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ABSTRACT  

Aim Species persistence often depends not only on habitat protection, but also on habitat 

restoration. The effectiveness of species conservation through habitat restoration can be 

enhanced by explicitly considering “habitat availability”, the combined effects of the total 

amount of habitat and its spatial configuration. We develop an approach for prioritizing land for 25 

restoration in a complex biome, considering habitat availability, land acquisition cost, and 

biogeographical representation. 

Location Brazilian Atlantic Forest. 

Methods We evaluate alternative restoration prioritization strategies for two mammal species 

with widely different dispersal abilities and habitat patch requirements. Our strategies focused 30 

on minimizing cost while meeting targets for biogeographical sub-region representation and 

habitat availability metrics. We evaluated solutions based on the expected post-restoration 

improvement in habitat availability per unit cost. 

Results Restoration through land acquisition to improve habitat availability for both species and 

to ensure 20% forest cover within each of the Atlantic Forest biogeographical sub-regions would 35 

cost US$ 17.5-20.5 billion. The 12.6 and 11.4 million ha of restored forest resulted in an increase 

of 10.5% and 9.8% in habitat area and 5,518% (55-fold) and 4,100% (41-fold) in future habitat 

availability for Leopardus pardalis and Caluromys philander, respectively. We found a high 

degree of concordance (>75%) among selected planning units for each species. 

Main conclusion Substantial improvements in habitat availability that benefit both species can 40 

be realized for minimal additional cost relative to solutions based solely on cost-minimization 

and biogeographical sub-region representation. We demonstrate that metrics based on 

metapopulation theory can be quantified in complex systems and used in a systematic restoration 
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prioritization approach to improve habitat availability cost-effectively. Concordance among 

priority areas for restoration for species with widely different dispersal abilities and habitat patch 45 

requirements supports the idea that many species in the Brazilian Atlantic Forest might benefit 

from plans based on indicator species. This is particularly useful in data deficient systems like 

the Brazilian Atlantic Forest. 

 

Keywords GIS, Mathematical optimization, Metapopulation, Landscape Ecology, Probability 50 

of Connectivity, Systematic Conservation Planning. 
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(A) INTRODUCTION 

 Many habitats have been severely degraded or destroyed by human activity (e.g. land 65 

clearing, fragmentation). As a result, the persistence and representation of many species will 

depend not only on habitat protection, but also on habitat restoration (MEA, 2005; Bowen et al., 

2007). Ecological restoration, the process of facilitating recovery of ecosystems following 

disturbance (SER, 2004), is increasingly employed as a conservation strategy worldwide (Menz 

et al., 2013; Shackelford et al., 2013).  70 

The restored patches should meet two broad conservation objectives – representativeness 

and persistence (Noss et al., 2009). The first objective attempts to represent the variety of 

populations, species or ecosystem functions of each region, while the second attempts to promote 

the long-term persistence of these elements (Margules & Pressey, 2000). To meet both 

objectives, the value of the restored habitat to the species that use it depends not only on the size 75 

of patch restored, but also on its spatial relationship with other patches in the landscape (i.e. 

connectivity) (Hanski & Ovaskainen, 2000; Rey Benayas et al., 2009; Birch et al., 2010; Menz 

et al., 2013). Systematic conservation planning is an objective, transparent and efficient 

methodology for quantifying conservation value, setting explicit targets to prioritize actions 

among a set of sites, and provides the foundations to meet these objectives (Ball & Possingham, 80 

2000; Margules & Pressey, 2000; Noss et al., 2009). 

Most previous systematic plans for restoration account for connectivity using simple 

neighbour metrics among planning units (Crossman & Bryan, 2006; Westphal et al., 2007; 

Drechsler et al., 2009; Thomson et al., 2009; Wilson et al., 2011). But the importance of 

connectivity from a restoration perspective relates closely to how it affects metapopulation 85 

dynamics in the long-term (Noss et al., 2009). It is possible to base prioritization explicitly on 

models of metapopulation dynamics (e.g. Westphal et al., 2003) though the methods used to 
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solve these problems, such as stochastic dynamic programming, are infeasible for even 

moderately sized problems (tens to hundreds of patches; Crossman & Bryan, 2006). Ideally, in 

lieu of such an approach restoration prioritization should consider the ecological processes 90 

required to ensure the return of flora/fauna to the degraded sites (dispersal), while also 

considering representation and persistence of species of conservation concern at broad scales 

(complex systems with many thousands of patches). 

The effectiveness of species conservation through restoration can be enhanced by 

explicitly considering “habitat availability”, the combined effects of the total amount and quality 95 

of habitat and its spatial relationship with other patches in the landscape. Patch area (and quality) 

influences population viability within habitat patches (Nicholson & Possingham, 2007) while 

spatial configuration of patches drive patterns of dispersal success, thereby playing a key role in 

population supplementation and re-colonization of potential habitat patches (Hanski & 

Ovaskainen, 2000; Bélisle, 2005). Formal metapopulation models can require considerable data 100 

to parameterize (e.g. Hanski & Ovaskainen, 2000), making them difficult to employ in data 

deficient systems. Several metrics related to metapopulation theory exist, such as the 

“Probability of Connectivity” (PC; Saura & Pascual-Hortal, 2007; Appendix S1), which quantify 

key aspects of habitat availability but require less information and are feasible to calculate in 

complex problems (Saura & Rubio, 2010). The purpose of incorporating habitat availability 105 

metrics into systematic conservation planning is to provide a mechanism for explicitly 

accounting for the effect of habitat configuration on populations, and hence the conservation 

value of habitat above and beyond the benefit of area alone.  

 The Brazilian Atlantic Forest (hereafter BAF) is one of the world’s most threatened 

biodiversity hotspots (Myer et al., 2000), covering only 12-16% of its original 150 million ha 110 

and is in urgent need of restoration (Ribeiro et al., 2009). The BAF is severely fragmented with 

more than 260,000 forest remnants separated by an average distance of 1,440 m from their closest 
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neighbor (Ribeiro et al., 2009). More than 80% of those remnants are smaller than 50 ha (Ribeiro 

et al., 2009) and approximately 90% of the forest remnants are privately owned (Tabarelli et al., 

2005). The Atlantic Forest Restoration Pact is an agreement between more than 160 115 

organizations and private corporations to invest US$ 77 billion to restore 15 million ha of 

degraded land by 2050 (www.pactomataatlantica.org.br). Successfully fulfilling this agreement 

would increase the amount of forest by more than 20% of its original extent. Studies by 

Martensen et al. (2008), Metzger et al. (2009) and Banks-Leite et al. (2014) have shown that 

landscapes with less than 20-30% of forest cover tend to hold depleted faunal communities in 120 

the BAF. Thus, the Atlantic Forest Restoration Pact could provide the minimum amount of forest 

cover needed to facilitate biological conservation in this biome.   

Here, we develop a restoration prioritization approach that incorporates habitat 

availability into systematic conservation planning in a way that considers biogeographical sub-

region representation and cost-effectiveness analysis. We contrasted alternative restoration 125 

priorities for two mammal species representing opposite ends of the spectrum of dispersal 

abilities and habitat patch requirements, and quantified the similarity of the most cost-effective 

solutions for each to assess how relevant the solutions might be to a wider range of species. Our 

key findings are that 1) explicitly considering spatial configuration of habitat in restoration 

prioritizations resulted in substantial improvement to habitat availability; 2) these improvements 130 

were realized for minimal additional cost relative to solutions based solely on cost-minimization 

and biogeographical sub-region representation, thus were cost-effective solutions; and 3) there 

was a high degree of concordance in priority areas for restoration for two species with widely 

different dispersal abilities and habitat patch requirements, suggesting such solutions may benefit 

a wide range of other species in the BAF. This study demonstrates the benefits of incorporating 135 

habitat availability measure into restoration prioritization problems.   
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(A) METHODS  

In this study, we contrast alternative restoration priorities in an extensive and complex 

biome by undertaking five main steps (Fig. 1): 1) obtain species life history and habitat 140 

distribution data; 2) quantify current habitat availability and the individual habitat patch 

contribution; 3) divide the study area into planning units and quantify habitat availability metrics 

within each planning unit; 4) prioritize planning units for restoration under alternative restoration 

prioritizations; 5) simulate restoration of the priority planning units to achieve the specified target 

of forest cover and then quantify post-restoration habitat availability for each solution. The cost-145 

effectiveness of each alternative restoration solution was calculated as the improvement of 

habitat availability per unit cost for species.  

The goal of our approach is to identify planning units that, if restored, would cost-

effectively improve population dynamics in this fragmented biome while also preserving any 

broad-scale genetic and phenotypic diversity that may exist. We use habitat availability, which 150 

accounts for both habitat area and configuration (Appendix S1), to quantify the former and 

biogeographical sub-region representation targets to achieve the latter. Both of these measures 

can be applied to systems for which detailed data on species distribution, abundance and genetic 

diversity is lacking, as is the case for the BAF.  

(B) Step 1. Study area and species data 155 

The BAF is located along the southeastern coast of Brazil and falls within seven main 

biogeographical sub-regions (Silva & Casteleti, 2003) (Fig. 2). Each biogeographical sub-region 

is characterised by different amounts and types of forest cover and degrees of habitat 

fragmentation (Ribeiro et al., 2009). The Brejos Nordestinos sub-region represents less than 1% 

of the BAF (Ribeiro et al., 2009) and was excluded from this analysis.  160 
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Although the BAF is a highly biodiverse biome, with over 2,200 vertebrate species 

described (Oliveira et al., 2010), mammals can be considered useful surrogates to guide 

restoration initiatives (Wright, 2003) in data deficient systems. We chose two mammal species, 

the bare-tailed wooly opossum (Caluromys philander) and the ocelot (Leopardus pardalis), 

based on three criteria: i) terrestrial and primarily forest dwelling, ii) widely distributed in the 165 

BAF, and iii) representing low and high dispersal abilities and habitat patch requirements 

respectively (i.e. opposite ends of these spectrums). C. philander has a mean inter-habitat matrix 

dispersal distance of approximately 30 m, and has a mean home range size of 3 ha (Pires et al., 

2002), while L. pardalis has a mean dispersal distance of approximately 13,000 m, and has a 

mean home range size of 500 ha (see Appendix S2). For each species, we only considered forest 170 

remnants larger than the mean species home range (either 3 or 500 ha) as potential habitat 

patches. 

We assume that if there is high concordance between prioritizations for these two species 

then the solution is also likely to benefit other species with more intermediate habitat patch 

requirements and dispersal abilities. Designing a solution based on an “average” species could 175 

result in solutions that are not well suited to the full range of species. Our approach is inspired 

by “robust” or “worst-case scenario” optimization techniques in which the most pessimistic 

estimates of parameters are used to identify solutions that have a high chance of avoiding poor 

outcomes in the face of parameter variation and uncertainty (Chinneck & Ramadan, 2000). 

Forest cover was based on the BAF remnant data constructed by visual interpretation of 180 

TM/Landsat-5, ETM+/7 and CCD/CBERS-2 images, at a scale of 1:50,000, delimiting more 

than 260,000 forest remnants >3 ha (SOS Mata Atlântica & INPE, 2011). We used IUCN species 

range datasets (www.iucnredlist.org/technical-documents/spatial-data) to identify all BAF 

remnants falling within the species range (forest remnant maps) and meeting the minimum 
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habitat patch requirements for each species (3 or 500 ha; habitat patch maps). These maps form 185 

the basis of our prioritization methodology. 

 (B) Step 2. Quantify current habitat availability and the individual habitat patch 

contribution 

 We quantified the current habitat availability within the BAF using the “Probability of 

Connectivity index” (PC) (Saura & Pascual-Hortal, 2007). PC quantifies the amount of habitat 190 

available to species based on a patch attribute (e.g. patch size or quality), and on a dispersal-

related connectivity measure within the network of patches (Saura & Pascual-Hortal, 2007). We 

used habitat patch size as the patch attribute and shortest Euclidean distance between two patch 

boundaries as the distance attribute to calculate PC. We assume that the probability of direct 

dispersal (qij) between two patches i and j is: 195 

𝑞𝑞𝑖𝑖𝑖𝑖 = exp(−β 𝑑𝑑𝑖𝑖𝑖𝑖)                                                                                                                                     (1) 

where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between patches i and j, and 1/ β is the mean dispersal distance of the 

species. The PC metric is then calculated as: 

𝑃𝑃𝑃𝑃 =
∑ ∑ 𝑎𝑎𝑖𝑖 𝑎𝑎𝑗𝑗 𝑝𝑝𝑖𝑖𝑗𝑗

∗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

𝐴𝐴𝐿𝐿
2                                                                                                                   (2) 

where n is the total number of patches, ai and aj are the patch attributes, 𝑝𝑝𝑖𝑖𝑖𝑖∗  is the maximum 200 

product probability of all possible paths between i and j, and 𝐴𝐴𝐿𝐿2 is the square of the study area 

(Saura & Rubio, 2010). The probability of connection between two patches depends on the 

dispersal ability of the species and the presence of intermediate patches facilitating movement. 

The probability of a path from one patch to another is the product of dispersal probabilities (qij 

in eq. 1) for all connections between these two patches. The maximum product probability of 205 

connectivity is the path with highest connection probability among all possibilities between two 
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patches. PC index varies from 0 (no habitat available) to 1 (maximum habitat availability). See 

Appendix S2 for further detail on how we calculated a modified version of PC index. 

We also calculated the individual habitat patch contribution for the current habitat 

availability (𝛥𝛥𝑃𝑃𝑃𝑃) by using an individual habitat removal experiment (Saura & Pascual-Hortal, 210 

2007):  

𝛥𝛥𝑃𝑃𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘                                                                                                                                (3)               

where 𝛥𝛥PCk is the contribution of patch k, PC is the current habitat availability value for all 

patches in the study area, and PCremove, k is the value after removal of patch k.  

(B) Step 3. Divide study area into planning units and quantify habitat availability metrics 215 

within each planning unit 

 We divided the BAF into 71,871 planning units of 2,000 ha, consistent with previous 

studies (e.g. Pires et al., 2002). For each planning unit we calculated the sum of the individual 

habitat patch contributions to the current habitat availability (sum𝛥𝛥𝑃𝑃𝑃𝑃). The habitat patch 

contribution was proportional to the area of the patch falling within the planning unit (an area-220 

weighted sum). Thus, sum𝛥𝛥𝑃𝑃𝑃𝑃 synthesises information on the value of the habitat patches within 

it. Planning units that contain no habitat patches have a value of 0. 

 However, planning units may contain forest remnants smaller than the minimum habitat 

patch requirements for each species and still be valuable landscapes for restoration, especially if 

they are in close proximity to other forest remnants. We quantified the value of these forest 225 

remnants using a “Distance-Weighted Area” (DWA) metric that is calculated as follows: 

𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 = ∑ a𝑖𝑖 exp(−β 𝑑𝑑𝑖𝑖𝑖𝑖) 𝑛𝑛
𝑖𝑖                                                                                                         (4)                                                                                         

where aj is the forest remnant size, and exp(−β 𝑑𝑑𝑖𝑖𝑖𝑖) is the probability of direct connection 

between patch j and the centre of a planning unit 𝑖𝑖 (similar to qij in eq. 1). Thus, DWA increases 
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as the number and size of forest remnants contained by or near the planning unit increases (see 230 

Appendix S2 for further detail). Planning units that contain no forest remnant can have a DWA 

value greater than zero. 

(B) Step 4. Prioritize planning units for restoration          

We used the conservation planning software Marxan (Ball & Possingham, 2000) to 

identify priority planning units for restoration that meet the achievement of specific targets while 235 

minimizing cost. Marxan uses a heuristic algorithm, simulated annealing, to find solutions to the 

mathematical problem:  

minimize ∑𝑖𝑖=1
𝑟𝑟 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖                                                                                                                      (5)                               

subject to the constraint that all the representation targets are met: 

 ∑𝑖𝑖=1
𝑟𝑟 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝑡𝑡𝑖𝑖⍱𝑖𝑖                                                                                                                      (6)                                                                                 240 

where m is the total number of planning units, ci is the cost of restoring planning unit i, 𝑥𝑥𝑖𝑖 is the 

binary decision variable indicating whether planning unit i is selected (𝑥𝑥𝑖𝑖 = 1) or not (𝑥𝑥𝑖𝑖 = 0), 

and 𝑎𝑎𝑖𝑖𝑖𝑖 is the contribution of planning unit i to target j. Although there are potentially many 

different costs associated with restoration we considered only land acquisition cost, estimated 

for different types of land-use within counties from the 2012 yearbook of the purchase price of 245 

rural land (see Appendix S2).  

 We contrasted four alternative restoration prioritization strategies for each species (with 

100 Marxan runs). Two targets were common to all four strategies. The first shared target 

ensured that a specified total amount of forest was restored (11.4 and 12.5 million ha of forest 

for C. philander and L. pardalis respectively), which was based on the proportion of BAF 250 

covered by each species’ range multiplied by the 15 million ha forest restoration target specified 

by the Atlantic Forest Restoration Pact (Table S1). The second shared target was the 
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representation of at least 20% of each biogeographical sub-region (Table S1). This target was 

designed to ensure complementarity of forest types (represented by our biogeographical sub-

regions) and was based on studies suggesting 20% is the minimum amount of forest required to 255 

facilitate biological conservation (Martensen et al., 2008; Metzger et al., 2009). Serra do Mar 

sub-region has >30% of forest cover and was consequently not considered for restoration (Table 

S1). One of the four restoration prioritization strategies was based on only these two targets. The 

other three strategies implemented a third target designed to improve habitat availability, based 

on either DWA, sum𝛥𝛥𝑃𝑃𝑃𝑃 or the additive combination of DWA and sum𝛥𝛥𝑃𝑃𝑃𝑃 (DWA&sum𝛥𝛥𝑃𝑃𝑃𝑃). 260 

To specify these targets we ranked the planning units available for restoration (those with <60% 

forest cover; see below) in decreasing order of the value of the metric and then cumulatively 

summed these values until the specified total amount of forest was restored (first target). Thus, 

the values used as targets represent the theoretical maximum value achievable for a given amount 

of forest restored if cost constrains were not considered. We evaluated the success of all four 265 

strategies by calculating future (post-restoration) habitat availability from solutions arising from 

each strategy. 

Only planning units with less than 60% forest cover were considered for restoration 

because this value represents the approximate percolation threshold (Stauffer, 1985), above 

which the habitat becomes highly or completely connected. No further investment in restoration 270 

is required above this threshold (Crouzeilles et al., 2014), thus selected planning units were 

restored to 60% forest cover. There is a diminishing return on investment to restore additional 

habitat when this is unlikely to further increase connectivity (Pardini et al., 2010). Furthermore, 

this is a multi-use landscape and restoration plans that exclude other land-uses entirely are 

unrealistic. Thus, restoring to a 60% level is a more feasible goal than trying to restore an entire 275 

planning unit within a private ownership landscape.  

 (B) Step 5. Simulate restoration and re-quantify habitat availability  
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 To quantify future habitat availability, we simulated restoration resulting in 60% forest 

cover within the selected planning units. Areas within planning units that were never forest (e.g. 

sand dunes and water bodies) were not included as potential areas for restoration. The 280 

configuration of restoration within selected planning units was based on that of existing planning 

units containing between 59 to 61% of forest cover (n=128), which represent realistic landscape 

configurations (see Appendix S2 for further details). Future habitat availability was the value of 

PC based on this post-restoration simulated BAF. Simulating a landscape with restored habitat 

allowed us to quantify which strategy provided the greatest improvement in habitat availability 285 

relative to current habitat availability. We then calculated cost-effectiveness as the improvement 

in habitat availability divided by total land acquisition cost. To quantify the differences in 

configuration between alternative restoration priorities focused on species with widely different 

dispersal abilities and habitat patch requirements, we calculated the percentage of overlapping 

priority areas for restoration between the most cost-effective solution for each species. All 290 

analyses were carried out in R 2.12 (R Development Core Team, 2010), ArcGIS 9.3 (ESRI, 

2008) and Geospatial Modelling Environment version 0.7.2.1 (Beyer, 2012). 

 

(A) RESULTS 

 Large gains can be made in improving habitat availability for C. philander and L. 295 

pardalis with the Atlantic Forest Restoration Pact. The current habitat availability (PC) is 4.0x10-

5 for C. philander and 3.4x10-4 for L. pardalis. The amount of simulated forest remnant restored 

was 11.4 million ha for C. philander and 12.6 million ha for L. pardalis, approximately 10% of 

the original extent of the Atlantic Forest. A 10.5% and 9.8% increase in habitat patch area 

resulted in a 5,518% (55-fold) and 4,100% (41-fold) increase in future habitat availability for L. 300 

pardalis and C. philander, respectively (Table 1). 
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Including targets for the habitat availability metrics provided the greatest increase in 

future habitat availability for both species (Table 1). These prioritizations tended to augment 

existing habitat patches making substantial contribution to current habitat availability (e.g. 

Araucaria sub-region). Only in one case was future habitat availability higher for the minimum 305 

cost strategy compared to any of the other strategies that included habitat availability metric 

targets (DWA for C. philander; Table 1). This can be explained because of a strong spatial 

autocorrelation in the land acquisition cost that resulted in restoration efforts creating a large 

block of contiguous forest, which has a pronounced effect on the future habitat availability. In 

all strategies the six biogeographical sub-regions achieved 20% of representation. 310 

The costs of restoration varied from US$ 17.5 to 20.5 billion based on species and 

restoration strategy (Table 1). Minimum cost strategies were similar to strategies including 

targets for habitat availability metrics (US$ 19.7-20.5 billion for L. pardalis and US$ 17.5-17.6 

billion for C. philander, respectively). As expected, the solution with the lowest costs was 

achieved by the minimum cost strategy (Table 1), because the increase in the number of targets 315 

constrains the solution.  

 The most cost-effective solution for both species were found when including targets for 

habitat availability metrics, specifically sumΔPC targets for L. pardalis and DWA&sumΔPC 

targets for C. philander (Table 1). These solutions broadly prioritized similar planning units for 

each species, with 75.6% and 80.8% of matching planning units for the L. pardalis and C. 320 

philander solutions, respectively (Fig. 3). These planning units were found mostly within Interior 

Forest and Araucaria sub-regions because these biogeographical sub-regions are cheaper and 

less degraded (so have high values for habitat availability metrics), respectively (Fig. 3). These 

areas cover 9.49 million ha given a land acquisition cost of US$ 14.1 billion.  

 325 
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(A) DISCUSSION 

The problem this study addressed was how to prioritize land for restoration in an 

extensive and complex biome by incorporating the ecological value of habitat patch (habitat 

availability) into systematic conservation planning, while also considering biogeographical sub-

region representation and cost-effectiveness. Our key findings are that 1) explicitly considering 330 

spatial configuration of habitat in restoration prioritizations resulted in substantial improvement 

to habitat availability; 2) these improvements were realized for minimal additional cost relative 

to solutions based solely on cost-minimization and biogeographical sub-region representation, 

and thus were cost-effective solutions; and 3) there was a high degree of concordance in priority 

areas for restoration for two species with widely different dispersal abilities and habitat patch 335 

requirements, suggesting such solutions may benefit a wide range of other species in the BAF. 

This study demonstrates the benefits of incorporating habitat availability measure into 

restoration prioritization problems.  

The premise of our approach is that both the total amount of habitat and its spatial 

configuration are key drivers of metapopulation dynamics (e.g. Hanski & Ovaskainen, 2000; 340 

Fahrig, 2003; Visconti & Elkin, 2009) and species persistence (e.g. Santini et al., 2014), but 

simple measures of aggregation or connectivity are unlikely to quantify habitat availability in an 

ecologically meaningful way (Saura & Pascual-Hortal, 2007; Noss et al., 2009). However, 

quantifying habitat patch values using metapopulation models require that such models have 

been parameterized (often a difficult task) and that the number of patches is within reasonable 345 

computational limits (e.g. Westphal et al., 2003). The BAF suffers in both of these regards: many 

of the species that inhabit the BAF are data deficient (Crouzeilles et al., 2010), and the biome 

complexity renders formal metapopulation modelling infeasible. Instead, we identified two 

species with dispersal abilities and minimum habitat area requirements that may bracket a wide 

range of other species and used the PC metric, which is related to metapopulation models but 350 
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easier to parameterize (Saura & Rubio, 2010; Appendix S1), to quantify habitat availability. We 

argue this approach strikes a reasonable balance between ecological relevance and computational 

pragmatism. 

 The high degree of concordance among selected planning units for the most cost-effective 

solutions for the two species provides some assurance that these prioritizations might benefit a 355 

wide variety of BAF mammal species. There are 298 mammal species within the BAF (Paglia et 

al., 2012), dispersing between 20 m and 4,900 m based on a review for BAF species compiled 

by Crouzeilles et al. (2010). Data on dispersal is very scarce in the literature, but it is critical to 

estimate species-specific connectivity (Tischendorf & Fahrig, 2000; Crouzeilles et al., 2013). 

Had we found little concordance among selected planning units it would have warranted finding 360 

data on dispersal ability and minimum habitat patch requirements for a wider range of mammal 

species, and then combining them into a single optimization framework. 

Restoration involves different types of costs, thus cost-effective restoration priorities will 

vary according to the economic cost considered (Westphal et al., 2007; Armsworth, 2014). 

Purchasing land for restoration is a current practice in the BAF. For example, since 2010 the 365 

company Symbiosis (www.symbiosisinvestimentos.com.br) has been purchasing land to restore 

with native plant species and sell timber products and carbon credits. We assumed that all land 

for restoration could be purchased at the current price (or the equivalent of current price given 

inflation) for each land-use in each county, because we lack finer scale spatial and temporal 

information on land acquisition cost. However, fluctuation in such values could influence our 370 

priorities, and future studies should account for uncertainty in future land prices.  

Despite a large number of restoration projects worldwide, there is limited understanding 

of the costs of restoration (Holl & Howarth, 2000; Birch et al., 2010). While land acquisition for 

restoration is a useful policy to be explored, restoration can involve other costs depending on the 
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method used for restoration. For example, the cost of active restoration, involving seedling 375 

acquisition, replanting and monitoring for two years is estimated to be between US$ 49-77 billion 

to restore 15 million ha (c. US$ 3,315-5,216/ha; Calmon et al., 2009). Thus, our predicted total 

land acquisition cost (between US$ 17.6-19.9 billion for the most-effective solution for each 

species) may not be the most expensive part of restoring the Atlantic Forest, unless restoration 

occurs passively (i.e. with no additional investment). Scientific recommendations regarding 380 

restoration costs and the development of economic mechanisms to facilitate restoration are 

critical for the Atlantic Forest Restoration Pact (Melo et al., 2013). It may be unrealistic to restore 

15 million ha of BAF through land acquisition, but the concordance of the most cost-effective 

solutions provided in this study identifies key areas where land acquisition may be appropriate 

and beneficial. 385 

These overlapping priority areas for restoration are located mostly in the Interior Forest 

and Araucaria sub-regions. To date, only two studies have identified potentially suitable areas 

for restoration in the BAF (e.g. Calmon et al., 2011; Tambosi et al., 2014), one of the most 

endangered hotspots worldwide. First, members of the Atlantic Forest Restoration Pact mapped 

18 million ha of illegally deforested land since 1965 according to Forest Code - the major 390 

Brazilian environmental law that protects forest on private lands (Calmon et al., 2011). Most of 

these areas are also in Interior Forest and Araucaria sub-regions, but different locations are 

highlighted by Calmon et al. (2011). Tambosi et al. (2014) ranked landscapes for restoration 

considering the habitat amount and connectivity, identifying landscapes within Serra do Mar and 

Bahia sub-regions as restoration priorities. Thirty-three percent of the Serra do Mar sub-region 395 

remains standing, so we did not consider it a restoration priority at the BAF scale when 

considering the purchase of land as a mechanism to assist restoration. Our study contrasts with 

and complements both previous studies as they did not consider the associated costs of 
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restoration, biogeographical sub-region representation, species with widely different ecological 

requirements and cost-effective analysis.  400 

Theoretically it would have been possible to base our prioritization on the PC metric 

(habitat availability) directly, either using a simulated annealing algorithm or an exact method 

such as stochastic dynamic programming (Meir et al., 2004; Westphal et al., 2003). But such 

approaches are precluded by the computational cost of calculating PC (or other metapopulation 

measures) in complex systems such as the BAF. Our approach was to evaluate two habitat 405 

availability metrics (PC and DWA) that were related to metapopulation theory but that were only 

evaluated once, prior to optimization (current scenario), and then evaluate the solutions 

generated in the context of future habitat availability (PC calculated based on post-restoration 

simulated BAF). We demonstrate that this approach does yield substantial improvements in 

habitat availability in the solutions relative to solutions that based solely on cost-minimization 410 

and biogeographical sub-region representation.  

Restoration is a global priority. Given limited budgets, restoration must be guided by 

information on their benefits and costs, maximizing return on investment (Rey Benayas et al., 

2009). To do this, novel spatial approaches need to be developed for restoration prioritization 

that consider many different socioeconomic and ecological values. Our restoration prioritization 415 

approach incorporates measures of metapopulation dynamics into systematic conservation 

planning, which could have profound implications for improving the value of restoration to many 

species. 
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Table 1. Four alternative restoration prioritization strategies for each species. The first strategy 
did not consider habitat availability metrics, while the three other included targets for one of 
three habitat availability metrics. For each restoration strategy we calculated the improvement in 
habitat availability expressed as a percentage relative to current habitat availability, cost (billions 
US$) and cost-effectiveness based on the improvement in habitat availability divided by total 590 
land acquisition cost.  

Restoration            
strategies 

Improvement in 
habitat availability (%) 

Cost                    
(billion US$) 

Cost-
effectiveness 

Caluromys philander 
Minimum cost 2,725 17.5 1.56 

DWA 1,825 17.6 1.04 
sumΔPC 3,075 17.6 1.75 

DWA&sumΔPC 4,100 17.5 2.34 
Leopardus pardalis 

Minimum cost 4,576 19.7 2.32 
DWA 4,694 20.4 2.30 
sumΔPC 5,518 19.9 2.77 

DWA&sumΔPC 4,606 20.5 2.25 
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Figure captions 

 

Figure 1. Restoration prioritization approach involves five main steps: 1) obtain data on study 610 
area and species; 2) quantify current habitat availability and the individual habitat patch 
contribution; 3) divide study area into planning units and quantify habitat availability metrics 
within each planning unit (sum of individual habitat patch contributions – sumΔPC and Distance-
Weighted Area - DWA); 4) prioritize planning units for restoration; and 5) simulate restoration 
and re-quantify habitat availability. PUs – planning units. 615 
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Figure 2. A) Biogeographical sub-regions of the Atlantic Forest: yellow – Bahia, pink – Serra 
do Mar, green light – São Francisco, green dark – Araucaria, blue – Pernambuco, purple – 
Diamantina and orange – Interior Forest. B) Land acquisition cost. Areas classified as “not 
available” for restoration have >60% forest cover. Habitat availability for Leopardus pardalis 620 
based on C) sumΔPC and D) DWA. Habitat availability for Caluromys philander based on E) 
sumΔPC and F) DWA. Hottest colours represent planning units with higher contribution to the 
respective habitat availability metric. All values were classified using the geometrical interval 
method. 
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 625 

Figure 3. Simulated planning unit restoration for the most cost-effective strategy for: A) 
Caluromys philander and B) Leopardus pardalis. 
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Supporting Information  

Appendix S1 – Quantifying metapopulation capacity and the relative value of patches in 

large networks  640 

Probability of connectivity (PC) as a measure of metapopulation dynamics 

The process of habitat loss and fragmentation can profoundly influence population 

dynamics through the combined effects of the: i) reduction in the total area of habitat available, 

ii) increased probability of local extinction in small patches, iii) reduced probability of dispersal 

between patches as the isolation distance exponentially increases, iv) increased number of 645 

patches at intermediate percentages of habitat and v) influence of this process on other aspects 

of ecological systems (e.g. predator abundance and distribution) (Andrén 1994; Fahrig, 2003; 

Crouzeilles et al., 2014) . 

Hanski & Ovaskainen (2000) develop “Metapopulation Capacity” (λM) as a measure of 

the capacity of a landscape to support a metapopulation. It is based on the Levins (1969) model 650 

in which the extinction and colonization dynamics of patches (i.e. patch occupancy) are related 

to patch area (or quality) and distance between patches. The extinction rate is inversely related 

to patch area, while the colonization rate is a function of the area of the patches from which 

dispersing individuals originate (e.g. larger patches generate more dispersers) and the distance 

to that patch (the probability of dispersal declines exponentially with increased distance).  655 

λM is calculated as the leading eigenvalue of a population matrix (M) (Hanski & 

Ovaskainen, 2000): 

mij = ai aj exp(−αdij)  
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where a is the patch area, dij is the distance between patches i and j, and α is a species-specific 

parameter describing how dispersal probability declines as a function of distance. The values of 660 

the leading eigenvector of matrix M provide approximations of the relative contribution of each 

patch (λi) to λM (Hanski & Ovaskainen, 2000; Ovaskainen & Hanski, 2003). 

One benefit of this model is that only the patch areas, patch locations, and the species-

specific dispersal parameter need be known. It can therefore be applied when patch-specific data 

on species densities and habitat qualities is not available. It also provides a global measure of 665 

system performance (λM) as well as local measures of the relative value of each patch (λi). 

The cost of calculating the leading eigenvalue and its associated eigenvector for very 

large matrices is computationally problematic, and impractical for the Brazilian Atlantic Forest 

with more than 260,000 patches (consider that the size of matrix M is the number of patches 

squared). Saura & Rubio (2010) propose the “Probability of Connectivity” (PC) as an 670 

approximate measure of λM, and suggest that measures of the contribution of a patch to PC (𝛥𝛥PC) 

can be quantified by removing a patch from the network and recalculating PC (the difference 

between the original and new PC value is the relative value of the patch). PC is calculated as 

(eq. 2 in main text): 

𝑃𝑃𝑃𝑃 =
∑ ∑ 𝑎𝑎𝑖𝑖 𝑎𝑎𝑗𝑗 𝑝𝑝𝑖𝑖𝑗𝑗

∗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

𝐴𝐴𝐿𝐿
2                                                                                                                    675 

where a is the area of the patch, pij* is the maximum product probability of all possible paths 

between i and j, and 𝐴𝐴𝐿𝐿2 is a normalizing constant (e.g. the area of the landscape squared). The 

probability of connection between any two particular patches is exp(−β 𝑑𝑑𝑖𝑖𝑖𝑖) (eq. 1 in main text; 

note the similarity with the last part of mij above). The calculation of pij∗ is a least-cost path 

network problem. Although this can be computationally expensive, it is feasible to calculate it 680 

exactly or approximately in large networks of patches (Appendix S2). 
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Here, we used 1000 simulated landscapes (a spatial domain between 0 ≤ x ≤ 100 and 0 ≤ 

y ≤ 100) to quantify the relationship between the overall landscape measures - λM and PC, and 

the patch-level measures – λi and 𝛥𝛥PC. We generated a variable number of patches (ranging 

from 10 to 200) as non-overlapping circles with radii ranging from 0.5 to 5 units within each 685 

simulated landscape (Fig. S1a). The distance units are arbitrary but could be thought of as km in 

this scenario. Euclidean distance was used to calculate the distance between the boundaries of 

the patches. Patch area was calculated as the area of the circles in measure. For each simulated 

landscape λM, PC, λi and 𝛥𝛥PC were calculated using α or β = 0.05. The simulations were 

implemented in R 2.12 (R Development Core Team, 2010). 690 

PC is approximately linearly related to λM (Pearson’s r 0.98; Fig. S1b) after standardizing 

PC to account for variation in the total area of habitat in the simulation (i.e. each estimate of PC 

was divided by the total area of habitat patches in the simulated landscape). 𝛥𝛥PC is 

approximately linearly related to √ λi (mean R2 0.96 among all simulated landscapes; Fig. S2c, 

d). 695 

Through simulation we establish that PC is a good approximation of Metapopulation 

Capacity (λM ) and 𝛥𝛥PC is a good approximation of the relative value of each patch (λi). We 

conclude that PC and 𝛥𝛥PC are suitable alternatives to λM and λi for large problems in which it is 

infeasible or impractical to calculate the latter measures. 

 700 

Appendix S2 – Details of our proposed methodological approach 

Here, we provide further details regarding several aspects of our analysis (see Methods). 

Many of the species that inhabit the Brazilian Atlantic Forest are data deficient (Crouzeilles et 

al., 2010), but dispersal ability information are required to estimate species-specific connectivity 



 
34 

 

(Tischendorf & Fahrig, 2000; Crouzeilles et al., 2013). Thus, mean dispersal ability of L. 705 

pardalis was estimated from models considering ecological traits and life history of species (see 

for further details Whitmee & Orme, 2012). 

The Brazilian Atlantic Forest is severely fragmented with more than 260,000 remnant 

forests and such number of patches computationally limits the calculation of the habitat 

availability metric used in this study (Probability of Connectivity index - PC). To overcome this 710 

limitation, we calculated a modified version of PC index. The original PC calculates 𝑝𝑝𝑖𝑖𝑖𝑖∗  among 

all pairs of patches (see step 2 in the Methods), but we calculated 𝑝𝑝𝑖𝑖𝑖𝑖∗  only between patches within 

a buffer distance representing the 99.9% probability of direct dispersal of species (eq. 1) 

performed around each habitat patch. We validated our modified version by comparing with 

original PC when calculated for smaller samples of the Brazilian Atlantic Forest. The Distance-715 

Weighted Area metric (DWA) also suffered from the same problem found to calculate PC index 

in the Brazilian Atlantic Forest. For DWA, we only considered patches within a buffer of 99.9% 

of the probability of direct dispersal of that species (similar to modified PC), but in that case 

around a planning unit 𝑖𝑖 (eq. 4). 

To prioritize planning units for restoration, we used the conservation planning software 720 

Marxan (Ball & Possingham, 2000). The full Marxan objective function is given as follows: 

minimize 

 ∑𝑖𝑖=1
𝑟𝑟 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏∑𝑖𝑖1=1

𝑟𝑟 ∑𝑖𝑖2=1
𝑟𝑟 𝑥𝑥𝑖𝑖1(1 − 𝑥𝑥𝑖𝑖2)𝑐𝑐𝑐𝑐𝑖𝑖1,𝑖𝑖2                                                                        

subject to the constraint that all the representation targets are met: 

 ∑𝑖𝑖=1
𝑟𝑟 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝑡𝑡𝑖𝑖⍱𝑖𝑖                                                                                                                       725 
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where m is the total number of planning units, ci is the cost of restoring planning unit i, 𝑥𝑥𝑖𝑖 is the 

binary decision variable indicating whether planning unit i is selected (𝑥𝑥𝑖𝑖 = 1) or not (𝑥𝑥𝑖𝑖 = 0), 

and 𝑎𝑎𝑖𝑖𝑖𝑖 is the contribution of planning unit i to target j. The second component of the objective 

function, 𝑏𝑏∑𝑖𝑖1=1
𝑟𝑟 ∑𝑖𝑖2=1

𝑟𝑟 𝑥𝑥𝑖𝑖1(1 − 𝑥𝑥𝑖𝑖2)𝑐𝑐𝑐𝑐𝑖𝑖1,𝑖𝑖2, is the “boundary length modifier” (BLM) that 

controls the aggregation of planning units (Ball & Possingham, 2000). Specifically, 𝑐𝑐𝑐𝑐𝑖𝑖1,𝑖𝑖2 730 

represents a penalty for selecting planning unit i but not selecting neighbouring planning unit j. 

The BLM was not used in this study, therefore our objective function simplifies to 

minimize ∑𝑖𝑖=1
𝑟𝑟 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖. We omitted BLM because PC evaluates connectivity and habitat 

configuration explicitly.  

Marxan identifies priority planning units for restoration that meet the achievement of 735 

specific targets while minimizing cost. Targets are incorporated into the Marxan objective 

function within a “shortfall penalty function” that is based on the proportion of the target that is 

not met. The penalty only applies in cases where there is a shortfall (it is 0 otherwise). Expressing 

the shortfalls as proportions is a way of standardizing measures with different units (i.e. sum𝛥𝛥𝑃𝑃𝑃𝑃, 

DWA, amount of biogeographical sub-region representation and amount of forest to be restored).  740 

To build the forest cover and land acquisition cost maps we used land cover/land-use 

maps. Land-use maps were obtained from several sources: the Brazilian Ministry of the 

Environment (MMA, 2007), Ribeiro et al., (2009), and the European Commission Joint Research 

Center (Eva et al., 2000). The MMA map was primarily derived from TM/Landsat-5 images, at 

the scale of 1:250,000 (MMA, 2007). The Ribeiro et al., (2009) maps were constructed from 745 

several other land-use maps with different spatial resolutions (see Ribeiro et al., 2009 for details). 

The Vegetation Map of South America classifies 20 land cover classes of matrix within six broad 

classes, at a spatial resolution of 1 km, and based on four set of satellite data with different spatial 
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resolutions (Eva et al., 2000). The latter map was used only where coverage was absent from the 

other two maps.  750 

We estimated land costs based on the 2012 yearbook of purchase prices of rural land. 

Specifically, we based acquisition costs on three general types of land use: pasture, agricultural 

land (agriculture and sugarcane) and livestock, stratified by county. Urban area land values were 

estimated using the Yearbook of the Brazilian Real Estate Market in 2011. 

After identifying the priority planning units for restoration we simulated restoration of 755 

60% forest cover within these selected planning units to quantify future habitat availability (post-

restoration PC). The configuration of restored habitat within selected planning units was based 

on that of existing planning units containing between 59 to 61% of forest cover (n=128). We 

randomly rotated the habitat within existing planning units to increase the number of 

configuration possibilities before each allocation resulting in a total of 768 habitat 760 

configurations. The habitat within each selected planning unit was replaced with a randomly 

selected configuration from the set of 768, and PC was calculated based on this new 

configuration of habitat. 

Finally, we estimate what land acquisition costs might be if they are not guided by an 

optimization procedure by randomly selecting planning units to meet the total area targets and 765 

the biogeographical representation targets. The cost of each of these solutions is then simply 

calculated as the sum of the cost of the randomly selected planning units. The minimum land 

acquisition cost that arose from 100 random restoration prioritizations was US$ 1.48 and 1.78 

trillion for C. philander and L. pardalis, respectively, i.e. being 83- and 85.8-folds more 

expensive than all other strategies presented in the main text for each species.  770 

Mathematical optimization provides pronounced cost savings relative to ad-hoc 

approaches to restoration prioritization. As an extreme example, random restoration 
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prioritizations can be at least 83-folds more expensive than the solutions we identified. Clearly, 

there is enormous potential for efficiency savings by adopting a formal spatial prioritization 

approach. Indeed, the Brazilian government has recently re-affirmed its commitment to BAF 775 

restoration and is drafting a 20 year plan that includes the development of spatial prioritization 

strategies for restoration (MMA, 2015).  
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Table S1. The biogeographical sub-regions (BSRs), current area (ha) and percentage of forest 
cover, and the minimum area required (ha) to be restored to achieve 20% of representation within 820 
each biogeographical sub-region (last line – total). The amounts required for restoration were 
based on the proportion of Brazilian Atlantic Forest covered by each species’ range multiplied 
by the 15 million ha forest restoration target specified by the Atlantic Forest Restoration Pact. 

BSRs Area (ha) % Forest cover 20% of representation (ha) 
   C. philander L. pardalis 

Serra do Mar 11,235,800 33   
São Francisco 10,655,400 9 780,564 1,221,170 
Pernambuco 3,193,570 11 288,700 54,017 

Araucária 24,468,500 14 984,113 1,354,389 
Diamantina 8,211,920 13 385,800 553,740 

Bahia 12,326,800 12 989,040 910,008 
Interior Forest 66,611,700 7 8,033,787 8,471,771 
Atlantic Forest 136,703,690 12 11,462,004 12,565,094 
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Figure S1. (a) Example of a simulated landscape with a random patch distribution. Circle radii 
are relative (patches are all non-overlapping). (b) The relationship between the overall landscape 
measures PC and λM quantified using 1000 simulated landscapes with variable numbers of 860 
patches (ranging from 10 to 200). (c) The relationship between the patch-level measures λi and 
𝛥𝛥PC. For clarity only three representative examples are shown. The different slopes of the three 
examples are driven largely by different total amount of habitat areas in landscapes among 
simulations. Only the correlation of patch measures within a landscape is important. (d) A 
frequency distribution of correlations (R2) between λi and 𝛥𝛥PC for all 1000 simulated landscapes. 865 
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