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Abstract. This paper defines a g-variance and p-confidence interval for a g-

expectation. We also determine the p-confidence intervals under some specific
assumptions on g.

1. Introduction

The theory and applications of backward stochastic differential equations (BS-
DEs) have been developing rapidly. Linear BSDEs were introduced by Bismut [5].
Then the concept was generalized by Pardoux and Peng [16] to a fully non-linear
setting. Risk measures can be defined using g-expectations which are non-linear
expectations given by solutions of BSDEs depending on a driver, or drift function
g ([17], [18]).

From the perspective of statistics, g-expectations are estimates of risks. There-
fore, the corresponding confidence interval of the estimate should be given. The
aim of this paper is first to define g-variance, then to define a confidence interval
of a g-expectation, depending on g-variance and the function g. The confidence
intervals for g satisfying certain properties are calculated.

We shall first review risk measures and g-expectations. In the following section,
the g-variance and p-confidence interval of a g-expectation are defined. We then
discuss different confidence intervals corresponding to specific functions g. In the
final section, we summarize the results.

2. Risk Measures and Non-linear Expectations

Coherent risk measures were first defined by Artzner, Delbaen, Eber and Heath
[1], and later extended by Delbaen [11]. Coherent risk measures satisfy a four-
axiom framework: monotonicity, translation invariance, subadditivity and positive
homogeneity. In this context, monotonicity means that if a portfolio is always
valued higher than another portfolio, then the risk of this portfolio should be less
than the risk of the other. Translation invariance implies that adding a constant
amount of cash to a position reduces the risk of this position by the same amount.
Under subadditivity, the risk of two portfolios together cannot be greater than the
sum of the two risks computed separately. Positive homogeneity implies that if a
portfolio is scaled by a positive factor, then its risk is changed by the same factor.
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Schied, Föllmer [20] and Frittelli, Rosazza Gianin [14] independently developed
the idea of a convex risk measure as an extension of coherent risk measures. A
convex risk measure satisfies the monotonicity and translation invariance assump-
tions of a coherent risk measure, along with the assumption of convexity, which
guarantees that the diversification of a portfolio will not increase the risk.

Peng [17] introduced g-expectations using a class of BSDEs. Let T ∈ [0,∞) be
a fixed time horizon, and let (Wt)0≤t≤T be a d-dimensional standard Brownian
motion defined on a complete probability space (Ω,F ,P). Suppose {Ft}0≤t≤T

is the natural filtration generated by (Wt)0≤t≤T , i.e., Ft = σ{Ws; s ≤ t}. Let
L2(Ω,Ft,P) with 0 ≤ t ≤ T denote the space of all real-valued, Ft-measurable
random variables Q with EP|Q|2 < ∞, and L2(T ;Rd) denote the space of all

Rd-valued Ft-adapted processes (Xt)0≤t≤T with EP
∫ T

0
|Xs|2ds < ∞.

General assumptions on g

Suppose g : Ω× [0, T ]× R× Rd → R satisfies:
(A) g is Lipschitz in (y, z), that is, there exists a constant C > 0 such that

∀t ∈ [0, T ] and ∀(y1, z1), (y2, z2) ∈ R× Rd,

|g(t, y1, z1)− g(t, y2, z2)| ≤ C (|y1 − y2|+ |z1 − z2|) ,P− a.s.

(B) g( · , y, z) ∈ L2(T ;R), ∀(y, z) ∈ R× Rd.
(C) g(t, y, 0) = 0, ∀(t, y) ∈ [0, T ]× R,P− a.s.
Throughout this paper, we assume g always satisfies these general assumptions.
Under assumptions (A) and (B), Pardoux and Peng [16] showed that for any

Q ∈ L2(Ω,FT ,P) and t ∈ [0, T ], the BSDE

Yt −
∫ T

t

g(ω, s, Ys, Zs)ds+

∫ T

t

ZsdWs = Q (2.1)

has a unique solution pair (Yt, Zt) ∈ L2(T ;R)× L2(T ;Rd).
Using the solution Yt of Equation (2.1), g-expectations were defined by Peng

[17].

Definition 2.1. Let (Yt, Zt) be the solution of Equation (2.1) with terminal con-
dition Q ∈ L2(Ω,FT ,P). The g-expectation Eg of Q is defined by

Eg[Q] = Y0,

while, for any t ∈ [0, T ], the conditional g-expectation of Q under Ft (denoted by
Eg[Q|Ft]) is defined by

Eg[Q|Ft] = Yt.

Now g-expectations and conditional g-expectations extend the notions of math-
ematical expectation and conditional mathematical expectation to a nonlinear
framework. The conditional g-expectation Eg[ · |Ft] possesses the following prop-
erties:

(1) Time-consistency: Eg[Eg[Q|Ft]|Fs] = Eg[Q|Fs], s ∈ [0, t],
Q ∈ L2(Ω,FT ,P).

(2) Constant-preserving: Eg[Q|Ft] = Q, Q ∈ L2(Ω,Ft,P).
(3) Zero-one law: If g(·, 0, 0) = 0, then 1AEg[Q|Ft] = Eg[1AQ|Ft],

Q ∈ L2(Ω,FT ,P), A ∈ Ft.
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(4) Translation invariance: If g is independent of Y , then Eg[Q + q|Ft] =
Eg[Q|Ft] + q,Q ∈ L2(Ω,FT ,P), q ∈ L2(Ω,Ft,P).

(5) Strict monotonicity: For Q,Q′ ∈ L2(Ω,FT ,P) with Q′ ≤ Q, Eg[Q′|Ft] ≤
Eg[Q|Ft] with equality only if Q = Q′.

(6) If g is convex, then Eg[ · |Ft] is a convex operator on L2(Ω,FT ,P) for any
t ∈ [0, T ].

(7) If g is positively homogeneous, then Eg[ · |Ft] is a positively homogeneous
operator on L2(Ω,FT ,P) for any t ∈ [0, T ].

These results follow from the uniqueness of solutions of BSDE (2.1) ([16], [17],
[18]).

3. g-variance and the p-confidence Interval

From Definition 2.1, for any Q ∈ L2(Ω,FT ,P), the g-expectation Eg[Q] of Q
is a constant. Suppose (Q − Eg[Q])2 ∈ L2(Ω,FT ,P). Similarly, for t ∈ [0, T ], the
BSDE

Y ′
t −

∫ T

t

g(ω, s, Y ′
s , Z

′
s)ds+

∫ T

t

Z ′
sdWs = (Q− Eg[Q])2 (3.1)

has a unique solution pair (Y ′
t , Z

′
t) ∈ L2(T ;R)× L2(T ;Rd).

Definition 3.1. Suppose (Y ′
t , Z

′
t) is the solution of Equation 3.1 with terminal

condition (Q− Eg[Q])2 ∈ L2(Ω,FT ,P). The g-variance Vg of Q is defined as

Vg[Q] = Y ′
0 .

By the Comparison Theorem in [17], for any terminal condition Q, its g-variance
Vg[Q] is always non-negative.

Definition 3.2. Given a constant p (0 < p < 1), if there exists ϵ > 0, such
that P(|Q − Eg[Q]| ≤ ϵ) ≥ p, then the interval [Eg[Q] − ϵ, Eg[Q] + ϵ] is called the
p-confidence interval of Q with respect to its g-expectation Eg[Q].

In the sequel, for different assumptions on g, we shall obtain the corresponding
p-confidence interval of Q, which is related to the driver g and the g-covariance.

3.1. General Assumptions on g.

Theorem 3.3. Suppose (Y ′
t , Z

′
t) is the solution of BSDE (3.1), Vg[Q] is the g-

variance of Q. Given a constant p (0 < p < 1), for general assumptions on g,
there exists

ϵ =

√
Vg[Q] + C

∫ T

0
E[|Z ′

s|]ds
1− p

,

where C(> 0) is the Lipschitz constant of the function g, such that P(|Q−Eg[Q]| ≤
ϵ) ≥ p.

Proof. We shall prove P(|Q− Eg[Q]| ≤ ϵ) ≥ p as long as we prove

P(|Q− Eg[Q]| > ϵ) ≤ 1− p.

By Chebyshev’s inequality,

P(|Q− Eg[Q]| > ϵ) ≤ E[(Q− Eg[Q])2]

ϵ2
.
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When t = 0, taking expectation on both sides of Equation (3.1), we obtain

E[(Q− Eg[Q])2] = Vg[Q]−
∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds. (3.2)

Therefore,

E[(Q− Eg[Q])2]

ϵ2
= (1− p)

Vg[Q]−
∫ T

0
E[g(ω, s, Y ′

s , Z
′
s)]ds

Vg[Q] + C
∫ T

0
E[|Z ′

s|]ds
.

From Assumptions (A) and (C) on g, we have

|g(t, y, z)| ≤ C|z|.

Therefore,

Vg[Q]−
∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds ≤ Vg[Q] + C

∫ T

0

E[|Z ′
s|]ds.

Since Vg[Q] is non-negative, then

Vg[Q]−
∫ T

0
E[g(ω, s, Y ′

s , Z
′
s)]ds

Vg[Q] + C
∫ T

0
E[|Z ′

s|]ds
≤ 1.

Finally, we have

P(|Q− Eg[Q]| > ϵ) ≤ E[(Q− Eg[Q])2]

ϵ2
≤ 1− p.

□

Given a constant p (0 < p < 1), for general assumptions on g, the intervalEg[Q]−

√
Vg[Q] + C

∫ T

0
E[|Z ′

s|]ds
1− p

, Eg[Q] +

√
Vg[Q] + C

∫ T

0
E[|Z ′

s|]ds
1− p


is the p-confidence interval of Q with respect to its g-expectation Eg[Q].

3.2. Positively Homogeneous Assumption on g. (D) Suppose now g is pos-
itively homogeneous in (y, z), that is, for all t ∈ [0, T ], (y, z) ∈ R× Rd, λ ≥ 0,

λg(t, y, z) = g(t, λy, λz),P− a.s.

Then given the terminal condition
(Q−Eg [Q])2

1−p ∈ L2(Ω,FT ,P), the BSDE

Y ∗
t −

∫ T

t

g(ω, s, Y ∗
s , Z

∗
s )ds+

∫ T

t

Z∗
sdWs =

(Q− Eg[Q])2

1− p
(3.3)

has a unique solution pair (Y ∗
t , Z

∗
t ) ∈ L2(T ;R)× L2(T ;Rd).

Since g is positively homogeneous in (y, z) and 1− p > 0, we can rearrange the
above BSDE (3.3) as

(1−p)Y ∗
t −

∫ T

t

g(ω, s, (1−p)Y ∗
s , (1−p)Z∗

s )ds+

∫ T

t

(1−p)Z∗
sdWs = (Q−Eg[Q])2.
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Hence the pair ((1 − p)Y ∗
t , (1 − p)Z∗

t ) is the solution of BSDE (3.1). Since the
solution of BSDE (3.1) is unique, it follows that Y ′

t = (1 − p)Y ∗
t , Z

′
t = (1 − p)Z∗

t

for any t ∈ [0, T ].

Theorem 3.4. Given a constant p (0 < p < 1), for positively homogeneous as-
sumption on g, there exists

ϵ =

√
Vg[Q]

1− p
−

∫ T

0

E
[
g

(
ω, s,

Y ′
s

1− p
,

Z ′
s

1− p

)]
ds,

such that P(|Q− Eg[Q]| ≤ ϵ) ≥ p.

Proof. By Chebyshev’s inequality, we shall prove P(|Q − Eg[Q]| > ϵ) ≤ 1 − p as
long as we prove

E[(Q− Eg[Q])2]

1− p
= ϵ2.

When t = 0, taking expectation on both sides of Equation (3.3), we obtain

E
[
(Q− Eg[Q])2

1− p

]
= Y ∗

0 −
∫ T

0

E[g(ω, s, Y ∗
s , Z

∗
s )]ds. (3.4)

Since Y ′
t = (1− p)Y ∗

t , Z
′
t = (1− p)Z∗

t for any t ∈ [0, T ], then

E
[
(Q− Eg[Q])2

1− p

]
=

Vg[Q]

1− p
−
∫ T

0

E
[
g

(
ω, s,

Y ′
s

1− p
,

Z ′
s

1− p

)]
ds.

Therefore,

E[(Q− Eg[Q])2]

1− p
= ϵ2.

□

Given a constant p (0 < p < 1), for positively homogeneous assumption on g,
the interval [Eg[Q]− ϵ, Eg[Q] + ϵ] is the p-confidence interval of Q with respect to
its g-expectation Eg[Q], where

ϵ =

√
Vg[Q]

1− p
−

∫ T

0

E
[
g

(
ω, s,

Y ′
s

1− p
,

Z ′
s

1− p

)]
ds.

3.3. Subadditive and Convex Assumptions on g. (E) Suppose now g is
subadditive in (y, z), that is, for all t ∈ [0, T ], (y1, z1), (y2, z2) ∈ R× Rd,

g(t, y1 + y2, z1 + z2) ≤ g(t, y1, z1) + g(t, y2, z2),P− a.s.

(F) Further, suppose g is convex in (y, z), that is, for all t ∈ [0, T ], (y1, z1), (y2, z2) ∈
R× Rd, α ∈ (0, 1),

g(t, αy1 + (1− α)y2, αz1 + (1− α)z2) ≤ αg(t, y1, z1) + (1− α)g(t, y2, z2),P− a.s.

Consequently, if g is subadditive and convex, then Eg[·] is also subadditive and
convex (see [19]).
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Theorem 3.5. Given a constant p (0 < p < 1), for subadditive and convex
assumptions on g, there exists

ϵ =

√
1 + p

1− p
Vg[Q]− 1

1− p

∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds,

such that P(|Q− Eg[Q]| ≤ ϵ) ≥ p.

Proof. Again, by Chebyshev’s inequality, we shall prove P(|Q−Eg[Q]| > ϵ) ≤ 1−p
if we prove

E[(Q− Eg[Q])2]

1− p
≤ ϵ2.

Given the terminal condition
(Q−Eg[Q])2

1−p ∈ L2(Ω,FT ,P), the BSDE

Ŷt −
∫ T

t

g(ω, s, Ŷs, Ẑs)ds+

∫ T

t

ẐsdWs =
(Q− Eg[Q])2

1− p
(3.5)

has a unique solution pair (Ŷt, Ẑt) ∈ L2(T ;R)× L2(T ;Rd).
When t = 0, taking expectation on both sides of Equation (3.5), we obtain

E
[
(Q− Eg[Q])2

1− p

]
= Eg

[
(Q− Eg[Q])2

1− p

]
−
∫ T

0

E[g(ω, s, Ŷs, Ẑs)]ds. (3.6)

Since

(Q− Eg[Q])2

1− p
= (1− p)(Q− Eg[Q])2 + p

(
2− p

1− p
(Q− Eg[Q])2

)
,

then by the convexity of Eg[·], we have

Eg
[
(Q− Eg[Q])2

1− p

]
= Eg

[
(1− p)(Q− Eg[Q])2 + p

(
2− p

1− p
(Q− Eg[Q])2

)]
≤ (1− p)Eg[(Q− Eg[Q])2] + pEg

[
2− p

1− p
(Q− Eg[Q])2

]
. (3.7)

Since

Eg
[
2− p

1− p
(Q− Eg[Q])2

]
= Eg

[
(Q− Eg[Q])2

1− p
+ (Q− Eg[Q])2

]
,

then by the subaddtivity of Eg[·], we have

Eg
[
2− p

1− p
(Q− Eg[Q])2

]
≤ Eg

[
(Q− Eg[Q])2

1− p

]
+ Eg[(Q− Eg[Q])2], (3.8)

therefore, by (3.7) and (3.8),

Eg
[
(Q− Eg[Q])2

1− p

]
≤ (1− p)Eg[(Q− Eg[Q])2]

+ p

{
Eg

[
(Q− Eg[Q])2

1− p

]
+ Eg[(Q− Eg[Q])2]

}
. (3.9)

We can rearrange the above inequality (3.9) as

Eg
[
(Q− Eg[Q])2

1− p

]
≤ 1

1− p
Eg[(Q− Eg[Q])2].
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By (3.6),

E
[
(Q− Eg[Q])2

1− p

]
≤ 1

1− p
Eg[(Q− Eg[Q])2]−

∫ T

0

E[g(ω, s, Ŷs, Ẑs)]ds. (3.10)

Since
(Q− Eg[Q])2

1− p
≥ (Q− Eg[Q])2,P− a.s.,

by the Comparison Theorem in [17], we have

Eg
[
(Q− Eg[Q])2

1− p

]
≥ Eg[(Q− Eg[Q])2].

From (3.2) and (3.6), we have

E
[
(Q− Eg[Q])2

1− p

]
+

∫ T

0

E[g(ω, s, Ŷs, Ẑs)]ds

≥ E[(Q− Eg[Q])2] +

∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds.

Then∫ T

0

E[g(ω, s, Ŷs, Ẑs)]ds ≥
∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds−

p

1− p
E[(Q− Eg[Q])2].

From (3.2), we have∫ T

0

E[g(ω, s, Ŷs, Ẑs)]ds ≥
1

1− p

∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds−

p

1− p
Eg[(Q− Eg[Q])2].

By (3.10), we see

E[(Q− Eg[Q])2]

1− p
≤ 1 + p

1− p
Eg[(Q− Eg[Q])2]− 1

1− p

∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds.

Therefore,
E[(Q− Eg[Q])2]

1− p
≤ ϵ2.

□

Given a constant p (0 < p < 1), for subadditive and convex assumptions on g,
the interval [Eg[Q]− ϵ, Eg[Q] + ϵ] is the p-confidence interval of Q with respect to
its g-expectation Eg[Q], where

ϵ =

√
1 + p

1− p
Vg[Q]− 1

1− p

∫ T

0

E[g(ω, s, Y ′
s , Z

′
s)]ds.

4. Conclusion

In this paper, we have defined g-variance and p-confidence intervals for the g-
expectation. The p-confidence interval for some forms of the driver g has been
found. From Theorem 3.4 and Theorem 3.5, it is clear that the confidence interval
under the subadditive and convex assumptions is wider than the one under the
positively homogeneous assumption.
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