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Abstract

In this thesis, the heritability of a number of features of brain functional connectivity and
network behaviour was estimated, in order to assess their suitability as imaging
endophenotypes. Phenotypes were chosen based on prior association with psychiatric disease
in the literature, and current interest in the neuroimaging community. Heritability was

estimated using a large MRI twin sample from the Queensland Twin Imaging Study.

The first study looks at intrinsic functional brain networks present at rest, in the
absence of cognitive demand, and characterised them using graph theory, a mathematical
formulation used to describe topological properties of complex networks. Such characteristics
were found to be moderately to strongly heritable (h?=20-60%). The heritability estimates
varied substantially with methodological choices, in particular the removal or inclusion of

global signal.

Connectivity of functional brain networks during working memory performance were
also examined. Dynamic causal modelling was employed to determine task-related changes in
functional coupling between frontal and parietal regions. Changes in connectivity with task
demand were observed for both forward and backwards connections, but the changes had
low test-retest reliability (ICC<0.3), and subsequently, twin correlations and heritability were

non-significant (rmz<0.08, rpz<-0.05).

Finally the functional connectivity profile of the dorsolateral prefrontal cortex during
working memory was probed. Functional connectivity with ipsilateral parietal cortex
(h?=24%), contra-lateral dorsolateral prefrontal cortex (h2=36%), posterior cingulate cortex
(h?2=37%) and middle frontal cortex (h?=26%) were found to be heritable. However, the
connections during baseline condition were also heritable, suggesting the heritability did not
pertain to WM-specific connectivity, and connectivity with left hippocampus was not found to

be heritable.
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Figure 1.1: Depiction graph measures. Replicated from Rubinov and Sporns (2010)

Figure 1.2: The multi-component model of WM. Unshaded elements represent fluid systems,
unchanged by learning, whereas shaded elements are stable, ‘crystallized’ systems. Replicated

from Figure 1; Baddeley (2000).

Figure 2.1: Modular decomposition of group-wise mean network over a range of connection
densities (i.e. k=5-35%), without and with global signal regression (GSR). Yellow lines
indicate a supra-threshold connection and node colours indicate module membership (DMN
(blue), dorsal attention network (red), visual network (pink), subcortical (yellow),
sensorimotor (cyan), hippocampus/amygdala/temporal (black). As the connection density
increases, different modules lose their distinction and merge, leading to fewer and larger

modules. After k = 25%, the modular network architecture is lost.

Figure 2.2: Monozygotic (MZ), Dizygotic (DZ) twin correlations across graph measures and

thresholds, GSR not implemented. Error bars represent 95% confidence intervals.

Figure 2.3: Additive genetic (a?) and unique environmental (e?) variance components across

graph measures and thresholds, GSR not implemented.

Figure 2.4: Additive genetic variance components across graph measures and thresholds
estimated both without (solid line) and with (dashed line) global signal regression (GSR).
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Figure 2.5: Path diagram for multivariate genetic model showing genetic and environmental
sources of covariation between three graph measures, with parameter estimates given for
k=10%, GSR implemented. Path labels give standardized path coefficients (bold) and variance
components (the square of the path coefficients) of each factor. Thus, the genetic factor
influencing y also accounts for 18% of the total variation in Q (60% of the genetic variation),
and 1% of the variation in A. Q has a second genetic factor accounting for 12% of its variation,
which also accounts for 24% of the variation in A. Whereas overlapping genetic factors

accounted for much of genetic variation in the graph measures, separate environmental
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factors account for the majority of environmental variance in Q (47%) and A (41%).
Heritability (the sum of sources of genetic variance for each variable; h?) is shown for each

variable. Non-significant path coefficients shown by dotted arrows.

Figure 3.1: Regions of interest for dynamic causal models were calculated as the intersection
of the group-wise activation map (red-yellow) and anatomical regions defined by the WFU
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slice coordinates labeled above (mm).

Figure 3.2: DCM model space. Stimulus driving input indicated by solid vertical arrow, task
driving input indicated by dashed arrow, intrinsic connections indicated by arrows between
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Figure 3.3: Path Diagram for genetic modeling. In this structural equation modeling,
(observed) variance in DCM parameters is modeled as arising from (hidden) additive genetic
factors (A), common environmental factors (C), and unique environmental factors (E). The
covariance in additive genetic factors is set to 1 for monozygotic (MZ) twins and % for

dizygotic (DZ) twins.

Figure 3.4: Model expected probabilities (left), and exceedance probabilities (right). Models
with WM modulation both forward and backward modulations had higher model expected
probability than those with modulation of backward connections (models 9-12) which in turn
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Figure 3.5: Average parameters across the sample for model 15.

Figure 4.1: Path Diagram for genetic modelling. In this structural equation modelling,

(observed) variance in functional connectivity parameters is modelled as arising from

(hidden) additive genetic factors (A), common environmental factors (C), and unique



environmental factors (E). The covariance in additive genetic factors is set to 1 for

monozygotic (MZ) twins and % for dizygotic (DZ) twins.

Figure 4.2: Group wise activation (top panel), and connectivity profiles with dIPFC seed
(bottom three panels). Positive activation/connections in red-yellow, negative
activations/connections in blue-green. The t-statistics were thresholded at FWE p<0.05,

corrected for multiple comparisons.
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Table S4.2: Test-retest reliabilities with Hanning filter implemented.
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1 Chapter 1: Introduction

1.1 Endophenotyping

In psychiatry, an endophenotype is a quantitative trait hypothesized to underlie disease
syndromes (Gottesman and Gould, 2003, Bearden and Freimer, 2006). In general, an
endophenotype measures a biological feature “upstream” from directly observable
psychiatric symptoms, which is both associated with risk for a particular disorder, and
associated with causes, rather than effects of the disorder, that is, they are on the causal

pathway from genes to disease.

The search for psychiatric endophenotypes has three main motivations; (1) increased
genetic penetrance, (2) elucidation and decomposition of psychological phenomena, and (3)
increased specificity and objectivity for diagnosis.

Firstly, since genes code for biological processes, and not psychiatric diagnosis, it was
initially assumed that genetic penetrance would be greater at the level of brain biochemistry
and neuronal circuitry than at the level of the medical condition (Gottesman and Gould, 2003).
This would give greater power for genetic association.

Secondly, endophenotyping will help decompose multi-genic, complex traits into
distinct components. Most psychiatric disorders result from the interaction between multiple
genes, and multiple environmental factors. Consequently, the contribution of any given gene
or SNP to disease risk, as measured in candidate gene and genome-wide association studies
are low (e.g. International Schizophrenia Consortium et al., 2009, Meyer-Lindenberg, 2010).
One advantage of the endophenotyping approach is that by splitting a psychiatric disorder
into its (multiple) underlying neuronal mechanisms, we can go some way to partitioning the
genetic variance in the disorder and understand by which mechanism each genetic factor
contributes to the disorder.

Finally, psychiatric diagnoses and phenotypes are inherently imprecise in that there is
often disagreement over diagnostic criteria, there are generally multiple diagnostic criteria
for a single condition, and disease groups can show large degrees of heterogeneity (e.g. major
depressive disorder; Zimmermann et al., 2009, Schizophrenia (SZ); Tsuang and Faraone,
1995). As such, the endophenotype approach helps overcome this problem in psychiatric
genetics by focusing on objective and quantitative intermediate biological mechanisms. It is

well known that patients of the same diagnosis can respond differently to treatment. In the



cases where this is due to differing neural mechanisms of the same disease category, then
understanding and diagnosing those mechanisms will lead to more appropriate treatment

selection.

1.1.1 Uses, methodologies and current state of endophenotyping

Endophenotyping has generally been undertaken in one of two ways. The first and most
common way is mechanism discovery. Given a known genome-wide significant variant, or
polygenic risk profile score (RPS) associated with a psychiatric disease, this variant or RPS
can be used in genetic association with possible disease mechanisms. A positive association
between risk allele and neural mechanism suggests that the neural mechanism is on the
causal pathway of the disease.

The second use of endophenotyping is gene discovery. Given a known pathological
mechanism, one can then perform genome wide association (GWAS) on the mechanism to
highlight genetic contributors. If for a particular disorder genes are more penetrant at the
circuit level, using the mechanism rather than the diagnosis would give greater power for

detecting genetic influences.

Recent GWAS of EEG (Iacono et al.,, 2014) and MRI structural phenotypes (Stein et al.,
2012; Strike et al,, 2015) have cast doubt on the assumption that genes will be more
penetrant at the imaging endophenotype level, demonstrating that imaging endophenotypes
are themselves highly polygenic, and effect sizes are not substantially larger than for clinical
phenotypes.

The emphasis has thus shifted away from gene discovery and towards mechanism
discovery. In this manner, endophenotyping can be used as a tool to interpret the results of
GWAS on clinical phenotypes, by investigating the mechanism by which genetic variants
confer disease risk (de Geus, 2014; Munafo and Flint, 2014). Similarly, mechanism discovery
can help elucidate the imprecision inherent in DSM classifications of heritable diseases,
whereby diseases with similar clinical presentations may be compared for underlying
neurology (e.g. Autism spectrum disorder and Attention Deficiency Hyperactivity Disorder,
Rommelse et al.,, 2011). Tellingly, Thomas Insel, the director of the National Institute for
Mental Health, the world’s largest funder of mental health research, greeted the publication of
the most recent version of DSM with criticism that psychiatric disorders are still classified by

sets of symptoms, announcing NIMH’s intention to “transform diagnosis by incorporating



genetics, imaging, cognitive science, and other levels of information to lay the foundation for a
new classification system”. Endophenotyping is central to this broad aim of quantitative,

biomarker based psychiatry.

Endophenotypes are often said to underlie a disorder, with the implicit assumption of
linear causality, with clear pathways from gene to endophenotype to disease. This concept,
though useful as a framework for hypothesis testing, is undoubtedly over-simplified.
Psychiatric diseases are characterised by a cluster of symptoms and numerous neurological
abnormalities/endophenotypes. In many cases symptoms are causally connected (Kim and
Ahn, 2002), and the same is likely to be the case between endophenotypes. The consequence
of this is that relationship between endophenotype and phenotype (psychiatric diagnosis) is
unlikely to be linear and will depend on the state of other endophenotypes and unmeasured
latent variables. Such systems may best be described using the apparatus of dynamic complex
systems theory. As an example, Cramer et al. (2010) and Schmittmann et al. (2013) construct
symptom networks, and argue that psychiatric disorders, rather than being causes of the
symptoms, are best conceptualised as emergent properties of the network of symptoms, in
this case, sub-networks of closely related and interacting symptoms. Along the same lines,
disorders could be envisaged as attractor states in the state space of the dynamical system of
symptoms (see Guastello et al.,, 2009 and Van Geert, 2009 for an overview of chaos theory and
non-linear dynamical systems theory applied to psychology). Similar scenarios can easily be
imagined with brain endophenotypes used en lieu of symptoms (Staniloiu and Markowitsch,
2010), with the added incentive that neurological substrates are more easily accepted as
causes of a disease than are symptoms. Though this approach is not adopted in this thesis, it is
important to have in mind throughout when we make the assertion that an endophenotype is
underlying a disorder, that it is but one etiological factor in a complex dynamical system of

inter-twined neural mechanisms.

1.1.2 Examples of Psychiatric Endophenotypes in the Literature

Although a recent field of study, endophenotyping has produced some encouraging early
findings. Pezawas et al. (2005) investigate the role of connectivity between the anterior
cingulate cortex (ACC) and amygdala in depression. In the healthy population, the subgenual
anterior cingulate cortex is believed to inhibit processing of emotional adversity in the

amygdala. In depressed patients, this circuit is compromised, leading to a lower control of



emotional state. Pezawas et al. (2005) investigated whether a risk factor of depression was
implicated in this circuit. The risk factor was the short allele (small number of tandem
repeats) in the promoter region (5-HTTLPR), of the serotonin transporter gene SLC6A4,
which had been associated with depression in candidate gene studies and supported since in
more recent GWAS (Haenisch et al,, 2013). The short allele leads to reduced transcription of
this gene, so it feasible that a reduction in the expression of this gene could cause a reduction
in frontal-ACC connectivity. Pezawas et al. (2005) found this to be the case, with the short
allele associated with reduced coupling between ACC and amygdala. Given that this coupling
predicted ~30% of the variation in trait-anxiety in the cohort (Pezawas et al.,, 2005), this
suggests that the genetic risk is mediated in part through this mechanism. This study
controlled for population stratification by using only Caucasians of European descent and by

genotyping 100 unlinked SNPs to rule out occult stratification between 5-HTTLPR groups.

Esslinger et al. (2009) looked at endophenotypes of SZ. SZ is highly heritable (Cardno
and Gottesman, 2000), but multi-genic (International Schizophrenia Consortium et al., 2009;
Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), and the effect
size of significant variants is typically small (Meyer-Lindenberg, 2010). Further SZ is believed
to be caused by multiple deficiencies across the range of cognition, and not limited to a
domain. Thus finding the constituent processes involved, and their genetic architecture is a
promising way to shed light on this disease. The chosen characteristic was functional
connectivity (FC) between dorsolateral prefrontal cortex (dIPFC) and hippocampal formation
(HF) during an N-Back working memory (WM) task. During WM, SZ patients fail to uncouple
these two regions (Meyer-Lindenberg et al., 2005), suggesting that SZ patients may be
recruiting associative memory to assist them in (impaired) working memory. Esslinger et al.
(2009) found a significant association between this hyper-connectivity and a genome-wide
supported schizophrenia risk factor, SNP rs1344706 of gene ZNF804A. This risk factor was
discovered in a sample of 479 SZ patients by O'Donovan et al., 2008, but not supported by the
most recent and largest SZ GWAS (Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). To control for population stratification, only subjects with parents and
grandparent of European origin were used, and genotype group differences in gender, age,
handedness, level of education, and task performance were measured and were not

significant..



1.1.3 Requirements of an Endophenotype

Gottesman and Gould (2003) describe the consensual set of criteria required of an

endophenoype.

Associated with illness in the population

Heritable

State independent, manifests in individual whether or not illness is active.
Co-segregates with illness in families

Found in non-affected family members at higher rate than in population.

SANC O

In this thesis I chose phenotypes which have shown positive associations with psychiatric
disease, thereby satisfying criteria (1), and go on to estimate their heritability, with significant
heritability implying their validity as an imaging endophenotype. The exceptions are the
functional connectivity phenotypes in Chapter 4, not all of which have been investigated in
terms of psychiatric disease, but have shown interesting associations with features of
cognition. One important assumption of the endophenotype concept is that intermediate
phenotypes associated with psychiatric risk are present in the healthy population. Since genes
confer susceptibility to disease via neuronal mechanisms, carriers of disease risk alleles who
do not show clinical symptoms of the disease will show association with the intermediate
brain phenotypes via similar genetic susceptibility mechanisms (Meyer-Lindenberg and
Weinberger, 2006). This has been demonstrated by numerous neuroimaging studies of
healthy relatives of schizophrenia patients (e.g. Seidman et al., 1999; Boos et al., 2007;
Whitfield-Gabrieli et al., 2009; Callicott et al., 2014). An implication is that healthy subjects
can be used for studies of genetic association with disease susceptibility mechanisms. This

avoids the expense, difficulty and potential confounds of using patient groups.

1.1.4 Beyond Endophenotyping

The field of endophenotyping provides an over-riding framework and theme for the three
papers of this thesis. However, the core concern of the three papers is the heritability of
various functional systems. Heritability is of itself an informative measure, and is discussed
further in section 1.3.4. For example, Chapter 2 measures the heritability of a number of
network measures. A number of studies have demonstrated that the brain network displays
certain features characteristic of optimal organisation under evolutionary pressure (see
section 1.3.1.3). Thus, measuring the heritability of these features gives valuable information

as to the etiology of individual differences in optimal brain organisation.



1.2 The Queensland Twin Imaging Study

The Queensland twin imaging study (QTIMS; de Zubicaray et al., 2008) ran from February
2007 to August 2012, during which time 1059 participants undertook a number of magnetic
resonance imaging (MRI) scans on a 4 Tesla Bruker Medspec whole body scanner. 82
participants returned for rescanning at 3.6 months (SD 1.6) to test the reliability of the
measures. The sample consisted of 389 identical (monozygotic; MZ), and 556 non-identical
(dizygotic; DZ) twins, along with 113 siblings. These twins were recruited from the larger
Brisbane Twin Cognition Study (Wright and Martin, 2004 ), through which a host of biological
and psychological testing has been performed, including various measures of 1Q, disease,
height, weight, marriage statistics, etc. Each participant was scanned with a T1 weighted
sequence, diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI),
a 4 minute functional magnetic resonance imaging (fMRI) scan during an N-Back WM task,
and a 5 minute resting state fMRI (rs-fMRI) scan.

To put into comparison with other large MRI twin studies, the Netherlands Twin
Registry scanned 102/131 MZ/DZ pairs, while the ongoing Vietnam Era Twin Study of Aging
has scanned 110/92 MZ/DZ pairs. Thus, this is to date the largest sample of twins scanned
with MR], giving the greatest available power for detecting genetic influences, aside from

consortium initiatives such as ENIGMA, to which QTIMS contributes.

The Queensland twin imaging study has contributed to our understanding of the genetic
influences on human brain structure and function. With the diffusion weighted scans, white
matter integrity was been found to be under strong genetic influence (h?=55-85%; Chiang et
al,, 2009), and numerous genetic polymorphisms affecting white matter structure have been
discovered, (Chiang et al., 2011; Braskie et al., 2011). With the fMRI data, the heritability of
functional activation during working memory was assessed. Heritability of the blood oxygen
level dependency (BOLD) response ranged across regions between 0-65% with on average
~33% of variance in activation attributable to genetic factors (Blokland et al., 2011).
Preliminary work has been done looking at the genetic influences on resting state functional
connectivity, Castellanos et al. (2010) find a non-significant genetic influence on connectivity

within the default mode network (DMN), in a subset of 108 participants.



1.3 Theoretical Background

1.3.1 Brain Connectivity

In this thesis, [ investigate brain functional connectivity as a candidate endophenotype. In this

section, the major conceptualisations and methodologies in brain connectivity are reviewed.

Functional activity in the brain adheres to two major organisational principles,
segregation and integration. This has fuelled one of the major philosophical and scientific
debates in the history of neuroscience, that of locationalism vs. holism. Locationalism stresses
the specificity of neurons and brain regions, whereby a given function is performed
(independently) by a localised brain region, whereas holism contends that function is
achieved via the interaction of multiple brain regions, and that the patterns of interactions
themselves are an integral part of the function. Evidence for specialisation of brain anatomy is
widespread, from the early lesion work of Paul Broca, identifying cortical regions specialised
for language processing, and the electrophysiological work of Wilder Penfield, revealing that
sensory and motor cortices were organised into maps, through to modern-day functional
neuroimaging, with given tasks and functions activating localised cortical regions. Whilst
anatomical integration amongst cortical regions is evident from their dense
interconnectedness via white matter fibres, functional integration between regions is more
difficult to assess. The advent of neuroimaging and associated analytic techniques have shown
distributed/widespread patterns of activation in response to a range of tasks, but particularly
for tasks requiring higher cognitive function such as memory and attention. Methods of
functional and effective connectivity (Section 1.3.1.1) have demonstrated that these
distributed brain regions are far from acting independently, but exert measureable influences
over each-other (Friston, 2002a, “Beyond Phrenology”). For low order operations such as
sensory and motor processes, anatomic connections and functional interactions seem to form
well ordered, largely feed-forward hierarchies of distinct functional units (e.g. visual
processing: Hubel and Wiesel, 1962; Felleman and Van Essen, 1991; DiCarlo et al., 2012). For
higher order cognitive processes, feedback loops are prevalent and processing occurs in a
more interactive and integrated manner (e.g. attention, memory, language, emotion: Mesulam,
1990; McClelland and Rogers, 2003; Pessoa, 2008). In such cases the assignment of function

to anatomy is less straightforward, with a given function distributed over disparate anatomy.



Functional integration is achieved via neuronal connectivity, a central concept in
neuroscience. Individual neurons exert influence over each other via release of
neurotransmitter molecules at the neuronal synapse. Computational networks of interacting
units (neural networks) are capable of many of the functions we associate with cognition, e.g.
learning, pattern recognition, and error detection (Hopfield, 1982). Likewise measurement of
neuronal interactions from cellular recordings up to large scale cortical mass activity
demonstrate that cognition in part relies on the interaction of distributed networks in the
brain (Mountcastle and Edelman, 1979; Singer and Gray, 1995; McIntosh, 2000; Jirsa, 2004;
Bressler and Menon, 2010). Thus, these interactions between neuronal networks could be a

valuable marker for understanding normal and disease affected cognition.

1.3.1.1 Functional and Effective Connectivity

MRI lacks the spatial resolution to observe connections between individual neurons, with a
typical imaging voxel between 2-3mm in each dimension (8-27mm?3). As such, when we
measure connectivity using MRI, we are referring to the connectivity between large scale
neuronal populations (Deco et al., 2008). Brain connectivity measured with MRI is broadly
categorized into two fields, structural connectivity on the one hand, and functional and
effective connectivity on the other (Friston, 2011). Structural connectivity has the limitation
that it gives little information on the dynamic nature of brain connectivity, required for

information processing.

Synaptic coupling between neurons varies rapidly depending on time and context,
using a variety of molecular mechanisms (Abbott et al., 1997; Wolf et al., 2003; Saneyoshi et
al,, 2010). These changes in synaptic coupling feed forward to the dynamic functional
integration of large scale cortical regions observed in neuroimaging (Friston, 1994; Friston,
2011), either directly or as an emergent synchrony by virtue of network dynamics (e.g.
Breakspear et al., 2003). Functional and effective connectivity attempt to characterize this

functional coupling and its context dependent variations.

Functional connectivity (FC) measures statistical dependencies between data. The
most commonly used measure of functional connectivity is simply Pearson’s correlation
between the time series of two regions, where a significant correlation is taken as evidence of
a dependence between the two regions. Pearson’s correlation is the measure of connectivity
used to construct networks for graph theoretical analysis, as described in section 1.3.1.3 and
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Chapter 2, and to measure the connectivity profile of the dIPFC during WM in chapter 4.
Though Pearson’s correlation is overwhelmingly the most widely used measure of ROI to ROI
functional connectivity, in principle any measure of statistical dependence can be used,
including partial correlation/inverse covariance matrix (Marrelec et al., 2006), mutual
information (Zhou et al., 2009), or coherence in the frequency domain (Chang and Glover,
2010). These various methods are reviewed, and their sensitivity and specificity evaluated on
simulated data in (Smith et al.,, 2011). They found that partial correlation and inverse
covariance matrix performed slightly better than full correlation, whereas coherence and
mutual information performed substantially worse.

The aforementioned measures may be used to measure the FC between two regions,
using the time series of two regions, or the FC between a seed region and all other voxels in
the brain, giving a connectivity map. As such, they require the definition of a suitable seed
region/regions. In contrast, hypothesis free, whole brain patterns of functional connectivity
can be estimated using independent component analysis (ICA, Beckmann et al., 2005). ICA
detects maximally independent sources and their linear combination which give rise to an
observed set of measurements. When applied to spatio-temporal fMRI data, the output is a set
of independent time series with a weight at each voxel. The weight maps for each
independent component describe a spatial distribution of coherent voxels, and overlap with

well established functional networks from activation studies (Smith et al., 2009).

Measures of functional connectivity make no inference on an underlying generative
model, thus do not strictly imply the presence of a connection, only a dependency in the data.
However, the ease of implementation and model independence make FC an attractive option
in probing neuronal interactions. The validity of FC as a measure of interaction is enhanced if
alternative causes of the interdependencies are controlled for, such as the influence of global
signal, or common underlying causes such as task activation. In contrast, effective
connectivity describes the causal influence of one neuronal population over another. It is
derived from a generative model, in which observed data are modelled as arising from these
influences, while an attempt is made to account for alternative contributions to the observed
data by explicitly modelling them. The presence of effective connectivity is deduced by model
inference, whereby a model with and without the hypothesized connection are compared.

The main methods used in fMRI to establish effective connectivity are structural
equation modelling (SEM), dynamic causal modelling (DCM) and Granger causality. SEM

specifies a set of linear relations between BOLD signals in different regions, with directed



interactions between regions present as path coefficients, and fits the observed covariance
matrix to the model covariance matrix. DCM models neuronal activity in a region using
differential equations with terms representing the influence regions on each-other and task-
dependent modulations in these influences. DCM additionally models the subsequent BOLD
signal using a separate set of differential equations, translating the neuronal model to an
observation model. DCM is implemented in Chapter 3 of this thesis and its theoretical
underpinnings are described in section 1.3.1.2. Finally, as opposed to SEM and DCM, which
posits a set of causal structures and matches observation to model to determine the most
likely causal structure, Granger causality uses temporal antecedence to determine causality. If
the time series of one region can predict the time series of second, beyond that predicted by
the second time series itself, the first time series is assumed to have been a cause of the
second time series. All of these methodologies have their advantages and disadvantages. In
this thesis [ use DCM to determine effective connectivity during WM, because it is particularly

suited to measure changes in connectivity in response to task manipulations.

1.3.1.2 Dynamic Causal Modelling

The goal of dynamic causal modelling (DCM; Friston et al., 2003) is to estimate how different
brain regions interact (connections), the causal direction of those interactions, and how those
interactions increase or decrease in strength in response to changing task demand
(modulations).

This is achieved by solving computationally a set of coupled linear partial differential
equations ultimately describing the signal detected from that brain region, such as the BOLD
signal from the functional time series. The differential equations of DCM come in two levels.
The first level describes the neuronal activity of each region (z), and the second level models

how this neuronal activity gives rise to the BOLD signal, termed the haemodynamic model.

The change in neuronal activity of a region is assumed to have three causes. The first is
the intrinsic connectivity with other regions, with the activity in region 2 causing a change in
the activity in region 1, dependent on the strength of the directed connectivity from region 2
to region 1. This intrinsic connectivity is parameterized by the coefficient A, and appears in
the first term of equation. The second influence is the change in those connections induced by
some experimental manipulation. Changing task demand can alter the strength of connectivity

from region 2 to region 1, and this is parameterised in the coefficient B. Finally, each region
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may change its neuronal activity in response to some experimental input, such as a stimulus

input, or a task demand. This final influence in parameterized in coefficient C.

dz .
—=Az+ Zujsz+ Cu
dt :

j

where j iterates over the experimental manipulations, u. This formula states that the
rate of change in the neuronal activity, z;, of a region is linearly proportional to the activity of
all other regions, z, with weights given by A, to the additional weighting of a connection
during a given experimental manipulation uj, with weights given by B, and to experimental

manipulations providing direct driving input to that region, with weights given by C.

This neuronal state is then mapped to a haemodynamic response. In DCM the
haemodynamic model used is the Balloon/Windkessel model (Buxton et al., 1998; Mandeville
et al.,, 1999). For each region this model consists of a set of biophysical parameters including,
blood inflow, outflow, volume, and deoxyhaemoglobin content (see Equations 3, Friston et al.,
2003). In contrast to conventional fMRI analysis in the general linear model framework, these
biophysical parameters are allowed to vary from region to region. Finally, this haemodynamic
response in mapped to an expected BOLD signal (see Equations 4; Friston et al., 2003). The
resulting neuronal and haemodynamic states as specified by the forward model are then
modelled simultaneously with model parameters estimated via an expectation maximisation
scheme (Friston, 2002b), which utilises prior probabilities on neuronal and haemodynamic
parameters, reflecting the dissipating/non-divergent nature of neuronal activity, and

empirically determined haemodynamic behaviour.

An integral part of dynamic causal modelling is selection of the network configuration
(combinations of connections, modulations and driving inputs) most likely to have caused the
observed time series. We test a number of possible network configurations to see which
configuration has the highest evidence. Given the large number of possible network
configurations, we do not test all possible combinations, but rather restrict the model space to
a computationally manageable size. Many configurations can be disregarded as
physiologically unlikely, so typically we chose to model a subset of likely model configurations.
For example, visual/auditory experimental input is typically constrained to enter the network
via visual/auditory cortices, rather than testing all possible input locations for experimental

inputs. We can further restrict the model space by generating specific hypothesis about the
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physiological mechanisms, e.g. top-down vs. bottom-up processing, and testing only those
hypothesis, and by using prior literature to inform our models.

Once a model space embodying our hypothesis has been defined, all models are fitted to the
data (BOLD time series), and one can determine the best model, or the best family of models
sharing a particular feature, using Bayesian model selection (BMS). Bayesian model selection
differs from frequentist model selection in a number of important ways. Firstly BMS
quantifies the relative probability that different models gave rise the observed data, and
makes inferences based on the posterior probability (p(Model|Data)), in contrast to
frequentist model selection, which is concerned with the relative likelihood of observing data,
given a (known) model. Secondly, BMS accounts for our uncertainty in model parameters in
making inferences, utilising the marginal likelihood function (the model “evidence”), which
calculates the probability of the data given the model integrated over all possible model
parameter values, in contrast to frequentist approaches, which generally use point estimates

of parameter values (c.f. maximum likelihood estimation).

As described thus far, “deterministic” DCM requires an experimental driving input to initiate
any activity. Further, deterministic DCM ignores the well documented spontaneous neuronal
firing. To overcome these issues stochastic DCM (Daunizeau et al., 2009; Li et al., 2011) has
been developed. Stochastic DCM simply adds a random noise component generated by a
Weiner process at each node, which is introduced as a free parameter, and this spontaneous
activity can propagate through existing connections. As such, stochastic DCM promises a more
realistic modelling of task-based activity, and allows modelling of resting state time-series,
where no experimental manipulation is present to provide a driving input. In this thesis [ use
deterministic, rather than stochastic DCM, since stochastic DCM is a very recent innovation
and issues regarding inversion of stochastic non-linear systems, and with over-fitting are still
being resolved (e.g. Daunizeau et al., 2012), stochastic DCM takes about 30 times as long as
deterministic DCM, and though it would be nice to model neuronal noise, it is not necessary to

test our hypotheses, since our design includes experimental input.
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1.3.1.3 Graph Theory

Functional and effective connectivity are primarily used to investigate the interactions of a
restricted set of regions of interest, usually sub-networks involved in a task. An alternative
approach is to look at the set of all interactions between all regions, termed the connectome,
and discern the topological characteristics of the whole network. Graph theory is an area of
discrete mathematics concerned with the characterisation of networks. In graph theory a
network, or graph, is treated as a set of nodes and a set of edges, which represent
links/relationships between the nodes. Brain functional activity is ideally suited to being
modelled as a graph, since it consists of functionally specialised regions which to some degree
overlap with anatomically distinct regions, and these are treated as the nodes of the graph.
These units communicate via white matter tracts in the brain, and the degree of coherence in

the activity of different nodes is taken as the strength of the edge between nodes.

Once the graph has been constructed, there are a number of characteristics we can
measure to elucidate the nature of the network. Figure 1.1 and the list below describe some

common graph measures:

* Degree: The number of connections of a node (see red links, Figure 1.1).

* Clustering coefficient (mC): Describes the likelihood of two nodes that are connected to a
common node being connected to each other. It is a measure of ‘cliquishness’ in a network.
To calculate, the number of complete triangles (see blue triangle, Figure 1.1) around a node

is divided by the number of possible triangles given the degree of a node:

2y
T k(k—=1)

C;
This is then averaged over all nodes to get the mean clustering coefficient of the
network.

* Modularity (Q): The degree to which the network is partitioned into sub-graphs with a
large number of connections within the sub-graphs, but relatively few connections
between sub-graphs. An optimisation algorithm is used to assign modules (Newman,
2006), which maximises the number of within module connections, and minimises the

number of between module connections. Once modules, u, have been assigned, the

modularity is calculated as:

= D lew— Y. ewl

UueM VEM
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where M is the set of modules, and eyy is the proportion of links that connect nodes in
module u with nodes in module v.
Rich Club Coefficient (¢): Quantifies the degree to which hubs (highly connected

and/or central nodes) preferentially associate with each other:
2E
N>k(N>k - 1)
where N is the number of nodes with degree greater than k, and E-x is the number of

dk) =

links between those nodes.
Efficiency (Eg): The inverse of path length, where path length is the number of
connections traversed to get from one node to another (See green path, Figure 1.1).
Yjen dij
where djj is the shortest path between nodes i and j. This is averaged over all node
pairs to give global efficiency.
Random network: The significance of graph measures must be assessed in comparison
to null-hypothesis networks. The values of graph measures are strongly influenced by
‘low’ level network attributes such as the number of nodes, edges and the degree
distribution, which say nothing of the network topology. To control for these factors,
graph measures are typically normalized to those of an equivalent random network.
The most common null-hypothesis network is a random network with the same
number of nodes and edges, and the same binary degree distribution as the observed
network. The graph measures can then be calculated for the random network, and

normalized graph metrics calculated as:

— L9 =2 % =
Egrandam Y = mcrandom ’ norm ¢rund0m

A=
Small world index (¢): Describes how nodes in a network can be connected in
relatively few steps, whilst maintaining local clustering. Complex networks generally
have greater clustering than random networks, but comparable efficiency, giving them

a greater small-worldness. Small world-ness is calculated as:

c=YA
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Figure 1.1: Depiction graph measures. Replicated from Rubinov and Sporns (2010)

The use of graph theory in the social and physical sciences underwent a massive
expansion with the seminal paper of Watts and Strogatz (1998), which demonstrated that
small-world networks with high clustering and short path lengths can be constructed with the
random rewiring of just a few connections of a regular (highly clustered) network. The paper
also demonstrated the ubiquity of the small-world organisation in man-made and natural
systems, specifically, collaboration networks of Hollywood film actors, electricity power grid
networks, and the neural network of the C.elegans nematode worm. The small-world property
was quickly revealed in human brain networks with EEG (Stam, 2004), and fMRI (Achard et al,,
2006). In the context of brain functional networks, the small world property allows effective
specialised processing within modules, whilst maintaining effective integrated processing
over the entire network. As the field has developed, emphasis has shifted towards the
economy of networks, modular architecture and the behaviour of hub regions. Human brain
networks are cost efficient (Achard and Bullmore, 2007), that is highly efficient whilst
minimising wiring cost. Achard and Bullmore, 2007 also demonstrated that human functional
brain networks follow an exponentially truncated power law degree distribution, shown to be
resilient to targeted attack. The cost efficiency and resilience of brain networks reflects the
notion that the brain evolved under evolutionary pressure, whereby efficient transfer of
information, and robustness to damage conferred survival benefits, but must be achieved with
scarce resources (Bullmore and Sporns, 2012). Functional brain networks are observed to be
modular, sets of nodes segregate out into distinct groups with strong intra-group connections,
and relatively few inter-group connections. The modules detected using graph modularity

algorithms are qualitatively similar to the networks consistently observed by applying either
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seed-based correlation or independent component analysis (ICA; Beckmann et al,, 2005;
Damoiseaux et al., 2006) to rs-fMRI data, and include somatosensory/motor and auditory,
vision, attention, default mode, and limbic/paralimbic and subcortical networks (He et al,,
2009; Fair et al,, 2009; Meunier et al., 2009). These modules are depicted in Figure 2.1 of this
thesis. The partitions displayed represent the optimal partition giving maximum modularity,
however, it should be noted that graph theory modularity partitions are degenerate, in that
many different partitions give similarly high modularity (Good et al., 2010; Rubinov and
Sporns, 2011). Thus, observed partitions are influenced by pre-processing methodologies
(and noise). Further, the degenerate nature of partitions may reflect the need for dynamic
switching of nodes between modules, required for adapting to task context, or simply
switching between systems in resting state (Bressler and McIntosh, 2007). Such
considerations are reflected in the variable assignment of nodes in Figure 2.1. Recently,
structural brain networks have demonstrated a “Rich-Club” property (van den Heuvel and
Sporns, 2011), meaning that the highly connected nodes (hubs) are more highly connected
with each other than would be expected based on their degree (number of connections) alone.
This property is likewise known to give a network high efficiency of information transfer and

resilience to targeted attack.

The role of network organisation as characterised by graph theory in cognitive function is
arelatively unexplored area. van den Heuvel et al. (2009) find a negative correlation between
normalised path length and IQ (n=19, r=-0.54, p=0.01). Working memory has also been
investigated in a graph theory setting. Bassett et al. (2009) demonstrate that higher cost
efficiency in MEG-derived functional brain networks is associated with higher performance in
N-back working memory tasks (n=57, p=0.02). Stevens et al. (2012) measure strong positive
correlations between inter-individual working memory performance and modularity (n=22,
r=0.56, p=0.009) and small-worldness (r=0.50, p=0.04) of their resting functional brain
networks. They also show a strong intra-individual correlation across sessions between
modularity and WM performance (r=0.54, p=0.013). The authors estimated that modularity
accounts for 25% of variability in the residual variance in WM capacity in the second session

above and beyond that seen in the first session.
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1.3.2 Experimental Domains

In this thesis, [ explored the resting state brain networks and working memory brain
networks. In the resting state experiment participants were instructed to remain at rest with their
eyes closed, and to not think of anything in particular and not fall asleep, whilst a scanning
sequence sensitive to BOLD contrast was run. In the working memory experiment, participants
undertook a visuospatial version of the N-Back working memory task (Callicott et al., 1998).
These two experimental domains are well studied, and were chosen for the Queensland Twin
Imaging Study based on their relevance to contemporary systems neuroscience, and current
interest in the neuroimaging community. The literature on these tasks, and the science

relevant to my analysis is reviewed in following sections.

1.3.2.1 Resting State

Atrest and in the absence of any externally driven cognitive demands, the brain is in a
constant state of activity. Spontaneous fluctuations in neuronal activity, as represented by the
BOLD fMRI signal, can be as large as those evoked in task paradigms (Fox and Raichle, 2007).
Further, task-related metabolism increases account for only 5% of the brains total energy
consumption, suggesting a large energy proportioned to intrinsic neuronal signalling (Raichle,
2006). Resting state fMRI (rs-fMRI), aims to characterise this intrinsic activity of the brain.
Typically a subject is placed in the MRI scanner and told to lie still and refrain from falling
asleep, with either eyes closed or focused on a tannenbaum, whilst a pulse sequence sensitive

to the BOLD signal is executed.

In their landmark study (Biswal et al., 1995) were the first to note spatial correlation in
the BOLD fMRI signal in the absence of any external driven task or cognitive demand. They
demonstrated that the left and right regions of the primary motor cortex were coordinated in

activity, despite the lack of any motor task.

This study sparked numerous others looking at the characteristics of the spontaneous
fluctuations in the BOLD signal. A plethora of networks containing spatially distributed
regions showing coherent activity have since been identified at rest and these networks
largely constitute regions with overlapping function. Among the most consistently observed

are the somatomotor network, the default mode network (DMN), the visual and auditory
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networks and the dorsal and ventral attention networks. The default mode network is
particularly noteworthy, in that its constituents (among them the posterior cingulate cortex,
regions in medial prefrontal cortex and inferior parietal cortex) demonstrate greater activity
at rest compared to task-performance (Shulman et al., 1997), and are intrinsically anti-
correlated with other functional networks involved in attention and working memory (Fox et
al,, 2005). Temporal coherence of regions within resting state networks (RSNs) are similar
during task-performance (Arfanakis et al., 2000). In fact, there is growing evidence that
resting state activity influences task response, and/or explains much of the variability in task-
evoked activity. For example, (Arieli et al., 1996) showed with optical imaging and
electrophysiological recordings that the much of the variability in response of neurons in the
visual cortex to visual stimulation was accounted for by the ongoing activity of those neurons
at time of stimulus presentation. In humans (Fox et al., 2006) show that much of the trial-to-
trial variability in the left somatomotor cortex (LMC) during right handed finger tapping task
was accounted for by variability in the right somatomotor cortex (RMC) which was not
involved in the task. They suggest that rest activity and task-evoked activity are linearly

superimposed in this task paradigm.

Resting state networks (RSNs) display a number of characteristics which supports their
interpretation as intrinsic neural activity, rather than poorly constrained behaviour/self-
determined-task activity, or conscious mentation. The following list of considerations
supporting the intrinsic connectivity nature of resting state fluctuations is replicated directly

from a review on resting state fMRI (Fox and Raichle, 2007):

* Similar patterns of BOLD fluctuations to those of traditional resting conditions are
observed in sleep and under anaesthesia.

* Coherent activity between brain regions at rest occur within systems associated with
behaviour, even in the absence of that behaviour.

* Resting state activity persists during task-evoked responses, where brain activity is a
superposition of resting activity and task-evoked activity.

* Resting state coherence patterns differ from those expected of conscious mentation.
For example, Nir et al. (2006) show that the patterns of activation in visual regions

during mental imagery are different to those observed in visual regions in resting state.
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* Resting state networks encompass a wide range of neuroanatomical systems. It is
unlikely that unconstrained conscious mental activity engages all these systems

simultaneously.

Under these considerations, a number of interpretations of spontaneous BOLD
fluctuations have been suggested. One possibility is that spontaneous activity is a record of
which regions have interacted in the past, an interpretation based on Hebbian theory,
whereby a presynaptic neuron's repeated stimulation of the post-synaptic neuron results in

an increase of synaptic strength between those two cells.

A related interpretation is that spontaneous activity ‘prepares the system' for future use,
by keeping in close contact those regions which are likely to need to interact in response to

external stimulation.

1.3.2.2 Working Memory

1.3.2.2.1 Historical Overview

Working Memory is a conceptual framework designed to characterize the short-term
maintenance and concurrent manipulation of information. Its cognitive psychology
manifestation was proposed by Baddeley and Hitch (1974), which expanded prevailing
unitary models of short term memory (e.g. Atkinson and Shiffrin, 1968) into a multi-
component model, which emphasized the interplay between storage and processing required
for execution of complex cognitive and behavioural tasks. Working memory was proposed to
consist of multiple subsystems, the visuospatial sketchpad, the phonological loop and the
central executive. As suggested by their names, the visuospatial sketchpad stores visual
information as a visual representation. The phonological loop corresponds to sub-
vocalisation as a store of information. It is sub-dived into a phonological short term store, and
an articulatory sub-vocal rehearsal process. These systems are controlled by the central
executive which in addition to regulating these storage buffers, performs a number of high-
level operations, among them directing attention and integrating information.

More recently Baddeley (2000) added a fourth component to the model, the episodic buffer, in
order to describe the integration between the different subsystems and interface with long
term memory. In the multi-component WM model, these four subcomponents are suggested

to interact as depicted in Figure 1.2.
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Figure 1.2: The multi-component model of WM. Unshaded elements represent fluid systems,
unchanged by learning, whereas shaded elements are stable, ‘crystallized’ systems. Replicated

from Figure 1; Baddeley (2000).

The neuroscience of working memory has long been guided by the early
electrophysiological work in monkeys demonstrating sustained activity (firing rates) in the
prefrontal cortex (PFC) during the delay period of working memory (Fuster and Alexander,
1971; Kubota and Niki, 1971). This PFC activity was suggested to represent the storage of
information during the delay period. Later work demonstrated dissociations in PFC activity,
which was interpreted as representing separate storage buffers. Most notably, the sustained
activity in more ventral PFC regions was associated with WM for objects, and dorsal PFC
activity with WM for spatial locations (Wilson et al., 1993). This matched nicely with the
established ventral “what” and dorsal “where” visual processing streams, suggesting a
preservation of processing streams all the way through to executive processing and memory
storage. The combination of the cognitive and neuroscientific theories, with the storage
buffers of the cognitive model assumed to reside in the pre-frontal cortex, has been the

dominant paradigm of WM research since the 1980’s.

Although this standard model of WM is still hugely influential, a number of alternative
interpretations of data, and direct refutations of the model exist. In general, these alternative
models describe prefrontal activity, along with parietal activity, as carrying out executive
processes such as attention and manipulation of information, with storage capabilities located

elsewhere. In a review of evidence opposed to the standard model, Postle (2006) describes
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WM as an emergent property of sensory-motor and attentional systems, with existing sensory
systems holding memory traces, and PFC acting as a coordinator to determine which memory
traces are maintained. The primary motivation behind this view are the multiple observed
neural dissociations for different types of WM, with different brain regions involved in
“storage” of stimuli of different nature. The extent of the dissociations requires the un-
parsimonious hypothesis of a large number of independent specialised memory systems,
rather than a multipurpose system capable of handling different types of information.
Consequently, alternative interpretations of the sustained prefrontal activity have been
suggested. Curtis and D'Esposito (2003) interpret the sustained activity of the PFC as
facilitating response selection, rehearsal and motor planning, rather than storage, with
representations held in posterior sensory areas and PFC activity “working on” the held
information. Additionally, many authors note the strong overlap between the neural
correlates of WM and those of attention (Awh et al.,, 2006; Chun, 2011), with some going so far
as to label WM as working attention. For example Gazzaley and Nobre (2012) review evidence
that the top down control of sensory cortices by prefrontal and parietal regions is a shared

feature of both WM and attention.

Whilst sustained activity (spiking) of neurons in the PFC remain a key neurological
correlate of WM (Fuster and Alexander, 1971; Funahashi et al., 1989; Goldman-Rakic, 1995;
Curtis and D'Esposito, 2003) recent efforts have been made to reframe WM neurophysiology
in terms of neural networks. Computational neural networks can store information via the
pattern of connections between neurons (Hopfield, 1982; Haykin, 1998). Mongillo et al.
(2008) propose a mechanism by which biological neural networks may achieve the same
outcome. In their model, a WM memory is maintained by short term facilitation between
populations of neurons, mediated via increased calcium residue at the presynaptic terminals
between the neuronal population (presynaptic calcium influx is the mechanism triggering
neurotransmitter release). This population of connected neurons form an
‘offline’/metabolically inexpensive memory state which can be activated by a global excitatory
input to the system. Likewise, network models on the macroscopic systems level are being
developed, e.g. Edin et al., 2009 describe a computational model whereby storage of
information in the PC is boosted by top-down excitation from the dIPFC. Similarly, network
models describing fMRI BOLD activity of large macro-anatomical regions during WM, such as

structural equation modelling and dynamic causal modelling, are on the increase (Honey et al.,
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2002; Schlosser et al.,, 2006; Ma et al.,, 2012). Itis these systems-level, macro-anatomical

network descriptions which are utilised in Chapters 3 and 4.

1.3.2.2.2 Neuroimaging of Working Memory

WM has been extensively studied with neuroimaging, with many regions other than
prefrontal cortex identified as important, which highlights the distributed nature of working
memory processing. Although the regions involved in working memory are now well

established, there is no consensus on the subdivision of their function.

In their meta-analysis and literature survey on the N-Back WM task (verbal, object and
spatial), Owen et al. (2005) identify the dorsolateral prefrontal cortex (dIPFC), ventrolateral
prefrontal cortex (vIPFC), frontal pole, medial premotor cortex and posterior parietal cortex

as regions commonly activated across tasks.

The view of prefrontal cortex delay-period activity prevalent in the 1970’s-1990’s, that
this activity represents storage, and that representations of different material type (verbal,
object, spatial) are stored in different PFC subregions (Section 1.3.2.2.2.), has been eroded in
the last two decades, largely as a consequence of neuroimaging data. Studies designed to
separate the various components of working memory attribute the persistent activity to
selection processes (Rowe et al., 2000; Schumacher et al,, 2003), storage and use of task rules
and variables (Wallis et al., 2001; Warden and Miller, 2010; Riggall and Postle, 2012),
directing of attention to internal representations (Gazzaley and Nobre, 2012) and motor
planning (Pochon et al,, 2001; Romo et al., 1999), rather than storage of memoranda. The
evidence for these multiple roles primarily consists of differential dIPFC BOLD response to
experimenter manipulations to each of the aforementioned task components independently
(Curtis and D'Esposito, 2003), for example, some studies report that the dIPFC is active when
a location being maintained is selected for response, but not during the delay period (Rowe et
al,, 2000), and dIPFC activity varies with demands of response selection, even in the absence
of retention of information over a delay period. More recently, multivariate pattern analysis
applied to working memory has supported these roles of the dIPFC by revealing task-relevant
information held via population coding in the dIPFC (Sreenivasan et al., 2014). Of particular
note is that the lateral prefrontal cortex is able to encode multiple task variables (rules,

categories, temporal ordering etc.) within a single population of neurons, and each task
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variable can be extracted independently from the population code (Barak et al., 2010; Jun et
al,, 2010; Machens et al., 2010). Similarly, multivariate patterns of activity during the delay
period in the visual cortex contain information about visual features held in working memory
(Harrison and Tong, 2009; Xing et al.,, 2013), despite the lack of persistent heightened activity
during the delay period (Offen et al., 2009).

Regarding the specialisation of dorso-lateral verses ventro-lateral regions within the
pre-frontal cortex, a popular contemporary view is that prefrontal cortex function can be
subdivided by executive process type. Owen et al. (2005) suggest that the primary role of the
dorsolateral prefrontal cortex to be strategic reorganisation and control of working memory
contents. Working memory capacity is greatly enhanced when remembered material is
organized into higher level chunks (Ericcson et al.,, 1980). The dIPFC is more strongly
activated during tasks requiring such reorganization (Bor et al., 2003) and in some studies
(Owen et al., 1996; Petrides and Milner, 1982) patients with frontal lobe damage are seen to
have deficits in working memory tasks where organizational strategy is required, but normal
performance in tasks where no obvious strategy to facilitate performance exists. D'Esposito et
al. (1998) come to a similar conclusion in their review, noting that in 16 out of 18 studies
requiring complex executive management of memory, the dIPFC is activated, compared to 6
out of 24 where the manipulations are more basic. In this view, the ventrolateral prefrontal
cortex is more involved in tasks involving simpler maintenance (Hartley and Speer, 2000),
and implementation of intended plans (Owen et al., 2005), which is related to the regions role
in behavioural inhibition, such as in Go-no go tasks (Garavan et al., 1999). However, other
accounts of process-dependent PFC sub-division do not allocate the same roles to dIPFC and
VvIPFC. In their meta-analysis of 60 WM tasks, Wager and Smith (2003) find that the dIPFC is
preferentially activated for the operations of continuous updating and temporal order
memory, operations fundamental to the N-Back WM task, whereas the vIPFC is preferentially
activated for operations which transform the identity or characteristics of remembered
material, operations which they suggest may involve inhibition and attention switching. A
third interpretation of PFC function, is that it is not critical to WM at all. The review of Muller
and Knight (2006) describe the literature on lesion studies including their own work, and
claim that whilst some studies of frontal-lobe patients do show impairment in WM (Baldo and
Shimamura, 2002), others do not (D'Esposito and Postle, 1999). In their own work, (Muller et
al,, 2002), they find that neither patients with ventromedial PFC (vmPFC) nor dorsolateral

PFC lesions had lower WM performance than controls on either 1-back or 2-Back tasks, and
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only patients with damage to both dIPFC and vmPFC were impaired, predominantly on the 2-
Back task. Their conclusion was that the crucial portion of WM seems not to rely solely on PFC,
that the PFC sustains non-mnemonic functions, and that executive sub-processes are not
specialised to dIPFC or vimPFC, but rather are distributed, and that PFC neurons adapt their

behaviour to current task demands (e.g. Miller, 2000).

As with the PFC, the parietal cortex has been attributed a large number of functions in
working memory. One widely accepted finding is that the storage of memory for visuo-spatial
material is organised along the same lines as the perceptual processing of that material. WM
for objects recruits the occipito-temporal “ventral” processing stream, and WM for spatial
locations recruits the occipito-superior parietal “dorsal” processing stream. This
interpretation is supported by meta-analysis of neuroimaging activation studies (Wager and
Smith, 2003) and patient lesion studies (Muller and Knight, 2006). In addition to storage and
rehearsal functions, the parietal cortex is known to be involved in attentional shifts and other
executive roles (Corbetta et al., 1995; Cabeza and Nyberg, 2000). Wager and Smith (2003)
find the superior parietal cortex (BA7) to be the only region showing significant effects for all
types of storage material and all executive processes, and they suggest that this region may

act as a mediator of basic control over the focus of attention.

Finally, there is a proposed neuroanatomical dissociation in WM between verbal and
spatial working memory, with verbal working memory more strongly activating the left
hemisphere, and spatial working memory the right (D'Esposito et al., 1998), though the verbal
lateralisation is more apparent at low executive demands, and the spatial lateralisation at

high executive demands (Wager and Smith, 2003).

In summary, neuroimaging has revealed the participation of numerous
neuroanatomical regions in WM. These regions have been ascribed functions related to the
multiple sub-processes of working memory, though there exists controversy over the
allocation of structure to function particularly for the dIPFC. The distributed anatomy, in
conjunction with the cognitive hypothesis of a multi-model WM, motivates the investigation of
interactions between these regions and processes, rather than considering them in isolation.

This is the subject of the next subsection.
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1.3.2.2.3 Brain Functional Connectivity and Working Memory

This thesis contains one study measuring the functional connectivity pattern of the dIPFC
during WM, and one study investigating the directed connectivity between dIPFC and parietal
(PC). These phenotypes were chosen as there has been prior work implicating dIPFC

connectivity as a core mechanism subserving working memory.

The literature on connectivity during working memory supports the notion of top
down modulation of perceptual regions (visual cortex, fusiform face area etc.) by control
regions (PFC, PC), manifesting in increased functional connectivity between these regions
(Curtis and D'Esposito, 2003, Zanto et al., 2011). In their review Gazzaley and Nobre (2012)
point out that this top down modulation is a mechanism shared with selective attention,
which recruits the same brain regions as those involved in encoding, maintenance and
retrieval during WM, and propose that the top-down modulation is a feature of the influence

of attention on early perceptual processing and not a process specific for WM.

Fronto-parietal connectivity has been consistently associated with WM tasks.
Electrophysiology in monkeys demonstrate synchronised activity between prefrontal and
parietal neurons (Chafee and Goldman-Rakic, 1998), which has been proposed to integrate
perception with action (Quintana and Fuster, 1999). Likewise human neuroimaging has been
used to measure the interaction between these regions during WM. Honey et al.,, 2002 found
increased inferior fronto-parietal connectivity with increasing memory load (verbal N-Back
task). Woodward et al. (2006) looked at functional connectivity networks during a Sternberg
item recognition test, and found separate networks involved in encoding and maintenance,
with a network including dIPFC, superior parietal and visual cortices increasing their

functional connectivity during the encoding stage.

Despite its traditional interpretation as the task-negative network, functional
connectivity in the DMN both at rest and during WM tasks has been shown to correlated with
WM performance. Hampson et al. (2006) found that accuracy in a verbal N-Back working
memory task was correlated with the strength of connectivity (Pearson’s correlation)
between the medial frontal cortex and the posterior cingulate cortex at rest (p=0.01, N=9) and
during WM (p=0.04). In a follow up study, Hampson et al. (2010) demonstrated that
interaction between task positive and task-negative regions can mediate performance, with

the (negative) connection between left dIPFC and medial frontal cortex (MFC) at rest
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correlating with task accuracy (r=-0.73, p=0.03, N=9). A possible mechanistic role for the
antagonistic relationship between task-positive and task-negative regions has been suggested
elsewhere by Kelly et al. (2008) , who show that the negative correlation is related to
response time variability in the Eriksen flanker task (a response inhibition task), suggesting
that the anti-correlation may suppress default mode activity during task performance.
Enhanced DMN activity during task performance has been implicated with attentional lapses
(Weissman et al,, 2006), and mind wandering (Mason et al., 2007), so increased anti-
correlation may contribute to lower response time variability via the suppression of mind

wandering and attentional lapses.

More recently, dynamic causal modelling has been applied to working memory tasks,
with the focus being on fronto-parietal interactions. Deserno et al. (2012) used DCM to
characterise the interaction between the dIPFC, PC and visual cortex, in SZ patients and
healthy controls, using a numeric working memory task. The best fitting models were those in
which the connectivity from dIPFC to PC was increased during the two-back (2B) condition.
However, it was found that the SZ patients did not exhibit this load-dependent increase in
connectivity, suggesting a possible pathological mechanism. This finding motivated the study
in Chapter 3 of this thesis, where we use DCM with a modified version of the Deserno et al.
(2012) models to estimate the heritability of this disease related task-dependent connectivity

modulation.

Other studies have used DCM to characterise fronto-parietal interactions during WM,
but the results have not been consistent, perhaps due to differing task paradigms and region
of interest selection. Ma et al. (2012), use a numeric delayed match to sample task, and model
the activity of bilateral posterior parietal cortex (PPC), inferior frontal cortex (IFC) and middle
frontal gyrus (MFG), and anterior cingulate cortex. They find load-enhanced connectivity from
Right PPC to right middle frontal gyrus, right IFC, left ACC, left MFG and left PCC. The
modulation of the forward connection contrasts with the modulation of the backward
connection seen by Deserno et al. (2012). Dima et al. (2014) similarly see increased
connectivity from PC to dIPFC, using a verbal N-Back WM task, and using DCM to model the
activity of bilateral PC, dIPFC and ACC.

In contrast to these previous three studies, Harding et al. (2014) do not observe any

task-dependent increase in fronto-parietal connectivity. Using a verbal N-Back WM task, they
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find load reduced connectivity from Intra-parietal sulcus (IPS) to presupplementary motor
area/dorsal anterior cingulate cortex (pSMA/dACC), and dIPFC to pSMA/dACC, and load-
increase connectivity from inferior frontal junction (IF]) to pSMA/dACC. The differences
between these 4 studies demonstrate that the conclusions drawn from DCM are sensitive to
task design and DCM model space, and further that the issue of effective connectivity during

working memory is not settled, and a large sample size study will be a valuable contribution.

The choice of endophenotypes in chapters 3 and 4 of this thesis are based on the
literature reviewed in this section. The central role of the dIPFC in WM makes it the focus of

Chapter 4, whilst the connectivity between prefrontal and parietal cortices is the focus of

Chapter 3.

27



1.3.3 Psychiatric Disease

One of the requirements of an endophenotype (section 1.1 and Gottesman and Gould, 2003) is
that it be associated with disease. In this thesis, the features of neural connectivity
investigated were chosen on the basis of prior association with disease, or prior association
with cognitive performance. In this section [ review the literature investigating the

relationship between resting state fMRI and working memory with psychiatric disease.

1.3.3.1 Resting State fMRI and Psychiatric Disease

Abnormalities in spontaneous fluctuations in neuronal activity have been linked to a wide
range of neuropsychiatric disorders. Before detailing the literature on rs-fMRI in pathology, |
note the opinion expressed in Greicius (2008) that rs-fMRI has the advantage over task fMRI
in a clinical setting as sick patients may be too impaired to properly perform a task, whereas a
resting scan can be easily performed. Further, longitudinal cataloguing of disease progression
may be confounded in task fMRI by habituation or practice effects which is not an issue in rs-

fMRL

Alzheimer's disease (AD) shows consistent reductions in resting state functional
connectivity, and has been the most extensively examined using rs-fMRI. The first study to
examine resting state alterations in AD showed that connectivity between right and left
hippocampus reduced in AD (Li et al., 2002). Later studies showed reduction in connectivity
between the hippocampus and regions within the DMN; Sorg et al. (2007) and Greicius et al.
(2004) investigated AD using an Independent Component Analysis (ICA) approach, in which
all RSNs were extracted and analysed. They found reduced overall functional connectivity in
the DMN, but no abnormalities in any other network (other than the dorsal attention network
in Sorg et al,, 2007), suggesting a key role of the DMN in Alzheimer's disease. This finding is
particularly pertinent in that the DMN has been implicated in episodic memory, the

deterioration of which is the hallmark of Alzheimer's disease.

RSNs are also seen to be abnormal in depression, with some studies showing
potentially clinically significant results. Greicius et al. (2007) observed increased connectivity
in the subgenual ACC, precuneus and medial thalamus within the DMN in depressed patients.

Furthermore the connectivity strength in the subgenual ACC correlated with duration of
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depressive episode. Anand et al. (2005) considered a different set of regions, the dorsal ACC,
amygdala and subcortical regions including medial thalamus. They found reduced
connectivity between dorsal ACC and the other regions, which was partially restored after 6

weeks of sertraline treatment.

Schizophrenia has also been widely studied with rs-fMRI. Schizophrenia is considered
by many in the neuroimaging community to be a disconnection syndrome, with multiple
brain-wide connectivity abnormalities contributing to the numerous symptoms of the disease
(Friston and Frith, 1995). Although both reductions (Bluhm et al,, 2007; Ongur et al., 2010)
and increases (Zhou et al.,, 2007; Whitfield-Gabrieli et al., 2009) in connectivity within the
DMN during resting state have been reported, systematic reviews of resting state fMRI of
schizophrenia, indicate that the majority of studies support specific and system wide

reductions in connectivity across all stages of the disease (Pettersson-Yeo et al., 2011).

1.3.3.2 Graph Theory and Psychiatric Disease

There is a considerable literature on pathological departures from the idealised network

configuration described in section 1.3.1.2.

In AD, Supekar et al. (2008) demonstrate that AD patients have lower normalised?!
clustering coefficient than controls, and that this graph measure detects AD with sensitivity
72% and specificity 78%. Buckner et al. (2009) took a nodal approach to investigating
Alzheimer's and attempted to identify network hubs and ascertain whether these hubs were
preferentially targeted in the disease. They found a correlation of 0.68 between the pattern of
cortical hubs and the amyloid beta deposition distribution in AD patients (linked to disease
severity), suggesting that AD does indeed affect the most critical nodes of functional brain
networks. Functional brain networks in AD have also been explored with EEG and MEG.
Networks constructed using EEG demonstrate longer path lengths in AD patients (Stam et al,,

2007).

Like AD, functional brain networks extracted with rs-fMRI in Schizophrenia also
display lower clustering coefficients, but are also associated with a wide range of other

network abnormalities (Fornito et al., 2012), including higher path lengths, and abnormal

I normalised to the value of clustering coefficient in a random graph with the same degree

distribution and overall functional connectivity. 29



nodal characteristics (Liu et al.,, 2008). Lynall et al., 2010 produced similar results, lower
clustering coefficients and reduced small worldness, but further reported lower overall
functional connectivity, and a lower probability of high degree hubs, giving rise to a more
diversified and resilient network in Schizophrenia patients. This paper also reported higher
global efficiency in SZ patients compared to controls which contrasts with the longer path
length seen in Liu et al. (2008), but is in agreement with Alexander-Bloch et al. (2010). With
EEG, lower clustering coefficients are also seen, with path lengths hardly changed
(Micheloyannis et al., 2006). Such changes can be summarised as a tendency towards random

networks in schizophrenia.

In summary, these neuropsychiatric graph theory studies tend to show some change in
a graph measure away from the economical small world model, and the graph measures have
moderate discriminatory power in detecting disease within the clinical group. However, there
is currently little work on whether graph measures have the sensitivity to distinguish

between different neuropsychiatric diseases.

1.3.3.3 Working Memory and Psychiatric Disorder

Working memory deficits are a core feature of Schizophrenia. Numerous studies demonstrate
areduction in WM performance for both medicated and unmedicated SZ patients (e.g. Carter
et al.,, 1996; Park and Holzman, 1992; Wexler et al., 1998), and that the deficit is present
across a range of WM tasks and modalities (Lee and Park, 2005). A large number of clinical
studies implicate reduced prefrontal activation in the WM deficits in SZ (Barch et al., 2001;
Carter et al.,, 1998), though this finding is not invariable (Manoach, 2003). Glahn et al. (2005)
stress that WM deficits in SZ are not restricted to prefrontal hypo-frontality, and increased
activation in anterior cingulate cortex and left frontal pole is a consistent feature of N-Back
WM task in SZ patients. Other researchers place the emphasis on dis-connectivity in SZ
(Friston and Frith, 1995), since numerous aspects of brain connectivity are disrupted in SZ

(see sections 1.3.3.1 and 1.3.3.2), including during WM (Meyer-Lindenberg et al., 2001).
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1.3.4 Genetics

The primary concern of this thesis is measuring the heritability of a number of features of
brain connectivity. Heritability is defined as the proportion of the total variance in a trait that
is due to the genetic differences in the population.
Any phenotype can be considered as arising from genetic and environmental effects:
P=G+E

And so the variance of a trait is given by:

Var(P) = Var(G) + Var(E) + 2cov(G,E)
The heritability of a trait is thus defined as:

_ Var(G)
"~ Var(P)

2

[t is important to note that heritability does not equal the contribution of genes to a
trait, but rather the contribution of genetic variance to variance in the trait, and is dependent
on the genetic and environmental variation within the population. Equivalently, heritability

measures the genetic contribution to inter-individual differences in a trait.

To measure heritability, we use the classical twin design and structural equation
modelling (Neale and Cardon, 1992). The basic premise of twin studies is that genetic and
environmental influences can be deduced from comparing the similarity between MZ twins as
compared to DZ twins. Since MZ twins share all genetic polymorphisms, and DZ twins share
on average 50% of their polymorphisms, a greater similarity in a trait between MZ twins than
DZ twins is indicative of a genetic contribution to that trait. The most straightforward
measure one can take is the correlation between twin 1 and twin 2 in a trait, where a MZ twin
correlation greater than a DZ twin correlation indicates a genetic contribution, whereas
similar twin correlations indicates environmental contributions. If both twin correlations are
high, this suggests a common environmental contribution to the covariance, whereas if both
twin correlations are low, this indicates that environmental influences unique to each twin

account for much of the variance.

Alternatively, we can estimate a more precise contribution of genetic and
environmental factors to a trait by explicitly modelling these effects. Structural equation
modelling (SEM) specifies a set of linear equations relating observed dependent variables to

their hidden causes, and relationships between these causes. For genetic modelling, the
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dependent variables are the phenotypes, and the latent causes are the genetic and
environmental factors. The covariance between dependent variables predicted by the
equations is then matched to the observed covariance between dependent variables, and the

parameters linking causes to their effects are optimised via maximum likelihood fitting.

For the classical twin design, a phenotype is modelled as having contributions from
additive genetic factors, A, common environmental factors, C, and unique environmental
factors, E, which includes measurement error.

P, = aA; + cC; + eE;
where a,c,e are path coefficients, and A;,C;,E; are latent factors for the ith twin. The equations
predicting the covariance structure are given as:
Var(P) = a? + c* + e?
Cov(MZ) = a* + c?
Cov(DZ) = 0.5a% + ¢?
where the covariance between additive genetic factors has been set to 0.5 for DZ twins and
1.0 for DZ twins. The covariance between common environmental factors has been set to 1.0
for both MZ and DZ twins. These equations can be presented alternatively as mathematically
complete path diagrams (Figure 1.2). Once the path coefficients a, c and e have been estimated,
the heritability can be simply calculated as:

a2

2 =
h Var(P)

[
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i T i T Vi T e
{ A, ] o { E, } ( A, ) |56 ( E, )
ok ATl DRy N2/ \TZ N o)
d C < ad C e
A4 \ 4
p Pz

Figure 1.2: Path diagram for twin design ACE model.
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The classical twin study makes a number of assumptions (Evans et al., 2002; Verweij et
al,, 2012). Firstly, genetic effects are assumed to be additive, where allelic effects within a
gene add linearly. The model can be modified to estimate dominant genetic effects. Dominant
genetic effects predict a MZ twin correlation of 1.0, and a DZ twin correlation of 0.25, since on
average DZ twins share 25% of their pairwise allelic combinations. Dominant genetic variance,
D, and common environmental variance can not be estimated in the same model using MZ and
DZ twins only, since the effect of C is to increase the DZ correlation relative to the MZ
correlation, whereas the effect of D is to decrease the DZ correlation relative to MZ correlation.
Other assumptions of the classical twin model are that trait-related environments are similar
for MZ and DZ twins, mating is assumed to be not assortative (where individuals with similar
characteristics preferentially mate), and gene-environment interactions and correlations are
ignored. Some of these assumptions may be relaxed when other relatives such as parents and

non-twin siblings are added to the design.

1.3.4.1 Genetics of Resting State fMRI

Glahn et al. (2010) showed that functional connectivity within the DMN is heritable
(heritability, h?=0.42+0.17). This study focused specifically on the ICA corresponding to the
DMN. The heritability estimate reported refers to the overall coherence of time series within

the DMN.

In a preliminary and unpublished study using a small sample of 108 twins from the
Queensland Twin Imaging Study, Castellanos et al. (2010) took a seed based approach? rather
than an ICA approach. They chose components of the DMN as the seed time series, namely the
anterior cingulate cortex and precuneus, so their findings refer to connectivity of these a
priori chosen regions, contrasting with the results of (Glahn et al., 2010) which refer to overall
levels of coherence within the DMN. They find that the connectivity of some regions of the
DMN to the ACC and precuneus have significant Falconers heritability. However, structural
equation modelling (SEM) does not produce significant estimates of additive genetic

contribution, though it should be noted that this study was underpowered.

2 where the time series of a region of interest is extracted, and the correlation of voxel time
series with the ROI time series is calculated for all voxels in the brain
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Some genetic association studies have been conducted on rs-fMRI. Filippini et al.
(2009) find that healthy carriers of the AD risk factor ApoE €4 allele have greater DMN
coactivation. This is unexpected in light of Greicius et al. (2004) and Sorg et al. (2007), where
functional connectivity in the DMN is shown to decrease in AD. The authors note the
discrepancy and attribute the contrast to differences in clinical group, that is, AD patients
compared to healthy carriers of the risk-allele. The short-allele of the serotonin transporter
linked polymorphic region 5-HTTLPR, a risk-factor for depression, is associated with reduced
resting state functional connectivity between superior medial frontal cortex and posterior

hub (Wiggins et al., 2012).

1.3.4.2 Genetics and Graph Theory

Only 4 studies have been published regarding the genetic regulation of graph theoretic

characteristics of functional brain networks.

The first by Smit et al. (2008) used EEG and focused on clustering, path length and the
composite small-worldness. They found that clustering (h?=46-89%) and path length (h?=37-
62%) were strongly heritable. However, small-worldness, the ratio of these two graph
measures, was not significantly heritable (heritability estimates ranged from 0-51% and had
wide confidence intervals (Cls)) and the authors attribute the null result to insufficient power
(760 subjects). This paper also reported no significant correlation between any graph
measure and IQ. This study was followed up by a longitudinal design and multivariate genetic
modelling in Smit et al. (2010), which reported that genetic stability was high for clustering
path length and synchronisation likelihood between ages 16-25, and that path length and

synchronisation likelihood shared common genetic influences.

Using resting state fMRI, Fornito et al. (2011) took a small sample of twins (N=60) and
calculated a host of network attributes of resting state functional networks. The most
significant result was that the cost efficiency of the networks was under strong genetic control
(h?=60%). This finding is consistent with the hypothesis that cost efficiency of functional
brain networks is a competitive selection criteria3 . Also using resting state fMRI, van den
Heuvel et al. (2013) estimate significant heritability of global efficiency (h2=42%) but no

genetic influence to mean clustering coefficient in a sample of 86 twins.

3 Though a heritable feature is not necessarily evolutionary selected, e.g. genetic disease

34



1.3.4.3 Genetics of working memory

Working memory capacity is a moderately heritable trait. Ando et al. (2001) estimate storage
and executive components of spatial and visual WM to have similar heritability between 43-
49%. Likewise Chen et al. (2009) (h?=53%) and Toulopoulou et al. (2007) (h?=65%) estimate
moderate-high heritability for WM performance. However the biological mechanisms by
which genetic variation in WM performance are conferred are not known. In their review,
Karlsgodt et al. (2011), identify four neural substrates which may independently contribute to
genetic variation in WM; dopaminergic function, glutamatergic function, white matter

integrity and grey matter integrity.

Dopamine

Dopamine is a modulatory neurotransmitter, involved in reward-motivated behaviour, motor
control and higher cognitive functioning. In their seminal paper, Brozoski et al. (1979)
demonstrate that depleting dopamine levels in the prefrontal cortex has as substantial an
effect on spatial working memory performance as removing the area itself. More recently is
has been shown that, WM performance follows an inverted U pattern with respect to
stimulation of the dopamine receptor D1, with both low levels and high levels of D1
stimulation associated with impaired performance, suggesting an intermediate level of D1

stimulation giving rise to optimal performance (Goldman-Rakic et al., 2000).

A number of genes are involved in the regulation of dopamine levels in the brain. The
most widely studied are COMT(Catechol-O-methyltransferase), a gene involved in the
catabolisation of dopamine in the prefrontal cortex, and DRD2, the gene encoding the
dopamine receptor D2. The Val158Met polymorphism of the COMT gene (Lachman et al,,
1996), is a common SNP in which the met form gives lower activity of the gene. This
polymorphism is associated with lower prefrontal activity, but its relationship to WM
performance has been inconsistent. Karlsgodt et al. (2011) suggest that the mixed findings
may be due to its interaction with other alleles on the COMT gene, and with other dopamine
regulating genes such as DRD2. DRD2 (the gene encoding the D2 dopamine receptor) agonists
and antagonists have been shown to effect WM performance, (Stelzel et al., 2009), and a
number of SNPs on the DRD2 gene are associated with WM performance (Markett et al., 2010).
Notably, DRD2 was recently confirmed as a SZ risk factor in a GWAS of 36,989 patients
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(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), though COMT

was not.

Glutamate and GABA

Glutamate is the major excitatory neurotransmitter in the central nervous system, whilst
GABA is the primary inhibitory neurotransmitter. The prefrontal “memory-fields” proposed
by Goldman-Rakic and colleagues are suggested to arise from interactions between excitatory
pyramidal neurons and inhibitory interneurons (Goldman-Rakic, 1995; Compte et al., 2000)
in much the same way as excitatory/inhibitory interactions establish visual-fields in the visual
cortex (Sillito and Murphy, 1988). Thus any genetic variance in glutamatergic or GABAergic
systems would be expected to affect WM performance. For example, dysbindin is a gene
involved in glutamate signalling, and has been linked to WM performance in mutant mice

(Jentsch et al., 2009) and schizophrenic patients (Donohoe et al., 2007).

White Matter Integrity

Total white matter volume is significantly correlated with WM performance (r=0.28), and is
genetically correlated (rg=0.33), meaning that the two share common genetic influences
(Posthuma et al., 2003). White matter integrity as indexed by fractional anisotropy is a
genetically influenced trait, (h?=55-85%; Chiang et al.,, 2009). Of particular relevance to
chapter 3 of this thesis, which estimates the heritability of fronto-parietal effective
connectivity, Karlsgodt et al. (2010), found that the integrity or fractional anisotropy (FA) of
the primary fibre tract linking the dIPFC to the PC, the superior longitudinal fasciculus (SLF),
is heritable (h? (FA)=59%), and is genetically correlated specifically with spatial working

memory performance (rg=0.59).

1.4 Thesis Aims

The aim of this thesis is to identify promising neural endophenotypes, using the relatively
unexplored resting state fMRI and working memory fMRI data sets of the Queensland Twin
Imaging Study, which is the largest sample of twins scanned with MRI in the world. I have
primarily chosen phenotypes which have been associated with psychiatric disease. Features

of brain connectivity found to be highly heritable and associated with psychiatric disease are
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potential endophenotype and may be useful in unravelling the genetic contributions to

disease.

Based on current areas of interest in the neuroimaging community, the literature review in

section 1.3 reveals a number of potential phenotypes.

Given the large amount of literature linking disrupted brain network behaviour, as
quantified with graph theory, to psychiatric disease, understanding the genetic architecture of
these network features will shed light on potential disease mechanisms. Thus, Chapter 2 of
this thesis aims to measure the genetic influences on graph theoretic measures of brain
networks. As discussed in section 1.3.4.2, there have been two prior studies on the heritability
of graph measures using rs-fMRI (Fornito et al., 2011; van den Heuvel et al,, 2013). Both of
these found significant heritability of network integration, but neither study reported a
genetic influence on network community structure. Given the small sample sizes of these
studies (60 and 86), it is likely that they were underpowered (See Chapter 2 for our power

calculations).

In Chapter 3 [ measure the heritability of the proposed SZ disease mechanism from
Deserno et al. (2012), fronto-parietal effective connectivity during WM. No study has
measured the heritability of effective connectivity during WM or the heritability of DCM-
derived connectivity parameters in any cognitive field. Additionally, this study is the largest
yet to apply DCM to WM, and given that previous studies of WM using DCM have yielded

variable results, the use of a large data set will provide a valuable contribution.

In Chapter 4 I look at the functional connectivity profile of the dIPFC during WM.
Although alterations in seed based functional connectivity (Pearson’s correlation) during
working memory have not been widely investigated in psychiatric disease, [ chose them as
phenotypes of interest as functional connectivity of right dIPFC with left hippocampus and left
dIPFC have shown association with schizophrenia risk alleles (Esslinger et al., 2009), and

dIPFC functional connectivity is associated with task performance (Hampson et al,, 2010).

In each of Chapters 2, 3 and 4, the formal hypothesis is that the phenotype is heritable.

This is tested using the classical twin design.
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2 Chapter 2: Heritability of the Network Architecture of Intrinsic Brain

Functional Connectivity

This paper has been accepted by Neuroimage in July 2015. The paper and supplementary
material have been replicated here. The contents have been altered only slightly to reflect

formatting changes.
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Abstract

The brain’s functional network exhibits many features facilitating functional specialization,
integration and robustness to attack. Using graph theory to characterize brain networks,
studies demonstrate their small-world, modular, and “rich-club” properties, with deviations
reported in many common neuropathological conditions. Here we estimate the heritability of
five widely used graph theoretical measures (Mean Clustering Coefficient (y), Modularity (Q),
Rich Club Coefficient (¢dnorm), Global Efficiency (A), Small Worldness (o)) over a range of
connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin
pairs, 246 single twins, age 23+2.5). We also considered the effects of global signal regression
(GSR). We found the graph measures were moderately influenced by genetic factors h?(y=47-
59%, Q=38-59%, dnorm=0-29%, A =52-64%, 6=51-59%) at lower connection densities
(=15%), and when global signal regression was implemented heritability estimates decreased
substantially h?(y=0-26%, Q=0-28%, ¢pnorm=0%, A =23-30%, 6=0-27%). Distinct network
features were phenotypically correlated (|r|=0.15-0.81) and y, Q and A were found to be
influenced by overlapping genetic factors. Our findings suggest that these graph measures
may be potential endophenotypes for psychiatric disease and suitable for genetic association
studies, but that genetic effects must be interpreted with respect to methodological choices.

Keywords: resting state, graph theory, genetics, heritability, functional connectivity
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Introduction

There is growing evidence that the functional architecture of human brain networks has a
profound influence on cognition and disease. The efficiency of information propagation in
brain networks, or how far signals must travel to reach disparate parts of the network, has
been shown to correlate significantly with intelligence (Li et al.,, 2009; van den Heuvel et al,,
2009). The modularity of an individual’s functional brain network, or the degree to which the
network is partitioned into sub networks (e.g., visual, sensory-motor, and default mode
networks), can also predict performance on working memory tasks (Stevens et al., 2012).
Further, almost all psychiatric diseases studied with neuroimaging have been characterized
by departures from the established network architecture seen in healthy individuals (see

Wang et al., 2010).

Even in the absence of a specific task or stimulus, fluctuations in the blood-oxygenation
level dependent (BOLD) signal are correlated across the brain, revealing spatially distributed
networks of coherent activity (Fox and Raichle, 2007), which overlap with task-related
functional networks (Smith et al., 2009) and underlying structural networks (Damoiseaux and
Greicius, 2009; Honey et al., 2009). Graph theory- a mathematical approach to study networks
- has been applied to such resting state data (rs-fMRI) to measure higher order features of the
functional connectome network, such as efficiency and modularity (for a brief description of
graph theory measures see Table 2.1, and Rubinov and Sporns, 2010 for a review). These
features provide measures of the topological organization of brain networks, which have
direct biological significance. For example, modularity is widely thought to reflect the brain’s
division of cognitive processes to cooperating subunits, and network efficiency the need for
rapid transfer of information between separate cognitive processes (e.g. Sporns, 2014). Here
we consider three measures of network segregation and community structure (y, Q, ¢norm), 2
measure of network integration (A), and a composite measure describing the trade-off

between integration and segregation (o).

Features showing strong heritability may be promising endophenotypes for
neuropsychiatric disorders. More significantly, they may serve as targets for subsequent
searches to identify particular sets of influential genes, to better understand molecular
mechanisms affecting intra-brain communication. Prior twin studies of the functional

connectome network suggest that cost efficiency (Fornito et al., 2011) and global efficiency
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(van den Heuvel et al,, 2013) are moderately to strongly heritable (heritability, h2 =60% and
42% respectively). However, both of these studies had small samples, examined different age
groups (n=58 and 86; ages 40 and 12; for Fornito et al. (2011) and van den Heuvel et al.
(2013), respectively) and did not correct for nuisance covariates of global signal, white matter
and CSF. Heritability of graph measures of brain networks have also been observed with

diffusion weighted MRI (Dennis et al.,, 2011) and EEG (Smit et al., 2008).

We hypothesized that the common graph measures of the functional connectome
network (y, Q, dnorm, A and o) calculated using a standard processing pipeline, would be
moderately heritable and we examined the association between graph measures and to what
extent any association is due to a common genetic factor. As a network may vary according to
the number of links, we estimated the heritability of each graph measure over a range of
connection densities (k=5-25%), as well as considering the effect of binarising graphs. In
addition, given the ongoing debate as to the inclusion of global signal regression (Murphy et
al,, 2009; Fox et al., 2009), we conducted our analysis both with and without GSR. We tested
these predictions in a large cohort (N=592) at approximately full brain maturation (mean age

23.5; e.g. Lebel et al., 2008).

Materials and Methods

Participants. Adult twins were recruited as part of the Queensland Twin IMaging (QTIM)
study (de Zubicaray et al., 2008), under approval of the Human Research Ethics Committees of
the QIMR Berghofer Medical Research Institute, University of Queensland, and Uniting Health
Care, Wesley Hospital. Written informed consent was obtained for each participant. Twins
were scanned in the same session or within a week of each other. Participants were excluded
if they reported any history of psychiatric disease, brain injury, substance abuse or MR
incompatibility.

Of the 619 participants with rs-fMRI data, 27 participants (including one twin pair) were
rejected due to excessive head motion (translation>3mm, rotation>2°), image artifacts or
observable neurological abnormalities (on visual inspection of images). The final sample
consisted of 346 paired twins (84 monozygotic (MZ) pairs (61 female, 23 male) and 89
dizygotic (DZ) pairs (34 female, 13 male, 42 opposite sex)), and 246 unpaired twins, mean age
23.5 (+2.5), range 18-30. Zygosity was established using 9 independent polymorphic DNA

markers, cross checked with blood group and phenotypic data to give a greater than 99.99%
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probability of correct zygosity assignment (Wright and Martin, 2004). Zygosity was later

confirmed by genome-wide single nucleotide polymorphism genotyping (Illumina 610K chip).

Table 2.1: Description of graph measures. For a full review see Rubinov & Sporns (2010).

Graph Description Mathematical Definition
measure

Mean The clustering coefficient describes the likelihood of _ lz c

Clustering two nodes that are connected to a common node being n TeN l

Coefficient, connected to each other. It is a measure of c = 2t;

Yy = mc+fdom ‘cliquishness’ in a network. To normalize, this k(e —1)

Modularity, Q

Rich Club
Coefficient, ¢

Global

Efficiency,

A = —8

random
Eg

Small World
Index,

G=YA

probability is divided by the corresponding probability
one would observe for a null hypothesis random
network.

Modularity is the degree to which the network is
partitioned into sub-graphs with a large number of
connections within the sub-graphs, but relatively few

connections between sub-graphs.

¢ quantifies the degree to which hubs (highly
connected and/or central nodes) preferentially
associate with each other. To normalize, this
proportion is divided by the proportion that would be

observed in a random network.

Efficiency is the inverse of path length, where path
length is the number of connections traversed to get
from one node to another. This is averaged over all
node pairs to give global efficiency. To normalize, the
efficiency is divided by the efficiency one would
observe in a random network.

Small world index describes how nodes in a network
can be connected in relatively few steps, whilst
maintaining local clustering. Complex networks
generally have greater clustering than random
networks, but comparable efficiency, giving them a

greater small-worldness.

where t; is the number of complete

triangles around node i.

0= lew— ) ewl

UueM vVEM

where M is the set of modules, and
ew is the proportion of links that
connect nodes in module u with

nodes in module v.
N>k(N>k - 1)

where N.y is the number of nodes

k) =

with degree greater than k, and E. is

the number of links between those

ZE ZE}ENdl]
n—1

iEN iEN

nodes.

where dj is the shortest path

between nodes i and j.

G=YA
)L_l
A

where A is the harmonic mean of
path length, i.e. the shortest number
of links between two nodes.
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Image Acquisition. Imaging was conducted on a 4 Tesla Bruker Medspec whole body
scanner (Bruker). Participants were instructed to remain at rest with their eyes closed, and to
not think of anything in particular and not fall asleep. The imaging sequence was a T2*-
weighted gradient echo, echo planar imaging (GE-EPI) sequence (repetition time TR = 2100
ms; echo time TE = 30 ms; flip angle = 90°; field of view FOV = 230 mm x 230 mm, pixel size
3.6x3.6mm, 36 coronal 3.0mm slices with 0.6mm gap, 150 volumes, total scan time 315s).
Prior to the rs-fMRI scan a T1-weighted 3D structural image was acquired (MPRAGE, TR =
1500 ms; TE = 3.35 ms; inversion time TI=700ms; flip angle = 8°; FOV = 230 mm3, pixel size
0.9x0.9x0.9mm).

Image Processing. Images were preprocessed using FSL (www.fmrib.ox.ac.uk) and AFNI
(http://afni.nimh.nih.gov/afni) as implemented in the 1000 Functional Connectomes Project
scripts (https://www.nitrc.org/projects/fcon_1000/). The first 5 EPI volumes were removed
to allow for steady state tissue magnetization. EPI volumes were realigned to a mean image
to correct for between-scan head movement, spatially normalized to the standard template of
the Montreal Neurological Institute (MNI), smoothed and detrended. Signal from white matter
and CSF was regressed from voxel time-series to remove non-neuronal BOLD fluctuations. We
conducted our analysis both with and without GSR, where global signal is a calculated at each
time point as the mean signal BOLD signal within a whole-brain mask. The set of 6 motion
parameters from the realignment was also regressed out, and a mean motion summary

measure retained for inclusion as a nuisance covariate in group level analysis (average across

all volumes of /x? + y2 4 z2; Van Dijk et al., 2012). Finally, the normalized volumes were
temporally filtered (0.01-0.1Hz).

Graph Construction. The AAL template (Tzourio-Mazoyer et al., 2002) comprising 116
macro-anatomical regions, which is the most widely used atlas in the graph theory literature,
was used to establish ROIs. The time series were extracted from each ROI by taking the mean
signal in all voxels. FC was calculated as the pairwise correlation between all ROI time series,
which resulted in a 116x116 connectivity matrix for each participant. Negative weights were
set to zero and matrices were thresholded at connection densities of k=5-25% (k; proportion
of total connections retained). Sub-threshold connections were retained if removing them
would fragment the network. We analysed both weighted and binary graphs. For the binary
graphs, suprathreshold connections were then set to 1, resulting in graphs where 1 signified a
connection and 0 no connection. Thresholding is important in binary graphs to exclude weak

connections, which are assigned the same weight (1) as stronger connections. In weighted
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graphs, thresholding is still important as the sheer number of low weight connections can
dominate the value of graph measures, and graph measures tend to those of random graphs
as the connection density tends to 100%. Network features are known to vary with different
numbers of links considered (Stam and Reijneveld, 2007; van Wijk et al.,, 2010), and so a
range of connection densities (typically between 5-35%) is typically used. High thresholds
(lower connection densities, i.e., 5-10%) correspond to networks comprising the strongest
and presumably most important routes in a network, with functional units clearly separated
into distinct modules, but higher connection densities also consider weaker links in the

network, with greater cross-talk between modules.

Graph measures. Non-normalised mean clustering coefficient (mC), global efficiency (Eg),
modularity (Q) and rich-club coefficient (¢) were first calculated using the brain connectivity
toolbox (Rubinov and Sporns, 2010). mC, Eg and ¢ were then normalized to remove the effect
of overall functional connectivity and basic network features such as degree distribution.
Doing so more specifically elucidates the network structure, while removing contributions
from lower level connectivity attributes. Normalisation was achieved by dividing the values of
mC, Eg and ¢ by those obtained from a random network with the same number of nodes, links
and degree distribution (null networks). To obtain null networks, each link in the
thresholded, binarised connectivity matrix was randomly reconnected an average of three
times using the Maslov-Sneppen algorithm (Maslov and Sneppen, 2002), and mC, Eg and ¢
calculated on the resulting random graph. This process was repeated 20 times, and the
average of randomized mC, Eg and ¢ calculated. y, A and ¢norm are then defined as mC/mCrang,
Eg /Egrand and ¢ / ¢prana respectively. Correlation matrices have an inherent clustering by
virtue of the transitive nature of the correlation coefficient. It has been demonstrated that
randomly rewiring the topological (thresholded/binarised) networks derived from
correlation matrices does not preserve this transitive clustering, and subsequently the
normalized clustering coefficient may over-estimate the degree of topological clustering
(Zalesky et al.,, 2012). This over-estimation may be avoided by either randomizing the
correlation matrix prior to thresholding, or randomizing the time series themselves. Here we
have chosen to implement the standard Maslov-Sneppen randomization, with the
acknowledgement that the nominal values of normalized clustering will be artificially inflated
by our measure of functional connectivity. We assume that the degree of inflation is constant
across subjects, and thus will not affect heritability estimates. To calculate small-worldness

(o), y and A were multiplied, 0 =y x A, or equivalently o =y +A, where A is the harmonic mean
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of path lengthl. Graph measures were all normally distributed and did not require further
transformation prior to genetic analysis. To reduce the influence of outliers, data was
winsorised, with the maximum distance from the mean for all graph measures set to three

standard deviations.

Genetic Modeling. MZ and DZ twin correlations were calculated for each graph measure
via maximum likelihood estimation implemented in Mx (Neale et al., 2002). An MZ correlation
higher than DZ correlation is indicative of a genetic contribution. We then used structural
equation models (SEM) to estimate to what extent the variance in each graph measure was
attributable to additive genetic, A, common environment, C, and unique environment/residual
modeling error, E (Neale et al., 2002). Initially, variance models including all components A, C
and E were fitted, including age, sex and mean head motion as covariates. We tested additive
genetic models (ACE) rather than genetic dominance models (ADE), even though in some
cases the MZ correlations were more than double the DZ correlations (Tables 2.2a,b), since
preliminary testing of ADE models (data not shown) indicated low power (i.e. wide
confidence intervals) to discriminate A and D factors. Parameters were successively dropped
from the model and reduced models were tested for goodness of fit. The model with greatest
model parsimony as quantified by the lowest Akaike Information Criterion (AIC) was retained

for heritability estimation.

Phenotypic Relationships. Pairwise Pearson correlations between 3 of the graph measures
were calculated. o was not included in either the correlational or multivariate genetic
analysis, as it is a composite of two of the other graph measures. Correlated graph measures
were tested in a multivariate ACE model using Cholesky decomposition (Neale et al., 2002) to
see if the relationship could be attributed to common genetic factors, or common

environmental factors influencing all phenotypes (Figure 2.5).

Test-Retest Reliability: To determine whether observed differences in heritability between
measures and methodologies were in part explained by differences in the stability of the
measures, test-retest reliabilities were calculated for a subsample of 53 twins who returned

for rescanning an average of 3.6(+1.6) months after the first.

1 Path length between two nodes is the smallest number of links required to connect the two
nodes.
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Results

Network Visualisation

To visualize networks obtained over the range of connection densities, the mean over
participants of each pairwise connection was taken, resulting in a groupwise graph, which
was then thresholded (k=5-35%) and binarised. This graph was decomposed into modules
using the modularity algorithm of (Newman, 2006), and illustrated using BrainNet Viewer
(http://www.nitrc.org/projects/bnv/; Figure 2.1). Note, partitioning the mean connectivity
matrix over all subjects (c.f. He et al., 2009), ignores variability of node module membership.
Alternative methods decompose each subject separately and can quantify a consensus
network (c.f. Lancichinetti and Fortunato, 2012) or detect the most representative subject (c.f.
Meunier et al.,, 2009). Between k=5-25%, a familiar pattern of resting state networks appears.
The default mode network (DMN; blue), dorsal attention/task positive network (red), visual
network (pink), subcortical (yellow), sensorimotor (cyan), cerebellar (green), and
hippocampus/amygdala/temporal (black) are apparent at various connection densities. As
the connection density is increased, different modules lose their distinction and merge,
leading to fewer and larger modules. After k = 25%, the modular network architecture is lost.
The main difference between global signal regression being implemented and not
implemented, is that networks with GSR implemented are more modular, with more distinct
modules observable, in particular, the default mode network is observable only with GSR

implemented.

Average Graph Measures

Means of our five graph measures are given in Tables 2.2a and 2.2b. The mean values
of the graph measures are typical of those seen in the literature (e.g. Achard et al., 2006; Lord
et al.,, 2012), and indicate small world, modular, rich-club topology, irrespective of
methodological choices. However, the means of the graph measures do differ depending on
methodological choices, indicating that the nature of the networks obtained varies. The choice
of threshold has a strong effect on the graph measure means and variances, with y, A and o
tending to 1 as k increases, indicating a loss of small world properties as the addition of

weaker connections causes a shift towards random

47



Without GSR

With GSR

k=5% k=10% k=15% k=20%

Figure 2.1: Modular decomposition of groupwise mean network over a range of connection
densities (i.e. k=5-35%), without and with global signal regression (GSR). Yellow lines
indicate a supra-threshold connection and node colors indicate module membership (DMN
(blue), dorsal attention network (red), visual network (pink), subcortical (yellow),
sensorimotor (cyan), hippocampus/amygdala/temporal (black). As the connection density
increases, different modules lose their distinction and merge, leading to fewer and larger

modules. After k = 25%, the modular network architecture is lost.

graphs. Likewise, Q reduces as k increases, indicating a loss of modular architecture, as
depicted in Figure 2.1. We thus henceforth primarily discuss results at k=10%, which we
believe to represent an optimal balance between removing spurious weak connections on the
one hand and avoiding graph fragmentation on the other (observed to occur extensively at a
threshold of 5%). The behavior of ¢norm with k was less straightforward and depended on GSR
and binarising (Tables 2.2a,b and Supplementary tables 2.1a,b). y, Q, ®norm and o are greatly
increased if GSR is employed (% change(p-value) = 101%(p<10-1%),43%( p<10-15),7%( p<10-
15),93%( p<10-15) respectively at k=10%), whilst A is relatively unchanged (-2%( p<10-4) at
k=10%). Finally, binarising seems to have little effect on graph measure mean values of y, Q, A
, 0 (-1%(p=0.33), -5%( p<104), 2%( p<104), 1%(p=0.32) respectively at k=10%), but a large
effect on dnorm (38%(p<10-1°) at k=10%).
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Heritability

Heritability estimates were seen to vary substantially depending on threshold and
implementation of global signal regression, and weakly affected by binarising. Generally,
heritability estimates were higher at lower connection densities, without global signal
regression and without binarising. Without GSR, all graph measures had a higher MZ
correlation than DZ correlation over the whole range of connection densities, both for
weighted (Table 2.2a) and binary graphs (Supplementary Table 2.1a), indicating a genetic
contribution. MZ correlations ranged from 0.22-0.42 across graph measures and connection
densities and were significant at all k, whereas DZ correlations ranged from 0.10-0.20 and
were not all significant. SEM revealed that all graph measures had significant estimates of
genetic variance (a?) over a certain range of connection densities (Table 2.2a, Figure 2.2).
Dropping the C parameter gave improved model parsimony for all graph measures over
connection densities 5-15%. At k=20% and above, the best fitting model was CE for some
graph measures. However, notably the fit of the AE and CE models were often very similar.
The heritability estimates (i.e., A (=a?)) for the best fitting model are given in Table 2.2a.y, Q, A
and o were all strongly heritable, (51, 46, 54, 54% respectively, k=10%) with similar
estimates for binary networks. ¢norm was moderately heritable (29%, k=10%) for weighted
graphs, but not for binary networks. As k increased from 10% to 25%, progressively more
variance is attributed to unique environmental variance and/or modeling/experimental error
for all graph measures. The heritability estimates varied little between weighted and binary
graphs with the exception of ¢norm Which for binary networks has best fitting model without
genetic component. The heritability of Q was lower for binary compared to weighted graphs

at k=5-10%, and at k=15% and above the best fitting model did not have a genetic component.

Regressing out global signal substantially reduced the heritability estimates (Table
2.2b, Figure 2.3). At k=10%, Q, A and o were moderately heritable (28%, 23% and 27%),
whereas y and ¢norm had a best fitting model without a genetic component, although AE and
CE models had similar fit. As with the no global signal regression case, binarising had little
effect on heritability estimates (Supplementary Table 2.1), although y binary had a best fitting
model with genetic component and corresponding a? of 26(8,42), and Q had best fitting model
without genetic component, and as k increased beyond 10%, variance attributable to unique

environmental/modeling error increased (See Supplementary Tables 2.1a-b).
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Tables 2.2a and 2.2b: Mean (SD) of the five graph measures (k=5-25%) across the 592
participants Twin correlations, Variance component estimates for A (additive genetic), C
(common environment) and E (unique environment), and model fit for the 5 graph measures,
k=5-25%. Computed without (Table 2.2a) and with (Table 2.2b) global signal regression.

Variance estimates (%) from best fitting

Phenotype Twin Correlations (95% CI) Model fit (AIC)= model (95% CI)
k Mean(SD)  MZ (N=84 pairs) DZ (N=89 pairs)  ACE AE CE E A C E
5 Y 3.14(1.64) 0.45(0.31,0.58) 0.12 (-0.02,0.25) 388.16 386.16 398.77 42021  58(42,69) - 42(31,58)
Q 0.54(0.08) 0.43(0.28,0.55) 0.23 (0.09,0.36) 366.25 365.82 366.62 409.62  59(45,69) - 41(31,55)
¢rorm  1.02(0.01) 021 (0.05,0.37)  0.03 (-0.11,0.17) 384.65 382.65 383.82 385.17  19(1,35) - 81(65,99)
A 0.66(0.08) 0.43(0.28,0.55) 0.15(0.01,0.29) 399.17 397.17 403.68 431.43  54(40,66) - 46(34,60)
¢ 218(1.28) 0.47(0.32,0.59) 0.11(-0.03,0.25) 387.81 385.81 399.38 420.52  58(43,70) - 42(30,57)
10 Y  2.02(0.80) 0.40(0.25,0.54) 0.13 (-0.01,0.26) 386.18 384.18 390.68 412.63  51(35,63) - 49(37,65)
Q 0.40(0.08) 0.36(0.20,0.50) 0.13 (-0.01,0.27) 378.64 376.79 378.71 401.39  46(31,59) - 54(41,69)
Qrorm  1.02(0.02)  0.29 (0.13,0.44)  0.09 (-0.05,0.23) 387.85 385.85 387.29 39453  29(12,44) - 71(56,88)
A 0.77(0.07) 0.37(0.21,0.50) 0.16 (0.02,0.30) 395.80 393.82 398.41 42395  54(39,66) - 46(34,61)
¢ 1.59(0.71) 0.42(0.28,0.55) 0.13 (-0.01,0.27) 384.32 382.32 390.46 414.06  54(39,66) - 46(34,61)
15 Y 1.67(0.52) 0.37(0.21,0.51) 0.14(0.00,0.28) 387.34 385.37 388.38 410.87  48(32,60) - 52(40,68)
Q 0.33(0.08) 0.29(0.13,044) 0.13(-0.01,0.26) 379.95 378.35 378.67 395.24  40(23,54) - 60(46,77)
Grorm  1.03(0.02)  0.29 (0.12,0.43)  0.08 (-0.06,0.22) 380.32 378.32 380.33 387.67  29(13,44) - 71(56,87)
A 0.82(0.05) 0.35(0.20,0.49) 0.15(0.02,0.29) 395.92 393.94 397.78 420.68  52(35,64) - 48(36,65)
¢ 1.39(0.48) 0.39(0.24,0.52) 0.16(0.02,0.29) 383.53 381.56 385.44 411.11  51(36,63) - 49(37,64)
20 Y 148(0.37) 0.34(0.18,048) 0.15(0.01,0.28) 384.61 382.96 383.99 405.37  44(28,57) - 56(43,72)
Q 0.29(0.07) 0.23(0.07,0.38) 0.13 (-0.01,0.27) 382.67 382.06 380.67 392.77 - 29(14,42)  71(58,86)
¢rorm  1.03(0.03) 021 (0.05,0.37)  0.10 (-0.04,0.23) 366.51 364.57 364.96 370.25  24(7,39) - 76(61,93)
A 0.86(0.04) 0.31(0.15,0.46) 0.16(0.02,0.29) 395.77 393.89 39591 414.61  45(28,59) - 55(41,72)
¢ 1.28(0.35) 0.36(0.20,0.49) 0.16(0.02,0.30) 380.51 378.85 380.45 405.02  48(32,60) - 52(40,68)
25 Y 1.36(0.28) 0.30(0.14,044) 0.14 (0.00,0.28) 387.70 386.32 386.19 403.59 - 33(19,45)  67(55,81)
Q 0.26(0.07) 0.21(0.05,0.37) 0.11 (-0.03,0.25) 390.68 389.54 388.68 397.72 - 26(11,39)  74(61,89)
Gnorm  1.04(0.03)  0.22 (0.05,0.37)  0.15 (0.01,0.28) 370.88 370.01 368.88 377.25 - 22(9,34) 78(66,91)
A 0.88(0.04) 0.27(0.11,0.42) 0.18(0.04,0.31) 392.15 390.63 390.97 406.83  40(23,54) - 60(46,77)
¢ 1.20(0.27) 0.32(0.16,0.46) 0.17(0.03,0.30) 382.35 381.10 381.14 402.53  44(28,57) - 56(43,72)
Table 2.2a
Variance estimates (%) from best fitting
Phenotype Twin Correlations (95% CI) Model fit (AIC) model (95% CI)
k Mean(SD) MZ (N= 84 pairs) DZ (N=89 pairs)  ACE AE CE E A C E
5 Y  6.46(1.44) 0.19(0.03,0.35) 0.17 (0.03,0.30) 410.62 409.12 408.78 416.62 - 22(8,35) 78(65,92)
Q  0.68(0.04) 0.17(0.01,0.33) 0.17 (0.03,0.30) 399.07 398.49 397.07 405.38 - 24(9,37) 76(63,91)
Pnorm  1.07(0.03)  0.07 (-0.09,0.24) -0.03 (-0.17,0.11) 445.81 443.81 444.02 442.06 - - 100(100,100)
A 0.63(0.06) 0.32(0.16,0.46) 0.01(-0.13,0.15) 420.86 418.86 423.07 426.44  30(11,46) - 70(54,89)
¢ 414(1.11) 0.19(0.03,0.35) 0.11(-0.03,0.25) 425.64 423.64 424.41 42836  24( 6,40) - 76(60,94)
10 Y  4.06(0.55) 0.19(0.02,0.34) 0.12 (-0.02,0.26) 400.51 398.77 398.74 404.73 - 21(7,34) 79(66,93)
Q  0.57(0.04) 0.22(0.05,0.37) 0.04(-0.10,0.17) 419.05 417.05 419.68 421.61  28(7,46) - 72(54,93)
Prorm  1.10(0.04)  -0.01 (-0.17,0.16) -0.04 (-0.18,0.10) 432.73 430.73 430.73 428.73 - - 100(100,100)
A 0.75(0.04) 0.26(0.09,0.41) -0.01(-0.15,0.13) 426.71 424.71 427.35 428.94  23(5,40) - 77(60,95)
6 3.06(0.47) 0.20(0.03,0.36) 0.12(-0.02,0.26) 407.75 405.98 405.99 412.11  27(9,42) - 73(58,91)
15 Y  3.09(0.28) 0.10(-0.07,0.26) 0.04 (-0.10,0.18) 397.58 395.60 395.69 395.65  13(0,30) - 87(70,100)
Q  051(0.03) 0.20 (0.04,0.36) 0.01(-0.13,0.15) 421.95 419.95 422.24 422.70  24(2,43) - 76(57,98)
Qrorm  1.13(0.05)  0.08 (-0.09,0.24) 0.14 (0.00,0.28) 435.06 434.25 433.06 435.54 - 16(1,29) 84(71,99)
A 0.79(0.03) 0.31(0.15,0.45) -0.03 (-0.16,0.11) 414.39 412.39 416.43 419.19  28(10,44) - 72(56,90)
¢ 243(0.24) 0.12(-0.05,0.28) 0.05 (-0.09,0.19) 396.23 394.25 394.35 395.03  15(0,31) - 85(69,100)
20 Y 2.56(0.17) 0.09 (-0.08,0.25) -0.02 (-0.16,0.12) 390.79 388.79 389.20 387.48 - - 100(100,100)
Q  0.46(0.03) 0.19(0.02,0.35) 0.00 (-0.14,0.14) 421.04 419.04 420.88 420.77  21(0,39) - 79(61,100)
Prorm  1.16(0.07)  0.02 (-0.15,0.19) 0.05 (-0.09,0.19) 433.36 431.57 431.36 429.94 - - 100(100,100)
A 0.79(0.02) 0.30(0.14,0.44) -0.00 (-0.14,0.14) 421.06 419.06 422.63 42597  28(10,44) - 72(56,90)
¢ 2.03(0.13) 0.05(-0.11,0.22) 0.01(-0.13,0.15) 370.28 368.28 368.35 366.76 - - 100(100,100)
25 Y 2.21(0.13) 0.11(-0.06,0.27) -0.07 (-0.20,0.07) 404.25 402.25 402.81 400.87 - - 100(100,100)
Q 0.42(0.03) 0.14(-0.03,0.30) 0.00(-0.14,0.14) 415.69 413.69 414.53 413.45 - - 100(100,100)
Prorm  1.18(0.08)  0.06 (-0.11,0.22) -0.01 (-0.15,0.13) 454.45 452.45 452.56 450.64 - - 100(100,100)
A 0.80(0.02) 0.31(0.15,0.46) -0.00 (-0.14,0.14) 421.25 419.25 423.53 427.16  30(12,47) - 70(53,88)
¢ 1.76(0.08) 0.01(-0.15,0.18) -0.05 (-0.19,0.09) 369.29 367.29 367.29 365.29 - - 100(100,100)

Table 2.2b @ Where an AE model has only a slightly worse fit than a CE model, and vice-versa, both models are
worthy of consideration. In addition, confidence intervals for ACE estimates were wide indicating low power to
discriminate between A and C.
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Figure 2.2: Additive genetic (a?) and unique environmental (e?) variance components across graph

measures and thresholds, GSR not implemented.
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Figure 2.3: Additive genetic variance components across graph measures and thresholds

estimated both without (solid line) and with (dashed line) global signal regression (GSR).

Heritability estimates are much reduced with GSR implemented.
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In addition, we found strong phenotypic correlations among the different network
measures (Table 2.3). Without GSR, all graph measures were significantly correlated with the
others, with the highest correlation at k=10% being 0.92 between y and Q. With GSR implemented
the correlations were lower (highest was 0.63 between y and Q), suggesting that global signal
fluctuations represent a common source of variance for the different graph measures. With GSR, Q
and A were negatively correlated, reflecting the trade-off between separation of and integration
between modules. A similar pattern of correlations was seen across k both with and without GSR,
other than for A with GSR implemented, where A is negatively correlated with y at higher k

(Supplementary Tables 2.3a-d).

A multivariate genetic analysis was used to estimate the shared genetic contribution across
graph measures. Without GSR, a single genetic factor, A1, accounted for most of the genetic
variance in all of the graph measures at all connection densities (A1l/Awta=93%, 87% for Q and A
respectively at k=10%). With GSR implemented, 40% of the genetic variance (12% of the total
variance) in Q was accounted for by a second genetic factor A2, which also accounted for 97% of
the genetic variance in A (Figure 2.5). The path coefficients for the second genetic factor, were the
opposite sign for Q and A, meaning that if this factor increases modularity, then the same factor
will reduce A. At higher connection densities the independent genetic factors (A2, A3) were
reduced (Supplementary Tables 2.3a-d ) and not significant, and most of variance was attributed
to a single genetic factor, Al. This is related to the increasing correlations between the graph

measures at higher connection densities.

Table 2.3. Multivariate genetic analyses of Mean Clustering (y), Modularity (Q), and Global
Efficiency (A) at k=10%.

Phenotypic Correlation h? Breakdown of Total Variance (as Cholesky Decomposition), shown as a % with 95%

Confidence Intervals

Additive Genetic Sources Unshared Environmental Sources
Y Q Al A2a A3 El1 E2 E3
Without
GSR
Y 1.00 52 52(37,64) 48 (36,63)
Q 0.92 (0.91,0.93) 1.00 49  45(31,57) 3(0,6) 38(27,52) 12 (9,16)
A 0.72 (0.67,0.76) 0.62 (0.56,0.67) 55 49 (33,66) 0(0,3) 7 (0,6) 10 (4,21) 1(0,5) 34 (26,44)
With GSR
Y 1.00 27 27 (9,43) 73 (57,91)
Q 0.64 (0.59,0.69) 1.00 29 18(2,39) 12 (1,24) 25(13,42) 47 (35,60)
A 0.26 (0.19,0.34)  -0.36(-0.43,-0.29) 25 1(0,12) 24 (5,43) 0(0,9) 7(1,18) 27 (15,44) 41 (33,49)

4 Factor A2 has opposing effects (+ve for Q, but -ve for 1)
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Multivariate models also revealed overlapping environmental influences/ experimental
error on the different graph measures. Without GSR, The environmental influences on y and Q
overlapped, with sources influencing environmental variance in y accounting for 75% (E1/Eotal)
of the environmental variance in Q. This same factor accounted for only 23% of the environmental
variance in A. A second environmental factor accounted for 23% of the environmental variance in
Q, and 3% of the environmental variance in A, and a final unique environmental factor accounted
for the remaining 75% of the environmental variance in A. With GSR implemented, the overlapping
environmental/error influences were much reduced, with the majority of environmental variance
in Q and A attributed to E2 and E3 respectively, implying that without GSR implemented, much of

E1 is due to global signal.

Test-Retest Reliabilities

Supplementary Table S2.2 gives the test retest reliabilities of all measures. These ranged
from low to moderate (ICC=-0.21 to 0.41). In general, ICCs increased with increasing connection
density, and there was no systematic difference between the ICCs of measures without GSR
(mean(SD)=0.12(0.17)) and with GSR (0.15(0.11)), indicating that test-retest reliability was not a

factor behind the higher observed heritabilities for measures without GSR.
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Figure 2.5: Path diagram for multivariate genetic model showing genetic and environmental
sources of covariation between three graph measures, with parameter estimates given for k=10%,
GSR implemented. Path labels give standardized path coefficients (bold) and variance components
(the square of the path coefficients) of each factor. Thus, the genetic factor influencing y also
accounts for 18% of the total variation in Q (60% of the genetic variation), and 1% of the variation
in A. Q has a second genetic factor accounting for 12% of its variation, which also accounts for 24%
of the variation in A. Whereas overlapping genetic factors accounted for much of genetic variation
in the graph measures, separate environmental factors account for the majority of environmental
variance in Q (47%) and A (41%). Heritability (the sum of sources of genetic variance for each

variable; h?) is shown for each variable. Non-significant path coefficients shown by dotted arrows.
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Discussion

This study shows that network characteristics of resting state functional activity are partially
under genetic influence, and that heritability estimates vary substantially depending on
methodological choices. We found thaty (h? =47 to 61%), Q (h?2=38-59%), A (h?=52-64%) and o
(h?2=51-59%) were strongly influenced by genetic factors at connection densities ranging between
k=5-15%, with heritability reducing at k>15%. Heritability estimates were substantially lower
when global signal regression was implemented h? (y=0-26%, Q=0-28%, ¢norm=0%, A =23-30%,
0=0-27%) and there was little difference between considering weighted graphs or binary graphs,
other than for ¢norm. Furthermore, these heritable traits were moderately correlated (|r|=0.62-

0.92, without GSR, 0.27-0.63 with GSR) and largely influenced by overlapping genetic factors.

The heritability of global efficiency is largely consistent with prior studies of rs-fMRI graph
measures. Fornito et al. (2011) found a heritability of 60(CI:17, 83)% (without GSR) for cost
efficiency in 58 adults (cost efficiency reflects the trade off between the need for efficiency in a
network and the cost of wiring). In 86 young children (mean age 12), van den Heuvel et al. (2013)
estimated a heritability of 42(CI:5,73)% for A, but no genetic influence on y (without GSR). While
the results for A are similar, the participants were younger, and genetic and environmental effects
on a trait can change with age (e.g. Bartels et al,, 2002; Lenroot et al., 2009). Furthermore, their
analysis was performed using voxel-wise networks, where each voxel constitutes a network node.
Such networks differ topologically from anatomically informed networks, and they are ‘scale-free’
(van den Heuvel et al,, 2008) - i.e., dominated by very highly connected hubs (Barabasi and Albert,
1999). In contrast to the previous two studies, we detect significant heritability of y. This may
represent methodological differences (van den Heuvel et al. (2013) did not correct for white
matter signal, csf signal or motion confounds), but may also reflect that the previous two studies
were underpowered, emphasizing the necessity of large sample sizes for heritability estimates. We
performed power calculations based on the effect sizes in our sample, and determined that the
sample sizes (number of twin pairs) required to reject the null hypothesis of no genetic
component at a significance level of 0.05, with a power of 50% were (203, 97, 482, 5531 for A(no
GSR), y(no GSR), A(GSR), Y(GSR) respectively, k=10%), indicating that our study was
underpowered for detecting heritability with GSR implemented, but sufficiently powered without
GSR implemented.

Our heritability estimates are similar to those for other functional-imaging derived measures

such as activation in N-Back working memory tasks, (h? ranging from 0 to 65%) (Blokland et al.,
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2011), connectivity in the default mode network h? = 42+17% (Glahn et al., 2010), graph metrics
derived from EEG measurements (h? ranging from 25 to 63%; Smit et al., 2010). They are lower
than for cognitive phenotypes such as intelligence (h? ~ 50-80%) (Plomin and Spinath, 2004),
performance on working memory tasks (h? ~ 40-60%) (e.g., Ando et al., 2001; Polderman et al.,
2006).

Y, A and o may be collectively described as the small-world properties of networks. Small-
world networks allow strong contact between groups of nodes with common functionality and
simultaneously allow highly efficient information transfer via a small number of long range
connections (Watts and Strogatz, 1998). Many studies (e.g. Salvador et al., 2005; Achard et al,,
2006) have reported that the small-world architecture applies to human brain functional
networks, and we observe the same in this data set (mean (SD) y = 2.02 (0.80), mean A =0.77
(0.07), k=10%, Table 2.2). This study demonstrates that this favorable set-up is substantially
conferred by genetic factors. Furthermore, as we increase the connection density of the networks,
and the small world properties of the graph reduce (y decreases, A increases), we see a
corresponding drop-off in heritability, suggesting an underlying genetic influence which is only
observed when the chosen connection density appropriately balances removal of weak and
confounding connections with avoidance of network fragmentation. We believe this balance is
best achieved at lower thresholds at around k=10%, as this is where we observe highest
penetrance of genetic effects, and highest small-world properties.

In addition to high clustering and high efficiency, brain networks are modular (Beckmann et
al,, 2005; He et al., 2009): the nodes separate into modules with many strong connections between
nodes within the same module, and relatively few between modules. Modularity measures this
separation into distinct sub-networks with particular functions such as the visual, sensorimotor,
and default mode networks, etc. Here we find a genetic contribution to modularity of (h?=0-59%),
aresult not previously observed in other studies of the heritability of functional connectivity.

Recently, brain functional networks have been observed to display a ‘rich-club’ organization,
whereby the network hubs (nodes with the largest number of connections) are highly connected
to each other, forming a network core (van den Heuvel and Sporns, 2011); most of the shortest
paths between nodes in the network pass via this rich club. Such organisation is hypothesized to
give the network higher resilience against targeted attack of hubs (Kaiser et al.,, 2007; van den
Heuvel and Sporns, 2011). Here, we did not find strong evidence that the rich club coefficient is
heritable. ¢norm showed the most variability between the binary and weighted analysis, did not
show the tendency to randomness as connection density increased as did the other graph
measures, and yielded the lowest heritability parameters. Thus, ¢norm appears to be the least

promising phenotype for use as a genetic biomarker, however, it is important to note that in the
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context of brain imaging, ¢dnorm was originally defined on structural data (van den Heuvel and

Sporns, 2011), not resting state functional data.

The network measures were correlated (Table 2.3), suggesting that common genetic or
environmental factors might produce an advantageous network structure. Without GSR, the
genetic source influencing y also accounts for 93% and 87% of the genetic variance in Q and A
respectively. This may represent a single set of genetic processes giving rise to distinct network
characteristics, or it may represent a common underlying factor to all graph measures, unrelated
to network architecture, which has not been accounted for, such as the global signal. With GSR
implemented, genetic influences were partitioned into two main factors, with one influencing y
and Q, and the second influencing Q and A. y and Q both measure features of network segregation
and would be expected to be highly correlated and share common genetic underpinnings. More
interestingly, Q and A, were significantly negatively correlated and almost all of the genetic
variation in A, was accounted for by the second genetic factor influencing Q. Further, the set of
genes which contributed positively to Q, negatively influence A, indicating that this set of genes
may regulate to trade-off between the separation of and the integration between modules. The
phenotypic correlations between graph measures were also mediated in part by environmental
factors. y and Q and A were all influenced to varying degrees by overlapping environmental factors
or correlated measurement error, so all phenotypic correlations between graph measures have

both genetic and environmental origins.

An important implication of this study is that the heritability of graph measures is
substantially reduced with global signal regressed out. The origin of the global signal is uncertain,
but it may have non-neuronal (cardiac, respiratory), as well as neuronal (e.g. ascending arousal
systems) contributions (Fox et al., 2009). Global signal fluctuations are considered by many as a
nuisance confound giving rise to artificial correlations between unrelated time series. There is
ongoing debate as to the nature of anti-correlations introduced by global signal regression
(Murphy et al., 2009; Fox et al., 2009) For this reason, we have carried out the analysis both with
and without GSR. The results of this paper imply that a large proportion of the heritability
estimates are dependent on these global signal fluctuations, and further, that global signal
represents a common cause of variance in the different graph measures, with all graph measures
strongly correlated and sharing a largely identical set of genetic influences when global signal is
not accounted for. The two papers reporting heritability of network efficiency (Fornito et al., 2011;
van den Heuvel et al., 2013), did not account for global signal, and reported similar estimates to

those in this study without global signal accounted for. It is not clear which feature of the global
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signal contributes to the enhanced heritability estimates for the graph measures. Since global
signal regression is designed to remove physiological, non-neuronal contributions to the BOLD
signal, itself a complex combination of neuronal, vascular and metabolic factors (Liu, 2013), this
raises the possibility that the high heritability of graph measures seen here, and in previous
studies (Fornito et al., 2011; van den Heuvel et al,, 2013), may primarily represent the graph

characteristics of vascular, as opposed to neural networks.

The current study has some limitations. The sample size is modest for establishing the
importance of genetics and environment for phenotype as indicated by relatively wide confidence
intervals, particularly for DZ twins where the confidence intervals spanned zero. Our multivariate
analysis may suggest one set of genes regulating the trade-off between network modularity and
network efficiency, with another set of genes influencing y, but this finding is not robust to choice
of threshold or binarising. Secondly the difference in heritability estimates when global signal
regression is implemented may indicate that a proportion of the heritability is related to non-
neuronal fluctuations in the BOLD signal, since GSR aims to remove such fluctuations. Indeed, y
and Q increase when global signal regression is implemented (Apinary increases, Aweighted reduces),
perhaps reflecting that the resulting graphs better ‘capture’ the underlying favorable network
properties. Some non-neuronal influences can be ruled out as contributing to the heritability
estimates. Head-motion was corrected for both at the subject level by regressing 6 head-motion
parameters from voxel time series, and at the group level by inclusion of a mean-motion covariate.
Overall levels of functional connectivity (and their neuronal and non-neuronal origins) are
implicitly controlled for by normalizing graph measures to those of random graphs with the same
overall level of functional connectivity (and other low level network characteristics such as degree
distribution). We have taken a relatively simple approach to thresholding, simply retaining a
certain percentage of edges whilst not removing edges that would cause the graph to fragment. To
account for differences in network properties with the arbitrarily chosen connection density, we
have calculated results over a range of connection densities. Some authors remove the arbitrary
choice of threshold with techniques such as using weighted measures on unthresholded weighted
graphs, or extracting the minimum spanning tree, which retains each node’s strongest edge, then
adds the minimum number of necessary edges required to fully connect the graph (e.g. Alexander-
Bloch et al., 2010). Such approaches go some way to avoiding the confound of between group
differences in percolation threshold (threshold at which graph fragments). We used the more
common approach of a percentage threshold, whilst reducing the effects of percolation threshold
by retaining crucial edges (e.g. Lord et al., 2012). We did not investigate the effect of parcellation

strategy on heritability, and only considered the AAL template. One limitation of the AAL template
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is that it consists of neuroanatomical regions of differing sizes, and consequently differing signal to
noise ratios. Higher SNR can increase estimates of functional connectivity, and consequently
increase the degree of high SNR nodes, giving them a disproportionate influence over network
properties. More importantly, the value of graph measures changes considerably with spatial scale
of the parcellation (size of nodes). For example, small worldness varies from ~2 at the spatial scale
of the AAL to ~50 for a 4000 node sub-parcellation of the AAL template (Zalesky et al., 2010).
More generally, organisational structure relevant to information processing emerges across many
orders of magnitude in spatial scale, from molecules, synapses, neurons, nuclei, networks, layers,
maps, up to systems (Churchland and Sejnowski, 1988). Whilst the AAL atlas extracts networks of
large scale cognitive systems, voxel-wise networks (e.g. van den Heuvel et al., 2008) may capture
the interactions of nuclei and cortical maps. Thus, it should be stressed that our results pertain
only to large scale systems-level networks. Although investigation of different spatial scales would
be of great interest, the number of connections scales with the number of nodes squared, with a
corresponding increase in computation time, and the sample sizes typically used in genetic studies
would make this very computationally expensive. Finally, the test-retest reliabilities of these
metrics ranged from low to moderate low (ICC=-0.21 to 0.41). This is in line with reliabilities
measured elsewhere for graph metrics on resting state fMRI (Wang et al., 2011; Braun et al,,
2012). The ICCs are lower than those of psychometric measures and slightly lower than those of
task-based fMRI BOLD signal derived measures. For example, Plichta et al. (2012) estimated
reliabilities of ROI average BOLD signal at 0.56-0.62 for a reward task, 0.44-0.57 for an n-back
working memory task, and -0.02-0.16 for a face matching task, while Caceres et al. (2009)
estimated median ICCs for an auditory task at 0.07 (whole brain) and 0.35 (auditory network);
and for an n-back task at 0.27 (whole brain) and 0.49 (n-back network). The contrast between low
test-retest reliabilities of A (table S1e), and moderate MZ twin correlations (table 2.2) is seemingly
contradictory, in that a participant and their co-twin have a more similar A than the same
participant scanned at two different time points. This discrepancy is not a result of outliers
(outliers were winsorised in the case of the MZ sample, and removed from the test-retest sample).
It may be due to different numbers of participants for the test-retest and the MZ sample (53 and
84 respectively), and indeed, ICCs and MZ correlations lie within each-other’s confidence intervals
for the majority of measures (though not for A). One further speculative possibility is that it is a
consequence of the dependency of resting state connectivity on prior cognitive state (Waites et al,,
2005; Harrison et al,, 2008; Hasson et al., 2009). In our experimental protocol, test and retest are
not equivalent trials in two respects. Task engagement prior to resting scans is known to affect
subsequent resting state connectivity (Waites et al., 2005; Hasson et al.,, 2009). Our participants

undertook an N-Back working memory task prior to their resting state scan. This was the case in
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both test and retest trials, however, the retest trial is subject to habituation effects in the task
experiment and increased task performance (Blokland et al., 2011), which may alter connectivity
the rest experiment. Similarly, simple familiarity with the scanning experience can reduce anxiety
and externally focused attention at rest, contributing further to the dissimilarity between test and
retest trials. If such habituation artifacts do account for the low observed test-retest reliability,
then they appear to have more effect on measures of functional integration (A), than measures of

network segregation/modular structure (y, mod, ¢norm)-

Despite these limitations, to date this is the largest study of twins with fMRI resting state
scans, allowing the strongest and most comprehensive current estimates of network heritability.
We find the first evidence of heritability of y and Q, and strong evidence that A is heritable. We
used a range of the most common and consensual processing procedures for both resting state
fMRI and graph theory, to make these results as applicable as possible to prior studies using these

graph measures.
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Supplementary Material

Tables S2.1a and S2.1b: Phenotypic and Genetic data for binary graphs. Computed without (Table

S1a) and with (Table S1b) global signal regression.

Variance estimates (%) from best fitting model

Phenotype Twin Correlations (95% Cl) Model fit (AIC) (95% Cl)
k Mean(SD) MZ (N= 84 pairs)  DZ (N= 89 pairs) ACE AE CE E A C E
5 Y  3.10(1.62) 0.46(0.32,0.59)  0.13(-0.01,0.26)  387.62 385.62 398.58 422.56  59(44,70) - 41(30,56)
Q  0.46(0.10) 0.40(0.25,0.53)  0.17 (0.03,0.30) 387.83 385.84 390.67 419.08  54(39,65) - 46(35,61)
@rorm  1.61(0.27)  -0.12(-0.28,0.05)  0.02(-0.12,0.16)  345.21 343.21 343.21 341.21 - - 100(100,100)
A 0.67(0.08) 0.45(0.30,0.57)  0.16 (0.02,0.29) 393.43 391.43 399.91 431.18  59(44,69) - 41(31,56)
6 2.19(1.29) 0.47(0.33,0.59)  0.11(-0.03,0.25)  389.35 387.35 401.41 424.29  59(44,70) - 41(30,56)
10 Y  2.00(0.79) 0.40(0.25,0.54)  0.14(-0.00,0.27)  381.90 379.90 386.37 409.02  52(36,64) - 43(36,64)
Q 038(0.09) 0.33(0.17,0.47)  0.13(-0.01,0.26)  388.57 386.75 388.00 407.12  43(26,56) - 57(44,74)
@rorm  1.43(0.22)  0.01(-0.16,0.18)  0.09(-0.05,0.23)  370.79 369.18 368.79 367.42 - - 100(100,100)
A 0.78(0.07) 0.40(0.25,0.53)  0.18(0.05,0.32) 385.09 383.17 389.37 422.90  61(47,71) - 39(29,53)
¢  1.61(0.71) 0.43(0.28,0.55)  0.14(-0.00,0.27)  381.03 379.03 387.24 411.99  55(40,67) - 45(33,60)
15 Y  1.65(0.51) 0.36(0.21,0.50)  0.14 (0.00,0.28) 384.95 383.01 38577 408.34  47(32,60) - 53(40,68)
Q  032(0.08) 0.27(0.11,0.42)  0.12(-0.02,0.26)  379.47 377.91 377.96 392.52  38(20,52) - 62(48,80)
@norm  1.32(0.16)  0.06 (-0.11,0.23)  0.14(-0.00,0.27)  337.41 336.62 335.41 336.56 - 12(0,25) 88(75,100)
A 0.84(0.06) 0.42(0.28,0.55)  0.20 (0.06,0.33) 375.08 373.37 379.28 418.46  64(50,73) - 36(27,50)
¢ 1.41(0.49) 0.40(0.24,0.53)  0.16 (0.02,0.29) 381.26 379.31 383.15 410.21  52(37,64) - 483(36,63)
20 Y  1.46(0.36) 0.33(0.17,0.47)  0.14(0.00,0.28) 385.12 383.42 384.46 404.52  43(27,56) - 57(44,73)
Q 0.28(0.07) 0.21(0.04,0.36)  0.14(-0.00,0.27)  384.67 384.59 382.67 393.51 - 28(13,41) 72(59,87)
@romm  1.27(0.12)  0.17(0.00,0.33)  0.09(-0.05,0.22)  367.94 366.69 365.94 370.50 - 18( 4,31) 82(69,96)
A 0.88(0.05) 0.40(0.25,0.54)  0.22(0.08,0.35) 372.05 370.73 374.11 412.19  60(47,71) - 40(29,53)
¢  131(0.37) 0.36(0.21,0.50)  0.16 (0.03,0.30) 381.04 379.39 380.95 40590  48(32,60) - 52(40,68)
25 Y  1.34(0.27) 0.29(0.13,0.44)  0.15(0.01,0.28) 386.19 385.06 384.51 402.02 - 33(19,45) 67(55,81)
Q 0.25(0.07) 0.19(0.02,0.35)  0.12(-0.02,0.26)  389.56 388.92 387.56 395.77 - 25(10,38) 75(62,90)
@rorm  1.22(0.09)  0.10(-0.07,0.27)  0.15(0.01,0.28) 377.89 377.71 375.89 379.61 - 17(3,30) 83(70,97)
A 0.91(0.04) 0.41(0.26,0.54)  0.25(0.12,0.38) 358.16 357.31 360.18 403.41  62(49,72) - 38(28,51)
¢ 1.24(0.29) 0.33(0.17,0.47)  0.18(0.04,0.31) 381.21 380.35 379.76 403.22 - 37(24,49) 63(51,76)
Table S2.1a: Binary graphs, no global signal regression
Variance estimates (%) from best fitting model
Phenotype Twin Correlations (95% Cl) Model fit (AIC) (95% Cl)
k Mean(SD) MZ (N= 84 pairs)  DZ (N= 89 pairs) ACE AE CE E A C E
5 Y 6.30(1.40)  0.19 (0.02,0.35) 0.20(0.06,0.33)  413.46 413.04 411.46 42153 - 25(11,37) 75(63,89)
Q 0.64(0.05)  0.10 (-0.07,0.26)  0.15(0.01,0.29)  414.31 413.94 41231 415.27 - 16( 2,30) 84(70,98)
@norm  1.84(0.48)  -0.03(-0.19,0.14)  0.02(-0.12,0.16)  392.66 390.66 390.66 388.66 - - 100(100,100)
A 0.67(0.06)  0.31(0.15,0.46) 0.03(-0.11,0.16)  421.73 419.73 423.67 427.79  30(12,46) - 70(54,88)
o 4.25(1.13)  0.20(0.03,0.36) 0.13(-0.01,0.27) 427.71 425.80 426.16 431.80 26( 8,42) - 74(58,92)
10 Y 3.90(0.51)  0.20(0.03,0.35) 0.10(-0.04,0.24)  388.08 386.13 386.62 391.76 26( 8,42) - 74(58,92)
Q 0.55(0.04) 0.15 (-0.02,0.31) -0.02 (-0.16,0.12)  432.94 430.94 432.18 430.81 - - 100(100,100)
@norm  1.67(0.47)  -0.01(-0.17,0.16)  0.01(-0.13,0.15)  393.79 391.79 391.79 389.79 - - 100(100,100)
A 0.82(0.04)  0.24 (0.08,0.39) 0.01(-0.13,0.15) 416.18 414.18 416.49 418.58 23( 5,40) - 77(60,95)
o 3.19(0.48)  0.21(0.05,0.37) 0.12 (-0.02,0.26)  398.61 396.79 396.96 403.70  27(10,43) - 73(57,90)
15 Y 2.93(0.26) 0.09 (-0.08,0.25) 0.01 (-0.13,0.15) 392.27 390.27 390.51 389.41 - - 100(100,100)
Q 0.48(0.04)  0.20 (0.04,0.36) 0.01(-0.13,0.15)  416.15 414.15 416.12 416.62 22(2,41) - 78(59,98)
@norm  1.57(0.36)  0.03(-0.14,0.19)  0.08 (-0.06,0.22) 388.97 387.39 386.97 386.22 - - 100(100,100)
A 0.88(0.03)  0.27(0.11,0.42) 0.02 (-0.12,0.16)  373.70 371.70 374.06 379.03  27(10,42) - 73(58,90)
o 2.57(0.24)  0.12(-0.04,0.29)  0.06 (-0.08,0.20)  390.93 389.05 388.96 390.13 - 13(0,27) 87(73,100)
20 Y 2.40(0.16) 0.12 (-0.05,0.28) -0.06 (-0.20,0.08) 399.79 397.79 398.49 396.62 - - 100(100,100)
Q 0.42(0.04)  0.18(0.01,0.34) -0.01(-0.15,0.13) 420.38 418.38 419.95 419.30 18(0,37) - 82(63,100)
@norm  1.57(0.35)  0.01(-0.16,0.18)  -0.08(-0.21,0.06) 440.25 438.25 438.25 436.25 - - 100(100,100)
A 0.92(0.02)  0.32(0.16,0.46) 0.02 (-0.12,0.16)  369.38 367.38 370.49 378.53  30(14,44) - 70(56,86)
[ 2.21(0.14) 0.09 (-0.08,0.25) 0.00 (-0.14,0.14) 381.78 379.78 380.14 378.86 - - 100(100,100)
25 Y 2.05(0.12) 0.15 (-0.02,0.31) -0.07 (-0.21,0.07) 416.65 414.65 415.83 414.11 - - 100(100,100)
Q 0.37(0.04)  0.20 (0.04,0.36) 0.05(-0.09,0.18)  407.48 405.48 406.67 409.30 23( 4,40) - 77(60,96)
@norm  1.67(0.37)  0.17 (0.00,0.33) -0.01(-0.15,0.13) 160.91 158.91 159.82 159.46 22(0,45) - 78(55,100)
A 0.95(0.02)  0.30(0.14,0.44) 0.03(-0.11,0.17)  365.63 363.63 365.86 374.08  29(13,43) - 71(57,87)
(] 1.96(0.10) 0.06 (-0.11,0.22) -0.05(-0.18,0.09) 402.15 400.15 400.31 398.32 - - 100(100,100)

Table S2.1b: Binary graphs, global signal regression
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Phenotype
k

Without GSR

With GSR

Weighted

Binary

Weighted

Binary

10 Y

15 Y

20 Y

25 Y

(o

0.04 (-0.23,0.31)
0.00 (-0.27,0.27)
0.06 (-0.21,0.33)
-0.21 (-0.45,0.07)
0.00 (-0.27,0.27)

0.12 (-0.15,0.38)
0.12 (-0.15,0.38)
0.27 (0.00,0.51)
-0.15 (-0.40,0.13)
0.10 (-0.18,0.36)

0.23 (-0.05,0.47)
0.21 (-0.06,0.45)
0.20 (-0.08,0.44)
-0.17 (-0.42,0.11)
0.18 (-0.09,0.43)

0.28 (0.01,0.51)
0.20 (-0.07,0.45)
0.41 (0.15,0.61)
-0.20 (-0.45,0.08)
0.24 (-0.03,0.48)

0.35 (0.09,0.57)
0.28 (0.02,0.52)
0.33 (0.06,0.55)
-0.19 (-0.44,0.09)
0.30 (0.03,0.53)

0.09 (-0.18,0.35)
-0.03 (-0.30,0.24)
-0.00 (-0.27,0.27)
-0.18 (-0.43,0.10)
0.05 (-0.22,0.32)

0.12 (-0.16,0.38)
0.19 (-0.08,0.44)
0.06 (-0.22,0.33)
-0.06 (-0.33,0.22)
0.10 (-0.17,0.36)

0.22 (-0.05,0.47)
0.19 (-0.08,0.44)
0.20 (-0.08,0.45)
-0.09 (-0.35,0.19)
0.19 (-0.08,0.44)

0.28 (0.01,0.51)
0.20 (-0.07,0.45)
0.28 (0.00,0.52)
-0.12 (-0.38,0.16)
0.25 (-0.02,0.49)

0.34 (0.08,0.56)
0.24 (-0.03,0.48)
0.25 (-0.04,0.49)
-0.03 (-0.31,0.25)
0.30 (0.03,0.53)

0.07 (-0.20,0.34)
0.21 (-0.06,0.46)
0.31 (0.05,0.54)
-0.03 (-0.29,0.25)
-0.03 (-0.30,0.24)

-0.00 (-0.27,0.27)
0.07 (-0.20,0.34)
0.25 (-0.02,0.49)
0.11 (-0.17,0.37)
-0.01 (-0.28,0.26)

0.10 (-0.18,0.36)
0.24 (-0.04,0.48)
0.13 (-0.16,0.39)
0.15 (-0.13,0.40)
0.06 (-0.22,0.32)

0.24 (-0.03,0.49)
0.33 (0.07,0.55)
0.14 (-0.13,0.40)
0.16 (-0.12,0.41)
0.20 (-0.08,0.45)

0.30 (0.03,0.53)
0.24 (-0.03,0.48)
-0.11 (-0.37,0.17)
0.18 (-0.09,0.43)
0.24 (-0.03,0.48)

0.04 (-0.24,0.31)
0.22 (-0.05,0.47)
0.07 (-0.20,0.34)
-0.01 (-0.28,0.26)
-0.03 (-0.30,0.24)

0.01 (-0.26,0.28)
0.12 (-0.15,0.38)
0.27 (-0.01,0.50)
0.14 (-0.13,0.40)
-0.03 (-0.30,0.24)

0.12 (-0.16,0.38)
0.32 (0.06,0.54)
0.08 (-0.20,0.34)
0.12 (-0.15,0.38)
0.06 (-0.21,0.33)

0.31(0.04,0.53)
0.28 (0.01,0.51)
0.16 (-0.12,0.41)
0.17 (-0.11,0.42)
0.26 (-0.01,0.50)

0.31(0.04,0.54)
0.23 (-0.05,0.47)
0.11 (-0.17,0.37)
0.16 (-0.11,0.42)
0.29 (0.01,0.52)

Table S2.2: Test-retest reliabilities for all metrics over all processing methodologies
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3 Chapter 3: Heritability of Fronto-Parietal Effective connectivity in

Working Memory

This paper has been submitted to Human Brain Mapping in January 2015, and is under review.
The paper has been replicated here. The contents have been altered only slightly to reflect

formatting changes.
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Abstract

Working memory performance is impaired in a number of psychiatric disorders, and is
moderately to strongly heritable. The neural correlates of working memory may therefore
serve as useful endophenotypes for psychiatric disease. A number of recent studies have
implicated causal influences (effective connectivity) between frontal and parietal brain
regions as a mechanism underlying working memory execution. We investigate the
heritability of fronto-parietal effective connectivity during working memory, to see if this
neural correlate is promising as an endophenotype, using a large cohort of twins (194
monozygotic (MZ), 206 dizygotic (DZ) and 152 unpaired twins, age range 21-29). To measure
fronto-parietal effective connectivity we use dynamic causal modeling, currently one of the
most widely-used methodologies for investigating the causal influences of one brain region on
another. We used a two region DCM, including right dorsolateral prefrontal cortex (d1PFC)
and right parietal cortex (PC) to measure fronto-parietal connectivity. Our best model was
one in which stimulus presentation drove the PC, WM load drove the dIPFC, and WM load
modulated both forward and backward connections. We find no evidence of a heritable
component for the modulation in fronto-parietal connectivity, with low and non-significant
twin correlations (PC to dIPFC modulation: MZ correlation=0.08, DZ correlation=-0.05; dIPFC
to PC modulation MZ correlation=-0.14, DZ correlation=-0.05), and all variance in the
connectivity attributable to unique environment and/or modeling/experimental error. The
forward and backward modulations had low test-retest reliabilities (0.12 and 0.30

respectively).

Key words: working memory, dynamic causal modeling, genetics, heritability, effective

connectivity, test-retest reliability

Introduction

Working memory (WM) is a key component of cognition, defined as the mechanism by which
information is held and manipulated over short periods of time (Baddeley, 1992). It is
believed to facilitate higher-order cognitive functions, such as decision-making and goal
directed behavior. Further, WM abnormalities are a hallmark of schizophrenia (Carter et al.,

1996; Lee and Park, 2005), and WM is particularly susceptible to Alzheimer’s disease
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(Baddeley et al.,, 1991), thus the neural correlates of WM may be a promising biomarker for

psychiatric disease.

The neural correlates of working memory are well studied. Meta-analyses of the N-
Back WM task by Owen et al. (2005) report consistent activation of posterior parietal cortex
(PPC), dorsolateral prefrontal cortex (dIPFC), ventrolateral prefrontal cortex (vIPFC),
premotor cortex and frontal pole. Consensus on the functional roles of these regions has not
been reached. Some attribute the dIPFC a central role in strategic reorganization of memory
contents (Bor et al,, 2003; Owen et al., 2005), whilst meta-analyses by Wager and Smith
(2003) propose that the dIPFC is more involved in continuous updating and temporal order
memory. The PPC, part of the dorsal spatial visual processing stream (Goodale and Milner,
1992) plays a role in the storage of spatial information (Wager and Smith, 2003; Muller and
Knight, 2006), and is also involved in switching of spatial attention (Corbetta et al., 1995;
Cabeza and Nyberg, 2000), and a wide range of executive operations (Wager and Smith,
2003). There is also some degree of lateralization in WM, with right hemisphere more
involved in spatial working memory and left hemisphere activated more strongly by verbal
WM (D'Esposito et al., 1998), thought this lateralization is dependent on executive demand
(Wager and Smith, 2003). More recently, increased connectivity between specific regions has
been identified as facilitating WM. Honey et al. (2002) found increased connectivity between
frontal and parietal regions with increased WM load using structural equation modeling, and
similarly Woodward et al. (2006) observe a load enhanced network consisting of superior
parietal, inferior prefrontal, occipital and anterior cingulate regions using a constrained

principle component analysis.

In this paper we employ dynamic causal modeling (DCM; Friston et al. (2003)), to
measure directed connectivity in working memory networks. DCM is a technique adapted
from control theory, in which the causal influence of a set of brain regions on each other is
modeled by linear differential equations, whose parameters are estimated via a Bayesian
inversion scheme. There have been a number of recent studies investigating WM in a DCM
framework. Ma et al. (2012) report task-related increase in directed connectivity from
posterior parietal cortex to inferior frontal cortex and middle frontal gyrus and similarly,
Dima et al. (2014) found WM-load increases in connectivity from right PC to right dIPFC.
Conversely, Deserno et al. (2012) report a modulation of the backward (dIPFC to PC
connection). Using DCM for an N-Back WM task to compare schizophrenic patients to healthy

controls, they found that connectivity from dIPFC to PC is increased in response to higher WM
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load in healthy subjects, but that this task dependent modulation was absent in schizophrenic
patients, suggesting a possible pathological mechanism for reduced WM capacity in SZ
patients. This disease-association motivated the current study in which we assess the
suitability of fronto-parietal effective connectivity, as measured with DCM, as an imaging

endophenotype (Gottesman and Gould, 2003; Meyer-Lindenberg and Weinberger, 2006).

Working memory performance is a strongly heritable phenotype (h? ~ 40-60%) (e.g.,
Ando et al., 2001; Polderman et al., 2006). Additionally, voxel-wise BOLD activation during
WM performance is heritable (h? up to 65%, Blokland et al., 2011). To date, no study has
looked at the heritability of functional or effective connectivity during WM, though gene-
association studies have revealed a genetic influence on some features of WM connectivity.
Esslinger et al. (2011) report a lack of decoupling, measured as an increased Pearson’s
correlation, between dorsolateral prefrontal cortex (dIPFC) and hippocampus during working

memory task for subjects with a schizophrenia risk allele on gene ZNF804A.

In this study, we investigate the heritability of frontal-parietal connections using a
large sample of twins (N=452), scanned with functional MRI whilst undertaking an N-Back
WM task. Given the behavioral heritability of WM, and the role that frontal-parietal
connectivity seems to play in facilitating WM, we expect the task-dependent modulation of

connectivity to be heritable.

Methodology

Participants. 452 subjects (97 monozygotic (MZ) twin pairs (mean age 24.1, 60 female, 37
male), 103 dizygotic (DZ) twin pairs (mean age 23.7, 36 female pairs, 17 male pairs, 50 mixed
gender pairs), and 52 single twins) were recruited from the Queensland Twin Imaging Study
(QTIM) (de Zubicaray et al. 2008), under approval of the Human Research Ethics Committees
of the Queensland Institute of Medical Research, University of Queensland, and Uniting Health
Care, Wesley Hospital. Written informed consent was obtained for each participant. Twins
were scanned in the same session or within a week of each other. Participants were excluded
if they reported any history of psychiatric disease, brain injury, substance abuse or MR

incompatibility.

Experimental Paradigm. Our experimental procedure has been described previously

Blokland et al. (2011). Participants undertook a spatial N-Back test of working memory
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(Callicott et al., 1998), with 0-Back and 2-Back conditions. In this experiment, participants are
shown numbers between 1 and 4, in fixed positions within a diamond, in random order.
During the 0-Back condition, participants must report the number with which they were
presented, and during the 2-Back condition, participants must report the number with which
they were presented two trials previously. Alternating 0-Back and 2-Back blocks lasted 16

seconds each, with 16 trials per block.

Image Acquisition. Imaging was conducted on a 4 Tesla Bruker Medspec whole body
scanner (Bruker). Functional magnetic resonance images (fMRI) were acquired with a T2*-
weighted gradient echo, echo planar imaging (GE-EPI) sequence (repetition time TR = 2100
ms; echo time TE = 30 ms; flip angle = 90°; field of view FOV = 230 mm x 230 mm, pixel size
3.6x3.6mm, 36 coronal 3.0mm slices with 0.6mm gap). In one continuous run, 127 axial brain
volumes were acquired while they completed the spatial N-Back task. Within the same
session, a T1-weighted 3D structural image was acquired (MPRAGE, TR = 1500 ms; TE = 3.35

ms; inversion time TI=700ms; flip angle = 8°; FOV = 230 mm3, pixel size 0.9x0.9x0.9mm).

Image Processing. Images were preprocessed in SPM8 (www.fil.ion.ucl.ac.uk). For each
subject, the first 5 EPI volumes were removed to allow for steady state magnetization, all EPI
volumes coregistered to the first time point to remove inter-scan movement, the mean image
from all coregistered images was calculated and registered to the subjects T1 image. Using
these registration parameters, all EPIs were registered to the T1 image of the participant. To
transform all images into standard space, the T1 images were non-linearly registered to MNI
coordinates using the DARTEL algorithm. Using the resulting deformation fields, the EPI
images of all subjects were then transformed to standard space. Finally, images were
smoothed with a 4mm3 Gaussian kernel and global signal effects were estimated and removed

using a voxel-level general linear model (Macey et al., 2004).

Statistical Parametric Mapping. For each subject, a block-design fixed effects analysis
was conducted. Two regressors were entered into a general liner model, a delta comb
function modeling the stimulus presentation (one number presented at one second intervals),
and a boxcar function modeling the working memory load (2-Back/0-Back conditions). Each
regressor was convolved with a canonical hemodynamic response function. T-statistic
contrast images were calculated to measure the main effect of task-condition (2-Back>0Back),
and these images were entered into second level random effects analysis used to measure

group-wise activation, with the resulting group-wise t-statistic map thresholded at p<0.05
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Figure 3.1: Regions of interest for dynamic causal models were calculated as the intersection

of the group-wise activation map (red-yellow) and anatomical regions defined by the WFU
Pick Atlas depicted in blue (dorsolateral prefrontal cortex) and green (parietal cortex). MNI

slice coordinates labeled above (mm).

with a family wise error (FWE) correction for multiple comparisons. The group-wise
activation map showed robust activation in Inferior and Superior Parietal Cortex and

dorsolateral Prefrontal Cortex (Figure 3.1).

Volume of Interest Selection. A simple two region DCM, including only right dIPFC and
right PC was used to measure fronto-parietal connectivity. We initially explored models
including the visual cortex, as in Deserno et al. (2012). However, we observed no activation in
response to stimulus presentation in the visual cortex for a large number of subjects, and
since our hypothesis regarded fronto-parietal connectivity, and not connectivity with the
visual cortex, we dropped the visual cortex from our models. The right hemisphere was
selected as deficits in fronto-parietal connectivity in SZ were specific to the right hemisphere
in Deserno et al. (2012), and there is evidence that spatial working memory is right-
lateralized (D'Esposito et al., 1998, Wager and Smith, 2003). Volumes of interest were
extracted using a combination of anatomical and functional criteria. Anatomical regions of
interest were extracted from the WFU Pick Atlas (www.fmri.wfubmc.edu), with the dIPFC
defined as the union of BA9 and BA46, with medial sections of BA9 manually removed, and
parietal cortex defined as the union of BA7 and BA40. These ROIs were masked with the
group-wise task activation map. For each subject, the maximally activated voxel within the
resulting ROI was surrounded with a sphere of radius 6mm, and the first eigenvariate within

the sphere taken as the representative time series of the brain region.

Dynamic Causal Modeling. DCM models the change in neuronal activity in a region as
arising from contributions from direct driving input from experimental manipulations, C,
intrinsic connectivity between regions, A, and context-dependent changes in those
connections, B. This hidden neuronal activity is mapped to an observed BOLD response via a
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hemodynamic model. Posterior distributions for neuronal coupling and hemodynamic model
parameters are estimated simultaneously by inverting the forward model with a Bayesian
inversion scheme (Friston et al., 2003). We used deterministic, linear DCM, using the DCM10
toolbox as implemented in SPM12, to generate maximum a posteriori estimates for the
parameters A, B and C.

Since we do not know a priori which regions are functionally connected, how those
connections alter with context and which nodes are directly driven by experimental
manipulations, in DCM one specifies a range of plausible hypotheses and compares them for
goodness of fit. Assuming the presence of bi-directional intrinsic connections between PC and
dIPFC, all possible combinations of driving input from stimulus presentation, driving input
from the 2-Back condition, and task-related modulations in connectivity by the 2-Back
condition amounts to 64 different possible network configurations. This model space was
constrained by applying two model assumptions. Firstly that each experimental manipulation,
stimulus presentation and working memory load, directly drives the system through some
entry node (i.e. models missing one of these driving inputs were excluded), and secondly that
each experimental manipulation enters at only one node, with effects on other nodes arising
through the connectivity between nodes. These assumptions reduce the model space from 64
to 16 models, depicted in Figure 3.2. The model set is split into four families, with
membership determined by the direction of the task-dependent modulation. Models 1-4 have
no task-dependent connectivity modulations (NM), in models 5-8 the PC to dIPFC (forward;
FW) connection is modulated, in models 9-12 the dIPFC to PC (backward; BW) connection is

modulated, and in models 13-16, both connections are modulated (bi-directional; BD).

Bayesian Model Section. The best family of models, and best individual model were
determined using Bayesian model selection (BMS; Penny et al., 2004 ), implemented in
DCM12. BMS compares the model evidence (probability of the data given the model,
integrated over all model parameters) of alternative DCMs. This approach inherently
penalizes model complexity. We use the variational Bayes version of BMS described in
Stephan et al. (2009), to perform group-wise random effects model comparison. BMS was
implemented at the family level (Penny et al., 2010), to determine which modulation is most
likely, integrating over all other model features, and also at the individual model level. The
individual model with the highest exceedance probability (Ep; probability that the model has

a higher posterior probability than any other model) was retained for genetic analysis.
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Figure 3.2: DCM model space. Stimulus driving input indicated by solid vertical arrow, task
driving input indicated by dashed arrow, intrinsic connections indicated by arrows between
nodes, and task modulation of connection indicated by ‘WM’ over arrow. Models 1-4 have no
task-dependent connectivity changes, in models 5-8 the forward connection is altered with
WM load, in models 9-12 the backward connection is modulated, and in models 13-16 both

forward and backward connection are modulated.

Genetic modeling. We first calculated correlations between twin pairs for the
parameters of the winning model, using maximum likelihood fitting in Mx (Neale et al., 2002),
with sex, age and mean motion included as covariates. We then used structural equation
models (SEM) to estimate to what extent the variance in the load-dependent connectivity
modulations was attributable to additive genetic (where allelic contributions add linearly to a
phenotype), A, common environment, C, and unique environment/residual modeling error, E
(Neale et al., 2002). Structural equation modeling fits a predicted covariance structure based
on linear relationships between latent genetic and environmental variables, to the observed
covariance between twin phenotypes. The SEMs were fitted to the data using a maximum
likelihood fitting implemented in Mx (Neale et al., 2002). Initially, variance models including

all components (ACE model) were fitted, including age, sex and mean motion analysis

(average across all volumes of \/x? + y? + z2; Van Dijk et al., 2012) as covariates. Parameters
were successively dropped from the model and reduced models were tested for goodness of

fit using the log likelihood ratio test and Akaike Information Criterion (AIC).

78



Test-Retest Reliability: A subset of 40 of the twins were rescanned an average of 3.9
months after their first scan, allowing a measurement of the test-retest reliability of the DCM
parameters. Performing the same experimental paradigm and imaging procedure we fitted
the best model from the 452 subjects (model 15), to obtain DCM parameters for the second
session, and used them to calculate the test-retest reliability of the connectivity measures,

quantified by the intra-class coefficients (ICCs).

Results
Bayesian Model Selection

The bidirectional model family (Models 13-16), with WM-load modulations of both forward
and backward connections outperformed the other models (Ep=100%). The family of
backward models had higher evidence than the family of forward models, and the family with
no modulations had the least evidence. Within the bidirectional model family, model 15 had
the highest exceedance probability (Ep=97.7%; Figure 3.3), with the stimulus input driving
the PC and the task driving the dIPFC.

Bayesian Model Selection
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Figure 3.3: Model expected probabilities (left), and exceedance probabilities (right). Models
with WM modulation both forward and backward modulations had higher model expected
probability than those with modulation of backward connections (models 9-12) which in turn
had higher expected probabilities than those with WM modulation of forward connections
(models 5-8). The model with highest evidence was model 15, with WM modulation of both
forward and backward connections, stimulus input into PC and WM input into dIPFC.
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Figure 3.4: Average parameters across the sample for model 15.

DCM Parameters

The mean parameters across the 452 subjects of model 15 are shown in Figure 3.4. In this
model, the stimulus presentation drives the network via the parietal cortex, and WM load
drives the network via the dIPFC. dIPFC exerts a strong excitatory input to PC, and this
influence is strongly increased during the 2B condition. Conversely, the PC exerts a relatively

weak inhibitory influence on the dIPFC, and this influence is increased during 2B condition.

Genetic Modeling

Twin correlations were small and non-significant, indicating no genetic influence. As expected
from the twin pair correlations, genetic modeling (Table 3.1) showed that the variance for
both forward and back projections was due to unique environmental influences, which

includes experimental (measurement) error.

Test-Retest Reliabilities And Posterior Correlations

To shed light on whether the large E component was more likely due to unique environmental
influences, or experimental error, we examined the test-retest reliability. We found low test-
retest reliabilities for the task-dependent modulations, intrinsic connections, driving stimuli

and decay constants, with the highest ICC being 0.30 for the task modulation of the PC to
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dIPFC connection (Table 3.2). These low ICCs indicate that the main contribution to the large
E component is experimental error, rather than unique environmental influence.

Table 3.2 gives the posterior correlations between parameter estimates. There are
numerous significant negative correlations, the largest being -0.65 between 2B driving input
to dIPFC and 2B modulation on PC to dIPFC, implying that the increase in activity during 2B of
the dIPFC may be explained by either direct driving of the region by the task, or an increase in
connectivity from PC to dIPFC during the task, and that there is a high degree of co-linearity

between these two possible factors.

Table 3.1: Means, twin correlations, and variance component estimates of the connectivity
parameters from the best fitting model 15. MZ and DZ pairs were low and not significant, with

wide confidence intervals.

Mean Twin Correlations Model Fit Variance components, expressed
(SD) as % of total variance
MZ DZ -2LL df x2test AIC A C E
(97 pairs) (103 pairs) p-value

2B on PC to -0.18 0.08 -0.05
dIPFC (B212) |(0.38) (-0.10,0.26) (-0.22,0.12)
ACE 1121.80 445 - 231.80| 4 (0,21) 0(0,0) 96 (79,100)
AE 1121.80 446 1.00 229.80|4 (0,21) - 96 (79,100)
CE 1122.01 446 0.64 230.01 - 1(0,15) 99 (85,100)
E 1122.04 447 0.89 228.04 - - 100 (100,100)
2B on dIPFC 0.73 -0.14 -0.05
to PC (B122) (1.80) (-0.32,0.04) (-0.22,0.12)
ACE 1273.84 445 - 383.84| 0(0,8) 0(0,7) 100 (92,100)
AE 1273.84 446 1.00 381.84| 0(0,8) - 100 (92,100)
CE 1273.84 446 1.00 381.84 - 0(0,7) 100 (93,100)
E 1273.84 447 1.00 379.84 - - 100 (100,100)
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Table 3.2: Test-retest reliabilities of all model parameters for best fitting model 15, and

posterior correlations between model parameters.

Model ICC (95% Posterior Parameter Correlation (95% Cls)
Parameter Cls)
A2 A1z An A2 B212 Bi22 Ci1 C22
PC to dIPFC 0.15 1.00
(A21) (-0.17,0.44) (1.00,1.00)
dIPFC to PC -0.03 -0.29 1.00
(A12) (-0.34,0.28) (-0.37,-0.20) (1.00,1.00)
PC decay -0.01 0.03 0.02 1.00
constant (-0.32,029)  (-0.06,0.13) (-0.07,0.12) (1.00,1.00)
(A1)
dIPFC decay -0.22 -0.36 0.09 0.02 1.00
constant (-0.49,0.10)  (-0.44,-0.28) (-0.00,0.18) (-0.07,0.12) (1.00,1.00)
(A22)
2B on PC to 0.30 -0.33 0.07 0.08 -0.03 1.00
dIPFC (-0.01,0.56) (-0.41,-0.25) (-0.03,0.16) (-0.01,0.17) (-0.12,0.07) (1.00,1.00)
(B212)
2B on dIPFC 0.12 0.11 -0.32 -0.06 -0.03 -0.11 1.00
to PC (-0.20,0.42) (0.02,0.20) (-0.40,-0.24) (-0.15,0.03) (-0.12,0.07) (-0.20,-0.02) (1.00,1.00)
(B122)
Stimulus 0.01 -0.02 0.10 -0.16 -0.12 0.10 -0.01 1.00
drivinginput (-0.30,0.31) (-0.12,0.07) (0.01,0.19) (-0.25,-0.07) (-0.21,-0.03) (0.01,0.19) (-0.10,0.08) (1.00,1.00)
to PC
(C11)
2B driving -0.03 -0.03 0.03 -0.33 -0.07 -0.65 0.13 0.19 1.00
inputto (-0.34,0.28) (-0.13,0.06) (-0.06,0.12) (-0.41,-0.25) (-0.16,0.03) (-0.70,-0.59) (0.04,0.22) (0.10,0.28) (1.00,1.00)
dIPFC
(C22)
Discussion

Fronto-parietal connectivity has been frequently associated with working memory (Chafee

and Goldman-Rakic, 1998; Quintana and Fuster, 1999; Honey et al., 2002), and has recently

been observed to be disrupted in schizophrenia (Deserno et al., 2012), motivating our

assessment of its suitability as an endophenotype. In the largest sample to date (N=452), we

performed dynamic causal modeling of data from a spatial N-Back working memory task, in

order to estimate the genetic influence on task-induced changes in fronto-parietal

connectivity. We found a task-related modulation of PC to dIPFC (forward) and dIPFC to PC

(backward) connections, with the backward connection being larger in magnitude. We find no

evidence that the task-dependent changes in fronto-parietal connectivity are influenced by

genetic variation, and that the DCM parameters had low test-retest reliability.
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The lack of heritability is surprising given related studies on fronto-parietal
connectivity during WM. The BOLD activation in frontal and parietal regions in our data set
was heritable, as was working memory performance itself (Blokland et al., 2008; Blokland et
al, 2011). In other samples, it has been shown that the structural connections between frontal
and parietal cortex are genetically influenced. Karlsgodt et al. (2010) found fractional
anisotropy (FA; a measure of white matter integrity) in the superior longitudinal fasciculus,
the primary white matter tract linking frontal and parietal cortices, to be heritable (h?=59%),

and to share common genetic influences with spatial working memory performance.

We found that most variance in the metrics was due to unique environmental variance
and/or modeling/experimental error, E. Although it is not possible to separate unique
environmental variance and modeling/experimental error using the twin design ACE model,
post-hoc analyses lead us to believe there is a large contribution from modeling/experimental
error to the parameter estimate. We found low test-retest reliability of all DCM parameters
(ICC<0.3). This could indicate a strong practice effect often seen in executive tasks (Basso et
al,, 1999; Lemay et al,, 2004; Lowe and Rabbitt, 1998), a poor performance of our
experimental procedure to reveal the underlying connectivity modulations, or an absence of
those connectivity modulations (e.g. Harding et al. (2014) find no WM-load fronto-parietal
connectivity modulations). There have been two prior studies on the test-retest reliabilities of
DCM parameters. Schuyler et al. (2010) find high reliabilities of DCM parameters (ICC=0.5-
0.9) in a task requiring identification of angry or happy faces/voices, for scanning sessions 5
minutes apart, whereas Rowe et al. (2010) find very low reliability in an action selection task
(r?=0.02-0.17), for scanning sessions weeks apart. Rowe et al. (2010) suggest that the
difference in reliabilities compared to the Schuyler et al. (2010) study may arise from the
difference in inter-scan interval, the simplicity of the Schuyler et al. (2010) models, in which
only feed-forward mechanisms are present, and substantial posterior covariance between
model parameters in their study. Posterior covariance between parameters can indicate that
one parameter may be able to compensate for the value of another whilst maintaining overall
model evidence, such that the anti-correlated values of each parameter could vary
substantially between sessions. These considerations are important for the present study,
since the models involve both feed-forward and feedback mechanisms, and there is strong
posterior covariance between model parameters (Table 3.2). A high degeneracy between
model parameters not only allows for large variation between scans, but also large variation

between twins, potentially hindering the estimation of genetic effects. Post-hoc analysis of the
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test-retest reliabilities of the simpler unidirectional models 7 and 11 (Supplementary Table
S3.1), gave higher posterior correlations than for the bidirectional model 15, and test-retest
reliabilities were not systematically higher, suggesting that parameter degeneracy associated

with bidirectional models was not a cause of low test-retest reliabilities.

The DCM model with highest evidence suggested that WM load serves as a driving
input into the dIPFC, with the dIPFC driving the PC, more strongly during 2B as compared to
0B condition. Although our winning model included modulations of both forward (PC to
dIPFC) and backward (dIPFC to PC) modulation, the backward modulation was much greater
in magnitude, and the model family including only backward modulations had more evidence
than those including only forward modulations. The modulation of the backward connection
is consistent with the top-down architecture proposed by Curtis and D'Esposito (2003), in
which persistent activity in the dIPFC acts to focus attention on stimulus representations
stored in the parietal cortex, and consistent with the biophysical model and fMRI observations
of Edin et al. (2009), whereby lateral parietal inhibition which limits WM capacity at low load,
is overcome by excitatory input from the dIPFC at higher loads. Backward modulation was
also observed in healthy controls in the DCM studies of Deserno et al., 2012 (numeric N-Back
task). However, a forward mechanism was observed in the winning models of both Ma et al,,
2012 (numeric delayed match to sample task) and Dima et al., 2014 (verbal N-Back task) and
no fronto-parietal modulations were observed by Harding et al. (2014) (verbal N-Back task).
While Dima et al. (2014) constrained their model space to only allow (WM-load) driving input
into the parietal cortex, Ma et al. (2012) tested the most likely region of WM input with
connectivity modulations absent, and found this to be the parietal cortex. The study of (Ma, et
al,, 2012) differed from the present study in that the task paradigm was a delayed matching to
sample task, and the networks used in DCM were considerably more complex, involving 8
bilateral regions of interest. It is noted that none of the previous studies employed a spatial N-

Back working memory task.

One limitation of this study is the simplicity of the DCM models utilized. Working
memory consists of numerous sub-processes, among them encoding, information
manipulation, maintenance and retrieval. As depicted in Figure 3.1, the N-Back working
memory task activates a large number of brain regions. By modeling the activity of only two
regions, we potentially fail to account for multiple sources of variance/covariance in the data
(Eichler, 2005; Waldorp et al., 2011). However, two region DCMs have been successfully

implemented in the past to investigate the N-Back WM task (Bernal-Casas et al.,, 2013),
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demonstrating multi-site reproducibility of winning model and parameter estimates. A
related limitation is that in restricting our model space, we rejected models in which both
dIPFC and PC are driven by external task input, and interregional connectivity is absent. This
was based on the suggested importance of fronto-parietal connections and modulations in
prior literature. However, given the low reliability of our connectivity parameters, and the
absence of direct fronto-parietal modulations in Harding et al. (2014), such models may be
worthy of consideration in future work. A second limitation of this study is that the
experimental design was optimized to find differences between 0B and 2B conditions,
whereas the contrast on stimulus presentation (one per second) is relatively poorly
distinguished. The inter-trial interval of one second is less than the duration of the
hemodynamic response function, which may pose difficulties in tracking the propagation of
activity induced by external stimuli, with the BOLD response at each node being a
superposition of influences from multiple stimuli. However, since DCM is a continuous time
modeling approach which explicitly models the fast hidden neuronal states and the
hemodynamic response function, a short inter-stimulus time should not preclude the

application of DCM (Valdes-Sosa et al., 2011).

In summary, contrary to our hypothesis, we do not observe heritability of fronto-
parietal connectivity modulations in working memory. The task-induced changes in the
connectivity between dIPFC and PC seen in our winning model have very low test-retest
reliabilities, limiting the inferences that can be made from the heritability analysis. More work
is needed to establish the reliability of different working memory task settings and DCM
modeling choices. This is the largest ever study on effective connectivity in working memory,
and the first study to look at the heritability of DCM connectivity estimates in any cognitive

domain.
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Supplementary Material

Table S3.1: ICCs of DCM parameters for models 15, 7 and 11.

Parameter Model 15 (BD) Model 7 (FW) Model 11 (BW)
Al1 -0.01(-0.32,0.29) 0.34(0.04,0.59) -0.04(-0.34,0.27)
A21 0.15(-0.17,0.44) 0.25(-0.07,0.52) 0.14(-0.18,0.43)
Al2 -0.03(-0.34,0.28) 0.41(0.11,0.64) -0.03(-0.34,0.28)
A22 -0.22(-0.49,0.10) -0.10(-0.39,0.22) -0.09(-0.39,0.22)
B212 0.30(-0.01,0.56) 0.03(-0.28,0.34) -

B122 0.12(-0.20,0.42) - 0.06(-0.25,0.37)
C11 0.01(-0.30,0.31) 0.06(-0.25,0.36) -0.05(-0.36,0.26)
C22 -0.03(-0.34,0.28) 0.01(-0.30,0.32) 0.21(-0.11,0.49)

Table S3.2: ICCs of DCM parameters using region of interest selection methods from Deserno

etal, 2012 and Ma etal., 2012.

Parameter

Deserno et al. 2012

Maetal. 2012

All -0.01(-0.32,0.29)
A21 0.15(-0.17,0.44)
A12 -0.03(-0.34,0.28)
A22 -0.22(-0.49,0.10)
B212 0.30(-0.01,0.56)
B122 0.12(-0.20,0.42)
c11 0.01(-0.30,0.31)
c22 -0.03(-0.34,0.28)

0.10(-0.23,0.41)
-0.09(-0.40,0.25)
-0.25(-0.53,0.08)
0.09(-0.23,0.40)
0.31(-0.01,0.57)
-0.02(-0.34,0.31)
-0.09(-0.40,0.23)
0.30(-0.02,0.57)
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4 Chapter 4: Genetics Influences on Functional Connectivity in Working

Memory Networks

This paper has been submitted to the Journal of Neuroscience in August 2015. The paper has
been replicated here. The contents have been altered only slightly to reflect formatting

changes.
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Abstract

The dorsolateral prefrontal cortex (dIPFC) is a robustly activated region during a range of
working memory (WM) tasks. Its connectivity with the rest of the brain during working
memory has been reported to be predictive of task performance and associated with disease
genetic risk factors. Here we probe the connectivity profile of the right dIPFC during working
memory in a large sample of twins (N=827, 134 monozygotic (MZ) pairs; 165 dizygotic (DZ)
pairs; 229 unpaired), and measure the heritability of a number of right dIPFC connections
previously reported as implicated in WM, to the left dIPFC, right parietal cortex, left
hippocampus, medial frontal cortex and posterior cingulate cortex. We observe the expected
positive coupling between dIPFC and task-positive network regions, and negative coupling
with the default mode network. Changes in connectivity with working memory load were less
significant, with increased contralateral dIPFC connectivity, and increased dIPFC-posterior
cingulate cortex anti-correlation. We estimate weak heritability of dIPFC connectivity to
contralateral dIPFC (h2=36%), ipsilateral parietal cortex (24%), posterior cingulate cortex

(37%) and medial frontal cortex (26%).

Key words: working memory, functional connectivity, genetics, heritability

1. Introduction

Convergent evidence suggests that working memory (WM) function is facilitated by the
interaction of a distributed network of functionally related brain regions (Schlosser et al.,
2006; Fuster, 2009). Functional connectivity (FC) correlates the time series data of different
brain regions to measure large scale brain interactions. As opposed to effective connectivity,
which models the causal influence of one neuronal population on another, FC measures the
statistical dependencies between activity of disparate brain anatomy (Friston, 2011), and thus
cannot be said to make any inference on neural mechanisms. Despite this conceptual
limitation, functional connectivity has proven useful in disease group classification (Meyer-
Lindenberg et al., 2005; Koshino et al,, 2005), and is predictive of cognitive performance

across a range of domains (Hampson et al., 2006a; Hampson et al., 2006b; He et al., 2007).

92



Working memory is a strongly heritable cognitive process. Accuracy in working
memory tasks is a heritable phenotype (h?=40-60%; Ando et al., 2001, Polderman et al,,
2006). Recently it has been shown that variation in brain activation in N-Back working
memory tasks has a moderate to strong genetic component (mean h?=23%, max h2=65%)
(Blokland et al., 2011). Since brain connectivity is thought to underlie working memory
execution, and many aspects of working memory are strongly heritable, it is reasonable to
hypothesize that WM-associated connectivity is a heritable feature, and may be a useful
endophenotype for understanding the genetic architecture of WM. However, little work has

been done to establish the genetic effects on WM-related brain connectivity.

Most prior studies of WM FC have looked at the connectivity of the dorsolateral
prefrontal cortex (dIPFC), which is a key node in WM performance. It is robustly activated in a
range of paradigms (Owen et al,, 2005), with its activation related to performance measures
(Pessoa et al., 2002; Sakai et al., 2002). Its connectivity with other brain regions is thought to
have a mechanistic role in facilitating WM (Chafee and Goldman-Rakic, 1998; Gazzaley et al.,
2004; Zanto et al,, 2011). Further, abnormalities in dIPFC connectivity with left hippocampus
(Meyer-Lindenberg et al., 2005) and right parietal cortex (Deserno et al., 2012) have been
observed in schizophrenic patients. We investigate the strength and heritability of WM task

connections of the right dIPFC with right parietal cortex (rPC) and left hippocampus.

At rest, the brain is intrinsically organized into two anti-correlated networks (Fox et
al,, 2005), one referred to as the “task-positive network” including a set of regions routinely
activated across a range of cognitive domains such as the dIPFC, posterior parietal cortex,
anterior cingulate cortex (Dosenbach et al., 2006; Cole and Schneider, 2007), and the “task-
negative network” or default mode network (DMN), including regions routinely deactivated
(Shulman et al., 1997; Raichle et al., 2001) such as medial frontal cortex (MFC), posterior
cingulate cortex (PCC) and lateral parietal cortices. The anti-correlation between these
networks persists during task-performance (Kelly et al., 2008; Whitfield-Gabrieli and Nieto-
Castanon, 2012) which may be involved in task-related suppression of the DMN. Although
most work in the working memory literature has focused on the interactions between task-
positive regions, there is growing interest in the role of task-positive to task-negative
interaction in cognition. Interestingly, task-negative regions have been reported to display
connectivity with the dIPFC which is predictive of task performance in a verbal WM task

(Hampson et al,, 2010). In particular, the strength of anti-correlation between dIPFC and MFC,
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arobustly deactivated region, is correlated with task performance. Similarly, the anti-
correlation between task-positive and task-negative regions has been linked to behavioral
variability in response inhibition tasks (Kelly et al., 2008). In this study we look at the

functional connectivity between dIPFC and two task-negative regions, the MFC and PCC.

Although no work has yet measured the heritability of functional connectivity during
working memory, a couple of studies have found genetic association with some features of
dIPFC connectivity. Esslinger et al. (2009) found that inter-hemispheric dIPFC and dIPFC-
hippocampal connectivity was correlated with genotype of the schizophrenia risk gene
ZNF804, and Tan et al. (2007) found dIPFC-PC functional connectivity was modulated by

interactions between dopaminergic and glutamatergic genes.

Based on previous research into WM-related brain connectivity, patient data, and
genetic studies, we expect positive correlations between the right dIPFC with the left dIPFC
and right PC, and negative correlations to MFC, PCC and left hippocampus during working
memory performance, and we expect that the FC of right dIPFC with left dIPFC, right PC, left
hippocampus, MFC and PCC during WM will be heritable, and that load dependent changes in

these connections will also be heritable.

2. Materials and Methods

Participants. 906 subjects were recruited from the Queensland Twin Imaging Study (QTIM)
(de Zubicaray et al., 2008), under approval of the Human Research Ethics Committees of the
Queensland Institute of Medical Research, University of Queensland, and Uniting Health Care,
Wesley Hospital. Written informed consent was obtained for each participant. Twins were
scanned in the same session or within a week of each other. Participants were excluded if they
reported any history of psychiatric disease, brain injury, substance abuse or MR
incompatibility. Data from 79 subjects were excluded due to excessive head motion
(translation>3mm, rotation>2°) leaving a final sample size of 827 subjects (134 monozygotic

(MZ) pairs; 165 dizygotic (DZ) pairs; 229 unpaired; mean age 22.9 (SD 2.7)).
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Experimental Paradigm. Participants undertook the widely-used N-Back test of working
memory (Callicott et al., 1998), with 0-Back (0B) and 2-Back (2B) conditions. In this
experiment, participants are shown numbers between 1 and 4 in random order appearing on
a colored diamond, with each unique number always appearing in the same location on the
diamond grid (see Blokland et al 2011). During the 0B condition, participants must report the
number with which they were presented, and during the 2B condition, participants must
report the number with which they were presented two trials previously. The 0 and 2 back
conditions were in blocks of 16 trials (16s), and alternated throughout the run, with 8 blocks

of each condition.

Image Acquisition. Imaging was conducted on a 4 Tesla Bruker Medspec whole body scanner
(Bruker). Participants undertook an fMRI scan, whilst performing the working memory task.
The imaging sequence was a T2*-weighted gradient echo, echo planar imaging (GE-EPI)
sequence (repetition time TR = 2100 ms; echo time TE = 30 ms; flip angle = 90°; field of view
FOV = 230 mm x 230 mm, pixel size 3.6x3.6mm, 36 coronal 3.0mm slices with 0.6mm gap,
127 volumes). Prior to the fMRI scan a T1-weighted 3D structural image was acquired
(MPRAGE, TR = 1500 ms; TE = 3.35 ms; inversion time TI=700ms; flip angle = 8°;, FOV = 230

mm3, pixel size 0.9x0.9x0.9mm).

Image Processing. Images were processed in SPM8 (www.fil.ion.ucl.ac.uk/spm/). For each
subject, the first 5 EPI volumes were removed to allow for steady state magnetization, and all
images slice time corrected. All EPI volumes coregistered to the first time point to remove
inter-scan movement, the mean image from all coregistered images was calculated and
registered to the subjects T1 image. T1 images were transformed into standard space, using
the DARTEL algorithm, and the resulting deformation fields applied to the EPI images. Finally,

images were smoothed with an 8mm?3 Gaussian kernel.

Statistical Parametric Mapping. For each subject activation in response to the 0- and 2-back
conditions was measured using a general linear model. A contrast was generated for working
memory load (2B greater than 0B). This was taken and entered into a group wise random
effects analysis, to measure group-wise activation, with the resulting t-statistic map
thresholded at p<0.05 with a family wise error (FWE) correction for multiple comparisons.

The resulting group-wise activation map showed activation in inferior and superior parietal

95



cortex, dIPFC and deactivation in medial frontal cortex (MFC), posterior cingulate cortex

(PCC) and hippocampus (Figure 4.2).

dIPFC Seed Region. The right dIPFC seed region was extracted using a combination of
anatomical and functional criteria. Anatomical regions of interest were extracted from the
WFU Pick Atlas (www.fmri.wfubmc.edu), with the dIPFC defined as the union of BA9 and
BA46, with medial sections of BA9 manually removed. The maximum groupwise activation for
the 2B>0B condition within the dIPFC was at MNI coordinates [42,36,24]. For each subject,
the nearest local maximum to this coordinate was surrounded with a sphere of radius 6mm,
and the first eigenvariate within the sphere taken as the representative time series for the

right dIPFC.

Functional Connectivity Analysis. Functional connectivity analysis was undertaken in the conn
fmritoolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). For each subject, time series were
despiked, linearly detrended and high-pass filtered at 1/128 Hz. The first 5 principle
components of signal from white matter and CSF were removed, using the compcor algorithm,
an alternative to removing global signal which nonetheless removes much of the artificial
global signal related correlation (Behzadi et al., 2007), along with 6 motion parameters and
their first derivatives.

Finally, Pearson’s correlation coefficient of the dIPFC seed time series with every voxel
was taken to quantify functional connectivity. Functional connectivity was calculated within
each condition by partitioning the time series into time points falling within each condition,
allowing for haemodynamic delay. This was carried out using weighted correlations specific
to each condition, with weights calculated by convolving the boxcar functions for 0B and 2B
conditions with a haemodynamic response function (hrf). Since time points at the boundary
between conditions will contain contributions from both 0B and 2B conditions, the
robustness of our results were assessed by repeating the procedure convolving with a
Hanning filter, rather than a hrf, which is simply a rectangular filter which disregards points
close to the boundary. We also measured the effect of regressing out task-related variance,
which is carried out when a single correlation across multiple task conditions is taken (e.g.
Esslinger et al.,, 2011), and also helps reduce ramping up and ramping down effects at the
boundary between conditions. The difference in correlation between conditions was also

calculated for each subject, as a representation of connectivity change during working
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memory load. Fisher-transformed subject dIPFC connectivity maps for 0B, 2B and 2B-0B were

taken forward to a second level random effects analysis, to calculate group connectivity.

Target ROIs. To quantify the functional connectivity of the right dIPFC to the regions of
interest, we averaged the Fisher-transformed correlation coefficient over all voxels contained
within the region. The target ROIs were defined anatomically using the WFU Pick Atlas, and
were right parietal cortex (PC; BA 7 and BA 40), left dIPFC (BA 9 and BA 46, with medial BA 9
manually removed), left hippocampus, bilateral PCC (BA 23 and BA 31), and bilateral MFC (BA
9 and BA 10). To restrict averaging to regions connected with the dIPFC, each anatomical
region was masked with each of the three group-wise connectivity profiles, 0B, 2B, 2B>0B,
and the largest cluster in the composite mask retained. For the 0B and 2B conditions, in the
left dIPFC and right PC, only significantly positively correlated voxels were retained, and in
the left hippocampus, PCC and MFC only significantly negatively correlated voxels were
retained. For the 2B-0B condition, left dIPFC and MFC were masked with voxels showing a
significant increase in correlation (2B>0B), and PCC, left hippocampus and right PC were
masked with voxels showing a significant decrease in correlation (0B>2B), as this was the

pattern of connectivity changes observed in those regions (see Figure 4.2; bottom panel).

Heritability. Monozygotic and dizygotic twin correlations were calculated using maximum

likelihood fitting implemented in Mx (Neale et al., 2002), with sex, age and mean motion

(average across all volumes of \/m; Van Dijk et al,, 2012) included as covariates. We
then used structural equation models (SEM) to estimate to what extent the variance in the FC
was attributable to additive genetic, A, common environment, C, and unique
environment/measurement error, E (Neale et al,, 2002). Structural equation modeling fits a
predicted covariance structure based on linear relationships between latent variables, to the
observed covariance between twin phenotypes. The phenotype, in our case FC, is modeled as
a linear function of latent genetic and environmental variables, P = aA + cC + eE. The variance
of the phenotype is given by var(P) = a2 + c2 + e2, the covariance between MZ twin pairs as
cov(P1,P2)mz = a2 + c?, and the covariance between DZ twins as cov(P1,P2)pz = %2 a2 + ¢2, since
on average DZ twins share 50% of their genetic polymorphisms. The path diagram embodying
this covariance structure is shown in with Figure 4.1. The SEMs were fitted to the data using a
maximum likelihood fitting implemented in Mx (Neale et al., 2002). Initially, variance models
including all components (ACE model) were fitted, including age, sex and mean motion as

covariates. Parameters were successively dropped from the model and reduced models were
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tested for goodness of fit. The nested genetic models were then compared for model
parsimony using the Akaike Information Criterion (AIC). To correct for multiple comparisons,
an effective number of independent tests was estimated from the phenotype correlation
matrix, and a Bonferonni correction applied based on the effective number of independent
tests to give an adjusted significance threshold required to keep Type I error rates at 5% and
corresponding confidence intervals (Nyholt, 2004). The uncorrected 95% confidence
intervals on each parameter are reported, and heritability estimates exceeding the

significance threshold once corrected for multiple comparisons are indicated.

Test-retest reliability. A subset of 48 subjects were rescanned an average of 3.5(SD 1.4)
months after the first scan, to measure the test-retest reliability of the connectivity measures,

quantified with the intra-class correlation coefficient.
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Figure 4.1: Path Diagram for genetic modeling. In this structural equation modeling,
(observed) variance in functional connectivity parameters is modeled as arising from
(hidden) additive genetic factors (A), common environmental factors (C), and unique
environmental factors (E). The covariance in additive genetic factors is set to 1 for

monozygotic (MZ) twins and % for dizygotic (DZ) twins.
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3. Results

Functional Connectivity

Figure 4.2 shows the connectivity profile of the dIPFC during WM, and the change in
connectivity between 0B and 2B conditions. For the 2B condition we see positive correlation
with the majority of WM-activated regions, including superior and inferior parietal cortex
(peak maxima, MNI coordinates (50, 30, 48)), left dIPFC (-46, 26, 30), middle/anterior
cingulate cortex (4, 24, 44) and insula (38 22, -2). We also see negative correlations with
many areas of the task-negative/default mode network, including medial frontal cortex (-2,
56,2), posterior cingulate cortex (-6, -48, 28) and angular gyrus (-48, -62, 30). The
connectivity profile for the 0B condition was very similar to the 2B condition, and the bottom
panel of Table 4.1 shows that the average FC across the regions of interest changes very little

between conditions, with the standard deviations crossing zero.

Nonetheless, due to our large sample size and high power to detect small changes, we do
observe significant changes in FC between 2B and 0B conditions in some regions. Increases in
correlation are observed in the left dIPFC (-52, 20, 24), anterior precuneus (-4,-52,44) which
go from positively correlated to more positively correlated, and superior regions of the medial
frontal cortex (-6,56,38) and left angular gyrus (-46, -66, 22), which go from negatively
correlated to more negatively correlated. Reductions in correlation are present in Posterior
cingulate cortex (2,-28,28), anterior cingulate cortex (0,30,22) and posterior precuneus (12,-

68,40).

Heritability

Table 1 gives heritability estimates for dIPFC connectivity and the five ROIs for the 0B, 2B and
2B>0B conditions. During the 2B condition, right PC (h2=24%), dIPFC (h?=36%), PCC
(h?2=37%) and MFC (h?=26%) have small but significant estimates of additive genetic
variance. For hippocampus, the best fitting model was one without additive genetic
component. In some cases where an AE model was chosen as the best model, there was little
difference in the AIC values of the AE and CE models (AAIC<2), giving little evidence to choose
between the two. During the baseline condition, a similar pattern of genetic and

environmental influences was present. The variance in change in connectivity between 2B
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and OB for all regions was attributed to unique environmental/ measurement error for all

regions.
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Figure 4.2: Group wise activation (top panel), and connectivity profiles with dIPFC seed
(bottom three panels). Positive activation/connections in red-yellow, negative
activations/connections in blue-green. The t-statistics were thresholded at FWE p<0.05,

corrected for multiple comparisons.
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Test retest reliabilities are given in Table 4.2. Reliabilities were low to moderate, ranging from
-0.30 to 0.51. Test-retest reliabilities (and heritability estimates) were lowest in the
hippocampus, and lowest for the 2B-0B contrast. We note that the hippocampus was the
smallest of the ROIs considered, and that the segmentation of the hippocampus extracted
from the WFU Pick Atlas did not overlap well with our functional connectivity cluster in the

hippocampus (Supplementary Figure S4.1).

Table 4.2: Test retest reliabilities for the mean functional connectivity with the right
dorsolateral prefrontal cortex over each region, for each condition, quantified as the intra-

class correlation between session 1 and session 2.

Region Intra Class Correlation
0B 2B 2B-0B
right PC 0.15 (-0.13,0.41) 0.45 (0.19,0.65) 0.18 (-0.11,0.44)
left dIPFC 0.41 (0.14,0.62) 0.47 (0.22,0.66) 0.13 (-0.16,0.39)
left hippocampus 0.03 (-0.25,0.31) -0.02 (-0.30,0.26) -0.30 (-0.53,-0.02)
PCC 0.51 (0.27,0.69) 0.28 (0.00,0.52) 0.20 (-0.08,0.46)
MFC 0.38 (0.12,0.60) 0.28 (-0.00,0.52) 0.09 (-0.20,0.36)

Processing variations accounting for boundary effects

Groupwise correlation maps (Supplementary figure S4.2), heritability estimates
(Supplementary Table S4.1) and test-retest reliabilities (Table S4.2) when using a Hanning
filter to remove time points near condition boundaries are almost identical to those when
using a more conventional hrf filter to de-weight boundary time points, indicating that results
were not confounded by boundary effects. Regressing out task-related variance did not
substantially alter the connectivity profiles for 0B and 2B conditions, but produced an
unexpected WM-load (2B>0B) reduction in functional connectivity with the right posterior
parietal cortex (Figure S4.3). Test-retest reliabilities were substantially lower (Table S4.4),
while heritability estimates were similar (Table S4.3), other than for MFC, which was not

heritable.
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4. Discussion

This study shows a weak to moderate influence of genetic variation on the functional
connectivity between right dIPFC with left dIPFC (h?=36%), right PC (24%), PCC (37%) and
MFC(26%) during working memory performance, but no genetic influence on load-dependent
changes in connectivity. All connectivity measures had large unique environmental/

measurement error variance components.

Inter-hemispheric prefrontal connectivity is fundamental to integrative attentional
processing and cognitive control (Banich, 1998; Gazzaniga, 2000). There are a number of
genetic mechanisms which may contribute to the observed heritability of inter-hemispheric
prefrontal connectivity. Glutamatergic, GABAergic and dopaminergic systems have all been
implicated in working memory function. Glutamate is involved in cortico-cortical excitatory
interactions, and genes regulating glutamate transmission are associated with spatial working
memory performance (Donohoe et al., 2007). Dopamine modulates the excitability of
prefrontal neurons, and its importance in WM has been long established (Sawaguchi and
Goldman-Rakic, 1991; Goldman-Rakic, 1998). Genes involved in dopamine signaling, catechol-
O-methyl transferase (COMT; dopamine catabolism) and DRD2 (codes for D2 receptor) are
likewise related to WM activation (de Frias et al., 2010; Bertolino et al., 2010) and WM task
performance (Goldberg et al., 2003; Stelzel et al., 2009). Inter-regional communication is also
dependent on the integrity of the white matter pathways linking them (Honey et al., 2009).
Fractional anisotropy in diffusion weighted MRI (a measure of tract integrity) in the anterior
corpus callosum is a heritable trait (Chiang et al., 2009), so genetic effects on white matter
microstructure may also contribute to the heritability of right-left dIPFC functional

connectivity.

The heritability of inter-hemispheric dIPFC connectivity is in line with Woodward et al.
(2009), who found reduced connectivity of right dIPFC with left middle frontal gyrus for
schizophrenic (SZ) patients, and trend (p<0.06) towards reduced connectivity in unaffected
siblings during a choice reaction time task, suggesting a genetic liability for reduced inter-
hemispheric frontal connectivity. Inter-hemispheric dIPFC connectivity during WM has
previously been associated with genetic risk for Schizophrenia. Esslinger et al. (2011) found
inter-hemispheric dIPFC connectivity during combined 0B and 2B conditions of a numeric

working memory task to be associated with the schizophrenia risk gene ZNF804A. However,
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this association was also present during an emotion recognition task, and at rest, indicating
that this particular genetic influence is independent of cognitive domain. We find similarly
that total genetic influences are present during both stages of our task, the 0B condition which
involves basic attentional processes and response selection, and the 2B condition involving
the maintenance and manipulation elements of working memory. Thus it is not clear that the
heritability pertains specifically to WM processes. This is noteworthy since it is common
practice in task-related functional connectivity studies to measure the correlation in a single

experimental condition, or to average across conditions.

Fronto-parietal connectivity is considered a core mechanism sub-serving WM (Chafee
and Goldman-Rakic, 1998; Quintana and Fuster, 1999). Although structural connectivity
between frontal and parietal regions has demonstrated heritability (Karlsgodt et al., 2010),
the heritability of fronto-parietal functional connectivity has not previously been established.
However, dIPFC functional connectivity to focal regions of the posterior parietal cortex (PPC;
BA7 and BA40) has previously been associated with the epistatic interaction between COMT
and glutamate receptor mgluR3 (GRM3) genotype (Tan et al., 2007) for combined 1B and 2B
conditions in a numeric/spatial N-Back WM task. Fronto-parietal functional connectivity was
estimated to be weakly heritable in the present study (h?2=24%), which is substantially lower
than heritability of fractional anisotropy in the superior longitudinal fasciculus (h2=59%;

Karlsgodt et al.,, 2010).

We also find that the anti-correlations between dIPFC and default mode regions are
heritable. The observed anti-correlation is believed to reflect the competition between
cognitive control and default mode networks (Fox et al.,, 2005). This anti-correlation has been
associated with behavioral variability, for example Kelly et al. (2008) find that variance in
reaction time on a Flanker task is lower for subjects with greater anti-correlation between
default mode network and task-positive attentional network, while Hampson et al. (2010)
find a positive correlation between the strength of the dIPFC to MFC anti-correlation, and
working memory performance. Our results indicate that the antagonistic relationship
between these two networks may be influenced by genes, though the influence is small, and

does not appear to be related to cognitive demand for the MFC in our data set.

The heritability observed in this study are along the lines of those seen in other

functional neuro-imaging measures, such as working memory activation (mean h?=23%,
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Blokland et al., 2011), default mode network functional connectivity (h?=42%; Glahn et al.,
2010), and resting state network characteristics (h?=0-60% Fornito et al., 2011; van den
Heuvel et al,, 2013). However, they are lower than corresponding measures of structural
connectivity. White matter integrity in the frontal lobes has a heritability of 55% (Chiang et
al,, 2009), and white matter integrity in the superior longitudinal fasciculus connecting frontal
and parietal regions has a heritability of 59% (Karlsgodt et al., 2010). It may therefore be that
variation in functional connectivity is less heritable than corresponding structural
connectivity, or that our functional connectivity measures have inherently more

measurement error than structural measures.

There are a number of limitations of this study to take into account. The test-retest
reliability of the connectivity estimates was low to moderate (ICC<0.51). The four
connectivity estimates with significant heritabilities during 2B (right PC, right dIPFC and PCC
and MFC) had ICCs of 0.45, 0.47, 0.28 and 0.28 respectively. It is important to note that the
test-retest reliability places an upper bound on the measure of heritability. Test-retest
reliability gives an estimate of our precision in measuring an assumed constant underlying
phenotype, and the ICC is conceptually similar to a regression R2. 1-ICC can be considered as
the variance explained by test unreliability (U), with the remainder (1-U) explained by genetic
and environmental factors. For none of the metrics is the E variance component substantially
greater than U, indicating that the majority of the E component is likely to represent
measurement error, rather than unique environmental factors. Conversely, the similarity of
the A estimates with (1-U) indicate that the unreliability of the measure restricted the
estimate of A, and heritability estimates for the underlying connectivity may increase with a
more reliable experimental measure.

A second limitation is that as with previous studies, we have used group-wise masks to
restrict the target regions of interest. Whilst this step usually ensures that measures are
averaged only over voxels related to the task, for our large sample of 827 subjects, the group-
wise connectivity profiles are extensive, reflecting our power to detect small effects. The
downside is that averaging over a large region will include voxels not necessarily significantly
correlated at the subject level, and may average over functionally distinct regions. Future

work could explore how the heritability and reliabilities change with subject-specific masks.

In summary, the interaction of the dIPFC with regions of the WM-network and default

mode network shows a weak to moderate genetic influence, but these genetic influences may
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also be present during the baseline condition, which should be taken into account in
interpreting future task-based genetic-association studies. The significant heritability
estimates provide some support for the ongoing practice of using functional connectivity as

an endophenotype.
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Figure S4.1: WFU Pick Atlas segmentation of the left hippocampus (red), overlaid on negative
functional connectivity during 2B condition (blue-green). Segmentation does not overlap well

with peak connectivity.
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Figure S4.2: Using a Hanning filter to avoid interference between task conditions yields nearly

identical correlation maps to Figure 2.
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Table S4.2: Test-retest reliabilities with Hanning filter implemented.

Region Intra Class Correlation
0B 2B 2B-0B
right PC 0.16 (-0.12,0.42) 0.44 (0.18,0.64) 0.24 (-0.05,0.48)
left dIPFC 0.40 (0.13,0.61) 0.47 (0.22,0.67) 0.11 (-0.18,0.38)
left hippocampus 0.01 (-0.27,0.29) 0.01 (-0.27,0.29) -0.34 (-0.56,-0.06)
PCC 0.47 (0.22,0.67) 0.25 (-0.04,0.50) 0.19 (-0.10,0.44)
MFC 0.37 (0.10,0.59) 0.22 (-0.06,0.48) 0.06 (-0.22,0.33)
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Figure S4.3: Group wise activation (top panel), and connectivity profiles with dIPFC seed
(bottom three panels), with task related variance regressed out. With task related variance
regressed out, the pattern of correlations during 0B and 2B remain very similar to those
observed in Figure 2 (without task regression), demonstrating that condition specific
correlations are not the result of common activation in response to task. The change in
functional connectivity (bottom panel) has some differences to Figure 2. The connectivity
with the posterior cingulate cortex goes from negative to less negative, and the connectivity
with the right parietal cortex goes from positive to less positive. This pattern is unexpected
and may be an introduced artifact by the task regression.
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Table S4.4: Test retest reliabilities for the mean functional connectivity with the right

dorsolateral prefrontal cortex over each region, for each condition, quantified as the intra-

class correlation between session 1 and session 2, with task related variance regressed out.

Test retest reliabilities are substantially lower than those in Table 4.2.

Region Intra Class Correlation
0B 2B 2B-0B
right PC 0.00 (-0.28,0.28) 0.25 (-0.03,0.50) -0.10 (-0.37,0.18)
left dIPFC 0.22 (-0.07,0.48) 0.13 (-0.16,0.40) -0.01 (-0.29,0.27)
left hippocampus -0.24 (-0.49,0.04) -0.38 (-0.60,-0.11) NEa
PCC 0.26 (-0.02,0.50) 0.05 (-0.24,0.33) 0.35 (0.08,0.58)
MFC 0.21 (-0.07,0.47) -0.09 (-0.36,0.20) 0.04 (-0.24,0.32)

a NE: not estimable, no group-wise significant correlations in relevant group-wise connectivity

profile.
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5 Chapter 5: Discussion

5.1 Summary of results

In this thesis, [ estimated the heritability of a variety of measures of brain functional
connectivity, in order to assess their suitability as imaging endophenotypes. This was carried
out using the largest MRI study of twins to date. The phenotypes chosen were selected on the
basis of their prior association with psychiatric disorder, cognitive function, or genetic

association studies indicating a genetic influence.

The most heritable phenotypes were the graph theory measures on resting state
analysis, all graph measures considered bar one showed moderate to high heritability,
(h?=0.4-0.6). However, these findings were crucially dependent on whether or not global
signal was regressed out, with heritability estimates much lower (yet still significant for some
measures) with global signal removed (h?=0.0-0.3). Resting state fMRI and functional
connectivity measures are particularly susceptible to confounds, and a number of additional
pre-processing steps must be taken as compared to task-activation fMRI, in order to remove
the influence of motion (Van Dijk et al,, 2012), and physiological artefacts (Van Dijk et al.,
2010; Birn, 2012). By far the most contentious pre-processing step is the removal of global
signal, with some researchers arguing that it represents an artifactual shared source of
variance between different voxels (Zarahn et al., 1997; Fox et al., 2009), whilst others arguing
that global signal regression introduces artificial correlational structures in the data (Murphy
et al.,, 2009; Weissenbacher et al., 2009). Whilst the well-publicized anti-correlation between
the task-positive network and default mode network (Fox et al,, 2005) seems to be a
generalized feature, not restricted to global-signal adjusted data (Fox et al., 2009, Hampson et
al,, 2010; Chai et al., 2012), the ground truth of other observed correlational structures after
global signal regression has not been established. Furthermore, other work indicates that the
global signal has neuronal contributions (Schélvinck et al., 2010), and is even related to
psychiatric disorder (Hahamy et al., 2014). The results of this thesis may be interpreted as
supporting either side of the debate. That the global signal has its own genetic influences
increases its interpretability as a biologically meaningful phenotype. However, physiological

confounds (head motion; Couvy-Duchesne et al., 2014, haemodynamic response function,
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Shan et al,, in preparation) are also heritable but this does not mean that they have meaning in

terms of neuronal processing.

The phenotypes relating to connectivity during working memory were less heritable.
Functional connectivity through time-series correlation yielded low estimates of connectivity
with the (right PC: h2=24%, left dIPFC: h?=36%, PCC: h?=37%, MFC: h?=26%). These
heritability estimates are more similar to those of resting-state graph measures with global

signal removed.

Test-retest reliabilities for functional connectivity were low (ICCs<0.51). On the one
hand, since the test-retest reliability places an upper bound on the heritability, and should
methodologies develop which increase the reliability of the measures and reduce
measurement error, one can expect higher heritability estimates to emerge. On the other hand,
such low heritabilities preclude the use of these measures as useful biomarkers, and
emphasizes that more work needs to be done on improving the stability our measures of
connectivity, before they can be considered disease biomarkers or used in genetic association

studies.

The second study in this thesis uses dynamic causal modelling to probe functional
connectivity during working memory. We found no evidence of heritability of fronto-parietal
effective connectivity, and found that the connectivity parameters had low test-retest
reliability. Dynamic causal modelling is an altogether more sophisticated methodology for
measuring neuronal coupling, which explicitly models underlying neuronal activity and
haemodynamics, which may free us from confounds associated with basing our inferences
solely on the convoluted BOLD signal. One may speculate that this approach should yield
more reliable and heritable phenotypes than those derived directly from the BOLD signal.
Indeed this was one motivation for considering DCM, aside from its current prevalence in the
neuroimaging community. However, I did not find higher reliability or heritability using DCM
to characterise connectivity, as compared to using the more basic measure of Pearson'’s
correlation between time series. This was in no way a systematic comparison of the two
methods, nor a assessment of the validity of DCM, of which much has been written (Friston et

al,, 2003; Daunizeau et al,, 2011; Lohmann et al., 2012; Friston et al,, 2013).
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Taken together, Chapters 3 and 4 suggest a low heritability of task-dependent
modulation in functional connectivity. This is surprising given prior genetic association of
individual variants with task-dependent functional connectivity (Pezawas et al., 2005; Heinz
et al.,, 2005; Tan et al,, 2007; Esslinger et al., 2011). In the case of Chapter 3, the null result
may be due to the inadequate model space or sub-optimal experimental design. In the case of
Chapter 3, a simplistic subtraction of functional connectivity between conditions is
informative but not the ideal modelling procedure, superior alternatives exist such as
psychophysiological interactions (Friston et al., 1997) and dynamic causal modelling (Friston
et al, 2003). However, it is important to note that although (Pezawas et al., 2005; Heinz et al,,
2005; Tan et al.,, 2007; Esslinger et al., 2011) used data acquired during task performance,
they did not model task-dependent modulations. Their functional connectivity measurements
were Pearson’s correlations of time series across both during task and baseline conditions
(Pezawas et al., 2005; Heinz et al., 2005; Esslinger et al., 2011), or during task conditions
alone (Tan et al.,, 2007). Consistent with these observations, functional connectivity within
single task conditions was shown to be heritable in Chapter 4. Chapters 3 and 4 have
important implications for the prior candidate SNP studies of functional connectivity, where it
is not clear whether the genetic effect pertained to the task, or simply to intrinsic connectivity
between regions, which is known to be under strong genetic influence (Glahn et al., 2010;
Fornito et al,, 2011). Esslinger et al. (2011) demonstrated that the effect of the rs1344706
single nucleotide polymorphism in ZNF804A on inter-hemispheric dIPFC connectivity was
indeed present at rest, but the effect on dIPFC-hippocampal connectivity was specific to WM.
However, it was not clear whether this effect was specific to the maintenance and
manipulation components of WM (2B condition), or more basic attentional and coding

components during the baseline (0B condition).

This thesis provides both biological and technical contributions to the field of
endophenotyping. On the biological side, I have established the heritability of graph measures
and to a lesser extent of WM-related functional connectivity, which would suggest their
suitability as imaging endophenotypes, and may indicate that they are on the etiological
pathway from genes to disease (see future directions section for elaboration). However, these
results are tempered by the low reliability observed, an issue which is often overlooked in
neuroimaging genetic studies. On the technical side, | have demonstrated the sensitivity of

heritability estimates to certain methodological choices, in particular the use of global signal
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regression for resting state fMRI, and the importance of comparison to baseline in task-based

fMRI

In their paper “Endophenotypes for Psychiatric Disorders: Ready for Primetime?”
Bearden and Freimer (2006) discuss the urgent need for quantitative and heritable
intermediate phenotypes to complement if not eventually replace imprecise categorical
psychiatric diagnosis. Meyer-Lindenberg (2009) put forward neural connectivity as a
promising candidate for such endophenotypes with the justification that “features of
connectivity often better account for behavioural effects of genetic variation than regional
parameters of activation or structure”. The results of this thesis suggest that the functional
connectivity biomarkers considered here may not be particularly promising endophenotypes.
Despite observing significant heritability for a number of measures, the heritability estimates
are lower than those seen for brain structural features (Thompson et al,, 2001; Peper et al,,
2007) and white matter integrity (Chiang et al., 2009; Karlsgodt et al., 2010). The reliability of
the biomarkers was also low. Thus, until functional connectivity measures are found which
demonstrate both high heritability and acceptable reliability, they will not be ready for

primetime.

5.2 Future directions

The aim of this thesis was to assess the viability of brain functional connectivity as an
endophenotype, such that these features could then be used as imaging biomarkers, or to
further investigate the genetic basis of brain network development. The most heritable
phenotypes were the graph measures: mean clustering coefficient (), modularity (Q), global
efficiency (A) and small-world coefficient (o), applied to resting state data, with the stipulation
that global signal regression is not implemented. The next most heritable measures were
inter-hemispheric dIPFC, and dIPFC-PCC functional connectivity during working memory. It
would thus follow that these phenotypes are the most appropriate to be taken forward to
genetic association studies, either via genome-wise association studies, or candidate gene
studies. Identification of genome-wide significant SNPs would be a significant step in
elucidating factors influencing the development of brain-wide integrated networks. Regarding
the endophenotype concept, future genetic association studies targeting disease risk alleles,
and multivariate genetic modelling of disease and endophenotype would elucidate whether

these connectivity phenotypes are indeed on the pathway from genes to disease.
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A couple of hypotheses have arisen throughout the course of this thesis which warrant
testing. The large difference in heritability of graph measures seen with and without GSR raise
the question whether global signal itself is heritable. Although global signal is a time-series,
the heritability of which is not immediately measurable as a univariate statistic, a couple of
studies have attempted to condense the global signal time series into a single quantitative
phenotype. Fox et al. (2009) consider the variance of the global signal time series to
investigate whether it can be explained in terms of the addition of the activity of various
cortical subsystems, or whether it contains a separate contribution in addition to
contributions from the main functional subsystems. Hampson et al. (2010) calculate a
summary statistic of the global signal to use as a regressor at the group level as an alternative
to global signal regression. Their measure is the mean voxel-wise correlation. With global
signal removed, inter-voxel correlation is mean-centred at zero, and thus the positive bias in
correlation values can be considered as directly measuring the magnitude of the effect of

global signal.

The second hypothesis that has arisen is whether whole brain network measures show
greater genetic penetrance than individual pairwise inter-regional connections. Contrasting
the resting state study to the two working memory studies would suggest that the effects of
genes are more apparent at the whole brain network level that the inter-regional connectivity
level. However, the methodologies and experimental paradigms were non-comparable
between the studies. Thus to test this hypothesis, the heritability of the graph measures could
be compared to the heritability of individual connections measured during resting state with
the same processing methodology used in chapter two. These pairwise connections were
measured as an intermediate step in calculating the graph measures, so they are readily

available for such analysis.

Regarding the pairwise connectivity phenotypes considered in chapters 3 and 4, sufficient
heritability and reliability have not been established to pursue genetic-association studies.
Future work should be focused on improving the reliability and validity of the phenotypes.
One of the limitations of the DCM study was the simplicity of the models used, motivated in
part by computational expense considerations within the time-limits of a PhD thesis, and also
to reproduce the phenotypes of Deserno et al. (2012). Since this study was conducted, a

number of other DCM studies have been published with different regions of interest. These
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models may be tested on our data to see whether higher heritability and reliability emerge. In
particular, the DCM study of Harding et al. (2014) use a large model space of 5 fronto-parietal
network nodes and systematically test 4096 different model structures, giving greater
generalizability and less sensitivity to subtle effects of individual models. They observe no
modulation of dIPFC-PC connectivity with WM load, but rather find that the dorsal anterior
cingulate cortex (ACC)/pre supplementary motor areas has WM load dependent connectivity
with the rest of the fronto-parietal network. Although this was a verbal N-Back task, as
compared to out numeric spatial N-Back task, and results may not generalise, we do see
substantial activation of the anterior cingulate cortex in our data set, and DCM models
including the ACC may show more promise as endophenotypes than the models considered in

this thesis.
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7 Appendices

7.1 Information Sheet

GENETICS OF BRAIN STRUCTURE AND FUNCTION

(The Twin Imaging Study)

INFORMATION FOR PARTICIPANTS

1 Description and purpose of the study.

Humans show wide variation in the structure and function of their brains, and this is in part
due to genetic variation. However, how genes exert their effects on the brain, and then
map to behaviour remains a mystery. The aim of this study is to understand how, and to
what extent, genes and the environment, and the complex interaction between them,
influence brain structure and function, and ultimately behaviour. In doing so we hope to
locate and characterise genes affecting complex behaviour that have relevance to human
health and disease. The study uses a safe imaging method called magnetic resonance
imaging, or MRI, in which high resolution pictures (images) of both brain structure, and
brain activity during the performance of a task can be captured. DNA from blood samples
donated previously by you in the Twin Moles or Twin MAPS study will be accessed to
enable us to search for some of the specific genes influencing the structure and function of
the human brain. If DNA is not available we will invite you to donate a small (40mls) blood
sample for the purposes of this study. Detailed information about genetic analysis of
samples donated by participants are given in the attached Human Genetics Research
brochure.

The study is conducted by Dr. Margie Wright, Professor Nick Martin and colleagues from
the Genetic Epidemiology Unit at the Queensland Institute of Medical Research and Dr.
Greig de Zubicaray, Dr. Katie McMahon and colleagues from the Centre for Magnetic
Resonance (CMR) at the University of Queensland.

2. Participation in the study involves an imaging and behavioural session.

The imaging session will take place in the MRI suite at the Wesley Hospital (Brisbane). A
MRI scanner is a large magnet with a tunnel in the middle; the tunnel allows a person to lie
on a padded table (narrow bed) and to slide into the centre of the magnet. To obtain a
scan, it is essential that you remain still in the tunnel, within the magnet for up to 60
minutes. While you are in the scanner you will be presented with text and/or pictures on a
screen, and asked to respond to some of these by pressing a button with your finger. You
will be informed both about the nature of, and provided with practice on, the task before
entering the scanner. While the imaging is underway, you will be in constant voice
communication with the imaging staff through an intercom system.

The cognitive session will take place at the Wesley Hospital or at the Queensland Institute
of Medical Research on the same or different day as the imaging session, whatever is the
most convenient for the participant. This session comprises a series of standard tasks
assessing cognitive function (e.g. memory).
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3. Risks and discomforts that might be associated with this research.

MRI is a simple and safe procedure (for screened individuals). No X-rays or radiation are
used to obtain images, the procedure depending on the magnetic properties of molecules
within the brain. You will be interviewed and screened by a medical practitioner, just prior
to entering the scanner room, to ascertain if you have any metal or shrapnel in your body,
metal in your eye, or implanted electronic devices, such as a cardiac pacemaker, or other
metal implants (e.g. cerebral aneurism clips). In addition, you will be checked for personal
items that contain metal. Credit cards, which will be wiped by the field, and other personal
items will be locked away during your visit.

While you are in the scanner there may be some potential discomforts. The tunnel may
aggravate claustrophobia, and if so you will be removed from the tunnel immediately. On
rare occasions, the magnet may cease to function, due to the loss of the magnetic field. If
this occurs during the imaging procedure, you will be removed from the scanner.

If the MR test indicates a potential abnormality we will inform you and advise that you
contact your medical practitioner.

If you donate a blood sample, you may experience discomfort, bruising, and/or bleeding at
the site of needle insertion. Occasionally, some people experience dizziness or feel faint.

4. The possible benefits to you and/ or society from this research.
Your participation will be of no direct benefit to you. However, society will benefit by the
increased understanding of health behaviour that this study will bring.

5. This research is not intended for the purpose of diagnosing or treating any
health problems.

This research is not intended for the purpose of diagnosing or treating any health
problems you may have. Participation in this research study does not take the place of
visits to a doctor or other health professionals.

6. Reimbursement for participation in this research study.
On completion of the testing you will receive Coles Myer vouchers to the value of $100 in
appreciation of your time taken to participate in this study.

7. Participation is voluntary and you may choose not to participate in this research
study.

You may withdraw your consent at any time, at any point in the study, without having to
give a reason, and without consequence. If you choose to withdraw your consent you may
request that your MRI pictures be destroyed. You will also be informed of any significant
new findings developed during the course of participation in this research that may have a
bearing on your willingness to continue in the study.

8. Confidentiality of your records and your identity.

The Institute will take all reasonable measures to protect the confidentiality of your records
and your identity will not be revealed in any publication that may result from this study. All
data collected during the study will be stored under code numbers, without names, in
locked filing cabinets. Only staff directly involved with the conduct of the research, and
who may need to contact you in the future, will have access to the master list linking
names and code numbers, except under exceptional circumstances as required by law.
Any data that are either communicated or released to other scientists will contain no
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identifying information, only code numbers. Moreover, we will not share individual results
with anyone participating in the study, to protect the confidentiality of everyone. The
confidentiality of all study related records will be maintained in accordance with the
National Health and Medical Research Council Guidelines.

9. Queensland Institute of Medical Research recognizes the importance of your
contribution to research efforts intended to improve medical care.

The Institute makes every effort to minimise any health and safety risks to people
participating in such research activities. The institute reserves the right to make all
decisions concerning payment for all medical treatment for injuries solely and directly
relating to your participation in a biomedical or behavioural project. If you believe you
have been injured as a result of your participation in a research study, please contact the
Chairperson of the Human Research Ethics Committee or the Principal Investigator (Dr.
Margie Wright) as stated below.

10. Who to contact if you have any questions, concerns, or complaints, regarding
this study.

If you have any questions or concerns, or if any problems arise, you may call the principal
investigator, Dr Margie Wright, on 07-3362-0225, or the project coordinator (Alison
MacKenzie) on 07-3362-0233 or free call: 1800-257-179. If you have any concerns or
complaints regarding the conduct of this study, you may contact the Chairperson of the
Queensland Institute of Medical Research Human Research Ethics Committee (QIMR-
HREC) via the Secretary on Tel: 07-3362 0259. This study adheres to the Guidelines of
the ethical review process of The Queensland Institute of Medical Research, The
University of Queensland, and The Wesley Hospital.

137



7.2 Consent Form

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

GENETICS OF BRAIN STRUCTURE AND FUNCTION

(The Twin Imaging Study)

CONSENT FORM A

| agree to participate in The Twin Imaging Study and in doing so | acknowledge that:

1. | have read the attached Participant Information Sheet outlining the nature and
purpose of the project and the extent of my involvement, and have had these details
explained to me. | have had the opportunity to ask further questions and am satisfied
that | understand.

2. | am aware that, although the project is directed to the expansion of knowledge
generally, it may not result in any direct benefit to me.

3. | have been informed that | may withdraw from the project at my request at any time.

4. | have been advised that the Queensland Institute of Medical Research, University of
Queensland and Wesley Hospital Research and Ethics Committees have given
approval for this project to proceed.

5. | am aware that | may request further information about the project as it proceeds.

6. | understand that all study related records will be maintained in accordance with the

National Health and Medical Research Council Guidelines and that, in the event of
any results of the project being published, | will not be identified in any way.

YOUR NAME: (Please print clearly)
YOUR SIGNATURE: DATE:

NAME OF WITNESS:

WITNESS’ SIGNATURE: DATE:

Investigators: Dr Margie Wright and Professor Nick Martin, Queensland

Institute of Medical Research, Dr Greig de Zubicaray and Dr Katie
McMahon from the Centre for Magnetic Resonance (CMR) at the
University of Queensland.
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7.3 Ethics Clearance

THE UNIVERSITY OF QUEENSLAND
Institutional Approval Form For Experiments On Humans

Including Behavioural Research

Chief Investigator:

Project Title:

Supervisor:

Co-Investigator(s):

Department(s):

Project Number:

Duration:

Dr Margaret Wright

Genetics Of Brain Structure And Function - 08/02/2007
- AMENDMENT

None

Dr Greig de Zubicaray, Dr Katie McMahon, Dr Paul
Thompson, Professor Nick Martin

Queensland Institute of Medical Research

2004000185

Granting Agency/Degree: National Institutes of Health (NICHD)

31st December 2012

Comments:

Name of responsible Committee:-

Medical Research Ethics Committee

This project complies with the provisions contained in the National Statement on
Ethical Conduct in Research Involving Humans and complies with the regulations
governing experimentation on humans.

Chairperson

Date: fY-e2. 27 Signature™

Name of Ethics Committee representative:-
Professor Bill Vicenzino

Medical Research Ethics Committee
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