
Accepted Manuscript

Characterization of alginate-lactoferrin beads prepared by extrusion gelation method

Huma Bokkhim , Nidhi Bansal , Lisbeth Grøndahl , Bhesh Bhandari

PII: S0268-005X(14)00439-1

DOI: 10.1016/j.foodhyd.2014.12.002

Reference: FOOHYD 2800

To appear in: Food Hydrocolloids

Received Date: 30 July 2014

Revised Date: 23 November 2014

Accepted Date: 1 December 2014

Please cite this article as: Bokkhim, H., Bansal, N., Grøndahl, L., Bhandari, B., Characterization of
alginate-lactoferrin beads prepared by extrusion gelation method, Food Hydrocolloids (2015), doi:
10.1016/j.foodhyd.2014.12.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.foodhyd.2014.12.002


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Alginate-
lactoferrin 
mixture

CaCl2  solution

Characterization of beads



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

*Corresponding author. Address: The University of Queensland, School of Agriculture and Food 

Sciences, Brisbane, QLD 4072, Australia. 

Tel.: +61 7 3346 9192; Fax: 

E-mail address: b.bhandari@uq.edu.au 

 

 

Title Page Information 

Title: Characterization of alginate-lactoferrin beads prepared by extrusion gelation method 

Author names and affiliations: Huma Bokkhima, Nidhi Bansala, Lisbeth Grøndahlb and 

Bhesh Bhandari a* 

Huma Bokkhim: h.rai@uq.edu.au 

Nidhi Bansal: n.bansal@uq.edu.au 

a The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD 

4072, Australia 

Lisbeth Grøndahl: l.grondahl@uq.edu.au  

b The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, 

QLD 4072, Australia 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Abstract 1 

The potential use of lactoferrin (Lf) as a food ingredient is attracting increasing attention. 2 

Encapsulation of Lf in alginate gel beads can potentially enhance its stability and safe 3 

delivery. It is therefore important to understand the properties of alginate-Lf beads in order to 4 

develop a successful encapsulation method. Three different forms (apo-, native- and holo-) of 5 

bovine Lactoferrin (Lf) were encapsulated in alginate beads by the gel entrapment method 6 

using calcium as the cross-linking ion. A minimum of 40% alginate was required in the 7 

beading mixture to retain the form of a bead. Higher proportion of alginate reduced the water 8 

holding capacity and calcium uptake by the beads and these effects were similar for all forms 9 

of Lf. Longer cross-linking time led a greater amount of Lf and iron leaching from the beads 10 

and this was most pronounced for holo-Lf compared to apo- and native-Lf. The elastic 11 

modulus was affected by the composition (mixing ratio) of beads and not by the forms of Lf 12 

with decreasing elasticity of the beads with increasing alginate content which was attributed 13 

to the decreasing crosslinking density. The stability of the encapsulated Lf was evaluated 14 

based on the amount leached into pH adjusted Millipore water and was affected by pH (4 and 15 

7) for holo-Lf but not for apo- and native-Lf. The relative rate of Lf leaching at pH 4 for the 16 

different forms of Lf was found not to directly correlate with the pI of the different forms of 17 

Lf.  18 

Keywords: Gel entrapment, bovine lactoferrin, alginate, electrostatic interaction, stability 19 

1. Introduction 20 

Lactoferrin (Lf) is an iron-binding glycoprotein (MW = 80 kDa) found in various biological 21 

fluids of mammals (Marnila & Korhonen, 2009) and it has many health benefits to humans 22 

and animals (Wakabayashi, Yamauchi, & Takase, 2006). Lf can bind iron with high affinity 23 

(KD∼10-20 M) and can exist in either iron depleted (apo-) or in iron saturated (holo-) forms. In 24 
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nature (native-), it exists as a mixture of apo-, holo- (Steijns & van Hooijdonk, 2000) and also 25 

monoferric Lf species saturated at either their N or C lobe (Brisson, Britten & Pouliot, 2007). 26 

The iron binding ability along with its cationic nature is responsible for a diverse range of 27 

physiological functions such as regulation of cellular growth and differentiation, intestinal 28 

iron homeostasis, host defence against microbial infection and inflammation, regulation of 29 

myelopoiesis, immunomodulatory and protection against cancer (Conneely & Ward, 2004; 30 

Guo, Pan, Rowney & Hobman, 2007).  These benefits enable Lf to be a potential supplement 31 

in commercial food products (i.e. infant milk, supplemental tablet, yoghurt, skim milk, and 32 

drinks). However, Lf can easily be denatured by heat treatment (Abe et al., 1991) and 33 

processing condition including storage, freezing/thawing, and spray drying (Naidu, 2006) 34 

thereby limiting its application. In addition, conditions such as pH, temperature and 35 

conductivity can affect the functional properties of Lf and furthermore, Lf is susceptible to 36 

degradation by proteolytic enzymes in the gastrointestinal tract of the human body (Onishi, 37 

2011). Thus, a delivery system that protects Lf is required to be developed to deliver Lf as a 38 

food component for maximum health benefit.   39 

Alginate is a natural polysaccharide produced by brown algae (Phaeophyceae) and bacteria 40 

(Azobacter vinelandii). It is composed of unbranched binary copolymers of (1→ 4) linked β-41 

D-mannuronic acid (M) and α-L-guluronic acid (G) residues of widely varying composition 42 

and sequence (Draget, 2009). It has the ability to retain water and form viscous solutions, 43 

stabilize aqueous mixtures and form gels in the presence of divalent cations. Based on these 44 

biophysical properties, alginate has been classified as a food additive and has been used in 45 

food preparations as thickeners, emulsifiers and gelling and stabilizing agents (Brownlee, 46 

Seal, Wilcox, Dettmar, & Pearson, 2009). Because of its unique gelling properties under mild 47 

and non-toxic conditions, the use of alginate has been extended to biotechnological and 48 
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biomedical applications such as encapsulation and immobilization of enzymes and live cells 49 

(Donati & Paoletti, 2009; Martinsen, Storrø, & Skjåk-Bræk, 1992).   50 

Alginates possess ion exchange property due to the presence of the carboxylic groups in both 51 

the M and G residues which have been shown to interact with cationic protein molecules 52 

electrostatically. Examples of reported electrostatic interactions between the anionic alginate 53 

and cationic proteins includes the proteins lysozyme and chymotrypsin (Wells & Sheardown, 54 

2007) and Lf (Peinado, Lesmes, Andrés, & McClements, 2010). Such electrostatic 55 

interactions will affect the release of proteins from the alginate gel system. Furthermore, 56 

increased charge neutralization by positively charged components will cause a reduction in 57 

intramolecular repulsion between individual alginate chains such that the system will be able 58 

to adapt a tighter, more compact configuration and thereby affect diffusional pathways 59 

(Stockwell, Davis, & Walker, 1986). 60 

An alginate gel can be prepared by a simple diffusion method where a crosslinking ion is 61 

allowed to diffuse from a large outer reservoir into an alginate solution forming a single gel 62 

bead entrapping the active agent. Diffusion setting produces inhomogeneous alginate gels due 63 

to the formation of a sharp gelling zone moving from the surface towards the centre of the gel 64 

(Draget, 2009; Draget, Smidsrød, & Skjåk-Bræk, 2005; Draget & Taylor, 2011). An 65 

extrusion technique is used for the formation of gel particles by the diffusion method (Desai 66 

& Park, 2005) and is useful for encapsulation of heat labile active agents as they are 67 

completely surrounded by wall material (Pegg & Shahidi, 2007). The gelling process is 68 

influenced by several factors such as alginate concentration, molecular mass and the M/G 69 

sequence of the alginate, the ratio between gelling and non-gelling ions and the presence of 70 

complexing agents (eg. phosphates and citrates). In addition, gelation of alginate in a mixed 71 

system, where charged polymers such as proteins interact electrostatically under favourable 72 

conditions may lead to alterations in mechanical properties of the gel beads (Draget, 2009). 73 
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Pore size and pore size distribution in alginate gels are of importance as they determine the 74 

diffusion properties. Anderson, Skipnes and Smidsrød (1977) reported that calcium-treated 75 

alginate forms networks characterized by a pore size between 5 and 150 nm. Diffusion of 76 

small molecules is not strongly affected by the alginate gel pore size, but the diffusion of 77 

larger molecules, such as proteins, is somewhat restricted, although proteins with molecular 78 

weight as high as 300 kDa are able to diffuse through the gel beads with a rate that depends 79 

on their molecular size (Tanaka, Matsumura, & Veliky, 1984; Donati & Paoletti, 2009). The 80 

M/G ratio of the alginate also affects the diffusivity of proteins in the gel matrix (Amsden & 81 

Turner, 1999). Diffusion within the gel depends on porosity, however, since the gel matrix is 82 

negatively charged, the influence of electrostatic forces between the matrix and the ionic 83 

substrates must also be considered (Martinsen et al., 1992). 84 

In this study, the gel encapsulation behaviour of different (apo-, native- and holo-) forms of 85 

bovine Lf in calcium alginate beads was studied. The physico-chemical properties of Lf are 86 

affected by its form (Bokkhim, Bansal, Grøndahl & Bhandari, 2013) and the technological 87 

applications of Lf therefore, are likely to also be affected by the form of Lf used. This 88 

warrants for a detailed study of the different forms of Lf. In addition, the effect of alginate-Lf 89 

mixing ratio and crosslinking time on the efficiency of encapsulation and physical and 90 

mechanical properties as well as stability of the beads were investigated.  91 

2. Materials and Methods 92 

2.1. Materials 93 

Native- and apo-bovine lactoferrin (NatraFerrin) with 13 and 0.9% iron saturation 94 

respectively were provided by MG Nutritionals®, Australia. Sodium alginate (PE 12001-13.8 95 

EN, GRINDSTED® Alginate FD 155, M/G ratio 1.5) was donated by Danisco Australia Pty. 96 

Ltd., Australia. The molecular mass of this alginate as determined by U-tube viscometry 97 
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using the appropriate Mark-Houwink constant was found to be 140 kDa (Vold, Kristiansen & 98 

Christensen, 2006; Vold, Kristiansen & Christensen, 2007). Calcium chloride dihydrate 99 

(99%) and sodium azide (99.5%) were purchased from Chem-supply Pty. Ltd. and Sigma 100 

Aldrich Co., Australia, respectively. Millipore water was used in the preparation of all 101 

samples. Holo-Lf was prepared in the laboratory according to the method of Bokkhim, 102 

Bansal, Grøndahl and Bhandari (2013).  103 

2.2. Fabrication of beads  104 

Stock solutions (2, 3, 4 & 5%) by weight of alginate (Alg) and of Lf (apo-, native- and holo-) 105 

were prepared in Millipore water. Alginate was dissolved in Millipore water using a high 106 

shear homogeniser (IKA ® RW 20 digital, USA) at 600 rpm for 30 minutes. The alginate 107 

solution was then heated at 40 ˚C in a water bath for 90 minutes to remove any trapped air 108 

bubbles and then allowed to cool to room temperature. The Lf samples were dissolved in 109 

Millipore water under constant stirring using a magnetic stirrer for 2 hours at room 110 

temperature.  111 

The first series of beads were extruded by mixing alginate and Lf solutions of equal 112 

concentration at equal mixing ratio (1:1) to achieve the final solid contents of 2%, 3%, 4% 113 

and 5% in the mixture. Mixing was done at 600 rpm for 20 minutes. No attempts were made 114 

to adjust the pH or the ionic concentration of the mixtures. 3 mL of the mixtures were 115 

extruded into18 mL of 0.1 M calcium chloride (CaCl2) solution using 25G 5/8ʺ (internal 116 

diameter ~ 0.26 mm) stainless steel PrecisionGlide® needles (Becton Dickinson and Co., 117 

USA) under constant stirring with a magnetic stirrer. The beads were allowed to crosslink in 118 

the CaCl2 solution for 30 minutes, removed from the crosslinking solution and subsequently 119 

washed three times with Millipore water and finally drained on a sieve.  120 
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The second series of beads were extruded as above but using 30G1/2ʺ (internal diameter ~ 121 

0.16 mm) stainless steel PrecisionGlide® needles.  122 

The third series of beads were extruded by mixing alginate (2%) and Lf (2%) solutions in 123 

different ratios of Alg:Lf, specifically in the ratios 1:3, 1:1.5, 1:1, 1.5:1 and 3:1 using 30G1/2ʺ 124 

PrecisionGlide® needles.  125 

The term mixture should be understood as an alginate-Lf mixture and will be denoted as Mix 126 

in the captions for figures. In addition, alginate-Lf mixtures having apo-, native- and holo-Lf 127 

will be denoted by MixA, MixN and MixH, respectively. All the samples were prepared on 128 

weight percentage. 129 

2.3. Characterization of beads 130 

2.3.1. Bead size  131 

The extruded beads were measured for their diameter (mm). 20 beads of same composition 132 

were lined in contact in a straight row and the total length measured using a calibrated scale. 133 

The total length was divided by the number of beads to achieve the diameter of a single bead.  134 

2.3.2. Water holding capacity  135 

The water content (expressed as g water/g alginate) was determined as a measure of the water 136 

holding capacity of the beads. The weight of alginate or the alginate-Lf mixture used for 137 

extrusion as well as the weight of the extruded beads after draining was measured. The water 138 

content was calculated from equation 1.  139 

Water content = (Wt. of wet beads – Wt. of total dry matter)/Wt. of alginate (1) 140 

Where Wt. of total dry matter = Lactoferrin and alginate in the beads. 141 

2.3.3. Bead composition  142 
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The Lf content (%) of the beads was determined from the initial amount of Lf present in the 143 

alginate-Lf mixture and the amount of Lf which had leached out into the cross-linking CaCl2 144 

solution during bead formation. The absorbance at a wavelength of 280 nm was measured 145 

using UV-Visible Spectrometry (UV-Visible Spectrophotometer, Pharmacia, Ultrospec III, 146 

LKB, England) and the concentration of Lf determined based on standard curves which were 147 

plotted for the different forms of bovine Lf. This was measured at two time-points: at 30 and 148 

60 minutes of cross-linking to determine the effect of cross-linking time on the amount of Lf 149 

leaching from the beads.  150 

The iron content (%) of the beads was determined based on the iron content measured in the 151 

crosslinking CaCl2 solution by Inductively Coupled Plasma Optical Emission Spectroscopy 152 

(ICP-OES) (Varian Vista Pro Radial ICP-OES system, Melbourne, Australia).   153 

The calcium content (%) of the beads was quantified by ICP-OES measurement and used as a 154 

measure of the calcium uptake by the beads during their formation. The beads were freeze 155 

dried (Christ, ALPHA 1-4 LSC, Osterode, Germany) for 72 hours, acid digested and analysed 156 

by ICP-OES.  157 

2.4. Properties of beads 158 

2.4.1. Mechanical property (Young’s Modulus) 159 

To investigate the mechanical property in terms of elastic (Young’s) modulus of the extruded 160 

beads, the beads (2 %) with mixing ratios (Alg:Lf) of 1:1.5, 1:1 and 1.5:1  were used. This 161 

range of mixing ratios was selected as a mixing ratio of 3:1 produced soft beads which 162 

disintegrated on handling. After extrusion, the beads were stored submerged in Millipore 163 

water for 24 hours prior to compression testing. A TA.XT Texture Analyser (Stable Micro 164 

Systems, UK) with TA10 Cylinder (D = 12.7 mm, L = 35 mm) was used for compression 165 

analysis. A single bead was compressed with a test speed of 0.1 mm/sec with a trigger force 166 
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of 5 g. The bead was compressed to 20 % of its diameter. The Young’s modulus was 167 

obtained from the gradient of the stress-strain curve. The gradient was calculated from the 168 

linear part of the slope (15 – 40 % of total strain).  169 

2.4.2. Stability 170 

The amount of Lf leaching from the beads (Alg:Lf = 1:1) into Millipore water at pH 4 and 7 171 

(22 ± 2 ˚C) for 6 weeks were determined  as a measure of bead stability. 2 grams of beads 172 

were placed in 20 mL of pH-adjusted water. 0.02 % of sodium azide was used as preservative 173 

in the beading mixture as well as in pH-adjusted Millipore water. The stability test of the 174 

beads was conducted under constant shaking at 240 rpm (IKA® KS 130 basic, GMBH & Co. 175 

KG, Germany). The amount of Lf leaching into the pH-adjusted water was determined at an 176 

interval of 1 week, using UV-visible spectrometry at 280 nm (Aitken & Learmonth, 1996) 177 

and corresponding Lf standard curves. 
178 

2.5. Statistical analysis 179 

For experiments with three or more replicates, significance of differences between the values 180 

was analysed by Analysis of Variance (ANOVA) with Tukey’s HSD post hoc test, family 181 

error rate 5 at 95% confidence level using MiniTab 16. The number of experiments is 182 

indicated by ‘n’ in the figures. 183 

3. Results and discussion 184 

3.1. Characterisation of beads from alginate-Lf mixtures with equal mixing ratios  185 

Beads were extruded using two different sized needles (25G5/8ʺ and 30G1/2ʺ) from alginate-Lf 186 

beading mixtures, containing different forms of Lf, at equal mixing ratios. The concentration 187 

of CaCl2 in the cross-linking bath and time for cross-linking were kept constant at 0.1 M and 188 

30 min, respectively.   189 
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With a bigger diameter needle (25G5/8ʺ), an effect of solid matter content of the beading 190 

mixture on the size (bead diameter) was noticed only at and beyond 4% total solids (Fig. 1 A 191 

& B). In addition, total solids content above 3% in alginate and 4% in alginate-Lf mixtures 192 

led to bead deformation (tailing), which is a very common phenomenon with viscous alginate 193 

solutions (Fundueanu, Nastruzzi, Carpov, Desbrieres, & Rinaudo, 1999). This shows that 194 

alginate beads were more prone to tailing than the alginate-Lf beads when compared beads of 195 

same total solid content. The diameter of the beads were 2.5 ± 0.2 mm, 2.6 ± 0.3 mm and 3.1 196 

± 0.3 mm for 2%, 3% and 4% solid contents, respectively. A value for 5% solid content 197 

beads could not be obtained due to the irregular shape of the beads (Fig. 1 A & B). 198 

Figure 1(A & B).  199 

When a smaller diameter needle (30G1/2ʺ) was used for extrusion of the beads having similar 200 

composition, the effect of total solids content on bead diameter (2.3 ± 0.3 mm) was negligible 201 

and no tailing was observed (Fig. 2A). When different forms of Lf (native- and holo-) were 202 

added to alginate, a change in bead colour was evident. While alginate beads are transparent 203 

those containing Lf were translucent and represented the colour of the alginate and Lf 204 

solutions from which they were produced. The colours of different forms of Lf powders were 205 

different; apo-Lf appeared white while native-Lf appeared light pink and holo-Lf reddish 206 

brown. They imparted similar colour to their respective beads. The beads with apo-Lf were 207 

opaque (Fig. 2B). The colour intensity increased with the total Lf concentration in the 208 

mixture (Fig. 2A). These visual pictures showed that Lf is retained by the beads. Because of 209 

the uniformity in size, PrecisionGlide® needle (30G1/2ʺ) was used for extrusion of beads for 210 

all further experiments. 211 

Figure 2 (A & B). 212 
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From Figure 3, it can be seen that alginate is the responsible component in the mixture for the 213 

water holding capacity of beads as adding Lf to the mixture did not significantly change the 214 

water content, eg. the water content of alginate-Lf beads was not significantly different (P > 215 

0.05) compared to that of alginate control beads. With lower alginate content (in alginate 216 

control as well as in alginate-Lf beads), a higher water holding capacity of the beads was 217 

observed. Such a trend has been widely reported (Yotsuyanagi, Ohkubo, Ohhashi, & Ikeda, 218 

1986) and is related to a higher polymer density leading to partial collapse of the network and 219 

a reduction in pore size (Donati & Paoletti, 2009). The water holding capacity of the beads 220 

from mixtures having different forms of Lf was not significantly different (P > 0.05) at all 221 

concentration levels. This indicates that all alginate-Lf beads would have similar pore size. 222 

Figure 3.  223 

3.2. Characterisation of beads extruded from alginate-Lf mixtures with different mixing 224 

ratios 225 

3.2.1. Bead composition  226 

Beads extruded through 30G1/2ʺ needles from alginate-Lf beading mixtures (2%), containing 227 

different forms of Lf, at different mixing ratios (Alg:Lf of 1:3, 1:1.5, 1:1 and 3:1) were used 228 

in this section of the study. Evaluation of the amount Lf and iron leaching into the cross-229 

linking solution was done for all four mixing ratios. The reason for considering 2% total 230 

solids in the mixtures was due to practical limitations because of viscosity increment. 231 

3.2.1.1. Effect of cross-linking time  232 

The amount of Lf leaching into the cross-linking solution during bead formation is 233 

characterised by the Lf content of the beads (Supplementary Fig. S1). Depending on the bead 234 

composition, the Lf content varied from 92−97 %. The Lf detected in the solution can be 235 
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attributed to Lf leaching from the gel beads into the bath solution during cross-linking 236 

(George & Abraham, 2006) or rapid escape of Lf into the solution at the initial stage of bead 237 

formation. When the cross-linking time was increased from 30 to 60 minutes, a larger amount 238 

of Lf had leached (about 2%) into the curing bath (Supplementary Fig. S1). The additional 239 

leaching of Lf after cross-linking is attributed to Lf (80 kDa) diffusing into the bath from the 240 

cross-linked beads as research has shown that molecules with molecular weight as high as 241 

300 kDa can diffuse from alginate gel beads into the water system (Tanaka et al., 1984; 242 

Martinsen, Skjåk-Bræk, & Smidsrød, 1989; Donati & Paoletti, 2009). In addition, a trend was 243 

noticed that with increasing amount of alginate in the Lf-alginate mixture (eg. from Alg:Lf of 244 

1:3 to 3:1), the leaching of Lf from the beads was lower (eg. resulted in higher Lf content, 245 

Supplementary Fig. S1). This trend is attributed to a higher concentration of alginate in the 246 

bead leading to a denser matrix (eg. beads were all of the same diameter). For Lf-alginate 247 

beads, a crosslinking time of 30 minutes was subsequently adapted for preparation of the 248 

beads for further investigation.  249 

3.2.1.2. Effect of different forms of Lf  250 

The amount of different forms of Lf and iron that leaches into the cross-linking solution after 251 

a cross-linking time  of 30 min are presented in Figures 4 A and B, respectively. A clear trend 252 

was seen for the effect of form of Lf in the alginate-Lf mixture; the Lf content of holo-Lf 253 

being the lowest (Fig. 4 A).  For all mixing ratios, the differences in Lf content of apo-Lf and 254 

native-Lf were non-significant (P > 0.05) but were significantly higher (P < 0.05) than that of 255 

holo-Lf. The iron content of the beads displayed the same trend. Iron retained by beads with 256 

apo-Lf was significantly higher (P < 0.05) than that of holo-Lf, whereas beads with native-Lf 257 

did not follow the trend (Fig. 4 B). It should, however, be noted that the determination of the 258 

Lf content is considered more accurate due to the higher absorbance values measured. This 259 

data indicate that the iron detected in the cross-linking solution is bound to the Lf. These 260 
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values were verified from iron analysis by ICP-OES and protein analysis by Dumas method 261 

conducted on the freeze dried beads (data not shown). The differences in the molecular 262 

structures of the different forms of Lf, in particular the structure of holo-Lf being more 263 

compact compared to the structure of apo- and native-Lf (Sánchez et al., 1992; Brisson, 264 

Britten, & Pouliot, 2007) and the differences in their physico-chemical properties (Bokkhim 265 

et al., 2013) may be responsible for the differences observed.    266 

Figure 4 (A & B). 267 

3.2.2. Water holding capacity 268 

The beads from section 3.2.1.2 were characterized for their water holding capacity except 269 

beads produced from the mixing ratio (Alg:Lf) of 1:3 which were excluded as they 270 

disintegrated during handling due to the low alginate content. Inclusion of any form of Lf 271 

from 25 % (3:1) to 60 % (1:1.5) in the alginate-Lf mixture (total solids content of 2 %) did 272 

not significantly affect the water holding capacity of the beads when compared to the alginate 273 

control beads of similar alginate content (Fig. 5). However, the alginate content in the 274 

mixture, affected the water held by the beads. Lower water content was observed for higher 275 

alginate content, which followed a trend similar to beads extruded with same mixing ratio but 276 

different solid contents (Fig. 3). This indicates that beads containing higher alginate content 277 

have a denser matrix. Higher water holding capacity correlated with softer beads, and as 278 

mentioned above the beads with 75 % Lf (1:3) disintegrated during bead handling. From this 279 

experiment, it can be concluded that a minimum of 40 % alginate is required in the Lf-280 

alginate mixture (2 %) to form firm beads.   281 

Figure 5. 282 
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3.2.3. Calcium uptake by the beads  283 

The beads from section 3.2.1.2 (except for the mixing ration (Alg:Lf) of 1:3) were 284 

characterized with regards to the amount of calcium uptake during bead formation and the 285 

data for different compositions is shown in Figure 6. The calcium uptake by the beads having 286 

different forms of Lf, calculated on the basis of unit mass of alginate, was not significantly 287 

affected by the forms of Lf used in beading mixture but was significantly different from that 288 

of control alginate beads at mixing ratios 1:1.5 and 1:1. However, the difference diminished 289 

as the alginate content increased to 75% (3:1). This showed that addition of Lf to alginate, 290 

thereby decreasing the alginate content in the mixture, increases the calcium uptake by the 291 

alginate component during bead formation at lower alginate content (below 75%) . On the 292 

other hand, the calcium uptake by the alginate control beads having different final 293 

concentration was not significantly different (P > 0.05). An explanation for these observations 294 

is that the presence of protein in the alginate-Lf mixture delays the formation of a sharp 295 

gelling zone during gelation allowing calcium to diffuse relatively fast towards the centre of 296 

the bead, ultimately leading to a higher amount of calcium participation in crosslinking. The 297 

amount of calcium (mg) per unit mass of alginate (g) ranged from 109 ± 2 − 117 ± 4 for the 298 

controls alginate beads to 137 ± 5 − 147 ± 5 mg/g for mixtures (1:1.5). These results are very 299 

similar to the values of 160 ± 30 mg/g for beads prepared from a 2 % sodium alginate (M/G 300 

ratio 1.5) in 0.27 M CaCl2 reported by Tan et al. (2008). 301 

Figure 6.  302 

3.3. Properties of beads  303 

3.3.1. Mechanical property of extruded beads  304 

Beads containing native-Lf described in sections 3.2.2 and 3.2.3 formed from solutions with 305 

mixing ratios (Alg:Lf) of 1:1.5 and 1:1 as well as with a mixing ratio of 1.5:1 were 306 
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characterised for their compressibility. As it was found that the water holding capacity and 307 

the calcium content of the beads were not significantly affected by the forms of Lf used, only 308 

native-Lf encapsulated in alginate was included in this experiment. The mechanical property, 309 

specifically the elastic modulus of the extruded beads is presented in Figure 7. It is evident 310 

that alginate beads show no significant difference in the elasticity of the gel beads when the 311 

concentration of alginate is increased from 0.8 to 1.0 % but the gel elasticity increases 312 

significantly when the alginate content is increased to 1.2 %. This agrees with the previous 313 

results by Martinsen, Skjåk-Bræk, & Smidsrød (1989) and considering that the beads showed 314 

the same level of calcium uptake (Fig. 6), it is attributed to the difference in their water 315 

holding capacity (Fig. 5). On the other hand, among the beads having native-Lf in their 316 

compositions, the elasticity of beads with 60% Lf (Alg:Lf = 1:1.5) were not significantly 317 

different from that of beads with 50% Lf (1:1) but significantly different (P < 0.05) from that 318 

of beads with 40% Lf (1.5:1). The form of Lf showed no significant difference in the 319 

elasticity of the beads (results not shown). This trend of decreasing elasticity of the beads 320 

with increasing alginate content for the alginate-Lf beads correlates with the higher 321 

crosslinking density (eg. higher calcium uptake) seen for the 1:1.5 Alg:Lf beads (Fig. 6) and 322 

is consistent with previous reports (Martinsen et al., 1989). Furthermore, it can be seen that 323 

the alginate-Lf beads (1:1) are not significantly different than the control beads (1% alginate) 324 

yet by increasing or decreasing either Lf or alginate in the mixing ratio by more than 20%, 325 

the elasticity of the beads was significantly altered.  326 

Figure 7.  327 

3.3.2. Stability of extruded beads  328 

Beads described in sections 3.2.2 and 3.2.3 formed from solutions with a single mixing ratio 329 

(Alg:Lf) of 1:1 were characterised for their stability with respect to the amount of Lf leaching 330 
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into pH-adjusted water at two different pH values. The pH values were chosen so as to ensure 331 

that only diffusion process would take place. At lower pH (< 4.0), alginate gels become 332 

unstable due to proton catalysed hydrolysis (Draget, 2009) and breaks down into lower 333 

molecular components (Gombotz & Wee, 1998). This will ultimately affect the crosslinking 334 

and stability of the beads and thereby the mechanism of release of Lf. The choice of a single 335 

mixing ratio was based on the Lf content following a similar trend for beads with different 336 

ratios (see Fig. 4).  The cumulative leaching of Lf from the alginate-Lf beads against time 337 

(days) at pH 4 and 7 is shown in Figure 8 A and B, respectively, and is expressed in 338 

percentage based on the initial Lf content of the beads at day 0. No significant effect of pH (4 339 

and 7) was observed on the leaching of apo- and native-Lf from their respective beads, but the 340 

leaching of holo-Lf was significantly (P < 0.05) affected by pH and was higher at pH 7 than 341 

at pH 4. Leaching of a higher amount of holo-Lf at pH 7 as compared to pH 4 might be due to 342 

higher swelling ratio of alginate beads at neutral pH (Shi, Alves & Mano, 2006). At the same 343 

time, it has been reported that holo-Lf has a more compact molecular conformation as 344 

compared to apo- and native-Lf (Sánchez et al., 1992; Brisson et al., 2007). Thus, the 345 

combination of the gel network size and the protein size might have contributed to leaching of 346 

higher amounts of holo-Lf at pH 7. Similar trends with respect to pH have been reported by 347 

Shi, Alves and Mano (2006) for the drug indomethacin and by Huguet and Dellacherie (1996) 348 

for bovine serum albumin.  On the other hand, the amount of apo-Lf leaching from the beads 349 

was significantly higher than that of native- and holo-Lf at pH 4. It has been reported that a 350 

protein with a low pI may be released more rapidly from the alginate matrix (Gombotz & 351 

Wee, 1998). In our past research (Bokkhim et al., 2013), it was found that apo-Lf 352 

demonstrates a net charge of zero in pH range of 5.5-6.5, which is lower than the actual pI 353 

(8.5-9.5) of Lf. This means that while native- and holo-Lf have an overall positive charge at 354 

both pH values used in the current stability study, apo-Lf will have a positive charge only at 355 
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pH 4. It thus appears that the relative rates of leaching at pH 4 are not solely related to the 356 

charge of the different forms of Lf. However, our previous study also concluded that apo-Lf 357 

has different physicochemical properties as well as iron binding capacity compared to native- 358 

and holo-Lf and it thus appears that the differences in Lf leaching for the different forms of Lf 359 

is related to more subtle differences between the proteins. The maximum amount of apo-Lf 360 

which had leached from the beads in 6 weeks did not exceed 9 % of the initial Lf content in 361 

the beads and lower amounts were observed for the other forms of Lf. This indicates a high 362 

overall stability of Lf within the alginate gel matrix. 363 

Figure 8 (A & B).  364 

4. Conclusion 365 

Lf (apo-, native- and holo-) can be encapsulated in alginate beads by the extrusion gel 366 

entrapment method. Alginate in the alginate-Lf mixture was found to be the major 367 

contributing factor in determining the water holding capacity of the beads, and it was 368 

inversely proportional to the alginate content in the mixture. It was found that a minimum of 369 

40% alginate was necessary in the alginate-Lf mixture to form firm beads. At low alginate 370 

content, the presence of Lf in the mixture led to an increase in calcium uptake by the beads.  371 

The leaching of holo-Lf from alginate-Lf mixture during gelation was found to be higher than 372 

apo- and native-Lf and correlate with the leaching of iron. The gel strength of the beads could 373 

be significantly altered by increasing either alginate or Lf content by 20% in the mixture. The 374 

cumulative leaching of apo-Lf from the beads into pH-adjusted water was less than 9% in 42 375 

days and was higher than that of native- and holo-Lf at both pH values. This indicates a high 376 

overall stability of Lf within the alginate gel matrix. Apart from leaching of Lf during 377 

gelation and upon immersing the beads in pH-adjusted water, the form of Lf in the mixture 378 

did not generate significant differences in the properties of the beads. The findings of this 379 

study clearly showed that Lf can be encapsulated efficiently in alginate beads using gel 380 
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entrapment method to produce beads with desired properties and can be used as the basis for 381 

commercial scale up.  382 
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Captions for figures supplied: 

Figure Caption Remarks/Format 
Fig. 1 Photographs of beads extruded through PrecisionGlide® 

25G5/8ʺ needles. (A) Alg and (B) MixN (1:1) with different 
total solid contents. 

PDF 

Fig. 2 Photographs of beads extruded through PrecisionGlide® 30G 
1/2ʺ needles. (A) Beads extruded from MixH (1:1) with 
different total solids content in the mixture. (B) Beads 
extruded from alginate-Lf mixtures (total solids content, 3%; 
1:1) having different forms of Lf. Alginate beads (1.5%) 
were extruded as control. 

PDF 

Fig. 3 Water holding capacity of beads extruded from alginate-Lf 
mixtures (1:1). Alginate beads having total alginate content 
of 1, 1.5, 2 & 2.5% were extruded as controls. The collective 
bars for each group that do not share a letter is significantly 
different at P < 0.05 (n=3). 

TIFF 

Fig. 4 (A) Amount of Lf remaining and  
(B) Iron remaining in beads prepared from mixtures (2%) 

having different forms of Lf (apo-, native- & holo-) and 
alginate in different ratios. The bars within the same 
column that did not share a letter are significantly 
different (P < 0.05) (n=3). 

TIFF 

Fig. 5 Water holding capacity of beads prepared from mixtures 
(2%) with different composition. Alginate beads (0.8, 1.0 & 
1.5%) were extruded as control (n=3). 

TIFF 

Fig. 6 Calcium uptake of beads extruded from different composition 
mixtures (2%). Alginate beads (0.8, 1.0 & 1.5%) were 
extruded as control. The collective bars for each group that 
do not share a letter are significantly different at (P < 0.05) 
(n=3). 

TIFF 

Fig. 7 Mechanical property (Young’s Modulus) of alginate-Lf 
beads (2%) having different mixing ratios. Alginate control 
beads (0.8, 1.0 & 1.2%) were extruded accordingly (n=6). 

TIFF 

Fig. 8 Cumulative leaching of Lf (%) from Lf-alginate beads (1:1) 
in Millipore water at different pH. (A) pH 4 and (B) pH 7. 
MixA ( −●−), MixN (⋅⋅⋅⋅⋅⋅⋅⋅○⋅⋅⋅⋅⋅⋅⋅⋅), MixH (−−−−⋅⋅⋅⋅⋅⋅⋅⋅−−−−▼−−−−⋅⋅⋅⋅⋅⋅⋅⋅−−−−). 

TIFF 
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Captions for Supplementary figure supplied: 

Figure Caption Remarks/Format 
Fig. S1 Amount of Lf remaining in the alginate-Lf beads (MixN; 

total solids 2%) at different mixing ratios, cross-linked for 30 
and 60 minutes based on the amount of Lf leached into the 
cross-linking solution (n=1). 

TIFF 
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