial information is required 

to support their management. Addressing ecological problems at the correct spatial scale is essential 

in mangrove environments. There is a lack of knowledge on the types and biophysical properties of 

mangroves, which can be mapped at different image spatial resolutions. This thesis integrated the 

spatial and temporal dimension of remote sensing data into a spatio-temporal continuum of 

mangrove ecology and developed guidelines for multi-scale image-based mangrove mapping. Three 

objectives were addressed to achieve the aim: (1) characterising mangrove spatial structure to 

produce an optimum pixel resolution scheme for image-based mangrove mapping; (2) assessing the 

applicability of the scheme to selected images for mangrove composition and leaf area index (LAI) 

mapping; and (3) developing guidelines for multi-scale mangrove mapping. The research sites were 

located in Moreton Bay, Australia, and Karimunjawa Island, Indonesia. Landsat TM, ALOS 

AVNIR-2, and WorldView-2 images were used for both sites; with additional LiDAR data and a 

very high-spatial resolution aerial photograph for Moreton Bay. 

 

After two introductory chapters, chapter three focused on the development of a method for 

estimating the optimum pixel size to map different sizes of mangrove features accurately. The 

extent of dominant mangrove structural features including tree/shrub crowns, canopy gaps and 

vegetation formation or community, could be detected using semi-variogram analysis applied to 

image datasets with different spatial resolutions. The findings showed a gradual loss of mangrove 

information detail with increasing pixel size. Specific mangrove features could be optimally 

mapped from a specific pixel size and spectral bands or indices. A pixel size of ≤ 2 m was suitable 

for mapping canopy and inter-canopy-related features within mangrove vegetation features (such as 

shrub crown, canopy gaps and single tree crowns), while a pixel size of ≥ 4 m was appropriate for 

mapping mangrove vegetation formation, communities and larger mangrove features. An optimum 

pixel resolution scheme was produced for mangrove mapping that served as a basis for an inversion 

approach to map mangrove features using remote sensing image datasets. 

 

Chapters 4 and 5 focused on the application of the optimum pixel size scheme to the selected 

images with different spatial resolutions, to map mangrove composition and LAI, respectively. 

Object-based image analysis successfully produced mangrove composition maps at discrete spatial 
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scales. The findings suggested that the accuracy of the maps was a result of the interaction between 

the image spatial resolution, the scale of the targeted objects and the number of land cover classes 

on the map. This task confirmed that the conceptual spatial and temporal hierarchical organisation 

of mangroves provided an essential aid for effective multi-scale mangrove composition mapping. 

For LAI mapping, the effect of different image pixel sizes and mapping approaches (i.e. object- and 

pixel-based) to estimate LAI was investigated. The results suggested that the optimum pixel size to 

estimate LAI correlated with the dominant object size in the area of interest and the field plot size. 

The object-based approach significantly increased the LAI accuracy as opposed to the pixel-based 

approach; with the optimum segmentation size corresponding to the size of the dominant objects in 

the image scene. 

 

Chapter six synthesised the findings from chapters 3, 4, and 5 and developed guidelines for multi-

scale image-based mangrove mapping. Through these guidelines, the relationships between remote 

sensing and mangrove ecology could be shown explicitly; and at the same time, they provided an 

effective and efficient way to select the best image datasets and mapping techniques to map 

mangrove feature(s) at a relevant spatial and temporal scale. These targeted mangrove features can 

be used as a basic mapping unit for other applications, such as LAI and biomass estimation, carbon 

storage calculation, species distribution and so on. 

 

This thesis has successfully integrated the field of remote sensing with mangrove ecology and 

developed rigorous and robust guidelines that provide a fundamental basis for multi-scale image-

based mangrove mapping. It also signifies the operational use of remote sensing data for multi-scale 

mangrove mapping to produce science- and management-ready environmental information at 

relevant spatial and temporal scales. In a practical context, this guideline will help mangrove 

scientists and managers select the appropriate image datasets for mapping, measuring and 

monitoring mangrove environments. To ensure the wider applicability of the guidelines, the 

methods presented in this thesis need to be tested at other mangrove sites with different 

environmental settings, using a wider range of image datasets and processing techniques. 
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INTRODUCTION AND SIGNIFICANCE OF THE RESEARCH 

 

 

This chapter provides the general context that motivated the research presented in the thesis. 
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1.1. Overview of the Research Context 

Mangroves have been identified among the most important objects in wetland ecosystems, forming 

a link between terrestrial and marine systems in tropical and subtropical regions. They are highly 

productive ecosystems that typically dominate the intertidal zone of low energy tropical and 

subtropical coastlines (Kathiresan & Bingham 2001; Alongi 2002). Mangroves perform a range of 

ecological and economical functions such as protection of coastal environment, provision of nursery 

habitat for the juveniles of aquatic organisms, support for aquatic food chains, maintenance of 

coastal water quality, provision of wildlife reserves and attracting tourists (Lugo & Snedaker 1974; 

Hutchings & Saenger 1987; Robertson & Duke 1987; Green et al. 1998b; Giri et al. 2011). 

However, their health and resilience are under intense ecological pressure from anthropogenic and 

natural disturbances. Major threats to mangroves include logging for fuel and timber (Gopal & 

Chauhan 2006), conversion to other land uses such as agriculture, aquaculture, industrial and urban 

development (Alongi 2002; Manson et al. 2003; Giri et al. 2008) and the relative sea level rise 

(Gilman et al. 2008). Approximately 36% of the global mangrove area was lost during the past two 

decades (FAO 2007). Predictions suggest that in the next 100 years, about 30-40% of coastal 

wetlands will be lost (McFadden et al. 2007) and 100% of mangrove forest (Duke et al. 2007) if the 

present loss continues. These threats and losses of mangroves are leading to the increasing demand 

for retrieving up-to-date and accurate information on mangrove forest. This information is crucial 

for mangrove inventory and mapping, monitoring the state of existing mangrove forest, assessing 

change (deforestation), estimating blue carbon storage and ensuring their sustainable management 

(Green & Mumby 2000; Wang & Sousa 2009b; Heumann 2011b).  

 

Over the past 20 years, remote sensing data have been used extensively to map and monitor 

mangrove environments (Heumann 2011b; Kuenzer et al. 2011). It provides key advantages for 

mangrove studies including: (1) indirect access to mangrove habitats that are temporarily inundated 

and often inaccessible due to geographical location in intertidal zones (Ramsey III & Jensen 1996; 

Davis & Jensen 1998), (2) enabling extrapolation of observation results at specific sampling sites 

into an entire image extent (Hardisky et al. 1986; Kuenzer et al. 2011), (3) providing a synoptic 

overview and repeated coverage of mangrove sites (Giri et al. 2007), and (4) the ability to deliver 

data at multi-scale levels to address key problems in coastal areas (Malthus & Mumby 2003). The 

recent development of remote sensing and image processing allows exploration of various types of 

image datasets as well as types of mapping techniques, or combinations of them, to map mangrove 

environments (Heumann 2011b; Kuenzer et al. 2011). Problems arise when there is a need to match 

the scale of the analysis to the scale of the phenomenon under investigation because environmental 

inferences are scale-dependent (Wiens 1989). So there are substantial knowledge gaps dealing with 
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remote sensing approaches for mangrove mapping including knowing what type of mangrove 

information is able to be mapped from specific image resolutions and the level of detail in that 

information. 

 

From a spatial ecology perspective, mangrove ecosystems - as for to other vegetation ecosystems - 

are perceived as having spatial and temporal hierarchical organisation and this hierarchical 

approach have been used to understand this ecosystem for more than three decades (Feller et al. 

2010). The central concept of the theory focuses on the differences in structure and process rates 

between levels. Based on these differences, ecosystems are viewed as being stratified into discrete 

levels of interacting subsystems, with attributes occurring at specific spatial and temporal scales 

(Delcourt et al. 1983; Müller 1992; Lee & Grant 1995; Farnsworth 1998). Geospatial technology 

and analysis tools, including remote sensing data and its mapping techniques, are required to 

address emerging issues in spatial ecology from local to global scales (Naveh & Lieberman 1994; 

Skidmore et al. 2011). Most of the image-based mangrove mapping conducted derived information 

at a specific scale, with little attention given to the variation of information obtained across different 

image resolutions (i.e. the ability of a remote sensing system to record and display fine spatial, 

spectral, radiometric and temporal details (Campbell 2002)). Having this information in place will 

help scientists focus their research on the ecological questions that are appropriate to each level of 

spatial resolution (Delcourt et al. 1983; Phinn 1998) and managers to focus on the conservation 

needs at the relevant levels of spatial and temporal scales (Schaeffer-Novelli et al. 2005). The multi-

scale mapping capability of remote sensing has the potential to address the spatial hierarchical 

organisation of mangroves, in order to identify and characterise the type of information obtainable 

about mangroves at each hierarchical level, and provide mangrove maps at a variety of spatial 

scales.  

 

The knowledge gaps define three key issues: (1) how to integrate the remote sensing perspective 

into mangrove spatial and temporal hierarchical organisation, (2) how to select and optimise the use 

of image datasets so that the data will most effectively address a particular research problem at a 

specific spatial scale (Warner et al. 2009), and (3) how to utilise synergetic data from multiple 

remote sensing images to improve the accuracy of mangrove mapping (Blasco et al. 1998; Malthus 

& Mumby 2003; Heumann 2011b; Kuenzer et al. 2011). Among various mangrove parameters able 

to be mapped using remote sensing data, two parameters provide the most fundamental information, 

mangrove structural feature composition and leaf area index (LAI). Mangrove structural feature 

composition shows the assemblage of mangrove features at different spatial scale and extent, such 

as tree crown/species, canopy gaps, vegetation formation and community, and serve as a good 
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indicator of geomorphic and environmental change (Souza-Filho & Paradella 2003). Likewise, LAI 

is an important biophysical parameter for assessing evapotranspiration, carbon cycling, habitat 

conditions and forest health (Pierce & Running 1988; Kovacs et al. 2005). Yet, as an increasing 

number of various resolutions of image datasets become available, selection of the most appropriate 

image resolution for specific mapping purpose becomes more difficult (Cao & Lam 1997; Warner 

et al. 2009). These image datasets support the mapping of vegetation features at different spatial 

scales or multi-scale mapping, which is essential for ecosystem inventory and management. To use 

remote sensing data effectively for multi-scale mapping in a mangrove environment, it is essential 

to understand the relationships between image resolutions, mapping techniques and the information 

obtained. 

 

In summary, further work is needed to understand the multi-scale mapping ability of remote sensing 

data for the production of spatially-explicit information about mangroves at a variety of spatial 

scales, to support better mangrove science and management. The work carried out in this thesis 

began to address the multi-scale issues in mangrove mapping using remote sensing data to 

understand the link between image spatial resolutions and the type and detail of mangrove 

information able to be extracted from the image. The results were applied as the basis for multi-

scale mangrove composition and LAI mapping, in order to develop a guideline for multi-scale 

mangrove mapping. 

 

1.2. Knowledge Gap and Problem Statement 

Ideally, in order to use remote sensing data effectively for mangrove mapping, there should be 

existing knowledge of what type of mangrove information could be derived at a specific image 

spatial resolution (or scale of observation). Given a set of remotely-sensed data, one would know 

the expected type of information derived from this specific datasets; or vice versa, in order to map 

certain mangrove features, one would select a certain type of image datasets that could optimally 

detect this specific feature. Many attempts have been made to explore various types and resolutions 

of remotely-sensed data for mapping mangrove composition and structural parameters. Studies 

focusing on the explicit relationships between image resolutions and the type and level of detail of 

mangrove composition and structural information contained at different scales, are limited. In this 

regard, different image resolutions (spatial and spectral) will result in different levels of 

interpretability, information detail and accuracy of mangrove information acquired. The research 

problem can be stated as follows: there is a substantial lack of knowledge related to the 

relationships between image resolutions, mapping approaches and the level of information detail 

able to be produced for mangrove environments. 
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1.3. Research Aim and Objectives 

The aim of this research is to establish guidelines for multi-scale mangrove structural feature 

composition and LAI mapping using multi-resolution image datasets. To address the research 

problem and question, the project is divided into three objectives:  

1. To characterise mangrove spatial structure identifiable at different spatial scales for image-

based mangrove mapping. 

2. To assess the capability of selected remotely-sensed datasets and mapping techniques to 

produce mangrove structural feature composition and LAI maps at different spatial scales, 

and assess the accuracy of the mapping results. 

3. To develop guidelines for multi-scale mapping of mangrove structural feature composition 

and LAI suitable for multiple locations. 

 

1.4. Remote Sensing for Mangrove Mapping 

Several topics directly associated with the research problem are covered in the literature review to 

substantiate the need for this research. A basic understanding on the definition, global distribution 

and characteristics of mangrove ecosystems able to be detected from image data will be established. 

Common themes, key findings, limitations and gaps in previous research are identified for 

mangrove mapping techniques using remotely-sensed data. The multi-scale/resolution issues across 

different image resolutions as a basis for multi-scale analysis will also be addressed.  

 

1.4.1. Definition and Distribution of Mangrove Ecosystems 

There are varied definitions of mangroves used across the literature as a result of problems in non-

precise identification of mangrove objects and taxonomical classification (Bunt et al. 1982; Blasco 

et al. 1998). According to Duke (2006, p. 12), a mangrove is defined as “a tree, shrub, palm or 

ground fern that is generally higher than one half-metre in height, and normally grows above mean 

sea level in the intertidal zone of marine coastal environments and estuarine margins”. The 

definition above gives a comprehensive and clear delimitation of the object and can be 

appropriately applied in this study. The term mangrove refers to both trees living in the intertidal 

zones and to the communities they form (Tomlinson 1994). When referring to the habitat, the term 

“mangroves”, “mangrove forest”, or “mangal” is used. The term “mangrove” is also used as an 

adjective, so that individual trees in the “mangroves” are referred to as a “mangrove tree” (Duke 

1992). Apart from the variation of interpretation of the term “mangrove” (Blasco et al. 1998), this 

study will focus on the “mangrove forest” or intertidal community of trees as the object that can be 

physically recognised by remote sensing sensors. 
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Throughout the world mangrove ecosystems occupy intertidal areas between 30ºN and 30ºS and are 

located within 124 countries (FAO 2007); with 73 species and hybrids as true mangroves and 

occupying a total estimated area of 137,760 km
2
 (Giri et al. 2011). The distribution of mangroves 

indicates a tropical dominance with major latitudinal limits relating best to major ocean currents and 

the 20°C seawater isotherm in winter (Figure 1.1). The largest mangrove extent is in Asia (42%) 

followed by Africa (20%), North and Central America (15%), Oceania (12%) and South America 

(11%); where Indonesia, Australia, Brazil, Mexico and Nigeria combined have roughly 46.8% of 

the world‟s mangrove forests (Giri et al. 2011). The halophytic mangroves typically fringe the 

transition zone between sea and land in intertidal coastal regions, estuaries and reef environments, 

which are characterised by strong wind, high temperature, varying inundation and anaerobic muddy 

soil (Lugo & Snedaker 1974; Kathiresan & Bingham 2001). 

 

 

Figure  1.1. Global distribution of the world‟s mangrove forest; mangroves shown in dark green 

(Giri et al. 2011; data source: http://data.unep-wcmc.org/datasets/4). 

 

1.4.2. Spatial and Temporal Organisation of Mangroves 

The distribution and structure of mangrove forest are influenced by several environmental factors 

with varying impacts over different spatial and temporal scales (Duke et al. 1998; Twilley et al. 

1999). At the global spatial scale, mangrove distributions are limited by temperature (Alongi 2002). 

They are restricted in areas where mean air temperatures are higher than 20°C and the seasonal 

range does not exceed 10°C (Duke et al. 1998). At the regional scale, the diverse landform of 

coastal regions can be considered as a biodiversity component of mangrove ecosystems (Twilley et 

al. 1996). These regions can be classified into distinct geomorphological units that describe the 

influence of geophysical processes on the ecological characteristics of mangroves (Thom 1982). 

The extent and characteristics of mangroves in this scale may be determined by complex 

interactions between landscape position, rainfall, sea level, sediment dynamics and natural 

disturbances (storm, pest, or predator) (Alongi 2002, 2008; Eslami-Andargoli et al. 2009).  

 

http://data.unep-wcmc.org/datasets/4
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At the local scale, the micro-topographic factors of a region determine the hydrologic and chemical 

conditions of soil that control the patterns of forest physiognomy and zonation (Twilley et al. 1996). 

Lugo and Snedaker (1974) classify the local patterns of mangrove structure into riverine, fringe, 

basin, hammock and dwarf forests. Finally, for an individual tree, several factors operate 

collectively to control plant growth including temperature, nutrients, solar radiation, oxygen and 

water (Clough 1992). Together these can be used to integrate the different scales of environmental 

factors that control the attributes of mangrove forest structure (Figure 1.2). Changes in any of these 

factors are likely to affect the spatial patterns and community structure of mangroves. 

 

 

Figure  1.2. Hierarchical organisation of the patterns of mangrove structure and function over 
different spatial extents (Twilley et al. 1999, p. 406, with permission from Elsevier). 

 

Ecologists have perceived mangrove ecosystems as having hierarchical organisation and have used 

this hierarchical approach to understand this ecosystem for more than three decades (Feller et al. 

2010). This hierarchical organisation was built based on the hierarchy theory (Twilley et al. 1999). 

It is as a comprehensive theory about the relationships between ecological processes and the spatial 

and temporal patterns observed in the landscape (Cullinan et al. 1997). It simplifies complex and 

multi-scaled systems into several single phenomenon and single spatio-temporal scale. By limiting 

the focus into a specific phenomenon at a specific space and time, it is possible to address the 

associated problem appropriately (Fox 1992). From the mangrove management point of view, the 

existing multiple hierarchical levels of mangroves mean that management strategies should be 
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developed to address conservation needs at the relevant levels of ecological organisation and 

spatial-temporal scale (Schaeffer-Novelli et al. 2005). Management strategies that are successfully 

implemented at one level may not be applicable for other levels. Therefore, it is best to establish 

policies to address any given environmental problem at the relevant spatial and temporal level (Fox 

1992). Twilley et al. (1999) proposed explicit eco-geomorphic hierarchical levels of dynamic 

processes in mangrove ecosystem at different spatial and temporal scales (Figure 1.3). This 

hierarchical organisation of mangroves will be used a guide to characterise mangrove vegetation 

structure organisation across varying scales within a remote sensing context. 

 

 

Figure  1.3. Spatial and temporal hierarchical organisation of processes in mangrove ecosystems 
(Twilley et al. 1999, p. 407, with permission from Elsevier). 

 

On a temporal scale, natural changes occur in mangrove ecosystems at the level of minutes to hours 

for microbial and physiological processes, of month to years for tree growth and replacement and of 

decades to centuries for regional forest changes (Twilley et al. 1996). Like most tropical tree 

species, mangroves are recognised as difficult to age but stands exhibiting different phases can be 
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distinguished (Lugo 1997). Several studies have demonstrated that hierarchy in spatial and time 

scales chosen for analysis is essential for portraying species and community dynamics, identifying 

factors that control community structures over different time scales (Farnsworth 1998) and making 

recommendations for restoring mangrove forests (Twilley et al. 1999). Both spatial and temporal 

dimensions are the typical advantages attributed to remotely-sensed data. The appropriate use of 

these data for ecosystem studies will reveal more about the mechanism of pattern changes that 

contribute to ecosystem dynamics.  

 

1.4.3. Characteristics for Identifying Mangroves using Remotely-Sensed Data  

Understanding of the characteristics of an object under investigation, with regard to its appearance 

on the image, is the foundation of successful implementation of remote sensing data for any 

mapping purpose. Several characteristics of mangroves have potential to be used as interpretation 

keys to identify mangrove forest from adjacent environments, or to discriminate features within 

mangroves using remote sensing data. This includes mangrove location and zonation patterns, 

textural properties of the canopy and spectral reflectance characteristics of the canopy. 

 

Mangroves exhibit zonation patterns in a number of different geographic regions (Hutchings & 

Saenger 1987; Tomlinson 1994). The most conspicuous feature of mangrove distribution is their 

sequential change in tree species parallel to shore and estuarine margins. Zonation of plant 

communities in intertidal habitats is particularly notable and often results in specific bands of 

vegetation occurring parallel to the shoreline (Alongi 2008). The nature and extent of these zones 

are the result of a differential response to physio-chemical gradients that vary across the intertidal 

area, including topography, geomorphic setting, tidal regime and sediment properties such as 

salinity, water content, texture, organic matter content, nutrient concentration, texture and chemical 

composition (Smith 1992; Ellison et al. 2000; Da Cruz et al. 2013; Yang et al. 2013). For example, 

Smith (1992) described the common mangrove zonation of the Indo-Pacific region as Aegiceras, 

Avicennia, and Sonneratia in the lowest intertidal zones; Bruguiera and Rhizophora in the mid-

intertidal areas; and Heritiera, Xylocarpus, and some other species in the higher intertidal areas. 

However, mangrove zonation is varied from place to place; it may also vary at a local scale, 

depending on the response to the variation of local processes (Smith 1992; Ellison et al. 2000). The 

distinctive site and zonation attributes in mangroves provide an important clue in identifying 

mangrove species using remote sensing images. Often, however, the zones are too narrow to allow 

discrimination at moderate spatial resolution, particularly where a mix of species occurs. 

Classification from remote sensing is generally more successful when a single species dominates a 

zone and where less species occur. 
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Compared to terrestrial natural forests, the canopy of mangroves is generally smoother as most 

occur in zones established at the same time; hence mangroves are often of the same age and height 

(and hence growth form) and of similar species composition. As a consequence, texture measures 

can be used to differentiate mangrove species types, growth stages and mangrove communities 

(Ramsey III & Jensen 1996). Image texture gives us information about the spatial arrangement of 

colour or intensities in an image or selected region of an image (Shapiro & Stockman 2001). Their 

structural appearance, partially more homogeneous or heterogeneous, depends on several factors 

such as species composition, distribution pattern, growth form, growth density and stand height. 

Image texture analysis is often measured using first- and second-order metrics, computed from 

grey-level co-occurrence matrix within a given window, lag distance and direction (Kayitakire et al. 

2006). Such information can be included with spectral data to increase the accuracy of mangrove 

maps (Wang et al. 2004a; Myint et al. 2008; Wang et al. 2008). 

 

In general, mangrove forests have distinct spectral reflectance characteristics that make them 

“recognisable” by the optical sensors as being different from adjacent land and sea features 

(Spalding et al. 2010). Several studies have been carried out utilising the mangrove features‟ 

spectral reflectance to map mangrove ecosystems (Clark et al. 1997; Green & Mumby 2000; Jensen 

et al. 2007) and species differentiation (Demuro & Chisholm 2003; Held et al. 2003; Hirano et al. 

2003; Vaiphasa et al. 2005). However, a closer look into the interaction mechanisms between light 

and mangrove canopies reveals two main challenges. First, the spectral reflectance of mangroves is 

strongly influenced by tidal effects on soils, resulting in mixed-pixels; and second, many factors 

influence the spectral reflectance response that diminishes the accuracy of spectral recognition of 

mangroves (Blasco et al. 1998; Díaz & Blackburn 2003). According to Diaz and Blackburn (2003), 

the spectral variations of the canopy reflectance are a function of several optical properties, such as 

LAI, background reflectance, and leaf inclination. For single species recognition, the canopy 

spectral reflectance is defined by age, vitality, and phenological and physiological characteristics 

(Blasco et al. 1998). Furthermore, in mangrove species discrimination, Vaiphasa et al. (2005) and 

Wang & Sousa (2009a) found that the spectral responses from different mangrove species were too 

similar, making it difficult to discriminate between mangrove species by spectral properties alone. 

These findings show the potential usage and limitation of mangrove spectral reflectance to 

discriminate between mangrove community or species. Therefore, other image interpretation cues 

such as site, associations and context relationships are necessary in image analysis to increase the 

mangrove community or species discrimination. 
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1.4.4. Remote Sensing for Mangrove Biophysical Properties Mapping 

Many studies have been carried out to investigate the suitability of various classification algorithms 

and image types for mangrove mapping with different degree of success. The biophysical properties 

that are commonly investigated using remote sensing images in mangrove environments include 

extent and composition, species type, LAI, canopy height, canopy closure, diameter of breast height 

(DBH) and basal area (Jensen et al. 1991; Ramsey III & Jensen 1996; Green et al. 1997; Davis & 

Jensen 1998; Manson et al. 2001; Díaz & Blackburn 2003; Jean-Baptiste & Jensen 2006; Kovacs et 

al. 2010). Table 1.1 provides a synopsis of the data and methods used to map selected mangrove 

structural features and biophysical properties for the purpose of this research. 

 

Table  1.1. Overview of data and methods used to map selected mangrove biophysical properties*. 

 Author(s) Image data Method Biophysical properties 

E
xt

en
t 

an
d

 c
o

m
p

o
si

ti
o

n
 

Jensen et al. (1991) SPOT XS Pixel-based (veg indices) and 
statistical analysis 

Mangrove type, canopy height, 
% canopy closure 

Ramsey & Jensen 
(1996) 

Landsat TM 
SPOT XS & P 
AVHRR 

Pixel-based (veg indices) and 
statistical analysis 

Canopy closure, height, % 
species composition, leaf, litter 
& canopy reflectance, and 
understory species type 

Davis & Jensen (1998) NASA CAMS Pixel-based (veg indices) and 
statistical analysis 

Species type, canopy height, % 
canopy closure, basal area, 
average leaf area, and DBH 

Rasolofoharinoro (1998) SPOT 1 & 2 Pixel-based (vegetation and brightness 
index, supervised minimum distance 
and maximum likelihood 
classifications) 

Mangrove extent and type 

Gao (1999) SPOT XS PAN Pixel-based (supervised maximum 
likelihood classification) 

Mangrove extent and type 

Manson et al. (2001)  Landsat TM Pixel-based (tasselled-cap) combined 
to topographic maps and aerial 
photographs 

Mangrove extent 

Hirano et al. (2003)  AVIRIS Pixel-based (spectral angle mapper) Mangrove species and extent 

Held et al. (2003)  CASI 
AIRSAR 

Pixel-based (data fusion)  Mangrove zonation, species 
type 

Giri & Muhlhausen 
(2008) 

Landsat MSS TM 
ETM+ 
ASTER VNIR 

Pixel-based (ISODATA clustering with 
iterative labelling and post-
classification edit ing) 

Mangrove extent and change 

Wang et al. (2004a) IKONOS 
QuickBird 

Object-based (textural roughness), 
statistical analysis and accuracy 
assessment 

Species type 

Conchedda et al. (2008) SPOT XS Object based (Nearest Neighbour [NN] 
classifiers), accuracy assessment 

Mangrove extent and change 

Myint et al. (2008) Landsat TM Object-based (lacunarity measure) Mangrove species and extent 

Kamal & Phinn (2011) CASI-2 Object-based (rule sets and NN 
classifiers) 

Mangrove species and 
community 

Heumann (2011a) WorldView-2 Object-based (NN classifiers and 
decision tree) 

Mangrove community 

Heenkenda (2014) WorldView-2 
UltraCamD 

Object-based (rule sets and support 
vector machine [SVM]), accuracy 
assessment 

Mangrove extent and species 
composition 
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Table 1.1. Continued. 
L

ea
f 

A
re

a 
In

d
ex

 (
L

A
I)

 

Green et al. (1997) Landsat TM 
SPOT XS 

Pixel-based (band ratios, PCA, NDVI) 
and statistical analysis 

Leaf area index (LAI) 

Green et al. (1998a) CASI Pixel-based (NDVI) and linear 
regression model to predict LAI 

Leaf area index (LAI) 

Díaz & Blackburn 
(2003) 

Landsat TM Pixel-based (veg indices) and 
laboratory simulation 

Leaf area index (LAI) 

Kovacs et al. (2004) IKONOS  Pixel-based (veg indices SR & NDVI) 
and image-field data statistical 
relationship analysis  

Leaf area index (LAI) 

Jean-Baptiste & Jensen 
(2006) 

ASTER Pixel-based (veg indices SR, NDVI, 
SAVI) and statistical analysis 

Species type, % canopy closure, 
tree height, DBH, and LAI 

Addink (2007) HyMap 
hyperspectral 

Object-based and ridge regression, 
results validation 

LAI, biomass 

Kovacs et al. (2010) IKONOS, 
QuickBird,  
Leica-ADS40 

Pixel-based (multi-resolution ISODATA 
classification) and accuracy 
assessment 

DBH, tree height, stem condition 
(alive or dead), LAI 

Laongmanee (2013) QuickBird Pixel-based (veg indices) and image-
field data statistical relationship 
analysis, accuracy assessment 

Leaf area index (LAI) 

*This table is not a comprehensive list of literature on mangrove mapping using remote sensing datasets. 

 

1.4.4.1. Mangrove Extent and Composition 

Multispectral remote sensing has been relatively effective at mapping the areal extent and 

composition of mangroves. For example Landsat (Green et al. 1998b; Manson et al. 2001; Giri & 

Muhlhausen 2008), SPOT (Gao 1998; Rasolofoharinoro et al. 1998; Gao 1999; Mumby et al. 1999), 

ASTER (Saito et al. 2003; Vaiphasa et al. 2006; Al-Habshi et al. 2007), IKONOS and QuickBird 

(Wang et al. 2004a). In the early stage of digital mangrove mapping using remote sensing data, 

application of the supervised Maximum Likelihood Classifier (MLC) is the most frequent method 

for classifying mangrove extent and composition based on satellite images (Gao 1998; Green et al. 

1998b; Rasolofoharinoro et al. 1998; Gao 1999). The MLC has a well-developed theoretical base 

which assumes that the statistics for each class in each band are normally distributed and calculates 

the probability of a given pixel belonging to a specific class (Bolstad & Lillesand 1991). 

Mangroves, on the other hand, due to its location in the intertidal zone of coastal and estuarine areas 

have a distinctive spectral response compared to terrestrial vegetation (Blasco et al. 1998), and 

generally have a smoother canopy texture (Ramsey III & Jensen 1996). Hence, this makes them 

easy to identify using MLC through class samples. However, classification results were improved 

by incorporating bands with transformed spectral information, such as PCA (Green et al. 1998b; 

Kovacs et al. 2001), Tasselled-Cap (Manson et al. 2001), vegetation index (VI) and brightness 

index (BI) (Rasolofoharinoro et al. 1998). More specifically, the normalised difference vegetation 

index (NDVI) algorithm is commonly used to separate mangrove and non-mangrove areas, prior to 

further mangrove ecosystem investigation (Green et al. 1998b). A thorough review of the remote 

 Author(s) Image data Method Biophysical properties 
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sensing techniques for mangrove extent and composition mapping is provided by Kuenzer et al. 

(2011) and Heumann (2011b). 

 

Most of the studies in mangrove extent and composition were undertaken using the pixel-based 

approach. This approach is based on the assumption that the algorithms works solely on the spectral 

analysis of pixels on an individual basis, which has been criticised by many scientists (Blaschke 

2010). Despite its robustness, this approach imposes some limitations, such as the inability of 

statistical analysis of pixels to represent the concept of object or patch in the image (Blaschke & 

Strobl 2001) and its inappropriateness for analysing emerging high spatial resolution imagery 

(Morgan et al. 2010). Object or image object is a group of connected pixels in a scene which 

represent a meaningful entity (Burnett & Blaschke 2003; Lang 2008), for example mangrove trees. 

Patch refers to a relatively discrete spatial pattern differing from its surroundings (Blaschke & 

Strobl 2001), such as a mangrove tree patch in the wetlands ecosystem. The recent development of 

an object-based approach or geographic object-based image analysis (GEOBIA) provides an 

alternative solution to solve this problem. This approach was built on the concept of objects, which 

are contiguous pixels that are grouped based on image properties through an image segmentation 

process (Baatz & Schape 2000). In its analysis, this approach tries to imitate human perception in 

interpreting images in digital analysis, which gives more attention to texture, shape and context of 

the objects rather than concentrating only on the spectral properties of its pixels (Navulur 2007). 

 

Several remote sensing applications in mangrove extent and composition mapping use spatial 

neighbourhood properties for object-based classification. Wang et al. (2004b) investigate the use of 

IKONOS images for mangrove species mapping with three different classification methods; 

maximum likelihood classification (MLC) at the pixel level, nearest neighbor (NN) classification at 

the object level and a hybrid classification that integrates both methods (MLCNN). The result 

shows that MLCNN achieved the best average accuracy of 91.4%. Conchedda et al. (2008) applied 

a multi-resolution segmentation and class-specific rule incorporating spectral properties and 

relationships between image objects to map land cover in Low Casamance, Senegal using SPOT XS 

data. The results show a clear separation between the different land cover classes within the 

research area, as well as within the mangrove classes. Kamal and Phinn (2011) provided an explicit 

and operational mangrove multi-scale mapping hierarchy using OBIA, which was tested on a CASI-

2 hyper-spectral image. The results show the effectiveness of this approach in discriminating 

mangroves from other objects and differentiating between mangrove species, with an overall 

accuracy of 76%. More recently, Heumann (2011a) combined GEOBIA and support vector machine 

(SVM) classification applied on WorldView-2 image to map fringe mangroves in Isabela Island in 
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the Galapagos Archipelago, Ecuador. By implementing a hybrid decision tree classification the 

overall mapping accuracy of true and associate mangrove species was high (94%) but when used 

for assessing the species level, the accuracy was poor for some mangrove species (25–29%). 

 

The use of object-based image analysis for mangrove extent and composition mapping is arguably 

more appropriate and results in better accuracy compared with the pixel-based approach. This 

approach gives better mimics to human perception of objects and has the ability to integrate 

attributes important to landscape analysis (such as tone, shape, size, texture and context). In the 

context of this research, the ability of GEOBIA to incorporate multiple scales in the analysis 

through the multi-scale segmentation process (Baatz & Schape 2000; Blaschke 2002; Navulur 

2007) provides essential support for the analysis of multi-scale issues in mangrove mapping. 

 

1.4.4.2. Leaf Area Index 

Leaf area index is one of the most important biophysical parameters for assessing mangrove forest 

health (Jensen et al. 1991; Giri et al. 2007; Heumann 2011b), which is defined as the single-side 

leaf area per unit ground area (Green et al. 1997). LAI measurements are valuable input for 

modelling ecological processes such as photosynthesis, transpiration, evapotranspiration and net 

primary production, as well as gas, water, carbon and energy interchange within a forest region 

(Green et al. 1997). Most of the studies in the applications of remote sensing data for mangrove LAI 

estimation use empirical statistical relationships built between image pixel values (obtained from 

individual band or transformed image) and field measurements. Such empirical statistical 

relationships are then used to estimate the distribution of these parameters in the image. For 

example, Jensen et al. (1991) found that NDVI data derived from SPOT XS has a high correlation 

with the percentage of mangrove canopy closure (R
2
 = 0.913). Using IKONOS, Kovacs et al. (2004) 

found strong significant relationships between the LAI of red and white mangroves and the simple 

ratio (SR) and normalised difference vegetation index (NDVI). Regression analyses of the in situ 

LAI with both vegetation indices revealed significant positive relationships (LAI versus NDVI at 

8 m [R
2
 = 0.71]; LAI versus NDVI at 15 m [R

2
 = 0.70]; LAI versus SR at 8 m [R

2
 = 0.73]; LAI 

versus SR at 15 m [R
2
 = 0.72]) at the 8 m and 15 m plot sizes. Despite the strength of these findings, 

Heumann (2011b) argued that most the study site of these studies was relatively species poor and 

much of the study area degraded. Therefore, these methods need to be replicated in other areas to 

test the applicability and consistency of the empirical relationships across different species 

and conditions. 
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Recent developments of LAI research have shifted from an empirical and statistical approach to a 

more complex process-based modelling approach or radiative transfer model (RTM) inversion 

(Richter et al. 2009; Zheng & Moskal 2009). The process-based model relates fundamental surface 

parameters of leaves (i.e. LAI, size and shape, relative position, spatial arrangements and 

distribution) to scene reflectance for a given sun-surface-sensor-geometry (Fang & Liang 2008; 

Zheng & Moskal 2009). Unlike the empirical methods that uses only two or three spectral bands, 

the RTM uses the full spectrum of the hyper-spectral sensors (400-2500 nm). Several studies have 

reported the successful implementation of a physical-based approach to estimate LAI in different 

environments, such as Qi et al. (2000) in a semi-arid region using a BRDF model and Wang et al. 

(2013) in agricultural fields using the PROSAIL model. Experimental examples of the physical 

basis for estimating LAI using RTM, PROSPECT and SAIL are provided by Haboudane et al. 

(2004), Richter et al. (2009), Herrmann et al. (2011), Verrelst et al. (in press). These physical basis 

models claimed to address the limitation of the empirical-statistical approach that is the problem 

with saturation involving the non-linear relationship between LAI and spectral vegetation indices 

(SVI) (Hasegawa et al. 2010). Nevertheless, some technical shortcomings of these models must be 

considered, such as the need for an extensive parameterization and the high computational demand 

(Richter et al. 2009). Different parameter combinations may also produce almost identical spectra, 

resulting in significant uncertainties in the estimated vegetation characteristics (Atzberger 2004). 

  

Furthermore, most of the studies applying the physical model to estimate LAI were conducted in 

terrestrial vegetation, and there is no study found yet conducted in mangrove environments. The 

difficult accessibility to mangroves and the high contribution of the soil and water backgrounds on 

the canopy spectral reflectance (Ramsey III & Jensen 1996; Blasco et al. 1998) might be the major 

issue in this environment for apply the physical basis approach. Therefore, this thesis will focus on 

the implementation of the empirical-statistical approach using SVI as LAI surrogate and applied to 

multiple pixel sizes and segmentation scales. 

 

1.4.5. Scale Issues in Remote Sensing and Ecology 

The issue of scale effects have already become one of the most important research focuses of 

remote sensing (Woodcock & Strahler 1987; Goodchild & Quattrochi 1997; Marceau & Hay 1999; 

Wu & Li 2009). In geography, the term scale refers to both the magnitude of the study (i.e. 

geographic extent) and the degree of detail (i.e. geographic resolution) (Goodchild & Quattrochi 

1997; Lam et al. 2004; Ruddell & Wentz 2009). There are numerous definitions of the term scale 

(Lam & Quattrochi 1992; Ruddell & Wentz 2009; Wu & Li 2009). Throughout this thesis, when 

discussing remote sensing data, it is defined as the measurement scale or resolution, which refers to 



CHAPTER 1 Introduction and significance 

16 

 

the smallest distinguishable part of an object (Forshaw et al. 1983), or the degree of detail, or the 

sampling unit. On the other hand, when dealing with mangrove spatial ecology, the term scale 

refers to the operational scale, which is the spatial (or temporal) extent at which processes operate 

in the environment (Cao & Lam 1997; Wu & Li 2009). The spatial domain of scale in the field of 

spatial ecology is recognised as having two attributes: extent and grain (Turner et al. 1989), which 

are similar to the geographic extent and geographic resolution in the definition above. For the sake 

of simplicity, the discussion of scale in this thesis focuses mainly on the spatial domain.  

 

In remote sensing, scale is translated to the spatial resolution of an image (Forshaw et al. 1983). It 

is defined as “resolving power”, which refers to the fineness of detail depicted in an image. It 

describes the minimum size of an object that can be detected, measured and mapped from an image 

(Townshend 1981). An example of resolution is the instantaneous field of view (IFOV) of the 

sensor, which in turn is related to the ground sampling distance or ground resolution element. 

Another term commonly used in remote sensing is pixel size, which refers to the sampling 

frequency or sampling rate of the image (Warner et al. 2009), and not the actual IFOV of the sensor. 

Throughout the thesis, both spatial resolution and pixel size are used interchangeably. Although 

image pixel size is not identical to the image spatial resolution (Forshaw et al. 1983; Warner et al. 

2009), for the sake of simplicity they are used to represent the actual sampling size of the image 

datasets explored in this thesis. 

 

The scale issues in remote sensing and ecology have been addressed thoroughly by Wiens (1989), 

Cao & Lam (1997), Marceau (1999), Marceau & Hay (1999), and Wu & Li (2009). The scale 

represents the window of perception (Marceau & Hay 1999), the ability to observe and reflects the 

limitation of knowledge through which a phenomenon may be viewed or perceived (Goodchild & 

Quattrochi 1997). As mentioned previously, conclusions drawn from an analysis at one spatial scale 

may not be applicable to another scale (Wiens 1989). In remote sensing, changing the spatial 

resolution (i.e. image pixel size) changes the pattern of reality that can be perceived from an image 

(Marceau & Hay 1999) and it has a significant impact on the derived information. This issue has 

been known as the modifiable areal unit problem (MAUP) in the geographic literature (Openshaw 

1984). It consists of two aspects; the scale problem and the zoning (or aggregation) problem 

(Jelinski & Wu 1996). The first aspect concerns changes in the results of spatial analysis with 

changing scale (i.e. spatial resolution), whereas the second results from the variation of the results 

of spatial analysis due to different zoning system at the same scale. The MAUP exists both in the 

field of remote sensing (Marceau et al. 1994a; Arbia et al. 1996) and ecology (Jelinski & Wu 1996). 
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Since the mid-seventies a series of empirical studies on the scale effects in remote sensing were 

conducted (Marceau & Hay 1999), and the prime conclusions were that a change in spatial 

resolution significantly affects classification accuracies. In many cases, the use of higher spatial 

resolution data resulted in lower overall accuracy, which was due to an increase in within-class 

spectral variability. This is in accordance with the theory of Strahler et al. (1986) that L-resolution 

resulting in mixed pixels and H-resolution produces internal variance of the objects. Consequently, 

scale issues should be carefully dealt with in remote sensing to map multi-scale mangrove features. 

 

1.5. Conceptual Framework: Towards Multi-Scale Image-Based 

Mangrove Mapping 

Integrating the remote sensing spatial (and temporal) resolutions into the mangrove spatial and 

temporal organisation is essential in order to map, measure and monitor this ecosystem at a correct 

scale. According to Skidmore et al. (2011), the field of spatial ecology, where geography and 

ecology intersect, facilitates this approach. It focuses on the spatial pattern of the ecological process 

and interaction over geographical space and time. From an ecological point of view, mangrove 

environments are organised in spatial and temporal dimensions (Farnsworth 1998; Twilley et al. 

1999; Berger et al. 2008; Feller et al. 2010). Within the spatial domain, various levels of detail of 

mangrove features can be perceived at different observation scales. Putting this pattern into the 

remote sensing perspective and mapping mangrove environments at different observation scales 

(spatial resolutions) will result in different levels of mangrove information. By adopting the explicit 

mangrove spatial and temporal hierarchy developed by Twilley et al. (1999), a hypothetical linkage 

between remote sensing and mangrove spatial ecology is proposed in Figure 1.4. It suggests the 

need for an understanding of the effect of multi-scale variation in mangrove information in order to 

use remote sensing datasets appropriately, to map mangrove features. 
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Figure  1.4. Hypothetical relationships of mangrove spatial structure form (a) size of features able to 

be detected from remote sensing data, and (b) temporal and spatial hierarchical organisation of 
dynamic processes in mangrove ecosystems (modified from Twilley et al. 1999, p. 407, with 

permission from Elsevier). The pictorial symbol is courtesy of the Integration and Application 

Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/). 

 

After establishing the remote sensing and mangrove hierarchical organisation, the following task is 

to select an appropriate dataset and image processing techniques. They are the fundamental factors 

contributing to the successful utilisation of remotely-sensed data for environmental mapping and 

monitoring. Woodcock and Strahler (1987) conducted preliminary research to reveal the 

relationship between environment and image spatial structure. They pointed out that the appropriate 

scale of observations was a function of the type of environment and the kind of information desired. 

They concluded that the choice of an appropriate scale depended on three factors: (1) the output 

ground scene information desired; (2) the methods used to extract information from images; and (3) 

the spatial structure of the scene itself. Based on these parameters, scientists have proposed the 
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concept of scale domain and scale threshold (Marceau & Hay 1999). According to Marceau and 

Hay (1999), scale can be defined as a continuum through which entities, patterns, and processes can 

be observed and linked. The scale domain can be considered as the interval in which the 

phenomenon or the structures are nearly invariable or slowly variable, while they may change 

dramatically in a different scale domain that is separated by the scale threshold. Therefore, it is 

necessary to identify these scale thresholds, and to derive the appropriate conditions governing the 

interactions occurring within and between the levels of organization. Mangrove ecological problems 

often cannot be handled at a single scale of observation. An understanding of how processes operate 

at various spatial scales and how they can be linked across scales becomes a primary goal to solve 

the problems. With regard to the multi-scale research context, the understanding of these concepts 

would benefit the analysis of optimal spatial resolution to map features at a certain scale, and the 

scale where the features are likely to occur within an environment. In practice, it is also essential to 

develop a guideline showing the control of image resolutions and analysis methods on the type and 

level of information detail able to be mapped in mangrove environments. 

 

1.6. Thesis Structure 

The structure of this thesis is organised by publications. Chapters 3, 4, and 5 are consecutive 

publications/ manuscripts following typical publication format (i.e. introduction, data and methods, 

result and discussion, and conclusion and future work). Some degree of repetition may appear in 

these chapters as they were written independently. A short description of the thesis chapters are 

presented below. 

Chapter 1: Introduction and Significance of the Research 

This chapter introduces the context of the thesis. It includes research background, identification of 

the knowledge gaps and problem statement, research aim and objectives and relevant literature 

review on remote sensing for mangrove mapping. 

Chapter 2: Research Approach 

This chapter describes the study sites, image datasets used, field data collected, and overview of the 

data processing and analysis applied in the research chapters (Chapters 3, 4, 5, 6). It sets the main 

assumptions of the research. 

Chapter 3: Characterising the Spatial Structure of Mangrove Features for Optimizing Image-

Based Mangrove Mapping (Paper 1) 

This chapter addresses objective 1. It examines the spatial structure of mangrove features to 

understand the relationships between mangrove features and the optimum pixel size required to 
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identify and map these features. This paper was published in Remote Sensing journal (Kamal et al. 

2014). 

Chapter 4: Object-Based Approach for Multi-Scale Mangrove Composition Mapping Using 

Multi-Resolution Image Datasets (Paper 2) 

This chapter addresses the first part of objective 2. It applies and evaluates the optimum pixel size 

scheme from Chapter 4 into the selected image datasets for multi-scale mangrove composition 

mapping. At the time of thesis publication, this chapter was submitted to Remote Sensing journal. 

Chapter 5: Assessment of Multi-Resolution Image Data for Mangrove Leaf Area Index 

Mapping (Paper 3) 

This chapter addresses the second part of objective 2. It investigates the effects of different 

mangrove environmental settings, satellite image spatial resolutions, spectral vegetation indices 

(SVIs), and mapping approaches for LAI estimation. At the time of thesis publication, this chapter 

was submitted to Remote Sensing of Environment journal. 

Chapter 6: Guidelines for Multi-Scale Image-Based Mangrove Mapping 

This chapter synthesises the findings from Chapters 3, 4, and 5, and develops the guidelines for 

multi-scale mangrove mapping. 

Chapter 7: Conclusions, Significance and Future Research 

This chapter draws together the overall outcomes and contributions of the thesis in the context of 

the objectives, as well as an overview of the limitations and future work. 
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2 CHAPTER 2: 

 

RESEARCH APPROACH 

 

 

This chapter provides an overview of the research approach used throughout this thesis. It includes 

descriptions of the study sites, field and image data used and the summary of data processing and 

analysis for Chapters 3-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No paper publication is associated with this chapter.  
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2.1. Study Sites 

There are two study sites in this research (Figure 2.1). The first is a mangrove area at the mouth of 

the Brisbane River, northern Moreton Bay, South East Queensland, Australia (between 153°3‟41” – 

153°11‟20” E and 27°19‟41” – 27°25‟31” S). It is a sub-tropical lowland area that includes Whyte 

Island, Fisherman Island and the Boondall wetlands, approximately 15 km northeast of Brisbane 

city. This lowland area is classified as subtropical, experiencing warm climate (average daily 

maximum: 28.9°C, minimum: 20.0°C) with moderate to high rainfall (mean annual rainfall: 1267.7  

mm). The highest rainfall events are associated with summer monsoonal depressions (December to 

February) (BoM 2013).  

 

 

Figure  2.1. Study sites; (a) Karimunjawa Island, Indonesia, and (b) Moreton Bay, Australia. 

 

Moreton Bay is one of Australia‟s premier wetlands and a Ramsar Convention listed wetland, with 

extensive stands of mangroves (Environment Australia 2001). This area of Moreton Bay is 

relatively open to sea water and subject to wave action. As a consequence, the mangrove 

communities are restricted to protected areas such as river and creek estuaries. However, there are 
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extensive areas of mud flats and shallow water within these areas. These shallow areas provide 

protective barriers, help to moderate wave action and allow the formation of mangrove communities 

(Dowling 1986). Mangroves in Moreton Bay are dominated by Avicennia marina species, which 

comprise ~75% of the entire mangrove community (Dowling & Stephen 2001). Some individual 

Rhizophora stylosa are found sporadically as a mid-storey between Avicennia, several patches of 

uniform Ceriops tagal stands are found near the creeks in Fisherman Island and Boondall wetlands, 

and Aegiceras corniculatum is found mostly as understorey (Duke 2006). Distinct structural 

zonations are noticeable in this area; from the saltmarsh area, through the mangroves to the water, 

the progression is open scrub formation (S3), followed by low-closed forest (I4) and finally closed 

forest (M4), according to Specht et al. (1995) forest structure classification (see Appendix 1 for the 

forest structural formation list). 

 

The second site is mangroves at Karimunjawa National Park, located in the Java Sea, between Java 

Island and Kalimantan Island, Indonesia (between 110°24‟10” – 110°30‟10” E and 4°47‟48” – 

5°50‟12” S). It is a tropical archipelago of 22 islands (five of which are inhabited) with a total area 

of 111,625 ha (1285.50 ha of Karimunjawa Island, 222.20 ha of Kemujan Island and 110,117.30 ha 

of other small islands) (BTNK 2008), approximately 125 km north of Semarang city. It has a humid 

tropical maritime climate with an average daily temperatures range from 26–30°C and average 

humidity of 70–85%. The average annual rainfall is 2632 mm; the average monthly rainfall during 

the dry season (April to September) is 60 mm and during wet season (October to March) is 

400 mm.  

 

 The Karimunjawa Islands represent several ecosystem types including lowland rain forest, seagrass 

and algae fields, coastal forests, mangrove forests and coral reefs (BTNK 2001). Generally, coastal 

areas in Karimunjawa Islands are fringed by coral reefs and mangrove forest that protect the 

beaches from waves and storms. Mangroves in Karimunjawa National Park exist mainly in the 

fringing area on the western side of the two main islands; Karimunjawa and Kemujan. According to 

a Karimunjawa National Park Office report (BTNK 2011) there are 45 mangrove species in this 

area (27 true mangroves and 18 mangrove associates), with Rhizophora stylosa as the dominant 

mangrove species. Although it is less apparent when compared with Moreton Bay mangroves, three 

different mangrove structural formations are recognisable from the land to the seaward margin. The 

first landward formation is dominated by low multi-stem stands (VL4) of Ceriops tagal and 

Lumnitsera racemosa. The middle formation is the single and multi-stem low-closed forest (I4) of 

highly mixed formation of Ceriops tagal, Lumnitsera sp., Rhyzophora sp. and Bruguiera 

gymnorrhiza. Lastly, closer to the shoreline is a formation of multi-stem closed forest (M4) 



CHAPTER 2 Research approach 

 

24 

 

consisting of Rhizophora mucronata and some individual Bruguiera gymnorhiza and Xylocarpus 

granatum. See appendix 2 for the complete list of mangrove species found. 

 

The reasons for selecting these sites were: (1) both sites are protected areas, thus the existing 

mangroves are well-preserved (i.e. minimising disturbances), making them ideal for developing and 

testing mapping approaches for this research; (2) there are distinct mangrove zonation and structural 

differences from the seaward to the landward, (3) different mangrove species composition and 

structural forms exist in these areas, making them ideal for site comparison, and (4) similar types of 

remotely-sensed data with different resolutions are available for both sites. The Moreton Bay site 

was mainly used to investigate the characteristics of mangrove spatial structure as a basis for multi-

scale mangrove mapping. The results of mangrove composition and LAI mapping in both sites were 

used to develop guideline for multi-scale mangrove mapping suitable for multiple locations.  

 

2.2. Image Datasets 

WorldView-2, ALOS AVNIR-2, and Landsat TM datasets were used in this research for both 

Moreton Bay and Karimunjawa Island sites (Table 2.1). WorldView-2 data was used to examine the 

spatial structural characteristic of mangrove forest in Moreton Bay and identify the relationships 

between image spatial resolution and the size of mangrove features (Chapter 3). The validity of the 

resultant relationships was tested using all of the image datasets to map mangrove composition 

(Chapter 4) and LAI (Chapter 5) in both sites. The Moreton bay site also used LiDAR data to 

support mangrove composition mapping; and a very high-spatial resolution aerial photograph (7.5 

cm pixel size) with true colour layers (www.nearmap.com) as a reference to analyse the 

classification accuracy of the produced maps (Chapter 4). 

 

All of the Moreton Bay images were collected within four days in April 2011. However, for 

Karimunjawa Island, the three images were acquired over a three year period due to cloud cover. 

The WV-2 images were obtained in an ortho-rectified format, corrected at Level 3X (LV3X); with a 

root-mean-square error (RMSE) 2D of 0.00 (DigitalGlobe 2013). The TM and AVNIR-2 images 

were geo-referenced based on the WV-2 image to ensure the high geometric accuracy. All of the 

Moreton Bay and Karimunjawa Island images were assigned to a UTM zone 56J map projection 

and UTM zone 49M, respectively.  
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Table ‎2.1. Image datasets used in the research. 

Image 
spatial 
resolution* 

Image type 
Moreton Bay 
image acqui-
sition date 

Karimunjawa 
Island image 
acquisition date 

Pixel size Spectral attributes (nm) 
Geometric 
attributes 

Moderate Landsat TM 14 April 2011 31 July 2009 30 m Blue (452-518), green (528-
609), red (626-693), NIR 
(776-904), MIR1 (1567-
1784), MIR2 (2097-2349) 

Level 1T 

 ALOS  
AVNIR-2 

10 April 2011 19 Feb 2009 10 m Blue (420-500), green (520-
600), red (610-690), NIR 
(760-890) 

Level 1B2G 

Fine WorldView-2 14 April 2011 24 May 2012 2 m (multi)  Coastal blue (400-450), 
blue (450-510), green (510-
580), yellow (585-625), red 
(630-690), red edge (705-
745), NIR1 (770-895), NIR2 
(860-1040),  

Level 3X 

Very fine WorldView-2 14 April 2011 24 May 2012 0.5 m (pan) panchromatic (450-800)  

LiDAR 24 April 2009 - 2.8 pts/m2 - Geo-referenced 

 Aerial photo 14 January 2011 - 7.5 cm RGB image Geo-referenced 

*According to Warner et al. (2009) classification. 

 

The image pixel values (in digital numbers) were then converted to top-of-atmosphere (TOA) 

spectral radiance (W/cm
2
sr.nm) using the ENVI 4.8 software (ITT Systems, ITT Exelis, Herndon, 

VA, USA). This process was carried out following the procedures and correction coefficients 

described in Chander et al. (2009), Bouvet et al. (2007), and Updike & Comp (2010), for the TM, 

AVNIR-2 and WV-2 imagery, respectively. Further atmospheric correction was then performed to 

convert TOA spectral radiance to at-surface reflectance using the Fast Line-of-sight Atmospheric 

Analysis of Hypercubes (FLAASH) atmospheric correction model for the TM and WV-2 images, 

with the atmospheric visibility parameter estimated from the moderate-resolution imaging 

spectroradiometer (MODIS) aerosol product (LAADS 2012). A relative dark-object subtraction 

(DOS) atmospheric correction method was applied using dark, deep, and calm water objects for the 

AVNIR-2 images due to the lack of satellite scanning position information. The DOS is a simple 

and efficient approach for atmospheric correction as shown in previous studies (Song et al. 2001; 

Wang et al. 2004c; Soudani et al. 2006). A very high-spatial resolution aerial photograph (7.5 cm 

pixel size) with the true colour layers captured on 14 January, 2011 (www.nearmap.com) was used 

(1) to measure the dimension (i.e., spatial size) of mangrove features investigated (foliage 

clumping, canopy gaps, tree crown, vegetation formation or community and vegetation cover type) 

and as a reference to analyse the image spatial structure in Chapter 3, and (2) as a reference to 

analyse the classification accuracy of the produced maps in Chapter 4.  

 

http://www.nearmap.com/
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2.3. Field Datasets 

Field survey data from transects perpendicular to the shoreline were obtained to collect selected 

mangrove information along the different mangrove zonations. The data collected in the field 

included: (1) mangrove composition (species types and communities), (2) mangrove LAI, and (3) 

mangrove canopy height. The transect lines represented the variation of mangrove structure within 

the site, which is commonly stretched perpendicular to coast line from the seaward margin of the 

mangrove forest to the landward margin following the mangrove zonation (English et al. 1997; 

Bengen 2002) (Figure 2.2). These transects were established with the aid of high-spatial resolution 

pan-sharpened WorldView-2 images (0.5 m pixel size), as these images indicate changes or 

variation in mangrove zonation and geomorphic features. The images were used to design transect 

lines that were as representative of the general area and also being physically accessible.  

 

 

Figure  2.2. Field survey design in mangrove environment; transects are established through the 
mangrove forest from the seaward edge to the landward margin (modification from English et al. 

1997, p. 179). 

 

Fieldwork was conducted in April 2012 at the Moreton Bay sites and July 2012 at Karimunjawa 

Island. The selection of these dates was to resemble the season in which the WorldView-2 image 

was captured (i.e. in autumn season [April 2011] and dry season [May 2012] respectively). To 

record this structural variation, 23 (15 of Moreton Bay and 8 of Karimunjawa) representative 200–

300 m transects perpendicular to the shoreline were established to capture the variation of mangrove 

vegetation structure and composition throughout the study sites (Figure 2.3), following the 
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mangrove fieldwork guidelines established by English et al. (1997). Several types of field data were 

collected from single quadrats at places where the planned field transects were not accessible. These 

additional field samples were required to provide as comprehensive as possible measurements of 

mangrove canopy cover variation over each study site.  

 

 

Figure  2.3. Locations of field transects plotted on WorldView-2 image 753 band combinations. 
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Along each transect, a sequence of 10 m x 10 m quadrats were placed along the centre of the 

transect lines as a frame to record mangrove zonation patterns and measuring mangrove biophysical 

properties in the field (Figure 2.2). The size of 10 m x 10 m quadrats was selected based on field 

observations, indicating homogenous canopy cover within each quadrat. At the same time, the 

transect width of 10 m was a compromise between measurements corresponding to the pixel size of 

the imagery data and what was technically feasible. Positions of each sampling plot (at their start 

and the end points) were measured using a Garmin eTrex Legend H hand-held GPS with an average 

reading of each point between 400 to 600 seconds, to maximise the GPS signal reception inside the 

mangrove canopy. Additional control points identifiable from the field and image were used to 

ensure the precise overlay of the transects to the image. Data collected on each sampling plot 

included plot position (Global Positioning System, GPS), vegetation structural information (height, 

percentage of canopy cover and structural formation), dominant species, LAI and field photos.  

 

The canopy height data were measured at every 5 m along the transect using TruPulse 360 laser 

rangefinder. Any canopy gaps found at the point of measurement were recorded and the closest 

canopy was measured as additional data. The LAI of mangrove canopy was estimated using LI-

COR LAI 2200 Plant Canopy Analyser instrument (LI-COR 2009) along the transect line (Figure 

2.4a). A pocket camera and hemispherical camera were used to capture the upward-looking 

perspective within the canopy (Figure 2.4b). The photos were subsequently analysed using CAN-

EYE imaging software (http://www6.paca.inra.fr/can-eye) (INRA 2013) to determine the 

percentage of canopy cover. Mangrove structural formation on each plot was determined using the 

Australian vegetation structural formations table (Specht et al. 1995), and dominant species 

information were identified using mangrove species identification book for Australian mangroves 

(Duke 2006) and Indonesia mangroves (Kitamura et al. 2004). Field photos were also obtained 

during the fieldwork to document the important field information. 

 

Mangrove zones at the Moreton Bay study sites are dominated by Avicennia marina with some 

variation in structural characteristics. Some individual Rhizophora stylosa are found sporadically as 

a mid-storey between Avicennia, several patches of uniform Ceriops tagal stands are found near the 

creek in Fisherman Island and Boondall wetlands and Aegiceras corniculatum is found mostly as 

understorey. Distinct structural zonations are noticeable in this area; from the saltmarsh area to the 

coastline, zonation commonly starts with open scrub formation (S3), followed by low-closed forest 

(I4) and finally closed forest (M4) according to Specht et al. (1995) forest structure classification 

(see appendix 1). Mangroves at Karimunjawa Island has a higher species diversity, higher canopy 

densities and consists of taller and more mature trees, as opposed to Moreton Bay mangroves (see 

http://www6.paca.inra.fr/can-eye
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Figure 2.4a and b for photo comparison). Seventeen mangrove species were found during the 

fieldwork (see appendix 2, Kitamura et al. 2004), with Rhizophora sp. being the dominant species 

in this area. Three different mangrove structural formations were recognised from the landward to 

the seaward. Low multi-stem stands (VL4) of Ceriops tagal and Lumnitsera racemosa dominate the 

area close to landward, followed by the single and multi-stem low-closed forest (I4) of highly 

mixed formation of Ceriops tagal, Lumnitsera sp., Rhyzophora sp. and Bruguiera gymnorrhiza. 

Closer to the shoreline are formations of multi-stem closed-forest (M4) of Rhizophora apiculata 

and some Xylocarpus granatum.  

 

 

Figure  2.4. Field measurement along the transect in (a) Moreton Bay, with dominant Avicennia 
marina stands, and (b) Karimunjawa Island with Rhizophora apiculata stands. 

 

2.4. Data Processing and Analysis 

Following the image and field datasets acquisition the guidelines for multi-scale mangrove mapping 

were developed in three main stages based on these datasets. The first stage determined and 

quantified the spatial structure of mangrove appearance on images with various pixel sizes (Chapter 

3). This stage was intended to characterise the size of mangrove features able to be identified at a 

certain image pixel size. This approach provided basic understanding to develop an optimum pixel 

size scheme to be used for mapping mangrove features at multiple scales. The second stage applied 

the developed optimum pixel size scheme using selected real digital image datasets and mapping 

methods, to map mangrove composition (Chapter 4) and LAI (Chapter 5). This stage evaluated the 

applicability of the optimum pixel size scheme to a real mapping scenario and assessed the accuracy 

of the mapping results. The final stage synthesised the results from the first and second stages 

(Chapters 3, 4, and 5) and analysed the relationships between image datasets, mapping methods, 

type of mangrove information and level of accuracy produced (Chapter 6). This relationship 

provided the foundation to develop the guidelines for multi-scale image-based mangrove mapping, 

(a) (b) 
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which formed the main aim of this research. An outline of the main stages of processing and 

analysis is presented in Figure 2.5. 

 

 

Figure  2.5. Flowchart illustrating the main components and linkages of the data and methods. 
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2.4.1. Characterisation of Mangrove Spatial Structure 

The first objective aimed to provide a fundamental understanding of the spatial arrangement of 

mangrove features across different scales as a basis for developing an inversion approach, which is 

information extraction from remote sensing data, in multi-scale image-based mangrove mapping. 

Examination of how variation in scales (i.e. pixel sizes) controlled the representation of mangrove 

features was conducted using high spatial resolution WV-2 image data and mainly assessing 

mangroves at Moreton Bay sites. To analyse the scale domain and scale threshold of mangrove 

features on the images, semi-variograms were produced for various pixel sizes, spectral bands and 

mangrove zones. The results of the semi-variogram analysis revealed the relation between 

mangrove features and the most suitable pixel size to map these features. This finding was used as a 

basis to select the optimal spatial scales for mapping mangrove features and develop a multi-scale 

approach for mangrove feature mapping. In order to validate the analysis result, a series of object-

based segmentation and classification tests were conducted at selected sites in Moreton Bay 

mangroves. The final results were a validated optimum pixel size for mangrove mapping and 

approach for multi-scale mangrove mapping, presented in Chapter 3. 

 

2.4.2. Assessment of Image-Based Mangrove Mapping Approach 

Based on the findings from the semi-variograms analyses, the optimum pixel size scheme and 

multi-scale mapping approach were applied to the selected remotely-sensed data and mapping 

technique(s) to map mangrove species and structural composition and LAI, and assess the quality of 

produced maps. This stage contained two parts, (1) multi-scale mangrove composition mapping 

(Chapter 4) and (2) multi-scale mangrove LAI mapping (Chapter 5). The first part mapped targeted 

mangrove features at discrete spatial scales using selected image datasets, assessed the accuracy of 

the mapping results and evaluated the effect of spatial resolutions on the produced maps. The 

second part investigated: (1) the accuracy of different image datasets for estimating LAI at different 

sites; (2) the most optimum spectral vegetation index to use for LAI estimation; and (3) whether the 

GEOBIA approach improved the LAI estimation ability of the pixel-based method. Datasets from 

TM, AVNIR-2 and WV-2 were used as source images for mapping at both sites. Additional LiDAR 

data was used for the Moreton Bay site. The information obtained in this stage was the mangrove 

vegetation features identified in the first stage (Chapter 3), with additional information about 

mangrove species communities and LAI. Variations of information obtained in the produced maps 

provided input for the next stage in order to develop guidelines for selecting the most appropriate 

image datasets to provide mangrove composition and LAI information at different scales. 
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2.4.3. Development of Multi-Scale Mangrove Mapping Guidelines 

The selection of scale or an appropriate spatial resolution is an important factor that contributes to 

the successful application of remote sensing. To address the challenge in selecting the appropriate 

image data, the last stage of this research (Chapter 6): (1) analysed the relationships between image 

resolutions, mapping approaches and the type of information acquired and their accuracy in 

mapping mangroves, and (2) developed guidelines for multi-scale mangrove mapping based on the 

findings from stages 1 and 2. Woodcock and Strahler (1987)  stated that the appropriate scale of 

observations was a function of (1) the type of environment, and (2) the kind of information desired. 

This statement provides a foundation of the relationships analysis in this study. Each of the factors 

contributing to the selection of an appropriate scale in mangrove mapping was examined. It covered 

the variation of image resolutions (spatial and spectral), map scales, mapping approaches, types of 

information and the map accuracy produced. All information associated with the parameters 

examined was presented in tables and graphics and the pattern of relationships was analysed and 

synthesised as a tentative guideline for multi-scale mangrove mapping. The final guideline shows 

the variety of mangrove features identifiable from different image spatial resolutions, the mapping 

approach used and the accuracy of the produced maps. 
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3 CHAPTER 3: 

 

CHARACTERISING THE SPATIAL STRUCTURE OF 

MANGROVE FEATURES FOR OPTIMISING IMAGE-BASED 

MANGROVE MAPPING 
 

 

This chapter uses multi-spatial-resolution images derived from WorldView-2 of Whyte and 

Fisherman Islands, Brisbane, Australia to understand the relationship between the size of 

mangrove features and the optimum pixel size to identify and map these features. The results 

provide a basis for multi-scale mangrove mapping using high-spatial resolution image datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Associated Publications: 

Kamal, M, Phinn, S & Johansen, K 2014, 'Characterizing the Spatial Structure of Mangrove 

Features for Optimizing Image-Based Mangrove Mapping', Remote Sensing, vol. 6, pp.984-1006. 

[DOI: 10.3390/rs6020984].  
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Key Findings: 

 The diameter and area size of dominant mangrove structural features (tree/shrub crown, 

canopy gaps, vegetation formation or community) can be detected using semi-variogram 

analysis applied to image datasets. 

 There is a gradual loss of mangrove vegetation information detail with increasing pixel size. 

 Specific mangrove features can be optimally identified and mapped from a specific pixel size 

and spectral band or indices. 

 A pixel size of ≤ 2 m is suitable for mapping canopy and inter-canopy-related features within 

mangrove objects (such as shrub crown, canopy gaps and single tree crown).  

 A pixel size of ≥ 4 m is appropriate for mapping mangrove vegetation formations, communities 

and larger mangrove features.  

 The green (510-580 nm) and red-edge (705-745 nm) bands are optimum for determining 

smaller-sized mangrove features (< 8 m), such as single shrub crowns or foliage clumps, canopy 

gaps and single tree crowns.  

 The near infrared1 band (770-895 nm) is more suitable for identifying features ≥ 8 m (e.g. 

double tree crowns or larger gaps) and the NDVI image is suitable for mapping all targeted 

features.  

 The findings of this study provide a basis for an inversion approach to map mangrove features 

using remote sensing image datasets. 
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3.1. Introduction 

Remote sensing has been used extensively to map and monitor mangrove environments over the 

past two decades. It offers some key advantages for mangrove studies, including indirect access to 

mangrove habitats that are usually hard to access (Ramsey III & Jensen 1996; Davis & Jensen 

1998), extrapolation of observation results at specific sample sites over large areas (Kuenzer et al. 

2011) and delivery of data at specific spatial and temporal scales (Malthus & Mumby 2003). Recent 

developments in remote sensing and image processing allow us to explore various types of image 

datasets, as well as types of mapping techniques, to map mangroves (Heumann 2011b; Kuenzer et 

al. 2011). However, there is a need to match the scale of the analysis to the scale of the phenomenon 

under investigation, as environmental inferences are scale-dependent (Wiens 1989). Mapping 

mangroves at specific spatial scales will help scientists to focus their research on the ecological 

questions that are appropriate to each level of ecological detail (Delcourt et al. 1983) and managers 

to focus on the conservation activities at ecologically relevant spatial and temporal scales 

(Schaeffer-Novelli et al. 2005). 

 

From an ecological perspective, mangrove ecosystems, like other vegetated ecosystems, can be 

placed within a hierarchical structure (Feller et al. 2010). The central concept of this theory focuses 

on the differences in structure and process rate between hierarchical levels. Based on these 

differences, ecosystems are viewed as being stratified into discrete levels of interacting subsystems, 

with attributes and processes occurring at specific spatial and temporal scales (Delcourt et al. 1983; 

Müller 1992; Lee & Grant 1995; Farnsworth 1998). Remote sensing is a tool able to deliver 

information on mangrove characteristics at specific spatial and temporal scales. However, the 

spatial configuration of mangroves, as measured in an airborne or satellite image, is dictated by 

spatial structures of mangroves in the field, interacting with imaging sensor characteristics. In order 

to use satellite or airborne image data to extract information on mangroves at specific scales or 

features, it is essential to understand the control of mangrove spatial structures on their 

measurement in an image. This raises the question, “what mangrove features are dominant and able 

to be mapped at specific levels of image resolution, as controlled by pixel size?” Studies linking the 

spatial structure of mangroves and the image spatial-resolution are limited. 

 

The selection of scale or an appropriate spatial resolution is an important factor that contributes to 

the successful application of remote sensing. It depends on several factors, including the 

information to be extracted from the ground scene, the analysis method to be used to extract the 

information, the spatial structure of features within the image scene (Woodcock & Strahler 1987), 

the type of environment being investigated and other relevant constraints (i.e., cost and time) (Phinn 
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et al. 2000). The scale effect is regarded as one of the most important problems in remote sensing 

studies (Raffy 1994; Goodchild & Quattrochi 1997; Marceau & Hay 1999). The “scale” represents 

the window of perception (Marceau & Hay 1999), the ability of observation and reflects the 

limitation of knowledge through which a phenomenon may be viewed or perceived (Goodchild & 

Quattrochi 1997). Changing the scale of data collection and analysis impacts the measurements and 

conclusions able to be drawn for an environment and image dataset combination. Consequently, 

selecting an appropriate or optimal spatial resolution requires information on the spatial 

characteristics of features within the scene under investigation. 

 

Scientists have developed several methods to select the optimal spatial scale for remote sensing 

applications, which are tied to selection of pixel sizes and spectral bands, primarily for use in the per-

pixel classification. The most widely adopted method is to examine the spatial autocorrelation of 

the image scene through the analyses of semi-variograms. The semi-variogram is a tool to link 

models of the ground scene to spatial variation in images (Woodcock et al. 1988a) and is able to 

detect the most dominant scale(s) of variation in images (Woodcock et al. 1988b). In remote sensing 

studies, it enables the optimal pixel size for feature mapping in different environments from image 

data to be specified, for example, in forests (Hyppanen 1996; Treitz & Howarth 2000; Colombo et al. 

2004; Wolter et al. 2009), tropical savannahs (Menges et al. 2001; Johansen & Phinn 2006), 

grasslands (Phinn et al. 1996; He et al. 2006) and wetlands (Wen et al. 2012). Semi-variograms can 

be used to identify the domains of scale where certain features reside (Cohen et al. 1990; Treitz & 

Howarth 2000; Johansen & Phinn 2006), which in turn will provide support in selecting the most 

appropriate image spatial resolution for a specific mapping purpose. 

 

The current status of remotely sensed data (i.e., various types and resolutions) enables multi-scale 

information to be derived for mapping and monitoring mangroves across spatial-ecological 

hierarchies. However, as an increasing number of remotely-sensed datasets with different pixel 

sizes become available, selecting the most appropriate spatial resolution becomes more difficult. In 

order to select an appropriate spatial resolution for a specific application, the spatial characteristics 

of the scene should be examined (Chen 2001). The main objectives of this study were to estimate 

the optimum pixel size for mapping mangrove composition and structural properties and test the 

applicability of the methods. The examination of spatial characteristics of mangroves was 

conducted using experimental semi-variograms derived from WV-2 image, in Moreton Bay, 

Australia, to determine the spatial scales of the mangrove features. This information may provide 

guidance for selecting the most appropriate image spatial resolution for mapping certain mangrove 
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features and answer the question of which mangrove feature can be mapped from a given spatial 

resolution, and vice versa. 

 

3.2. Data and Methods 

3.2.1. Study Site 

The study site for this chapter was carried out in mangrove areas at the mouth of the Brisbane River, 

Northern Moreton Bay, South East Queensland, Australia. For the detailed description of the location 

refer to section 2.1 of the thesis. 

 

3.2.2. Image and Field Datasets 

The image data used as a basis for mangrove spatial structure examination was a WorldView-2 

image of the Brisbane River mouth captured on 14 April, 2011 (Table 3.1). The image pre-

processing and fieldwork details are presented in sections 2.2 and 2.3 of the thesis. 

 

Table ‎3.1. Characteristics of image data used in Chapter 3. 

Image Type WorldView-2 (WV-2) Aerial Photograph (AP) 

Acquisition date 14 April 2011 14 January 2011 
Acquisition time 00:10:47.59 UTC (10:10:47.59 AEST)  
Product type and level Ortho, LV3X Ortho-rectif ied 
Geometric attributes UTM 56 J in meters GCS WGS 1984 
Radiometric attributes 16 bits per-pixel  

Spectral attributes 

Coastal (400–450 nm) 
Blue (450–510 nm) 
Green (510–580 nm) 
Yellow (585–625 nm) 
Red (630–690 nm) 
Red edge (705–745 nm) 
NIR1 (770–895 nm) 
NIR2 (860–1040 nm) 
PAN (450–800 nm) 

True colour image 
(red, green, blue) 

Pixel size Multi-spectral 2 m, panchromatic 0.5 m 7.5 cm 

 

The fieldwork was conducted during April, 2012, to measure selected mangrove vegetation structures 

and composition variables in the study area. Fifteen representative 200–300 m long field transects 

were established perpendicular to the shoreline (Figure 3.1a, b). On each transect, plots of 10 m  10 

m quadrats were sampled along the transect lines as a frame to record mangrove zonation patterns and 

measure mangrove biophysical properties in the field, including transect and plot positions, vegetation 

structural information (canopy height and vegetation formation type), dominant species and field 

photos. The structural characteristics measured along the transect in each of three mangrove field 

sample sites are presented in Table 3.2. 
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Figure  3.1. (a) Study sites: mangroves at Moreton Bay area, Brisbane, Australia; (b) an example of 

field survey transect, orange circles represent location of 10 m x 10 m quadrats, and (c) transects of 
image pixels running parallel to the coastline used to derive the semi-variograms shown for Whyte 

Island. 

 

Table  3.2. Mangrove vegetation structural characteristics of Moreton Bay mangroves, sampled at 

three sites, derived from field data sampled across the main vegetation zonation boundaries. 

Distance  
from 
Coastline 

Whyte Island Fisherman Island Boondall Wetlands 

175 m 

(S3) 

Open scrub, 1–3 m height, multi 
stem, gaps > canopy cover, 
Sarcocornia quinqueflora, water or 
soil understory, low density 
canopy cover, dominant species 
Avicennia marina. 

Open scrub, 2.5–4 m height, single or 
multi stem, gaps < canopy cover, 
Sarcocornia quinqueflora, water or 
soil understory, low density canopy 
cover, dominant species Avicennia 
marina. 

Open scrub, 1.5–5 m height, single 
or multi stem, gaps > canopy cover, 
Sarcocornia quinqueflora, water or 
soil understory, medium density 
canopy cover, dominant species 
Avicennia marina. 

125 m 

(I4a) 

Low-closed forest1, 4–7 m height, 
single or multi stem, gaps < canopy 
cover, Avicennia marina seedling 
or Aegiceras corniculatum 
understory, medium density 
canopy cover, dominant species 
Avicennia marina. 

Low-closed forest1, 4–9 m height, 
single stem, gaps < canopy cover, 
Avicennia marina seedling or 
Aegiceras corniculatum understory, 
high density canopy cover, dominant 
species Avicennia marina. 

Low-closed forest1, 5–7.5 m 
height, single stem, gaps < canopy 
cover, Avicennia marina seedling 
or Aegiceras corniculatum 
understory, high density canopy 
cover,dominant species Avicennia 
marina. 

 

 

 
 

 
 

(a) (b) 

(c) 
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Table 3.2. Continued. 

Distance  
from 
Coastline 

Whyte Island Fisherman Island Boondall Wetlands 

75 m 

(I4b) 

Low-closed forest2, 6–8 m height, 
single stem,  
gaps < canopy cover, clear 
understory, very high density 
canopy cover, dominant species 
Avicennia marina with some 
individual Rhizophora stylosa. 

Low-closed forest2, 8–10 m height, 
single stem,  
gaps < canopy cover, clear 
understory, high density canopy 
cover, dominant species Avicennia 
marina with some individual 
Rhizophora stylosa and patches of 
Ceriops tagal. 

Low-closed forest2, 7–9 m height, 
single stem,  
gaps < canopy cover, clear or 
Avicennia marina seedling 
understory, high density canopy 
cover, dominant species Avicennia 
marina with some individual 
Rhizophora stylosa. 

25 m 

(M4) 

Closed forest, 10–12 m height, 
single or multi stem,  
gaps < canopy cover, clear 
understory, high density canopy 
cover, dominant species 
Avicennia marina trees. 

Closed forest, 8–11 m height, single 
or multi stem,  
gaps < canopy cover, clear 
understory, high density canopy 
cover, dominant species Avicennia 
marina trees. 

Closed forest, 8–10.5 m height, 
single or multi stem, 
 gaps < canopy cover, clear 
understory, high density canopy 
cover, dominant species Avicennia 
marina trees with some patches of 
Ceriops tagal. 

 

3.2.3. Methods 

Figure 3.2 summarises the methods used to measure the spatial structure of mangrove features in the 

study area. The work flow is divided into three steps. Step 1 is necessary to prepare the data and 

create a series of images with different pixel sizes as a basis for multi-scale level examination of 

mangrove spatial structure. Step 2 deals with measuring and analysing the spatial structure of 

mangrove vegetation from the pre-processed images using semi-variograms. Step 3 applies and 

evaluates the results from step 2 into image datasets for mapping mangrove features using GEOBIA. 

 

 

Figure ‎3.2. Overview of Chapter 3 methods.  

 

3.2.3.1. Image Dataset Preparation 

Pan-sharpening algorithms were applied to the atmospherically corrected images to obtain a higher 

spatial resolution image for input to the spatial structure analysis. Six different pan-sharpening 

algorithms (principal component, multiplicative, Brovey, wavelet, Gram-Schmidt and colour 

WorldView-2 image 

Radiometric & atmospheric correction 

Image pan-sharpening 

Image resampling 

(0.5, 1, 2, 4, 8, 10m pixel sizes) 

Pixel value extraction along 

transects 
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Analysis of the semi-variograms 

Optimum pixel size scheme 

Application of the scheme 
to an image dataset using 

GEOBIA approach 

Evaluation of the optimum 
pixel size scheme 

Segmentation and 
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normalised) from commercial image processing software were investigated to determine their 

quality in terms of preserving pixel values of the atmospherically corrected multi-spectral data. 

Several image quality metrics were applied, including root mean square error, standard deviation, 

relative shift of the mean and coefficient of correlation (Vijayaraj et al. 2004; Jayanth et al. 2012) 

(Appendix 3). The overall evaluation of the image quality metrics shows that the Gram-Schmidt 

pan-sharpening algorithm produced the pixel values closest to the original multi-spectral data and 

therefore this method was used to produce a sharpened image for spatial structure analysis. 

 

To enable analysis of the spatial structure of mangroves at multiple specific-scales and to examine 

the effect of different pixel sizes on the derived information, the Gram-Schmidt pan-sharpened 

image (0.5 m pixels) was resampled to a pixel size of 1 m. As well, the original multi-spectral 

image (2 m pixels) was resampled to 4 m, 8 m and 10 m pixel sizes using an averaging algorithm. 

According to Bian and Butler (1999), the pixel aggregation method is more appropriate for 

processing remote sensing images because a pixel value is assumed to be the averaged value over 

the associated area on the ground. This process produced a total of six different image pixel sizes 

(0.5 m, 1 m, 2 m, 4 m, 8 m and 10 m). The reasons for selecting these pixel sizes were to detect 

specific details of mangrove features and create an approximation of the currently available image 

datasets. All of processing above used ENVI 4.8 image processing software. 

 

3.2.3.2. Measurement of Mangrove Spatial Structure through Semi-Variogram 

The semi-variogram (γ) is a spatial statistical graph of semi-variance, which is the measured 

difference in variance value between pairs of regionalised variable samples in relation to their 

spatial separation with a given relative orientation. It provides a concise and unbiased description of 

the scale(s) and pattern(s) of spatial variability, in both remotely-sensed data and field data (Curran 

1988; Curran & Atkinson 1998). If applied to remotely-sensed data; the semi-variogram is used to 

examine the relationship between the digital number (DN) or pixel value of n pixel pairs at a 

distance h (the lag distance) apart. The equation for semi-variance γ(h) is: 

γ(h)   
 

  
∑*  ( )    (   )+  (Eq. 3.1) 

 

where γ(h) represents half of the mathematical expectation of the squared differences of pixel pair 

values at a distance, h, and DN refers to spectral reflectance or vegetation index in this study. 

Hence, for image spectral data, γ(h) estimates the variability of DNs, as a function of spatial 

separation.  
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In creating semi-variograms, the distance of each lag determines the number of the pixel pairs in the 

transect sample. By increasing the lag distance, the pixel pairs on a transect are fewer; which in turn 

decreases the confidence level of the analysis (Curran 1988). To alleviate this problem, 

Webster (1985) suggested to use lag distances shorter than a fifth of the transect length for the semi-

variogram interpretation. The analysis of semi-variograms requires two assumptions. First, spatial 

stationarity, which assumes that the correlation between variables is a function of the lag distance 

between pixels and not because of the variation in spatial positions of the transect (Bailey & Gatrell 

1995; Phinn et al. 1996; Treitz & Howarth 2000). Second, ergodicity, which assumes that spatial 

statistics taken over the area of the image as a whole are unbiased estimates of those parameters (Jupp et 

al. 1988). Both of these assumptions are appropriate in digital remotely-sensed images; first, because of 

the variation in scan angle and terrain effects are minimal and regarded as stationary in increments, and 

second, the reflectance surface is considered stochastic (Jupp et al. 1988). According to Curran (Curran 

1988), all image bands and directions should be examined in order to define the minimum range of the 

semi-variogram and therefore the minimum spatial resolution of the feature element. There are two 

sampling methods used in creating semi-variograms (Cohen et al. 1990; Feng et al. 2010): (1) transect 

method, where the semi-variogram is calculated along a single, representative row or column of pixels 

from each selected image; and (2) matrix method, where the semi-variogram is calculated for all the row 

and column pixels in each image. For canopy structure analysis, the transect sampling method provides 

more detailed sill variation and periodicity and also a smaller range distance compared with the matrix 

method (Cohen et al. 1990). It was as a result of averaging the semi-variograms for all row and column 

directions in matrix method. Therefore, the first sampling method was adopted for this study in 

order to depict structural information inherent within each of the mangrove zones. 

 

The approach used for examining spatial structure in this study was similar to the one conducted by 

Cohen et al. (1990), and Johansen and Phinn (2006). Several transects were created over the image 

datasets (original and resampled WV-2 images) to generate semi-variograms. All eight bands of the 

WV-2 image (Table 3.1) and the derived normalised difference vegetation index (NDVI) images 

were used to generate the semi-variograms. According to image visual inspection and semi-

variogram evaluation (Kamal et al. 2013) four bands – green, red-edge, near infrared1 (NIR1) and 

NDVI – were identified as sensitive to mangrove vegetation variations and having the least 

redundant information among other bands. As a result, these bands were used for further analysis of 

the semi-variograms. The semi-variogram transects were located parallel to the coastline to 

represent the homogenous areas within each mangrove zone (i.e., areas assumed to have similar 

vegetation structural properties). In this study, 12 representative transects located parallel to the 

coastline at a distance of 25 m, 75 m, 125 m and 175 m from the coastline were used to develop 
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semi-variograms within zone structures (Figure 3.1c). The distance of the transect lines varied 

between 500 m and 1000 m, depending on the length of the mangrove zonation. All transects were 

evaluated at six different pixel sizes (0.5 m, 1 m, 2 m, 4 m, 8 m and 10 m). Earth Resources Data 

Analysis System (ERDAS IMAGINE) 2013 was used to extract pixel values along the semi-

variogram transects and GS+ geostatistical software for semi-variance calculation. 

 

3.2.3.3. Interpretation of Semi-Variograms 

In order to interpret a semi-variogram, it is necessary to understand the terms and characteristics 

associated with the semi-variogram (Figure 3.3). The range (a) of semi-variograms is the distance at 

which samples become independent and it is controlled by the size of dominant objects in an image. 

The height of the sill (s), where the semi-variogram levels off, is considered proportional to the 

density of objects and the scene-scale level of variance. The form of semi-variograms is controlled 

by the pattern and distribution of objects in an image (Woodcock et al. 1988a, 1988b; Jupp et al. 

1989; Bailey & Gatrell 1995). These descriptors of semi-variograms are usually used together to 

interpret the appropriate spatial resolution for mangrove elements.  

 

 

 

Term Symbol Definition 

Semi-variance γ(h) Half the averaged variances between pixels at 
distance h apart. 

Support γ Area, shape and orientation of space 
represented by each sample datum. 

Lag h Distance (and direction in two or more 
dimensions) between sampling pairs. 

Sill s Maximum value of γ(h) model. 

Range a Point on x axis where γ(h) model reaches 
maximum. Places closer than the range are 
related statistically, places further apart are 
not. 

Nugget variance co Point where γ(h) model intercepts the y axis. 
Represents a component of the variation that 
is spatially uncorrelated. 

Structured 
variance 

c Sill minus nugget variance. 

Gradient m The slope for γ(h) model with a linear 
component. 

 

Figure  3.3. An example of a semi-variogram with descriptors and the definition of terms (Curran & 

Atkinson 1998; Johansen & Phinn 2006). 

 

The advantage of using semi-variograms in remote sensing is the ability to relate descriptors to the 

spatial characteristics of the scene (Atkinson & Curran 1997). The range and sill were extracted 
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from all semi-variograms of transects located parallel and perpendicular to the coastline using the 

green, red-edge, NIR1 and NDVI bands. Six different image pixel sizes were evaluated to detect the 

scale at which certain features within each mangrove zone occurred. The range provides a measure 

of the size of the elements or features in the mangrove environment in the image and has been 

identified as a useful indicator for selecting the optimal spatial resolution for discriminating features 

embedded in the semi-variogram (Curran 1988; Woodcock et al. 1988b). Visual inspection of the 

field data and visual interpretation of the image were conducted in order to relate the semi-

variogram range values to the mangrove vegetation structure dimensions (foliage clumping, canopy 

gap and tree crown size, vegetation formation, or community and vegetation cover type). This 

information provides guidance for developing a scheme in selecting the optimum image spatial 

resolution for extracting specific mangrove features and serves as a basis for an inversion mapping 

approach. A total of over 1500 semi-variograms were analysed in this study. The findings from the 

semi-variogram analysis revealed the spatial characteristics of mangrove vegetation features and the 

optimum pixel sizes to map these features.  

 

3.2.3.4. Application of the Analysis Results 

To test the applicability and validate the results, GEOBIA was applied to the original and resampled 

WV-2 images with the segmentation and classification being driven by parameters obtained from 

the semi-variogram analysis. GEOBIA offers some fundamental advantages in the context of this 

study including: (1) image objects can be created at multiple, yet specific, hierarchical spatial scales 

(e.g., tree community consists of several single tree canopies) (Hay et al. 2003; de Jong & van der 

Meer 2005), (2) numerous attributes can be obtained from the image objects, such as  an object‟s 

statistics, geometry and context, (3) the result better mimics human perceptions of real-world 

objects (Morgan et al. 2010), and (4) image objects reduce the salt-and-pepper effect in pixel-based 

classifications (Blaschke et al. 2000).  

 

The image segmentation and classification were applied to the original and resampled WV-2 

images to evaluate the applicability of the semi-variogram results. The segmentation and 

classification routines were carried out using eCognition Developer software v. 8.7.0. A series of 

scale parameters from 5 to 100 were tested for the mapping of mangrove features with a weight of 5 

applied to the green, red, red-edge and NIR1 bands to enhance the influence of bands that are 

sensitive to vegetation reflectance in the segmentation. A trial-and-error approach and visual 

inspection of the segmentation results, with the help of a very-high-spatial resolution aerial 

photograph (7.5 cm pixel size), were performed to determine the mangrove features that could be 

depicted from different scale parameters and image pixel sizes. 
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A supervised rule-based classification was applied to implement the optimum pixel size scheme for 

mangrove feature mapping based on the WV-2 images. The rule sets were developed using the 

objects‟ spectral information, geometry of the objects and contextual hierarchy of the classes. The 

first hierarchy layer was used to separate mangrove and non-mangrove features, the second layer 

was for dividing the mangrove area into trees and gaps (and shadows) and the third layer was used 

for the classification of objects within the mangrove tree class. These hierarchical layers were 

applied to all image pixel sizes being examined. The result of the mapping was used to evaluate the 

image selection scheme and inversion mapping approach. 

 

3.3. Results and Discussion 

3.3.1. Relation of Semi-Variograms to Mangrove Vegetation Structure Properties 

Visual characteristics of the images demonstrate the gradual loss of mangrove spatial structure 

detail with increasing pixel sizes (Figure 3.4). The descriptive statistics for each image show the 

divergence between the original (0.5 m and 2 m) and resampled image (1 m, 4 m, 8 m and 10 m). 

While the mean values of the bands in the resampled image exhibit some random variations, the 

coefficient of variance (%CV) decreased with decreasing spatial resolution relative to the original 

images. The coastal and yellow bands for the first resampling group (from 0.5 m to 1 m) and all 

bands for the second resampling group (from 2 m to 10 m) also follow this pattern. Figure 3.4 

shows that an image with lower spatial resolution has lower data variability and therefore contains 

less information compared with a higher spatial resolution image. 

 

The spatial structural information of mangrove elements (or features) detectable from the original 

and resampled WV-2 images was related to the semi-variogram descriptors (range, sill and form). 

Figure 3.5 (preliminary version published in (Kamal et al. 2013)) shows the representative semi-

variogram plot of the NIR1 image band at six different pixel sizes and the average mangrove feature 

sizes measured from field-work and the aerial photograph. It reveals similar results to those 

presented in other studies examining the effects of changes in image pixel size on image 

information content (Woodcock et al. 1988b; Cohen et al. 1990; Garrigues et al. 2006; Johansen & 

Phinn 2006; Chen & Henebry 2009). Specifically, there is a gradual loss of information detail with 

the increasing pixel size (Figure 3.4 and 3.5). The forms of semi-variogram changes with the 

varying pixel sizes describe the effect of data regularisation on the spatial heterogeneity component. 

The decreasing height of the sill characterises the loss of spatial variability when the spatial 

resolution of the image decreases, which is also evident in the image statistics in Figure 3.4. 
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The original and 
resampled 
WorldView-2 
images. 

 

Image statistics Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV 

W
V

-2
 im

ag
e 

ba
nd

s 

Coastal 0.0605 0.64 0.0605 0.63 0.0628 0.53 0.0628 0.52 0.0625 0.51 0.0628 0.50 
Blue 0.0684 0.68 0.0683 0.68 0.0710 0.58 0.0710 0.56 0.0707 0.54 0.0710 0.53 

Green 0.0876 0.59 0.0875 0.59 0.0908 0.51 0.0908 0.50 0.0904 0.48 0.0909 0.47 
Yellow 0.0879 0.67 0.0879 0.66 0.0915 0.56 0.0914 0.55 0.0911 0.53 0.0915 0.52 
Red 0.0778 0.79 0.0778 0.79 0.0814 0.66 0.0814 0.65 0.0811 0.63 0.0815 0.62 

Red-edge 0.1429 0.50 0.1428 0.50 0.1479 0.54 0.1478 0.53 0.1472 0.52 0.1482 0.51 
NIR1 0.2109 0.60 0.2108 0.60 0.2172 0.67 0.2171 0.66 0.2162 0.65 0.2179 0.63 
NIR2 0.1909 0.63 0.1908 0.63 0.1967 0.70 0.1966 0.69 0.1958 0.67 0.1973 0.66 
NDVI 0.3617 1.11 0.3611 1.10 0.3029 1.34 0.3043 1.33 0.3055 1.32 0.3104 1.29 

Note: The mean image spectral reflectance and NDVI values were represented at a scale of 0–1, %CV: coefficient of variance. 
 

Figure  3.4. Subsets of mangrove on Whyte Island at pixel sizes of 0.5 m, 1 m, 2 m, 4 m, 8 m and 
10 m displayed with a band combination of R:7, G:5, B:3, and their associated descriptive statistics. 

 

 

Figure  3.5. Subset of NIR1 semi-variogram showing the mangrove features responsible for the 

semi-variogram range and form up to a 50 m lag distance. 

 

At a pixel size of 0.5 m, the form of semi-variograms appears to be controlled by inter-canopy 

features including individual shrubs and tree crowns, foliage clumping and smaller inter-canopy 

gaps. At a pixel size of 1 m, the individual shrub and tree crowns are still distinguishable but the 
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detailed foliage clumping and inter-canopy gaps become more difficult to identify. Single shrub 

crowns and foliage clumping identified from the image and field data correspond to the semi-

variogram lag distance of 1.5 m and the inter-canopy gaps at 2 m. Pixel sizes 0.5 m and 1 m had 

similar semi-variogram forms, meaning the variation of information of the pattern and distribution 

of mangrove features within these sizes are comparable, but they have different sill height which is 

attributed to the different level of pixel value variance in the image scene (see image statistics in 

Figure 3.4). Although these two pixel sizes offer similar capability, detailed information on structural 

properties and sharper visual image appearance increases the likelihood of correctly identifying 

mangrove inter-canopy features. 

 

The range of the semi-variograms for pixel sizes 0.5, 1 and 2 m  are  at 5, 6 and 6 m respectively, 

which is approximately equal to the average diameter of single mangrove tree crowns. This 

indicates that single mangrove tree crowns may be distinguished at a maximum pixel size of 2 m. 

At a pixel size of 4 m the average single tree crown is no longer apparent, although some individual 

larger canopies of mangrove tree and gaps that are more than 10 m in diameter can still be 

identified. Based on field observations, it is likely that the range of about 8–10 m corresponds to 

groups of two tree crowns and these can be identified at pixel sizes of 4 m. The semi-variogram 

range of pixel sizes of 8–10 m are approximately 20 m and 30 m, respectively, which correspond to 

the average size of mangrove vegetation formation or community at 23 m and larger mangrove 

cover types at 30 m. At a pixel size of 4 m and larger, the canopy-related information is gradually 

lost. These sizes are more appropriate for mapping larger mangrove communities, mangrove 

patches and separating mangroves from non-mangrove cover types. 

 

Overall, there are noticeable patterns of semi-variogram peaks and troughs with different sill 

heights across varying pixel sizes. According to Figure 3.5, the variation of structural information 

within mangrove stands can be preserved only with pixel sizes of 0.5 m to 2 m, where the semi-

variogram contains periodic peaks and troughs along the graph. On the other hand, from pixel sizes 

of 4 m to 10 m, these variations are lost and result in relatively flat graphs with minimum or no 

information on within mangrove structural properties. This finding indicates that pixel sizes of 2 m 

and smaller are appropriate for mapping small size features and the internal variation of mangrove 

canopy (such as single shrub crown, foliage clumping, canopy gaps and average tree crowns), 

whereas pixel sizes of 4 m and larger are more appropriate for mapping larger mangrove features 

(such as groups of tree crowns, vegetation formations or communities, and cover type). 
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3.3.2. Relation of Semi-Variograms to Mangrove Zone Features 

Variation in spatial structural information between mangrove zones, that is, areas with consistent 

structure and composition parallel to the coastline, were examined using transects located parallel to 

the coastline at varying distances from the three Moreton Bay sites. The semi-variograms were 

derived from transects of 1000 m along the mangrove zonation, which were located at distances of 

25 m, 75 m, 125 m and 175 m from the edge of outer mangrove stands. These distances were 

selected to be as representative as possible of mangrove zonation to depict the internal mangrove 

zonation structural properties. Among the three transect locations; two of them produced similar 

semi-variograms. Therefore, only two of the transect locations are discussed here, which are 

Fisherman Island and Boondall wetlands (Figure 3.6). 

 

The transect at 125 m from the coastline on Fisherman Island had high sill values and was the 

second highest for all of the bands. It corresponds to a low-closed forest mangrove formation where 

there are mixed stems of Avicennia marina trees (I4a) with high canopy cover and some canopy 

gaps. For the Boondall wetlands, this transect distance was at the third highest level of the semi-

variogram sill height. The mixed-stem low-closed forest (I4a) formation in Boondall has a lower 

canopy cover and more canopy gaps, making it appear to have low contrast in the image. Finally, 

transects located at a distance of 175 m from the coastline had the lowest semi-variogram sill values 

and this pattern is noticeable for all bands and all locations. These transects cover the open scrub 

Avicennia marina zone with low density of canopy cover and uniform canopy layers. Some gaps 

with Sarcocornia quinqueflora, water or soil are also frequently found in this zone, which may 

contribute to decreasing the reflectance intensity of the pixels. 

 

Semi-variograms located along the mangrove zones revealed different spatial structural 

characteristics of mangrove features within each zonation. As shown in Figure 3.7, the average 

range of semi-variograms of all evaluated bands for transects located along the mangrove zonation 

at the Moreton Bay sites exhibit different patterns. The average range values of open scrub formation 

(S3) were higher for all of the image bands (2.7–8.1 m) compared with the other formations where 

low-closed forest1 (I4a) had the lowest average range value (2.5–5.2 m), and low-closed forest2 

(I4b) together with closed forest (M4) had a similar range value (3.1–6.6 m and 2.6–6.6 m, 

respectively). The high average range values on the open scrub formation (S3) were attributed to the 

large variation in the size of Avicennia marina scrub patches interleaved with large gaps of ground 

or water frequently found in this zone (see image on Figure 3.7). Conversely, the low average range 

values of the low-closed forest1 (I4a) were caused by the foliage clumping and the narrow canopy 
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gaps (1–2 m) between individual tree crowns (approximately 5 m in diameter) that dominate 

this zone. 

 

     

 

Figure  3.6. Subset of pan-sharpened images of (a) Fisherman Island and (b) Boondall wetlands 

showing the transects along the mangrove zonations and semi-variograms created from transects 
along the mangrove zonation at distances of 25 m, 75 m, 125 m and 175 m from the coastline using 

the 0.5 m pan-sharpened WV-2 image. 

(a) (b) 
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S3, open scrub, > 2 m,  

multi-stem 
I4a, low-closed forest, 

5–10 m, multi/single stem 
I4b, low-closed forest, 
5–10 m, single stem 

M4, closed forest, 
10–30 m, multi/single stem 

 

Figure  3.7. Mean semi-variogram range values sampled at 0.5 m pixel size for the green, red-edge, 

NIR1 and NDVI bands, based on four transects located at 175 m (S3), 125 m (I4a), 75 m (I4b) and 
25 m (M4) from the coastline of Moreton Bay mangroves. 

 

3.3.3. Optimum Pixel Size for Mangrove Mapping 

Several transects were established along the mangrove zonation at the Moreton Bay sites to create 

semi-variograms to depict the variation of spatial size of the structural features of mangroves. The 

information on the characteristics of the spatial structure of mangrove features obtained from semi-

variogram interpretation and analysis provides the basis for establishing the relationship between 

mangrove feature sizes and optimum spatial resolution (i.e., image pixel size) to map these features. 

According to techniques used in the previous semi-variogram analyses, seven mangrove vegetation 

structures were apparent in the study area and detectable from the WV-2 image data. These 

included single shrub crowns, small foliage clumping within the canopy or intra-canopy, smaller 

canopy gaps, average single tree crowns, double tree crowns or larger gaps, vegetation structural 

formations/communities and vegetation cover types. By integrating semi-variogram interpretation 
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results at specific pixel sizes along mangrove zonations, with field data and image interpretation, it 

was apparent that each of these mangrove features resided within a certain range distances and 

could be detected only at specific image pixel sizes. 

 

Figure 3.8 illustrates the relationships between the range of mangrove features, the optimum pixel 

size and the most appropriate spectral bands able to identify and map these features. The mangrove 

structural features were plotted on the y axis from the largest scale at the bottom, to the smallest 

scale at the top of the axis. Seven plot boxes inside the graph depict where the mangrove features on 

the y axis reside along the feature range distance (bottom x axis); and the downward bar charts from 

the x axis at the top illustrate the influence of the associated pixel size on the plot boxes of 

mangrove features. The most appropriate spectral bands were placed as dot point indicators beside 

the associated mangrove feature. For example, the average single tree crown has semi-variogram 

range values between 4 m and 8 m. This feature can be identified using image pixel sizes of 0.5 m, 

1 m and 2 m but is unable to be identified at a pixel size of 4 m or larger. Therefore, in this case, an 

image with a pixel size of 2 m is the optimum option to map the average mangrove tree crown as it 

is the largest pixel size able to identify individual tree crowns and green, red-edge and NDVI bands 

will be the most suitable for discriminating this feature. For routine mapping purposes, using image 

datasets with a smaller pixel size might increase the cost, both for resources and processing and 

may produce the result that is similar to a product derived from the optimum pixel size. 

 

 

Figure  3.8. Relationship between mangrove features, feature ranges, optimum pixel sizes and the 

most sensitive image bands to map mangrove features. 
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3.3.4. Application of the Optimum Pixel Size Scheme 

The pattern of mangrove feature information obtained from different scale parameters applied to 

different image pixel sizes was interpreted from the image segmentation results (Figure 3.9). In 

accordance to the results of the semi-variogram analysis; the lower value of the scale parameter or 

the smaller pixel size, the more mangrove information could be extracted from the image. 

According to the interpretation results, single shrub crowns could be recognised only at a pixel size 

of 0.5 m with the segmentation scale parameter ≤ 30, and at a pixel size of 1 m with the scale 

parameter ≤ 10. At a pixel size of 2 m, the smallest obtainable mangrove objects were canopy gaps 

and single tree crowns with a segmentation scale parameter ≤ 10 and 20–30, respectively. At a scale 

parameter ≥ 40 the segment size was too large and failed to identify single tree crowns. Most of the 

pixel sizes ≥ 2 m could only differentiate objects larger than the average size of single tree crowns, 

including double/multiple tree crowns, larger gaps, vegetation formation and community and 

vegetation cover types; with the exception of scale parameters ≤ 10 at a pixel size 4 m, which still 

allowed discrimination of single tree crowns. In general, there was an obvious relationship between 

mangrove information detail and the pixel and segmentation scale parameter size, where smaller 

pixel sizes or segmentation scale parameters will allow more detailed mapping of 

mangrove features. 

 

 

Figure  3.9. Graph of mangrove features detectable at a number of scale parameters derived from 

different WV-2 image pixel sizes. 
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The size of dominant objects able to be delineated in the segmentation process from six different 

pixel sizes was identified and the result related with the measured feature dimension in the field. 

The dominant segment sizes and the corresponding pixel sizes were found to correspond well to the 

result of the optimum pixel sizes from the semi-variogram analysis (Columns c and f in Table 3.3). 

The result indicated that the theoretical finding of the optimum pixel sizes from the SV was 

empirically proven on the image dataset through image segmentation. 

 

Table  3.3. Optimum pixel sizes interpreted from semi-variogram and image segmentation results. 

Mangrove Features 

Average 
Features Size 

(m) in the 
Field 

Optimum 
Image Pixel 

Size (m) from 
SV 

GEOBIA Segmentation 

Dominant 
Object Size 

(m2) 

Estimated 
Feature 

Dimension (m)  

Optimum Image 
Pixel Size (m) 
from GEOBIA 

(a) (b) (c) (d) (e) (f) 

Single shrub crown 1–2 0.5 1.5 1.2 0.5 

Canopy gaps 2 1 4 2 1 

Single tree crown 4 2 16 4 2 

Double tree crowns/ larger gaps 8 4 48 6.9 4 

Vegetation formation/ community 20–25 8 128 11.3 8 

Vegetation cover type 30–40 10 700 26.4 10 

 

The classification results showed that the use of each image pixel size enabled the discrimination of 

the smallest mangrove object according to the previously developed optimum pixel size scheme 

(Figure 3.8). Figure 3.10 shows some selected examples of the classification results applied to the 

image at pixel sizes of 0.5 m, 2 m and 8 m to depict information of shrub crown, single tree crown, 

and mangrove formation, respectively. A very-high-spatial resolution aerial photograph was used as 

a reference to assess and evaluate the quality of mangrove feature mapping. This was used as there 

was no existing map containing mangrove vegetation features for the study area and the aerial 

photograph interpretation was accepted to be correct (due to the features evident at very high 

resolution) without any form of accuracy assessment (Congalton 1991). 

 

At a pixel size of 0.5 m individual shrub crowns were discriminated from other features but the 

classification was unable to identify each single shrub crown in groups of shrub (Figure 3.9a) due to the 

short distance between the crowns and the shape similarity. Single stands of tree crowns could be 

identified at a pixel size of 2 m, although the segments were blocky due to the bigger pixel size (Figure 

3.10b). Individual trees in the mangrove forest were difficult to distinguish because of their closed 

canopy and similarity to neighbouring objects (i.e. tree crowns). Four mangrove formations found 

in the study area were clearly separated at a pixel size of 8 m (Figure 3.10c), with some isolated 
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segments found within the formation. According to the qualitative segmentation assessment, the 

optimum pixel size scheme worked well when applied to the image datasets used in this study. As 

the segmentation and classification example was used purely as a proof of concept, further 

improvements to the segmentation and classification process are still possible to improve the 

mapping accuracy and repeatability across other areas. 
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Figure  3.10. Example of mangrove features segmented and classified (green polygons) from 

images with different image pixel sizes and scale parameters (SP). 

 

3.4. Conclusions and Future Research 

This study showed that scale-specific, ecologically relevant information on mangroves could be 

detected using experimental semi-variogram analysis. This approach indicated the size of dominant 

mangrove features able to be identified from a specific pixel size and the optimum spectral bands to 

use to detect and map these features. The results show that there was a gradual loss in mangrove 

vegetation structural information, as indicated by the mangrove features measured, with increasing 

pixel size. When applied to the original and resampled WV-2 images, a pixel size ≤ 2 m was suitable 

for mapping canopy and inter-canopy-related features within mangrove objects (such as shrub 

(a) 

(b) 

(c) 

° 

° 
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crowns, canopy gaps and single tree crowns). A pixel size of ≥ 4 m was more appropriate for 

mapping mangrove vegetation formation, communities and larger mangrove features. The green 

and red-edge bands were optimum for discriminating smaller sized mangrove features (< 8 m), such 

as single shrub crowns or foliage clumping, canopy gaps and single tree crowns. The near infrared1 

band was more suitable for identifying features ≥ 8 m (e.g. double tree crowns or larger gaps) and 

the NDVI image was suitable for mapping all targeted features. 

 

The findings of this study provide a basis for an inversion approach to mangrove feature mapping 

using high-spatial resolution image datasets. The mapping application results demonstrated that the 

optimum pixel size scheme from the semi-variogram analysis was effectively applied through 

image segmentation and classification using object-based image analysis. The optimum pixel 

analysis result from the image segmentation interpretation was highly correlated with the semi-

variogram results and the classification result identified the smallest features that could be 

discriminated at the corresponding pixel size. 

 

The results of this work were limited to the study site in Moreton Bay, Australia, with sub-tropical 

mangroves. For future research, the application of the experimental semi-variogram method to other 

mangrove environments is necessary to assess the consistency of the method. Other emerging 

method such as wavelet transform method (WTM) and fractal method (FM) need also be explored 

to detect the domain of scale of objects in mangrove environments. In terms of the mapping 

application, further development of object-based classification rule sets is essential for improving 

the detection of multi-scale mangrove features and determining the transferability and general 

applicability of the findings.  
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4. CHAPTER 4: 

 

OBJECT-BASED APPROACH FOR MULTI-SCALE 

MANGROVE COMPOSITION MAPPING USING MULTI-

RESOLUTION IMAGE DATASETS 
 

 

This chapter applies the optimum pixel resolution scheme for mapping mangrove features as 

defined in Chapter 3, by developing and evaluating an object-based approach to map mangrove 

features at appropriate scales from multi-resolution images (TM, AVNIR-2, WV-2 and LiDAR data) 

in Moreton Bay (Australia) and Karimunjawa Island (Indonesia). Five levels of mangrove features 

were mapped including vegetation boundary, mangrove stands, mangrove zonation, individual tree 

crowns and species community. The results demonstrate the effectiveness of a conceptual 

hierarchical model in mapping specific mangrove features at discrete spatial scales. The findings of 

this chapter provide a conceptual guidance of multi-scale mangrove mapping and technical 

demonstration to produce scale-specific mangrove information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Associated Publications: 

Kamal, M, Phinn, S & Johansen, K (2015) „Object-based approach for multi-scale mangrove 

composition mapping using multi-resolution image datasets‟, Remote Sensing - special issue on 

“Remote Sensing of Mangroves: Observation and Monitoring”, vol. 7, pp. 4753-4783. [DOI: 

10.3390/rs70404753].  
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Key Findings: 

 Conceptual spatial and temporal hierarchical organisation of mangroves provides an 

essential aid for effective multi-scale mangrove composition mapping. 

 The use of GEOBIA through the mangrove image objects hierarchy enables the production 

of mangrove composition maps at discrete spatial scales, with an acceptable level 

of accuracy. 

 The spatial variation of mangrove vegetation determines the level of information that can be 

mapped using remote sensing images. 

 Image spatial and spectral resolutions dictate the level of information detail able to be 

obtained from the image dataset.  

 Combining the image spectral reflectance value with contextual information significantly 

increases the accuracy of the mapping. 

 The development and application of the GEOBIA rule-set is sensor, site, and time 

dependent. 

 Mapping smaller objects requires a more complex rule-set and results in more within-class 

variability. 

 The accuracy of the produced maps is a result of the interaction between the image spatial 

resolution, the scale of the targeted objects and the number of classes on the map. 
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4.1. Introduction 

Spatial information on the distribution, composition and condition of mangroves at appropriate 

spatial scales is essential to support the understanding and management of mangrove ecosystems 

and their biodiversity. Remote sensing with the correct selection of sensors and image processing 

methods provides an efficient, rapid, accurate and often cost-effective source of mangrove 

information (Green et al. 1998b; Green et al. 1998a; Giri et al. 2007). In mangrove mapping, remote 

sensing approaches have some advantages compared with the conventional terrestrial surveys. 

These include provision of indirect access to remote or inaccessible mangrove sites (Davis & Jensen 

1998), the ability to extrapolate measurements from specific sampling points to larger areas 

(Hardisky et al. 1986), provision of synoptic and repeated coverage of sites (Giri et al. 2007) and 

the ability to deliver data at multiple spatial scales or levels of ecological detail (Malthus & Mumby 

2003). In the last two decades, remote sensing has been exploited to map various types of mangrove 

information from global mangrove status (Giri et al. 2011) and regional mangrove extent and 

dynamics (Giri et al. 2007; Bhattarai & Giri 2011), to local mangrove species composition (Wang et 

al. 2004a; Kamal & Phinn 2011; Koedsin & Vaiphasa 2013; Heenkenda et al. 2014) and 

biophysical applications (reviews in Heumann (2011b) and Kuenzer (2011)). Most mangrove 

studies using remote sensing techniques produced single scale-specific information, depending on 

the spatial resolution of the dataset(s) used. Remote sensing studies using a diversity of information 

within mangrove forests are still uncommon (Held et al. 2003). In this study, a multi-scale mapping 

approach was presented to produce mangrove maps at multiple spatial scales by integrating existing 

knowledge on the spatial hierarchical structure of mangrove ecosystems, field data, multi-spatial 

resolution images and GEOBIA techniques. 

 

Providing multi-scale information about mangroves, where each scale corresponds to an ecological 

organisation of structure or process, is necessary to properly address issues related to management 

and conservation at relevant scales in this environment and it remains the major challenge in remote 

sensing for all environments (Krause et al. 2004). The production of meaningful multi-scale 

mangrove information from remote sensing data requires an understanding of the organisation of 

mangrove composition, structure and processes in different spatial scales. From an ecological 

perspective, environmental inferences are scale-dependent (Wiens 1989) and conclusions reached at 

one scale of analysis may not be easily applied to other scales (Marceau & Hay 1999; Schaeffer-

Novelli et al. 2005). In theory, mangrove ecosystems are perceived as having spatial and temporal 

hierarchical organisations; from the landscape setting down to individual tree and leaf structures, 

which change at timescales from centuries to hours (Duke et al. 1998; Farnsworth 1998; Twilley et 

al. 1999). This hierarchical approach has been used to understand mangrove ecosystems for more 
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than three decades (Feller et al. 2010). The central concept of this theory focuses on the differences 

in structure and process rates between levels. Based on these differences, mangrove ecosystems are 

viewed as being stratified into discrete levels of interacting subsystems, with attributes occurring at 

specific spatial and temporal scales.  

 

Remote sensing data and correct application of image processing techniques can provide data at 

multiple spatial scales or levels based on single or multiple images (Blaschke 2002; Burnett & 

Blaschke 2003; Blaschke et al. 2014). In this case, the spatial resolution of the imaging sensor and 

scale(s) of features in the environment imaged dictates the level of detailed information that can be 

produced (Woodcock & Strahler 1987; Woodcock & Harward 1992; Marceau & Hay 1999). 

Remote sensing can provide information on mangroves at multiple scale levels depending on the 

user‟s need. By synthesising the knowledge of the hierarchical structures of mangroves (Farnsworth 

1998; Twilley et al. 1999; Berger et al. 2008; Feller et al. 2010) with the empirical study of the 

optimum pixel size to extract mangrove features from remotely-sensed images (Kamal et al. 2014), 

explicit relationships between spatial and temporal scales of mangrove features and the 

corresponding image spatial resolution at which to map these features, can be established (Figure 

4.1). This relationship guides the image analysts or interpreters to select the optimal image spatial 

resolution in order to accurately map a specific mangrove feature.  

 

Figure  4.1. Conceptual temporal and spatial hierarchical organisation of mangrove features 

identifiable from remotely-sensed images and the required image pixel resolution for mapping the 

features. (Symbols are courtesy of the Integration and Application Network, University of Maryland 
Center for Environmental Science - ian.umces.edu/symbols/). 
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A GEOBIA approach facilitates multi-scale object recognition from a single image or across several 

images (Blaschke 2002; Blaschke et al. 2014). It enables an image to be segmented into a 

hierarchical network of image objects that addresses the limitation of specific pixel-level 

information in the pixel-based mapping approach (Blaschke & Strobl 2001). In GEOBIA the image 

data can be divided into homogenous image objects at a number of discrete spatial scales which are 

organised in an interrelated hierarchy, where larger objects consist of several smaller objects 

(Müller 1997; Burnett & Blaschke 2003). These image objects can represent meaningful multi-scale 

features of different sizes, shapes and spatial distribution within an image scene such as individual 

trees, tree patches and forest (Castilla & Hay 2008) (Figure 4.1). Image classification based on 

image objects provides more relevant information than per-pixel classification, as it provides a more 

appropriate scale to map environmental features at multiple spatial scales (Gamanya et al. 2007).  

 

Numerous studies in GEOBIA have reported that the application of the multi-scale hierarchical 

concept in the mapping process provides more accurate and useful information (Hay et al. 2005; 

Blaschke 2010). However, one of the main issues in GEOBIA is the selection of an appropriate 

spatial scale for image segmentation to ensure the image object classes are mapped consistently at 

one scale (i.e. individual trees), and do not overlap, but fit hierarchically with classes that apply to 

other scales (e.g. tree patches). In this case, high-spatial resolution imagery (< 5 m) is generally 

suitable for multi-scale object-based segmentation and classification (Johansen et al. 2009; 

Blaschke 2010). This paper developed and evaluated the GEOBIA approach for mapping mangrove 

composition at multiple scales using multi-spatial resolution image data. Three objectives were 

addressed in this study: (1) to map targeted mangrove features at multiple spatial-scales (vegetation 

boundary, mangrove stands, mangrove zonation, individual tree crowns and species community) 

using a GEOBIA approach applied to multiple image datasets (TM, AVNIR-2, WV-2, and LiDAR); 

(2) to assess the accuracy of the mapping results; and (3) to evaluate the effect of image spatial 

resolutions on the produced maps. In a broader context, this study demonstrates the capability of 

remote sensing data to provide mangrove information at multiple spatial scales to fulfil the needs of 

mangrove management and conservation at various spatial and ecological scales.  

 

4.2. Data and Methods 

4.2.1. Study Area 

The study sites for this chapter were in two mangroves areas; the mouth of the Brisbane River, 

northern Moreton Bay, South East Queensland, Australia and Karimunjawa National Park, Central 

Java, Indonesia. For detailed descriptions of these locations refer to section 2.1 of the thesis. 
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4.2.2. Image Datasets 

This study used TM, AVNIR-2 and WV-2 multispectral images of the mouth of the Brisbane River 

and Karimunjawa Island to cover the variation of image spatial resolutions investigated, with the 

addition of LiDAR data and aerial photos for the Moreton Bay sites (Table 4.1). The image pre-

processing details are presented in section 2.2 of the thesis. 

 

Table ‎4.1. Image datasets used in Chapter 4. 

Image type 
Moreton Bay 
image acquisition 
date 

Karimunjawa 
Island image 
acquisition date 

Pixel size Spectral attributes (nm) 
Geometric 
attributes 

Landsat TM 14 April 2011 31 July 2009 30 m Blue (452-518), green (528-609), 
red (626-693), NIR (776-904), 
MIR1 (1567-1784), MIR2 (2097-
2349) 

Level 1T 

ALOS  AVNIR-2 10 April 2011 19 Feb 2009 10 m Blue (420-500), green (520-600), 
red (610-690), NIR (760-890) 

Level 1B2G 

WorldView-2 14 April 2011 24 May 2012 2 m (multi), 
0.5 m (pan) 

Coastal blue (400-450), blue 
(450-510), green (510-580), 
yellow (585-625), red (630-690), 
red edge (705-745), NIR1 (770-
895), NIR2 (860-1040), 
panchromatic (450-800) 

Level 3X 

LiDAR April 2009 - 2.8 pts/m2 - Geo-referenced 

Aerial photo 14 January 2011 - 7.5 cm RGB image Geo-referenced 

 

The Gram-Schmidt spectral sharpening image fusion technique (Laben & Brower 2000) was 

applied to produce a pan-sharpened WV-2 image with a 0.5 m pixel size. This pan-sharpening 

technique was selected because it preserved the original spectral information of the image, and 

could be simultaneously applied to multispectral bands. A Canopy Height Model (CHM), Digital 

Terrain Model (DTM), and fractional canopy cover (FCC) were derived from the LiDAR data using 

lasheight, lasgrid and lascanopy modules from LAStools (rapidlasso Gmbh., Germany). The CHM 

and DTM were used in combination with the multispectral images to define the boundary of 

mangroves and produce a mangrove structural composition map for the Moreton Bay site. Finally, a 

very high-spatial resolution aerial photograph (7.5 cm pixel size) with true colour layers 

(www.nearmap.com) of Moreton Bay was used as a reference to analyse the classification accuracy 

of the produced maps. 

 

4.2.3. Field Datasets 

Fieldwork was conducted during April 2012 (for Moreton Bay sites) and July 2012 (for 

Karimunjawa Island) to collect information on vegetation structure and composition in the study 
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areas. There were 21 (200–300 m long) field transects established perpendicular to the shoreline to 

record the variation of mangrove vegetation structure and species composition at different zones 

(Figure 2.3 of the thesis). These field transects were purposively selected to represent the variation 

of local mangrove zonation and at an accessible location. A detailed fieldwork description is 

presented in section 2.3 of the thesis.  

 

Four distinct mangrove zonations were identified from the high-spatial resolution images for both 

study sites and verified by field visits (Table 4.2). For Moreton Bay mangroves, Avicennia marina 

is the dominant mangrove species throughout each zonation but different mangrove structural 

formations occur within each zone. From the shoreline towards land, these zones represent mature 

closed forest, low-closed forest with single stems (some individual Rhizophora stylosa or Ceriops 

tagal were found in this zone), low-closed forest with single/multi stems and open scrub. At the 

Karimunjawa Islands site, the dominant mangrove structural formation is closed forest, with a 

greater variety of mangrove species throughout the zonations. Tall trees of Rhizophora apiculata 

dominate the fringing shoreline area, followed by zones of highly-mixed Bruguiera gymnorhiza, 

Bruguiera cylindrical, Xylocarpus granatum and Excoecaria agallocha. The third and fourth 

zonations were mixes of Ceriops tagal and Lumnitzera racemosa with different vegetation 

structural formations. 

 

Table  4.2. Mangrove canopy height, formation type, canopy cover and dominant species derived 

from field data sampled across the vegetation zones at four study sites. 

Mangrove 
zones*  

Whyte Island Fisherman Island Boondall Wetlands Karimunjawa Islands 

Zone 1 
 
 
 

 

10-12 m, closed forest 
(M4) with single or 
multi-stems, high 
density canopy cover, 
Avicennia marina trees. 

8-11 m, closed forest 
(M4) with single or multi-
stems, high density 
canopy cover, Avicennia 
marina trees. 

8-10.5 m, closed forest 
(M4) with single or multi-
stems, very high density 
canopy cover, Avicennia 
marina trees with some 
patches of Ceriops tagal. 

11-15 m, closed forest (M4) 
with single or multi-stems, 
very high density canopy 
cover, Rhizophora apiculata 
trees with some individual 
Bruguiera gymnorhiza.  

Zone 2  

 

6-8 m, low-closed forest 
(I4) with single stem, 
very high density 
canopy cover,  
Avicennia marina trees 
with some individual 
Rhizophora stylosa. 

8–10 m, low-closed forest 
(I4) with single stem, high 
density canopy cover,  
Avicennia marina with 
some individual 
Rhizophora stylosa and 
patches of Ceriops tagal. 

7–9 m, low-closed forest 
(I4) with single stem, very 
high density canopy 
cover,  
Avicennia marina with 
some individual 
Rhizophora stylosa.  

10-13 m, closed forest (M4) 
with single stems, very high 
density canopy cover, 
Bruguiera gymnorhiza, 
Bruguiera cylindrical, 
Xylocarpus granatum and 
Excoecaria agallocha. 

Zone 3  

 

4–7 m, low-closed 
forest (I4) with single or 
multi stems,  
medium density canopy 
cover, 
Avicennia marina. 

4–9 m, low-closed forest 
(I4) with single stem, high 
density canopy cover, 
Avicennia marina.  

5–7.5 m, low-closed 
forest (I4) with single 
stem, very high density 
canopy cover, Avicennia 
marina.  

7-10 m, low-closed forest 
(I4) with single or multi 
stems, high density canopy 
cover, Ceriops tagal and 
Lumnitzera racemosa. 
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Table 4.2. Continued. 

Mangrove 
zones*  

Whyte Island Fisherman Island Boondall Wetlands Karimunjawa Islands 

Zone 4 1–3 m, open scrub (S3) 
with multi stems, low 
density canopy cover, 
Avicennia marina. 

2.5–4 m, open scrub (S3) 
with single or multi stems, 
low density canopy cover, 
Avicennia marina. 

1.5–5 m, open scrub (S3) 
with single or multi stems, 
medium density canopy 
cover, Avicennia marina. 

4-9 m, low multi-stem forest 
(VL4) with multi-stems, 
medium density canopy 
cover, Ceriops tagal and 
Lumnitzera racemosa. 

*Zone 1, 2, 3, and 4 for Moreton Bay sites are centered at about 25, 75, 125, and 175 m respectively from Coastline; and 25, 150, 
250, and 350 m for the Karimunjawa site. 

 

4.2.4. Mangrove Vegetation Structure Characterization 

Prior to the mapping process, it is essential to perform an exploratory analysis to understand the 

spatial variability of the vegetation structure at different targeted locations and environment 

settings. This approach identifies the expected levels of detail able to be obtained from each site. 

Semi-variograms were used to analyse the spatial structure of mangroves at the Moreton Bay and 

Karimunjawa Island sites. Semi-variograms are used for measuring the degree of dissimilarity 

between observations as a function of distance (Woodcock et al. 1988a). A review of its application 

in remote sensing was provided by Curran and Atkinson (1998). As demonstrated by Cohen (1990), 

Johansen and Phinn (2006) and Kamal et al. (2014), the semi-variogram can be used to explore and 

describe the spatial variation of objects of interest in the image data in various forest environments. 

The equation for semi-variance γ(h) is: 

 

γ(h)   
 

  
∑*  ( )    (   )+                                   (Eq. 4.1) 

 

where γ(h) represents half of the mathematical expectation of the squared differences of pixel pair 

values at a distance h. For image spectral data, γ(h) estimates the variability of pixels digital number 

(DN), as a function of spatial separation. The semi-variograms in this chapter were derived from 

21-line transects positioned across the mangrove zonations on the WV-2 image, coinciding with the 

field transects. All of WV-2 pan-sharpened bands were used to produce semi-variograms but only 

the green band was presented because it depicted the highest level of detail of mangrove vegetation 

information compared with the other bands (Kamal et al. 2014). 

 

4.2.5. Overview of the GEOBIA Approach 

The GEOBIA mapping process started with developing a conceptual hierarchical structure of 

mangrove objects based on published literatures on mangrove spatial structure and the analysis 

described in section 4.2.4, field work data and local knowledge (Figure 4.2). It shows the 
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organisation of mangrove features at various spatial scales and represents the objects of interest to 

be mapped. Inclusion of specific scales of mapped features is one of the main advantages of 

GEOBIA, which does this in a multi-scale hierarchical network of image objects derived through 

image segmentation (Hay et al. 2003; de Jong & van der Meer 2005). Based on the conceptual 

hierarchy, five levels of mangrove features were selected (see output section in Figure 4.2). To 

perform the multi-scale mangrove mapping, eCognition Developer 8.7 (Trimble 2011) was 

exploited to develop the rule set and for executing the object-based routine.  

 

 

Figure  4.2. Flowchart of the mangrove composition mapping process applied in Chapter 4. 

 

4.2.5.1. Classification Hierarchy and Rule Set Development 

Developing conceptual hierarchical levels of the objects of interest is essential in multi-scale 

mapping using GEOBIA (Baatz & Schäpe 1999; Blaschke 2002; Burnett & Blaschke 2003). This 

hierarchy shows the spatial organisation of the objects in the landscape or image scene from a larger 

landscape unit into the smaller objects or component units. The landscape scaling ladder concept 

(Wu 1999; Blaschke 2002; Burnett & Blaschke 2003) was implemented to break down the 

complexity of targeted mangrove information into manageable units that still linked across scales 

(Figure 4.3). In the hierarchy, the “super-level” objects act as containers for the “sub-levels” and 

work within parent and child relationships; while objects at the same level have a neighbourhood 

relationship (Blaschke 2002; Trimble 2011). There are several advantages to having this hierarchy 

in place, as it provides a logical sequential mapping process, has a clear multi-scale context for the 

targeted objects and their relationships and provides control over the process within a certain level 

and object container.  
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From the object hierarchy it is possible to develop a strategy and procedure to identify and map the 

targeted objects individually, which was documented in the form of rule sets. For example, 

conceptually mangroves can be found within vegetation features in the image and it also serves as 

the container of several lower hierarchical levels such as mangrove zonations, tree crowns and 

canopy gaps and individual tree species. At this stage, it is also necessary to identify some potential 

properties commonly embedded in these features in the image, which could be spectral, textural, 

and/or contextual spatial information of the targeted features. The contextual spatial information or 

contextual information in GEOBIA refers to the relative relationship of pixel to objects on the scene 

(Lang 2008; Blaschke 2010), such as distance and proximity to an object, relative height or 

elevation, pixel location in relation to objects, etc. Together, the conceptual object hierarchy and 

mapping strategy provide a feasible scenario to apply in the rule set processes to address the 

predefined research problem. Table 4.3 shows the documented multi-scale mapping scenario, 

membership rules and the classification processes developed for the Moreton Bay mangrove site. 

This is explained in more detail in the corresponding sections. The detailed rule set for 

Karimunjawa Island is provided in Appendix 4, the produced maps are presented in Appendix 5 and 

a comparison of the results is discussed in section 4.3.5. 

 

 

Figure  4.3. Image objects hierarchy for multi-scale mangrove mapping, objects relationships, and 

the levels of information at each hierarchy level. 
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Table  4.3. Summary of the membership rules used in the multi-scale mangrove classification rule 

sets for Moreton Bay mangroves. The numbers in the table correspond to section numbers in the 

method section of this paper. 

No. Information Landsat TM ALOS AVNIR-2 WorldView-2 WorldView-2 and LiDAR 

2.
5.

2 

Vegetation 
 
 

Non-vegetation 

Layer arithmetic 
Multi-threshold seg. 
FDI > 100 

Layer arithmetic 
Multi-threshold seg. 
FDI > 200 

Layer arithmetic 
Multi-threshold seg. 
FDI > 0 

Layer arithmetic 
Multi-threshold seg. 
FDI > 0 

Not “Vegetation” Not “Vegetation” Not “Vegetation” Not “Vegetation” 

2.
5.

3 

Mangroves 
 
 
 
 

Non-mangroves 

Within “Vegetation” 
Chessboard seg: 1  
Mean 4 = 1500-3500 
Mean 5 = 900-1450 

Within “Vegetation” 
Chessboard seg: 1  
Mean 3 = 300-550 
Mean 4 = 1000-3000 

Within “Vegetation” 
Chessboard seg: 1  
(7-5)/(3-5) = 8-22 
Mean 5 < 720 

Within “Vegetation” 
Chessboard seg: 1  
(7-5)/(3-5)  = 8-22 
Mean 5 < 720 
Mean DTM < 1.5 

Not “Mangroves” Not “Mangroves” Not “Mangroves” Not “Mangroves” 

2.
5.

4 

Zonation 
bands 

 

 

 

 

Within “Mangroves” 
Multiresolution seg. 
(SP:10, s:0.1, c:0.5) 

Within “Mangroves” 
Multiresolution seg. 
(SP:25, s:0.1, c:0.5) 

Within “Mangroves” 
Multiresolution seg. 
(SP:25, s:0.1, c:0.5) 

Zone 1 
 

- 

 

1.5 < 4/(3+1) < 4 
Coast dist < 75m  

0 > 7/(5+6) < 1.36 
Coast dist < 75m 

Mean CHM > 10 
FCC < 1 

Zone 2 
 

- 

 

2.5 < 4/(3+1) < 6 
25>Coast dist<100m 

7/(5+6) > 0 
25>Coast dist<100m 

7 < CHM < 10 
0.95 > FCC < 1 

Zone 3 
 

- 

 

1.5 < 4/(3+1) < 4 
Coast dist > 100m 

0 > 7/(5+6) < 1.36 
Coast dist > 100m 

3 < CHM < 7  
FCC < 0.98 
Coast dist > 75 

Zone 4 - 1.5 < 4/(3+1) < 6 
Coast dist > 100m 

7/(5+6) > 1.36 
Coast dist > 100m 

CHM  < 3 
FCC < 0.98 

2.
5.

5 

Tree 
canopy 

Canopy 
gaps  
 
 

 

- 
 
 
 

 

- 
 
 
 

 

Within “Mangroves” 
Chessboard seg: 1 
Within “Mangroves” 
Mean PC1 > 500 
Mean PC2 < -250 

Within “Mangroves” 
Chessboard seg: 1 
Mean CHM < 3 
 
 

Tree 
crowns  

- 

 

- Not “Canopy gaps” 
Seed based on local 
maxima of NIR1. 
Grow seed by ratio to 
neighbour < 1.2. 
Opening the seed. 

Not “Canopy gaps” 
Seed based on local 
maxima of CHM. 
Grow seed by ratio to 
neighbour < 1.5. 
Opening the seed. 

2.
5.

6 Individual species - - Within “Tree crowns”.  
Nearest Neighbour classification with samples 
taken from the individual tree crown. 

FDI: Forest Discrimination Index, NIR: near-infrared, MIR: mid-infrared, DTM: digital terrain model, CHM: canopy height model, FCC: 
fractional canopy cover, PC: principal component, SP: scale parameter, s: shape, c: compactness, italic numbers represent band 
order for the associated images, the conditional operator used on each membership rule was “and(min)”.  
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4.2.5.2. Vegetation and Non-Vegetation Separation 

The first classification level in the multi-scale mapping process generated a mask to separate 

vegetation and non-vegetation features (i.e. water bodies, soils and other artificial surfaces) in the 

image. In this study, the Forest Discrimination Index (FDI) developed by Bunting and Lucas (2006) 

was modified for WV-2 image to separate vegetation and non-vegetation as follow: 

 

 FDI   NIR1 - (Red   Green)                                            (Eq. 4.2) 

 

This equation was derived by examining the spectral reflectance pattern of targeted features from 

the WV-2 image bands that had the greatest spectral separation between vegetation and non-

vegetation features. The near infra-red1 (NIR1) band, as expected, provided a consistently high 

spectral response of all types of healthy vegetation and gave the greatest spectral separation 

between features (Figure 4.4a). Water and artificial surfaces (building roofs and asphalt) had 

high spectral reflectance in the green band (band 3) and lower spectral reflectance in the red 

band (band 5), but greater separation from vegetation features. In this case, the sum of the green and 

red bands could be greater, lower or equal to the value of the near infrared1 band. Therefore, for the 

WV-2 image, FDI values greater than zero represent all types of vegetation features and zero or 

negative values represent non-vegetation features (Figure 4.4b). Different threshold values were 

applied to other images due to variation of object spectral reflectance responses between images 

(Table 4.3).  Layer arithmetic and multi-threshold segmentation algorithms were used to implement 

this process in eCognition Developer 8.7 software. 

 

 

Figure  4.4. Spectral reflectance profiles extracted from WV-2 image: (a) major land cover types in 

Moreton Bay site, and (b) comparison of true colour WV-2 image and the FDI classification result. 

 

° 
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4.2.5.3. Mangroves and Non-Mangroves Discrimination 

Figure 4.5 summarises the sequences of mangrove composition mapping using WV-2 images in this 

chapter. Mangroves and non-mangroves within the vegetation class were separated by combining 

thresholds of image bands or band algorithms that were sensitive to mangrove features. For spectral 

recognition of mangroves, the near-infrared reflectance spectrum revealed different reflectance 

levels related to the internal leaf structure and facilitated in the discrimination of mangroves from 

other objects (Kuenzer et al. 2011). It is also evident from the spectral reflectance profile in 

Figure 4.4a that mangroves and other vegetation objects are distinguishable by their spectral 

profiles; specifically in the green, red and NIR bands of the WV-2 image where the spectral 

separation are optimal.  

 

 

Figure  4.5. Subset of Whyte Island maps showing the mapping sequences. (a) WV-2 standard false 

colour composite, (b) vegetation (V) and non-vegetation (NV) discriminated using FDI, (c) 
spectral-based mangroves (M) and non-mangroves (NM) separation, and (d) band combination 

image to enhance the mangrove zonations. Tree crown delineation process showing (e) colour 
composite of PC1, PC2, PC1 (RGB), (f) masked canopy gaps (white), (g) tree canopy seeds (red) on 

top of NIR band, and (h) tree crown polygons resulting from region growing algorithm. 
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At the Moreton Bay site, a ratio of the spectral reflectance distance between NIR to red, and green 

to red ([NIR-red]/[green-red]) was found to be effective in separating mangrove from non-

mangrove objects in the WV-2 imagery (Figure 4.5c). The NIR and red bands were also useful for 

discriminating mangrove objects in the AVNIR-2 imagery, as were the NIR and the first mid 

infrared (MIR1) band for the TM image (Table 4.3). To enable comparison with the spectral-based 

only approach, the contextual information in the form of a DTM derived from LiDAR data was also 

used in this process in combination with the WV-2 image. The DTM was used to set an elevation 

boundary above sea level for mangrove habitats commonly occurring in the lower parts of tidal flats 

in coastal or riverine areas, which are frequently inundated by saline water. Limiting the delineation 

to the typical elevation of mangrove habitats will increase the accuracy of the classification and 

compensate for limitations of spectral-based recognition. 

 

4.2.5.4. Mangrove Zonation Pattern Delineation 

Mangrove zonation boundaries at the study sites follow the topographic contours, which are 

possibly  indicative of tidal inundation levels (Duke et al. 1998). From the field survey, it was 

established that these zonations represent a variation of canopy cover density, stem structure, 

dominant species and tree height (Table 4.2). Optical remote sensing data can often distinguish 

different mangrove zones based on the spectral reflectance of dominant mangrove species within 

each zone (Lucas et al. 2007). Multi-resolution segmentations were applied to the mangrove class to 

aggregate the zonation pattern. Using the AVNIR-2 and WV-2 images, a combination of band ratios 

and the distance from the coastline (Table 4.3) facilitated the differentiation of mangrove zonation 

boundaries (Figure 4.5d). However, due to the large pixel size and the narrow mangrove zonation 

bands, TM was unable to differentiate the zonation pattern. As a comparison, the CHM and 

fractional canopy cover (FCC) derived from LiDAR data were also incorporated to differentiate the 

mangrove zonations based on tree height and canopy cover density. 

 

4.2.5.5. Mangrove Tree Canopy Crowns and Gaps Delineation 

To delineate individual mangrove tree crowns and gaps the “valley following” (Gougeon 1995) and 

“region growing” (Culvenor 2002) approaches were modified and applied in the eCognition 

Developer software. The basic principle of tree crown delineation is well-described using three 

dimensional “radiometric topography” analogy of tree crowns (Culvenor 2002). The valleys (local 

minima) that have lower spectral reflectance (i.e. in the NIR or panchromatic band) represent the 

boundary of tree crowns, while the peaks, which have local maxima, are treated as seeds and will be 

grown towards the boundary of the valleys. The polygons created from this region-growing 

approach are the tree crowns. There are two implicit assumptions in these approaches; (1) the tree 
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crown should be visually recognisable as a discrete object on the image (i.e. the pixel size of the 

image must be smaller than the average size of the tree), and (2) the tree crown is brighter (or has a 

higher pixel value) than the edge of the crown (Culvenor 2003). Therefore, the pan-sharpened   

WV-2 image with a pixel size of 50 cm was used to delineate the tree crowns. 

 

There were three main steps to delineate mangrove tree crowns. The first step was to find tree 

canopy gaps between trees as the boundary of the tree crowns. It is common in mangrove forest to 

have irregular stands and canopies with groups of trees often clumped into a single wider canopy, 

making the delineation of canopy gaps through shadow (local minima) growing difficult. Therefore, 

PC1 and PC2 of the image, which accounted for 99.84% of the variance, were used to emphasise 

the difference in appearance between soil backgrounds or canopy gaps and mangrove tree canopies 

(Figure 4.5e, f). The second step was to find the tree top (local maxima) from the original NIR1 

band and treat them as crown seeds (Figure 4.5g), and then grow it toward the canopy gaps border. 

A ratio of NIR1 spectral values of the adjacent pixels to the crown seed was used to grow the crown 

region in a looped iteration until the crown seed polygons reached the canopy gaps border. This rule 

set was developed to adapt the sample sites‟ mangrove pattern, where there were noticeable canopy 

gaps between tree canopies. Modifications might be needed to apply this rule set to mangrove 

forests with limited canopy gaps. Finally, the delineated tree crowns were refined using a pixel-

based morphological opening operation to smooth the edge of the tree crown polygons (Figure 

4.5h). As a comparison, the LiDAR data were used to delineate tree crowns based on the patterns of 

canopy height derived from the CHM. 

 

4.2.5.6. Mangrove Tree Species Identification 

Delineated tree crowns were classified into main mangrove species found at the study sites using 

the pan-sharpened WV-2 multi-spectral image bands using a supervised nearest neighbour (NN) 

classifier. The extra textural information in the pan-sharpened imagery is important to include due 

to the different vegetation structural characteristics of mangrove species. The boundary of the tree 

species communities is also more apparent with smaller pixels. An approach similar to the one 

developed by Gougeon and Lackie (2006), where representative sample objects of each mangrove 

species were collected individually from the tree crown polygons, was applied and used to generate 

signatures for each class. The nearest neighbour (NN) algorithm looks for the closest sample object 

in the feature space for each image object (Trimble 2011). A standard NN algorithm was used based 

on the mean value of red, green, blue, PC2 layers and the standard deviation of layer NIR1, with the 

selection of the object samples guided by the field species identification. However, due to the 

domination of Avicennia marina stands in Moreton Bay mangroves, it is difficult to identify the 
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other species using this approach. Therefore, this classifier was applied to discriminate between 

different communities of Avicennia marina in Moreton Bay mangroves. 

 

4.2.5.7. Mangrove Composition Mapping Validation 

The accuracy assessment of GEOBIA requires assessment of the geometric accuracy (shape, 

symmetry and location) of the created image objects (Schopfer & Lang 2006), because the 

geometry of image objects is an inherent property resulting from image segmentation. Only limited 

numbers of published works describe the area-based accuracy approach developed for GEOBIA 

(Blaschke 2010). Among the significant results in this field were studies done by Zhan et al. (2005) 

and Whiteside et al. (2010) who developed a framework for assessing the quality of geometric 

properties of image objects based on the error matrix idea. An area-based accuracy assessment 

(Table 4.4) was used to measure the degree of similarity between the results of the classification 

and reference data from different aspects, including overall quality, user‟s accuracy and producer‟s 

accuracy (Zhan et al. 2005). In addition, the overall accuracy measure, which is defined as the ratio 

between the correctly classified area and the total area of observation, was also calculated. To 

perform this calculation, the reference data used in this measurement should have an area dimension 

matching the classified objects (Zhan et al. 2005; Whiteside et al. 2010). 

 

Table  4.4. Area-based accuracy assessment equations (Zhan et al. 2005; Whiteside et al. 2010). 

Measure Equations Equation number 

Overall Quality (OQ)      

                   
 

4.3 

User’s Accuracy (UA)      

   
 

4.4 

Producer’s Accuracy (PA)      

   
 

4.5 

Overall Accuracy (OA)      

     
 

4.6 

  is the area of the classif ied object and   is the area of the reference object,     is the area of intersection between   
and  ,      is the area of   not covered by  ,      is the area of   that is not covered by  , and     is the 
area covered by both objects. 

 

The accuracy assessments were performed for map results of levels 1 to 4 (see Figure 4.3) against 

the thematic maps derived from manual interpretation of a very-high-spatial resolution aerial 

photograph (7.5 cm pixel size) of the Moreton Bay mangroves. All of these features can be 

accurately discriminated and delineated from this imagery. This approach was selected due to the 
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lack of reference information for the study sites for the accuracy assessment. The image 

interpretation results from the very high-spatial resolution aerial photographs were accepted to be 

correct without any form of accuracy assessment (Congalton 1991). However, the accuracy 

assessment for Karimunjawa Island was not performed due to the lack of the reference maps and 

very-high resolution aerial imagery. Following the approach by Whiteside et al. (2010), a circular 

buffer with a 50 m radius of 30 random point samples within the “class domain areas” were created 

to calculate the area-based accuracy assessment. The circular buffer was used for practical reasons 

to create the area samples, and the number of points and buffer radius were chosen with regard to 

the size of the objects on the map being accuracy assessed. The resulting circular polygons were 

used to clip both the classified image objects and visually-interpreted reference map for area 

comparisons (Figure 4.6). A similar approach was implemented for the accuracy assessments of 

levels 3, 4, and 5. However, for level 3, only 10 random points were plotted and used a buffer radius 

of   20 m within each zonation because of the smaller area of the object class being validated. Ten 

random points with a 10 m radius buffer was used for levels 4 and 5. However, at the mangrove 

species level, the South East Queensland mangrove composition maps (1:25.000) produced by the 

Queensland Herbarium (Dowling & Stephens 1998) were used as reference data. This map was 

produced from aerial photograph interpretation combined with extensive fieldwork, which shows 

the mangrove species communities and their description of the Moreton Bay area. 

 

 

Figure  4.6. Example of mangroves and non-mangroves area-based accuracy assessment; (a) 

reference map, (b) classified map from WV-2 image, and (c) classes produced from the area 

intersection process. 
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4.3. Results and Discussion 

4.3.1. Mangrove Spatial Structure from Semi-Variogram Analysis 

The particular interest of this study was the forms of the semi-variograms, namely sill and 

periodicity. They are related to the density of objects and scene-scale level of variance (Woodcock 

et al. 1988b; Jupp et al. 1989), and provide an indication of a repetitive spatial pattern along the 

transect (Curran 1988; Woodcock et al. 1988b). Figure 4.7 showed that Fisherman and Whyte 

Island mangroves have higher sill and periodicity than the Boondall wetland and Karimunjawa 

Island mangroves. This pattern was attributed to the high variation in the degree of openness of the 

mangrove canopy and the significant canopy gaps present in the Fisherman and Whyte islands 

mangroves, allowing individual tree crowns to be detected. On the other hand, mangroves in the 

Boondall wetlands were dominated by low-closed Avicennia marina forest of homogeneous stems 

with very high-density canopy cover and the mangroves in Karimunjawa Island mainly consisted of 

closed-mature mangrove trees with overlapping canopy crowns (Table 4.2). It was noticeable from 

the image (Figure 4.7c and d) that it has a smooth texture with minimum gaps between tree stands 

and some clumping of tree groups, preventing detection of individual tree crowns from the image. 

From the semi-variogram analysis, it was hypothesised that mangroves on Fisherman and Whyte 

islands have higher vegetation structural variability compared with the others, providing a higher 

level of information for mangrove mapping (i.e. up to the tree canopy crown level). 

 

 

Figure  4.7. Subsets of green band semi-variograms up to 50 m lag distance, showing the variation 
of vegetation structure at different sites. Coordinates represent the approximate centre of each 

image. 
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4.3.2. Mangrove Composition Maps 

The results of this study demonstrated that the GEOBIA approach was able to produce various 

mangrove feature information details from single and multiple images by integrating field data, 

operator local knowledge and a conceptual hierarchical model of multi-scale mangrove features in 

the rule set (Figure 4.8). The results showed that the developed rule set was able to map targeted 

mangrove composition objects from images with different spatial resolutions. Only limited studies 

have implemented the explicit hierarchical model of objects in mangrove mapping (Murray et al. 

2003; Krause et al. 2004; Kamal & Phinn 2011; Heenkenda et al. 2014). This study demonstrated 

the effectiveness of having a conceptual hierarchical model for mangrove mapping. It also 

described the ability and limitation of the images and the mapping approach in depicting 

information of mangrove composition. Nevertheless, membership rules/thresholds in the rule set 

required adjustment for each image (see Table 4.3). The results also show the required image pixel 

resolution aspect in the conceptual spatial hierarchical organisation of mangroves features 

identifiable from remotely-sensed images (Figure 4.1). 

 

Image spectral reflectance was the main criteria used to map vegetation and mangrove stands from 

the optical images (TM, AVNIR-2 and WV-2). The FDI algorithm successfully discriminated 

between the vegetation and non-vegetation class (level 1) with a high degree of overall accuracy for 

TM (89%), AVNIR-2 (93%) and WV-2 (97%) (see Table 4.5 in section 4.3.3). This pattern was 

also visually evident in Figure 4.8a to c, where the vegetation class boundary was more accurately 

represented in WV-2 than the TM and AVNIR-2 images. The strip of Sarcocornia quinqueflora 

grass located in the middle of the saltmarsh was successfully mapped by WV-2 image (Figure 4.8c), 

but not by other images. The FDI algorithm was found to be sensitive to all typical vegetation 

spectral reflectance, regardless of the health of the vegetation. For example, the dry Sporobulus 

virginicus background grass, lacking the red-edge and absorption feature in the red part of the 

spectrum, which is typical for healthy green vegetation spectral reflectance (Carter 1994; Bunting & 

Lucas 2006) (Figure 4.4), was classified as vegetation. In general, the FDI algorithm was 

transferrable from WV-2 to the other images but it required adjustment of the vegetation threshold 

for each image (Table 4.3). 
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Figure  4.8. Example subsets of mangrove composition maps at Whyte Island, Moreton Bay, 

showing all hierarchy levels produced from different image sources. 



CHAPTER 4 Object-based approach for multi-scale mangrove composition mapping 

75 

 

The mangrove stands (level 2) were differentiated within the vegetation class created in level 1. The 

spectral reflectance of mangroves is strongly influenced by tidal effects and soil background, 

resulting in mixed pixels (Blasco et al. 1998; Díaz & Blackburn 2003). As a consequence, it makes 

the application of a pixel-based approach in mangrove stands problematic. However, the 

combination of image bands and context information in the rule set in GEOBIA allows effective 

recognition of mangrove objects in the image (Heumann 2011a; Kamal & Phinn 2011; Heenkenda 

et al. 2014). For the spectral only approach, the green, red, NIR and MIR bands provided a useful 

tool to discriminate mangrove stands from other vegetation objects. Exploratory work to find the 

best image band algorithm and associated threshold for each band, representing mangrove stands, 

suggested that each image has a unique combination of band algorithm and threshold to 

successfully separate mangrove from non-mangrove objects. However, the results showed some 

Casuarina glauca trees were misclassified as mangrove tree stands due to their similar spectral 

reflectance (see along the port highway in Figure 4.8e to g as examples). To refine the arbitrarily-

defined spectral-based rule set, the DTM derived from LiDAR was included in the rule set as 

contextual information about the mangrove habitat. A threshold of DTM ≤ 1.5 m above mean sea 

level was found to be useful in combination with the WV-2 spectral-based rule set and applicable to 

all Moreton Bay mangrove sites. This additional information significantly improved the accuracy of 

the mangrove delineation (Figure 4.8h) by 9% (Table 4.5). 

 
Within the mangrove class, the zonation pattern in Moreton Bay was difficult to map using image 

spectral information only. The zonation pattern in Moreton Bay represents variations of Avicennia 

marina vegetation structure (i.e. canopy density, tree stem, tree height) across the mangrove stand. 

Hence, the mangrove zonation pattern differentiation based on image spectral reflectance suggested 

by Lucas et al. (2007) was not applicable in this case. To address this issue, in theory, the inclusion 

of textural or contextual information might help the classification. However, the finding showed 

that the textural information of the image did not facilitate the zonation discrimination. It might be 

attributed to the fact that some of the mangrove zones have highly mixed vegetation structure stands 

with a number of canopy gaps (i.e. S3 and M4 in Moreton Bay), making it difficult to differentiate 

the zonation based on image texture. Instead, the distance from the coastline was incorporated in 

combination with the spectral-based rule set to delineate each zone (Table 4.3), and this approach 

worked reasonably well (Figure 4.8i and j). The use of the CHM and FCC derived from LiDAR 

data were also investigated. The results showed that the mangrove zonation was oversimplified 

using the AVNIR-2 or WV-2 imagery and well-represented using a combination of WV-2 and 

LiDAR data (Figure 4.8i, j, k, respectively). However, the accuracy assessment results suggested a 
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low accuracy of the zonation maps. It was attributed to the inaccuracy in defining the mangrove 

zonation boundary, due to the mixed vegetation stands between zones. 

 

The mangrove tree crowns and species community levels were mapped using pan-sharpened WV-2 

image only (0.5 m) and a combination of pan-sharpened WV-2 with LiDAR data (2 m). Most of the 

mangrove tree canopies are very dense and have overlapping canopy arrangements. As a result, the 

definite borders of tree canopies were difficult to detect and delineate from the image. To minimise 

the tree canopy border demarcation error, a rule set was specifically developed to (1) enhance the 

differentiation between canopy gaps and trees, and (2) find the tree crown seed and grow the seed 

towards the tree crown border within the tree class (Table 4.3). Figure 4.8n shows that PC 

bands 123 enhanced the differentiation of tree and canopy gaps. The tree crowns produced from the 

pan-sharpened WV-2 showed more realistic polygon boundaries compared with the result from the 

combination of pan-sharpened WV-2 and LiDAR data, with an overall accuracy of 68% and 64%, 

respectively (Table 4.5). Although LiDAR data provided a clear tree crown pattern along with the 

canopy height information, the optimum pixel resolution resampled from the point clouds was 

limited to 2 m. According to the result evaluation, the LiDAR data worked very well on large 

canopies (i.e. 8 m diameter or larger), but were unabled to depict small individual trees crowns less 

than 8 m in diameter (see the result in comparison with Figure 4.8q). The LiDAR result in 

Figure 4.8m showed a very dense canopy with fewer and smaller canopy gaps compared with the 

pan-sharpened WV-2 result (Figure 4.8l). Therefore, as suggested by Gougeon (1995) and Culvenor 

(2003), high-spatial resolution image data with pixels significantly smaller than the tree canopy size 

is an essential requirement for tree crown delineation. 

 

The mangrove species community maps were created based on the tree crown boundaries produced 

from the previous level. The NN algorithm successfully classified the Avicennia marina 

community. Visually, the map results follow the mangrove zonation pattern from the previous level. 

However, there were noticeable misclassified open scrub Avicennia in the WV-2+LiDAR produced 

map. Although there was a clear difference pattern on the produced maps (Figure 4.8 o and p), the 

results from the accuracy assessment did not show much difference between them (54% and 53%, 

respectively). The large scale of the reference map (1:25,000), as opposed to the image resolution 

(0.5 and 2 m), was likely to be the source of this inaccuracy. 
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4.3.3. Accuracy Assessments of the Maps 

The area-based accuracy assessment calculated the area of the correctly classified class relative to 

the class domain area. In this study, an entire image was used for the domain area of level 1, 

vegetation class for level 2, and so on. Table 4.5 summarises the results of the area-based accuracy 

assessment descriptive statistics for all mangrove composition levels in the study. The overall 

quality (OQ) shows the class-related area accuracy; for instance, the area of correctly classified 

vegetation was 85% out of the total area of vegetation in level 1. On the other hand, the overall 

accuracy (OA) calculated the percentage of all correctly classified classes (vegetation and non-

vegetation) in comparison to the total class domain area (an entire image).  

 

Table  4.5. Summary of the area-based accuracy descriptive statistics in percentage (%). 

Le
ve

l 

Class 

Landsat TM ALOS AVNIR-2 WorldView-2 WV2+LiDAR 

O
Q

 

P
A

 

U
A

 

O
A

 

O
Q

 

P
A

 

U
A

 

O
A

 

O
Q

 

P
A

 

U
A

 

O
A

 

O
Q

 

P
A

 

U
A

 

O
A

 

1 
Vegetation 85 92 92 

89 
90 93 97 

93 
95 99 97 

97 
     

Non-vegetation 70 82 83 81 94 86 90 92 97 
   

 

2 
Mangroves 74 79 92 

82 
76 81 93 

82 
80 94 84 

85 
91 99 99 

94 
Non-mangroves 66 88 72 66 85 75 63 69 88 87 98 97 

3 Zone 1 
 

 
  

55 57 92 

46 

72 75 96 

53 

72 75 95 

59  
Zone 2 

 
 

  
59 59 100 45 45 98 60 61 96 

 
Zone 3 

 
 

  
38 38 99 49 50 97 39 39 99 

 
Zone 4 

 
 

  
34 34 100 44 44 99 68 68 99 

    PS WV-2 PS WV-2+LiDAR 

4 Tree crowns 
        

64 81 76 
68 

56 64 82 
64 

 
Canopy gaps 

        
34 65 41 24 36 42 

5 Avicennia (CF) 
        

65 82 75 

54 

57 87 62 

53 
 

Avicennia (LCF) 
        

58 87 64 65 77 81 

 
Avicennia (OS) 

        
22 23 94 4 4 20 

OQ: overall quality, PA: producer’s accuracy, UA: user’s accuracy, OA: overall accuracy, PS: Pan-sharpened, CF: closed-forest, 
LCF: low closed-forest, OS: open scrub. 

 

The percentage of OQ and OA have a similar pattern throughout the levels. For local mangrove 

features (levels 1 and 2), both OQ and OA have high accuracy levels, with increasing accuracy for 

the higher spatial resolution images (63–95% and 82–97%, respectively). It indicated the 

effectiveness of the mapping approach and the superiority of the high-spatial resolution images. The 

OQ and OA of “within mangrove features” (levels 3 to 5) showed lower accuracy levels (4–72% 

and 46–68%, respectively), suggesting that the rule set developed at these levels was unable to 

classify the targeted objects properly. Heumann (2011a) reported similar results, where the overall 

acuracy of mangrove stands was 94.4% and dropped to about 25% at mangrove species level. The 

producer‟s accuracy (PA) depicts the omission error or the probability of a reference object being 
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correctly classified, whereas the users‟s accuracy (UA) or commission error indicates the 

probability that an object classified on the map actually represents that category on the ground 

(Congalton 1991). For instance, for the delineation of tree crowns using the pan-sharpened WV-2 

image, 81% of the tree crown areas were correctly classified as tree crown, but only 76% of the 

areas called tree crown on the map were actually tree crowns on the ground. 

 

Overall, the area-based accuracy assessment was simple to implement and easy to interpret. The 

result of this accuracy assessment approach was not only checking the thematic category of the 

object, but also representing the spatial accuracy of object boundaries compared with the reference. 

However, it calculated one class at a time (Zhan et al. 2005) rather than all of the accuracy samples 

in one attempt, making the calculation more time-consuming. The locations of the areal sampling 

for calculation were also limited to the class domain area. Therefore, in accordance with the 

findings of Whiteside et al. (2010), this may contribute to limiting the area sampled and hence 

inclusion in the area-based accuracy assessment. 

 

4.3.4. Multi-Scale Mangrove Composition Mapping 

The effects of the L- and H-resolution model of remote sensing data (Strahler et al. 1986) to the 

produced mangrove maps were evident in this study. The results indicated that low-resolution 

images had limited ability to depict mangrove features compared with the high-resolution images 

(Figure 4.8). The TM image (30 m) was only able to differentiate mangrove stand objects 

(Figure 4.8e); and the AVNIR-2 (10 m) and WV-2 images (2 m) were able to map different 

mangrove zonation patterns (Figure 4.8i and j). The pan-sharpened WV-2 (0.5 m) and LiDAR, on 

the other hand, were able to map more detailed mangrove features to the level of mangrove tree 

crowns and species communities (Figure 4.8l to o). A decrease in image spatial resolution affects 

spectral heterogeneity of the image, since it creates mixed pixels (Strahler et al. 1986; Woodcock & 

Strahler 1987) and is therefore less sensitive to the spatial complexity and hampers the ability to 

discriminate small objects relative to the pixel size (Strahler et al. 1986; Rocchini 2007). 

 

The comparison of overall accuracy per image (Figure 4.9a) indicated that WV-2 imagery has the 

highest overall accuracy for all of the levels. For levels 1 and 2 there were clear increases in 

accuracy when increasing image spatial resolution. Levels 3 to 5 also confirmed this pattern. The 

decrease in overall accuracy when combining WV-2 and LiDAR data was attributed to the 2 m 

resampling of LiDAR point cloud. It is important to note that a comparatively large number of 

spectral bands available with a limited spectral range for the WV-2 image also enabled more 

flexibility in applying the GEOBIA rule set (Heenkenda et al. 2014). Increasing the spectral 
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resolution provides additional explanatory information in object recognition (Rocchini 2007), which 

in turn increases the classification accuracy.  

 

 

Figure  4.9. Comparison of the overall accuracy result of (a) different images and (b) different 

levels, and (c) area of the produced maps for level 1, 2, and 3 in Whyte Island, Moreton Bay. 

 

Looking at the variation across levels, the overall accuracy decreased with increases in the mapping 

level (i.e. finer scale or smaller object size) (Figure 4.9b). There are several possible explanations 

for this pattern. First, smaller object sizes (i.e. zonations, tree crowns and individual species) 

required more complex classification rule sets to map the land-cover classes. The inaccurate 

definition of the rule set will affect the accuracy of the mapping. Second, smaller object sizes 

increase within-class variability, which decreases the spectral separability of classes and potentially 

decreases the accuracy (Markham & Townshend 1981; Chusnie 1987). This effect is well-known in 

pixel-based approaches (Rocchini 2007) and may also affect the GEOBIA approach. Third, it is 

suggested that a higher number of classes involved in a classification tends to reduce the accuracy 

of the results (Andrefouet et al. 2003; Roelfsema & Phinn 2013). A larger number of targeted land-

cover classes requires a more complex definition of each object category for effective separation 

and increases the “boundary effect” (Markham & Townshend 1981). As the targeted objects 

become smaller, the proportion of segments falling on the boundary of objects will increase and 

hence potentially decrease the mapping accuracy. The object area comparison in Figure 4.9c 

showed the area difference of land-cover classes between images (indicated by the numbers on top 
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of the bar graph) was increased by the increasing number of targeted object classes. At level 1 the 

area was similar across images. At levels 2 and 3 the area increased to 0.14 km
2 

and 0.32 km
2
, 

respectively. The relatively large area of mangroves mapped from the WV-2 image was attributed 

to the decreasing boundary effect due to the high spatial resolution of the image.  

 

4.3.5. Applicability of the Approach to Other Sites 

The next question following the success of the implementation of the mapping approach is whether 

the approach can be applied elsewhere. Developing an approach or algorithm that can be 

universally implemented is one of the major challenges in remote sensing applications. 

Unfortunately, this situation is difficult to achieve and rarely occurs because of varying 

environmental conditions, seasonality, sensor viewing geometry, level of pre-processing, spatial 

resolution and image sensor types. Most of the mapping procedures and algorithms employing 

remote sensing data are site and sensor specific. The transferability of the conceptual hierarchical 

model of multi-scale mangrove features and its rule set were investigated to another site on 

Karimunjawa Island using the same image datasets (TM, AVNIR-2, and WV-2). All image datasets 

were pre-processed to the same level using the same correction methods, to ensure a 

fair comparison. 

 

In theory, the conceptual hierarchical model developed indicates the “domains of scale” (Wiens 

1989) of mangrove features and provides a logical multi-scale mapping guideline that can be 

applied everywhere. When it comes down to the technical mapping aspect, the result might be 

unexpected. The finding showed only the first three hierarchical levels could be mapped. This 

limitation was in accordance with the results of mangrove spatial pattern analysis discussed in 

section 4.3.1 (Figure 4.7). According to field observations, mangroves on Karimunjawa Island are 

richer in species composition, have higher canopy density and consist of taller and more matured 

trees than the Moreton Bay mangroves. The dense and highly overlapping tree canopies prevented 

the delineation of the individual tree crowns. Therefore, the difference of environmental settings 

and local variation of mangrove composition affected the implementation of the model.  

 

A direct transfer of the rule set from Moreton Bay to Karimunjawa Island was not possible. At 

level 1, the FDI algorithm successfully discriminated vegetation and non-vegetation objects from all 

of the images but required modification in the membership thresholds. Mangrove and non-

mangrove separation and mangrove zonation delineation were performed using different processes 

and membership rules in the rule set compared to the Moreton Bay site. Apart from the 

environmental setting, the canopy reflectance depends on a numbers of factors and varied across 
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location and time (Atzberger 2004). Thus, the image spectral response might also contribute to the 

rule set modification requirements. 

 

4.4. Conclusions and Future Research 

This study demonstrated that scale-specific, ecologically relevant information on mangroves can be 

mapped using a GEOBIA approach. The conceptual hierarchical model of multi-scale mangrove 

features was successfully implemented and facilitated the development of rule sets for mangrove 

mapping. The results show that higher spatial resolution images and this approach can map detailed 

information on mangroves. The TM image was only able to differentiate mangrove stand objects, 

while AVNIR-2 and WV-2 imagery allowed different mangrove zonation patterns to be mapped. 

The pan-sharpened WV-2 and LiDAR data could be used to map more detailed mangrove features, 

including individual mangrove tree crowns and species communities. However, it was also noted 

that the superiority of WV-2 imagery was also attributed to the relatively large number of 

spectral bands. 

 

Developing an efficient rule set requires an understanding of the spectral, physical and contextual 

characteristics of the targeted object(s). All of these aspects might work individually or in 

combination with each other in order to define and demarcate targeted objects. The findings showed 

that the inclusion of contextual information significantly increased the accuracy of the mapping. 

However, the development of rule sets is image and site dependent. Different algorithms and 

threshold values might be applied to different images to map similar objects due to variation  of 

object spectral reflectance responses between images. Modification of algorithms and membership 

thresholds was also needed to map similar objects at different locations, due to the different 

environmental settings, local mangrove composition variations and the site-specific 

spectral response. 

 

In terms of the accuracy of the produced maps, the findings suggest that the accuracy of maps was 

defined by interactions between image spatial resolution, the scale of the targeted objects and the 

number of object land-cover classes mapped. As expected, higher image resolution (spatial and 

spectral) provided more detailed information on mangroves. Although it was achievable using the 

high resolution images, mapping smaller objects required a more complex rule set to be developed 

due to the increased within-class variability that potentially decreases the mapping accuracy. 

Incorporation of a larger number of object categories adds more complexity to the class definition 

and increases the boundary effect, which in turn will decrease the mapping accuracy. 
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The findings of this study provide conceptual guidance for multi-scale mangrove mapping and a 

technical demonstration of how to produce scale-specific mangrove information. This information 

is essential to address mangrove ecological problems at a relevant spatial scale. However, the 

results of this study are limited to the selected images, mapping techniques and mangrove sites. 

Further research is needed to include a wider range of images and mapping techniques. The 

potential of including image texture in this processing approach also needs to be explored further. 

Finally, to ensure the transferability of the conceptual hierarchical model, this approach needs to be 

tested at locations rich in mangrove species with distinctive individual tree canopies. 
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5. CHAPTER 5: 

 

ASSESSMENT OF MULTI-RESOLUTION IMAGE DATA FOR 

MANGROVE LEAF AREA INDEX MAPPING 
 

 

This chapter investigates the effects of different mangrove environmental settings, satellite image 

spatial resolutions, spectral vegetation indices (SVIs) and mapping approaches for LAI estimation. 

The accuracies of WV-2, AVNIR-2 and TM (2 m, 10 m and 30 m pixel sizes) subject to different 

pixel averaging windows (3x3, 5x5, 7x7, 9x9 pixels) and segmentation scales (10, 20, 30, 40, and 

50) were assessed for estimating LAI at the Moreton Bay (Australia) and on Karimunjawa Island 

(Indonesia) study sites. Results show that LAI estimation using remote sensing data varied across 

sites, sensors pixel size and segmentation scales. The findings of this chapter provide an 

understanding of the relationship between pixel resolutions and the spatial variation of mangrove 

vegetation for estimating mangrove LAI. In other words, the results guide the optimal selection of 

optical remote sensing datasets to estimate and map mangrove LAI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Associated Publications: 

Kamal, M, Phinn, S & Johansen, K (in revision) „Assessment of multi-resolution image data for 

mangrove leaf area index mapping‟, Remote Sensing of Environment.  
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Key Findings: 

 Mangrove LAI variation is dependent on the location, spatial variation of mangrove 

vegetation (i.e. homogeneous or heterogeneous) and the tree growth stage. 

 LAI values are independent of the mangrove formation (i.e. scrub, low-closed forest, closed 

forest, etc.). Instead, the LAI value depends on the local spatial variation of mangrove 

phenological stages and canopy cover.  

 Overall, the regression analysis shows significant coefficient of determination (R
2
) values 

ranging from 0.50 to 0.83 across sensors, segmentation scales and SVIs. 

 NDVI and AVNIR-2 is the best LAI predictor for the two selected study sites and associated 

field sampling approach. 

 The optimum pixel size to estimate mangrove LAI correlates with the dominant object size in 

the area of interest (the average mangrove canopy size is 10 m) as well as the ground 

resolution element of the collected field data. 

 The results from the WV-2 pixel averaging show that pixel window size corresponding to the 

extent of the field plots (i.e. 5x5 or 7x7, equivalent to about 10 m x 10 m to 14 m x 14 m 

pixel sizes) yield better LAI estimation than individual pixels (2 m x 2 m). 

 Image segmentation significantly increases the accuracy of LAI estimates. 

 The optimum image segmentation scale is defined by the scale of the targeted objects, the 

spatial variation of the landscape, the local image spectral variation and the extent of 

the image. 

 The optimum segmentation size to estimate LAI corresponds to the size of the dominant 

objects in the scene and the ground resolution element of the collected field data. 
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5.1. Introduction 

Leaf area index is one of the most important biophysical parameters for assessing mangrove forest 

health (Jensen et al. 1991; Giri et al. 2007; Heumann 2011b). It is defined as the one-sided leaf area 

per unit surface area (m
2
/m

2
), and therefore is a dimensionless number (Pierce & Running 1988; 

Green et al. 1997; Lymburner et al. 2000; Addink et al. 2007). The importance of LAI in vegetation 

studies is well-recognised. It is an indicator of ecological processes (rates of photosynthesis, 

transpiration and evapotranspiration) (Pierce & Running 1988), net primary production (Meyers & 

Paw 1986, 1987; Clough et al. 1997) and rates of energy exchange between plants and the 

atmosphere (Gholz et al. 1991). It can be used to predict future growth and yield (Gholz 1982) and 

assists in monitoring changes in canopy structure due to pollution and climate change (Gholz et al. 

1991; Fassnacht et al. 1997). Due to its significance in describing a fundamental property of the 

plant canopy in its interaction with the atmosphere and solar radiation (Bréda 2008), the ability to 

estimate LAI provides a valuable means to understand and estimate the physical condition of 

mangroves. This is even more essential as at least 35% of the global mangrove area was reported 

lost during the past two decades (FAO 2007), exceeding losses reported for tropical rain forests and 

coral reefs (Valiela et al. 2001). Predictions suggest that in the next 100 years, about 30-40% of 

coastal wetlands will be lost (McFadden et al. 2007), and 100% of mangrove forest (Duke et al. 

2007) if the present rate of loss continues. 

 

The alarming status of the global mangrove forest losses corroborates the need to develop cost-

effective techniques for rapid mangrove LAI mapping. Direct measurements of LAI in mangroves 

gives very accurate results but it is difficult, labour intensive, costly in terms of time and money and 

some of the methods used are destructive (Green et al. 1997; Bréda 2008). As an alternative, 

indirect and spatially explicit LAI extraction from remote sensing data provides a more practical 

method to estimate and repeatedly map LAI. It provides an estimate of LAI at repeated times over 

local to global scales (Fang & Liang 2008). Although still limited in number, several studies have 

indicated the successful implementation of optical remote sensing data for mangrove LAI mapping 

from various sensors, for example Landsat TM or ETM+ (Ramsey III & Jensen 1996; Green et al. 

1997; Díaz & Blackburn 2003; Ishil & Tateda 2004), SPOT XS (Ramsey III & Jensen 1996; Green 

et al. 1997), AVHRR (Ramsey III & Jensen 1996), ASTER (Jean-Baptiste & Jensen 2006), 

IKONOS (Kovacs et al. 2004; Kovacs et al. 2005; Kovacs et al. 2010), QuickBird (Kovacs et al. 

2009; Kovacs et al. 2010), CASI (Green et al. 1998a), Leica-ADS40 (Kovacs et al. 2010), and 

ALOS PALSAR (Kovacs et al. 2013). 
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The estimation of mangrove LAI using optical remote sensing data has been based on empirical or 

semi-empirical statistical relationships formulated between in-situ LAI measurements and the image 

pixel values, from at-surface spectral reflectance or in the form of spectral vegetation indices 

(SVIs). The indices are designed to enhance the sensitivity of the spectral reflectance contribution 

of vegetation while minimising the soil background reflectance or atmospheric effects (Fang & 

Liang 2008; Huete 2012). These empirical statistical relationships are then used to estimate the 

distribution of LAI in an image. For example, Green et al. (1997) found that using a linear 

regression, the normalised difference vegetation index (NDVI) derived from SPOT XS has high a 

correlation with LAI (R
2
 = 0.74, p < 0.001, n = 29) in South Caicos and Caicos Bank, British West 

Indies. Using QuickBird imagery and a linear regression, Kovacs et al. (2009) found significant 

relationships between LAI and the simple ratio (SR) and the NDVI (R
2
 = 0.63 and 0.68, 

respectively, p < 0.0001, n = 225) in the Teacapán–Agua Brava–Las Haciendas estuarine–mangrove 

system, Mexican Pacific.  

 

With regards to the advancement of remote sensing technology, a plethora of imaging sensors with 

various spatial (and spectral) resolutions are available, with pixel sizes ranging from sub-meter to 

hundreds of meters, from narrow hyper-spectral bands to broad band multi-spectral images. At the 

same time, the rapid development of image processing techniques suitable for high spatial  

resolution image data, e.g. GEOBIA has also shifted the way image mapping is performed 

(Blaschke & Strobl 2001; Blaschke 2010). As opposed to the conventional pixel-based methods, 

GEOBIA produces meaningful objects that are represented by a cluster of neighbouring 

homogenous pixels through image segmentation based on the spectral information and local pattern 

or textural information (Baatz & Schape 2000; Blaschke & Strobl 2001; Benz et al. 2004). One of 

the advantages of image segmentation in GEOBIA is its flexibility to adjust the scale of the targeted 

objects (Benz et al. 2004; Trimble 2011). Currently, there are a very limited number of studies 

investigating the effects of image segmentation scales on LAI mapping.  

 

Based on the premise that the selection of an appropriate image spatial resolution is essential for the 

successful application of remote sensing (Woodcock & Strahler 1987; Phinn et al. 2000), this study 

assessed the effects of different image spatial resolutions and pixel aggregation (i.e. image 

segmentation) to estimate LAI in two different mangrove habitats using spectral vegetation indices. 

The specific objectives were to investigate: (1) whether different remote sensing data affected the 

estimation of LAI in different mangrove habitats; (2) which of the remote sensing datasets and 

spectral vegetation indices provided the most accurate estimation of LAI, and (3) whether GEOBIA 

improved LAI estimation compared to pixel-based models. 
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5.2. Data and Methods 

5.2.1. Study Area 

The study sites for this chapter were conducted in two mangroves areas; the mouth of the Brisbane 

River, northern Moreton Bay, South East Queensland, Australia and Karimunjawa National Park, 

Central Java, Indonesia. For the detailed description about the location refer to section 2.1. 

 

In the context of this study, the Moreton Bay site is dominated by homogenous mangrove species 

stands, while the Karimunjawa site represents heterogeneous species stands. In both sites, mangrove 

zonations were noticeable at different distances from the coastline towards the landward limit of the 

mangroves. These locations were selected to understand the variation in LAI at different mangrove 

vegetation structure and environmental settings and to investigate the optimum pixel size to 

estimate LAI at multiple sites. 

 

5.2.2. Image Datasets 

This study used TM, AVNIR-2 and WV-2 multispectral images of the mouth of the Brisbane River 

and Karimunjawa Island to cover the variation of image spatial resolutions investigated (Table 5.1).  

The image pre-processing details are presented in section 2.2 of the thesis. 

 

Table ‎5.1. Image datasets used in Chapter 5. 

Image type 
Moreton Bay 
image 
acquisition date 

Karimunjawa 
Island image 
acquisition date 

Pixel size Spectral attributes (nm) 
Geometric 
attributes 

Landsat TM 14 April 2011 31 July 2009 30 m Blue (452-518), green (528-609), 
red (626-693), NIR (776-904), MIR1 
(1567-1784), MIR2 (2097-2349) 

Level 1T 

ALOS AVNIR-2 10 April 2011 19 Feb 2009 10 m Blue (420-500), green (520-600), 
red (610-690), NIR (760-890) 

Level 1B2G 

WorldView-2 14 April 2011 24 May 2012 2 m (multi), 
0.5 m (pan) 

Coastal blue (400-450), blue (450-
510), green (510-580), yellow (585-
625), red (630-690), red edge (705-
745), NIR1 (770-895), NIR2 (860-
1040), panchromatic (450-800) 

Level 3X 

 

5.2.3. Fieldwork and LAI Measurements 

Fieldwork was conducted on April 2012 at the Moreton Bay sites and July 2012 on Karimunjawa 

Island. The selection of these dates was aimed to resemble the season in which the WV-2 images 

were captured (i.e. autumn [April 2011] and dry season [May 2012], respectively). Twenty-three 

field transects perpendicular to the shoreline were laid out on both sites (Figure 5.1) to collect 
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structural measurements of the mangroves along different zonations, following the mangrove 

fieldwork guideline established by English et al. (1997). A detailed fieldwork description is 

presented in section 2.3 of the thesis. Field data were also collected from individual quadrats 

(indicated by single circles in Figure 5.1) at locations where the setup of a field transect was not 

possible due to access restrictions. These additional field samples were collected to increase the 

variation of mangrove canopy cover within sampled quadrats. 

 

 

Figure  5.1. Study sites showing the extent of mangroves and the location of LAI field 

measurements. 

 

In-situ LAI was estimated using the LI-COR LAI-2200 Plant Canopy Analyser (LICOR Inc., 

Lincoln, NE, USA). This instrument measures simultaneously diffuse radiation by means of fish-

eye light sensor (148° field of view) in five concentric light-detecting silicon rings, sampling five 

concentric sky sectors (with central zenith angle of 7°, 23°, 38°, 53° and 68° respectively)  (LI-COR 

2009). This indirect and non-destructive instrument determines in situ effective LAI (LAIe, for 

simplicity this chapter uses the term LAI) using the gap fraction of a canopy, which is the fraction 
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of view in some directions from beneath a canopy that is not blocked by foliage. Gap fractions are 

then calculated by dividing the below-canopy readings by the above-canopy readings at the five 

angles of view (Welles & Cohen 1996). LAI is then estimated by inversion of a Poisson model, 

comparing the transmittances, calculated simultaneously for each sky sector, measured above and 

below the canopy (LI-COR 2009). A detailed description of the instrument and its theoretical 

background is provided by Welles and Norman (1991) and Weiss et al. (2004). 

 

In this study, the fish-eye lenses of the instruments were covered by a view cap with a 270° 

opening, in order to block off the operator from the sensor field of view and maintain the light 

signal under the dense mangrove canopy (LI-COR 2009). One LAI-2200 instrument was placed in a 

clearing during the field campaign to record above-canopy readings in auto log mode once every 

minute. The other LAI-2200 instrument was used to record the below-canopy readings at nine 

random points, which were averaged, within each quadrat along the field transects. All 

measurements were taken at a height of about 1 to 1.5 m above the ground. The LAI values were 

then calculated by the FV2200 LI-COR software based on the above- and below-canopy readings. 

The best time to obtain the most accurate results of LAI measurements using LAI-2200 instruments 

is under conditions of totally diffuse light with the sun at or below the horizon (at dusk or dawn). 

This condition needs to be met in order to avoid the additional light from brightly sunlit leaves that 

will reduce the accuracy of LAI estimation (Welles & Norman 1991; Cutini et al. 1998). 

Unfortunately, during the field campaign it was impractical to collect the data at this timeframe in 

the mangrove forest due to the rapid tidal fluctuations and logistic difficulties in accessing the sites. 

The data were collected during low tides that lasted for about three hours on most of the days. The 

data were collected when the sun angle was still low (from 6 am to 9 am, or 3 pm to 6 pm), with the 

instrument wands facing the opposite direction to the sun. This procedure was performed to avoid 

the direct sunlight recorded by the sensor and make sure the below- and above-canopy readings had 

the same light direction and intensity. A total of 196 quadrat samples were collected during the 

fieldwork campaign; 120 samples at the Moreton Bay site and 76 samples for Karimunjawa Island 

(see Figure 5.1 for the field samples distribution). 

 

5.2.4. Spectral Reflectance Characteristics for Estimating LAI 

In LAI estimation based on empirical-statistical models, the characteristic parameters (also referred 

to as “estimators”) that have significant correlations with the LAI are computed first from the 

canopy spectrum. Then, the statistical relationships are constructed between the characteristic 

parameters and the known LAI values in sample plots. This statistical predictive model is then used 

to compute the LAI values throughout the whole image. Spectral vegetation indices (SVIs) are 
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designed to depict distinctive spectral characteristics of vegetation, e.g., high reflectance in near-

infrared bands and absorption in red bands, with a one-dimensional index. The objective of 

developing SVIs are to enhance spectral features sensitive to a vegetation property while reducing 

disturbance by combining a few spectral bands into an SVI (Glenn et al. 2008). Variables that 

describe the characteristic spectra of vegetation are also used for LAI estimation, for instance: red 

through position, red-edge inflection position (Pu et al. 2003), area of red-edge peak, and near 

infrared (NIR)-platform position (Filella & Penuelas 1994) (Figure 5.2).  

 

 

Figure  5.2. Average spectral reflectance plot of the main objects in the study area measured by 

ASD Handheld 2 portable spectrometer. 

 

The electromagnetic energy in the red part of the spectrum is strongly absorbed by the plant leaves 

pigments (maximum absorption of chlorophyll a and b at 662 nm and 642 nm, respectively), and the 

high reflectance in the NIR part of the spectrum (700-1300 nm) results primarily from foliar 

reflection from the internal structure of the plant leaves (Jensen 2005). The steep reflectance 

increase occurring in the red-edge part of the spectrum (680-730 nm) physiologically marks the 

transition between the photosynthetically affected region of the spectrum (chlorophyll absorption 

spectrum), and the region with high reflectance values of the NIR plateau affected by plant cell 

structure or leaf layers (Herrmann et al. 2011). The position of the red-edge provides an indication 

of plant condition that might be related to several canopy factors such as LAI, nutrients, water and 

chlorophyll contents, seasonal patterns, and biomass (Pu et al. 2003; Cho & Skidmore 2006). 

Different SVIs were defined for different purposes, and optimized to assess a process of interest. 

However, in LAI estimation, all of them are affected by the problem of saturation. SVIs generally 

tend to exhibit less sensitivity for LAI values that are higher than 2, depending on the type of SVIs 

(Carlson & Ripley 1997; Haboudane et al. 2004; Zarco-Tejada et al. 2005). 
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5.2.5. Image Processing and Statistical Analysis 

The atmospherically corrected images were used to compute four SVIs using algorithms given in 

Table 5.2. Semi-empirical relationships were developed between the vegetation index pixel values 

and the in-situ LAI measurements (i.e. a pixel-based LAI modelling). All of the SVIs used in this 

study were computed using red and near-infrared bands of the three different image datasets, with 

the addition of the blue band for the Enhanced Vegetation Index (EVI). The SR and NDVI were 

selected as representative of intrinsic vegetation properties (Mather & Koch 2011). The Soil 

Adjusted Vegetation Index (SAVI) was included to adjust for soil colour, while EVI represented a 

background and atmospherically corrected vegetation index (Huete et al. 2002; Colombo et al. 

2003). To focus on the mangroves, other objects in the image were masked out before the 

calculation of the SVIs. To investigate the effect of changing pixel size based on a single image, a 

mean filter with window sizes of 3x3, 5x5, 7x7, and 9x9 pixels was applied to the WV-2 image 

derived SVIs. The mean filter averaged the neighbouring pixel values surrounding the centre pixel 

and assigned the mean value to the centre pixel to simulate the different pixel sizes. The resultant 

pixel values at the centre of each field quadrats were then used to estimate LAI. 

 

Table ‎5.2. Spectral vegetation indices used in LAI estimation. 

Vegetation index Algorithm  Source 

Simple Ratio    
    
    

 
(Eq. 5.1) (Birth & McVey 

1968) 

Normalised Difference Vegetation Index 
     

         
         

 
(Eq. 5.2) (Rouse et al. 

1974) 

Soil Adjusted Vegetation Index 
     (   )

(         )

(           )
 

(Eq. 5.3) (Huete 1988) 

Enhanced Vegetation Index 
     

(         )

(                     )
 

(Eq. 5.4) (Huete et al. 
2002) 

ρnir, ρred, and ρblue are near-infrared, red, and blue spectral reflectance, respectively. For the SAVI, L is a canopy background 
adjustment factor set at 0.25, because of the high density of mangrove canopy. For the EVI, G, C1, C2, and L are coefficients to 
correct for aerosol scattering, absorption, and background brightness (set at 2.5, 6, 7.5, and 1, respectively). 

 

Several image segmentations were applied to the high-spatial resolution WV-2 image to understand 

the effect of pixel aggregation through different segmentation sizes for estimating LAI (i.e. an 

object-based LAI modelling). Segmentation is the process of clustering together neighbouring 

pixels with similar spectral characteristics to minimise the internal spectral and spatial heterogeneity 

of the objects. eCognition Developer 8.7 software (Trimble 2011) was used to perform the multi-

resolution segmentation with scale parameters of 10, 20, 30, 40, and 50. The band weights were set 

equally to 1, and the shape and compactness parameters were set to 0.1 and 0.5, respectively. The 
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selections of the parameter setting were intended to focus on the influence of the scale parameter 

variation alone and minimise the influence from other factors. 

 

Semi-empirical relationships between in-situ LAI and both pixel- and object-based SVIs were 

investigated using regression analysis, following the regression-based LAI estimation used by 

(Green et al. 1997) and (Kovacs et al. 2004). The LAI-2200 averaged measurement points were 

plotted on the images using their associated GPS locations. These in-situ measurement points were 

used to extract the pixel values of the SVI images for the regression analysis. To develop the 

regression model, field sample points were randomly selected at a distance of at least 20 m apart to 

avoid a clustered spatial distribution of the model samples. This process resulted in 57 model 

samples for Moreton Bay and 39 for Karimunjawa Island. 

 

5.2.6. Results - Validation 

Validation is the process of assessing the accuracy of products by independent means (Justice et al. 

2000; Tian et al. 2002). In this study, the uncertainty of LAI estimated from the three types of 

satellite imagery was assessed by analytical comparison against the remaining in-situ LAI 

measurements as reference data. After the models were created, the estimated LAI values produced 

from the SVI models were compared with the in-situ LAI validation samples by means of the 

Pearson‟s correlation (r) and root mean square error (RMSE) of the validation models (Jensen & 

Binford 2004; Soudani et al. 2006; Laongmanee et al. 2013). The measurements with the smallest 

RMSE were assumed to be the most accurate. In this process, 63 independent validation samples 

were used for Moreton Bay and 37 for Karimunjawa Island. To aid the assessment of prediction 

error, linear models and scatter plots between modelled and in-situ observed LAI were produced 

and plotted in a 1:1 graph. 

 

5.3. Results and Discussion 

5.3.1. Mangrove LAI Estimation 

For the homogenous mangrove stands at the Moreton Bay site, the in-situ LAI values ranged from 

0.26 to 3.23 (n = 120, mean = 1.97, SD = 0.45), while for the heterogeneous stands on Karimunjawa 

Island the LAI values ranged from 0.88 to 5.33 (n = 76, mean = 2.98, SD = 1.04). The in-situ LAI 

values were plotted against NDVI to visualise their distribution (Figure 5.2a-d). It is evident that 

Karimunjawa Island mangroves had a comparatively wider range of LAI values and had more LAI 

variation (Figure 5.3b) than the Moreton Bay mangroves (Figure 5.3a). According to field 

observations, mangroves on Karimunjawa Island are more diverse in species composition, have 
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higher canopy densities and consist of taller and more mature trees than the Moreton 

Bay mangroves. 

 

 

Figure ‎5.3. Plots of LAI variation based on AVNIR-2 NDVI across different sensors and locations 

(a, b), the variation of LAI within mangrove structural formation against NDVI (c, d), and subsets 

of WV-2 image showing the mangrove formation zones for (e) Moreton Bay and (f) Karimunjawa 
Island. 

 

Looking at the LAI variation between mangrove zones in Moreton Bay (Figure 5.3c), the mean LAI 

values of low-closed forest (I4) of Avicennia marina were higher than the open scrub formation 

(S3) or closed forest (M4) formation (2.10, 1.81, and 1.73, respectively). The I4 formation consists 

of closely-spaced single or multi-stem tree stands of 4-10 m height, with overlapping leaves 

resulting in high density canopy cover (Figure 5.3e). The S3 and M4 formations, on the other hand, 

mainly consist of individual trees with many canopy gaps between mangrove stands, making the 

LAI values less than I4. The different LAI pattern across the mangrove formation was also apparent 

on Karimunjawa Island (Figure 5.3d). Closed forest (M4) had higher mean LAI values compared 

with the low multi-stem stands (VL4) and low-closed forest (I4) formation (3.33, 2.18, and 2.33, 
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respectively). From field observations, the M4 formation at the seaward margin was dominated by 

tall (11-15 m) Rhizophora mucronata trees with high canopy density a limited canopy gaps (Figure 

5.3f). In accordance with the finding of Ramsey III and Jensen (1996), the varying LAI values 

within the mangrove formations suggested that the LAI value range is independent of the mangrove 

structural formation or species composition. Instead, the local phenological stages and spatial 

pattern of mangrove vegetation may dictate the distribution of the LAI values (Addink et al. 2007). 

 

5.3.2. In-Situ LAI Versus SVIs 

The in-situ LAI measurements were regressed against its corresponding four SVIs values derived 

from different sensors and segmentation sizes within the study sites. The resulting coefficient of 

determination (R
2
) for each regression model is presented in Table 5.3. All of the regression models 

had a positive relationship between observed LAI and SVIs. The F-statistic for the models and the t-

statistic for slopes suggested that the relationships were statistically significant at p < 0.001 (with n 

= 57 for Moreton Bay, and n = 39 for Karimunjawa Island). Kuenzer et al. (2011) and Heumann 

(2011b) suggested using more complex mathematical models to work with natural mangrove 

forests, as the linear regression model may not be appropriate due to the natural variation of 

mangrove phenology stages. Therefore, the data were fitted into different regression models (both 

linear and non-linear). Only the models achieving the highest coefficient of determination (R
2
) are 

presented in Table 5.3 and used for further processing. The complete list of the LAI models are 

presented in the Appendix 6, and some of the selected LAI map results are presented in the 

Appendix 7. 

 

Table  5.3. The coefficient of determination (R
2
) of the regression models for different sensors and 

segmentation sizes. All of the highest R
2
 values are underlined. 

Moreton Bay (n = 57, p < 0.001) 

SVIs 

Image sensors (pixel-based) 
WV-2 segmentation scale parameters (SP)  

(object-based) 

WV-2 
AVNIR-2 TM SP10 SP20 SP30 SP40 SP50 

Original 3x3 5x5 7x7 9x9 

SR 0.633 0.693 0.733 0.743 0.703 0.813 0.683 0.643 0.623 0.663 0.703 0.693 

NDVI 0.631 0.723 0.753 0.773 0.773 0.833 0.703 0.651 0.631 0.671 0.723 0.713 

SAVI 0.551 0.693 0.763 0.783 0.783 0.811 0.713 0.571 0.541 0.571 0.643 0.611 

EVI 0.503 0.683 0.763 0.783 0.773 0.813 0.703 0.533 0.521 0.551 0.613 0.591 

Average segment size (m2): 9.6 43.9 100.0 174.6 266.2 

Karimunjawa Island (n = 39, p < 0.001)     

SR 0.583 0.643 0.643 0.613 0.593 0.803 0.633 0.593 0.573 0.643 0.593 0.553 

NDVI 0.622 0.682 0.702 0.682 0.662 0.822 0.653 0.632 0.682 0.712 0.662 0.642 

SAVI 0.602 0.682 0.712 0.702 0.702 0.771 0.693 0.592 0.642 0.652 0.642 0.602 

EVI 0.603 0.683 0.701 0.692 0.682 0.771 0.693 0.593 0.612 0.653 0.623 0.573 

Average segment size (m2): 15.3 68.8 151.7 271.9 433.6 

Regression model: 1Linear, 2Exponential, 3Logarithmic 
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For the comparison of pixel-based models across sensors, the finding showed that AVNIR-2 with 

the pixel size of 10 m, yielded the highest R
2
 values (from 0.77 to 0.83) for all the SVIs, followed 

by TM (from 0.63 to 0.71) and WV-2 (from 0.50 to 0.63). Within the WV-2 image pixel averaging 

simulation, the window size of 7x7 and 5x5 pixels were found to have the highest R
2
 values for 

Moreton Bay and Karimunjawa Island, respectively. The wider averaging window (7x7 pixels) 

providing optimum WV-2 results for Moreton Bay may be caused by the mangrove stands being 

more homogenous compared with the mangrove stands in Karimunjawa Island where an averaging 

window size of 5x5 provided optimum results. It can be hypothesised that the window size 

corresponding to the field plot size is less important in an area with homogenous stands, whereas a 

heterogeneous field site would need to spatially match the corresponding extent on the image to 

account for the stand variation. This result corresponds to the findings of Laongmanee et al. (2013), 

who assessed the effect of different simulated pixel sizes (2.5 m, 5 m, 10 m, 15 m, 20 m, 25 m and 

30 m) from QuickBird imagery to estimate mangrove LAI in the Bangpu restoration project, Samut 

Prakan, Thailand. They found that the optimum LAI estimation was achieved with a pixel size of 10 

m (with the adjusted R
2
 = 0.797 for the green vegetation index). According to the field observation, 

the size of about 10 m x 10 m represents the average size of tree canopy or group of smaller tree 

canopies at both sites. This combined with the field plot size is likely to contribute to the results, 

indicating that an AVNIR-2 pixel size of 10 m or a WV-2 averaging window size of 5x5 or 7x7 

pixels corresponded to the field quadrats of 10 m x 10 m. An averaging window size of 9x9 pixels 

(18 m x 18 m) becomes too large in relation to the 10 m x 10 m field quadrats, which results in a 

drop in the field derived LAI and image derived SVI correlation. However, a systematic 

investigation of the effect of different field plot sizes is beyond the scoop of this study.  

 

For TM models, the large pixel size results in mixed pixels. Their lower R
2
 values might be 

attributed to the larger pixel size, resulting in the averaging of LAI values over a 900 m
2
 area, which 

is nine times larger than the field plot size of 10 m x 10 m. On the other hand, the WV-2 models 

produced the lowest R
2
 values due to two main reasons. First, high levels of heterogeneity are 

caused by the smaller pixel size, which according to Weiss and Baret (2014) could affect the 

estimation accuracy of the LAI. Second, it can be difficult to match up the 2 m x 2 m of WV-2 

pixels with the 10 m x 10 m field plot, especially when considering the 5–6 m uncertainty in GPS 

position. The results of WV-2 pixel averaging (i.e. reducing the pixel heterogeneity) show that a 

pixel size at the approximate size of the field plots or slightly larger yielded the highest LAI 

estimation ability. This pattern was consistent at both study sites, indicating that the results were 

invariant to the mangrove environmental setting but was dictated by the local dominant size of the 

mangrove tree canopy and field plot size. Hence, this finding suggested that the optimum pixel size 
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for LAI estimation and mapping of local mangroves for the field sampling scheme in this study was 

10–15 m. 

 

All of the best regression models based on the field LAI and SVIs derived from AVNIR-2 image 

data were plotted in Figure 5.4 along with their regression functions. Using this sensor, the SVI 

regression models for Moreton Bay had high R
2
 values, ranging from 0.81 to 0.83. The NDVI 

yielded the highest R
2
 at 0.83, and there were only subtle differences between the SVIs 

(Figure 5.4a). Of the Karimunjawa Island SVIs, NDVI also yielded the highest R
2
 value of 0.82. 

The SAVI and EVI models produced slightly lower R
2
 values (both 0.77) than NDVI and SR 

(0.82 and 0.80, respectively) (Figure 5.4b). Similar results were also found by Soudani et al. (2006) 

for LAI estimation in coniferous and deciduous forest stands, where NDVI resulted in the highest 

correlation coefficient (r) at the SPOT-4 resolution (20 m). Using a simple radiative transfer model 

applied to an agricultural area, Carlson and Ripley (1997) also concluded that NDVI was indicative 

of LAI values. The slightly lower coefficient of determination variation of SAVI and EVI might be 

related to the field data sampled from different phenological stages, from low mangrove canopy 

cover in the shrub formation to the very dense canopy in the closed forest formation at the seaward 

margin. Therefore, it may reduce the estimation ability of soil line-based vegetation indices 

(Colombo et al. 2003). 

 

 

Figure ‎5.4. Regression models of in-situ LAI vs. SVIs from AVNIR-2 image in (a) Moreton Bay 

and (b) Karimunjawa Island.  
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Excluding the water and other non-mangrove features, the SVIs regression functions were applied 

to the AVNIR-2 image to understand the results of different estimation ability of the models 

(Figure 5.5), and to compare with the results from the segmentation-based LAI estimation. The 

range of mapped LAI values using the four SVI models was from 0.2 to 5.3. This was within the 

mangrove LAI ranges previously studied, for example 3.0 to 5.7 (Araújo et al. 1997), 2.2 to 7.4 

(Clough et al. 1997), 0.8 to 7.0 (Green et al. 1997), and 0.01 to about 3.5 (Kovacs et al. 2009). 

 

From visual inspection, there was not much spatial distribution differences found among the maps. 

However, the stacked bar graph in Figure 5.5f revealed that the LAI ranges covered different areas 

(in km
2
) using the four different SVI models. The most noticeable difference was that the NDVI 

model predicted a larger area of lower LAI values of 0–3 compared to the SR, SAVI, and EVI 

models (total of 1.11 km
2
 compared to 0.94, 0.85 and 0.90 km

2
, respectively). Consequently, the 

NDVI based map had a smaller area of higher LAI values (3–4) (3.23 km
2
 compared to 3.41 [SR], 

3.49 [SAVI] and 3.44 [EVI] km
2
).  

 

 

Figure ‎5.5. Subset of AVNIR-2 composite 432 showing part of mangroves in Karimunjawa Island 

(a), map comparison of estimated LAI from SVIs (b – e), and LAI area comparison derived from 
SVIs (f). The aggregation of LAI ranges into five classes is for visualisation and comparison 

purposes only. 

 



CHAPTER 5 Assessment of multi-resolution image data for mangrove leaf area index mapping 

98 

 

5.3.3. Effect of Image Segmentation Size on the LAI Estimation 

Multi-resolution segmentations were carried out for the mangrove areas at both study sites by 

aggregating pixels at several scale parameters (10, 20, 30, 40, and 50) from the WV-2 images. The 

coefficient of determination (R
2
) from the regression modelling between the different segmentation 

sizes and in-situ LAI are presented in Table 5.3, with p < 0.001. Image with the smallest pixel size 

(i.e. WV-2) was used because the optimal pixel size to derive the image objects should be 

considerably smaller than the targeted objects (Fisher 1997; Addink et al. 2007), which in this case 

were mangrove canopies.  

 

From Table 5.3, the optimum R
2
 for the Moreton Bay and Karimunjawa Island sites from the 

different SVIs models were achieved at a scale parameter of 40 (R
2 

from 0.61 to 0.72) and 30 

(R
2 
from 0.64 to 0.71), respectively. Overall, significant R

2
 increases were achieved with the object-

based models compared with the WV-2 pixel-based models and NDVI yielded the highest R
2
. Their 

regression functions of NDVI are presented below: 

                                (Eq. 5.6) 

                  (         )    (Eq. 5.7) 

Other than the scale of the targeted objects and the spatial variation of the landscape (Addink et al. 

2007), the difference in the optimum scale parameter obtained was possibly determined by the local 

image spectral variation and associated image object extent in relation to the 10 m x 10 m field 

sampling plots. However, if the R
2
 and the average segment size (m

2
) derived from the 

segmentation were plotted, it revealed a specific relationship between study sites (Figure 5.6a, b). 

The red lines on the graph projected the scale parameters with the optimum R
2
 to the average 

segment size (m
2
), and the pattern suggested that they had a similar average segment size (174.65 

m
2 
for Moreton Bay and 151.70 m

2
 for Karimunjawa Island). Assuming the square root of the 

average size is the pixel dimension, it would result in 13.2 m and 12.3 m, respectively; which is 

close to the size of AVNIR-2 pixels. By examining the example of image segmentation results 

(Figure 5.6c, d), the tree canopy and gaps were well delineated.  
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Figure ‎5.6. Effect of segmentation size (black-dashed line) on the coefficient of determination 

(R
2
, in bar graphs) at (a) Moreton Bay and (b) Karimunjawa Island; and the corresponding example 

of image segments along the field plots (c and d). The red-dashed lines indicated the average 

segment size at the highest R
2
 values, the red boxes and yellow points are field quadrats and the 

centre of quadrats, respectively. 

 

At a pixel size of 2 m x 2 m of the WV-2 imagery, the relationship to the field derived LAI values 

obtained from 10 m x 10 m plots produced lower R
2
 values than the use of larger image objects 

based on the WV-2 imagery. That is most likely because this resulted in a larger overlap of spatial 

extent between the image SVI values and field derived samples of LAI. However, as a larger scale 

parameter is used, which results in larger objects, the spatial extent from where image SVI values 

are derived becomes too large to correspond to the 10 m x 10 m field plots. It can then be expected 

that the R
2
 value will start to drop again with increasing object sizes. The 10 m x 10 m field plots 

did, in some cases, represent partial mangrove canopy and partial canopy gaps. Therefore, the larger 

objects, which are still spectrally homogenous due to the multi-resolution segmentation process, 

will correspond to the part of the 10 m x 10 m field plot that represents either the mangrove canopy 

or canopy gap. Field plots of 10 m x 10 m that are homogenous in nature are likely to correlate 

better with the overlapping segmented object, whereas heterogeneous 10 m x 10 m plots may be 

divided by two or more objects. For these heterogeneous field plots, the selected object matched 

with the corresponding field derived LAI value may not, in these cases, have correlated as well, 

hence reducing the overall R
2
 value. Using a pixel size of 10 m or an averaging window size of 7x7 

WV-2 image pixels to derive each SVI value may correlate better with the 10 m x 10 m field 

derived LAI values, as these pixels/pixel windows cut across heterogeneous parts of the mangroves, 
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whereas the segmented objects do not. It is therefore not surprising that WV-2 derived objects 

produce better results than individual WV-2 pixels, and that images with a pixel size of 10 m or an 

averaging window of e.g. 7x7 WV-2 image pixels produce better results than the WV-2 

derived objects. 

 

Table 5.3 shows that semi-empirical-statistical modelling of LAI using an object-based approach 

provided better LAI estimation ability for the WV-2 image data, as opposed to the pixel-based 

approach. A similar result was reported by Atzberger (2004) for LAI estimation using the inversion 

model of object-signatures, where the RMSE dropped from 0.81 (pixel-based) to 0.59 (object-

based). It was also evident that the different level of image aggregation (i.e. image segmentation) 

resulted in different accuracies for estimating LAI from four of the spectral vegetation indices. 

Image segmentation averages the spectral values of neighbouring homogenous pixels of an image 

into a single image object segment, based on the image spectral features as well as the object 

geometry (Benz et al. 2004; Blaschke 2010). It means the detailed information contained within 

each pixel is lost. However, at a certain aggregation level, the image objects derived from the 

segmentation might turn out to be relevant (Addink et al. 2007). In our case, the segmentation at a 

scale parameter of 40 for Moreton Bay and 30 for Karimunjawa Island for NDVI images appeared 

to be the optimum for estimating LAI. These scale parameters confirmed that the LAI estimation 

ability was determined by the average size of the objects of interest (i.e. mangrove canopy) and the 

field plot size. 

 

5.3.4. Independently Measured Versus Estimated LAI 

The relationships between the independent samples of in situ observed LAI and the estimated LAI 

from four SVIs derived from the three different images and the optimum segmentation (SP 40 

and 30) were calculated (Table 5.4). This section focused on the results of the AVNIR-2 imagery 

and the segmentation models, because they produced the best results from the previous analysis. 

The WV-2 and TM models were included for comparison only. For the pixel-based models of 

AVNIR-2, the validation results revealed that the difference in RMSE between the models was 

small for each site. The RMSE values of LAI for the AVNIR-2 imagery of Moreton Bay were 

0.54 (SR and NDVI) and 0.55 (SAVI and EVI) and for Karimunjawa Island were 1.32 (SR), 1.31 

(NDVI), 1.36 (SAVI), and 1.38 (EVI). The NDVI had the lowest RMSE values. The Pearson‟s 

correlation values for all of the AVNIR-2 pixel-based models ranged from 0.79 to 0.86. To examine 

whether one model was statistically better than the others to estimate LAI, a one-way ANOVA test 

was performed based on the validation samples for AVNIR-2. At a 95% confidence level, it 

suggested that none of the four SVIs models for Moreton Bay or Karimunjawa Island were 
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statistically different (F(3,248) = 0.025, MSE = 0.002, p < 0.05 and F(3,144) = 0.039, MSE = 0.024, 

p < 0.05, respectively). It confirmed the previous finding (section 5.3.3) that all of the SVIs 

performed almost similarly for estimating LAI. Similar results were reported by Kovacs et al. 

(2004) for SR versus NDVI, and Laongmanee et al. (2013) for the Green Vegetation Index (GVI), 

EVI and NDVI. However, NDVI was the most accurate estimator of LAI values for our study areas. 

 

Table  5.4. LAI model validation results. The bold text indicates the focus of the discussion.  

Moreton Bay (n = 63, p < 0.001) 

Images 
SR NDVI SAVI EVI 

r RMSE r RMSE r RMSE r RMSE 

WorldView-2 

Pixel-based 

0.73 0.52 0.73 0.52 0.68 0.50 0.66 0.49 

ALOS AVNIR-2 0.80 0.54 0.81 0.54 0.80 0.55 0.79 0.55 

LANDSAT TM 0.72 0.56 0.71 0.56 0.73 0.56 0.73 0.55 

SP 40 Object-based 0.70 0.54 0.69 0.54 0.68 0.54 0.68 0.53 

Karimunjawa Island (n = 37, p < 0.001) 

Images 
SR NDVI SAVI EVI 

r RMSE r RMSE r RMSE r RMSE 

WorldView-2 

Pixel-based 

0.64 1.19 0.64 1.15 0.68 1.15 0.64 1.22 

ALOS AVNIR-2 0.85 1.32 0.86 1.31 0.83 1.36 0.82 1.38 

LANDSAT TM 0.81 1.23 0.78 1.24 0.78 1.23 0.77 1.23 

SP 30 Object-based 0.71 1.15 0.71 1.12 0.66 1.14 0.66 1.16 

r is the Pearson’s correlation, RMSE is the root mean square error, and SP is the scale parameter of segmentation. 

 

The validation results from the object-based models showed different patterns to the pixel-based 

results. Overall, the Pearson‟s correlation of the object-based models (ranged from 0.66 to 0.71) 

appeared to be lower than the pixel-based models. Compared with the pixel-based WV-2 LAI 

estimates, the image segmentation increased the accuracy of the LAI model for Karimunjawa Island 

as indicated by the increasing Pearson‟s correlation coefficients and decreasing RMSE values, with 

NDVI as the best estimator (RMSE = 1.12). On the other hand, for Moreton Bay, the segmentation 

showed a slight decrease in estimation accuracy of the models as indicated by increasing RMSE 

values (from 0.49–0.52 to 0.53–0.54). The size of segments potentially contributed to the slight 

change in RMSE values. In the relatively narrow mangrove area of Moreton Bay, by increasing 

segment size, several validation samples occurred within a segment with a single vegetation indices 

value. The aggregation of samples affected the distribution of the validation data and hence 

increased the RMSE values. Therefore, to avoid the field sample aggregation, it is recommended to 

also consider the distribution of the field samples when selecting the scale of image segmentation.  

 

To assess the validation results visually, linear statistical models and scatter plots between field 

observed and NDVI modelled LAI (for pixel-based and object-based models) were applied for both 

study sites (Figure 5.7). Generally, the NDVI models show good prediction ability by following the 
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1:1 line pattern. An obvious over-estimation was found at lower and middle ranges of LAI for 

Moreton Bay and most of the estimation for Karimunjawa Island. LAI over-estimation in 

mangroves may be caused by the dark organic detritus covering the sediment (Green et al. 1997) 

and the presence of mangrove seedlings on the forest floor. These substances were commonly found 

on the mangrove forest floor at both study sites and were potentially adding to the mangrove canopy 

spectral reflectance recorded by the sensors. The under-estimated high LAI values in Moreton Bay 

were associated with the tall closed forest of Avicennia marina. This mangrove formation is located 

at the seaward margin and has more frequent inundation by the tide. As a result, muddy sediments 

and water on the forest floor occurred in many of these areas and organic detritus and mangrove 

seedlings were less apparent. The influence of wet mud and water in this mangrove formation might 

reduce the NIR reflectance and hence SVI values, and reduce the ability of the sensors to estimate 

LAI (Blasco et al. 1998; Díaz & Blackburn 2003). 

 

Figure ‎5.7. Plots of observed vs predicted LAI (m
2
/m

2
) for Moreton Bay (a, b) and Karimunjawa 

Island (c, d); using AVNIR-2 for pixel-based and WV-2 for object-based. The red-dashed line 
represents 1:1 line and the black line and area between blue-dashed lines represent the regression 

line and 95% confidence interval respectively. The observed values are in situ LAI data that were 

not used for model development. 
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5.3.5. Multi-Scale Mangrove LAI Mapping 

The semi-empirical LAI estimation from different sensors at the same location yielded different 

results (Figure 5.8). AVNIR-2 imagery (Figure 5.8b) and a segmentation scale of 30 for WV-2 

imagery (Figure 5.8e) were used as the benchmarks for mangrove LAI estimation on Karimunjawa 

Island. Generally, the LAI spatial distributions for the pixel-based models were quite similar, 

especially for the medium (2–4) and high (>4) LAI values. As expected, the derived map from a 

high-spatial resolution WV-2 image was noisy (Figure 5.7a), because of the high level of pixel 

heterogeneity (Strahler et al. 1986; Weiss & Baret 1999) reducing its mangrove LAI estimation 

ability in relation to the 10 m x 10 m field sampling units (R
2
 = 0.62, RMSE = 1.15). On the other 

hand, the low-spatial resolution of TM (i.e. pixel resolution larger than the targeted elements) 

caused spatial aggregation of the estimated LAI values, and also decreased its ability to estimate 

mangrove LAI (R
2
 = 0.65, RMSE = 1.24).  

 

 

Figure ‎5.8. Estimated LAI map comparison from different sensors (a – b) and segmentation size   
(d – f) and the LAI area comparison (f) at Karimunjawa Island. The aggregation of LAI ranges into 

five classes is for visualisation and comparison purposes only. 
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The difference in LAI ranges between the three sensors is clearly shown in the LAI area graph 

(Figure 5.8g). In the WV-2 model, LAI values of 2–3 were overestimated (0.94 compared with 0.69 

km
2
 in AVNIR-2) and LAI values of > 4 were underestimated (1.06 compared with 1.49 km

2
 in 

AVNIR-2). For the TM model, there were similarities between the WV-2 and TM models, except 

the overestimation of the LAI values of 0–1 (0.34 compared to 0.11 km
2
 in the AVNIR-2 imagery). 

According to Soudani et al. (2006), the discrepancies between the sensors are influenced by several 

factors including variation in spectral response, view and illumination conditions, temporal 

variation of canopy properties and atmospheric effects. More specifically, Teillet et al. (1997) found 

that the variation of NDVI across different sensors was significantly affected by the differences in 

spectral bandwidth, especially in the red band. The acquisition date difference among the sensors 

(especially for Karimunjawa Island [Table 5.1]) might also contribute to the discrepancies of the 

results. The five-month time span of the image acquisit ion in this site may have changed the 

vegetation condition to some extent.   

 

For the estimated LAI values derived from object-based models, the SP30, SP10 and SP50 were 

compared with the pixel-based WV-2 map. As expected, all of the segmentation maps followed the 

LAI distribution pattern of the pixel-based WV-2 model. The only difference observed was the 

variation of the aggregation pattern of LAI classes as a result of the different image objects (i.e. 

segment) sizes. Larger scale parameter values produced a more distinct and compact class 

separations, as a result of the increasing aggregation level. However, by looking at the LAI area 

comparison (Figure 5.8g), there were only slight area differences between SP10, SP30 and SP50. 

This is most likely because the different segmentation scale parameters affected the LAI objects 

sizes but not the overall spatial extent of the LAI intervals. So, the areas within a given LAI value 

interval were clustered into larger objects with similar LAI values by the larger scale parameters 

and while still maintaining the object boundary between areas with differing LAI values.  

 

5.4. Conclusions and Future Research 

This study investigated the effects of different spatial resolutions and aggregation sizes on LAI 

estimation accuracies from satellite images and field data in two mangrove environments. The 

ability of WV-2, AVNIR-2 and TM sensors were compared and contrasted to estimate LAI, as well 

as different pixel averaging windows (3x3, 5x5, 7x7, 9x9 pixels) and segmentation scale parameters 

(10, 20, 30, 40, and 50) applied to the WV-2 image, using four spectral vegetation indices (SR, 

NDVI, SAVI and EVI). The analysis of the relationships between in-situ LAI and SVIs from 

different sensors and segmentation size were investigated by means of regression models. 
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This study found that LAI estimation accuracy from remote sensing data was site specific. The 

different mangrove environments (i.e. homogenous versus heterogeneous stands) have different 

LAI value distribution patterns. The LAI value distributions for the homogenous mangrove stand 

has less variation compared to the heterogeneous stands, which influence the LAI regression 

models. Looking into more detail within the mangrove stand, the LAI values were overlapping 

between formations. Hence, LAI values were independent of the mangrove formation (i.e. scrub, 

low-closed forest, closed forest, etc.). Instead, the LAI value depends on the local spatial variation 

of mangrove phenological stages and canopy cover. Overall, the relationship between in situ LAI 

model samples and SVIs across sensors and segmentation scales were adequate to estimate LAI, 

with the R
2
 range from 0.50 to 0.83. In relation to the field plots of 10 m x 10 m, the regression 

analysis results showed that the pixel size of different sensors affects the ability to estimate LAI. In 

this case, it was found that the optimum sensor, in relation to the collected field data to estimate and 

map mangrove LAI for both of the study sites, was AVNIR-2 with 10 m pixel sizes. This pixel size 

corresponded to the average size of the dominant mangrove object, i.e. mangrove tree canopy or 

groups of smaller tree canopies) as well as the ground resolution element of the collected field data.  

 

The results from the WV-2 pixel averaging showed that pixel window size corresponding to the 

extent of the field plots (i.e. 5x5 or 7x7, equivalent to about 10 m x 10 m to 14 m x 14 m pixel 

sizes) yielded better LAI estimation than individual pixels (2 m x 2 m). Similar results were also 

found from the object-based segmentation of WV-2 image. It demonstrated that semi-empirical 

statistical modelling of LAI using an object-based approach improved the estimation ability (i.e. 

increasing R
2
 from the pixel-based approach). It was also confirmed that the optimum segment sizes 

were about the size of the field plots and the average mangrove canopy size for both sites. 

Therefore, the optimum pixel size to estimate LAI is strongly dependant on the spatial patterns and 

size of the dominant canopy of the area of interest and the field sampling size. NDVI achieved 

better LAI prediction in most cases compared with the other SVIs, although not statistically 

different. It was also evident from the validation results that the use of NDVI for estimating LAI 

produced the lowest RMSE. The findings of this study provide an understanding of the relationship 

between pixel resolutions, field plot size and the spatial variation of mangrove vegetation for 

estimating mangrove LAI. The results of this study may serve as a guide to optimally select the 

optical remote sensing datasets to estimate and map mangrove LAI. 

 

The results of this work were limited to the study sites in Moreton Bay and on Karimunjawa Island 

with similar average canopy sizes. To verify the findings, similar research, focusing on the more 

detailed effects of spatial aggregation for different mangrove spatial patterns or canopy sizes, needs 
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to be conducted in the future. It is also important to further investigate the influence of different 

field plots sizes in relation to imagery with multiple spatial resolutions for semi-empirical LAI 

estimation. Lastly, it is necessary to investigate the ability of LiDAR data for estimating LAI to 

support the context of this research. 
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6. CHAPTER 6: 

 

GUIDELINES FOR MULTI-SCALE IMAGE-BASED 

MANGROVE MAPPING 

 

 

This chapter summarises the findings from previous research chapters (Chapters 3, 4 and 5) and 

analyses the relationships between image resolutions, mapping approaches, the type and level of 

information acquired and their accuracy in mapping mangroves. It synthesises the resultant 

knowledge to develop guidelines for multi-scale image-based mangrove mapping. 
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Key Findings: 

 This chapter confirms that remote sensing spatial and temporal dimensions can be fitted 

into the spatio-temporal ecological hierarchical organisation of mangroves. 

 This chapter also reveals the relationships between image spatial resolution, level of 

information detail and the accuracy of the resultant maps of mangrove properties. 

 The multi-scale image-based mangrove mapping guidelines provide an effective and 

efficient way to select the best image datasets to map mangrove feature(s) at a relevant 

scale and can be viewed from either an information-driven (user) or image datasets-driven 

(producer) perspective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No paper publication is associated with this chapter  
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6.1. Introduction 

Selecting the most appropriate image spatial resolution and mapping techniques for mangrove 

mapping is essential to support mapping, management and monitoring in this environment. In this 

thesis, the analysis of the most appropriate image spatial resolution and mapping techniques for 

mangrove composition and LAI mapping was built on the exploratory approach developed in the 

framework for selecting appropriate remote sensing data for environmental monitoring and 

management by Phinn (1998). First, a conceptual spatial and temporal hierarchical organisation of 

mangroves was established, from the landscape scale down to individual plants (presented as part of 

Chapter 1). The concept synthesises the knowledge of the eco-geomorphic hierarchical interactions 

that occur in both directions (Twilley et al. 1999) and provides a means to interpret the image 

datasets. Second, utilising the approach of Cohen et al. (1990) and Johansen & Phinn (2006), the 

high-resolution WV-2 image data (original and pan-sharpened) were resampled to several larger 

pixel sizes in order to examine the relationship between image pixel size and the mangrove features 

able to be mapped (Chapter 3). Semi-variogram analysis was conducted to find the scale of the 

targeted mangrove features in relation to the different image pixel sizes. Third, the domain of scales 

of the targeted mangrove features were related to the mangrove conceptual hierarchical model and 

exploratory mapping was conducted using selected image datasets and processing techniques for 

mangrove composition and LAI mapping (Chapters 4 and 5). The specific output from this stage 

determines the scale characteristics of the selected mangrove features and the pixel size at which 

these features can be detected, mapped and measured using remote sensing image data. The final 

stage will provide a basis for specifying optimal image datasets and processing techniques for 

multi-scale mangrove mapping.  

 

Selecting the most appropriate image datasets to map a targeted attribute or answer a specific 

question in mangroves, or any other vegetation ecosystem, is a challenging task. To answer 

questions of which remote sensing datasets are the best to map certain mangrove features, or what 

mangrove information could be obtained from a remote sensing dataset, one requires some relevant 

knowledge and experiences. The solution requires an understanding of (1) the nature of the object 

being investigated (Marceau et al. 1994b), (2) the typical appearance of the object in the scene, (3) 

the expected output information detail, (4) the information extraction techniques required 

(Woodcock & Strahler 1987), (5) the characteristics of the image data, (6) the known ability of the 

data (Lefsky & Cohen 2003), and (7) the project constraints (i.e. time and cost) (Phinn et al. 2000). 

The decision of which image datasets and processing techniques should be used to deliver the best 

product is a result of the interaction between these factors. 
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At the same time, the recent development of remote sensing technology provided a wide range of 

image datasets available both commercially and for research purposes. As a result, the selection of 

image datasets for a specific application became more difficult. Warner et al. (2009) mentioned 

three related issues that added to the complexity of selecting image datasets. First, there are 

fundamental physical and engineering trade-offs that limit the details of the data from the ground 

scene able to be recorded by the imaging system sensors. Given the limited resources, a trade-off 

has to be made regarding the spatial, spectral, temporal and radiometric resolution of an image that 

can be acquired (Key et al. 2001). Second, finding the balance between the level of detail of the 

image source and expected derived information is not an easy task. Data with too little detail will 

reduce the quality of analysis. On the other hand, data with too much detail results in lower overall 

accuracy due to an increase in within-class spectral variability (Chusnie 1987; Marceau & Hay 

1999). Third, it is necessary to match the scale of analysis to the scale of the phenomenon under 

investigation (Wiens 1989). Environmental inferences are scale-dependent, so conclusions reached 

at one scale of analysis may not be easily applied to other scales (Marceau & Hay 1999; Schaeffer-

Novelli et al. 2005). Therefore, an understanding of the effect of scale variation in the mangrove 

information is needed in order to use remote sensing datasets appropriately to map mangrove 

features at a relevant scale(s). 

 

“Scale” is one of the major research areas in the field of ecology and remote sensing (Wiens 1989; 

Goodchild & Quattrochi 1997; Marceau & Hay 1999). From an ecological point of view (as 

discussed in the section 1.4.2), mangrove environments can be organised in spatial and temporal 

dimensions. Along the spatial dimension continuum, a specific size of mangrove features resides at 

a specific observation scale, from the landscape scale to individual tree level. Putting this pattern 

into a remote sensing perspective, mapping mangrove environments at different observation scales 

(i.e. spatial resolutions) will result in different levels of mangrove information. This relation leads 

to several overlapping scale issues between remote sensing and mangrove ecology (Figure 6.1), 

which are addressed in this thesis. The underlying conceptual question for this relationship is how 

the spatial and temporal resolution variation of remote sensing image data fit the mangrove spatio-

temporal hierarchical organisation. By understanding how mangroves are ecologically organised in 

spatial and temporal dimensions and the capability of different resolutions of remote sensing data to 

detect and map mangrove features, the linkage between these two disciplines can be established. 

Once the conceptual linkage is established, technical questions remain such as which image spatial 

resolution can detect targeted mangrove feature(s), or vice versa, what can be mapped from a 

specific image spatial resolution and how to map targeted mangrove feature(s) from selected remote 

sensing image datasets. 
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Figure  6.1. Overlapping scale issues between remote sensing and mangrove ecology addressed in 
this thesis. 

 

Mapping mangroves at specific spatial scales will help scientists to focus their research on the 

ecological questions that are appropriate to each level of ecological detail (Delcourt et al. 1983), 

and assist managers to focus on the conservation activities at ecologically relevant spatial and 

temporal scales (Schaeffer-Novelli et al. 2005). In the field of mangrove mapping, there is a 

substantial knowledge gap dealing with remote sensing approaches; questions remain about what 

type of mangrove information can be mapped at specific image resolutions and the level of detail 

that information can provide. The challenging task of selecting the most appropriate image datasets 

for mangrove mapping corroborate the need for conducting a systematic study to reveal the 

relationship between image spatial resolution and the mangrove features able to be mapped. This 

chapter addresses this issue by synthesising the findings from previous research chapters (Chapters 

3, 4, and 5) and utilising relevant information on image-based mangrove mapping from the relevant 

literature. The result is presented in the form of a guideline for multi-scale mangrove mapping. 

 

6.2. Integrating Remote Sensing  into the Spatio-Temporal Organisation 

of  Mangroves 

According to Delcourt et al. (1983), in vegetation studies, different physical and biological 

processes influence the vegetational patterns observed at each spatial-temporal scale. An obvious 

implication of this hypothesis is that the hierarchical scale pattern of mangroves would be visible 

from remote sensing data (Cullinan et al. 1997). Based on the ecological spatial and temporal 

hierarchical organisation of mangroves (presented in section 1.4.2), the hypothetical relationships 

between remote sensing and the mangrove hierarchy were proposed (Figure 1.4). The pixel size 

domain required to detect the mangrove features was summarised from literature on mangrove and 
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How do remote sensing data 
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temporal organisation? 
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vegetation mapping using image datasets. By examining the pattern of where the specific image 

spatial resolution is frequently used to map certain vegetation features, the pixel size of the image 

datasets was then placed alongside the spatial scale of the feature‟s spatial scale continuum. The 

particular focus of this thesis is the mangrove features that compose mangrove vegetation 

communities from individual tree level up to the landscape level. It includes individual shrub crown 

or foliage clumping, individual tree crown and species type, tree patches or canopy gaps, vegetation 

formation and zonation, vegetation cover types and the larger environmental setting of the 

mangrove forest.  

 

Chapter 3 of this thesis provides a proof of concept of the pixel size domain in the hypothetical 

relationships by characterising the spatial structure of mangrove vegetation features based on the 

examination of six different image pixel sizes. Semi-variogram analyses were performed to reveal 

the spatial size or scale domain pattern of the mangrove vegetation features. By examining the 

semi-variograms range and form, the dominant size of mangrove vegetation features in relation to 

the spatial distance (i.e. lag distance) can be identified. Smaller pixel sizes detect more mangrove 

features than larger ones. Single shrub crowns and foliage clumping were detected at a pixel size of 

0.5 m or lower and canopy gaps and single tree crowns at 1 m or 2 m. Larger features, such as tree 

patch or larger gaps were identified with a pixel size of 4 m, vegetation formation or zonation were 

identified at 8 m and vegetation cover type at 10 m or larger. At the same time, the actual size of the 

targeted mangrove features were measured from the field and aerial photograph, and identified from 

the semi-variogram analysis (Table 3.3). 

 

Figure 6.2 synthesises the link between remote sensing and ecological mangrove hierarchical 

organisation, which is an updated version of Figure 4.1. This figure provides an overview of the 

spatial and temporal dimensions of both remote sensing and ecological mangrove hierarchy, along 

with the example of associated image datasets commercially available and commonly used for 

vegetation mapping and monitoring (see Appendix 8 for the detailed image characteristics). A 

summary of spatio-temporal mangrove structures and processes and the required image resolution 

related to Figure 6.2 was presented in Table 6.1. It shows the detailed ecological structure and 

processes of mangroves at each level, summarised from Holling (1992), Duke et al. (1998), 

Farnsworth (1998), Twilley et al. (1999), and Feller (2010). Through this figure and table, the 

relationship between these two fields can be shown explicitly; and at the same time it provides 

guidance for selecting appropriate image resolutions (spatial and temporal) to map specific 

mangrove features. These mangrove features can be used as a base mapping unit for other 

applications, such as LAI, biomass and carbon storage estimation, species distribution, and so on.  
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Figure  6.2. Temporal and spatial hierarchical organisation of mangrove features identifiable from remotely-sensed images and the required image 
spatial resolution and image types for mapping the features. (Symbols are courtesy of the Integration and Application Network, University of Maryland 

Center for Environmental Science - ian.umces.edu/symbols/). 

1
1
3
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   Table  6.1. Spatio-temporal hierarchical levels of mangrove structure and process, and the corresponding required remote sensing datasets. 

Feature level 
Scales Categories of 

structure processes 
Structure variables Structure processes 

Required image resolution 

Space Time Spatial Temporal 

Leaf 0.01 – 0.1 m2 1 hr – 1 day Plant physiological 
process 

Leaf and branches 
clusters, orientations, and 
ages 

Photosynthesis, 
respiration, 
decomposition, nutrient 
uptake 

 < 0.5 m 1 hr – 1 day 

Individual shrub crown/ 
foliage clumping 

0.1 – 10 m2 1 month – 10 years Auto-ecological 
process 

Tree crown forms and 
sizes, tree species 

Plant growth, seed 
production, foraging on 
vegetation, decomposition 

0.5 – 2 m > 1 day 

Individual tree crown/ 
species type 

10 – 100 m2 1 year – 10 years 

Tree patches/ canopy 
gaps 

100 – 1000 m2 10 – 100 years Plant competitive 
process of gaps 
dynamics 

Dominant and sub-
dominant tree 

Tree growth, competition, 
mortality, vegetation 
effects on micro-climate 

1 – 4 m > 1 month 

Vegetation formation/ 
zonation 

1 – 10 km2 10 – 100 years Meso-scale 
disturbance and 
dispersal process 

Plant community 
structure, tree age and 
density, micro-topography 

Physiognomic 
differences, disturbance, 
dynamics, seed dispersal 

4 – 10 m > 1 month 

Vegetation cover types 10 – 100 km2 100 – 500 years Watershed process Topography: vegetation, 
water, bare soil 

Erosion, watershed 
hydrology, meso-climatic 
interaction with vegetation 

10 – 30 m > 1 month 

Environmental setting > 100 km2 500 – 1000 years Evolutionary process Precipitation, 
temperature, bed rock 

Evolution, 
geomorphology, planetary 
dynamics 

30 – 50 m > 1 month 

Sources: (Holling 1992; Duke et al. 1998; Farnsworth 1998; Twilley et al. 1999; Feller et al. 2010) (Kamal et al. 2014) 

  

 
 

 

1
1
4
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6.3. Relationships Between Image Data, Mapping Approach and 

Map Accuracy 

The relationships analysis in this study built upon a statement by Woodcock and Strahler (1987, 

p. 312) that: “the appropriate scale of observations is a function of the type of environment and the 

kind of information desired”. More specifically, the choice of an appropriate scale depends on four 

factors; (1) the output ground scene information desired, (2) the methods used to extract 

information from images, (3) the spatial structure of the object on the scene, and (4) the type of 

environment being investigated (Woodcock & Strahler 1987; Phinn et al. 2000). Each of those 

factors significantly contributes to the successful implementation of remote sensing-based 

environmental mapping and monitoring. 

 

Within the context of this study, the relationships derived from image analysis and mapping 

processes in Chapters 3, 4 and 5 were investigated. The output map products from these chapters 

can be considered in two main categories. First, mangrove composition maps covering the 

mangrove vegetation features able to be detected from remote sensing data, from landscape scale 

down to individual trees. The results include vegetation boundary, mangrove stands, mangrove 

zonation, individual tree crowns and species community. Second, mangrove LAI maps produced 

from different image spatial resolutions and locations. In terms of mapping technique, GEOBIA 

was used to derive mangrove composition information based on a single image dataset or by images 

combination. For the LAI mapping, both pixel-based and object-based models were used to 

estimate the LAI values of the mangroves.  

 

Chapters 4 and 5 of this thesis were the empirical implementations of the relationships between 

remote sensing and mangrove ecological hierarchy (Figure 6.2) into real image datasets. The 

relationships between image datasets, mapping approach, information derived and map accuracy 

was presented in Table 6.2. For the mangrove composition mapping, images with a smaller pixel 

size were able to detect, identify and map more mangrove features accurately than the larger pixel 

size. Referring back to the conceptual framework of the pixel sizes relative to objects in the scene 

by Strahler et al. (1986), the effects of H- and L-resolution were evident in this study. Although 

image segmentation can reduce the scene variance by merging several relatively homogeneous 

pixels into a segment (Blaschke et al. 2000), the pattern of increasing accuracy by increasing spatial 

resolution of the image was obvious. For example, there was an increase in the accuracy of regional 

land-cover type and local vegetation community maps clearly observable from Table 6.2 through 

the increase of image spatial resolution. Therefore, image spatial resolution (i.e. pixel size) 

significantly affects the accuracy of mangrove feature maps.  
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Table  6.2. Relationships between image spatial resolution, mangrove features and mapping accuracy. 
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 Mangrove features 

 Moderate 
resolution, 
multispectral 
 
 
Landsat TM 

Moderate 
resolution, 
multispectral 
 
 
ALOS AVNIR-2 

High resolution, 
multispectral 
 
 
 
WorldView-2 

High 
resolution, 
multispectral 
 
WorldView-2 + 
LiDAR 

Very high 
resolution, 
multispectral 
WV-2 (pan-
sharpened)  
+LiDAR 

Very high 
resolution, 
multispectral 
 
WV-2 (pan-
sharpened) 

  
 

     

Regional land-cover type 
(vegetation and non-vegetation) 

 
89% 93% 97% * 

Chadwick 2011 
** ** 

Local vegetation community 
(mangroves and non-mangroves) 

 
82% 82% 85% 94% ** 

* 
Heenkenda et al. 2014 

Local mangrove zonation 
(mangrove zonation and formation) 

 
ND 46% 53% 59% ** * 

Heenkenda et al. 2014 

Tree canopy structure 
(tree crowns and gaps) 

 
ND ND ND ND 64% 68% 

Individual tree species 
(mangrove tree species) 

 
ND ND ND ND 53% 54% 

Mangrove Leaf Area Index (pixel-based) 0.74 0.83 0.68 ** ** ** 

Mangrove Leaf Area Index (object-based) ** ** 0.70 ** ** ** 

 
Mangrove composition accuracy figure was based on the overall accuracy calculation in Table 4.5. 
Mangrove LAI accuracy figure was based on the Pearson’s correlation average of the sites from the LAI model validation in Table 5.4. 
* : unable to assess; assumed to have high accuracy based on the previous studies using similar image type. 
** : not performed. 
ND: Not Detected (i.e. unable to detect the object). 
 
Accuracy colour code:           

Overall accuracy (%): 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 

Pearson’s correlation:  0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 
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By interpreting Table 6.2 in more detail, the mapping accuracy pattern for mangrove composition 

along the image and mangrove features domains suggested that: 

 low spatial resolution images had less ability to depict mangrove features than high-

resolution images 

 the accuracy of composition mapping increased by increasing the image spatial resolution 

 the accuracy of mapping decreased with the increased level of mangrove feature details and 

the number of mangrove vegetation feature classes 

 images with a large number of spectral bands enabled more flexibility in classifying targeted 

objects, which in turn increased the accuracy of the map 

 the effects of within-pixel heterogeneity in the high-spatial resolution images could be 

eliminated using image segmentation at the correct scale, while maintaining the boundary of 

the targeted objects 

 the inclusion of contextual information increased the accuracy of the maps. 

 

Summarising from the points above, the relationships between image resolutions (spatial and 

spectral), detail level and number of classes of targeted information and accuracy in mangrove 

composition mapping is presented as Figure 6.3. The behaviour of image spatial and spectral 

resolution and the number of classes and level of information detail in relation to mapping accuracy 

are inversely related. The map accuracy increases with increasing image spatial and spectral 

resolution but it decreases with increasing numbers of classes and levels of information detail. The 

discussion about this trend was provided in detail in section 4.3.4. 

 

 

Figure  6.3. Relationships of image resolutions, level of information details and map accuracy 

resulted from the empirical mangrove composition mapping. The arrows on the axes indicate an 
increase of the variable values and the red-dashed line shows the accuracy trend. 
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The accuracy pattern for mangrove LAI mapping shown in Table 6.2 was different to the mangrove 

composition pattern. According to the examination of different pixel sizes from three different 

images (TM, AVNIR-2 and WV-2) for LAI estimation, there was no clear pattern of the estimation 

accuracy in relation to the variation of pixel sizes. The main conclusions were: 

 high image spatial resolution does not necessarily provide a better estimate of LAI 

compared to a lower spatial resolution 

 the optimum pixel size or average segment size for LAI estimation corresponds to the 

dominant mangrove object size in the area of interest 

 the optimum pixel size is also influenced by the field LAI sampling size (i.e. plot 

or quadrat) 

 an object-based approach slightly improved the LAI estimation accuracy compared with the 

pixel-based approach. 

 

6.4. Guidelines for Multi-Scale Mangrove Mapping 

This section provides condensed guidelines for the selection of the most suitable remote sensing 

datasets and processing technique in order to map and monitor different mangrove features. The 

main part of the section gives an overview of the capabilities of different image datasets and 

techniques to detect, characterise, map and monitor mangrove features, and can be used to initially 

constrain the choice of methods to a few techniques that seem most feasible for mangrove mapping. 

 

There is no unique spatial resolution appropriate for the detection and discrimination of all objects 

on an image scene (Marceau et al. 1994b). Most of the image scenes consisted of multiple objects 

with variation of sizes. Depending on the object of interest, selections of image datasets are often 

arbitrary. Different problems require different image resolution and mapping approaches and the 

highest resolution is not required for all situations. A set of guidelines for selecting the most 

appropriate image dataset was developed based on the remote sensing-embedded spatio-temporal 

organisation of mangroves (Figure 6.2) and the table of relationships analysis (Table 6.2). Aside 

from the limitations of the study (i.e. image datasets and mapping techniques used), the proposed 

guidelines will clarify questions about the relationships between image types and the targeted 

information. This includes; (1) what type and level of mangrove information can be extracted, (2) 

what are the appropriate image datasets, and (3) what type of mapping technique can be used 

appropriately to derive the targeted information. The scheme for the optimum multi-scale mangrove 

mapping is presented in Table 6.3. 
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Table  6.3. Guideline for selecting an image dataset for mangrove mapping. Colours of the box show corresponding selection flow. 

1. Identify the targeted objects 2. Determine the resolutions of image dataset (with image examples) 3. Determine the 
processing technique  

Study example 
Feature level Feature size Variable to map Output scale Spatial Spectral Temporal 

Individual 

shrub crown 

0.1 – 10 m2 Shrub/ foliage clumping 

Species 
Community  
Composition 

1:1,000 – 

1:5,000 

0.5 – 2 m 

 
Aerial photograph, 
WorldView-2/3, GeoEye-1, 

QuickBird, Pléiades, 
IKONOS-2 pan, Skysat-2, 

FORMOSAT-2 pan, LiDAR 

All  Single date: All Object-based 

Pixel-based 
Hybrid approach 

(Heenkenda et al. 2014) 

Single date: LiDAR (Everitt et al. 2008) 

Multi dates: 
Variable: AP, LiDAR 

Daily: WV-3, FORMOSAT-2 
1-5 days: WV-2, QB-2 

1-4 weeks: IKONOS-2, Pléiades 
 

(Heenkenda et al. 2014) 

LiDAR processing (Wannasiri et al. 2013) 

Height 
Biomass  

Carbon stock 

LiDAR Object-based 
Pixel-based 

Hybrid approach 

- 

- 

- 

Change detection All  

Individual tree 
crown 

10 – 100 m2 Tree crown 
Species 
Community  

Composition 

1:1,000 – 
1:5,000 

0.5 – 2 m 
 
Aerial photograph, 

WorldView-2/3, GeoEye-1, 
QuickBird, Pléiades, 

IKONOS-2 pan, Skysat-2, 
FORMOSAT-2 pan, LiDAR 

All Single date: All Object-based 
Pixel-based 
Hybrid approach 

(Wang et al. 2004a) 

Single date: LiDAR (Wang et al. 2004b) 

Multi dates: 

Variable: AP, LiDAR 
Daily: WV-3, FORMOSAT-2 

1-5 days: WV-2, QB-2 
1-4 weeks: IKONOS-2, Pléiades 
 

(Heenkenda et al. 2014) 

LiDAR processing (Chadwick 2011) 

Height 

Biomass  
Carbon stock 

LiDAR Object-based 

Pixel-based 
Hybrid approach 

- 

- 

- 

Change detection All  

Tree patches/ 
canopy gaps 

100 m2 – 1 km2 Tree patch 
Community 

Zonation 
Composition 
Cover density 

LAI 

1:2,000 – 
1:10,000 

1 – 4 m 
 

Aerial photograph, 
WorldView-2/3, GeoEye-1, 
QuickBird, Pléiades, 

IKONOS-2, Skysat-2, 
Flock-1, FORMOSAT-2 
pan, ALOS PRISM, SPOT 

6/7 pan, LiDAR 

All Single date: All Visual interpretation 
Object-based 

Pixel-based 
Hybrid approach 

(Dahdouh-Guebas et al. 2006) 

Single date: LiDAR (Proisy et al. 2007) 

Multi dates: 
Variable: AP, LiDAR 
Daily: WV-3, FORMOSAT-2 

1-5 days: WV-2, QB-2, SPOT 6/7 
1-4 weeks: IKONOS-2, Pléiades 
>1 month: ALOS PRISM  

 

(Neukermans et al. 2008) 

(Heumann 2011a) 

LiDAR processing (Zhang 2008) 

Visual interpretation 
Object-based 
Pixel-based 

Hybrid approach 

(de Oliveira Vasconcelos et al. 2011) 

Height 
Biomass  

Carbon stock 

LiDAR - 

- 

- 

Change detection All  

Vegetation 
formation/ 

zonation 

1 – 10 km2 Extent 
Local distribution  

Zonation  
Composition 
Cover density 

LAI 

1:10,000 – 
1:20,000 

4 – 10 m 
 

RapidEye, FORMOSAT-2, 
ALOS AVNIR-2, SPOT 4 
pan, SPOT 5/6/7, Sentinel-

2, ALOS PALSAR, LiDAR 

All Single date: All Visual interpretation (Saito et al. 2003) 

Single date: LiDAR, PALSAR Object-based (Conchedda et al. 2008) 

Multi dates: 
Variable: LiDAR 
Daily: RapidEye, FORMOSAT-2 

1-5 days: SPOT 6/7 
1-4 weeks: SPOT 4/5  
>1 month: ALOS AVNIR, ALOS 

PALSAR 

Pixel-based (Gao 1999) 

LiDAR and PALSAR processing (Lucas et al. 2008) 

Visual interpretation 
Object-based 

Pixel-based 

(Manson et al. 2003) 

(Conchedda et al. 2007) 

Height  
Biomass  

Carbon stock 

LiDAR, 
PALSAR 

(Nguyen et al. 2013) 

 

 

Change detection All  

Vegetation 

cover types 

10 – 100 km2 Extent  

Regional distribution  
Cover density 
LAI 

1:20,000 – 

1:60,000 

10 – 30 m 

 
FORMOSAT-2, ALOS 
AVNIR-2, SPOT 4, SPOT 

5/6/7, Landsat 5/7/8, 
Sentinel-2, ALOS PALSAR, 
TerraSAR-X 

All Single date: All Visual interpretation 

Object-based 
Pixel-based 

(Benfield et al. 2005) 

Single date: PALSAR, TerraSAR (Myint et al. 2008) 

Multi dates: 
Daily: FORMOSAT-2 

1-5 days: SPOT 6/7 
1-4 weeks: TerraSAR, Landsat 
5/7/8, SPOT 4/5 

>1 month: ALOS PALSAR 

(Manson et al. 2001) 

PALSAR and TerraSAR 

processing 

(Lucas et al. 2010) 

Height 
Biomass 

Carbon stock  

PALSAR, 
TerraSAR Visual interpretation 

Object-based 
Pixel-based 

(Manson et al. 2003) 

(Conchedda et al. 2008) 

Change detection All (Giri & Muhlhausen 2008) 

1
1
9
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The structure of the guidelines in Table 6.3 was ordered based on the typical steps followed in 

remote sensing projects. It starts with identifying the goals of the project that includes targeted 

objects, the average size of targeted objects, variability of the object commonly mapped and the 

expected output map scale. It can also be extended to the cost and budget to decide what image data 

can be obtained in the next step. The feature level and size were derived from Table 6.1 and serve 

as the mapping unit of the targeted object. The relationship between output map scale and image 

spatial resolution was determined using the “rule of thumb” by Tobler (1987) and a guideline by 

McCloy (2005). It suggests the detectable size (in meters) on a map is obtained by dividing the map 

scale denominator with 1000; the spatial resolution is half of the detectable size. For instance, using 

a 2 m image pixel size, one can create a map up to the scale of 1:4000 (2 m x 2 x 1000). 

 

The second step is to determine the image resolutions needed to map the targeted object. The spatial 

resolution dimension was derived from Figure 6.2 and Table 6.1 and acts as the first filter in 

selecting the image. Several commercially available images associated with the required spatial 

resolution were used as examples. To narrow down the image selection, spectral and temporal 

resolutions of the image were incorporated. The spectral dimension indicates whether the targeted 

object needs to be mapped using a specific wavelength or sensor (refer to Appendix 8 for the 

detailed description) and the temporal dimension provides selection of the temporal limitation of the 

images. The final step is to select the appropriate processing technique to derive the targeted 

information from the selected image. Due to the unlimited options of the processing techniques 

available, the guidelines show only the general divisions of image processing commonly and 

potentially used to complete the tasks, along with some related studies as reference. 

 

This set of guidelines can be viewed from either an information-driven (user) or image datasets-

driven (producer) perspective. The first is as the sequence explained above, which starts from the 

selection of the targeted information and following up by the image type and processing technique 

selection. The second starts by selecting the image and following the box colour to figure out (1) 

what type of mangrove features can be mapped from the image, (2) at what scale level, and (3) 

which processing technique should be used. For example, due to a major flood, one needs to map 

the change in the mangrove species community at tree level within a week. By following the blue 

boxes in the second row, the best image for this purpose can be seen to be either WorldView-2 or 

QuickBird-2; the mapping technique could be pixel-based, object-based or a combination of both. 

Putting this example the other way around, one can see from the table that a WorldView-2 image is 

able to map the listed mangrove features at tree level detail with an expected map scale up to 
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1:4000. Therefore, these guidelines provide an effective and efficient way to select the best image 

datasets to map mangrove feature(s) at a relevant scale. 

 

A key point associated with developing guidelines is to assess its applicability and transferability 

from one situation to another – between sites, between countries or between scales (MacKay et al. 

2009). In remote sensing-based mangrove mapping, the widely applicable and transferable mapping 

approach is still in question (Blasco et al. 1998; MacKay et al. 2009; Heumann 2011b; Kuenzer et 

al. 2011). To address this issue, the guideline was developed from the findings of multi-scale 

mangrove mapping conducted at Moreton Bay (Australia) and Karimunjawa Island (Indonesia), 

which have different environment settings and mangrove characteristics. These guidelines have 

been designed to be as simple and flexible as possible, yet cover the aspects needed for selecting the 

image. Therefore, if needed, they can accommodate any modifications and adjustments in relation 

to its applicability and transferability to other mangrove environments.  

 

6.5. Conclusions and Future Research 

The objective of this chapter was to address the challenge of selecting an appropriate image dataset 

and processing algorithm for mangrove mapping. This aim was initially accomplished by analysing 

the relationships between image resolutions, mapping approaches and the type of information 

acquired and their accuracy in mapping mangroves. The results were used to develop guidelines for 

multi-scale mangrove mapping based on the findings from Chapters 3, 4, and 5. Providing this 

information is essential to assist the mapping, measurement, monitoring and modelling of 

mangroves at the relevant spatial and ecological scales, which in turn provides support to build 

understanding of mangrove ecosystems and how they are changing. 

 

This chapter confirmed that remote sensing spatial and temporal dimensions can be fitted into the 

spatio-temporal hierarchical organisation of mangroves (Figure 6.2). The guidelines serve as a basis 

for selecting image datasets to appropriately map and address mangroves problems at a relevant 

scale. This chapter also revealed the relationships between image spatial resolution, level of 

information detail, and the accuracy of the resulted maps (Table 6.2). Smaller pixel sizes tend to 

depict more detailed features and have higher map accuracy; however, smaller mangrove features 

and more feature classes decrease the accuracy of the maps. By synthesising these findings, the 

guidelines for selecting an image dataset for mangrove mapping were proposed. 

 

The guidelines address the lack of knowledge on the relationships among image resolutions and 

types, mapping approaches and the level of information detail able to be produced in the mangrove 
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environment. They summarise how remotely-sensed data can be used most effectively and most 

accurately to map mangrove information. From a practical point of view, this guideline assists in; 

(1) selecting the most appropriate image datasets for the optimal mapping of mangrove composition 

and LAI at specific scales, and (2) providing direction on the types of information that can be 

derived from a specific image dataset and how to obtain this information. It covers the aspects of 

project goals and expectations, image resolution dimensions, available processing techniques and 

some examples from literature. Depending on the need, the guidelines can be viewed from the 

user‟s or producer‟s perspective. 

 

The results of this chapter were limited by the number and type of images and mapping techniques 

tested and the mangrove environmental settings used. For future research, to develop more 

comprehensive mangrove mapping guidelines able to work with globally available image datasets, a 

wider range of image datasets from multispectral, hyper-spectral and RADAR need to be tested. 

Likewise, a more detailed assessment of mapping techniques need to be applied to map targeted 

features, to provide a more detailed mapping technique selection. Future work will also focus on 

improving the transferability of the guidelines to other mangrove environmental settings.   

.
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7. CHAPTER 7: 

 

CONCLUSIONS, SIGNIFICANCE AND FUTURE RESEARCH 
 

 

This chapter revisits the main findings of the thesis and discusses their specific contribution to the 

field of remote sensing for mangrove mapping and monitoring. Limitations of the studies are also 

presented and the directions for future works are suggested. 
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7.1. Summary 

Mangroves have a wide range of ecosystem values ecologically, economically and socially. In the 

recent decades, their existence is under intense pressure from anthropogenic and natural 

disturbances with an alarming loss rate. There is a significant need to map mangroves and monitor 

the changes accurately for basic mangrove ecology and their management. It requires a basic 

understanding of the condition and distribution of mangroves to take the necessary steps to prevent 

further habitat loss in the future. Remote sensing provides a means for spatially extensive, non-

destructive, repeatable, multi-scale and multi-temporal assessment of mangrove status and 

condition. Advances in remote sensing technology in the past 15 years allow us to explore various 

types of image datasets with different resolutions, as well as mapping techniques to map mangrove 

environments. However, effective use of remote sensing data requires a match of the scale of 

analysis to the scale of the phenomenon under investigation. As an increasing number of airborne 

and satellite image data types become available for free and commercial use, selection of the most 

appropriate image resolutions and processing techniques becomes more difficult. At present, there 

are a limited number of studies and there is still no explicit guideline to answer the question of 

“what type of mangrove information can be derived from specific image datasets”; or vice versa, 

“in order to map a particular mangrove feature, which type of image datasets could optimally 

detect the specific feature?” This PhD thesis, addresses this knowledge gap by combining remote 

sensing data dimensions with the mangrove ecological hierarchy and providing guidelines for multi-

scale image-based mangrove mapping. 

 

Essential to the effective science and management of mangroves is an understanding of their spatial 

and temporal ecological structure and process. Based on the differences in process rates, mangrove 

systems are viewed as being stratified into discrete levels of interacting subsystems, from the 

landscape scale down to individual plants. On the other side, the detectability of mangrove objects 

from remote sensing data is dependent on the spatial resolution of the image. In this thesis, the 

“scale domain” (i.e. range of size) of mangrove objects detectable from remote sensing images was 

identified and tested to map mangrove composition and LAI in Moreton Bay (Australia) and 

Karimunjawa Island (Indonesia). This thesis combined the spatial and temporal dimension of 

remote sensing data into the spatio-temporal continuum of the mangrove hierarchy. It identified the 

scale domain of the targeted mangrove features and linked it to the optimum image resolutions able 

to map these features. This resulted in the first explicit relationship between remote sensing and 

mangrove spatial ecology at multiple spatial and temporal scales. This relationship provided a 

fundamental basis for selecting the most appropriate image dataset to map specific features 

of mangroves. 
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By synthesising this relationship with findings from the empirical mapping tasks and literature, a 

guideline for multi-scale image-based mangrove mapping was established. It provided a systematic 

and efficient procedure to select the best image datasets and mapping techniques to map mangrove 

feature(s) at a relevant spatial and temporal scale. In a broader context, this thesis signifies the 

utility of remote sensing for mangrove mapping and builds a solid foundation for the 

implementation of multi-scale image-based approaches to map and monitor mangrove ecosystems. 

This will produce environmental information ready for scientific and management uses to address 

ecological problems at relevant spatial and temporal scales. 

 

7.2. Main Findings and Outcomes 

The following restates the PhD objectives, followed by the main findings and outcomes that address 

the objectives of this thesis. 

 

Objective 1: To characterise mangrove spatial structure identifiable at different spatial scales for 

image-based mangrove mapping. 

 

The major output from objective one was a method that enables the estimation of the optimum pixel 

size for accurately mapping different sizes of mangrove features. In the case of this thesis, semi-

variogram analyses were applied to six simulated image pixel sizes (0.5 m, 1 m, 2 m, 4 m, 8 m and 

10 m) of WorldView-2 to investigate the pattern of mangrove features detectable from image 

datasets. The results showed that semi-variograms detected the variations in the structural properties 

of mangroves in the study area (Moreton Bay, Australia). Its forms were controlled by the image 

pixel size, the spectral bands used and the spatial structure of the scene object (e.g., tree or gaps). In 

terms of the pixel size effect, there was a gradual loss of mangrove vegetation information detail 

with increasing pixel size and a specific mangrove feature can be optimally identified and mapped 

from a specific pixel size and spectral band or indices. Specifically, a pixel size of ≤ 2 m was suitable 

for mapping canopy and inter-canopy-related features within mangrove objects (such as shrub crowns, 

canopy gaps and single tree crowns), while a pixel size of ≥ 4 m was appropriate for mapping mangrove 

vegetation formation, communities and larger mangrove features. The major outcome of the analysis 

results is an optimum pixel resolution scheme for mangrove mapping that provides a basis for 

multi-scale mangrove mapping and the selection of appropriate remote sensing image datasets for 

mangrove mapping. Through this study, a better understanding of the relationship between the size 

of mangrove features and the optimum image pixel size is achieved. Future research is needed to 

test the consistency of the method at other mangrove environments. 



CHAPTER 7 Conclusions, significance and future research 

126 

 

Objective 2: To assess the capability of selected remotely-sensed datasets and mapping techniques 

to produce mangrove composition and LAI maps at different spatial scales and assess the accuracy 

of the mapping results. 

 

This objective provided a “proof of concept” of the optimum pixel resolution scheme for mangrove 

feature mapping developed in objective one. It was empirically applied to some selected image 

datasets (TM, AVNIR-2, WV-2 and LiDAR) to map mangrove composition and LAI in Moreton 

Bay (Australia) and Karimunjawa Island (Indonesia). For the first task, the major output was the 

implementation of the scheme to map five levels of mangrove features, including vegetation 

boundary, mangrove stands, mangrove zonations, individual tree crowns and species communities. 

The result demonstrated that GEOBIA, through the mangrove image objects hierarchy, successfully 

produced mangrove composition maps at discrete spatial scales, with a reasonable level of 

accuracy. The level of information detail able to be obtained from the image dataset was dictated by 

image spatial and spectral resolution. Inclusion of contextual information (i.e. DTM or CHM) 

significantly increased the accuracy of the maps. It is also demonstrated that the accuracy of the 

produced maps was a result of the interaction between the image spatial resolution, the scale of the 

targeted objects and the number of land-cover classes of the map. The major outcome of this task is 

a demonstration that the conceptual spatial and temporal hierarchical organisation of mangroves 

provides an essential aid for effective multi-scale mangrove composition mapping. This information 

is necessary to address mangrove ecological problems at relevant spatial scales. 

 

The major output of the second task was the demonstration of LAI variation in maps produced from 

different image datasets, spectral vegetation indices and mapping approaches (i.e. object- and pixel-

based). From an ecological perspective, mangrove LAI variation was dependent on the location, 

spatial variation of mangrove vegetation (i.e. homogeneous or heterogeneous) and the tree growth 

stage. From a remote sensing perspective, the optimum pixel size to estimate mangrove LAI 

correlates to the dominant object size in the area of interest (e.g. the average mangrove canopy size) 

and the associated field plot size used to correlate field and image data. NDVI was found to be the 

best estimator of LAI. Based on the mapping approach investigation, image segmentation 

significantly increased the accuracy of LAI estimates; with the optimum segmentation size for LAI 

estimates corresponding with the size of the dominant objects on the scene. The major outcome of 

this task is an understanding of the relationship between pixel resolutions and the spatial variation 

of mangrove vegetation for estimating mangrove LAI. In other words, the results of this study serve 

as a guide for the optimal selection of the optical remote sensing datasets to be used to estimate and 

map mangrove LAI. 
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Objective 3: To develop guidelines for multi-scale mapping of mangrove composition and LAI 

suitable for multiple locations. 

 

This objective analysed and synthesised the findings from objective one and two. It combined all of 

the knowledge obtained in the previous objectives to develop a guideline for multi-scale image-

based mangrove mapping. The major outputs of this objective were: (1) a graphical illustration 

showing the link between remote sensing and ecological mangrove hierarchical organisation; (2) a 

table of relationships between image spatial resolution, mappable mangrove features and mapping 

accuracy; and (3) a guideline for selecting image datasets and mapping techniques for mangrove 

mapping. It linked the image resolution dimensions into the mangrove spatial ecology hierarchy. 

Specifically, it confirmed that remote sensing spatial and temporal dimensions could be fitted into 

the spatio-temporal hierarchical organisation of mangroves. It also revealed the relationships 

between image spatial resolution, level of information detail and the accuracy of the resulted maps. 

The major outcome of this objective is a guideline that provides an effective and efficient way to 

select the best image datasets and mapping techniques to map mangrove feature(s) at a relevant 

spatial and temporal scale. The guidelines facilitate the task of selecting the correct image 

resolutions to address a particular mapping problem for mangroves at a specific scale.  

 

7.3. Limitations and Future Research 

Individual research chapters have addressed the limitations related to the research methods and 

results. This section will outline some key limitations and future directions.  

 

The primary limitation of this thesis is the transferability of the methods and guideline to other 

locations with different mangrove environmental settings. The results from the mangrove spatial 

structure characterisation using semi-variogram was site-specific. It means that in order to obtain a 

comprehensive pattern of mangrove spatial structure characteristics that is applicable globally, this 

method needs to be applied to every representative mangrove environment. Another challenge 

found was the non-transferability of most of the component of GEOBIA mapping rule set 

developed to map mangrove composition at multiple scales. The detailed component of the rule set 

was site-, scale- and time-specific. Modifications need to be made to apply the rule set to different 

locations, images and times. Although the two selected study sites, with very different 

characteristics  and locations, were used in this research, the locations represented a relatively 

narrow strip of mangrove stands. Therefore, further studies need to be carried out to apply the    

methods and guidelines to vast and species-rich mangrove forests. 
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As with any study that involves field survey components, multiple sources of error associated with 

field data collection can be found. Mangrove forests are not easy to access and sometimes features 

obstruct the field data collection due to the nature of mangrove forests. This includes the 

unconsolidated sediment of the base material, unique mangrove root systems (e.g. stilt and knee 

roots), dense sapling understoreys and tidal fluctuations. Animal threats were also present in some 

of mangrove forests, such as crocodiles in Northern Queensland (Australia) and tigers in 

Sundarbans mangroves (Bangladesh). The issue with the tidal fluctuation was the main challenge in 

this study and previously explained in section 5.2.3. By carefully planning of the fieldwork in 

regards to the tides, the field data collection periods can be optimised. 

 

Another limitation was the limited number of images and mapping methods investigated in this 

thesis. The main images available for both sites and used in this thesis were three multi-spectral 

images selected to represent different spatial resolutions and LiDAR data of the Moreton Bay 

mangrove sites. Data from TM (30 m), AVNIR-2 (10 m) and WV-2 (2 m) were used for mangrove 

composition and LAI mapping, while the LiDAR data were used for mangrove composition 

mapping only. In terms of mapping techniques, this study only assessed the object-based and pixel-

based techniques. Future work needs to investigate the utility of a larger number of image datasets 

(such as aerial photographs, hyper-spectral, high-spatial resolution and RADAR images) for 

mangrove mapping to improve the applicability of the guidelines. Examination of hybrid 

approaches and other advanced mapping techniques will enrich the utility of the developed 

guidelines. The role of the temporal resolution of the images to provide multi-temporal or time 

series mangrove information also need to be studied specifically in order to enhance the 

applicability of the image selection guidelines. 

 

The time gaps between the images used, especially for Karimunjawa Island, may have influenced 

the mapping results. Cloud cover is the main issue in this area and obtaining several cloud-free 

images at similar times is difficult. The time gaps of the image acquisition of the Karimunjawa 

Island images were about three years (July 2009, February 2009 and May 2012). In terms of 

mangrove phenological stages, a period of three years will not alter the mangrove physical 

appearance much as long as no extreme weather events occur within this time period. However, the 

presence of natural and anthropogenic disturbance could significantly change the extent and 

condition of mangrove forest. Fortunately, there was no noticeable disturbance events during this 

period. The status of the mangrove forest as a National Park also limited human access to the 

location and kept the mangrove habitat intact. 
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Finally, the limitation in terms of implementation of the mapping methods is the cost of the 

software licences for object-based image analysis. The high cost of the standard software for this 

purpose inhibits the transfer of the multi-scale image-based mapping concept and practice for a 

wider audience in science and management groups. Some open source softwares have been 

developed for object-based image analysis such as SPRING, InterImage, and GeoDMA. However, 

they are more focussed on the image segmentation part and have limited ability to develop the rule 

sets for image classification. More efforts should be directed to develop a reliable and effective 

open source software with ability to develop the classification rule set for more robust and 

repeatable image classification. 

 

7.4. Contribution to Knowledge 

The methods and products presented in this thesis provide a fundamental basis for multi-scale 

image-based mangrove mapping and signify the operational use of remote sensing data for multi-

scale mangrove mapping. This study has successfully integrated two different fields, remote sensing 

and mangrove spatial ecology; and revealed an explicit relationship between image spatial 

resolution, detail of the mangrove information obtained and the expected product accuracy. Based 

on the relationships, a guideline for selecting the most appropriate image dataset and mapping 

techniques for mangrove mapping was developed to produce science- and management-ready 

environmental information at a relevant spatial and temporal scale. This study has substantially 

increased our capacity to use object-based image analysis for multi-scale mangrove composition 

and LAI  mapping. The study has also led to an efficient and effective use of remote sensing data 

for mapping, measuring, and monitoring mangrove environments. 

 

The contributions of this thesis to the body of scientific knowledge are: 

 The first ever effort to develop an explicit guideline for selecting image datasets and 

mapping techniques for mangrove mapping, at specific spatial and temporal scales; 

 First effort to integrate the remote sensing data dimensions to the spatio-temporal mangrove 

ecological organisation; 

 Development of a method to estimate the optimum pixel size for accurately mapping 

different sizes of mangrove features; 

 Identification of the relationships between image pixel sizes and mangrove features able to 

be mapped; 

 Definition of an explicit relationship between image spatial resolution, detail of the 

mangrove features able to be mapped and the mapping accuracy; 

 Provision of a fundamental basis for multi-scale image-based mangrove mapping; 



CHAPTER 7 Conclusions, significance and future research 

130 

 

 Demonstration of the effectiveness of having a conceptual hierarchical model of objects in 

place before the object-based image analysis mapping; 

 Development of a new object-based approach for mapping mangrove composition at 

multiple spatial scales; 

 Improvements in the accuracy of LAI mapping using object-based estimation; and 

 Proof of concept for the use of remote sensing for multi-scale mangrove mapping.  
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9. APPENDICES 
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Appendix 2. 

 

                Table A2.1. List of mangrove species found during fieldwork. 
 

Location Species name 

Moreton Bay, Australia Avicennia marina 

 Rhizophora stylosa 

 Ceriops tagal 

 Aegiceras corniculatum 

Karimunjawa Island, Indonesia Aegiceras corniculatum 
 Avicennia marina 

 Bruguiera cylindrica 

 Bruguiera gymnorrhiza 

 Ceriops tagal 

 Excoecaria agallocha 

 Heritiera littoralis 

 Lumnitzera littorea 

 Lumnitzera racemosa 

 Nypa fruticans 

 Rhizophora apiculata 

 Rhizophora stylosa 

 Scyphiphohra hydrophyllacea 

 Sonneratia alba 

 Sonneratia ovata 

 Xylocarpus granatum 

 Xylocarpus moluccensis 
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Appendix 3. 

 

Statistical examination of pan-sharpened WorldView-2 images was performed for mangroves at 
Whyte Island and Fisherman Island with three samples of different tonal appearance; dark, medium, 

and bright mangrove features. The tables shown below are the average values of these three image 
tonal variation. 

 

Table A3.1. Basic statistics of pan-sharpened WorldView-2 image of mangrove areas. 

 
Minimum and maximum of pixel values 

      
Methods 

     Band 1      Band 2      Band 3      Band 4 

min max min max min max min max 

Original 317.67 763.67 319.00 838.33 310.00 1094.33 316.67 1098.67 

Principal component 284.00 713.00 282.67 786.00 293.67 1136.67 319.67 1083.67 

Multiplicative 63294.00 284302.00 60625.00 313684.00 56751.33 463044.67 57774.00 441934.33 

Brovey 8.07 31.67 8.20 35.57 10.38 39.77 9.55 42.12 

Wavelet 242.05 754.75 238.35 846.29 313.26 1146.45 73.23 1100.04 

Gram-schmidt 284.67 748.00 287.00 822.67 306.67 1136.67 316.00 1108.67 

Colour normalisaton 64.67 253.67 65.67 284.67 83.33 318.33 76.33 337.00 

         
Methods 

     Band 5      Band 6      Band 7      Band 8 

min max min max min max min max 

Original 249.00 958.00 487.00 2868.67 737.33 5298.00 664.33 4694.67 

Principal component 196.33 920.33 218.33 3297.33 195.00 5754.67 189.00 5367.00 

Multiplicative 46011.33 378645.67 89691.00 1294740.33 135414.33 2374598.67 129662.00 2085763.00 

Brovey 7.11 39.41 22.44 88.05 33.93 153.07 28.26 138.53 

Wavelet -268.88 1042.30 438.82 2913.76 523.95 5365.76 508.71 4878.69 

Gram-schmidt 225.33 965.00 468.33 3146.33 633.00 5595.67 604.67 5063.00 

Colour normalisaton 57.00 315.33 179.33 704.33 271.33 1224.33 226.00 1108.00 

         Mean of pixel values 
       Methods      Band 1      Band 2      Band 3      Band 4      Band 5      Band 6      Band 7      Band 8 

Original 475.86 509.04 708.99 654.14 526.12 1780.62 3047.42 2787.84 

Principal component 475.87 509.04 708.99 654.14 526.12 1780.62 3047.42 2787.84 

Multiplicative 154221.93 165096.47 232832.42 213775.09 170894.58 594812.03 1021356.93 933816.41 

Brovey 15.26 16.34 22.44 20.85 16.92 54.88 93.30 85.36 

Wavelet 474.68 508.94 706.99 647.12 515.36 1780.26 3045.11 2784.86 

Gram-schmidt 475.86 509.04 708.99 654.14 526.12 1780.62 3047.42 2787.84 

Colour normalisaton 122.08 130.74 179.56 166.83 135.34 439.07 746.38 682.85 

 

 

The statistical measures used to assess the quality of pan-sharpened images were: 

 
1. Standard deviation of the histogram (σ) 

 

  √
∑(        ̅̅ ̅̅ )

 

   
 

 

Where MSi,j is the individual band pixel value at row i and column j, and n is the total pixel 

number of MS band. 
 

2. Relative shift of the histogram mean (RM) 
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3. Root Mean Square Error (RMSE) 

 

     √
 

 
∑(                   )

 
 

   

 

 
Where MSoutput is the multispectral band pixel value of pan-sharpened image, and MSoriginal is 

the pixel value of original multispectral image. 
 

4. Correlation coefficient of multi-spectral bands (CC) 

 

  
 ∑   (∑ )(∑ )

√ (∑  ) (∑ )  √ (∑  )  (∑ ) 
 

 
Where x and y are the two images being compared, and n is the number of pairs of data. 

 

 

Table A3.2. Statistical measures for evaluating pan-sharpening methods of  mangrove image. 

 
Standard deviation of the histogram 

      Methods Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Original 69.62 83.46 95.59 103.30 112.39 429.15 882.86 791.69 

Principal component 58.54 70.17 102.04 96.29 95.07 452.34 879.83 786.71 

Multiplicative 27172.71 31668.61 54065.79 47954.33 40201.98 201799.51 385041.35 345883.10 

Brovey 4.22 4.79 4.41 5.29 5.68 10.69 23.04 20.79 

Wavelet 65.61 78.97 101.72 121.26 140.57 428.36 882.78 792.69 

Gram-schmidt 70.48 84.56 94.49 103.98 107.36 424.89 846.70 758.32 

Colour normalisation 33.74 38.31 35.31 42.33 45.44 85.49 184.31 166.29 

         Relative shift of the histogram mean 
      Methods Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Principal component 1.2E-06 1.4E-06 -1.3E-06 -8.5E-08 -6.1E-07 1.3E-06 -3.0E-08 1.7E-07 

Multiplicative 3.2E+02 3.2E+02 3.3E+02 3.3E+02 3.2E+02 3.3E+02 3.3E+02 3.3E+02 

Brovey -9.7E-01 -9.7E-01 -9.7E-01 -9.7E-01 -9.7E-01 -9.7E-01 -9.7E-01 -9.7E-01 

Wavelet -2.5E-03 -1.8E-04 -2.8E-03 -1.1E-02 -2.0E-02 -2.2E-04 -7.4E-04 -1.0E-03 

Gram-schmidt -9.6E-07 -1.1E-06 -1.7E-06 1.3E-07 -3.7E-07 1.1E-07 -1.1E-08 -2.0E-08 

Colour normalisation -7.4E-01 -7.4E-01 -7.5E-01 -7.5E-01 -7.4E-01 -7.5E-01 -7.6E-01 -7.6E-01 

         RMSE 
        Methods Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Principal component 29.83 33.15 15.68 14.86 40.26 307.01 650.79 580.13 

Multiplicative 156158.21 167646.95 238378.70 218497.68 175106.29 626880.70 1089354.97 994175.65 

Brovey 465.61 499.41 692.91 641.17 520.58 1777.89 3080.82 2815.48 

Wavelet 40.59 48.25 63.93 88.86 113.80 288.82 583.01 525.68 

Gram-schmidt 17.47 18.14 27.31 5.89 19.47 274.86 558.06 496.86 

Colour normalisation 356.40 381.95 535.07 492.90 397.71 1389.51 2412.35 2204.01 

         Coefficient of correlation of multi-spectral bands 

     Methods Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Principal component 0.908 0.923 0.986 0.991 0.938 0.749 0.716 0.717 

Multiplicative 0.611 0.678 0.846 0.776 0.788 0.954 0.957 0.954 

Brovey 0.885 0.895 0.667 0.817 0.918 0.879 0.925 0.918 

Wavelet 0.823 0.827 0.772 0.681 0.617 0.773 0.784 0.782 

Gram-schmidt 0.966 0.974 0.958 0.998 0.983 0.783 0.784 0.785 

Colour normalisation 0.885 0.895 0.667 0.817 0.918 0.879 0.925 0.918 

 



Appendices 

150 

 

A
p
p
en

d
ices 

Appendix 4. 
 
Tabel A4.1. Rule set for mangrove composition mapping at Karimunjawa Island. 

Level Information Landsat TM ALOS AVNIR-2 WorldView-2 

1 

Vegetation 
 
 

Non-vegetation 

Layer arithmetics 
Multi-threshold seg. 
FDI > 100 

Layer arithmetics 
Multi-threshold seg. 
FDI > 500 

Layer arithmetics 
Multi-threshold seg. 
FDI > 10000 

Not “Vegetation” Not “Vegetation” Not “Vegetation” 

2 

Mangroves 
 
 
 
 

Non-mangroves 

Within “Vegetation” 
Multiresolution seg. (SP:15, 
s:0.1, c:0.5) 
Mean 5 = 750-1160 
Manual editing 

Within “Vegetation” 
Multiresolution seg. (SP:50, 
s:0.1, c:0.5) 
Brightness*Mean 3 = 15-30 
Manual editing 

Within “Vegetation” 
Multiresolution seg. (SP:100, 
s:0.1, c:0.5) 
(7/6)*4 = 620-900 
(7/6)*5 = 450-680 
Manual editing 

Not “Mangroves” Not “Mangroves” Not “Mangroves” 

3 

Zonation 
bands 

 

 

 

 

Within “Mangroves” 
Chess board segmentation: 
1 

Within “Mangroves” 
Multiresolution seg. (SP:25, 
s:0.1, c:0.5) 

Zone 1 - 8 < 4/(3+1) < 12 1.55 > 7/(5+6) < 1.85 

Zone 2 - 6 < 4/(3+1) < 8 1.4 > 7/(5+6) < 1.55 

Zone 3 - 4 < 4/(3+1) < 6 1.2 > 7/(5+6) < 1.4 

Zone 4 - 0 < 4/(3+1) < 4 7/(5+6) < 1.2 

4 

Tree 
canopy 

Canopy 
gaps  

- 

 

- 

 

-  

Tree 
crowns  

- - -  

5 Individual species 
- - - 

FDI: Forest Discrimination Index, NIR: near-infrared, MIR: mid-infrared, PC: principal component, SP: scale parameter, s: shape, c: 
compactness, italic numbers represent band order for the associated images, the conditional operator used on each membership 
rule was “and (min)”. 
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Appendix 5. 

 

Mangrove composition maps of Karimunjawa Island derived from LANDSAT TM image 
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Mangrove composition maps of Karimunjawa Island derived from ALOS AVNIR-2 image 
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Mangrove composition maps of Karimunjawa Island derived from WorldView-2 image 
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Appendix 6. 

 

Tabel 6.1. LAI models derived from SVIs for Moreton Bay site 

 
Image SVIs Best regression model R

2 

Landsat TM SR LAI = 2.3018 ln (SR) – 0.761 0.68 

NDVI LAI = 3.3327 ln (NDVI) + 4.1114 0.70 

SAVI LAI = 2.568 ln (SAVI) + 4.3968 0.71 

EVI LAI = 2.1203 ln (EVI) + 4.0223 0.70 

ALOS AVNIR-2 SR LAI = 2.39 ln (SR) – 1.67 0.81 

NDVI LAI = 5.00 ln (NDVI) + 4.22 0.83 

SAVI LAI = 7.79 SAVI – 0.98 0.81 

EVI LAI = 2.29 ln (EVI) + 4.97 0.81 

WorldView-2 SR LAI = 1.5175 ln (SR) – 0.6827 0.63 

NDVI LAI = 5.937 NDVI – 2.1748 0.63 

SAVI LAI = 4.2354 SAVI – 0.1382 0.55 

EVI LAI = 1.4214 ln (EVI) + 3.0913 0.50 

Segmentation Scale 
Parameter 10 

SR LAI = 1.5317 ln (SR) – 0.715 0.64 

NDVI LAI = 6.0326 NDVI – 2.2496 0.65 

SAVI LAI = 4.2411 SAVI – 0.139 0.57 

EVI LAI = 1.4478 ln (EVI) + 3.1099 0.53 

Segmentation Scale 
Parameter 20 

SR LAI = 1.4848 ln (SR) – 0.6116 0.62 

NDVI LAI = 5.7543 NDVI – 2.032 0.63 

SAVI LAI = 4.0026 SAVI + 0.0007 0.54 

EVI LAI = 3.0902 EVI + 0.5406 0.52 

Segmentation Scale 
Parameter 30 

SR LAI = 1.5996 ln (SR) – 0.8232 0.66 

NDVI LAI = 6.2641 NDVI – 2.4027 0.67 

SAVI LAI = 4.3212 SAVI – 0.1692 0.57 

EVI LAI = 3.3418 EVI + 0.4126 0.55 

Segmentation Scale 
Parameter 40 

SR LAI = 1.6958 ln (SR) – 0.9998 0.70 

NDVI LAI = 4.6372 ln (NDVI) + 3.6422 0.72 

SAVI LAI = 2.3854 ln (SAVI) + 3.6548 0.64 

EVI LAI = 1.7296 ln (EVI) + 3.3096 0.61 

Segmentation Scale 
Parameter 10 

SR LAI = 1.6819 ln (SR) – 0.9594 0.69 

NDVI LAI = 4.517 ln (NDVI) + 3.6167 0.71 

SAVI LAI = 4.6956 SAVI – 0.352 0.61 

EVI LAI = 3.6663 EVI + 0.2659 0.59 

Pixel average 3x3 SR LAI = 1.6586 ln (SR) – 0.9476 0.69 

NDVI LAI = 4.496 ln (NDVI) + 3.5834 0.72 

SAVI LAI = 2.521 ln (SAVI) + 3.7243 0.69 

EVI LAI = 1.8448 ln (EVI) + 3.3708 0.68 

Pixel average 5x5 SR LAI = 1.8199 ln (SR) – 1.2516 0.73 

NDVI LAI = 5.0039 ln (NDVI) + 3.7378 0.75 

SAVI LAI = 2.9186 ln (SAVI) + 3.9672 0.76 

EVI LAI = 2.1633 ln (EVI) + 3.5777 0.76 

Pixel average 7x7 SR LAI = 1.9553 ln (SR) – 1.5031 0.74 

NDVI LAI = 5.443 ln (NDVI) + 3.8744 0.77 

SAVI LAI = 3.1415 ln (SAVI) + 4.1051 0.78 

EVI LAI = 2.3121 ln (EVI) + 3.6763 0.77 

Pixel average 9x9 SR LAI = 1.6586 ln (SR) – 0.9476 0.70 

NDVI LAI = 5.7244 ln (NDVI) + 3.9596 0.77 

SAVI LAI = 3.2855 ln (SAVI) + 4.1906 0.78 

EVI LAI = 2.3992 ln (EVI) + 3.7305 0.77 
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Tabel 6.2. LAI models derived from SVIs for Karimunjawa Island site 

 
Image SVIs Best regression model R

2 

Landsat TM SR LAI = 4.9907 ln (SR) – 3.2185 0.63 

NDVI LAI = 8.9644 ln (NDVI) + 8.3408 0.65 

SAVI LAI = 6.0047 ln (SAVI) + 9.1097 0.69 

EVI LAI = 4.8146 ln (EVI) + 8.8605 0.69 

ALOS AVNIR-2 SR LAI = 2.70 ln (SR) – 1.78 0.80 

NDVI LAI = 0.17 e
3.99 NDVI 

0.82 

SAVI LAI = 10.19 SAVI – 1.01 0.77 

EVI LAI = 11.27 EVI – 0.15 0.77 

WorldView-2 SR LAI = 2.4134 ln (SR) – 1.8929 0.58 

NDVI LAI = 0.0911 e
4.5009 NDVI 

0.62 

SAVI LAI = 0.5777 e
3.0643 SAVI 

0.60 

EVI LAI = 3.4252 ln (EVI) + 5.4616 0.60 

Segmentation Scale 
Parameter 10 

SR LAI = 2.3663 ln (SR) – 1.7594 0.59 

NDVI LAI = 0.0933 e
4.4838 NDVI 

0.63 

SAVI LAI = 0.597 e
3.0084 SAVI 

0.59 

EVI LAI = 3.377 ln (EVI) + 5.428 0.59 

Segmentation Scale 
Parameter 20 

SR LAI = 2.4745 ln (SR) – 1.9836 0.57 

NDVI LAI = 0.0802 e
4.678 NDVI 

0.68 

SAVI LAI = 0.5466 e
3.1546 SAVI 

0.64 

EVI LAI = 0.8829 e
2.2931 EVI 

0.61 

Segmentation Scale 
Parameter 30 

SR LAI = 2.6671 ln (SR) – 2.4007 0.64 

NDVI LAI = 0.0625 e
4.9924 NDVI 

0.71 

SAVI LAI = 0.496 e
3.3283 SAVI 

0.65 

EVI LAI = 3.7533 ln (EVI) + 5.6233 0.65 

Segmentation Scale 
Parameter 40 

SR LAI = 2.4953 ln (SR) – 1.9565 0.59 

NDVI LAI = 0.09 e
4.5654 NDVI 

0.66 

SAVI LAI = 0.5709 e
3.1159 SAVI 

0.64 

EVI LAI = 3.3784 ln (EVI) + 5.4649 0.62 

Segmentation Scale 
Parameter 10 

SR LAI = 2.4189 ln (SR) – 1.7795 0.55 

NDVI LAI = 0.0968 e
4.4773 NDVI 

0.64 

SAVI LAI = 0.6117 e
2.9955 SAVI 

0.60 

EVI LAI = 3.1937 ln (EVI) + 5.3587 0.57 

Pixel average 3x3 SR LAI = 2.5893 ln (SR) – 2.2702 0.64 

NDVI LAI = 0.077 e
4.7163 NDVI 

0.68 

SAVI LAI = 0.5186 e
3.2599 SAVI 

0.68 

EVI LAI = 3.6344 ln (EVI) + 5.5853 0.68 

Pixel average 5x5 SR LAI = 2.6018 ln (SR) – 2.2406 0.64 

NDVI LAI = 0.0811 e
4.6745 NDVI 

0.70 

SAVI LAI = 0.4956 e
3.362 SAVI 

0.71 

EVI LAI = 7.2041 EVI – 0.6118 0.70 

Pixel average 7x7 SR LAI = 2.574 ln (SR) – 2.1353 0.61 

NDVI LAI = 0.0849 e
4.6347 NDVI 

0.68 

SAVI LAI = 0.4633 e
3.5046 SAVI 

0.70 

EVI LAI = 0.7345 e
2.6808 EVI 

0.69 

Pixel average 9x9 SR LAI = 2.5347 ln (SR) – 2.0263 0.59 

NDVI LAI = 0.0926 e
4.5347 NDVI 

0.66 

SAVI LAI = 0.4396 e
3.6084 SAVI 

0.70 

EVI LAI = 0.695 e
2.7902 EVI 

0.68 
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Appendix 7. 
 

Comparison of mangrove LAI maps of Karimunjawa Island estimated from different image datasets 
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Comparison of mangrove LAI maps of Moreton Bay estimated from different SVIs applied to ALOS 

AVNIR-2 image 
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    Appendix 8. 
 

    Table A5.1. Characteristics of image datasets used as an example in Figure 6.2. 
 

Satellite 

Resolution 
Revisit 

time (days) 

Altitu
de 

(km) 

Swath 
width 
(km) 

Equatorial 
crossing time 

Launch 
year 

End 
year Spatial (m) Spectral 

Radiometric 
(bits) 

Temporal 
(days) 

Landsat 5 VNIR 30, TIR 120 4 VNIR, 2 SWIR, 1 TIR 8 16 16 705 185 09:30-10:00 AM 1984 2013 

Landsat 7 VNIR 30, TIR 60, Pan 15 4 VNIR, 2 SWIR, 1 TIR, 1 Pan 8 16 16 705 185 10:00-10:15 AM 1999  

Landsat 8/ LDCM VNIR 30, SWIR 30, Pan 15 5 VNIR, 3 SWIR, 1 Pan 12 16 16 705 185 10:00 AM 2013  

SPOT 4 VNIR 20, Pan 10 4 VNIR, 1 Pan 8 26 1-4 832 60 10:30 AM 1998 2013 

SPOT 5 VNIR 10, SWIR 20, Pan 5 3 VNIR, 1 SWIR, 1 Pan 8 26 1-4 832 60 10:30 AM 2002  

SPOT 6/7 VNIR 6, Pan 1.5-2.5 4 VNIR, 1 Pan 12 1-5 1 695 60 10:00 AM 2012/14  

ASTER-Terra VNIR 15, SWIR 30, TIR 90 3 VNIR, 6 SWIR, 5 TIR 8, 12 (TIR) 16 16 705 60 10:30 AM 1999  

ALOS-1 AVNIR-2 10, PRISM 2.5, 
PALSAR 10-100  

4 VNIR, 1 Pan, 4 SAR 8, 5 (SAR) 46 2 692 70 10:30 AM 2006 2011 

Sentinel-2 Mixed VNIR-SWIR 10, 20, 
60 

10 VNIR, 3 SWIR 12 10 5 786 290 10:30 AM 2015  

FORMOSAT-2 VNIR 8, Pan 2  4 VNIR, 1 Pan 12 1 1 888 24 09:26 AM 2004  

RapidEye VNIR 5 5 VNIR 12 1 1 630 77 11:00 AM 2008  

Flock-1  
(Planet Labs) 

Vis 3-5 3 Vis NA Planned 
to be daily 

Planned to 
be daily  

430   2014  

IKONOS-2 VNIR 3.2, Pan 0.82 4 VNIR, 1 Pan 11 14 1-3 681 11.3 10:30 AM 1999  

Pléiades VNIR 2.8, Pan 0.7 4 VNIR, 1 Pan 12 26 1 694 20 10:30 AM 2011  
QuickBird-2 VNIR 2.44, Pan 0.61 4 VNIR, 1 Pan 11 ~5 1-3.5 450 16.8 10:25 M 2001 2015 

GeoEye-1 VNIR 1.64, Pan 0.41 4 VNIR, 1 Pan 11 11 1-3 681 15.2 10:30 AM 2008  

WorldView-2 VNIR 1.84, Pan 0.31 8 VNIR, 1 Pan 11 1.1 1.1 770 16.4 10:30 AM 2009  

WorldView-3 VNIR 1.24, SWIR 3.7, 
CAVIS 30, Pan 0.31 

8 VNIR, 8 SWIR, 12 CAVIS, 1 
Pan 

11 <1 <1 617 13.1 01:30 PM 2014  

Skysat-2 (SkyBox) VNIR 2, Pan 1.1 4 VNIR, 1 Pan 16 Variable Variable 450 8 10:30 AM 2014  

Videos  are full motion black and white 30 frames per second, duration up to 90  seconds 

Aerial photograph Variable Variable Variable Variable Variable Varia
ble 

Variable Variable   

LiDAR Variable    Variable Variable  Varia
ble  

Variable  Variable    

TerraSAR-X SAR 1-18.5  8 11 4.5 514 10-100  2007  

 
Sources: https://directory.eoportal.org/web/eoportal/satellite-missions/ and http://www.geoimage.com.au/satellites/satellite-overview  

1
5
9
 

https://directory.eoportal.org/web/eoportal/satellite-missions/
http://www.geoimage.com.au/satellites/satellite-overview
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Mangrove fieldwork at Whyte Island, Moreton Bay; background picture is tall and dense Avicennia 

marina trees. Photo was taken by Kamal on 15 April 2012 (left to right: Novi, Stuart and Kamal). 
 

 

 
Terrestrial Laser Scanner trial at Whyte Island, Moreton Bay; background picture is low-closed 

forest of Avicennia marina trees. Photo was taken by Kamal on 21 January 2013  
(left to right: Yinyin, Kasper, Sabrina and Kamal). 
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LICOR LAI 2200 set up at Karimunjawa Island; background picture is short Avicennia marina 

scrub. Photo was taken by Hafizt on 26 July 2012 (left to right: Prama, Dimar, Kamal and 

Tukiman). 
 

 
Mangrove fieldwork at Karimunjawa Island; background picture is tall Rhizophora apiculata tree. 

Photo was taken by Kamal on 30 July 2012 (left to right: Dimar, Hafizt, Kamal and Tukiman). 
 

Wallaahu a’lam 


