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Abstract 

Percolating carbon nanoparticles were added into electrolyte to improve the performance 

of Li-S batteries. These percolating carbon nanoparticles acted as dispersible nanosized 

electrodes, allowed the direct electrochemical utilization of dissolved polysulfides in 

electrolyte, and mitigated the polysulfide shuttle. As a result, the polysulfide utilization 

was improved with the virtual sulfur capacity increasing from 538 mA h g
−1

 to 1270 mA 

h g
−1

. The increment in high plateau-sloping capacity is 43 % while a much more 

significant 158 % increment is observed in low plateau region. The percolating carbon 

nanoparticles also improved the battery stability. 
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1. Introduction 

High-density energy storage technologies are critical for future grids with renewable, yet 

intermittent, solar or wind plants. Among several types of new generation post-lithium-

ion batteries, Li-S batteries are envisaged as promising high-energy batteries. Sulfur is a 

low-cost, non-toxic and abundant petroleum by-product. Sulfur cathode has a high 

theoretical capacity (1675 mA h g
−1

) that is an order of magnitude higher than that of 

intercalation cathodes. The extraordinary capacity of sulfur compensates for the relatively 

small working voltage (~2 V) of Li-S batteries allowing a theoretical specific energy 

around 2600 Wh kg
−1

, which is very competitive compared to conventional Li-ion 

batteries. However, the Li-S technology needs improvement in regards of cycle life, 

stability and utilization efficiency of active materials. The common performance-limiting 

factors include (i) high resistivity of sulfur and Li2S2/Li2S that reduces voltage efficiency 

of cathodes, (ii) high solubility and shuttle effect of polysulfides that reduce material 

utilization efficiency, (iii) anode corrosion due to sulfide deposits.  

Among these obstacles, the major issue is the polysulfide dissolution, which leads to the 

low utilization of active sulfur. To tackle with this problem, many strategies have been 

employed to constrain dissolved polysulfides. Carbon materials with various 

nanostructures, morphologies, porous textures, and surface functionalities have been 

widely investigated.[1-17] The synergy between physical and chemical interactions helps 

to confine sulfur.[8] Many polymers (conducting polymers or insulating binders) can be 

used to retain polysulfides.[11, 12] Apart from the synthesis of new materials, a different 

strategy is to constrain the recharge capacity or voltage of cathode.[13] Designing new 

Li-S battery structure is also popular. For example, carbon or hybrid interlayer, carbon-



  

coated separator or cation exchange membranes are developed to hinder polysulfide 

diffusion.[14-21] All in all, the mostly studied is highly porous or functionalized 

materials that could physically adsorb or chemically attract polysulfides. But the loss of 

polysulfides cannot be fully prevented due to their high solubility; and the scenario is 

even worse when sulfur percentage in cathode is high.  

Alternatively, modifying the properties of electrolyte provides promising approaches to 

regulate polysulfide shuttle. For example, solvent-in-salt electrolyte and solid polymer 

electrolytes have been developed.[22, 23] Later, to avoid the issues like low lithium ion 

conductivity and high viscosity of polymer electrolytes, polysulfide salts were used as an 

electrolyte additive to buffer for polysulfide shuttle and compensate for the loss of sulfur 

in cathode.[24-26] Unlike chemically modifying the electrolytes, a new concept is using 

percolating electrolyte for Li/Polysulfide flow batteries.[27] This method allows the 

direct electrochemical utilization of dissolved polysulfides in electrolyte. Nevertheless 

whether or not the percolating electrolyte can be applied in normal Li-S batteries is 

unknown.  

We prepared herein a percolating electrolyte with highly concentrated carbon 

nanoparticles for Li-S batteries. The concentrated carbon nanoparticles increased the 

electrolyte viscosity. The viscous electrolyte will hardly penetrate through the double-

layer separator (Figs. 1A and 1B). Hence, the percolating electrolyte can be safely used in 

a Li-S cell. Our results showed the greatly enhanced performance of Li-S cells with this 

percolating electrolyte.  



  

 

Figure 1. (A) Scheme showing the assembly of coin cell with paste-like electrolyte in 

cathode side. (B) Image of paste-like percolating electrolyte. (C) Schematic of Li-S 

batteries with a paste-like electrolyte containing percolating carbon nanoparticles. 

2. Experimental Section 

2.1 Materials 

Carbon nanoparticles (CNPs) and polyvinylidene fluoride (PVDF) were used as provided. 

The electrolyte, 1 M bis(trifluoromethane) sulfonimide lithium (LiTFSI) salt in 1,3-

dioxolane (DOL) and 1,2-dimethoxyethane (DME) (1:1 vol), was provided by 

GuoTaiHuaRong Co. Ltd. Elemental sulfur, N-methyl pyrrolidinone (NMP) , lithium 

sulfide (Li2S), lithium nitrate (LiNO3) were used as purchased from Sigma-Aldrich.  

2.2 Preparation of cathode 



  

Elemental sulfur and CNPs were firstly mixed together by grinding with a 7:3 weight 

ratio. Then the mixture was sealed into a glass vessel and heated in nitrogen-filled tube 

furnace at 155 °C for 12 h. Cathodes were prepared by a slurry coating method. The 

slurry was composed with 80 wt% of sulfur-carbon composite, 10 wt% conducting agent, 

10 wt% PVDF as a binder and NMP as a solvent. The slurry was coated onto aluminium 

foil and was dried in a vacuum oven at 60 °C for 12 h. The thickness of the coating layer 

was 11 µm and the areal density was 1 mg/cm
2
. The diameter of electrode was 9.5 mm 

and the weight of composite was around 0.7 mg.  

2.3 Fabrication of electrolyte with percolating carbon nanoparticles 

CNPs were dried in a vacuum oven at 120 °C overnight before transferring into glove 

box. The percolating electrolytes with two concentrations (4 mg mL
−1

 and 8 mg mL
−1

) 

were prepared by dispersing CNPs in the commercial electrolyte under the assistance of 

ultrasonication (Hielscher ultrasonic probe) in the glove box. 

2.4 Cell assembly and electrochemical measurement 

The 2032 coin cells were assembled in an argon-filled glove box (MBraun UniLab) with 

a lithium anode and a polypropylene separator (Fig. 1A). The purchased electrolyte was 1 

M bis(trifluoromethane) sulfonimide lithium (LiTFSI) salt in 1,3-dioxolane (DOL) and 

1,2-dimethoxyethane (DME) (1:1 vol) with 0.1 M LiNO3 as additive. The purchased 

electrolyte was used as an anolyte and the percolating electrolyte was used on cathode 

side. The volumes of electrolyte on anode side and cathode side were 10 μL and 30 μL, 

respectively. The mass of CNPs was 0.12 mg (4 mg mL
−1

) or 0.24 mg (8 mg mL
−1

), and 

the corresponding areal amount loading of CNPs based on cathode is 0.17 mg cm
-2

 and 



  

0.34 mg cm
-2

, respectively.  For comparison, two blank cells were assembled. In both 

blank cells (BC-1/2), the percolating electrolyte on the cathode side was replaced with the 

same amount of pure electrolyte. In particular, an extra amount of 0.24 mg CNPs, 

equivalent to the amount of CNPs in 30 μL 8 mg mL
−1

 percolating electrolyte, was added 

into the cathode of BC-2, which resulted in a sulfur/carbon ratio of 49:51. The 

galvanostatic charge–discharge tests were conducted on LAND battery testing units. The 

current density and specific capacity were calculated based on the mass of sulfur in the 

cathode. The voltage window was 1.7-2.8 V vs. Li
+
/Li

0
. The current densities varied from 

0.15 to 3 A g
−1

. The cyclic voltammetry (CV) was measured between 1.7 to 2.8 V on 

Biologic VMP-3 electrochemical workstation at a scan rate of 0.1 mV s
−1

. EIS 

measurements were conducted at the frequency range from 100 kHz to 10 mHz. A 500 

μA current was applied to the H-cell.  

2.5 Characterization 

Transmission electron microscopy (TEM) images were taken on Philips Tecnai F20. X-

ray photoelectron spectroscopy (XPS) was measured on a Kratos Axis Ultra spectrometer 

using Al Kα radiation (15 kV, 150 W). The survey spectra were recorded from 0 to 1000 

eV at an energy interval of 1 eV/step. Porosity measurements were conducted on a 

Micromeritics Tristar II at 77 K after degassing overnight at 200 °C. X-ray diffraction 

(XRD) was collected on a Bruker D8 Advance X-Ray Diffractometer with a LynxEye 

detector and a Cu tube (40 kV, 40 mA). The CNPs/lithium polysulfide composites were 

sealed in an air-sensitive sample holder for XRD measurement. UV-Vis spectra were 

collected by Cary 60 UV-Vis spectrometer (Agilent Technologies) from 800 nm to 200 



  

nm. Kinematic viscosity and dynamic viscosity of the percolating electrolyte were 

measured by using Cannon-Fenske-Routine viscometer (k=0.001832 mm
2
 s

−2
) at 25 °C.  

3. Results and Discussions 

Fig. 1C describes the interaction of polysulfides with CNPs in the percolating electrolyte. 

Since pure electrolyte is merely ionic conducting, the heterogeneous electron transfer to 

the polysulfides dissolved in electrolyte is via the diffusion of polysulfides towards the 

cathode and hence is rather slow. This slow kinetics results in the low utilization of sulfur. 

The percolating carbon nanoparticles in the electrolyte transport electrons throughout the 

cathode chamber to reduce the dissolved polysulfides (discharge) or to oxidize the 

sulfides (charge). Therefore the usable polysulfide percentage becomes higher, and the 

cathode capacity increases. Nanoporous carbon materials with high surface area are able 

to adsorb a large amount of polysulfides. We deliberately used carbon nanoparticles with 

small surface area (69 m
2
/g, Fig. 2A) to minimize the interference from physical 

adsorption. The particle size of chosen CNPs is around 50-100 nm and they interconnect 

with each other forming a percolating network (Fig. 2B). Note that the oxygen content of 

these CNPs is extremely low (undetectable by XPS, Fig. 2C) ruling out the strong 

chemical interaction of sulfur and (poly)sulfides with oxygen functional groups. The 

kinematic viscosity and dynamic viscosity of 8 mg mL
−1

 paste-like electrolyte is 6.78 

mm
2
 s

−1
 and 8.34 mPa s, eight times more viscous than water (Fig. 2D).  It is assumed 

that, upon the discharge of sulfur, the low adsorption capacity of CNPs will not 

physically constrain a significant amount of polysulfides. Therefore the performance 

improvement can be ascribed to the polysulfides utilized by carbon nanoparticles. 



  

 

Figure 2. (A) Nitrogen adsorption–desorption isotherms of CNPs, (B) TEM image 

showing the size of CNPs and the formed percolating carbon network, (C) XPS spectrum 

of CNPs showing the oxygen-free feature and (D) Viscosity test results of 8 mg mL
−1

 

percolating electrolyte with the comparison of pure electrolyte and water at 25 °C. 

UV/Vis spectroscopy has been used to measure polysulfide solutions.[28-30] In this 

study, it was applied to characterize the sulfide species that were present in anolyte. 

Consequently the light absorption of the anolyte is an indicator that verifies whether the 

percolating carbon nanoparticles can reduce the polysulfide shuttle across the separator. 

Fig. 3 compares the light transmittance of anolytes from two different H-cells. One of the 

H-cells used pure electrolyte on the cathode side; the other one used percolating 

electrolyte in cathode chamber. The photographs of the anolyte sides of the H-cells that 

are fully discharged to 1.7 V are shown in the inset of Fig. 3. The anolyte from the H-cell 

with percolating electrolyte appeared greenish (Anolyte I, in red square) while the 



  

anolyte from the H-cell with pure electrolyte was dark red (Anolyte II, in blue square). 

The colourful species dissolved in the anolyte indicated the existence of polysulfides in 

electrolyte even at the end of discharge. A similar result was observed by Li et al.[30] 

This result explained why the utilization of sulfur in Li-S batteries is often low. 

Patel’s results demonstrated the dependence of light absorption on the chain length and 

concentration of polysulfides.[29] Qualitatively the short-chain polysulfides (Li2Sx, x<4) 

tend to absorb light at lower wavelength compared to the long-chain polysulfides; and the 

weaker absorption was observed at lower concentration. The Anolyte I completely 

absorbed the light at wavelength under 450 nm; and the characteristic absorption peak 

was around 540 nm (red curve in Fig. 2). The Anolyte II absorbed light at wavelength 

under 490 nm; and the characteristic absorption peak was around 550 nm (blue curve in 

Fig. 2). For comparison, the pure electrolyte absorbed lights at wavelength under 300 nm 

(black curve in Fig. 2). The higher absorption wavelength of Anolyte II suggested the 

longer chain of polysulfides (likely Li2S8 as the major constituent) and the lower 

transmittance, i.e. higher absorbance, reflected the larger concentration of polysulfides in 

Anolyte II. On the other side, the higher transmittance of Anolyte I suggested the lower 

concentration of short-chain polysulfides (possibly Li2S2-4). Sulfur reduction occurs along 

a cascade of polysulfides with gradually shortened chain length; and a portion of the 

dissolved polysulfides transfers across the separator to the anolyte side. The enrichment 

of short-chain polysulfides in Anolyte I signified the higher percentage of reduced long-

chain polysulfides by the percolating CNPs in the electrolyte. In fact, the percolating 

electrolyte changed to brownish after re-charge, which is a clear sign that the sulfur 



  

species were recovered. This result indicated the increased utilization of total sulfur via 

the electrochemical capture of dissolved polysulfides.  

 

Figure 3. UV/Vis spectra of the pure electrolyte (black), Anolyte I from an electrolytic 

cell with percolating electrolyte (red), and Anolyte II from an electrolytic cell with pure 

electrolyte (blue). The pure electrolyte is 1 M LiTFSI in DOL/DME (1:1 vol) with 0.1 M 

LiNO3. Inset shows the photographs of the two H-cells, where the anolyte chambers are 

highlighted in squares. 

The initial cyclic voltammetry (CV) curves of the cells using the percolating electrolyte 

are shown in Fig. 4A, compared with a control cell using the pure electrolyte (BC-1). As 

seen in Fig. 4, the currents of the cells increased with the increase of CNPs concentration 

from 0 to 8 mg mL
−1

. The CV profiles of the cells with percolating electrolytes showed 

characteristic cathodic peaks. The cathodic peak I centred at 2.3 V corresponded to the 

sulfur reduction to long-chain polysulfides and the cathodic peak II centred at 2.0 V 

corresponded to the conversion of long-chain soluble molecules to the insoluble Li2S2 or 

Li2S. The larger cathodic peak area suggested the higher utilization of dissolved 



  

polysulfides in percolating electrolyte. Note that the anodic peak area also increased 

compared to the control cell. The charge transfer resistance was reduced by a factor of 

4~6 for the cells with percolating electrolytes according to the electrochemical impedance 

in Fig. S1.  

 

Figure 4. (A) The initial cyclic voltammetry curves of the cells and (B) 2
nd

-5
th
 cycles CV 

plots with the comparison with the first blank cell (BC-1). 

Rate performance was evaluated from 0.15 to 3 A g
−1

 as shown in Fig. 5A-D. The 

discharge/charge potential difference (ΔE) at different current densities was plotted in Fig. 

5E. For BC-1, the ΔE at 0.15 A g
−1

 current density was already as high as 237.7 mV and 

increased to 472.8 mV with the current density increasing to 1.5 A g
−1

. Such a high 

potential difference suggested a large cell resistance and sluggish electrochemical 

kinetics. The percolating carbon nanoparticles can efficiently reduce the potential 

difference. The ΔE at 0.15 A g
−1 

was reduced to 204.5 mV in the 4 mg mL
−1

 cell and to 

181 mV in the 8 mg mL
−1

 cell. Even when the current density was increased to 3 A g
−1

, 

the ΔE was 376.4 mV in the 4 mg mL
−1

 and 322.1 mV in the 8 mg mL
−1

 cell, even lower 

than that of the BC-1 at 1.5 A g
−1

. BC-2 showed slightly better kinetics than BC-1, but 



  

was still worse than the cells with percolating electrolytes. The results indicated the better 

reaction kinetics enabled by the percolating carbon nanoparticles.  

 

Figure 5. Discharge-charge profiles of (A) 4 mg mL
−1 

cell (B) 8 mg mL
−1

 cell (C) BC-1 

(D) BC-2. (E) Discharge-charge potential difference (∆E) at various current densities. 



  

The discharge capacity of sulfur can be divided to two parts: the high plateau-sloping 

region capacity (QH) attributable to the formation of long-chain polysulfides (Sx
2−

 with x 

≥  4) and the low plateau capacity (QL) assigned to the reduction of long-chain 

polysulfides. The theoretical capacities of QH and QL are 419 mA h g
−1

 and 1256 mA h 

g
−1

, respectively.[24] Note that a virtual total capacity of about 1256 mA h g
−1

 for sulfur 

was suggested, which was mainly ascribed to the incomplete reduction of S4
2−

 to S
2−

.[31] 

This assumption is reasonable accounting for the coloured anolytes as shown in Fig. 3. 

Therefore, a value of 837 mA h g
−1

 is recommended for the virtual QL.[31] The QH and 

QL values are compared in Fig. 6A and B. At 0.15 A g
−1

, the QH value increased from 

252 mA h g
−1

 (BC-1) to 362 mA h g
−1

 (8 mg mL
−1

 cell), with the sulfur utilization ratio 

(against 419 mA h g
−1

) increasing from 60.1% to 86.4%. The high plateau-sloping region 

reactions include the initial transformation of solid sulfur to the liquid S8
2−

 anions (209.5 

mA h g
−1

) and the subsequent reduction of S8
2−

 anions to S4
2−

 anions (209.5 mA h g
−1

). In 

the first plateau, solid-solid interaction between carbon and sulfur is crucial while the 

second plateau is more sensitive to polysulfide shuttle due to the high solubility and 

shuttle of S8
2−

 anions. The strong shuttle effect and the lack of percolating nanoparticles 

reduced the accessible QH in the BC-1 but the higher carbon content in BC-2 helped with 

polysulfide utilization giving rise to higher QH. The percolating CNPs were able to 

reduce polysulfides in electrolyte, and hence, resulted in larger QH. More significant 

increment was observed in QL during which process the shuttling is predominant. At 0.15 

A g
−1

, the QL value increased from 320 mA h g
−1

 (BC-1) to 825 mA h g
−1

 (8 mg mL
−1

 

cell), with the sulfur utilization ratio (against 837 mA h g
−1

) increasing from 38.2% to 

98.6% by more than two folds. The same trend was noticeable for the 4 mg mL
−1

 cell and 



  

for a wide range of current densities. However the increment of QH and QL capacities in 

BC-2 cell at current densities above 0.15 A g
−1

 were very limited. This result indicated 

that percolating carbon nanoparticles can utilize dissolved polysulfide much more 

efficiently compared with those embedded in cathode. The total capacity of sulfur in the 

cells with percolating electrolytes approached to 600 mA h g
−1

 at 3 A g
−1

 (Fig. 6C). 

Appreciable stability was noticed in the cells with percolating electrolytes at 0.75 A g
−1

 

(Fig. 6D). The ~99% coulombic efficiency suggested the reversible polysulfide 

reduction/oxidation on the dispersible CNPs in percolating electrolyte (Fig. S2). 

 

Figure 6.  Comparison of (A) high plateau discharge capacities (QH) and (B) low plateau 

discharge capacities (QL) at different current densities. (C) Discharge capacity at different 

current densities and (D) Cycle stability measured at 0.75 A g
−1

. 



  

Air-sensitive X-ray powder diffraction was carried out to determine the discharge and 

recharge products in the percolating electrolytes (Fig. 7). The customized sample holder 

is shown in Fig. S3. The prominent broad peaks in both discharged and recharged 

electrolytes originated from CNPs and sample holder. The strongest diffraction peak for 

Li2S was identified in the discharged percolating electrolyte; and the peak for S was 

detected in the recharged percolating electrolyte. On account of the weak XRD signals, it 

is postulated that the Li2S or S was likely amorphous or nanocrystalline. On the other side, 

the polysulfide intermediates may exist in percolating electrolytes because of incomplete 

reaction, although no corresponding signals were resolved from XRD due to their 

amorphous nature (Fig. S4).[31, 33] This result is consistent with previous studies that 

distinct XRD peaks for sulfur species were only observed in solid carbon/sulfur cathodes, 

rather than in polysulfide electrolytes.[34] TEM characterization of the recovered CNPs 

from percolating electrolyte did not reveal any visible crystals or particles that might be 

attributable to either Li2S or S (Fig. S5). 



  

 

Figure 7. X-ray diffraction of carbon nanoparticles recovered from the discharged and 

recharged percolating electrolyte. 

A possible mechanism is proposed to understand the working function of percolating 

carbon nanoparticles (Fig. 8). The reduction of sulfur on the cathode will first produce 

S8
2−

, while other soluble anions (S6
2−

 and S4
2−

) are formed at higher depth of discharge. 

In our proof of concept attempt, nonporous carbon nanoparticles were used as conducting 

additive on the cathode. The very low surface area and porosity can only accommodate 

limited amount of soluble sulfur species. As a consequence, a majority of the as-produced 

soluble polysulfide anions will immediately escape into the electrolyte and diffuse 

towards the anode side. This process could be out of control if no barrier to polysulfide 

shuttling is in place and would lead to a quick performance fading. From the UV-vis 

observation of the glass H-cell filled with a percolating electrolyte (Fig. 3), we know that 



  

only short chain polysulfides were able to migrate through the separator and into the 

anode chamber. On the contrary, a large portion of long chain polysulfides appeared in 

the anode chamber without percolating electrolyte. This indicates that the ongoing 

reduction of long chain polysulfides (like S8
2−

) by percolating carbon nanoparticles. 

Because the polysulfide anions diffuse while being reduced, this ‘dynamic’ reduction of 

‘moving objects’ will form a gradient distribution of long polysulfides (higher solubility) 

close to the cathode surface and short polysulfides (low solubility) or sulfides (insoluble) 

close to the separator, as illustrated in Fig. 8. The sulfur migration across the separator is 

thus alleviated because a majority of the highly soluble polysulfides has been reduced 

before reaching the separator. As a result, the percolating electrolyte could hinder the 

polysulfide shuttling and increase the virtual sulfur capacity. 

 

Figure 8. Schematic illustration of the gradient distribution of sulfur species in 

percolating electrolyte. 

4. Conclusion 



  

We demonstrated the improved Li-S battery performance by replacing a normal 

electrolyte with a percolating electrolyte that contains concentrated dispersible carbon 

nanoparticles. The percolating carbon nanoparticles act like dispersible nanosized 

electrodes and hence can reduce dissolved polysulfides during discharge and oxidize 

sulfide precipitates during recharge. The reversible utilization of escaped sulfur species in 

electrolyte helps to increase the overall cathode capacity by a factor of two. This 

approach also alleviates polysulfide shuttling because a majority of highly soluble 

polysulfides are converted to less soluble species before they can penetrate through the 

separator. This strategy is simple yet effective and opens a new avenue to fabricate high-

performance Li-S batteries. 
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