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Abstract. Although classical ecological theory (e.g., on ideal free consumers) recognizes the
potential effect of population density on the spatial distribution of animals, empirical species
distributionmodels assume that species–habitat relationships remain unchanged across a range of
population sizes. Conversely, even though ecological models and experiments have demonstrated
the importance of spatial heterogeneity for the rate of population change, we still have no practical
method for making the connection between the makeup of real environments, the expected
distribution andfitness of their occupants, and the long-term implications of fitness for population
growth. Here, we synthesize several conceptual advances into a mathematical framework using a
measure of fitness to link habitat availability/selection to (density-dependent) population growth
in mobile animal species. A key feature of this approach is that it distinguishes between apparent
habitat suitability and the true, underlying contribution of a habitat to fitness, allowing the
statistical coefficients of both to be estimated frommultiple observation instances of the species in
different environments and stages of numerical growth. Hence, it leverages data from both
historical population time series and snapshots of species distribution to predict population
performance under environmental change. We propose this framework as a foundation for
building more realistic connections between a population’s use of space and its subsequent
dynamics (and hence a contribution to the ongoing efforts to estimate a species’ critical habitat and
fundamental niche). We therefore detail its associated definitions and simplifying assumptions,
because they point to the framework’s future extensions.We showhow themodel can be fit to data
on species distributions and population dynamics, using standard statistical methods, and we
illustrate its application with an individual-based simulation. When contrasted with nonspatial
population models, our approach is better at fitting and predicting population growth rates and
carrying capacities. Our approach can be generalized to include a diverse range of biological
considerations. We discuss these possible extensions and applications to real data.

Key words: accessibility; climate change; conservation; density dependence; generalized functional
response; generalized linear model; habitat suitability; ideal free distribution; mathematical model; resource
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INTRODUCTION

Accelerating environmental change requires us to

understand not just how species distributions will adjust,

but also whether their population sizes will go up or

down. The mechanisms linking the environment of a

population to its spatial distribution and growth are

considered textbook material (e.g., Chapman and Reiss

1999, Begon et al. 2006, Levin 2009). Environmental

variables are distributed across space, their combina-

tions forming habitats that are differentially used by

different species. Populations track the heterogeneity in

their environment either actively (when individuals

navigate the landscape in search of suitable habitats)

or passively (when dispersers settle at habitats that

differentially affect their survival and reproduction).

These processes are tightly linked: increases in popula-

tion density will tend to lower local fitness and,

additionally, cause some individuals to move to subop-

timal habitats, directly impacting the overall ability of a

population to grow (Fig. 1).
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Much of the ecological theory developed over past

decades has focused on different stages of this causal

chain: reaction–diffusion models (Solé and Bascompte

2006, Okubo and Levin 2010) have explored the

emergence of complex spatial patterns, optimal foraging

(MacArthur and Pianka 1966, Emlen 1968) has deter-

mined the behavioral strategies that maximize energy

intake (indirectly highlighting the limits of environmen-

tal profitability for the individual), ideal free distribution

theory (Fretwell and Lucas 1970) has opened the debate

about the implications of competition for the distribu-

tion of conspecifics, movement ecology (Turchin 1998,

Codling et al. 2008, Schick et al. 2008) has created useful

abstractions to describe how organisms navigate their

environment, behavioral ecology (Krebs and Davies

1997) has increasingly considered energetic and risk-

related trade-offs in trying to explain the decisions of

individuals from a fitness perspective, and population

ecology persistently aims to incorporate the implications

of individual fitness for demographic rates and net

population growth (Clutton-Brock et al. 1991, Silver-

town et al. 1993, Gaillard et al. 2000, Clutton-Brock and

Coulson 2002, Coulson et al. 2005, Matthiopoulos et al.

2014).

Yet, despite our ability to enumerate the links in the

chain that ties a population to its environment, and

despite the multitude of theoretical insights obtained

since the 1960s, we still lack practicable models with

estimable parameters that can capture species–environ-

ment relationships in an integrated spatial and temporal

fashion (Keith et al. 2008).

Statistical species distribution models (SDMs) have

thrived in the last 25 years because of the emergence of

new data-collection technologies (Millspaugh and Mar-

zluff 2001, Cagnacci et al. 2010) and data analysis

techniques (Buckland and Elston 1993, Boyce and

McDonald 1999, Guisan and Zimmermann 2000,

Guisan et al. 2002, Manly et al. 2002, Scott et al.

2002, Aarts et al. 2008). Despite their bewildering

variety (Guisan and Zimmermann 2000, Elith and

Leathwick 2009), fundamentally different assumptions,

and regularly conflicting outputs (Elith and Graham

2009), the basic thrust of these models is the same:

organisms have a reason for being where we find them.

They are observed at (or near) places that, in some way,

help them survive and reproduce. By using one of

several possible quantitative methods that can correlate

the distribution of species observations (i.e., counts or

occurrences) to different environmental gradients,

SDMs hope to empirically capture enough of the spatial

signal to further our ecological understanding of the

species. The predictions from these models are used for

interpolating patchy spatial data, expanding the spatial

range of available species maps, or anticipating redistri-

bution under environmental change.

Habitat selection functions (HSFs, more widely

referred to in the literature as resource selection

functions; Boyce and McDonald 1999, Manly et al.

2002) are arguably the best-established and best-

understood type of SDM. A HSF is often defined as

any model that yields values proportional to usage.

More precisely, a HSF models the expected density (i.e.,

the intensity) of observations as a function of covariates

(Aarts et al. 2012). At their simplest, they are

implemented as generalized linear models (GLMs;

McCullagh and Nelder 1989), with more recent exten-

sions such as generalized additive (GAMs; Wood 2006),

or mixed-effects models (GLMMs or GAMMs; Pinheiro

and Bates 2000, Wood 2006) aimed at capturing

nonlinear responses to the environment that are affected

by multiple sources of variability. HSFs are supported

by extensive statistical theory, widely available software,

and graphical diagnostics, and they frequently outper-

form more opaque machine-learning methods such as

neural nets (Wenger and Olden 2012). Furthermore,

they are more general than (although conceptually

related to) more recent, popular methods such as

maximum entropy (Phillips et al. 2006, Elith et al.

2011, Aarts et al. 2012, Renner and Warton 2013).

Therefore, HSFs are a solid foundation upon which to

start developing the empirical link between habitat use

and population dynamics (McLoughlin et al. 2010).

However, both the deductive and predictive abilities

of SDMs have come under severe criticism. The

phenomenological origin of their mathematical structure

has encouraged the proliferation of ad hoc methodo-

logical variants, impeding the biological interpretation

of model structure and results (Elith and Leathwick

2009). Their misleading use as descriptors of a species’

realized/fundamental niche (Stockwell 2007, Hirzel and

Le Lay 2008) has received negative and recurrent

FIG. 1. Conceptual links between the makeup of the
environment and the dynamics of a population that lives in it.
Habitat availability (1) describes the amounts of all habitats
that are accessible to an organism. The suitability of different
habitats (2) gives rise to an organism’s spatial distribution (3).
Across different locations, organisms may experience different
conditions, access different amounts of resources, and be
subjected to different degrees of risk. These experiences of
individuals determine their fitness (4). The collective measure of
fitness for the entire population determines annual rates of
population growth and subsequent population dynamics (5).
Population density (6) then feeds back into population
dynamics, but it may also affect habitat availability (through
resource depletion or niche engineering), spatial distribution
(through behavioral responses to crowding), and fitness
(through demographic responses to crowding). Note that the
suitability of different habitats is a characteristic of a species
and therefore cannot be changed by population density.
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attention (Elith and Leathwick 2009, Soberón and

Nakamura 2009, Peterson et al. 2011, Warren 2012,

2013, McDonald et al. 2013, McInerny and Etienne

2013). Their sensitivity on arbitrary scale decisions made

by the analyst (Austin 1999, Beyer et al. 2010) and

instability in changing environments (Randin et al. 2006,

Zurell et al. 2009, McLoughlin et al. 2010, Sinclair et al.

2010, Matthiopoulos et al. 2011, Wenger and Olden

2012) has alerted practitioners to the dangers of their

widespread and unvalidated application. Additionally, a

crucial fact that seems to have escaped the attention of

the SDM literature is that estimates of habitat suitability

are not likely to be invariant to population density.

Given that these models evaluate habitat suitability on

the basis of relative usage, which is certain to be affected

by density-dependent processes, SDMs run the risk of

returning different parameter estimates depending on

how close an observed population is to its carrying

capacity.

Despite the development of more mechanistic spatial

approaches (Chase and Leibold 2003, Kearney and

Porter 2004, Moorcroft and Lewis 2006, Patterson et al.

2008, Schick et al. 2008, Higgins et al. 2012), empirical

SDMs are unparalleled in their taxonomic generality,

ease of use, and computational expediency for popula-

tion-level inferences. For this reason, there is a concerted

remedial effort to try and improve their shortcomings

(Arthur et al. 1996, Mauritzen et al. 2003, Gillies et al.

2006, Hebblewhite and Merrill 2008, Godvik et al. 2009,

McLoughlin et al. 2010, Matthiopoulos et al. 2011) and

help them fulfill their original deductive and predictive

promise (Warren 2013). In this study, we propose a

pragmatic synthesis between models of habitat selection

and models of population change. Our overarching

objective is to mathematically link empirical estimates of

habitat availability and apparent habitat preference with

the observed rates of growth of populations living in

these environments. We believe that such a synthesis can

ultimately lead to both a deeper mechanistic under-

standing and stronger statistical inference. Therefore, to

illustrate the utility of our paradigm, we take the first

steps along both of these routes. On the mechanistic

side, we explore how apparent habitat suitability,

gleaned through observations of space use, may be

connected to the unobserved fitness that animals gain

from each habitat. On the statistical side, using

simulated data, we show how inference on spatial usage

and population time series can improve our predictions

of population change.

Since we aim for a convergence between the relatively

independent areas of species distribution modeling and

population dynamics, we begin by explaining our

terminology, which borrows vocabulary from both

areas. We limit our attention to a specific, but still quite

broad set of circumstances that we believe can serve

both as proof of concept and as a suitable basis for

expansion. Hence, in Ecological scope and simplifying

assumptions, we set out the basic premises of our study.

In Environmental determinants of fitness, we outline a

general link between fitness and the environment of an

organism and in Linking fitness, habitat suitability, and

habitat use, we introduce the connection between fitness,

habitat suitability, and space use. In Parametric

formulations of habitat availability, we import, from

the statistical literature, methodology that can abstract

the composition of environmental space, reducing the

detailed availability profile for all habitats to a simple

parametric approximation. This approximation allows

us to obtain computationally efficient expressions for

the fitness of organisms living in different environments

under exponential (Connecting habitat use to exponential

population growth) and density-dependent (Connecting

habitat use to density-dependent population growth)

population growth. In A note on the relationship between

partial fitness and habitat suitability, we discuss the link

between measures of habitat suitability (derived from

observations of habitat usage) and the underlying fitness

offered by different habitats. In Parameter estimation

from space-use and population time-series data, we

describe how the analytical expressions from Connecting

habitat use to exponential population growth and

Connecting habitat use to density-dependent population

growth can be used with real data on population

distribution and growth to estimate the parameters

linking the environment to the average fitness of a

population. We apply these methods to data from a

simulation of animal redistribution and demography

(described in Simulation) in three simulation experi-

ments (outlined in Simulation experiments) that examine

the goodness of fit of the method, its predictive ability,

and its sensitivity to the amount and type of available

data. Finally, we discuss how the work presented here

can be extended, hence outlining a research program

that aspires to the development of practitioner-friendly

joint inference from spatial and temporal data.

TERMINOLOGY

We retain the basic distinction between geographical

space (G-space) and environmental space (E-space),

historically known as Hutchinson’s duality (Hirzel and

LeLay 2008, Colwell and Rangel 2009, Elith and

Leathwick 2009). G-space comprises the three dimen-

sions of latitude, longitude, and altitude/depth, often

projected onto a Cartesian system of coordinates. In

contrast, each dimension in E-space represents a biotic

or abiotic environmental variable, i.e., a continuous,

discrete, or qualitative random variable representing a

condition (e.g., pH, temperature, sea depth), resource

(e.g., soil nutrients, prey, breeding sites), or perceptible

threat (e.g., predators, pollution). Environmental vari-

ables may or may not correlate with the geographic

distribution of the study species. Those that do are

called its covariates.

Here and elsewhere (Aarts et al. 2008, Matthiopoulos

et al. 2011), we define a habitat x as a point in E-space,

the combination of specific values for K environmental
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variables (e.g., geomorphology and climate variables

combining into the characteristic makeup of polar

habitat). Alternatively, habitat has been defined in a

species-dependent way as the region in geographical

space in which an organism lives (e.g., polar bear

habitat). The two definitions are not interchangeable

(see Hall et al. 1997). We opt for the first definition

because it allows objective comparisons between species

and quantitative gradations of suitability.

Space use (us) is the expected usage of the neighbor-

hood (e.g., a grid cell) centered at a point s in G-space,

i.e., the proportion of an individual’s or a population’s

time that is likely to be spent there on average. Use can

be equally well defined infinitesimally on single points in

space as the spatially varying intensity function of an

inhomogeneous Poisson process (Warton and Shepherd

2010, Aarts et al. 2012). Habitat use (ux), the proportion

of time spent in regions of E-space, or equivalently, the

intensity of use of points in E-space, is not only

influenced by the suitability of these habitats to an

organism, but also by the abundance and accessibility

(Matthiopoulos 2003) of these habitats (collectively,

their availability). Assuming purely continuous environ-

mental variables (with no loss of generality), we

introduce the function fx representing habitat availabil-

ity as the probability density of habitat x in E-space (i.e.,

the unconditional likelihood with which this habitat

occurs at any given point of G-space).

If the behavior and demography of organisms were

unaffected by their environment and they were allowed

to move/disperse randomly for a long time within the

study area (resulting in an asymptotically homogeneous

distribution in G-space), habitats would be used in

proportion to their availability. Therefore, deviations

from proportional usage indicate the existence of a

response (apparent preference or avoidance). Conse-

quently, many analyses define preference wx as propor-

tional to the ratio of habitat use over availability

(Johnson 1980, Manly et al. 2002, Aarts et al. 2008,

2013). Different animals will vary in the behavioral

perceptiveness, speed, and precision with which they can

track good habitats in the environment. The presence of

an organism in a particular habitat may be as much the

result of active selection as of passive happenstance (an

individual may be encountered there because of differ-

ential survival rather than choice). Here, we will replace

the active term ‘‘habitat preference’’ by the more passive

‘‘apparent habitat suitability’’.

The average fitness F(f ) that a population can acquire

from its environment (denoted f, the vector of individual

availabilities fx for all habitats x in E-space ) is defined

as the population’s log-rate of change (we will expand

on this definition of fitness in Environmental determi-

nants of fitness). A habitat that can satisfy all life-history

priorities of a species (e.g., nutrition, rest, mating, birth)

may be called sufficient. A habitat that can satisfy only

part (or none) of the life-history priorities is called

insufficient. We will call multifunctional those habitats

that can satisfy more than one life-history priority.

Sufficient habitats are multifunctional but the reverse

may not be true. We define partial fitness Fx 2 (�‘,‘) as

the contribution of each unit of habitat x to the average

fitness of a population. Partial fitness can be interpreted

as the fitness of a population living in an environment

made up entirely of habitat type x.

ECOLOGICAL SCOPE AND SIMPLIFYING ASSUMPTIONS

We collect here 10 important assumptions that set out

the scope of this study. Relaxing these assumptions will

form the basis for future extensions of our work, so we

return to them in Discussion.

1. Accessibility of environment to the population.—An

assumption implicitly made by most analyses of species

distribution is that the populations are not systemati-

cally (or due to historical effects) prevented from

accessing good-quality habitats (Manly et al. 2002,

Matthiopoulos 2003). This assumption could, for

example, be violated by natural or manmade boundaries

(Beyer et al. 2014), or by the existence of transient

processes such as invasion fronts. In practice, this

requires the user to define an appropriate G-space in

which all areas are accessible by the population

(Northrup et al. 2013). For our simulations (Simulation),

we reduce the effects of accessibility by implementing

toroidal spatial boundaries and employing a settlement

phase at the start of each simulation.

2. Spatial pseudo-equilibrium.—Our assumption here

(as in most SDM approaches; Guisan and Thuiller 2005)

is that the spatial usage data do not capture a

population whose distribution is still undergoing chang-

es due to a delayed response to the environment. In the

context of a continually changing environment, we

assume that the spatial distribution of a population

adjusts readily, and thus, SDMs fitted to annual data are

not likely to be misguided by transient patterns. This

assumption builds on assumption 1 (on accessibility) by

requiring that all of space is accessible by the population

rapidly enough to allow the pseudo-equilibrium distri-

bution to be approximately achieved between sampled

snapshots of spatial distribution. Note that this does not

require the population size to have reached equilibrium.

3. Habitat use by individuals is representative of the

population’s habitat use.—Our methods, as they cur-

rently stand, apply to freely moving animals whose

survival and reproductive success depend on all of the

habitats they have experienced during a year. We

assume that any population member experiences and

uses approximately the same mix of available habitats as

all the others. This assumption need not require

accessibility of all the landscape by every single

individual, if the environmental composition at the scale

of movement of individuals is sufficiently representative

of the composition of the entire landscape.

4. Treatment of resource depletion.—Although our

model examines the effect of limited resources on

generating density dependence, for this study, we have
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not examined the impact of the focal species on the

resources it relies on. Our framework can, in principle,

be extended to model resource–consumer dynamics (by

running coupled dynamical models for more than one

species), but we have here focused on the single-species

case. We justify this assumption by distinguishing

between three possibilities. For some species (e.g.,

generalist consumers), resources may regenerate quickly,

or their abundance may be driven by processes other

than the focal species’ density. In such a scenario, any

process of depletion will not be strongly coupled with

the dynamics of the study species. If the species of

interest causes slow depletion (e.g., over multiple years),

then this effect can be represented by snapshot data on

the annual distribution of the resources that enter the

model as a covariate. If depletion exists and is fast, a

resource layer can be depleted within the interval of a

year, potentially removing any initial spatial heteroge-

neity in its distribution. An SDM trying to correlate

species distribution with such a depleted resource would

usually fail to find a signal. This is a recognized issue in

the SDM literature and one advantage of correlating

usage with non-depletable environmental proxies of

resource productivity, instead of data on resource

abundance (Torres et al. 2008, Aarts et al. 2014).

5. Linearity in density dependence.—We have as-

sumed that use of a particular spatial unit by each

additional member of the population lowers that unit’s

suitability for the other individuals in it. This excludes

processes such as the Allee effect, which would signify

that, at low overall values of density, increases in

density can have a positive effect on fitness (e.g., by

alleviating the per capita effect of predation risk at

larger populations). Although such a feature is not

included here, it could be captured by higher-order

(e.g., quadratic) terms in our model of density

dependence.

6. Linearity in the response of fitness to increasing

usage of habitats or to increases in individual resources.—

For mathematical simplicity, we here exclude the

possibility of diminishing fitness benefits from the

superabundance of any given habitat, or specific

resource. This means that every additional unit of good

habitat or resource has an unsaturating contribution to

population growth. From an individual’s point of view,

the benefit obtained from increasing amounts of a

resource or increasing usage of a particular habitat

should plateau to an asymptotic maximum (Austin

2002), for example, due to satiation. However, from a

population perspective, the number of individuals that

can be sustained by an ever-increasing resource is

unlimited. Hence, any short-term effects (such as the

daily satiation of an individual) should be counterbal-

anced by high survival and increases in the production

of new individuals.

7. Additivity of covariates in determining partial

fitness (within a habitat).—Although it is certainly true

that different resources, conditions, or sources of risk

may interact nonlinearly (in a complementary or

antagonistic way) in determining organism fitness (Til-

man 1982), this important extension is beyond the scope

of the present study. We will instead model these effects

as purely additive influences within the linear predictor

of our statistical model of fitness (see Eq. 4).

8. Additivity of partial fitness in determining average

fitness (across different habitats).—We will assume that

the use of different habitats has an additive effect on

fitness. For example, this implies that organisms cannot

construct sufficient habitats by complementary use of

insufficient ones.

9. No population structure.—The population models

examined in this study are simple. Beyond the focal

features of density dependence and spatial/habitat

effects, we have eschewed the possibility of reproductive

time delays, age structure, or any other form of

individual variation that is not driven by habitat.

10. No genetic change.—Assumption 9 also implies

that no evolutionary processes take place. Hence, we

require that the study questions are posed over short

time-horizons, population members are genetically

similar, and any environmental change is sufficiently

non-directional that the only adaptation takes the form

of spatial redistribution.

ENVIRONMENTAL DETERMINANTS OF FITNESS

In our approach, the fundamental link between spatial

distribution and population dynamics is the average

fitness of a population. Fitness formalizes the intuitive

notion that different environments (i.e., collections of

habitats) should differentially affect a population’s short-

term rate of growth and long-term size (its carrying

capacity). In general, the fitness F(f,Nt) that a population

can acquire from a given environment f¼ f fx, for every
habitat x in Eg is defined as the population’s log-rate of

change, given its current size (Nt)

Ntþ1

Nt
¼ expðFðf;NtÞÞ: ð1Þ

We will further expand on issues of density depen-

dence in Connecting habitat use to density-dependent

population growth, and focus here on the dependence of

fitness on environmental makeup. Discrete-time models

are used because they offer an easier entry point for

empirical investigations (population data are likely to

be discrete in time), but the same ideas could be

couched in continuous time. This ecological interpre-

tation of Eq. 1 has been extensively discussed in the

literature (Stenseth 1983, 1984, Nur 1984, 1987,

Murray 1985, Ollason 1991, Mills 2012) and the

equation has a long history of use in evolutionary

models (Fisher 1930, Lande 1982, Roff 2008). Due to

the exclusion of genetic adaptation (assumption 10),

the interpretation of fitness in this study is purely

ecological, not evolutionary. Hence, our framework

currently builds no link between evolutionary fitness

(the viability of a particular genotype living in a
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constant environment, a situation where genotypes are

variable in time and between individuals) and popula-

tion fitness (looking at collective viability in a

particular environment, a situation where environ-

ments change either due to shifts in habitat availability

or due to intra/interspecific processes).

Because partial fitness is here assumed additive

(assumption 8) and each additional unit of usage

received by habitat x is postulated to have an

undiminishing contribution to average fitness (assump-

tion 6), partial fitness (Fx) scales with the usage ux of

each habitat to give the relationship between average

and partial fitness

F ¼
Z
E

Fxuxdx: ð2Þ

This last expression derives expected population

fitness as the average (over E-space) of habitat-specific

fitness, weighted by habitat-specific usage (an illustrated

example of this concept is presented in Fig. 2).

Assumption 3 ensures that placing this in Eq. 1 yields

a per capita growth rate that is representative of the

whole population. The two components of Eq. 2 (Fx and

ux) are now expanded individually here and in Linking

fitness, habitat use, and habitat suitability.

Partial fitness can be specified further by considering

its sign in relation to the type of habitat that it represents

Fx

, 0 if x is insufficient

¼ 0 if x is fitness-neutral

. 0 if x is sufficient

:

8<
: ð3Þ

Further progress can be made by considering a

simple classification of environmental variables into (1)

resources (R), (2) risks (P), and (3) conditions (C ).

Resources are environmental variables whose density

has a positive and monotonic relationship with fitness

(i.e., the more, the better). Resources can potentially be

depleted (locally or globally) by an organism, although

we will not explicitly consider such processes here

(assumption 4). In contrast, risks have a negative (but

still monotonic) relationship with fitness. Conditions

are environmental variables that characterize suitable

habitat according to a bounded range of values. Like

resources, they can potentially be altered by organisms

(see literature on ecosystem engineers, e.g., Odling-

Smee et al. [2003]). Hence, resources should push Fx

above zero, sources of risk should push it below zero,

and conditions could act in both ways (depending on

whether their particular values are favorable or not).

This classification is not unlike the one recommended

by Guisan and Zimmermann (2000), Huston (2002),

and Guisan and Thuiller (2005), however, here, we

have justified the subdivision on the basis of the

response of fitness to environmental gradients (increas-

ing, decreasing, non-monotonic). In general, we can

therefore write

Fx ¼

Xn1

k51

RðxkÞ|fflfflfflfflffl{zfflfflfflfflffl}
Resources

þ

Xn11n2

k5n111

PðxkÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Risks

þ

Xn11n21n3

k5n11n211

CðxkÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Conditions

ð4Þ

where the contribution of each of the three categories of

fitness covariates may be determined according to a

different functional form. Since here we ignore the

possibility of interaction terms (assumption 7), for the

rest of this study, we focus on a simplification of Eq. 4

that models the contributions to fitness by first- or

second-order polynomials, so that

RðxkÞ ¼ �a0;k þ a1;kxk

PðxkÞ ¼ �a1;kxk

CðxkÞ ¼ 6a0;k 6 a1;kxk � a2;kx2
k ð5Þ

where the alphas are positive coefficient values forming

the polynomials. These bear some biological interpre-

tation. For example, if the kth variable is a resource,

then a0,k is the rate at which fitness is lost when that

resource is absent (xk¼ 0). If the kth variable is a risk,

then a0,k is set identically to zero, so that fitness is only

lost under non-zero values of the variable xk. C(xk)

describes fitness arising from an environmental condi-

tion as a downward-pointing parabola with a maxi-

mum (6a0,k þ a2
1;k/4a2,k) at intermediate values and

guaranteed negative fitness at sufficiently extreme

(large and small) values of the environmental condi-

tion. Although it is possible that the response to

conditions is asymmetric around the optimum (Austin

1999, 2002), a parabolic form is nevertheless a

considerable improvement over simple linearity.

Hence, this form seems a good compromise between

biological realism and mathematical tractability. The

reductions in fitness arising from sources of risk P(xk)

take proportionately larger negative values for greater

values of risk. This is an untested assumption, but we

see no reason to doubt it from first principles. The

linear response of fitness to resources R(xk) is

anticipated by assumption 6. Note that this discussion

on the functional specification pertaining to conditions,

resources, and risks merely aims to cast the simple

empirical expression in Eq. 5 in a more biological light.

For the implementation of the framework, it is not

necessary for the user to classify different fitness

covariates a priori (e.g., if unsure, all covariates can

default to a second-order polynomial and the process

of model estimation/selection can be relied upon to

eliminate any unnecessary high-order terms). Hence,

replacing the positive alphas (Eq. 5) by signed betas

gives the more general form

Fx ¼
XK

k¼1

X2

r¼0

br;kxr
k b2;k � 0: ð6Þ

JASON MATTHIOPOULOS ET AL.418 Ecological Monographs
Vol. 85, No. 3



LINKING FITNESS, HABITAT SUITABILITY,

AND HABITAT USE

In this section, we derive a general expression (Eq. 10)

linking average fitness to habitat suitability. This

expression will then be used in Connecting habitat use

to exponential population growth and Connecting habitat

use to density-dependent population growth to derive

exponential growth and density-dependent models,

respectively. According to assumption 3, fitness is driven

by an organism’s usage of different habitats, in a way

representative of the rest of the population. In general

(Lele and Keim 2006, Aarts et al. 2012, Lele et al. 2013),

habitat usage (ux) is related to apparent habitat

suitability (wx) within the constraints of habitat avail-

ability ( fx)

ux ¼
wx fxZ

E

wy fy dy

: ð7Þ

Here, y is a dummy variable. This expression has been

independently derived from several perspectives, most

notably from weighted distribution arguments (Mc-

Donald et al. 1990, Patil 2002). In essence, it postulates

that the total usage of each unit of a particular habitat is

proportional to its suitability [(ux/fx) } wx]. Importantly,

the apparent suitability (preference or avoidance) of

habitat type x is conditional on the availability of all

habitats in the environment (Johnson 1980) subject to

any accessibility constraints (Matthiopoulos 2003).

Apparent suitability can be modeled as any nonnega-

tive-valued function of a linear predictor based on a

vector of location-specific values for environmental

covariates. The exponential function is, by far, the most

appropriate from a theoretical perspective (McDonald

et al. 1990, Manly et al. 2002, but see also Lele et al.

2013)

wx ¼ expðGxÞ ð8Þ

where

Gx ¼
XK

k¼1

X2

r¼0

cr;kxr
k: ð9Þ

Here, habitat suitability is quantified by the param-

eters cr,k. This formulation of suitability is a HSF (also

known as a resource selection function; Boyce and

McDonald 1999). The similarity between the formula-

tions for local fitness (Fx in Eq. 6) and the linear

predictor of suitability (Gx in Eq. 9) is not coincidental.

We discuss their possible connections in A note on the

relationship between partial fitness and habitat suitability.

FIG. 2. A simplified illustration showing how population growth rate is assumed to arise from habitat usage. In (a), we envisage
the movement (red arrows) of a single organism through a landscape of three habitat types (type 1 in white, type 2 in light green,
and type 3 in dark green). The availability of each habitat type is denoted by fi. Each habitat type has a different partial fitness
contribution Fi, represented in (b) by white, light blue, and dark blue. As the organism moves through space, (c) its usage ui of
different habitats is incremented each time a cell belonging to that habitat is visited. The aggregate fitness F can then be calculated
as an average of partial fitnesses, weighted by usage. If different individuals in the population are assumed to use a similar mix of
the three habitats, then the individual’s aggregate fitness can be applied to the population. In this example, the value is 0.975,
implying a per capita population growth of exp(F ) ffi 2.65.
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Bringing together Eqs. 2, 7, and 8 (and dropping the

dummy variable y from the integral in the denominator)

yields a general expression for average fitness

Fð f ;NÞ ¼

Z
E

FxexpðGxÞfxdxZ
E

expðGxÞfxdx

: ð10Þ

PARAMETRIC FORMULATIONS OF HABITAT AVAILABILITY

Making use of Eq. 10 requires us to have a quantitative

description of the environment’s makeup. For any given

environment and for predetermined cell sizes in E- and G-

spaces, it is possible to calculate the observed relative

frequencies ( fx) of occurrence of each habitat as the

proportion of the study area occupied by that habitat.

The integrals in Eq. 10 could then be approximated by

sums and calculated numerically. However, this can

prove computationally expensive for the purposes of

statistical estimation, particularly when E-space is high

dimensional. For this reason, we pursue an analytical

approach, capturing the complicated shape of habitat

availability in E-space by its salient statistical properties.

This can be done by parametrically approximating the

empirical distribution of habitat availability in E-space by

a Gaussian mixture. Since the values fx in E-space are

probability densities, the required approximating func-

tion must satisfy nonnegativity and unit-sum require-

ments. We use an L-mixture of K-variate Gaussian

kernels (where L is the number of kernels used in the

mixture and K is the dimensionality of E-space). There

are several options regarding the kernels chosen to do

this. For example, there are (1) Gaussian kernels

including different variances in each environmental

dimension and allowing for correlation between environ-

mental variables, (2) different variances in each dimen-

sion but no correlation, and (3) fixed variance and no

correlation. The trade-off here is between the flexibility of

different kernels and the total number of kernels required

to adequately approximate the shape of fx within E-space.

We selected option 2, because it offers the best

compromise between biological realism and mathematical

tractability. In addition, we elected to use the same set of

K variance parameters for each of the L kernels. This

gives the following approximation of habitat availability:

fx ¼
XL

l¼1

wl fl;x

¼ 1

ð2pÞK2 P
K

k¼1
rk

XL

l¼1

wlexp � 1

2

XK

k¼1

xk � ll;k

rk

0
@

1
A20

@
1
A ð11Þ

where fl,x is the probability density function (PDF) of the

individual (lth) kernel, wl is the weight associated with the

lth kernel, ll,k is the position of the lth kernel along the

kth environmental dimension, and r2
k is the variance

associated with the kth environmental dimension. Since

the kernel weights are positive and add up to 1, Eq. 11

satisfies both conditions for a PDF

fx � 0;

Z
E

fxdx ¼ 1: ð12Þ

There are well-documented software tools for per-

forming this decomposition that can work fast and

robustly for high-dimensional E-spaces. We used the R

package mclust (Fraley and Raftery 2002, Fraley et al.

2012). We provide further details of its usage in

Parameter estimation from space-use and population

time-series data, and a graphical example of its output

is shown in Fig. 3.

CONNECTING HABITAT USE TO EXPONENTIAL POPULATION

GROWTH

In the absence of density dependence, the population

model in Eq. 1 becomes

Ntþ1

Nt
¼ expðFðfÞÞ: ð13Þ

In this section, we obtain the intrinsic population

growth rate (r) on the right-hand side of this equation as

a function of habitat suitability and habitat availability

parameters. We focus on manipulating the expression

for the average fitness F(f ). Incorporating Eqs. 6 and 9

into Eq. 10 gives the expression

F ¼

Z
E

XK

k¼1

X2

r¼0

br;kxr
k

 !
exp

XK

k¼1

X2

r¼0

cr;kxr
k

 !
fxdx

Z
E

exp
XK

k¼1

X2

r¼0

cr;kxr
k

 !
fxdx

: ð14Þ

In Appendix A, with the aid of Eq. 11 we convert this

into an integral-free expression. The population model

implied by Eq. 1 with this density-independent definition

of fitness is

Ntþ1

Nt
¼ exp

F1

F2

� �
ð15Þ

where F1,F2 are laid out in Appendix A: Eq. A.23 as

functions of the coefficients describing habitat availabil-

ity (the parameters ll,k, r2
k of the Gaussian approxima-

tion), habitat use (as quantified by the parameters cr, j)
and habitat-related fitness (as quantified by the param-

eters br, j). The fact that these expressions are integral-

free, and therefore computationally cheap, is particu-

larly important for use in multidimensional statistical

inference (see Parameter estimation from space-use and

population time-series data).

CONNECTING HABITAT USE TO DENSITY-DEPENDENT

POPULATION GROWTH

Conspecific interference affects the population in two

ways. First, the fitness that can be obtained from a

crowded habitat is reduced, ultimately leading to a
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reduction in population growth rates. This can be

modeled by incorporating population density as a

covariate to fitness, thus accounting for the extent of

conspecific interference by treating it as a characteristic

of an organism’s local environment. The expected

number of organisms using a single unit of area

belonging to habitat x is

uxNt

Afx
ð16Þ

where A is the total study area. Habitat usage in this

expression is divided by Afx because organisms experi-

ence crowding in G-space (i.e., units of area). If the

unitary interference (defined as a proportional reduction

in fitness; see assumption 5) caused to an individual by

conspecifics is b, then the (reduced) partial fitness at that

habitat is redefined as

~Fx ¼ Fx � b
uxNt

Afx
: ð17Þ

The second effect of population density is on the

resulting spatial distribution of mobile organisms. If

individuals can avoid competition through relocating,

they may increasingly be observed using suboptimal

habitats that offer better prospects than the crowded

(originally high-fitness) habitats. This will ultimately

FIG. 3. In this example, two environmental variables, (a) the resource (food) and (b) the condition (temperature) combine to
create different habitat types in different locations in geographical space (G-space; latitude and longitude here are names for the
axes of the simulation area). In this study, (c) the partial fitness of each location is determined by the local habitat. Through annual
redistribution and differential population growth, this gives rise to (d) the usage distribution (here, shown when the population size
has reached carrying capacity for this hypothetical landscape). We used a green-to-white color scale (terrain.colors() function in R;
R Core Team 2014) to represent low-to-high values of each environmental variable in G-space. The availability of different habitats
in environmental space (E-space) can be visualized by counting the frequencies of occurrence of different habitats and using them
(e) to generate a density plot. These numerical availabilities can be approximated by (f ) a mixture of Gaussian kernels; in (e) and
(f ), the values listed for temperature and food are in arbitrary simulation units. In this example, the approximation comprises 300
kernels whose positions, variances, and associated weights were estimated by the R package mclust (Fraley and Raftery 2002,
Fraley et al. 2012). We used a blue-to-yellow color scale (topo.colors() function in R) to represent low-to-high habitat availabilities
in G-space.
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lead to a more homogeneous equilibrium distribution,

approximating the ideal free distribution under high

densities and leading to estimated habitat suitability

coefficients c that vary as functions of habitat availabil-

ity and population density. This effect is often ignored in

the species distribution literature, but its existence

underlines the need for distinguishing between habitat

suitability coefficients (here, c) estimated by species

distribution models and the underlying coefficients of

fitness (here, b). There are two ways to model this

distinction. We may try to derive a theoretical relation-

ship between the two types of coefficients from

biological first principles. We begin the process in this

study (A note on the relationship between partial fitness

and habitat suitability). Alternatively, we may derive the

values of the c coefficients directly from spatial data,

using a habitat selection model for each new scenario of

habitat availability and population density. This is the

approach we have adopted for inference, in Parameter

estimation from space-use and population time-series

data.

The implications of density dependence for average

fitness can be described by the following modification of

Eq. 2:

Fðf;NtÞ ¼
Z
E

~Fxuxdx ð18Þ

where the expression ~Fx depends on population density

(Eq. 17). By substituting Eqs. 7 and 17 into Eq. 18, we get

Fðf;NtÞ ¼

Z
E

Fxwx fxdx

Z
E

wx fxdx

� bNtA
�1

Z
E

w2
x fxdx

Z
E

wx fxdx

0
@

1
A2

: ð19Þ

The integrals in the density-dependent term of Eq. 19

have a direct geographical interpretation as the first and

second moments of suitability

EðwxÞ ¼
Z
E

wx fxdx; Eðw2
xÞ ¼

Z
E

w2
x fxdx: ð20Þ

Therefore, the density-dependent term in Eq. 18 takes

the form

�bNtA
�1 Eðw2

xÞ
EðwxÞ2

¼ �bNtA
�1 VarðwxÞ þ EðwxÞ2

EðwxÞ2

¼ �bNtA
�1ðCVðwxÞ2 þ 1Þ ð21Þ

where CV(wx) is the coefficient of variation of habitat

suitability across the environment. A completely uni-

form landscape comprising solely of habitat x would be

characterized by CV(wx)¼ 0, which yields the nonspatial

version of density dependence �bNt. In this situation,

the population’s dynamics are described by

Ntþ1 ¼ NtexpðFx � bNtÞ ð22Þ

which is the well-known Ricker model (e.g., Matthio-

poulos 2011:132)

Ntþ1 ¼ Ntexp rmax 1� Nt

N*

� �� �
: ð23Þ

This correspondence implies that the intrinsic growth

rate of a population living in a uniform environment is

rmax ¼ Fx and the interference parameter has the

alternative definition b ¼ rmax/N
*, expressed in terms of

the population’s intrinsic growth rate (rmax) and

carrying capacity (N*).

Eq. 21 suggests that, for populations of the same size,

the impact of density dependence will be greatest for

organisms that perceive their environment as more

heterogeneous in quality, i.e., when there are hotspots

of extremely good habitat, the growth of the population

will be more prone to displaying the effects of crowding.

Using the results from Appendix B, with the specific

formulations for availability (Eq. 11), and fitness (Eq.

6), we obtain an integral-free expression for Eq. 19. The

population model implied by Eq. 1 with this density-

dependent definition of fitness is

Ntþ1

Nt
¼ exp

F1

F2

� bNtA
�1g

F3

F2
2

� �
ð24Þ

where the expressions F1, F2 are the same as in Eq. 15

and, along with the new expression F3, are written as

functions of the coefficients describing habitat availabil-

ity (the parameters l1,k, r2
k of the Gaussian approxima-

tion), habitat use (as quantified by the parameters cr,j)
and habitat-related fitness (as quantified by the param-

eters br, j). The expanded versions of F1, F2, F3 can be

found in Appendix B: Eq. B.7.

A NOTE ON THE RELATIONSHIP BETWEEN PARTIAL FITNESS

AND HABITAT SUITABILITY

Organisms will tend to be found in habitats that

benefit their fitness, but the efficiency with which they do

this will vary. In general, it should be possible to devise a

mathematical relationship between a habitat’s partial

fitness and its apparent suitability. In our framework, we

have tried to facilitate this task by using identical

polynomial formulations for the linear predictors of

these two quantities

Fx ¼
XK

k¼1

X2

r¼0

br;kxr
k Gx ¼

XK

k¼1

X2

r¼0

cr;kxr
k : ð25Þ

However, the fitness that can potentially be afforded by

unoccupied habitat will be constant, and therefore the

coefficients of fitness (the betas) are a characteristic of the

species responding to this habitat. In contrast, the

coefficients of apparent suitability (the gammas) will vary

as functions of habitat availability and population density.

This is the important distinction that is missing from

methods such as environmental niche factor analysis
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(Hirzel et al. 2002) and related multivariate methods, also

known as ‘‘profile’’ methods (McDonald et al. 2013). The

dependence of the c’s on habitat availability has been

previously modeled (Matthiopoulos et al. 2011), so we

focus here on the dependence of apparent habitat

suitability on prevailing population density.

The relationship between partial fitness and habitat

usage is likely to be nontrivial (Van Horne 1983). The

ability of organisms to perceive and respond to spatial

gradients of fitness depends on their sensory and

movement capabilities. Highly perceptive and mobile

organisms will be able to discover global optima in

habitat suitability. However (due to differential mortal-

ity resulting from spatial variations in fitness), even

organisms with no perception (e.g., random walkers)

will present spatial patterns that, to a much smaller

extent, track fitness gradients. The ideal approach to

unraveling the relationship between partial fitness and

habitat usage is to derive spatial redistribution models

from first principles pertaining to individual behavior

and movement. These mechanistic models need to

include candidate rules about how individuals respond

to their environment, their conspecifics, and their own

past experience. Despite their high demands for me-

chanical detail, such models exist, and their embedded

parameters have, in certain cases (e.g., Moorcroft and

Lewis 2006), been estimated from spatial data. Howev-

er, our approach offers a shortcut to the problem.

Mathematically, the simplest relationship between fit-

ness and habitat suitability can be achieved by linking

them via a proportionality relationship

cr;k ¼ hkðNÞbr;k ð26Þ

where the function hk scales the fitness coefficient of the

kth environmental covariate (hence, it applies to both

the first- and second-order coefficients of quadratic

responses). We will argue here that even such a simple

formulation can carry many biologically realistic prop-

erties. Placing Eq. 26 into the combination of Eqs. 8 and

9 gives

wx ¼ P
K

k¼1
exp
�

hkðNÞ
X2

r¼0

br;kxr
k

�
: ð27Þ

For a given value of density N, the value of h is

determined by the behavioral characteristics of the

species, particularly its ability to track improvements in

fitness along environmental gradients. It therefore

quantifies how close the organism is to the classic ideal

of optimal resource use. Large values of the h’s

correspond to highly responsive organisms free of

competition. These animals should be expected to spend

most of their time in the highest-fitness habitat, even if it

is insufficient. Indeed, combining perceptive animals

living in low-density environments (i.e., very high values

of hk(N )) with a habitat x whose partial fitness is

particularly high compared to all others (i.e., compara-

tively high values for all
P2

r¼0 br;kxr
k), yields high values

of apparent suitability (according to Eq. 27). In the limit,

for such high values, the normalization in Eq. 7 gives

lim
wx!‘

ux ¼ 1: ð28Þ

This implies that populations of highly perceptive and

mobile organisms at low densities will be observed to use

this particularly good habitat, almost to the exclusion of

all others. Eq. 28 will be more easily satisfied if the

concavity of the exponential transformation is high,

when the large gamma coefficients produced by Eq. 26

will present a sharp drop from complete occupancy of

optimal habitats to near-zero usage of (even slightly)

suboptimal habitats (while the underlying fitness values

of these habitats, described by the beta coefficients,

remain unchanged). However, real animals are never

omniscient and only rarely free of competition. Hence,

most real situations of near-optimal usage can be

captured with sufficiently large, positive values of h.

Negative values of h correspond to maladaptive habitat

selection (the organisms actively pursuing lower-fitness

habitat types). If the population is studied at a biologically

unrealistic spatial scale (i.e., larger than their movement or

perception range), models fitted to such data can give the

appearance of maladaptive behavior (Beyer et al. 2010).

When population density is high, we would expect

the population to deviate from just using optimal

habitats (i.e., the values of h should decrease from

their values at low N ). In general, we can interpret

exp(Fx), the expected rate of population growth

corresponding to a particular habitat x, as a measure

of the quality of that habitat. As the function h(N )

approaches 1, the estimated value of the habitat

selection function for any habitat x becomes equal to

the intrinsic growth rate of a population living

exclusively in such a habitat (i.e., exp(Gx) ¼ exp(Fx)).

In other words, a quantity proportional to the

expected usage of a single unit of space of this habitat

(exp(Gx); see Linking fitness, habitat suitability, and

habitat use) becomes equal to the intrinsic quality of

that habitat (exp(Fx)). Hence, in the presence of

intraspecific competition, the special case h ¼ 1 gives

rise to an analogue of the ideal free distribution

(Fretwell and Lucas 1970). The case h ¼ 0 gives rise to

unselective use of space, irrespective of the fitness

consequences of different habitats, corresponding to

uniformly distributed populations (in expectation).

Given these cornerstone scenarios, there are several

possibilities for specifying h as a function of population

size. If the data on space use have been collected within a

biologically realistic spatial scale (e.g., territories of

individual animals), then the function could be set to

satisfy the properties

dh

dN
, 0; hðNÞ. 0: ð29Þ

The first property expresses the notion that as

population density increases, suboptimal habitats are
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used more frequently. Since this property can, alterna-

tively, be thought of as a reduction in the efficiency with

which organisms congregate at the highest-fitness

habitats, we emulate the behavior by specifying h as a

decreasing function of N. The second property prevents

high population density from inverting the ranking of

habitats according to fitness (in this way, based on

observed habitat usage, a high-fitness habitat will always

appear to be preferred at least as much as a low-fitness

habitat). The following expression is an example

satisfying these conditions

hkðNÞ ¼ c0;k þ ðc1;k � c0;kÞ
c2;k

c2;k þ N

ðc1;k . c0;k; c0;k; c1;k; c2;k . 0Þ: ð30Þ

This describes a population that, at low densities,

aggregates tightly around the highest fitness habitats

(hk(0) ¼ c1,k). At higher densities, the population also

uses suboptimal habitats because limN!‘ hkðNÞ ¼ c0;k.

The rate at which this lower value is approached, is

determined by c2,k. Setting c0,k¼1 generates an ideal free

distribution at high densities (limN!‘ hðNÞ ¼ 1).

An important distinction between the material

presented in this section and the previous (on density

dependence) is that expressions such as Eq. 30 can

capture the efficiency with which organisms respond

to underlying reductions in fitness brought about by

the density-dependent effects described in Connecting

habitat use to density-dependent population growth.

Estimating the parameters of functions such as Eq. 30

could therefore enable us to model the mismatches

between the observed changes in space use and the

underlying changes in realized fitness. Although the

estimation methodology for these parameters falls

outside the remit of the present study, future work in

this direction could fruitfully investigate the quantita-

tive and empirical connections between the efficiency

with which apparent habitat suitability tracks fitness

and how this relationship varies along different

environmental variables, in different environmental

makeups, and under variable population densities. In

the following section, we bypass these issues by

assuming no connection between the gammas and

the betas, and rather estimating both of those sets of

parameters independently from the data.

PARAMETER ESTIMATION FROM SPACE-USE AND

POPULATION TIME-SERIES DATA

Our statistical inference on environmental, space-use,

and population data follows three corresponding stages

that, in this first incarnation of the methodology, are

performed in a sequential (rather than integrated)

fashion. We take this approach so as to more

straightforwardly illustrate our model’s fitting by use

of broadly understood tools (generalized linear models)

in the software language R (R Core Team 2014).

Stage 1: approximation of habitat availabilities in

E-space.

The objective of this first stage is to approximate the
frequency with which different habitats occur in E-space
by a mixture of multivariate Gaussians (see Eq. 11), each

with the same variance–covariance (var– cov) matrix
(here, we set the covariances to zero and used different

variances for each environmental dimension). We
performed this task using the R package mclust (Fraley

and Raftery 2002, Fraley et al. 2012). The requisite input
for the command mclust is a data frame with rows

representing points in G-space and columns representing
environmental variables. The package can perform

model selection using the Bayes information criterion
to settle on the number of mixture components and the

var–cov structure of each Gaussian component. How-
ever, since we are interested in using the clustering as an

accurate approximation of the data, rather than as a
parsimonious description of some underlying truth, we

fixed the number of kernels to a high number (L¼ 300);
note that in the R code in Supplement 1, this often

results in a warning message because for some of the less
complicated E-spaces, not all of these kernels are needed
to achieve a good approximation, so not all of these

kernels can be assigned by mclust(). The function’s
output (in addition to the position of each component

and its var– cov structure) includes the mixture propor-
tions (the wl’s of Eq. 11) of the components. The simple

var– cov structure stipulated by our approach corre-
sponded to the predefined model ‘‘EEI’’ in mclust. An

example of how a realization of our two-dimensional E-
space is approximated by mclust is shown in Fig. 3.

Stage 2: fitting habitat-selection functions to annual
snapshots of usage data

For any given snapshot of spatial data, the apparent

habitat suitability coefficients c of the HSF can be
estimated using GLMs. However, as discussed in A note

on the relationship between partial fitness and habitat
suitability, these coefficients are conditional on the

environment (i.e., the complete profile of habitat
availabilities f ) and the population densities in which

the model-fitting data were collected. It is well-known
that HSF coefficients are sensitive to changes in habitat
availability (Randin et al. 2006, Beyer et al. 2010,

McLoughlin et al. 2010, Matthiopoulos et al. 2011). This
effect, known as a functional response to habitat

availability (Arthur et al. 1996, Mysterud and Ims
1998, Mauritzen et al. 2003, Matthiopoulos et al. 2011,

Moreau et al. 2012, Aarts et al. 2013) is particularly
important for our study because we wish to derive

inferences for multiple environments under different
population sizes. There are three statistical approaches

for dealing with variability in the HSF coefficients: (1)
Post hoc estimation, in which the HSF is fit separately to

each environment and the joint HSF parameters are
derived as summaries from the distribution of parameter

estimates under all scenarios (Moreau et al. 2012). (2)
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Mixed-effects estimation, in which the deviations of

HSF parameters from their fixed-effects value are

modeled as a random effect specific to each environment

(Gillies et al. 2006, Duchesne et al. 2010, Gillies and St

Clair 2010). (3) Generalized functional responses

(GFR); by expressing the HSF coefficients as flexible

functions of habitat availability, it can be shown that the

resulting statistical model has a simple structure

containing statistical summaries of availability (e.g.,

mean values of resources for each environment) and

their interactions with the local values of environmental

variables (Matthiopoulos et al. 2011, Aarts et al. 2013).

In general, we favor the third approach because it

estimates the parameters of the functional response to

habitat availability (unlike approach 2), and does so in a

single inferential step (unlike approach 1), hence offering

greater predictive potential for unobserved environ-

ments and a more integrated treatment of uncertainty.

We therefore used a GFR to calculate scenario-specific

coefficients (see Supplement 1: Part 3). Since HSF

coefficients are also sensitive to population density, the

current size of the population was also included in the

GFR.

Stage 3: estimation of population dynamics parameters

Taking the more general case of a density-dependent

population in Eq. 24, the previous two stages provide

estimates for the parameters ll,k, r2
k of the Gaussian

approximation and cr,j for habitat suitability. The

parameters that now need to be evaluated are the

intercept b0 ¼
P

b0,k that relates to baseline population

growth, the fitness coefficients br, j, and the coefficient b

describing attrition due to density dependence. The

model in Eq. 24 can be rewritten with the details

provided in Appendix B to arrange these missing

coefficients into a single linear predictor

Ntþ1

Nt
¼ exp b0 þ

XK

k¼1

b1;k/1;k þ b2;k/2;k

( )
� b/3Nt

 !

/1;k ¼
1

F2

XL

l¼1

wlHl

ðc1;kr
2
k þ ll;kÞ

ð1� 2c2;kr
2
kÞ

2
4

3
5

/2;k ¼
1

F2

XL

l¼1

wlHl
r2

k

ð1� 2c2;kr
2
kÞ

1þ
ðc1;kr

2
k þ ll;kÞ2

r2
kð1� 2c2;kr

2
kÞ

0
@

1
A

2
4

3
5

/3 ¼ Ntg
F3

F2
2

ð31Þ

in which F1, F2, F3, Hl, and g are as defined in Appendix

B: Eq. B.7 (Hl and g are notational devices). Note

therefore that the first line of this model comprises a

linear predictor involving the new, constructed covari-

ates /1,k, /2,k, /3 and the coefficients b0, b1,k, b2,k, b for

k¼ 1, . . . , K. Therefore, for K-dimensional E-space, this

model will be required to estimate up to 2(K þ 1)

coefficients (fewer if non-quadratic forms are needed for

some of the environmental variables). Hence, we will

require at least as many instances of data. Each data

instance must be represented by (1) environmental data

corresponding to the observed usage (for stages 1 and 2),

(2) a sample of spatial usage data (for stage 2), and (3) a

measurement of population growth, or two successive

measurements of population size (for stage 3). For

example, in the case of a population using two resources

(one coefficient each), whose distribution is driven by

two conditions (two coefficients each), we would expect

to need a minimum sample size of eight data instances

(but ideally, closer to twice that number). The model in

Eq. 31 can be estimated as the following log-linear

GLM:

Ntþ1 ; PoissonðktÞ
kt ¼ expðb0 þ b1;1/1;1 þ � � � þ b/3;t þ logðNtÞÞ: ð32Þ

Use of Poisson stochasticity is purely illustrative.

Multiple sources of uncertainty may lead to over-

dispersed population data, such as demographic sto-

chasticity, error in the estimates of population size,

stochastic perturbations affecting the population but not

its environment, or stochasticity in environmental

variables not available for inclusion in the HSF. In

such cases, it may be preferable to adopt a quasi-

Poisson, gamma, negative-binomial, or log-normal

stochastic component, as provisioned by statistical

packages, such as R.

For comparison purposes, a nonspatial version of the

population model in Eq. 32 can be obtained by

regressing future population size against the average

values of environmental variables, using both first- and

second-order terms to capture non-monotonic responses

to conditions. Henceforth, we refer to this as the mean-

field model

Ntþ1 ; PoissonðktÞ
kt ¼ expðd0 þ d1;1X1 þ d1;2X

2

1 þ � � � þ dK;1XK þ dK;2X
2

K

þdNNt þ logðNtÞÞ ð33Þ

where d is a regression coefficient to be estimated by

fitting the mean-field model to population data (Ntþ1,

Nt) and environmental averages (X̄1, . . . , X̄K).

Arguably, this staged approach can have two disad-

vantages. First, if only the point estimates of parameters

from each stage are used for the calculations in the next

stage, then uncertainty is not propagated to the final

output. We addressed this by resampling from the full

variance–covariance structure of intermediate models to

perform the calculations in the following stages (an

approach equivalent to a parametric bootstrap). The

second drawback with our staged approach is that data

at later stages do not have an opportunity to inform the

likelihood of fits at earlier stages. Hence, it is conceivable

that data on population change might (if allowed) be

able to have some bearing on the parameter estimates for

habitat suitability. These potential gains in inferential
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power can only be achieved with an integrated fitting

approach, which may be part of future work.

SIMULATION

The simulation aimed to adhere to our Ecological

scope and simplifying assumptions and to include the

following features: (1) spatially autocorrelated environ-
ments, (2) habitat-influenced individual movement, and

(3) habitat-related population growth. The full code for

the simulation and the associated analysis can be found

in Supplement 1: Part 1.

We generated synthetic environments on gridded, 50
3 50 G-spaces comprising one resource (e.g., food) and

one condition (e.g., temperature). A geographical map

for each of these two variables was generated indepen-

dently of each other using a seeding-and-smoothing
method (listed as function environ() in Supplement 1).

During the seeding process, a random number of

locations were selected in space, according to a planar

gradient of randomly selected slope. During the

smoothing process, a Gaussian kernel of a random
bandwidth was placed on each of the seed locations. The

superposition of these Gaussian kernels created the

environmental layer, which was then normalized to a

randomly selected mean value for that environmental
layer. Note that this use of Gaussian kernels simply aims

to create autocorrelated environmental layers in G-

space, so it is different from the Gaussian decomposition

of the resulting habitat availabilities in E-space (de-
scribed in Parametric formulations of habitat availabil-

ity). In particular, the usability and efficiency of the

Gaussian decomposition in E-space does not rely on the

G-space data coming from a Gaussian field.

Each simulation year was subdivided into 12
‘‘months.’’ In each month, an animal would gain/lose

condition, relocate in the landscape, and potentially die.

We specified the profitability of any given cell in the

landscape as an incremental change in each animal’s
current condition. The contribution to an animal’s

condition (DCs) offered by any point s in G-space was

expressed as a polynomial expression in the local density

of food (R) and value of temperature (T )

DCsðRs; TsÞ ¼ a0 þ a1Rs þ a2Ts þ a3T2
s ð34Þ

where a is a simulation parameter that quantifies the

true contribution of food and temperature to the change

in the condition of an animal per unit of time spent in

habitat x.

The coefficient values were selected so that the
parabola in temperature was pointing downward a3 ,

0 and, in the absence of food, an individual’s condition

deteriorated (i.e., DCs(0,Ts) , 0 implying, a0 , a2
2/4a3 .

Following an initial random placement of 10 individuals

in month 1 of year 1, animals were allowed to move in
the landscape subject to toroidal boundaries (animals

exited the landscape at one edge, reentered at the same

position of the opposite edge). During movement, we

updated the position of each individual as follows: the

profitabilities of the combined set of the current cell with

its von Neumann neighborhood were perturbed by an

error term es ; N(0, r2) to represent imperfections in the

organisms’ perception of the profitability of each spatial

cell. The cell with the maximum perceived value from

this set, max(DCs þ es) was located and the individual

was placed there. While the individual remained there,

the profitability of that location was decreased by a fixed

amount to represent conspecific attrition. No resource

depletion was assumed. The process was repeated until

all the individuals in the population had been given an

opportunity to move. Note that the variance of the

perception error was constant but the values of

profitability could get continuously homogenized

through the effect of attrition. Hence, this algorithm

has the appealing property that, under conditions of

crowding, current peaks in the spatial map of fitness

become comparatively harder to detect. Mortality was

implemented on a monthly basis as a Bernoulli process

for each individual with a probability of survival

dependent on current condition via a logit link.

Fecundity was implemented on an annual basis as a

Poisson process for each individual with a breeding rate

depending log-linearly on current condition. Complete

data on the population’s spatial distribution and total

population size (Nt) were collected by the simulation just

prior to breeding taking place. Simulations were

initialized via a 20-year burn-in period, during which

populations were maintained to a low size of 100

individuals by the removal of surplus. This was done to

ensure there were no artifacts in the early simulation

years due to the fact that all founder individuals were

initialized at a low energy level.

SIMULATION EXPERIMENTS

We focused on our framework’s descriptive and

predictive ability under high and low data availability.

Space-use and population data were produced for

randomly generated environmental scenarios inhabited

by founder populations (10 individuals) and, depending

on environmental makeup, reaching sizes of thousands

or tens of thousands over periods of 30 simulation years.

We produced two data sets, one for fitting the model (20

environmental scenarios) and one for validating it (100

scenarios). The complete set of 120 population trajecto-

ries produced by these spatial simulations is shown in

Fig. 4. For the high data availability experiments (1 and

2), models were fitted to the complete data set of 20

scenarios, each scenario containing a 30-year population

time series (i.e., a total of 600 sampling instances) and

each year containing a 50 3 50 spatial layer of usage

(i.e., a total of 1.53 106 spatial data points). For the low

data availability experiments (3), we performed a

systematic exploration of the method’s performance,

reporting robust results for values as low as 0.5% of the

high data availability experiments (a total of 60

sampling instances and 7500 spatial observations).
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Simulation experiment 1: descriptive ability of the model

In this experiment, we compared the ability of the

spatial and mean-field models (Eqs. 32 and 33,

respectively) to fit the data. We investigated goodness

of fit to the observed population growth rates (Fig.

5a, b), as well as the observed carrying capacities (Fig.

6a, b). The observed growth rates were calculated as

log(Ntþ1) � log(Nt) and fitted growth rates were given

from log(N̂tþ 1)� log(N̂t), where N̂tþ1 was the expected

population size as estimated by Eqs. 32 and 33 for the

spatial and mean-field models, respectively. Goodness of

fit for the carrying capacity was depicted by plotting

each of the last 20 years of observed population sizes

from each of the 20 fitting simulations against the

corresponding fitted sizes. Estimated parameter values

were biologically consistent for both models. For

example, fitness increased with food, and the density-

dependent parameters always took negative values.

Model AICs and the graphical comparisons in Figs. 5

and 6 indicated that the spatial model performed

consistently better than the mean-field model.

Simulation experiment 2: Predictive ability of the model

For this experiment, we used the 100 validation

environmental scenarios. We provided the spatial and

mean-field models with the necessary environmental

information for these new scenarios, but retained the

model parameters (for both the HSF and population

models) estimated from the original 20 scenarios. We

compared the ability of the spatial and mean-field

models to predict the growth rates and carrying

capacities of a species in those 100 new environments.

The annual growth rates were calculated as in experi-

ment 1, and the predicted carrying capacities were

calculated by setting Ntþ1 ¼ Nt, in Eqs. 32 and 33. The

estimators for the carrying capacities for the spatial and

mean-field models respectively are

N̂
* ¼ 1

b/3;t

ðb0 þ b1;1/1;1 þ � � �Þ ð35Þ

N̂
* ¼ 1

dN
ðd0 þ d1X1 þ � � �Þ: ð36Þ

We found that the spatial model outperformed the

mean-field predictions for both growth rates (Fig. 5c, d)

and carrying capacities (Fig. 6c, d).

Simulation experiment 3: Sensitivity of predictive ability

to data availability

The model-fitting data set comprised descriptions of

different environmental scenarios, records of spatial

usage, and time series of population size. To examine the

sensitivity of the model’s performance on these three

types of information, data impoverishment was per-

formed on each of them separately. We repeated the

model-fitting procedure, each time incrementally reduc-

ing the fitting data, such that the new sample size v was a

decreasing proportion of the initial sample size V (i.e., v

¼ V, V/2, V/3, . . . , V/10). From each model fit on the

impoverished data sets, we generated predictions of

growth rate and carrying capacity for the 100 validation

scenarios. Each annual prediction yielded a residual

from the known, true value, and the 95th percentiles

from the set of these residuals were used to summarize

accuracy and precision for growth rate and carrying

capacity separately. For each of these manipulations, we

also traced the AIC of each model. The set of our results

can be found in Appendix C. In summary, we found that

FIG. 4. Population trajectories generated by our individual-based population model over 30 simulated years. The simulations
were spatially explicit, but this figure only shows the time series for total population size just prior to the breeding season. The dark
gray trajectories were used for fitting the model to data (fitting data set). The light gray trajectories were used for the prediction
experiments (validation data set).
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FIG. 5. Illustrative comparison for population growth rates (r) between the mean-field (a, c, e) and spatial (b, d, f ) models over
three different simulation experiments. Experiment 1 (a and b), examined goodness of fit; the ability of the two models to capture
the observed growth rates in the complete data set (comprising 20 environmental scenarios, each run for 30 years and recording
2500 spatial observations for each year). Experiment 2 (c and d) examined predictive performance; the ability of the two models to
anticipate population growth rates in previously unobserved landscapes. The models generating these predictions were also fitted to
the complete data set. Experiment 3 (e and f ) examined predictive performance under impoverished data sets. The predictions
shown here are from models with less than 0.5% of the data used for the others (comprising three years per scenario and 125 spatial
cells observed per year). To correctly represent the density of multiple overlapping data points, we have visualized these using the
smoothScatter() function in R. This function plots a kernel-smoothed version of the data (shown as shades of gray) as well as a
subset of the most outlying data as black points. Here, we plotted 50 outliers for the goodness-of-fit plots (a and b), 200 for the
mean-field predictive plots (c and e), and 2000 outliers (200 predictions310 bootstrap resamples for each prediction) for the spatial
predictive plots (d and f ).
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FIG. 6. Illustrative comparison for population carrying capacity (N*) between the mean-field (a, c, e) and spatial (b, d, f )
models over three different simulation experiments. Experiment 1 (a and b) examined goodness of fit; the ability of the two models
to capture the observed growth rates in the complete data set (comprising 20 environmental scenarios, each run for 30 years and
recording 2500 spatial observations for each year). Experiment 2 (c and d) examined predictive performance; the ability of the two
models to anticipate the carrying capacities of previously unobserved landscapes. The models generating these predictions were also
fitted to the complete data set. Experiment 3 (e and f ) examined predictive performance under impoverished data sets. The
predictions shown here are from models with less than 0.5% of the data used for the others (comprising three years per scenario and
125 spatial cells observed per year). To correctly represent the density of multiple overlapping data points, we have visualized these
using the smoothScatter() function in R. This function plots a kernel-smoothed version of the data (shown as shades of gray) as well
as a subset of the most outlying data as black points. Here, we plotted 50 outliers for the goodness-of-fit plots (a and b), 200 for the
mean-field predictive plots (c and e) and 2000 outliers (200 predictions3 10 bootstrap resamples for each prediction) for the spatial
predictive plots (d and f ).
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our method’s performance relied most crucially on

having sufficient environmental and population con-

trast. Population contrast requires observations at

saturated and pre-saturated densities (i.e., replication

once at carrying capacity was less informative). Lack of

environmental contrast implies that the method will not

perform well if the species is observed in only a few

distinct environmental scenarios, compared to the

number of environmental covariates being considered.

Sensitivity on the amount of spatial data was the lowest,

as long as there was enough spatial data for an HSF to

detect the spatial variations in distribution. Having

explored sensitivity in this fashion, we specified one

depauperate data set that lacked both population and

spatial information. In particular, we only used three

(first, middle, last) out of the maximum of 30 years from

each of 20 fitting scenarios and we kept information on

only 125 spatial cells out of a maximum of 2500. This

corresponds to a removal of ;99.5% of the less-crucial

information in the data. Although visibly impaired, the

spatial model’s ability to predict population growth

remained higher than the mean-field model’s (Fig. 5e, f ).

The spatial model’s ability to predict carrying capacity

remained relatively unaffected by the information loss

(Fig. 6e, f ).

DISCUSSION

The interaction between population dynamics and

spatial heterogeneity has been recognized both theoret-

ically and experimentally (Rosenzweig 1981, Morris

1989, 2003, Akçakaya 2000, Keith et al. 2008), yet it

remains a mostly unaddressed issue for species distribu-

tion models. While many ecological questions on species

distribution are motivated by population dynamics (e.g.,

viability of fragmented populations, spatial management

of pests, species range shifts), an explicit connection

between observed distributions and dynamics is rarely

pursued (Railsback et al. 2003, Guisan and Thuiller

2005, Zurell et al. 2009, Gaillard et al. 2010, McLough-

lin et al. 2010, Morales et al. 2010, Mieszkowska et al.

2013). This, and other broadly recognized issues with

SDMs have thus far been investigated with literature

reviews, or comparative studies between existing frame-

works that, in their majority, make the assumption that

populations are at a state of equilibrium (Guisan and

Zimmermann 2000, Araújo and Guisan 2006, Randin et

al. 2006, Elith and Graham 2009, Elith and Leathwick

2009, Zurell et al. 2009, Hoffman et al. 2010, Matthio-

poulos and Aarts 2010). Such comparative approaches

have their utility, but as ecological practitioners we

should perhaps be less concerned about which heuristic

SDM performs better in particular case studies. Instead,

we should simply select a sufficiently expandable

inferential framework, verify its robustness (Barry and

Elith 2006), and begin fleshing it out with biological

mechanisms (Austin 2002, Railsback et al. 2003, Guisan

and Thuiller 2005, Moorcroft and Lewis 2006,

McLoughlin et al. 2010, Morales et al. 2010). Here, we

have contributed to this increasingly active area of

research (Tyre et al. 2001, Railsback et al. 2003,

Aldridge and Boyce 2008, Gaillard et al. 2010, Hoffman

et al. 2010, Morales et al. 2010, DeCesare et al. 2014).

We opted for the well-established SDM approach of

HSFs (also known as resource selection functions) and

developed them into population models under the

familiar framework of generalized linear models. Our

synthesis can lead to joint inference on spatiotemporal

data, yielding parameterized population models that can

be used for forecasts outside the range of observed

scenarios. While sharing with other recent work

(Mieszkowska et al. 2013) the motivation of confronting

spatiotemporal dynamics with data empirically, our

model’s mechanistic component is greater and more

expandable. Further, rather than requiring geo-refer-

enced data on growth (in the form of spatial layers for

survival and fecundity, e.g., Aldridge and Boyce [2008],

DeCesare et al. [2014]), we fit to nonspatial population

time series, such as those available from long-term

monitoring studies (e.g., Sæther 1997, Gaillard et al.

1998, Brook et al. 2000, Parmesan and Yohe 2003,

Stuart et al. 2004, Strayer et al. 2006).

Our work (see A note on the relationship between

partial fitness and habitat suitability) offers a convergent

route for classic theoretical distribution modeling (e.g.,

optimal exploitation or ideal free distribution) and more

contemporary data-driven models (SDMs). In this way,

spatial and population data from different systems may

unveil the extent of agreement or discrepancy between

idealized theoretical models and the natural world,

offering a data-driven approach to further theory

development. Using simulation, we illustrated how the

incorporation of robust estimates of spatial parameters

(describing habitat availability and suitability) can

improve our ability to predict population growth.

Simplifying assumptions and routes to the framework’s

extension

Currently, our approach is mostly a conceptual rather

than a methodological advance, because it is applicable

only within the constraints of the assumptions detailed

in Ecological scope and simplifying assumptions. The

work needed to relax these assumptions prescribes a

complete research program for the future. For example,

more explicit modeling of accessibility (see assumption 1

and Matthiopoulos [2003]), will capture source–sink

dynamics as well as transient effects due to spatial

colonization or behavioral movement constraints. This

extension will simultaneously test the validity of

assumption 2 (yearly pseudo-equilibria in species

distributions) and suggest ways in which it can be

relaxed.

The assumption of representative habitat use (as-

sumption 3) constrains our method to mobile animals

living in study regions within which habitat availability

does not change much between the spatial ranges of

individuals. If individuals are less mobile, (e.g., due to
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territoriality), then they might each experience parts of

the landscape that differ in their environmental compo-

sition. Statistical estimation was effective in our

numerical experiments, despite the fact that this

assumption was to some extent violated by our

simulation where limitations in mobility (only 12

relocations per year) meant that different animals

tended to frequent different parts of the landscape.

However, it is certain that the approach’s performance

will deteriorate if applied to instances of large-scale data

in landscapes where habitat availability is spatially

nonstationary. To address this, the approach would

need to be extended to account for more localized

definitions of habitat availability and usage.

Our decision not to model resource depletion explic-

itly (assumption 4), is perhaps less severe than it first

appears. Although there is no methodological obstacle

to extending our model to represent two-species

dynamics, there may be little practical reason to do this

in some cases. For example, some generalist consumers

may not drive depletion in a resource, so for such

species, resource data would best be provided as a

covariate. Specialist consumers feeding on a fast-

regenerating keystone resource (e.g., plankton) might

also be handled with a similar, covariate-driven ap-

proach. Specialist consumers that rapidly deplete their

single resource are unlikely to present strong correlative

signals with such a heavily depleted resource layer. So,

although in these cases, it might make sense to model the

dynamics between the consumer and the resource

mechanistically, from a data perspective, it may be

more practicable to use non-depletable proxies of

resource productivity as habitat descriptors. More

broadly, in different ecological contexts, the quantities

characterized here as resources and risks for a focal

species can be understood as populations of prey or

predators with dynamics of their own. The exemplars

presented in the present study do not account for these

explicitly. However, we know of no methodology that

can statistically fit spatially explicit models of multispe-

cies population dynamics to time-series data. Our

approach demonstrates how to achieve this objective

by reducing spatially heterogeneous responses to (non-

spatial) numerical covariates of observed population

dynamics.

Models that extend our treatment of density depen-

dence (assumption 5) to nonlinear forms, such as the

Allee effect, are possible, but would need to extend the

mathematical calculations in our Appendix B.

By using non-saturating, polynomial forms for the

components of fitness (assumption 6), we have implicitly

assumed that the population’s growth can be uncon-

strained in the short term (specifically, that fecundity is

not bounded above and can increase in proportion to

resource availability). However, particularly for K-

selected species, reproductive potential is likely to be

physiologically constrained, posing the need for nonlin-

ear responses to resources (Austin 1999, 2002). In

reality, such constraints to individual performance may

not have the opportunity to limit population growth

because (1) local resource availability may not reach

high enough levels, (2) population density dependence

may limit rates of growth before physiological limits are

reached, and (3) particularly for r-selected species,

constraints to reproduction may not be very tight.

However, if the non-saturating forms are violated (by,

say, small populations of mammals living in rich

environments), the model will tend to over-predict

population growth. This can be amended by use of

asymptotic response functions and replacement of the

analytic results in Appendices A and B by approxima-

tions using numerical integration. Similarly, numerical

integration can be used to capture responses to

conditions that are not symmetric around the optimum

value of suitability (Austin 1999, 2002). Due to their

computational overhead, such numerical approaches

should be constrained to low-dimensional E-spaces (i.e.,

case studies where the distribution and growth of

populations are driven by a small number of environ-

mental variables).

We have assumed that covariates determine partial

fitness additively (assumption 7). We feel that this is a

simplistic, but nevertheless suitable null model from

which to begin exploring nonadditive interactions

between resources. In his monograph on resource

competition and community structure, Tilman (1982)

presents a classification of possible interactions between

two (or more) resources in determining population

growth (e.g., see Fig. 5; Tilman 1982:29). Our assump-

tion of additivity corresponds to Tilman’s null model of

perfect substitutability between resources. Hence, for

two resources, the linear predictor for the partial fitness

(or the HSF) in our framework takes the form b0þb1X1

þ b2X2. It is easy for our model to be extended to

Tilman’s more complicated scenarios by use of interac-

tion terms, giving predictors of the form b0 þ b1X1 þ
b2X2þ b3X1X2. Hence, for example, a positive value for

b3 would yield Tilman’s scenario of resource comple-

mentarity, whereas a negative value would signify

antagonistic resources.

Our assumption about the additivity of partial fitness

in determining average fitness (assumption 8) can only

be relaxed with breakthroughs in our ability to model

complementarity in habitat use under different life-

history activities (e.g., Guisan and Thuiller 2005, Wilson

et al. 2012, Russell et al. 2015). Many organisms are able

to survive by integrating habitat variation across space

and time. For example, an animal that moves between a

feeding patch and a water hole is effectively creating a

sufficient habitat type from the combination of two

insufficient ones. Depending on the proximity of the

constituent (insufficient) habitats, and the locomotory

capabilities of the animal, such complementary use may

be thought of as generating availability in E-space for

the sufficient habitat even though it may not physically

exist in G-space. Hence, to extend our framework to
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include complementarity, we need to redefine availabil-

ity, for example by devising an appropriate smoothing

operation of the observed availabilities in E-space before

the Gaussian decomposition (Parametric formulations of

habitat availability) is applied. Following such a

correction, the remainder of our methodology could be

applied as demonstrated in the present study.

The incorporation of different aspects of population

structure (assumption 9) is the next stage of biological

complexity for this approach, enabling it to be more

naturally applied to organisms with multiannual pre-

recruitment stages. Ultimately, the addition of individ-

ual variation, particularly with a view to genetic

adaptation (assumption 10) will allow us to extend our

operational definition of fitness to include evolution

(e.g., by using elements from approaches such as integral

projection models; Ellner and Rees 2006).

Computational and data requirements

Computational issues and, by implication, the expe-

dience of analytical bridges between spatial heterogene-

ity and population growth, will become more important

with increases in the complexity of population models.

For example, with the addition of age structure, use of

nonstandard/overdispersed error structures, or integrat-

ed use of different population data, our approach will

need to be paired with computer-intensive estimation.

This will additionally allow us to carry out simultaneous

inference on both spatial and population data, unlike

the three-stage approach used here.

Successful application of our framework relies on

data availability. For our illustrations in Figs. 5a–d and

6a–d, we used large data sets to clearly show the

differences in the quality of fit and prediction between

spatial and mean-field models. With our simulation, the

model’s good performance was robust to gradual

reductions in data availability (Appendix C). In our

most severely depleted data experiment (Figs. 5e, f and

6e, f ), good performance was evident despite the fact

that 99.5% of the original data were removed. We found

that the method will perform poorly if provided solely

with data from few populations that have already

reached their carrying capacities in static environments,

because such data sets would contain little information

on how the species responds to contrasting environ-

ments and low (as well as high) population densities.

That is not to say that data from a single population will

always be uninformative: a single population that has

been witnessed responding to a changing environment

for 10 years may be as valuable as 10 populations that

have been observed over a single year at different

locations of the species’ range. Clearly, our idealized

simulations remained close to the assumptions of our

framework, and therefore the sensitivity of these results

on the severity of violation of each of our assumptions

will need to be investigated more extensively.

Equally, our model would be vulnerable to poorly

performing HSFs (e.g., those that explain less than half

of the variability in the observed spatial distribution of a

species). This may be alleviated by the use of additional

covariates, if data are available. Such increases in

dimensionality are catered for by our approach.

Statistical approaches to improving model performance

and constraining complexity are well understood in the

species distribution literature (HSFs using 20 or 30

candidate environmental covariates are not an unusual

occurrence). The parametric decomposition routines

used in Parametric formulations of habitat availability

and Parameter estimation from space-use and population

time-series data to approximate habitat availability are

also known to be quite robust when used in high-

dimensional spaces. In terms of speed, because our

population model-fitting uses constructed covariates

that are purely algebraic (no numerical integrals), there

is little computational overhead to increasing the

number of covariates.

Furthermore, even though in our simulations we used

counts on a spatial grid (hence the use of Poisson models

in estimating the HSF parameters), the method can

work equally well with other types of HSF models fitted

to other types of data, e.g., grid-free, presence-only data

(Warton and Shepherd 2010, Aarts et al. 2012), such as

those derived from telemetry methods (Aarts et al.

2008). The intercept of the HSF estimated from

presence-only data carries no biological information

on population size, but our framework retrieves the

intercept independently, using the population time-series

data (on condition that they are not simply an index of

relative population size).

The issue of data availability is important when

considering our approach in the context of other work

done at the interface between population distribution

and demography. Much of this work has focused on

modeling spatially explicit survival data (Aldridge and

Boyce 2008, Gaillard et al. 2010, DeCesare et al. 2014).

This is a fruitful approach and not entirely exclusive of

what we have done. However, for many ecological

systems, spatial data on survival will be a rather tall

order. Our approach has the advantage of relying on

aggregate (i.e., nonspatial) data on population growth

that can be more readily obtained from population

monitoring surveys. Further, it integrates the effects on

fitness across multiple habitats and can thus explain

local demographic responses to nonlocal (i.e., regional,

or global) environmental gradients.

Broader ecological impact

The ideas presented in this study will allow further

building work upon two ecological cornerstones. The

first is critical habitat. It has long been argued that the

observed usage of a habitat is not necessarily propor-

tional to its contribution to fitness. Since the original

study by Van Horne (1983) enumerating reasons why

density is a misleading indicator of habitat quality, there

have been several other studies reinforcing the argument

(Garshelis 2000, Loiselle et al. 2003, Railsback et al.
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2003, Niemi and McDonald 2004). Nevertheless, spatial

prioritization (e.g., for purposes of reserve design) is still

mostly driven by the location of usage/abundance

hotspots (Loiselle et al. 2003, Moilanen et al. 2009,

Zurell et al. 2009). In this study, we have begun to

develop ways to evaluate the importance of habitats

while discounting the effects of habitat availability, lack

of distributional optimality, and intraspecific competi-

tion. Indeed, our definition of average fitness is identical

to the intuitive expression proposed by Van Horne

(1983: Eq. 1).

Environmental proxies of influential covariates pose a

particular problem for all statistical approaches such as

ours. If animals use proxies as cues for less easily

detectable covariates of fitness, we run the risk of

identifying these proxies as the determinants of fitness.

Arguably, a good cue is a determinant of fitness (because

in its absence, the animal may not be able to detect

resources or risks). Conversely, a poor proxy, or one

that is readily substitutable by other cues will present a

poor correlation with the observed distribution of a

species and have a low chance of being mistaken as a

covariate of fitness.

The second ecological cornerstone upon which future

work should build is the niche. Under his biotic, abiotic,

and movement (BAM) framework, Soberón (2007)

identifies three determinants of observed species distri-

butions: habitat characteristics (making up the funda-

mental niche), biotic interactions, and movement (giving

rise to the realized niche). All three of these act in

unison, and a quantitative approach that aspires to

niche measurement should therefore integrate their

treatment. We have begun to consider the effects of

movement on fitness explicitly, and our classification of

environmental dimensions into resources (e.g., prey),

conditions (e.g., temperature or trace elements), and

risks (e.g., predators or competitors) folds biotic and

abiotic characteristics within the same model. This

feature allows us to estimate the responses of the study

species to all of them simultaneously, either by

representing these environmental dimensions by covar-

iate data (as we have shown), or by extending the

framework to model multispecies interactions (as we

have discussed). An alternative way to think about the

BAM formalism is that a model that is capable of

quantifying all three of the main drivers of the realized

niche should also estimate one of them (the fundamental

niche) when the effects of the other two are controlled

for.

Older ideas about how a niche can be measured

(Colwell and Fuentes 1975, Petraitis 1979, Abrams 1980,

Feinsinger and Spears 1981) and more recent debates on

the appropriateness of using the term in association with

the outputs of SDMs (Araújo and Guisan 2006, Elith

and Leathwick 2009, Soberón and Nakamura 2009,

Peterson et al. 2011, Warren 2012, 2013, McInerny and

Etienne 2013) have a common origin: it is genuinely

difficult to quantify the niche from spatial data because

it is a concept deeply rooted in current environmental

space but with its branches extending into future
population growth and long-term dynamics (Pulliam
2000). The working definition of a niche (e.g., Chase and

Leibold 2003, Soberón and Nakamura 2009, Peterson et
al. 2011) as the subset of E-space which allows a

population to grow and persist indefinitely underlines
the simple fact that SDMs never could and never will
fulfill their original promise as niche models, unless their

estimates are viewed in close association with their
population implications. Here, we have suggested how

this can be achieved. Unlike all niche-related species
distribution models, our statistical approach explicitly
distinguishes between the coefficients of apparent

habitat suitability and the coefficients of fitness. The
former are understood as environment-specific variables

whereas the latter are a context-invariant property of a
species during a single snapshot of its evolution.
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