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Abstract

Optimization problems are of fundamental practical importance and can be found in almost

every aspect of human endeavour. Yet remarkably, we have a very limited understanding

of the nature of optimization problems and subsequently of how, why and when different

algorithms perform well or poorly. The notion of a problem landscape captures the relation-

ship between the objective function and the problem variables. It is clear that the structure

of this landscape is vital in understanding optimization problems, however analysis of this

structure presents major challenges. Apart from the often high-dimensionality of problem

landscapes, information available in the black-box setting is limited to the solutions in the

feasible search space and their respective objective function values. Landscape analysis has

received some attention in the optimization literature, mainly in evolutionary computation.

However there are some important limitations of this work as well as many open issues

around its practical utility.

This thesis proposes a novel framework and practical techniques for the analysis of op-

timization problems utilizing information available in the black-box setting. The concept of

length scale is proposed as a fundamental feature of both combinatorial and continuous op-

timization problems. Analytical properties of length scale and its distribution over a given

problem are established. Techniques from statistics, set theory, visualisation and machine

learning are employed to summarise and interpret sampled length scale values. From the

length scale distribution, a problem similarity measure is proposed using the entropic Jef-

frey divergence. This provides a means of comparing arbitrary black-box optimization prob-

lems, between combinatorial or continuous problems of possibly different dimensionality.

An alternative realisation of the framework is also developed for quantifying optimization

problem similarity via length scale information, based on the notion of Information Dis-

tance from Kolmogorov Complexity Theory. Information Distance is a universal distance

measure between two arbitrary objects, and in practice can be approximated by Normalised

Compression Distance, which relies on binary representations of the problems of interest
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and a lossless compressor. A novel methodology for calculating the Normalised Compres-

sion Distance in the optimization context is developed.

The techniques proposed are implemented and extensively evaluated via experiments on

continuous artificial, benchmarking and real-world representative problems, and instances

of NP-hard classes of combinatorial problems. The results convincingly show that length

scale features are highly effective and robust for comparing and characterizing optimiza-

tion problems. The calculated Jeffrey divergences and Normalised Compression Distances

between length scale distributions are able to identify known similarities among problems,

and also provide valuable insights into the relationship between problems. Known phase

transitions in the difficulty and structure of the combinatorial problem instances are clearly

reflected in the results for both similarity measures. This is remarkable given that only

black-box information is used in the analysis. Finally, the theoretical and empirical relation-

ship between the Jeffrey divergence and Normalised Compression Distance is studied. The

features are shown to be different but conceptually related, and provide complementary

empirical information.
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CHAPTER 1

Introduction

The most exciting phrase to hear in science,

the one that heralds new discoveries, is not

‘Eureka!’, but ‘That’s funny. . . ’
Isaac Asimov

This chapter introduces the research area considered in this thesis. A general background to

the research area is provided in Section 1.1. Section 1.2 considers important research issues,

defines the motivations of the thesis and summarises its major contributions. Section 1.3 dis-

cusses the scope of the thesis and limitations of the work. An outline of the thesis structure

is given in Section 1.4.

1.1 Background

The optimization of resources according to some criterion or objective, such as maximising

efficiency or minimising waste, is a universal problem found in almost every aspect of hu-

man endeavour. Humans and animals exhibit remarkable abilities in solving conceptually

small optimization problems, such as finding the shortest path between rooms in a building.

However, many real-world problems relevant to industrial and commercial applications are

extremely large and complex, and are thus beyond the capabilities of humans to solve ex-

actly. These types of problems include optimizing the aerodynamic drag and structural

weight of an aircraft wing [191], the placement of wind turbines to maximise energy [195],

and the selection of stocks in a portfolio in order to maximize its return on investment [24].

Optimization can be stated generally: given a number of variables, x = (x1, . . . , xD)

and some (objective) function of those variables, f (x), determine values for the variables

that minimize (or maximize) the corresponding value of f . Optimization problems can be

categorised based on the types of their variables; continuous problem solutions are entirely
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comprised of continuous/real-valued variables, while combinatorial problem solutions are

comprised of discrete-valued variables. An important class of optimization problems are

known as “black-box”, where the only information available about a problem to a solver is

the ability to evaluate the objective function value of candidate solutions. Black-box prob-

lems typically occur in the optimization of the output of an unknown system or mechanism,

such as a simulation.

Assuming that an optimization problem can be expressed or abstracted in computational

form, computer algorithms can be employed to solve the problem heuristically. That is, given

a candidate solution, decisions are made (based on predefined heuristics) to determine areas

of potentially high quality solutions, which are then explored in greater detail. The heuris-

tics are a critical component to the success of heuristic algorithms, and are typically based on

the decision process used by human solvers. For example, the commonly-used greedy algo-

rithm generates a list of solutions from a “base” solution, replaces the base solution with the

best solution in the list, and repeats this process until no solutions are found that are better

than the base solution [181]. The advantage of a computational approach is that heuristic

decisions can be evaluated and acted on typically much faster and with less error than a

human.

Metaheuristic algorithms are a class of algorithms that utilise multiple heuristics in or-

der to efficiently solve optimization problems. The heuristics within metaheuristic algo-

rithms are often inspired by real world phenomenon where systems are “optimized” (i.e.

improved) naturally. For example, Genetic Algorithms utilise known evolutionary processes

like mutation and reproduction to “evolve” solutions towards a higher quality [138]. Ant

Colony Optimization algorithms are another nature-inspired group of metaheuristics that

model the behaviour and collective intelligence of ants within a colony to “search” for high

quality solutions [181]. Other metaheuristics utilise general heuristics that are intuitively

conducive towards solving optimization problems. For example, Tabu Search maintains a

list of solutions visited during the search to ensure that they are not revisited [181]. Meta-

heuristic algorithms aim to be general-purpose solvers, and they typically only utilise infor-

mation afforded by solutions and their respective f -values. Consequently, metaheuristics

are highly applicable to black-box optimization problems.

The metaheuristic literature is largely dominated by the development of new and im-

proved metaheuristic algorithms, and as a result, there is an abundance of algorithms. Intu-

itively, for a particular “class” of problems (nominally, problems that are in some sense more

similar to each other than a randomly chosen set of problems), certain specified algorithms
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are more well-suited (e.g. obtain the best objective function value given a fixed budget of

evaluations) than other algorithms. An important research direction is to better understand

the relationship between algorithms and the problems to which they are applied. In other

words, given a particular problem, what algorithms are likely to efficiently solve it, and

why? Alternatively, given a particular algorithm, what problems does it perform well on,

and why? Metaheuristic algorithms have been applied successfully to many practical black-

box problems [181], however due to the heuristic nature of these algorithms and the lack

of problem knowledge, it is often difficult to understand their behaviour. Consequently,

there is very little scientific understanding or explanation of the relationship between the

performance of metaheuristic algorithms and the problems to which they are applied [59].

Theoretical work in metaheuristic optimization continues to develop but there is currently

a significant gap between this and real-world problems.

1.2 Research Motives and Contributions

The notion of a landscape is used to model the structural topology induced by the objec-

tive function defined over the solution space. Optimization algorithms, including meta-

heuristics, conceptually solve a problem by “navigating” through the problem’s landscape

in pursuit of low or high-valued solutions. The problem landscape also provides an abstract

framework from which particular problem features, characteristics and properties can be de-

fined and analysed in order to describe and provide insight into the nature of the problem.

In practice, expert knowledge and intuition is often used to analyse problems. However, the

structural topology of the landscape is unknown in the black-box optimization context, and

so the development of features, characteristics and properties that are able to capture (i.e.

detect or show sensitivity to) the structural topology is highly challenging. Practitioners are

faced with a conundrum; how can one describe something, without knowing what it is?

Fundamentally, total enumeration of the candidate solutions and their respective objec-

tive function values completely describes a problem. Hence, problem features developed

in the black-box optimization literature commonly utilise candidate solutions and/or their

f -values. However, optimization problems of practical interest typically have an enormous

number of candidate solutions, and as a result, features and characteristics are defined over

finite samples of solutions and their objective function values. While numerous features

have been proposed in the literature, there are some important limitations of this work (e.g.

many features do not utilise all information afforded by the solutions and their f -values) as
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well as many open issues around its practical utility.

Collectively, the contributions in this thesis provide a new framework and practical tech-

niques for the analysis of optimization problems by utilizing all information available in the

black-box setting. The framework is based on a novel summary of the landscape, called

length scale, that uniquely describes and hence characterises problems. The length scale

framework developed in this thesis is comprised of:

• A technique for assessing the adequacy of a sample from either continuous and com-

binatorial problems.

• A new sampling methodology for obtaining the length scale information for continu-

ous problems.

• A suite of techniques from set theory, statistics, machine learning, information theory

and visualisation to analyse and interpret length scale information.

• Two explicit problem similarity measures.

Specifically, the major contributions of this thesis are as follows:

1. A comprehensive review of the analysis of both combinatorial and continuous black-

box problem landscapes (Chapter 3).

2. The identification of theoretical issues relevant to sampling continuous problems, and

hence, landscape analysis (Chapter 4).

3. The application of Lévy random walks to reduce and eliminate the identified sampling

issues in continuous optimization (Chapter 4).

4. The notion of length scale and derived summaries as problem landscape features for

both continuous and combinatorial problems (Chapter 5).

5. A methodology to assess the adequacy of a sample from both continuous and combi-

natorial problems (Chapter 6).

6. The application of methods from set theory, statistics, machine learning, information

theory and visualisation to analyse and interpret length scale information (Chapter 6).

7. The use of the entropic Jeffrey divergence to quantify the similarity between continu-

ous problems, as well as combinatorial problems (Chapters 6 and 7).
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8. The use of the Normalised Compression Distance to quantify the similarity between

continuous problems, as well as combinatorial problems (Chapter 8).

9. Investigation into the theoretical and empirical relationship between the Jeffrey diver-

gence and Normalised Compression Distance (Chapter 8).

Source code for all experimental investigations in this thesis is available at https://github.

com/RachM/thesis.

1.3 Scope and Limitations

This thesis focuses on combinatorial and continuous optimization problems, and as a result,

problems with a mixture of discrete and real-valued variables are outside of the thesis’ scope.

The methodologies developed throughout this dissertation may be directly applicable (or

alternatively, adapted) to such problems, however the feasibility and efficacy of this is not

explored.

Historically, many optimization problem features have often been developed as indica-

tors for problem difficulty. This research pursuit is problematic for a number of reasons.

Firstly, a notion of “difficulty” is highly subjective and varies throughout the literature.

Consequently, there is no clear, well-established difficulty measure with which to correlate

problem features. Secondly, empirical benchmarking results show that an “easy” problem

for one algorithm can be “hard” for another. Fundamentally, a given problem is not globally

“easy” or ”hard” for all algorithms; the ability of algorithms to navigate particular prob-

lem structures varies, and hence it is the structures (and their interactions) that influence

algorithm performance. One major contribution of the thesis is the development of features

that are shown to capture (i.e. detect or show sensitivity to) the structures within problems.

While the features may be predictive of particular algorithms’ performances, the focus of

the thesis is the development and ability of the features to analyse and compare problems.

Hence, notions of problem difficulty are largely absent from the development of the length

scale framework, as well as analyses and discussions.

1.4 Thesis Outline

Chapter 2 formally defines optimization and important concepts relevant to the work in this

thesis. In addition, a consolidated notion of the problem landscape for a given optimization
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is defined, and terms from the landscape vernacular are explained.

Chapter 3 reviews existing landscape analysis and comparison techniques formulated

predominately in the evolutionary computation community, and significant issues and re-

search gaps are identified. Related landscape analysis techniques from geography, ecology,

biology, chemistry and physics are also reviewed.

Landscape analysis techniques rely heavily on finite samples of solutions, and so a fo-

cused review of sampling methodologies is provided in Chapter 4. The review raises seri-

ous concerns regarding the efficacy of the sampling methodologies commonly employed in

high dimensional continuous problem analysis. In an effort to address the concerns, a Lévy

random walk is proposed for the analysis of high dimensional continuous problems. Ex-

perimental case studies are conducted using two well-known landscape features in order to

investigate the practical implications of the concerns, as well as the efficacy of the proposed

sampling technique.

Chapter 5 establishes the notion of length scale as a fundamental feature of problem land-

scapes. The length scale values of small, intuitive problems are analysed in order to in-

vestigate the ability of the length scale information to capture important problem structure.

Concepts developed from length scale, such as the length scale distribution, are introduced.

Properties of length scale and related concepts are defined, and related work is discussed.

In Chapter 6, Lévy random walks are used to sample length scale information, and a

methodology for evaluating the adequacy of the sample is developed. Based on the sample

of length scale values, analysis techniques from set theory, statistics, machine learning and

visualisation are proposed to analyse and compare problems. One major contribution of this

chapter is to propose and demonstrate the use of the Jeffrey divergence to explicitly quantify

the similarity between optimization problems.

The length scale analysis techniques developed are experimentally evaluated and com-

pared to several popular landscape analysis techniques in Chapter 7. The techniques are

used to analyse and compare continuous artificial problems, well-known benchmark prob-

lems from both continuous and combinatorial optimization, geometric packing problems,

and two widely studied combinatorial problems.

Chapter 8 proposes an alternative problem similarity measure, based on a universal dis-

tance function in Kolmogorov Complexity theory known as Information Distance. A novel

methodology to estimate the Information Distance between optimization problems in prac-

tice is developed. The methodology utilises a related measure, known as the Normalised

Compression Distance, between samples of length scale values. Experimental analysis of
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the Normalised Compression Distance is conducted on the problems analysed in Chapter 7.

The Normalised Compression Distance and Jeffrey divergence are two novel measures of

problem similarity developed in this work, and their relationship is theoretically and empir-

ically investigated in Chapter 8.

Chapter 9 concludes the thesis by reflecting on the work’s novel contributions, including

arguments, concepts, methodologies and results. Limitations of the work and avenues for

future work are also discussed.

The optimization problems used throughout the experiments in this thesis are formally

defined and described in Appendix A. Certain concepts, definitions and formulae differ

between continuous and combinatorial optimization. To assist with readability, continuous

definitions are provided in the text, while the related combinatorial versions are given in

Appendix B. Appendix C contains an additional experimental investigation comparing the

length scale analysis and several popular landscape analysis techniques. The experiment is

identical to the analysis of the geometric packing problems in Chapter 7, with the exception

that a uniform random sampling technique is used instead of the Lévy random walk.
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Optimization and Fitness Landscapes

The one common experience of all humanity

is the challenge of problems.

R. Buckminster Fuller

This chapter formally defines optimization and concepts important to the work in this the-

sis. In addition, a consolidated notion of optimization problem landscapes is defined, and

important terms from the landscape vernacular are reviewed. The aim of this chapter is to

familiarise readers with notational conventions and commonly used terminology, and read-

ers who are interested in reviews of optimization in a more general sense can consider the

reviews in [76, 181].

2.1 The Optimization Problem

Optimization problems are ubiquitous, and as a result, optimization has been well-studied

in a variety of domains including science, engineering, design, management and fi-

nance [181]. From a high-level, an optimization problem is defined by two major compo-

nents: 1) a set of candidate solutions, S , known as the search space, and 2) an objective function,

f : S → IR, that measures the quality of a given solution. Without loss of generality, the as-

sumption throughout this dissertation is minimization1 of f .

Definition 2.1 (Global optimum). A solution x∗ ∈ S is the global optimum if:

f (x∗) ≤ f (x), ∀ x ∈ S (2.1.1)

In global optimization, the aim is to find the solution, x∗, with the lowest possible objective

1Maximization of f is equivalent to the minimization of − f .
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function value. Multiple solutions may minimise f , and so it is possible to have multiple

global optima.

Definition 2.1 involves a single objective function, and such problems are known as

single-objective optimization problems. Problems with multiple objectives can be formulated

using multiple objective functions [181], however multi-objective optimization is outside of

the scope of this thesis.

Optimization problems are often categorised based on the specification of S . One very

general type of optimization problem is the combinatorial problem, where S consists of a

discrete set of inputs, such as people, facilities and machines. The aim is to find a config-

uration/combination of the input parameters, known as variables, such that the objective

function is minimised. The generality of this definition allows many real-world problems,

such as scheduling, packing and routing problems, to be formulated as combinatorial opti-

mization problems. As an aside, combinatorial optimization problems are closely related to

decision problems from computational complexity theory [48, 76]. Decision problems are es-

sentially posed as a simple yes/no question, and can often be answered/solved by solving

a related optimization problem.

In situations where all of the input parameters of the problem are continuous (i.e. real-

valued), the candidate solutions are thus continuous vectors, x ∈ S ⊆ IRD for a specified D,

and the optimization problem is known as continuous (or real-valued), with a dimensionality

of D. Optimization problems over integer-valued and mixtures of integer and real-valued

variables are also widely studied [14], but are outside of the scope of this thesis.

2.1.1 Bounds and Constraints

The search space of candidate solutions is often restricted by the specification of constraints

that explicitly define the feasibility of solutions. Solutions satisfying all specified constraints

are known as feasible, while solutions that do not satisfy the constraints are infeasible. In con-

tinuous optimization, bounds can also be imposed on the feasible search space. The bounds

typically define the minimum and maximum values for each variable in the candidate so-

lution vector, and they are often utilised by solvers to ensure that only solutions within the

bounds are evaluated. Optimization problems without bounds are known as unbounded, and

similarly, problems without constraints are known as unconstrained. Given that many real-

world optimization problems frequently involve the optimization of physical objects which

are inherently subject to physical limitations and constraints, real-world problems are often

9
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bounded and can have numerous constraints [181].

2.1.2 Linearity, Convexity and Smoothness

Optimization problems are also classified with respect to certain properties of the objec-

tive function. When the analytic form of f is known, problems can be classified based on

their linearity, convexity and smoothness [133]. Problems where both f and the constraints

are linear are known as linear programming problems, while problems with a non-linear f

and/or constraints are known as non-linear. Similarly, the objective function and constraints

in convex optimization problems are convex, while non-convex problems have a non-convex

f and/or non-convex constraints2. In continuous optimization, a problem is smooth if f and

all of the constraints are at least twice differentiable, and problems where the constraints

and f are not twice differentiable are known as non-smooth. Prior knowledge of linearity,

convexity and smoothness can be very advantageous in both analysing and solving opti-

mization problems, and hence there are specific sub-fields of the optimization community

devoted to each (e.g. see [102] for introductions to linear and non-linear programming, and

[62] for further details on convex, smooth and non-smooth optimization).

2.1.3 Black-Box Optimization

In certain situations, analytical expressions for the objective function and/or constraints are

not available, and so the optimization problem cannot be analytically formulated. Without

an analytic formulation, the objective function is effectively a black-box; solutions can be

evaluated by the objective function, but no other information regarding f is provided.

Definition 2.2 (Black-box optimization problem.). An optimization problem is classed as a

black-box problem if [80, 181]:

1. S is defined

2. f can be evaluated for each x ∈ S

3. No other information is known

Because almost no information is known a priori, black-box problems are analysed and

solved by inferring problem structure from the analysis of finite samples of solutions. In-

deed, in metamodel or surrogate-based optimization (known as fitness approximation in
2Convexity is more general than linearity, and so a linear programming problem is automatically by defini-

tion convex.
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evolutionary computation), an explicit model (e.g. regression) is built from samples of S
and f , and the model is subsequently used to determine search areas likely to contain opti-

mal solutions [7, 53, 81]. Examples of real-world black-box problems typically occur when f

is the output of an unknown system or mechanism, such as simulation and shape optimiza-

tion [153].

2.1.4 The Neighbourhood and Related Concepts

This section defines and discusses several important optimization problem concepts depen-

dent on the notion of a neighbourhood, described in Definition 2.3. The concepts presented in

this section are based on the definitions of optimization and related concepts described by

Horst and Tuy [75] and Stadler [171].

Definition 2.3. Let d : S × S → IR be a distance function between candidate solutions. The

neighbourhood for a given solution, x′, yields a set of feasible candidate solutions that are within

distance ε > 0 of x′:

N(x′) = {x ∈ S | d(x′, x) ≤ ε} (2.1.2)

The choice of distance function, d, is generally dependent on the representation of candidate

solutions, although distances have been proposed based on the move operators of particular

search algorithms [82]. The aim of this thesis is to develop algorithm independent landscape

analysis techniques, and so “canonical” distances appropriate for the solution representa-

tions are used throughout. For example, the candidate solutions in continuous optimization

problems are represented by vectors of reals, i.e. x ∈ S ⊆ IRD. Hence, distance metrics

defined for continuous spaces, such as the Lp norm, are appropriate. If Euclidean distance

(i.e. L2 norm) is used, N(x′) defines a hypersphere with radius ε centred at x′, and assuming

infinite precision, there is an infinite number of neighbouring solutions to x′. In combina-

torial optimization, vectors of discrete values (including bit-vectors and bit-matrices) and

permutation vectors are typically used in formulating problems. For example, candidate so-

lutions of the NP-hard Number Partitioning Problem can be represented using bit-vectors,

x ∈ {0, 1}n (see Appendix A.2.2). Well-known distances for vectors of discrete values and

permutation vectors include Hamming distance, swap distance, edit-distance and the Cay-

ley distance [44]. The neighbourhood defined for a combinatorial optimization problem is a

finite set of solutions within ε of x′.
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An important concept that relates to neighbourhood definitions is the concept of a local

optimum.

Definition 2.4 (Local optimum.). A local optimum is a solution, x′, where the objective function

value are better (i.e. smaller in the context of minimization) than all of its neighbouring solutions.

Specifically, x′, satisfies:

f (x′) < f (x), ∀ x ∈ N(x′) (2.1.3)

The inequality in Equation 2.1.3 implies that none of the neighbouring solutions to x′ can

also be local optima, and so x′ is known as a unique local optimum. A non-unique local

optimum is defined by relaxing the inequality of Equation 2.1.3:

f (x′) ≤ f (x), ∀ x ∈ N(x′) (2.1.4)

Non-unique local optima imply a region of the search space where f is of a constant, locally

optimal, value. In general, local optima are typically defined with a small neighbourhood

(i.e. minimal ε). A global optimum is a special case of a local optimum where all solutions

in the search space have equal or worse objective function values than its own objective

function value. Problems with a single optimum are known as unimodal, while problems

with multiple local optima are known as multimodal.

Let f be a continuous function, and let f ′(x) and f ′′(x) denote the first and second deriva-

tives of f respectively. A candidate solution, x ∈ S is a stationary point when f is neither in-

creasing nor decreasing in all directions from x. Formally, x is a stationary point if f ′(x) = 0.

Similarly, x is a critical point if it is either stationary, or non-differentiable at f (x). By Fermat’s

theorem, all optima occur at either the boundaries of f or critical points [176]. Saddle points

are critical points that are not local optima. Specifically, for a given saddle point xS, there

does not exist a constant, ε > 0, such that f (xS) < f (x) where ‖xS − x‖ < ε.

Closely related to the notion of a local optimum is a basin of attraction. The basin of attrac-

tion for a given local optimum is loosely defined as the set of solutions that, when an idealised

local search algorithm is initialised at each solution, leads to the given local optimum [171].

More formally, given the Local Search procedure in Algorithm 2.1, the basin of attraction for

a given local optimum, x′ ∈ S , is B(x′) = {x ∈ S | LS(x) = x′}.
The Local Search procedure in Algorithm 2.1 is not guaranteed to terminate at a particular

local optimum in the presence of saddle points. Hence in the above definition of a basin

of attraction, it is assumed that the local search is idealised, that is, the search navigates

12
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Algorithm 2.1 Local Search (LS)
Input:

Initial solution, x ∈ S
1: repeat
2: x′ ← x′ ∈ N(x) such that ∀ x′′ ∈ N(x), f (x′) ≤ f (x′′)
3: if f (x′) < f (x) then
4: x← x′

5: end if
6: until f (x′) = f (x)
7: return x

through saddle points and terminates at a local optimum. The saddle point separating two

basins of attraction is known as a barrier.

A plateau, or neutral region, is an area of the search space where the objective function is

of constant value (i.e. flat/neutral). Specifically, a plateau is a set of solutions having equal

f -values and where each solution is “connected” by a neutral neighbour (i.e. there is a path

from any neutral solution to any other neutral solution in the plateau).

2.2 Fitness Landscapes

The notion of a fitness landscape (also known as an adaptive landscape) originates from theoreti-

cal biology as an abstract representation of the interaction between the genetic “encoding” of

an organism, known as its genotype, and the evolutionary quality of the organism, known

as fitness [205]. Traditionally, genotypes with a better genetic quality correspond to large

fitness values, and the process of evolution can be abstractly conceptualised as “moving”

throughout the fitness landscape, in “search” of the genotype with the largest fitness. The

transition between genotypes corresponds to the evolution of the organism via reproduction

and/or mutation. Fitness landscapes have also been used to represent the observable traits

of an organism (known as phenotypes) with respect to their fitness [129].

The landscape metaphor is also a popular model in physics and chemistry for the anal-

ysis of materials’ potential energy surfaces, also known as energy landscapes [171]. Specifically,

energy landscapes describe the relationship between a molecule’s geometry and the cor-

responding energy for each geometrical configuration. In contrast to fitness landscapes,

configurations with low energy are typically desirable.

Landscapes provide a useful metaphor to model the complex relationship between object

configurations and a corresponding measure of configuration quality. The fitness landscape

metaphor was introduced into evolutionary computation as a model of the objective func-
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CHAPTER 2: OPTIMIZATION AND FITNESS LANDSCAPES

tion values over the search space for a given optimization problem [169, 199]. Specifically,

fitness landscapes provide a framework to analyse the interaction between solutions, their

variables, and their corresponding fitness (objective) function values.

The fitness landscape metaphor in optimization has evolved significantly since its first

applications in evolutionary computation. One major contribution in this area was the work

of Jones [82], who provided a rigorous - yet highly accessible - definition of optimization

problem landscapes. Stadler [171] then proposed a more generalised landscape definition,

thereby facilitating the inclusion of concepts and results from statistical physics. Indeed,

Jones’ and Stadler’s formulations of fitness landscapes persist favourably in the landscape

analysis literature [19, 74, 120, 190].

Given the evolution of the landscape notion throughout recent years, definitions in the

literature vary and are often considerably vague. For example, common definitions of the

landscape, L, include:

• L = (S , f , d) [114, 120, 122, 130, 138]

• L = (S , N, f ) [28, 74]

• L = (S , χ, f ), where χ is qualitatively defined as a notion of “connectedness”, “neigh-

bourhood”, “nearness”, “distance” or “accessibility” [19, 131, 171]

• L = (V, E), where V is a vertex set of the solutions’ objective function values, and E

represents the “connections” between solutions (defined using a notion of neighbour-

hood) [190]

In addition to the definitions of L above, L is frequently described as as vague interaction

between S and f . For example, Picek and Jakobovic [128] define L as “a set of two func-

tions f and d that define the fitness value and the distance between encoded solutions in

the landscape”. Equally confusingly, Talbi [181] describe L as “the tuple (G, f ), where the

graph G represents the search space and f represents the objective function that guides the

search”. Worse still, many papers in the landscape analysis literature omit a definition of the

landscape [29, 57, 109, 161].

In order to consolidate the literature and provide a rigorous definition, the notion of a

problem landscape is defined in Definition 2.5. The term “fitness” typically refers to max-

imisation, however since minimization of f is assumed throughout this thesis (meaning

solutions with lower f values on the landscape are deemed “fitter”), it is rather improper

to use the term “fitness landscape” to describe an optimization problem’s landscape. Hence
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Figure 2.1: Problem landscape of the Michalewicz function defined over S = [0, π]2.

to avoid confusion between fitness landscapes from evolutionary biology and fitness land-

scapes in the (minimization) optimization context, this dissertation denotes the latter as prob-

lem landscapes.

Definition 2.5 (Problem landscape.). Given an optimization problem, let S , f and d denote the

search space, objective function and suitable distance function respectively. The problem landscape

is the tuple:

L = (S , f , d) (2.2.1)

Definition 2.5 is consistent with landscape definitions in [114, 120, 122, 130, 138]. As defined

in Equation 2.1.2, the distance d is used to provide a notion of neighbourhood. The candi-

date solutions and neighbourhood relation together form a connected graph, where vertices

represent the solutions, and edges correspond to the distance between immediate neighbours

(i.e. N where ε is arbitrarily small). The landscape is then formed by mapping the objective

function values to each vertex (i.e. candidate solution) in the graph. Continuous problem

landscapes are very intuitive, and are essentially a continuous space defined by S , with the

addition of an extra dimension for the “surface” defined by the objective function values.

Figure 2.1 illustrates the problem landscape of the two-dimensional Michalewicz function

(defined in Table A.1 of Appendix A), which shows multiple local minima and a single

global optimum.
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2.2.1 Common Landscape Terminology

The problem landscape framework provides a convenient abstraction for analysing and

characterising optimization problem features and properties. Notions naturally used to

describe two and three dimensional landscapes are often applied to problems of arbi-

trary dimensionality. For example, terms like “peaks”, “valleys”, “ridges”, “funnels” and

“plateaus” are used extensively in the problem landscape vernacular, with often little or no

formalisation of their meaning (e.g. [30, 122, 128]).

Arguably one of the most widely used landscape descriptors is modality, which refers to

the number of local optima (resembling modes) in the landscape. Highly multimodal land-

scapes with large transitions in fitness are generally described as rugged, while problems

with few modes and small transitions in fitness are known as smooth3 [74]. Ruggedness is a

qualitative (and hence subjective) notion, and so numerous definitions have been proposed

in the literature to quantify ruggedness. For example, Weinberger [199] measure ruggedness

via the autocorrelation and correlation length of objective function values conducted over a

random walk, Palmer [126] suggests defining landscapes as rugged if the number of local

optima scales exponentially with a measure of problem size, and Vassilev et al. [190] quan-

tify ruggedness via an entropic measure of the variety of fitness fluctuations in a random

walk. Each of these measures are bounded, however the point at which a smooth problem

becomes a rugged problem remains unclear.

Funnels have been used extensively in the potential energy surface literature, although

like ruggedness, explicit definitions are vague and vary [103]. For example, Doye [45] de-

fines a funnel as “a region of configuration space that can be described in terms of a set of

downhill pathways that converge on a single low-energy structure or a set of closely-related

low-energy structures”. The exact algorithm to compute the downhill pathway is not pro-

vided, nor is the degree to which low-energy structures are considered “close” formally de-

fined. Abstractly, a funnel is a region of S where the objective function generally decreases

monotonically towards a single local optimum [103], and this definition is adequate for the

purpose of the work in this thesis.

Ridges and valleys are commonly used to describe plateaus consisting of local maxima

and minima respectively. A massif central/big valley landscape structure refers to a clustering

of the distribution of local optima in the landscape, such that the local optima closer to the

global optima generally have better objective function values [181]. Landscapes where the

3Confusingly, “smoothness” in this context is unrelated to the definition of smoothness in Section 2.1
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global basin of attraction is small in comparison to the local basins of attractions are known

as deceptive, as search heuristics with an element of greediness will often be “lured” into the

local basins, and are hence “deceived” by the landscape structure.

The topological concepts and notions of ruggedness, ridges, valleys, plateaus and fun-

nels provide an imagery with which to better visualise and understand the complexity of

optimization problem landscapes. However, many of the concepts lack rigorous definitions

and explicit quantitative measures. In addition, it is not entirely clear how the topological

notions scale with dimensionality, and in particular, whether the landscape descriptors are

useful or even exist in high dimensions [129]. Indeed, a recent survey on the prevalence of

local optima and saddle points in high-dimensional, non-convex continuous error functions

(from statistical physics, random matrix theory and neural network theory) concluded that

there is a proliferation of saddle points, not local minima as is often thought (local minima

with high error are exponentially rare) [41]. Furthermore, saddle points and local optima

in high dimensional problems are often surrounded by plateaus and regions of negative

curvature. From a more philosophical perspective, Provine [132] argues that if the sole pur-

pose of a landscape metaphor is to provide intuition and aid understanding, then the use

of high dimensional landscapes, for which there is little intuition, is of little help. Indeed,

it seems very unlikely that the landscape descriptions derived from rudimentary geometry

are appropriate for high D, where the possible number of variable permutations increases

exponentially with D, resulting in a large increase in the types and complexities of landscape

structures. There is clearly a need for landscape descriptors that are based on the landscape

data, rather than intuition. Many data-driven landscape measures, properties and features

have been proposed in the literature, and a review of these is conducted in Chapter 3.

2.3 Summary

This chapter defined the global optimization problem, as well as related concepts such as

the notion of a neighbourhood, local and global optima, plateaus and basins of attractions.

The fitness landscape framework originating from evolutionary biology was reviewed as a

model for understanding the interaction between solutions, their variables and their respec-

tive objective function values. In addition to defining a consolidated notion of problem land-

scapes, explanations of commonly used terms in the landscape vernacular were reviewed.

While many of the terms were developed from two and three dimensional geometric intu-

itions, they are frequently used to describe landscapes of arbitrary dimensionality. Issues
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regarding the suitability of the terms in high dimensional spaces were discussed, and an

argument was made for the development of problem features and properties that are not

derived from two and three dimensional landscape intuition.
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CHAPTER 3

Landscape Analysis

Know how to solve every problem that has

been solved.
Richard Feynman

The notion of an optimization problem landscape, L = (S , f , d), given in Definition 2.5 (Sec-

tion 2.2), provides a framework from which features summarising a landscape’s structural

information can be derived. Features defined using the landscape notion are dependent on

f , S and d, meaning multiple landscape definitions, and hence features, are possible for a

given optimization problem. The following chapter reviews the ability of problem landscape

features and analysis techniques proposed in the literature to analyse, describe and charac-

terise optimization problems. Where possible, features are defined and assessed under the

generalised landscape notion, L.

The analysis of problems is often closely associated with algorithm behaviour and per-

formance, and so a discussion into the relevance and consequences of the No Free Lunch

theorem, NP-completeness and problem difficulty is given in Section 3.1. The abilities and

limitations of existing problem landscape features to characterise combinatorial and contin-

uous problems are assessed in Section 3.2. Section 3.3 outlines and compares the challenges

that are unique to characterising combinatorial problems, versus those that are unique to

continuous problems. Section 3.4 reviews the efficacy of landscape features to quantify the

similarity between problems. Related landscape analysis from the geography, ecology, biol-

ogy, chemistry and physics literature is discussed in Section 3.5. Section 3.6 concludes the

chapter with a summary of the limitations and shortcomings of existing landscape analysis

techniques to characterise and compare problems.
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3.1 No Free Lunch, NP-Completeness and Problem Diffi-

culty

The No Free Lunch (NFL) theorem states that all algorithms perform equally well on aver-

age, across all possible problem instances [106]. The NFL theorem essentially means that

for each problem that an algorithm instance performs well on, there is a problem for which

the algorithm instance performs poorly on. While this may seem like a formidable obstacle

in the pursuit of developing algorithms to efficiently solve optimization problems, the NFL

theorem means that there are sets of problems that particular algorithms are better-suited to

solving than other algorithms. Hence, understanding the relationship between algorithms

and problems is of significant importance.

The relevance of the NFL theorem in practice is dubious; only discrete functions for

which algorithms do not re-sample (i.e. re-visit) solutions are considered in the theorem,

and so it is often argued that the problems and algorithms considered in practice do not

represent the problems and algorithms to which NFL applies [201]. English [51] showed

that the vast majority of all problems are highly incompressible functions, while problems

of practical interest are generally compressible. Consequently, it is often argued that the

problems encountered in practice represent a small proportion of all problems [51, 201].

Evidently, empirical benchmarking results, such as algorithm performances in continuous

benchmarking competitions [72, 179], show that the performance of algorithms varies con-

siderably across problems. A major goal in optimization research is therefore to determine

and understand the problems that particular algorithm instances are well-suited to (and

conversely, not well-suited to).

The NFL theorem does not hold for all problems encountered in practice, including NP-

complete (decision) problems [201] like the Travelling Salesman Problem (TSP) and Num-

ber Partitioning Problem (NPP) (as described as optimization problems in Appendix A).

NP-complete problems are generally perceived as difficult because there is no known

polynomial-time algorithm to optimally solve them. However, many solvers can optimally

solve large NP-complete problem instances in practice (e.g. Concorde is able to solve many

large, real-world TSPs [42]). This is because NP-completeness refers to the worst-case com-

plexity of an entire class of problems, and so the complexities of individual instances within

the class can vary. Indeed, certain instances of NP-complete problems are known to be “easy”

or “hard” for exact solvers [34]. Specifically, by identifying and controlling key problem
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features in the Travelling Salesman, Number Partitioning, Graph Colouring and Satisfiabil-

ity problems, phase transitions are exhibited in the computational resources used by exact

solvers [1, 22, 207]. The identification of such control features has traditionally required a

deep level of problem understanding, and is therefore highly problem-specific.

Given that the performance of algorithms varies between problem instances, there has

been increasing interest in developing features/properties to characterise problems, and to

relate these features to the behaviour and performance of algorithms [77, 119, 162, 164].

While such features are frequently related to algorithm performance, it is important to em-

phasize that the features themselves do not imply problem difficulty. In other words, land-

scape features aim to measure/characterise pertinent structures, and it is the presence and

interactions of such structures that affects algorithm performance. For example, consider

Fitness Distance Correlation (FDC), which measures the extent of correlation between so-

lutions’ f values and their distance to a given reference solution (usually the closest global

optimum) [82]. FDC is often reported (and indeed criticised [5]) as a measure of problem

difficulty, however Jones [82, pp 178] originally argued that FDC is a feature of the land-

scape, and that a “difficult” feature for one algorithm to navigate may be “easy” for another

algorithm to navigate.

A major aim of problem landscape analysis, and indeed this thesis, is to develop features

that are able to describe, characterise and distinguish problem structures. Consequently,

this thesis focuses on the development of algorithm-independent (but landscape-dependent)

features and analysis techniques. Therefore, the following review of the landscape analysis

literature evaluates the ability of proposed features to adequately characterise landscapes,

independent of any particular algorithm (and hence without regard to notions of “diffi-

culty”).

3.2 Landscape Features

In comparison to continuous optimization problems, a considerable amount of problem

analysis has been performed on combinatorial optimization problems. For example, the

analysis of the TSP has resulted in a large number of features that are typically based

on domain-specific knowledge and have been shown to contribute to problem difficulty

[60, 173, 187, 206, 207]. In particular, Cheeseman et al. [34] and Ridge and Kudenko [141]

show that increasing the standard deviation of the distances between cities for randomly

generated TSP instances increases problem difficulty for a number of algorithms. Features
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such as these are very problem-specific and in most cases cannot be easily transferred to

other problem classes. Instead, problem-specific features have been developed separately

for other combinatorial problems classes such as Graph Colouring, Boolean Satisfiability,

Time-tabling and Knapsack problems. More comprehensive reviews of combinatorial land-

scape and problem-specific features and techniques can be found in [130, 139, 163, 181].

Problem-specific features are very insightful and useful, however they do not allow com-

parisons between black-box problems or problems between different classes. No domain

knowledge is available in the black-box scenario, and so for these problems, analysis is re-

stricted to the candidate solutions, x, from the feasible search space, S , and their respective

objective function values. However, complete enumeration of the search space is often im-

practical due to the finite, but very large number of candidate solutions. Hence, problem

landscape analysis techniques typically employ random, statistical or other sampling meth-

ods to examine a set of solutions of interest (and/or their objective function values) from a

landscape. Features based on the landscape metaphor are inherently very general and can

also be applied to problems of different classes and/or non-black-box problems.

This section reviews the landscape analysis literature, with a particular emphasis on fea-

tures based on finite samples of S and f . The review is certainly not exhaustive, but rather

highlights fundamental issues and concerns with existing problem landscape analysis fea-

tures. Readers interested in more comprehensive reviews on problem landscape analysis

can consult the reviews in [130, 163, 171, 181].

3.2.1 Topological, Minimum Embedding and Fractal Dimensions

Arguably the most simple feature of an optimization problem is its topological dimension,

D (also known as the number of degrees of freedom), defined as the number of variables in a

candidate solution. Because D is solely related to S , it does not capture any information

regarding f , and is therefore a poor problem characteristic. Furthermore, D may not ade-

quately reflect the minimum embedding dimension, defined as the smallest dimensionality for

which an equivalent representation of the problem can be embedded within. Consider the

function f (x) = x1, where x ∈ IRD; f is essentially a one dimensional function embedded in

a D-dimensional space. Hence, its topological dimension is D, while its minimum embed-

ding dimension is at most 1. While the minimum embedding dimension can be determined

using dimensionality reduction techniques [93], it has not been used as a problem feature in

the context of landscape analysis.
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The fractal dimension, D f , is a related notion of dimensionality that has been proposed

to characterise the structural complexity in landscapes [167, 200]. There are multiple defini-

tions in the literature (see [182] for a review), however all aim to capture the general notion

that:

bulk ∼ sizeD f (3.2.1)

where bulk represents a measure of the landscapes volume/mass/information and size rep-

resents a linear distance (e.g. the diameter of the landscape). D f quantifies how the struc-

tural detail of the problem changes with scale, and resulting values can be non-integer.

Landscapes with smooth, gradual transitions in f over S yield fractal dimensions close

to their topological dimension, while the fractal dimension of rugged landscapes will be

larger [182]. Many of the techniques used to estimate D f suffer from implementation issues

that make them impractical in high dimensions (e.g. exponential growth in the sampling

required to produce an estimate) [65, 182]. Power law analysis has been used to indicate

the presence of fractal structures in certain combinatorial optimization problems [167, 200],

however this analysis essentially yields a yes/no label (for the presence/absence of fractal

structure) and is unable to quantify the degree or amount of fractal structure.

3.2.2 Local Optima and Basins of Attraction Based Features

The number, size and distribution of local optima are commonly employed to quantify how

“rugged” a landscape is [181]. Determining the exact number and location of local optima

involves exhaustive enumeration of S , and is therefore infeasible for most problems of prac-

tical interest. Instead, estimates are often made using the set of distinct solutions resulting

from local search algorithms restarted at multiple locations in S [143].

Gamier and Kallel [56] show that obtaining an accurate estimate of local optima us-

ing multiple local searches is computationally expensive; assuming n uniformly distributed

basins of attraction, O(n log n) local searches are needed if the basins are equally sized, and

O(n2) local searches are required if they are uniform randomly sized. Basins may still be

missed in practice, and so the resulting estimate is a lower bound on the actual number of

local optima. Given that n is unknown a priori in the black-box scenario, the number of lo-

cal searches and their respective initialisation locations are often made as large as practically

feasible [113, 136].

Despite the intense computational effort required to identify local optima, the number
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and distribution of local optima throughout S are frequently used to analyse both combi-

natorial and continuous optimization. For example, Boese et al. [16] and Reeves [136] show

that certain instances of TSP problems contain a “big valley” structure that can be exploited

by heuristics, while Alyahya and Rowe [6] recently observed correlation in the number of

global optima in Number Partitioning Problem instances with a phase transition in the per-

formance of an exact solver.

In continuous optimization, the shape, volume and distribution of basins of attractions

have predominately been used to characterise artificial benchmark problems, such as the

Black-Box Optimization Benchmarking (BBOB) problem set [30, 120, 113]. Basins of at-

traction are estimated similarly to local optima; multiple local searches are conducted, and

the solutions visited during each local search are assigned to the resulting local optimum’s

basin. In an effort to reduce the intense computational effort required to determine the

basins of attraction for a given problem, Muñoz et al. [120] utilise repeated local searches

on L = (S ′, f , d), where S ′ is a sample of 2000 solutions from S . Because the local optima

and basins of attraction are estimated from such a low-resolution landscape, the locations

of local optima are likely to be erroneous or missed entirely, and the estimates of the basin

sizes and their distributions throughout S are unlikely to be reliable. Muñoz et al. [120]

consider only 2-D problems, and so the efficacy and practicality of their approach in higher

dimensions is unclear.

3.2.3 Probabilistic Based Features

The fitness distribution (also known as the density of states) for a given problem landscape

summarises the probabilities of each distinct objective function value in the landscape. In-

formation regarding the candidate solutions and their relationship with their respective f

values is not utilised. In practice, fitness distributions are constructed via density estimation

of sampled f values [145]. The fitness distribution is non-unique; two problems with vastly

different landscapes will produce identical fitness distributions if their sets of sampled f val-

ues are identical (regardless of where in S the f values occur). Because fitness distributions

(and statistical measures of the distributions such as skewness) are based purely on f , they

are applicable to both combinatorial and continuous optimization problems. Borenstein and

Poli [18] utilise the fitness distributions of solutions generated from a Genetic Algorithm and

random sampling to qualitatively analyse the one-max and needle-in-a-haystack problems.

Similarly, Mersmann et al. [113] propose using the skewness, kurtosis and modality of the
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fitness distribution are as features for characterising problems. Results for the BBOB [72]

problem set suggest that the skewness, kurtosis and modality are more accurate at classify-

ing the BBOB problems than modality-related features such as the number of local optima.

Smith et al. [161] propose a set of four features (Ea, Eb, Ec and Ed), collectively called fit-

ness evolvability portraits, that characterise both the ruggedness and neutrality of combinato-

rial and continuous landscapes. Fitness evolvability portraits aim to characterise the fitness

of neighbourhoods from the perspective of solutions where f (x) = t. Obtaining such so-

lutions in practice is computationally expensive; solutions are sampled randomly and only

accepted if their objective function value is equal to t. Ea measures the expected probability

of a neighbouring solution to have “better” fitness than the current solution. Similarly, Eb

estimates the expected fitness of neighbours, while Ec and Ed measures the expected fitness

of the top and bottom p percentile of the neighbouring fitness respectively. Because Ea, Eb,

Ec and Ed consider the neighbourhoods of solutions with fitness t, structural relationships

defined over larger intervals than the neighbourhood are not considered. The expectation of

all neighbourhoods’ fitnesses across all solutions of fitness t also limits the capacity for the

fitness evolvability portraits to capture localised structure.

Ea, Eb, Ec and Ed are dependent on the value of t chosen, and Smith et al. [161] suggest

using a range of different t values to obtain a broad analysis of the problem. However the

selection of an appropriate range of t values is difficult in the black-box scenario, where the

existence of objective function values equal to t is not guaranteed. The size and distribu-

tion of the sample as well as the neighbourhood function are also important considerations

for the application of fitness evolvability portraits. For continuous problems, Smith et al.

[161] suggest a uniform random neighbourhood function (of unspecified range) and either

uniform random sampling or algorithm trajectories to obtain a representative sample. Cu-

riously, the authors ignore their own advice and analyse highly simplistic 1-D continuous

problems by discretising the search space into a grid of equally spaced solutions, where di-

rectly adjacent grids are considered neighbours. Consequently, the efficacy of the fitness

evolvability portraits for analysing high dimensional optimization problems is unknown.

3.2.4 Correlation Based Features

Correlation-based statistics of random walks in S are also commonly used to quantify

ruggedness. The random walk correlation function, ρ(s), measures the linear correlation of

the objective function values of a sequence of solutions separated by a specified distance,
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s [199]. That is, given a sequence of solutions S ′ = {x1, . . . , xn}, their respective objective

function values, F = { f
(
x1) , . . . , f (xn)}:

ρ(s) =
1

(n− 1) σ2
F

n−1

∑
i=1

(
f
(

xi
)
− µF

) (
f
(

xi+1
)
− µF

)
(3.2.2)

where µF and σ2
F are the mean and variance of F and s = d

(
xi, xi−1) for i > 1.

The correlation length reflects the largest distance between two solutions such that their ob-

jective function values are statistically significant [199]. The most common definition of

correlation length is:

ξ =
−1

1− ρ(1)
(3.2.3)

The use of ρ(1) in Equation 3.2.3 originates from time series analysis, where observations are

sampled at precise intervals in time (i.e. observation xi is 1 time interval from xi+1 and 2 time

intervals from xi+2). A random walk with a fixed step size in continuous space will yield

solutions at a variety of distances (and hence intervals) apart, and so a more appropriate

definition of the correlation length is [170, 171]:

l =
∞

∑
s=0

r(s) (3.2.4)

Alternatively, Reeves and Rowe [138] define the correlation length as the largest s before

ρ(s) ≤ 0. There is no consensus in the literature as to which definition is preferable, and

so the variation in definitions hinders consistent and accurate comparisons of correlation

lengths. By definition, correlation length summarises the linear correlation between objec-

tive function values, and so landscapes containing non-linear structure are inadequately

characterised. Furthermore, potentially valuable information regarding the relationship be-

tween S and f is ignored by these features. Despite known issues, the autocorrelation and

correlation length continues to be widely used to characterise problems [74, 124].

Fitness Distance Correlation (FDC) is a popular landscape feature that measures the extent

of correlation between objective function values and their distance to a given reference solu-

tion (usually the global optimum) [82, 83]. Specifically, given a sample of solutions, S ′, their

respective objective function values, F , and a set of distances, D = {d1, d2, . . . , dn}, from

each solution in the sample to the reference solution, the FDC coefficient is defined as:

FDC =
CFD
σFσD

(3.2.5)
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where

CFD =
1
n

n

∑
i=1

(
f
(

xi
)
− µF

)
(di − µD) (3.2.6)

and the mean and standard deviation of D are denoted by µD and σD, while the mean and

standard deviation of F are denoted by µF and σF .

FDC was originally defined for the analysis of combinatorial problems and has been

applied to a wide variety of problems including Travelling Salesman Problems [46], Capac-

itated Vehicle Routing Problems [183] and exam time-tabling problems [124]. In the contin-

uous optimization context, Gallagher [54] calculated FDC for the error surface (i.e. problem

landscape) of the training problem for a multi-layer perceptron neural network [54, 55].

For the specific learning task considered (student-teacher model), the global optimum was

known, however this would not normally be the case for a neural network training prob-

lem. Solutions for the calculations were sampled from within a specified range around the

global optimum. Wang and Li calculate FDC in the context of evaluating a continuous NK-

landscape model and on some standard test problems [198]. The Congress on Evolutionary

Computation (CEC) 2005 benchmark test suite and BBOB problem sets have both been anal-

ysed using FDC [57, 122, 189]; the CEC 2005 and BBOB problems have positive FDC coef-

ficients, and Müller and Sbalzarini [122] conclude that FDC alone is not a sufficient feature

for characterising the CEC 2005 problems.

While FDC is arguably one of the most commonly used problem landscape features, it

has notable limitations (see Tomassini et al. [184, pp 217-219] for a review). For example,

certain problem properties, such as non-linear scaling of the objective function, are known

to affect FDC’s reliability [123]. In addition, the traditional use of FDC uses each solutions’

nearest global optimum as a reference point, and such knowledge is not typically known in

many practical or black-box situations. Instead, a single global optimum is typically approx-

imated using the sample’s best solution [57, 122, 124], however the effect of this substitution

on the adequacy of the resulting FDC estimate is not investigated or discussed in the litera-

ture (and hence Section 4.5 investigates this issue in further detail).

3.2.5 Information Based Features

Vassilev et al. [190] introduced three methods - information content, partial information con-

tent and information stability - for characterising combinatorial optimization problems via

the sequence of objective function values resulting from random walks. Information con-

tent aims to quantify the ruggedness of the landscape through an entropic measure of ob-
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jective function value fluctuations. Adjacent f values in the sequence are classified based

on whether their difference in f (within a level of precision, ε) is increasing, decreasing or

constant. Hence, information regarding the amount of change or the positioning of solu-

tions is ignored. Specifically, given a sample of candidate solutions, S ′ = {x1, . . . , xn}, let

S(ε) = (s1, . . . sn−1) denote the sequence of symbols si ∈ {−1, 0, 1}where, for a given ε ≥ 0:

si(ε) =



−1,
(

f (xi)− f (xi+1)
)
< −ε

1,
(

f (xi)− f (xi+1)
)
> ε

0 otherwise

The information content is then:

IC(ε) = − ∑
p 6=q

P[pq] log6 P[pq] (3.2.7)

where p, q ∈ {−1, 0, 1} and P[pq] is the probability of the substring pq in S1. Resulting in-

formation content values are in [0, 1], and highly rugged landscapes (where pq = (−1, 1) or

pq = (1,−1)) yield values close to log62 ≈ 0.3869.

Partial information content attempts to characterise the degree of modality in the land-

scape. The fluctuations in f values of neighbouring solutions in the sequence are counted

and normalised by the length of the sequence. Formally, let S′ = (s1, . . . sm) denote the sub-

string of S such that sj 6= 0 and sj 6= sj−1 ∀ j > 1. The partial information content is defined

as

PIC(ε) =
|S|
|S′| (3.2.8)

=
n
m

The substring S′ essentially consists of an alternating series of −1’s and 1’s, representing

fluctuations between decreasing f and increasing f . The authors suggest that because S′

records the number of fluctuations in the sequence of f -values, the number of local optima

in the landscape can be estimated from the partial information content. This is however

1The logarithm is base 6 because there are (3
2) = 6 combinations of pq (p 6= q) using the alphabet {−1, 0, 1}.
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erroneous; objective function fluctuations can occur for saddle points (which are not local

optima), while multiple basin crossings may count the same optima multiple times, thus

inflating the estimate. Thus, partial information is a poor indicator for the number of local

optima.

The last of the methods proposed by Vassilev et al. [190] is information stability, described

as the largest difference in f between neighbouring solutions in the walk:

IS(ε) = max
∣∣∣ f (xi)− f (xi−1)

∣∣∣ ∀ i > 1 (3.2.9)

The entropic measures of objective function values proposed by Vassilev et al. [190] analyse

and operate solely on a simplistic representation of the objective function values of candi-

date solutions, sampled during a random walk. Notably, the measures do not utilise the

information afforded by the candidate solutions, such as their relationship with f , or to each

other.

Malan and Engelbrecht [109] estimate information content on seven continuous bench-

mark problems in 1 and 30 dimensions. Instead of using a neighbourhood function to gen-

erate solutions along the random walk, random walks with an increasing random step size

are used to generate samples. Thus, the initial samples capture structure at small scales,

while the samples at the end of the walk capture structure between large steps. This type

of walk is particularly biased; the initial area is examined quite thoroughly, while the re-

maining areas of the landscape are neglected. The authors state that the choice in walk is an

attempt to resemble the search path resulting from an individual in a population based algo-

rithm. However, as discussed by Smith et al. [161], algorithm trajectories can easily be used

instead of random walks. Indeed, Muñoz et al. [120] used samples generated by instances

of a (1+1) Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Particle Swarm Op-

timization (PSO) and random search to estimate variants of information content and partial

information on 2-D continuous problems from the BBOB problem set. By using a technique

to reduce bias in the samples, the CMA-ES and PSO samples yielded information content

measures within 5% relative error of the measures derived from random sampling.

The information measures proposed by Vassilev et al. [190] have inspired additional,

complementary features. Borenstein and Poli [21] adopt an approach similar to information

content in order to characterise a variety of combinatorial problems and predict the perfor-

mance of a Genetic Algorithm. Steer et al. [175] proposed four “secondary” features based

on the information content and partial information content. The secondary features have
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been estimated on three 10-D combinatorial benchmark functions [175] as well 2-D continu-

ous problems from the BBOB problem set [120]. The “secondary” features have been applied

to only a small set of problems, and so their ability to characterise optimization problems

remains largely unknown.

A very different approach to capturing the information in a landscape is taken by Boren-

stein and Poli [19], who argue that to adequately characterise landscapes, both the quality

and quantity of information available must be considered. The authors propose the infor-

mation landscape, which is a matrix, M, used to compare solutions sampled from S . Entries

mi,j are assigned probability values indicating the likelihood that f (xi) > f (xj). If two in-

formation landscapes are constructed using the same sample of solutions, then the average

difference between entries can be used as a comparative measure between problems. From

this, one can compute the average difference between any given landscape to a random

landscape (where all entries in M are 0.5). This value is normalised and indicates the de-

gree of information (independent of the sample used), and so it can be used to characterise

problems. However, as the authors remark, some potentially useful information, such as

the actual objective function values, is not captured by information landscapes.

3.2.6 Other Features

Dispersion

Originally proposed as a continuous problem metric, dispersion [103] measures the average

distance between pairs of high quality solutions, therefore indicating the degree to which

high quality solutions are concentrated/clustered. Quality is determined by sampling n

solutions and using truncation selection to retain the fittest tn solutions, where t ∈ (0, 1].

Let S ′ = (x1, . . . , xm) denote a sample of m = btnc candidate solutions ordered by their

objective function values, i.e. f (xi) ≤ f (xj) where 1 ≤ i ≤ j ≤ m. The dispersion of S ′ is:

dispersion(S ′) = 1
m− 1

m−1

∑
i=1

(
1

m− i

m

∑
j=i+1

d(xi, xj)

)
(3.2.10)

where d is an appropriate distance function.

As dispersion is purely based on the notion of distance between points, it is applicable to

both combinatorial and continuous problems. Dispersion has been used to study the perfor-

mance of algorithms relative to particular problems (and their structure); CMA-ES, hybrid

PSO/CMA-ES algorithms, Pattern Search methods and Local Search have been analysed on
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a number of benchmark functions [103, 121, 202]. The dispersion values of 2, 5, 10 and 20

dimensional problems from the BBOB problem set have also been used in the feature-set

of an algorithm prediction model [118, 119]. Garden and Engelbrecht [57] also calculated

dispersion values for artificial and benchmark problems (including the CEC 2005 and BBOB

problem sets), however their experiments resulted in negative dispersion values. Dispersion

is by definition strictly positive (since it is the expectation of distance values), and so the

results in [57] are questionable.

Dispersion makes only limited use of the objective function values of solutions via the

value of t used to truncate the sample. Furthermore, the existing methodology currently

used to estimate dispersion, namely the use of Euclidean distance in conjunction with a

uniform random sample, can lead to convergent dispersion values (Section 4.4 investigates

this issue in further detail and proposes a number of improvements to the methodology).

Anisotropy

A landscape is isotropic if sub-regions of the landscape are statistically indistinguish-

able from the entire landscape [172]. The coefficient of anisotropy measures the amount of

anisotropy by comparing a summary statistic of the landscape to a sub-region of interest

[172]. Landscapes may be isotropic in regard to one sub-region, while anisotropic in another,

and so repeated estimates of anisotropy on different sub-regions are analysed to obtain an

overall estimate of landscape anisotropy.

Pitzer and Affenzeller [131] suggest quantifying anisotropy through estimating land-

scape features, such as autocorrelation or information content, on sub-regions and com-

paring the variation in the resulting features. Assuming the chosen landscape features are

adequate characteristics of landscape structure, the features will yield consistent values for

isotropic landscapes, whereas anisotropic landscapes may yield varying values. The degree

of anisotropy is heavily dependent on the summary statistics utilised, and Pitzer and Af-

fenzeller [131] caution that anisotropic landscapes can be falsely deemed as isotropic if the

features are inadequate.

Epistasis

The degree of epistasis in a problem indicates the amount of non-linearity and interdepen-

dency between the variables [138]. The complex interactions between variables in highly

epistatic problems result in rugged, heterogeneous landscapes. Davidor [43] proposed epis-
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tasis variance as a measure of epistasis based on statistical measures of discrepancy between

the objective function and a linear model. It has been shown that while epistasis variance

is aimed at measuring epistasis, it actually measures the absence of epistasis [123]. Epistasis

variance has numerous well documented flaws and limitations [130]. One such flaw is that

the epistasis variance for constant functions and first-order functions is 0, despite the struc-

tural difference between constant and first-order functions. Another important limitation

is that epistasis variance cannot differentiate between different orders of non-linearity be-

tween variables. To overcome this, Rochet [144] proposed graded epistasis and graded epistasis

correlation, however these too suffer from many of the issues attributed to epistasis variance.

[151] proposed four measures of epistasis (significance, entropic epistasis, mean significance

and mean entropic epistasis) using an information-theoretic approach. The four measures

have seen little use in the problem analysis literature; a small set of combinatorial problems

were originally analysed and recently the measures have been used in the feature-set for an

automated algorithm prediction technique [119].

Fitness Clouds

A fitness cloud is a two dimensional visualisation of the fitness of a sample of solutions ver-

sus the fitness of their neighbours [38]. The resulting visualisation indicates the potential

for increases in objective function values of neighbouring solutions in the landscape. The

minimum, maximum, mean and standard deviation of the f values of the neighbouring

solutions summarise the fitness cloud information. Similarly, Vanneschi et al. [188] pro-

pose the negative slope coefficient, a metric based on the fitness cloud data that can be used

to quantify the evolvability of the problem. For convenience, Collard et al. [38] analyse a

single neighbour for each solution. As previously discussed, choice of the neighbourhood

function, number of neighbours to generate and which neighbour to select are important,

non-trivial considerations for the application of fitness clouds and negative slope coefficient

analysis on continuous problems.

3.3 Combinatorial vs Continuous Feature Development

In a continuous search space, topological landscape features conceptually similar to the com-

binatorial case can be defined mathematically (as suggested in Pitzer and Affenzeller [130]),

but evaluating these features on a real problem instance is problematic. Contrary to combi-

32



CHAPTER 3: LANDSCAPE ANALYSIS

natorial problems, each solution in continuous space has an infinite number of neighbours

in theory, and a finite but extremely large number in practice due to finite-precision repre-

sentation of floating-point numbers. Hence, combinatorial problem features that are reliant

on neighbourhood information - namely autocorrelation [199], correlation length [170], fitness

evolvability portraits [161], fitness clouds [38] and variants of information content [175, 190] -

must introduce additional assumptions and parameters to be used in a continuous space,

such as the size and distribution of the neighbourhood, as well as methods for adequately

sampling the neighbourhood. Common recommendations and approaches include sam-

pling from a (bounded) uniform neighbourhood distribution, discretising the space [161],

varying the neighbourhood size [109] and utilising algorithm trajectories [120]. However,

the validity of these assumptions and their effects on empirical results are not well under-

stood.

Another significant difference between combinatorial and continuous landscapes is tied

to the distance between points in the solution space (using some appropriate metric). For

a combinatorial landscape, the minimum possible pairwise distance will occur between a

point and one of its neighbours. There will also be a finite set of possible distance values

between all pairs of candidate solutions. For a continuous landscape, the minimum dis-

tance between points can be made arbitrarily small (in practice until the limit of precision

is reached) and the number of possible distance values is infinite. Consider a combinato-

rial problem with binary representation, S = [0, 1]D. To solve the problem is to determine

whether each variable xi ∈ x should take the value 0 or 1. A distance metric can be defined

between points in the solution space (e.g Hamming distance), however there is no notion

of the scale of xi. For a continuous problem however, finding an appropriate scale for each

xi is critical (e.g. does the objective function vary in a significant way with changes in xi of

order 103? 10−3? 10−30?). Problem landscape techniques that originate from the assumption

of discrete S , such as autocorrelation, correlation length and information content, do not

capture such information because it is not relevant for the combinatorial case.

3.4 Measuring Problem Similarity

There are many applications, including the development of algorithm portfolios [95] and

automated algorithm predictors/selectors [15, 77, 119], that inherently rely on notions of

problem similarity. For example, when faced with a new problem to solve, a logical first step

in solving the problem is to determine whether a similar problem has been solved before.
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The comparison between problems can be difficult due to the complexity of problem

definitions, difference in notion, and the use of domain-specific terminology. Fortunately,

the notion of the problem landscape provides a common framework for specifying and

analysing problems. It follows that landscape features are often used by proxy to quantify

problem similarity [162, 164]. Because individual features are generally developed to cap-

ture specific problem structures of interest, the structures that are essential in differentiating

problems can be missed. Consequently, numerous examples exist where two structurally

different problems yield the same features [5, 122, 123].

Given the limitations of individual landscape features, features have been combined

into feature sets or ensembles in an attempt to gain greater discrimination between prob-

lems [77, 95, 162]. The underlying premise is that an ensemble of features captures more of

the information in the problem than a single feature alone, and hence ensembles are more

powerful discriminators. Quantifying problem similarity via feature ensembles requires a

broad range of features, essentially capturing all information in the problem. Explicit quan-

tification of the ability of feature ensembles to adequately differentiate problems remains a

largely unexplored research area and is analogous to feature selection in machine learning

[69].

Empirically, large feature-ensembles (e.g. ensembles with over 40 features) have been

used to differentiate problems with moderate success. For example, Hutter et al. [77] used

43 features (based on basic statistics, local optima measures and graph-based metrics) to

predict the running time of two algorithms on unseen problem instances. Smith-Miles and

Tan [164] combined over 40 scalar features of Travelling Salesman Problems (TSP) into a

feature vector, and the similarity between two TSPs was defined via a distance function be-

tween feature vectors. In the continuous setting, Mersmann et al. [113] used an ensemble of

over 50 continuous features to predict the classes of problems in the BBOB problem set. In

related work, Bischl et al. [15] used the same feature ensemble calculated on the BBOB prob-

lem instances to select well-performing algorithms from a portfolio. The existing work has

shown encouraging results for small sets of problems, however the methodologies all rely

on a large number of features, which can be computationally expensive to obtain for large

sets of problems. Hence, the practical feasibility of applying feature-ensembles, as well as

their resulting ability to characterise problems, remains relatively unknown for larger, more

diverse problem sets.

Algorithm performance has also been used to quantify and compare problem similar-

ity [117]. In this approach, an algorithm (or suite of algorithms) is applied to each problem,
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and the similarity between problems is derived via the similarity in algorithm performance.

This approach relies heavily on the choice of algorithms, algorithm parameters and perfor-

mance measures, and selecting these a priori is difficult in practice.

3.5 Landscape Analysis in Other Scientific Disciplines

The landscape metaphor and related concepts originate from the physical landscape en-

countered in everyday life, formed by the complex interactions between physical structures

such as mountains, plateaus, valleys, ridges and cliffs. Landscapes are studied in many ar-

eas of science including geology, ecology, biology, chemistry and physics, and yet much of

this literature remains unexplored in evolutionary computation (and more generally, opti-

mization).

A plethora of landscape features and properties have been developed in the landscape

ecology literature. Such landscape features are studied for their effect on ecological pro-

cesses, including species’ hunting/foraging patterns [147], breeding patterns [165] and mi-

gration patterns [39]. Landscape features are typically calculated from a spatial model (e.g.

linear regression) of a survey/sample of “patches” (i.e. points) on a physical landscape of in-

terest. Landscape features generally fall under two broad categories; geographical features

(e.g. tortuosity, elevation and fractal dimension) [142] and ecologically-specific features (e.g.

relative richness, dominance and connectivity) [185]. Geographical and ecological land-

scape features are highly specialised towards the analysis of 2-D and 3-D landscapes, and

consequently, are generally not applicable to the analysis of high dimensional landscapes.

While some formulations may be amenable to generalisation to higher dimensions (e.g. el-

evation), it is unlikely that they are able to characterise the structural complexities of high

dimensional problem landscapes.

The notion of a landscape is frequently used in biology, chemistry and physics to model

and analyse the relationship between atomic or molecular positions/configurations and

their corresponding potential energy [197]. The potential energy effectively forms a sur-

face over the space of feasible configurations, and hence is referred to as potential energy

surface or energy landscape. Potential energy surfaces of practical interest are often high di-

mensional and contain many local optima [197]. Local minima on the surface correspond

to states/configurations of low energy, which are of great importance in many applications

including catalyst design and spin glass models. Indeed, Wales [197] state that the main fo-

cus of potential energy surface analysis is to determine “the influence and accessibility of a
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number of local optima”. The focus of such landscape features is solely on local optima and

basins of attraction, and are thus of limited use in their ability to adequately describe, char-

acterise and discriminate optimization problem landscapes. Nevertheless, many landscape

features used widely in optimization - such as barriers [9], autocorrelation and correlation

length [199] - originate from the analysis of potential energy surfaces. A comprehensive re-

view of potential energy surface features suitable in the optimization context can be found

in [171].

3.6 Summary

Regardless of whether problem features originate in the combinatorial or continuous do-

main, there are some important issues that limit the ability of the features to characterise

and differentiate black-box optimization problems. Namely;

• The reliance on problem-specific information that is not available for black-box prob-

lems.

• The inability of features to utilise all information available in the black-box setting.

• The filtering/compression of landscape information into a single scalar value.

• The adaptation of combinatorial features to continuous problems (and vice versa).

Arguably the most pertinent issue is the failure of existing techniques to utilise all informa-

tion available in the black-box scenario. This stems from the design paradigm traditionally

used in the development of new landscape analysis techniques. Designers typically aim

to capture a particular problem structure of interest. For example, the fitness distribution

describes the probability of particular objective function values, and no other structures or

topological features within the landscape are intended to be captured. With a given struc-

ture/topological property of interest, designers then decide how best to capture the struc-

ture (e.g. what type of sample should be used as well as how the sample should be filtered

and analysed). Herein lies a major issue; by only considering a certain aspect of landscape

structure and by filtering the information available, information that describes (and poten-

tially differentiates) a landscape may be lost. Furthermore, many techniques compress the

information gleaned into a single scalar value (e.g. correlation length) representing the struc-

tural feature of interest (e.g. ruggedness). Such compression leads to even more information

loss.
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In summary, there is significant need for developing more powerful analysis techniques

for black-box optimization problems. In Chapter 5, a new approach is proposed to study

the characteristics of a landscape independent of any particular algorithm. Importantly, the

approach utilises all black-box information available, makes no assumptions regarding the

structure within landscapes, and does not target specific predefined landscape properties.
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Sampling in Continuous Spaces

It is a capital mistake to theorize before one

has data.
Arthur Conan Doyle

The enumeration of an optimization problem’s search space is often infeasible for a number

of reasons. In the continuous context, the search space can never be enumerated as there are

an infinite number of solutions. Assuming a certain level of precision, the search space is

finite but may still be too large to enumerate (and this is also the case for many combinatorial

problems). Consequently, the application of many landscape analysis techniques in practice

is reliant on finite samples of solutions and/or their respective f -values.

This chapter reviews existing literature for sampling continuous problems for the pur-

pose of landscape analysis. The sampling literature is vast, and so the review mainly focuses

on techniques appropriate for continuous landscape analysis. Important limitations and

considerations are discussed, and a sampling methodology particularly suitable for the anal-

ysis of high dimensional continuous problems is proposed. Case studies are also presented

to illustrate the effects of different sampling methodologies (and their respective settings) on

the theoretical and empirical behaviour of two widely used landscape analysis techniques;

dispersion and fitness distance correlation. The chapter concludes with a summary of the

contributions.

4.1 Methods and Techniques

Many landscape analysis techniques derive features/properties from finite samples of so-

lutions and/or objective function values. The ability of these techniques to capture and

describe important landscape properties is therefore heavily dependent on the sample. If
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crucial landscape structures are missing from the sample, the resulting features will inad-

equately characterise the problem. Therefore the choice in sampling methodology is ex-

tremely important, and may affect the accuracy of the landscape analysis.

Sampling and experimental design is a major component in applications from a variety

of fields, including statistics [91], engineering [158] and economics [101], and as a conse-

quence, the sampling literature is vast and highly application-driven. The measurement of

interest typically influences the type of sample required, and the sample is then generated

using a relevant technique. For example, sampling strategies satisfying certain uniformity

properties can be employed to produce a sample with even coverage [101, 158].

In the context of continuous optimization problem analysis, the choice in sampling strat-

egy is often motivated by the objectives and/or requirements of the problem analysis tech-

nique, simplicity of the strategy, as well as the bounds and constraints of the problems. Con-

straints are typically handled by generating solutions until a feasible solution is found [108].

When no information regarding the problem is known a priori, it is natural to sample the

search space, S , uniformly and (preferably) without prejudice. Thus in the following, a

focus is given to sampling without prejudice from unknown spaces/distributions, which is

particularly relevant in black-box optimization where landscape knowledge is limited. Tech-

niques specifically aimed at sampling from a target/known distribution, including Markov

Chain Monte Carlo sampling [91], are not explored in this thesis.

Arguably one of the simplest uniform sampling methods is systematic sampling (also

known as grid search) [166], where solution variables are sampled systematically at a given

distance apart. The resulting sample resembles a D-dimensional grid in S . For unbounded

problems, suitable bounds must be introduced. A variant of systematic sampling has been

recently used to sample and analyse the 2-D BBOB problem set; search spaces are discretised

into 10× 10 “cells”, with 1000 solutions randomly distributed over the cells [87]. While sys-

tematic sampling is useful in low dimensions, the sample size required increases exponen-

tially with D. Furthermore, because solutions are sampled at precise increments, important

structures within highly regular problems may be concealed between sample points. For ex-

ample, a systematic sample of a periodic function will fail to capture interesting structures

between sample points.

An approach similar to systematic sampling is to sample solutions uniform randomly from

S . Once again, bounds must be introduced for unbounded S . Uniform random sampling

is less restrictive than systematic sampling; solutions are randomly located and hence struc-

ture is sampled sporadically. Uniform random sampling is fast and simple to implement,
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and as a result it has been used widely in the landscape analysis literature [103, 122, 160, 161]

and also more generally in numerical analysis and simulation [63, 91].

While both systematic and uniform random sampling produce uniform samples of S , a

large number of samples are required to achieve good coverage of S , including sampling the

dependence and independence between variables (dimensions). Low discrepancy sampling

(also known as quasi-random sampling) are a class of sampling techniques that produce

samples with similar properties to uniform random samples, but contain a minimal number

of points [91]. This is achieved by targeting specific areas of S , while obtaining (measurable)

uniformity.

One widely used low discrepancy sampling technique is Latin Hypercube (LH) sampling.

LH sampling generates n solutions by first dividing S into nD equally sized hypercubes,

and then placing each of the n solutions into a hypercube such that all other hypercubes in

axis-alignment are empty [110]. Orthogonal sampling is an extension of LH sampling with a

constraint that the solutions are distributed evenly throughout S , meaning all sub-regions

of S must have an equal density of solutions. Numerous other methods to produce low

discrepancy samples exist, including Sobol, Halton and Fuare sampling (see [91] for further

details). LH sampling has been widely used in experimental design, machine learning and

optimization to determine parameter (and hyper-parameter) settings [12]. It is particularly

useful in applications where the cost of evaluating f is high, as it ensures a wide variety

of parameter value combinations, at a reasonable computation cost. In the context of land-

scape analysis, both Mersmann et al. [113] and Muñoz et al. [118] have recently utilised LH

sampling to calculate various landscape features of BBOB problems spanning between 2 to

20 dimensions.

To illustrate the coverage of the aforementioned sampling techniques, Figure 4.1 displays

4 solutions sampled from S = [0, 1]2 using systematic, uniform random, LH and orthogonal

sampling. In this example, uniform random and systematic sampling neglect particular

sub-regions of S , while LH and orthogonal sampling provide good coverage of S , using the

same number of solutions.

The above sampling methodologies provide an unbiased sample, but require rectangular

bounds on S . In contrast, random walks are a class of sampling techniques that can be used

to sample both bounded and unbounded problems. They explore a space by generating an

initial solution, x0 ∈ S , and calculate subsequent solutions based on a step from the current

solution. Random walks generally differ by the direction and size of the steps between so-

lutions. Combinatorial problems can be sampled via random walks by selecting solutions
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Figure 4.1: Four solutions sampled from S = [0, 1]2 using uniform random, systematic, Latin
hypercube and orthogonal sampling.

from the current solution’s neighbourhood [74, 190]. The notion of a neighbourhood can

vary between combinatorial problems, however neighbourhoods are always finite. In con-

trast, neighbourhood relations in continuous problems are generally based on continuous

intervals. Consequently, random walk steps are often taken in uniformly random direc-

tions, with the step size randomly sampled from a specified distribution (such as uniform

or Gaussian [108]). Numerous variations of continuous random walks have been proposed

and used in the context of continuous landscape analysis. In [109], a random walk with

randomly sized, yet increasing, steps is utilised to estimate information content. Similarly,

[107] use random walks with axis-aligned, fixed-size steps to calculate a variety of features

including gradient estimates and dispersion. As previously mentioned, sampling at a pre-

determined interval can also miss important structures (occurring between steps), and so

the fixed-step walks are limited. In an attempt to address this limitation, [108] proposed the

use of multiple smaller random walks (anisotropic, uniform random sized steps), initialised

at specific regions of S as the basis for landscape analysis techniques focused on ruggedness,

smoothness and neutrality. Their proposed walk is biased and takes steps specifically away

from the initialisation solution, as well as away from the search space boundary once it is

reached. Such guidance in direction produces a highly biased and computationally expen-

sive walk that may miss important structures near the initialisation and boundary areas.

Random walks can also be biased to selectively explore regions of interest. For exam-

ple, an adaptive random walk samples solutions of increasing fitness (i.e. steps are only

taken when they lead to a better solution) [85], while neutral random walks sample paths of
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consisting of neutral neighbouring solutions (i.e. steps between a solution and its furthest

neutral neighbour are taken) [140]. Random walks initialised at local optima and simulat-

ing recombination and mutation have also been used to calculate FDC on NK landscapes

in order to gain insight into the behaviour of a memetic algorithm [114]. The diversity of

walks used in the problem analysis literature exemplifies the fact that there is no single pre-

ferred walk, and that choice in walk is largely guided by the underlying feature/measure of

interest.

The solutions visited by algorithms throughout search have also been widely used to

analyse the structural features of optimization problems [121, 161]. There are many ad-

vantages to this type of approach: algorithm data is available for many problems, and the

problem can be both solved and analysed at once. In addition, the behaviour and perfor-

mance of algorithms can be analysed in conjunction with the problem structures, potentially

leading to novel insights [103]. However, algorithm trajectories are highly biased; structures

unexplored by one algorithm (and hence largely absent in the resulting sample) may be im-

perative to the performance of another. In light of these issues, Muñoz et al. [120] developed

methods to reduce the bias in estimates of information content and basin of attraction mea-

sures based on algorithm data. These methods were shown to be comparable with the same

features calculated using an unbiased, uniform random sample for two dimensional prob-

lems. The computational effort involved to remove bias restricts the techniques to low di-

mensional (e.g. D = 2) problems, and so the bias-reduction technique developed by Muñoz

et al. [120] is limited in practice.

Analysis into the effect of the sampling technique on the reliability of landscape features

is rarely performed, and a recent investigation by [119] suggests that properties can be signif-

icantly affected by the sampling technique. In addition, despite the importance of sampling,

there are few explicit guidelines to follow and so critical choices, such as the sample size,

are left to the discretion of practitioners [84]. The next section discusses and investigates

the effects of two sampling considerations that can drastically alter sampling adequacy: the

sample size and the distance metric.

4.2 Important Considerations

As previously mentioned, there are an infinite number of solutions in a continuous optimiza-

tion problem, and a finite, but potentially enormous, number of solutions when a specified

level of precision is assumed. Therefore, complete enumeration of S is largely impossi-
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ble, and so a representative sample must contain enough solutions to adequately reflect the

general structural features and trends in the problem. However, herein lies an extremely

important consideration; how many solutions constitutes enough?

Assuming an unconstrained, unbounded continuous problem, S = IRD, and so the vol-

ume of the search space, and hence number of solutions at a specified precision, increases

exponentially with dimensionality. Likewise, the number of solutions increases exponen-

tially with D for rectangular bounds. The exponential growth rate is extremely problematic

in practice because the number of solutions must increase exponentially with D in order to

conserve the desired sampling density. For example, consider sampling S = [−1, 1]D sys-

tematically with solutions distanced at increments of 0.1. For D = 1, merely 21 samples are

required, however 21100 ≈ 1.6670× 10132 solutions are required for D = 100. To put this

into a practical computing perspective, the sampling density in 100 dimensions requires at

least 430 bits to map each solution to a unique identifier, and hence 21100 × 430 ≈ 10134 bits

are required to store all of the solutions. In comparison, Lloyd [99] derived that an “ulti-

mate laptop” operating at the physical limits of both speed and memory has a total storage

capacity of approximately 1031 bits.

In the context of landscape analysis, sampling is used to obtain a characteristic set of

solutions from which to derive and analyse landscape features. The general consensus

in the landscape analysis literature is that an adequate sample should yield robust (i.e.

non-varying) features. Scaling sample sizes exponentially with D is obviously infeasible

for large D, and so in practice sample sizes are generally made as large as practically

possible, and the variability of the features is analysed to ensure the sample size is ade-

quate [108, 118, 161]. Sizes of 103, 104 and 105 have been widely used for problems where

D ≤ 100 [74, 109, 118, 190]. Sample size has also been scaled linearly with D; [119] use 103D

samples to derive an ensemble of features, while [108] use 104D samples. However, due to

the exponential increase in volume, it is highly unlikely that a sample of 105 or 104D solu-

tions can adequately sample a 10-D, let alone 100-D, problem. After all, assuming merely

5 points are required to sample [bl, bu], then 5100 points are required to maintain the same

sampling density for [bl, bu]100.

There is no definitive answer or recommendation as to how large the sample size should

be, and the reasoning or motivation behind the sample choice is rarely discussed in the

literature. Indeed, the work of Malan and Engelbrecht [108] and Müller and Sbalzarini [122]

are exceptions; both state that their use of 104D samples is motivated by the number of

function evaluations used in a continuous optimization competition, where a maximum of
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104D evaluations are used for D = 10, 30 and 50 [179]. They justify this by arguing that the

main objective of optimization is to solve problems, and so computational effort devoted to

problem analysis should not surpass the effort required to solve problems. This is a highly

simplistic and narrow viewpoint; the knowledge gained from a greater understanding of

problem structures (and how they relate to algorithm behaviour) does not just give insight,

and hence solve, the problem at hand, but it can also be used to develop better algorithms

for other problems. Hence, in this thesis, sample sizes are chosen to cover as much of the

landscape as is practically feasible.

Another highly important sampling consideration is the choice of distance metric. While

there are numerous distance metrics to choose from, many practitioners rely on canonical

metrics, such as the well-known Hamming distance. Instead, [181] recommends that the

distance associated with a landscape should be coherent, meaning that that it is related to the

neighbourhood used by an algorithm of interest. Of course, this assumes that an algorithm

is of interest, which is not the case if landscape analysis is used as a pre-processing step

to aid practitioners in determining a suitable algorithm. In addition, assuming a particular

algorithm is of interest, certain neighbourhoods may not have an immediately obvious or

even practically feasible distance that is coherent (e.g. 2-opt for TSPs [181]). Hence, many

practitioners simply rely on previously used canonical distances, and in doing so, further

proliferate the acceptance for potentially undeserved distances.

The selection of an appropriate distance function can also be problematic when applying

analysis techniques originating from one domain to another. For instance, many problem

landscape analysis techniques originating from combinatorial optimization utilise distance

functions that are inappropriate in continuous spaces, and so practitioners often substitute

a metric that is (or at least seems) more appropriate. For example, Fitness Distance Correla-

tion (FDC) was originally proposed using Hamming distance, however it is generally used

with Euclidean distance in the continuous setting [54, 120, 122]. Problem analysis techniques

originating in the continuous domain also utilise Euclidean distance [103]. The motivation

behind the use of Euclidean distance is rarely discussed, and given that there are other met-

rics available, [3] speculate that its popularity (in the context of high dimensional database

and indexing) stems from its traditional use in two and three dimensional spatial applica-

tions. However, as outlined by Theorem 4.1 below, the distance metric can impose impor-

tant limitations on the resulting sample, and hence limitations on features derived from the

sample.
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Theorem 4.1 (Beyer et al. [13] and Aggarwal et al. [3]). Given a sample of points

X = {x1, . . . , xn} ⊂ IRD, a query point, xq ∈ IRD and the Lp norm (denoted ‖.‖p):

If limD→∞ var
(
‖X ‖p

E[‖Xp‖]

)
= 0, then

max(‖xq, xi‖p)

min(‖xq, xi‖p)
→ 1 (4.2.1)

As a consequence of Theorem 4.1, the notion of proximity becomes ill-defined as dimen-

sionality increases for certain combinations of sampling distributions and distance metrics.

Hence, for applications where a notion of proximity is fundamental, including landscape

analysis techniques like dispersion and FDC, it is important to ensure that the combina-

tion of sample distribution and distance metric does not yield the convergent behaviour in

Theorem 4.1.

There are a broad range of sampling distributions and distance metrics for which the

theorem holds [13]. Specifically, it holds for the Lp norm when a sample of points is

drawn independently and identically distributed (i.i.d.) (across dimensions) from a dis-

tribution with finite variance [3, 13]. Hence, a uniform random sample in conjunction with

Euclidean distance (the L2 norm) will result in the convergent behaviour of (4.2.1) as di-

mensionality increases. To illustrate how quickly the distance ratio in (4.2.1) converges,
max(‖xi−xj‖)
min(‖xi−xj‖) (where xi 6= xj) was calculated for solutions sampled randomly from U [0, 1]D,

where D = 1, 2, . . . , 30, 40, 50. Four different sample sizes - specifically, 100D, 1000D, 10000D

and 1000D2 - are investigated, and for each sample size at each value of D, 30 different sam-

ples are generated in order to obtain 30 estimates of the distance ratio. Figure 4.2 shows the

mean and standard deviation (as error bars) of the 30 distance ratios for each sample size

as dimensionality increases. Since max(‖xi−xj‖)
min(‖xi−xj‖) is non-negative, error bars yielding negative

values are omitted from the figure.

The results in Figure 4.2 show that for all four sample sizes, the distance ratio is con-

verging towards 1 as D increases, and that the rates of convergence are comparable. The

rates of convergence are initially quite fast; at D = 1, the maximum distance (for each sam-

ple size) is over four orders of magnitude larger than the minimum distance, however after

only 20 dimensions, the maximum distance (for each sample size) is less than a single order

of magnitude larger than the smallest distance. In addition, as D increases, the variance of

the distance ratios between the sample sizes also becomes less significant. For example, the

distance ratios for the sample sizes range between approximately 5.1× 104 and 1.9× 108 at
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Figure 4.2: Behaviour of max(‖xi−xj‖)
min(‖xi−xj‖) for 100D, 1000D, 10000D and 1000D2 points randomly

sampled from U [0, 1]D, where D = 1, 2, . . . , 30, 40, 50.

D = 1, and only 2.6 and 3.7 at D = 50. The rates of convergence in Figure 4.2 also appear

to slow as D increases, with the rate of convergence of the 1000D2 sample’s distance ratio

slowing more (and earlier) than the linear variants’. Figure 4.2 also shows that the stan-

dard deviation of the distance ratio generally decreases as dimensionality increases. This is

rather intuitive; (4.2.1) indicates that as dimensionality approaches infinity, all points in the

sample approach the same distance apart. Hence, as dimensionality increases, one expects

decreasing variance in the distance values obtained (and hence the distance ratio).

To summarise, the sample size affects the distance ratio for small D (in our experiments,

D ≤ 10), however, as D increases, the distance ratio quickly converges to small values that

tend towards 1, regardless of sample size. While the use of a sample size scaled quadrati-

cally with dimensionality appears to slow the convergence (compared to the linearly-scaled

sample sizes), the reduction in convergence rate is slight and does not prevent the initial,

fast decline of the distance ratio. The experiments conducted above are certainly not ex-

haustive, and samples of larger (yet sub-exponentially scaled) sizes will likely yield slower

convergence rates, with perhaps less dramatic initial declines in the distance ratio. How-

ever, any sample size that doesn’t match the exponential growth of the volume of [0, 1]D as

D increases will ultimately suffer from the convergence behaviour in (4.2.1).

Since many continuous problem properties utilise Euclidean distance and are based on

samples (of sizes that are scaled sub-exponentially with D) of uniformly distributed points,

an obvious research question is whether these properties are affected by the behaviour

in (4.2.1), and if so, how?
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Figure 4.3: Example Lévy distributions.

4.3 Lévy Random Walks

A Lévy random walk (also known as a Lévy flight) is a random walk where steps are taken

in a random, isotropic direction and step sizes are sampled from a Lévy distribution [156].

Lévy walks have been observed in the hunting/foraging patterns of numerous animals, and

is also an optimal strategy for sampling randomly distributed, sparse target sites [193]. This

section outlines and proposes Lévy random walks for sampling continuous optimization

problems. The application of Lévy random walks for sampling continuous optimization

problems is novel, and the walks are subsequently used in the remainder of this thesis.

The Lévy distribution (also known as an Inverse Gaussian or Pearson V) is a continuous

probability distribution for non-negative random variables. It is a member of the alpha-

beta-stable distributions, where α = 0.5 and β = 1 [91]. Lévy distributions are long-tailed,

and are parameterised by two terms; scale (γ) and location (δ). Figure 4.3 shows three Lévy

distributions and the effect of γ and δ.

By sampling step sizes from a Lévy distribution, the Lévy random walk has frequent

small steps (dictated by γ and δ), and infrequent large steps, resulting in a sample with

wide coverage of S and a variety of distances between solutions. δ essentially controls the

minimum possible value, and in order to achieve steps of all sizes, it is set to 0 in all Lévy

walks used throughout this thesis. The scale parameter is varied based on the size of the

search space; spaces with a large area will need to have large γ to obtain steps that span the

area. Figure 4.4 displays two example Lévy random walks of 1000 steps in [0, 1]2 with δ =

0.001 and δ = 0.01. Experimental exploration of suitable γ values was conducted for all Lévy
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Figure 4.4: Examples of Lévy random walks in [0, 1]2.

walks conducted in this thesis, and as a general rule, Lévy walks with γ = 0.0005× range(S)
provided adequate samples of high dimensional problems.

Assume a function exists to output D random variables from a Gaussian distribution

with specified mean (µ) and standard deviation (σ): RandomGaussian(µ, σ, D). Similarly,

assume a function exists to produce D random variables from a Lévy distribution with spec-

ified scale (γ) and location (δ): RandomLevy(γ, δ, D). The procedure used to conduct a Lévy

random walk is outlined in Algorithm 4.1.

Like the aforementioned random walks, Lévy random walks are applicable to unbounded

continuous optimization problems (the walk must simply be initialised at a feasible solution

in the space). Bounded/constrained problems can also be sampled using a Lévy random

48



CHAPTER 4: SAMPLING IN CONTINUOUS SPACES

Algorithm 4.1 Levy Random Walk
Input:

Search space, S ⊆ IRD

Initial solution, x ∈ S
Scale, γ
Location, δ
Number of samples, n

1: S ′ [1]← x
2: for i← 2 to n do
3: repeat
4: g← RandomGaussian(0, 1, D)
5: direction← g

‖g‖
6: size← RandomLevy(γ, δ, 1)
7: xnext ← S ′ [i− 1] + size× direction
8: until xnext ∈ S
9: S ′ [i]← xnext

10: end for
11: return S ′

walk, however the feasibility of proposed solutions must be satisfied (see line 8 of Algo-

rithm 4.1).

To investigate whether the Lévy random walk exhibits a convergence of distances be-

tween solutions as dimensionality increases, the distance ratio, max(‖xi−xj‖)
min(‖xi−xj‖) (where xi 6=

xj), was calculated. Similar to the results in Figure 4.2, 30 different samples consisting

of 1000D solutions were sampled from S = [0, 1]D using a Lévy random walk, where

D = 1, 2, . . . , 30, 40, 50. Figure 4.5 shows the mean and standard deviation (as error bars)

of the 30 distance ratios for each sample size as dimensionality increases. Since max(‖xi−xj‖)
min(‖xi−xj‖)

is non-negative, error bars yielding negative values are omitted from the figure.

The error bars in Figure 4.5 indicate that the standard deviation of the 30 distance ratios

at each D is very low. Figure 4.5 show that unlike the uniform random sample in Figure 4.2,

the distance ratios resulting from the Lévy random walk are not decreasing towards 0. The

ratio is initially quite high (approximately 7.2735× 106), as D initially increases, the ratio

decreases to a minimum of 2.3977 × 104 at D = 4. However, at D = 4, the ratio stops

decreasing and begins to increase slowly. This increase is likely due to the increasing diam-

eter of S , which in turn increases the largest possible Lévy step; because the minimum step

is as close to (but not equal to 0) as precision allows, the distance ratio is increasing. The

non-convergence of the distance ratio is a highly important result, as it shows that for appli-

cations where a notion of distance is imperative (e.g. many landscape analysis techniques),

the Lévy random walk is favourable in comparison to uniform random sampling.
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Figure 4.5: Behaviour of max(‖xi−xj‖)
min(‖xi−xj‖) for 1000D points sampled from a Lévy random walk in

[0, 1]D, where D = 1, 2, . . . , 30, 40, 50.

4.4 Case Study: Dispersion

Dispersion is a popular problem landscape feature that summarises the degree to which high-

quality solutions are clustered in the search space. Lunacek and Whitley [103] originally

calculated dispersion as the mean Euclidean distance between the fittest tn solutions from a

uniform random sample of n solutions (see Section 3.2.6 for a review). While this methodol-

ogy has been adopted by many practitioners, it is common to also normalise the dispersion

by the diameter of the search space in order to allow equal comparison between problems

(particularly of differing dimension) [57, 119, 121]. Resulting values of dispersion are in

[0, 1].

The following theorem presents an important result describing the limiting behaviour of

dispersion as it is commonly employed (e.g. see [57, 103, 121]).

Theorem 4.2. Given t = 1 and S = [0, 1]D, the dispersion of solutions sampled uniform randomly

from S will converge to 1√
6

as D → ∞.

Proof. Consider (independent) random variables Xi, Yi ∼ U [0, 1]. Let Zi = (Xi −Yi)
2. Given
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that E [X] = 1
b−a

∫ b
a xdx for X ∼ U [a, b]:

E [Zi] = E
[
(Xi −Yi)

2
]

(4.4.1)

= E
[

X2
i − 2XiYi + Y2

i

]
= E

[
X2

i

]
− 2E [Xi] E [Yi] + E

[
Y2

i

]
=
∫ 1

0
x2dx− 2

∫ 1

0
xdx

∫ 1

0
ydy +

∫ 1

0
y2dy

=
1
3

[
x3
]1

0
− 2× 1

2

[
x2
]1

0
× 1

2

[
y2
]1

0
+

1
3

[
y3
]1

0

=
1
3
− 1

2
+

1
3

=
1
6

Hence E [Zi] =
1
6 . Using Euclidean distance and normalising by

√
D (i.e. the diameter of S):

dispersion(X, Y) =
1√
D

E


√√√√ D

∑
i=1

Zi

 (4.4.2)

= E


√√√√ 1

D

D

∑
i=1

Zi


Using the Strong Law of Large Numbers, as D → ∞:

1
D

D

∑
i=1

Zi → E[Zi]

Hence, as D → ∞,

dispersion(X, Y)→ E


√√√√ 1

D

D

∑
i=1

Zi

 (4.4.3)

→ E
[√

E [Zi]

]
→ E

[√
1
6

]

→ 1√
6

�

The dispersion of an i.i.d. sample will converge to 1√
6
≈ 0.4082 as dimensionality increases,
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however because dispersion is typically based on a truncated sub-sample (i.e. t < 1), some

problems may yield a non-i.i.d. sub-sample of fit solutions when truncation is used. Hence,

the resulting dispersion values for these types of problems may not converge to 1√
6
.

The following investigation examines the behaviour of dispersion as dimensionality in-

creases. To begin, the ability of dispersion to differentiate between two problems with dras-

tically different distributions of fit solutions is examined. The two problems used are the

Sphere function:

fS(x) =
D

∑
i

x2
i (4.4.4)

and the Reverse Sphere function:

fRS(x) = − fS(x) = −
D

∑
i

x2
i (4.4.5)

where D = 2, . . . , 50, 100, 150, 200. The Sphere function should have a low dispersion since

the fittest solutions are relatively close together. In contrast, fit solutions in the Reverse

Sphere function are widely distributed throughout S away from the origin, resulting in

high dispersion. As previously discussed, the value of t may influence the behaviour of

dispersion, and so for these experiments a range of values are investigated, specifically, t =

[0.0025, 0.01, 0.05, 0.1, 0.25]. For each problem, 30 samples of 1000D solutions are generated

randomly from U [−1, 1]D. The mean and standard deviation of the 30 resulting dispersions

(at each value of D) for fS and fRS at the given thresholds is presented in Figure 4.6. Solid

and dashed lines are used in Figure 4.6 to display the results for fS and fRS respectively.

Despite the different truncated selection thresholds, the dispersion for both fS and fRS

appear to converge to 1√
6
. Figure 4.6 also shows that as t increases, the dispersion values

are more tightly bound around 1√
6
. Importantly, the dispersion between these two functions

becomes increasingly less discriminatory as dimensionality increases. That is, for two func-

tions with drastically different distributions of fit solutions, the estimated dispersion values

indicate the distributions are quite similar.

To further illustrate the behaviour of dispersion, the dispersion of the BBOB problem set

(see Appendix A.1.2) at t = 0.05 was calculated using the same experimental setup and the

results are shown in Figure 4.71. Similar to the experiments above, 30 samples of 1000D

solutions are generated randomly from U [−5, 5]D for each problem. Lines in Figure 4.7 are

1Dispersion is calculated for D = 2, . . . , 50, 100, 150, 200 on BBOB problems generated with random seed
equal to 1.
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Figure 4.7: Dispersion for the BBOB problem set.

coloured/shaded according to each problem’s classification within the benchmark set (see

Table A.2). Because the dispersion values are quite similar across problems, error bars of

the standard deviation of the 30 samples (per D) are not included as they obstructed the

mean values. For most functions and dimensions, the standard deviation was typically

around 6.5× 10−4 (and at most 0.02). While dispersion discriminates between the different

BBOB functions in low dimension, it is clear that dispersion becomes less discriminating

and converges towards 1√
6

as dimensionality increases.

The difference in dispersion was additionally proposed in [103] as the difference between

the dispersion value when no selection is applied and the dispersion value when selection

is applied. By Theorem 4.2, the dispersion of the full sample (when no selection is applied)
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converges to 1√
6

as dimensionality increases. The results in Figures 4.6 and 4.7 indicate

that for a number of problems of reasonable dimensionality, the dispersion at a variety of

thresholds also seem to converge to 1√
6
. This suggests that as dimensionality increases, the

difference in dispersion may converge to 0.

While dispersion has been used in a variety of applications, it is difficult to detect the

convergent trend predicted by Theorem 4.2 within existing results reported in the literature.

In [103], explicit dispersion values for only D = 50 problems are given, and so no compar-

isons with other dimensions can be made. However, when normalised by the diameter of

the search space (
√

50), the values range from approximately 0.3041 to 0.4243, which is very

similar to the results in Figure 4.7 for D = 50. Dispersion values are provided (or rather,

difference in dispersion values) in [121], however only for 10, 30 and 50 dimensional prob-

lems. Despite having a sample of only 3 different dimensions, the results generally show

the difference in dispersion values decreasing in magnitude towards 0 as dimensionality in-

creases, in agreement with the argument above. While the dispersion values of the BBOB’10

problem set for 2, 3, 5, 10 and 20 dimensional problems were not explicitly reported in [120],

subsequent analysis of their data shows that the dispersion values converge toward 1√
6

as

dimensionality increases.

To summarise, the current methodology used to calculate dispersion, namely the use

of uniform random sampling in conjunction with Euclidean distance, has important limi-

tations. These limitations have been shown theoretically and are clearly present on exper-

iments conducted in this thesis, and in agreement with those in the literature. As a result,

dispersion is severely restricted in its ability to adequately discriminate between problems.

4.4.1 Effects of Other Sampling Methodologies and Distances

The behaviour of the estimation of dispersion may be improved through a number of modi-

fications to the methodology currently employed. This section focuses on three independent

aspects of dispersion’s implementation; the normalisation scheme, the distance metric and

sampling strategy. For each aspect, a modification to dispersion is proposed and imple-

mented, and the convergence of dispersion as dimensionality increases is assessed.

Modification 1: normalising by dispersion’s bounds

One practical approach to improve the convergent behaviour of dispersion is by normalising

the dispersion values by the “ideal” lower and upper dispersion bounds. That is, given a
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Figure 4.8: Bound-normalised dispersion for the Sphere (blue line) and Reverse Sphere (red
line) functions.

sample of n solutions, there are 1
2 n(n − 1) possible distances (between pairs of solutions).

From these, the distances of the fittest tn solutions are averaged in order to estimate the

dispersion. However, from the 1
2 n(n − 1) distance values, the tn smallest distance values

can be used to estimate the lowest (practically) possible value of dispersion. The same can

be done for the largest values in order to obtain the largest (practically) possible value of

dispersion. Then, the bounds can be used to normalise the problem’s dispersion value.

Figure 4.8 shows the results of bound-normalising the Sphere and Reverse Sphere dis-

persion values, averaged over 30 samples of 1000D solutions (randomly sampled from

U [−1, 1]D) at each value of D. The threshold, t, was set to 5%, which is a typical value

used in the literature [103]. The bound-normalised dispersion values in Figure 4.8 clearly

discriminate between the two types of functions, and do not exhibit the convergence to 1
6 .

Figure 4.9 shows the results of bound-normalising the BBOB dispersion values, averaged

over 30 samples of 1000D solutions (randomly sampled from U [−5, 5]D) at each value of

D. The standard deviations of these estimates for most functions and dimensions were

generally very low (at around 2.4× 10−3), and were at most 0.02.

The dispersion values in Figure 4.9 are much more discriminatory than those in Fig-

ure 4.7. That is, the problems are well-separated and allow better categorisation. Further-

more, the convergence behaviour is no longer present; the dispersion values are consistent

and stable as dimensionality increases. These results suggest that the bound-normalised

dispersion is a significant improvement on the original dispersion methodology.
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Figure 4.9: Bound-normalised dispersion for the BBOB problem set.

Modification 2: Lp norm with p = 0.1, p = 0.5 and p = 1

The rate of convergence of (4.2.1) has been shown to be sensitive to the value of p for the Lp

norm [3]. In particular, lower (indeed, even fractional) values of p produced better contrast

between the maximum and minimum distance than larger values of p. While this doesn’t

prevent the convergence behaviour, using an Lp norm with fractional p-values may at least

improve discrimination between problems of modest dimensionality.

The following experiment calculates the dispersion of the Sphere, Reverse Sphere and

BBOB problems using the Lp norm with p = 0.1, p = 0.5, p = 1 and p = 2 (p = 2 was also

used to generate Figures 4.6 and 4.7). The aim of the experiment is to investigate whether

low values of p in the Lp norm improve dispersion’s behaviour. Figures 4.10 and 4.11 show

the resulting dispersion values of the problems averaged over 30 samples of 1000D solutions

(randomly sampled from U [−5, 5]D and U [−5, 5]D respectively) at each value of D. The

standard deviation for most BBOB functions and dimensions was generally very low (at

around 6.7× 10−4), and was at most 0.02.

Figures 4.10 and 4.11 display convergent behaviour for all four values of p. Lower values

of p result in a slower convergence, although it seems by only a constant factor. In addition,

the BBOB problems remain clustered together, with no significant improvement in separa-

bility compared to Figure 4.7. Hence while the results give an indication of the empirical

differences that can be expected for different values of p, use of the Lp norm with small p

values in general does not appear to significantly improve dispersion estimates.
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Figure 4.10: Dispersion using Lp norms where p = 0.1, 0.5, 1 and 2 for the Sphere (solid
lines) and Reverse Sphere (dashed lines) functions.

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
is

pe
rs

io
n

Dimension

 

 

p=0.1
p=0.5
p=1
p=2

Figure 4.11: Dispersion using Lp norms where p = 0.1, 0.5, 1 and 2 for the BBOB problem
set.
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Figure 4.12: Dispersion using fixed-step (of size 10−2) random walks for the Sphere (blue
line) and Reverse Sphere (red line) functions.

Modification 3: Fixed-step Random Walks

Because (4.2.1) is dependent on the type of distance metric and sampling technique, using a

distance metric and/or sampling technique where the theorem does not hold may improve

the behaviour of dispersion. Here, a fixed-step isotropic random walk is used to sample

S , which is subsequently used to estimate dispersion. As the name suggests, a fixed-step

random walk takes steps in a uniform random direction, of a specific size, α. While each

solution is α away from the previous and next solutions in the walk, the isotropic nature of

the walk means that a wide variety of distances are possible (e.g. the distance between a

given solution and a solution 4 steps away is within [0, 4α]). The aim of the experiment is to

determine whether the dispersion estimates are affected when a fixed-step random walk is

used to sample S . For this experiment, 1000D steps of size α = 10−2 (Sphere and Reverse

Sphere) and α = 1 (BBOB) are taken to give wide coverage of the search space.

Figures 4.12 and 4.13 shows the mean dispersion values for the Sphere, Reverse Sphere

and BBOB problems (averaged over 30 samples) at each value of D. The random walks for

the BBOB problems in Figure 4.13 resulted in slightly larger standard deviations than the

other improvements, however they were still quite low and generally remained constant at

0.04 (and at most 0.07).

Modification 4: Lévy Random Walks

Similar to the fixed-step random walk, the use of Lévy random walks may also impact on

the estimation of dispersion. Figure 4.14 shows the dispersion of the Sphere and Reverse
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Figure 4.13: Dispersion using fixed-step (of size 1) random walks for the BBOB problem set.
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Figure 4.14: Dispersion using a Lévy random walk for the Sphere (blue line) and Reverse
Sphere (red line) functions.

Sphere problems, calculated from samples of 1000D solutions, obtained using a Lévy ran-

dom walk (γ = 10−3, δ = 0). Similarly, Figure 4.15 shows the dispersion of the BBOB

problems calculated from samples of 1000D solutions, obtained using a Lévy random walk

(γ = 0.1, δ = 0).

While the dispersion values calculated for the Sphere and Reverse Sphere functions

shown in Figure 4.14 offer limited improvements, the dispersion values in Figure 4.15 are a

considerable improvement to the original dispersion values shown in Figure 4.7. In partic-

ular, the dispersion values from the Lévy random walk samples do not appear to converge,

and they provide a wide range of values that differentiate the problems well and can there-

fore facilitate in problem classification/categorisation. The dispersion values in Figure 4.15
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Figure 4.15: Dispersion using a Lévy random walk for the BBOB problem set.

are initially quite varied, and as D increases, all values initially increase. At approximately

D = 22, the dispersion values stop increasing and appear to slightly decrease, however, the

relative ordering of problems (by their dispersion values) is consistent across D.

4.4.2 Summary

The interaction between sampling strategy and distance metric is complex and can intro-

duce interesting behaviour in a wide variety of applications. This case study examined

the behaviour of the dispersion metric, which utilises uniform random sampling in con-

junction with Euclidean distance. A theoretical argument was developed showing that us-

ing the existing methodology to calculate dispersion, the dispersion of the full sample will

converge to 1√
6

as dimensionality reached the infinite limit. Experimental analysis on the

Sphere, Reverse Sphere and BBOB problems resulted in convergent dispersion values. Fur-

thermore, dispersion was deemed incapable of adequately distinguishing between high and

low dispersive structure. Importantly, it is the existing methodology behind dispersion that

is flawed, rather than the actual concept of dispersion. Hence, in an attempt to improve

dispersion, four independent modifications to its underlying methodology were proposed;

bound-normalisation, the Lp norm with low p, a fixed-step random walk and a Lévy ran-

dom walk. The modifications proposed are simple and do not add significant complexity

or computational effort to dispersion’s original methodology. Encouragingly, the bound

normalisation, fixed-step random walk and Lévy random walk were shown to improve the

convergent behaviour and increase separability between problems.
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4.5 Case Study: Fitness Distance Correlation

Fitness Distance Correlation (FDC) measures the extent of correlation between the fitness

values of a set of solutions and their distance to a given reference solution, x′ (usually the

global optimum). FDC was originally proposed in the combinatorial problem context, and

is often used with distance functions based on specific algorithm move operators [5, 83].

However in the continuous optimization context, Euclidean distance is typically used [54,

120, 122].

As defined in Theorem 4.1 and illustrated in the case study for dispersion in Section 4.4,

the use of Euclidean distance in conjunction with certain sampling schemes may not be ideal.

The following case study investigates the degree to which FDC is effected by the use of Eu-

clidean distance and a uniform random sample. Similar to Section 4.4, the consequences of

convergent distances on FDC coefficients is theoretically analysed. Next, FDC is empirically

examined using the Sphere function, Reverse Sphere function and BBOB problem set (over a

variety of dimensions) to assess whether it is being affected. Then, different distance metrics

and sampling methodologies are proposed and their effect on FDC is analysed.

The formulation for FDC (Equation 3.2.5) is heavily reliant on an accurate notion of dis-

tance between solutions sampled and the reference solutions. Theorem 4.1 in Section 4.2

essentially states that for a broad range of distributions of points, the contrast between the

largest distance and the smallest distance becomes non-existent for certain distance metrics

as dimensionality increases. For FDC calculated from a uniform random sample in conjunc-

tion with Euclidean distance, all distances inD will converge to a constant, c. Consequently,

as dimensionality, D, increases,

lim
D→∞

µD = c

and

lim
D→∞

σD = 0

Because limD→∞ di = c ∀ di ∈ D and limD→∞ µD = c, the resulting value for limD→∞(di −
µD) is 0. Ignoring the contributions of f (xi) and µF (as they will vary depending on f ) and

substituting limD→∞(di − µD) = 0:
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CFD =
1
n

n

∑
i=1

( f (xi)− µF )(di − µD) (4.5.1)

lim
D→∞

CFD =
1
n

n

∑
i=1

( f (xi)− µF)× 0 (4.5.2)

= 0

Consequently, in the infinite limit the FDC coefficient is:

lim
D→∞

FDC = lim
D→∞

CFD
σFσD

(4.5.3)

Because both the numerator and denominator of Equation 4.5.3 are 0 in the limit, the rate

at which each converge to 0 will dictate the limiting value of FDC. This is difficult to derive

analytically, since the terms ( f (xi) − µF) and σF will affect the convergence rates, but are

dependent on the objective function under consideration. Therefore, experimental analysis

is conducted below to determine the convergence behaviour of FDC coefficients for a variety

of problems.

It is important to stress that the above theory is only applicable to the scenario where FDC

is calculated using a reference point from a distribution (as well as an appropriate sample of

solutions and distance metric) satisfying the properties outlined in [3, 13]. For example, the

theory applies if both the reference point and S ′ are sampled uniformly from S . Conversely,

if S ′ is sampled uniformly from S , but the reference point is a specific point of interest (e.g.

the origin, global optimum etc), the theory will not apply. Hence, FDC is only affected by

the convergence theory discussed above if the reference point satisfies the conditions.

In this case study, two variants of FDC are calculated: FDCx∗ , which uses the global

optimum (x∗) as the reference point (and hence should be unaffected by the theory), and

FDCx̂∗ , which uses the best solution (x̂∗) in the sample as the reference point (and hence

may be affected by the theory). The Reverse Sphere function has 2D global optima (located

in the corners of the hypercube) and so for each solution in the sample, the distance between

it and its closest global optimum is used. The same experimental setup used in the dispersion

case study (Section 4.4) is used in the following. Specifically;

• D = 2, . . . , 50, 100, 150, 200.
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Figure 4.16: FDCx∗ and FDCx̂∗ for the Sphere and Reverse Sphere functions for D = 2, . . . ,
50, 100, 150, 200.

• S = [−1, 1]D, S = [−1, 1]D and S = [−5, 5]D, for the Sphere, Reverse Sphere and

BBOB problem set respectively.

• For a given problem, 30 samples of 1000D solutions are generated uniform randomly

from S .

To begin, the FDC coefficients are calculated for samples of the Sphere ( fS) and Reverse

Sphere ( fRS) functions defined in Equations 4.4.4 and 4.4.5. The mean and standard devi-

ation (shown as error bars) of the 30 resulting FDC coefficients (at each value of D) for fS

and fRS are presented in Figure 4.16. Blue and red coloured lines are used in Figure 4.16 to

display the results for fS and fRS respectively, and FDCx∗ and FDCx̂∗ are drawn using solid

and dotted lines respectively.

All FDC coefficients shown in Figure 4.16 have extremely small standard deviations be-

tween samples (the largest standard deviation was 0.0480). Both the Sphere and Reverse

Sphere’s FDCx∗ values remain quite constant as D increases. The calculation of FDCx∗ uses

a reference point that is not in the sample. Because the distances are calculated between each

solution in the sample and the reference point (not in the sample), the theory regarding the

convergence of distance does not apply. Consequently, the FDCx∗ ’s shown in Figure 4.16 do

not appear to be affected by D. In contrast, the FDCx̂∗ ’s calculated for both fS and fRS is af-

fected by increasing D. In particular, the FDCx̂∗ ’s for the Sphere function seem to be greatly

affected. While FDCx∗ ≈ 1 for fS, its FDCx̂∗ ’s begins to decrease at D = 5 and FDCx̂∗ reaches

a low of approximately 0.4658 at D = 200. The FDCx̂∗ for fRS also decreases as D increase,
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Figure 4.17: FDCx∗ and FDCx̂∗ (using L2) for the BBOB problem set for D = 2, . . . , 50, 100,
150, 200.

although the decrease is not as drastic as fS. Specifically, FDCx̂∗ for the Reverse Sphere func-

tion begins at approximately -0.1179, and decreases steadily until approximately -0.3653 at

D = 200. Hence, the difference between FDCx∗ and FDCx̂∗ is approximately 0.5342 for fS,

and only 0.2474 for fRS.

To further investigate the use of Euclidean distance with uniform random sampling to

calculate FDC, Figure 4.17 shows the results of FDCx∗ and FDCx̂∗ calculated on the BBOB

problem set (see Appendix A.1.2).

The FDCx∗ coefficients in Figure 4.17a are clearly invariant to D. However, similar to

the experiments with fS and fRS shown in Figure 4.17, the FDCx̂∗ coefficients decrease and
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appear to be converging as D increases. As previously mentioned, FDCx∗ uses a reference

solution that is not in the uniform random sample, while FDCx̂∗ uses a reference solution

that is. Hence, the convergence theory is really only applicable to FDCx̂∗ , and Figure 4.17b

confirms that the theory is relevant in practice.

4.5.1 Effects of Other Sampling Methodologies and Distances

While the FDCx∗ coefficients calculated on the BBOB problems shown in Figure 4.17 were in-

variant to increasing dimensionality, the FDCx̂∗ coefficients exhibited convergent behaviour.

This section focuses on three different sampling methodologies and distance metrics that

may slow or prevent the convergence of FDCx̂∗ coefficients; 1) the Lp norm with small p

values as a distance metric; 2) a fixed-step random walk; and 3) a Lévy random walk. For

each proposed modification, FDCx∗ coefficients are also examined to ensure that the modi-

fications to not adversely affect the coefficients.

Modification 1: Lp norm with p = 0.1, p = 0.5 and p = 1

The following experiment investigates the effect of using the Lp norm with p = 0.1, p = 0.5

and p = 1 in calculating the FDC coefficients of the Sphere, Reverse Sphere and BBOB prob-

lems (note that Figures 4.16 and 4.17 shows results for p = 2). Figures 4.18 to 4.21 shows

the resulting FDC coefficients of the Sphere, Reverse Sphere and BBOB problems averaged

over 30 samples of 1000D solutions (randomly sampled from U [−1, 1]D and U [−5, 5]D re-

spectively) at each value of D.

The standard deviation for FDCx∗ on the BBOB functions was generally very low (aver-

age of 0.0396, 0.0434 and 0.0451 for p = 0.1, 0.5 and 1 respectively), and was at most 0.3729,

0.3868 and 0.3947 for p = 0.1, 0.5 and 1 respectively. The standard deviation for FDCx̂∗ on

most functions and dimensions was also generally very low (average of 0.0517, 0.0573 and

0.0606 for p = 0.1, 0.5 and 1 respectively), and was at most 0.3615, 0.3764 and 0.3854 for

p = 0.1, 0.5 and 1 respectively.

The results in Figures 4.18 to 4.21 show that the FDCx∗ coefficients are consistent across

D, in contrast to the FDCx̂∗ coefficients, which converge towards 0 as D increases. The non-

convergence of the FDCx∗ provide further evidence that using a reference point that is not

within the sample prevents convergence. The rate of convergence of the FDCx̂∗ coefficients

varies between the different p values. For p = 0.1, the FDCx̂∗ coefficients shown in Fig-

ure 4.19 decrease very consistently in a straight line (and hence at a logarithmic rate, due to
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Figure 4.18: FDCx∗ and FDCx̂∗ using L0.1, L0.5, L1 and L2 for the Sphere and Reverse Sphere
functions.

66



CHAPTER 4: SAMPLING IN CONTINUOUS SPACES

10
1

10
2

−0.5

0

0.5

1

Dimension

F
D
C

x
∗

 

 

 F1

 F2
 F3

 F4

 F5

 F6

 F7

 F8
 F9

 F10

 F11 F12

 F13

 F14

 F15

 F16

 F17 F18

 F19
 F20

 F21 F22

 F23

 F24

F1−F5
F6−F9
F10−F14
F15−F19
F20−F24

(a) FDCx∗

10
1

10
2

−0.5

0

0.5

1

Dimension

F
D
C

x̂
∗

 

 

 F1

 F2−9

 F10

 F11 F12

 F13

 F14
 F15

 F16

 F17 F18

 F19

 F20

 F21
 F22

 F23

 F24

F1−F5
F6−F9
F10−F14
F15−F19
F20−F24

(b) FDCx̂∗

Figure 4.19: FDCx∗ and FDCx̂∗ using L0.1 for the BBOB problem set for D = 2, . . . , 50, 100,
150, 200.
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Figure 4.20: FDCx∗ and FDCx̂∗ using L0.5 for the BBOB problem set for D = 2, . . . , 50, 100,
150, 200.
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Figure 4.21: FDCx∗ and FDCx̂∗ using L1 for the BBOB problem set for D = 2, . . . , 50, 100, 150,
200.
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Figure 4.22: FDC using fixed-step (of size 10−2) random walks for the Sphere and Reverse
Sphere functions.

the logarithmic scaling of D). The range in FDCx̂∗ coefficients for the problem set decreases

from approximately [0,0.86] at D = 1 to [0,0.29] at D = 200. As p increases, the convergence

curves change significantly. At p = 2, shown in Figure 4.17, the FDCx̂∗ coefficients are quite

constant from D = 1 to D = 10, and decrease sharply for D > 10. However, there is less

of a change in the range in coefficients for the problem set; at D = 1, the problems’ FDCx̂∗

coefficients are in [0, 0.97], and at D = 200 they are in [0, 0.43]. Therefore, FDCx̂∗ provides

less discriminatory power as D increases. In summary, while the results in Aggarwal et al.

[3] show that small (even fractional) values of p can slow the convergence, the use of a small

p value in the Lp norm does not have a large effect on the convergence of FDCx̂∗ in these

experiments.

Modification 2: Fixed-step Random Walks

As shown in the dispersion case study (Section 4.4), fixed-step-size isotropic random walks

may slow or prevent the convergence of distances. The following experiment investigates

the effect of sampling via a fixed-step random walks on the FDC coefficients. For each D, 30

fixed-step random walks with α = 10−2 (Sphere and Reverse Sphere) and α = 1 (BBOB) are

used to calculate FDCx∗ and FDCx̂∗ for problem instances. Figures 4.22 and 4.23 show the

resulting FDC coefficients averaged over the 30 samples at each value of D. The standard

deviation for FDCx∗ and FDCx̂∗ on most functions and dimensions of the BBOB problems

was generally very low (average of 0.0823 and 0.0955 respectively), and was at most 0.3966

and 0.3917 respectively.
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Figure 4.23: FDC using fixed-step (of size 1) random walks for the BBOB problem set.
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Figure 4.24: FDC using a Lévy random walk for the Sphere and Reverse Sphere functions.

The FDC coefficients in Figure 4.22 fluctuate considerably more between subsequent val-

ues of D than the FDC coefficients calculated using a uniform random sample (Figure 4.18).

The standard deviations are also significantly larger than standard deviations of the FDC co-

efficients calculated using the uniform random sample. The FDC coefficients in Figure 4.23

also fluctuate considerably more between subsequent values of D than the FDC coefficients

calculated using a uniform random sample (Figures 4.17 to 4.21). The FDC coefficients in

Figure 4.23 show a similar trend to the FDC coefficients calculated using Euclidean distance

(the L2 norm) in Figure 4.17. Specifically, the FDCx∗ coefficients remain quite constant as

D increases, while the FDCx̂∗ coefficients range between [0, 0.97] at D = 1 to [0, 0.44]. To

summarise, the FDC coefficients calculated from fixed-step random walks are comparable

to the FDC coefficients resulting from a uniform random sample.

Modification 3: Lévy Random Walks

The following modification uses a Lévy random walk to obtain a sample of solutions from

S . At each value of D, 30 Lévy random walks with δ = 0 and γ = 0.1 (Sphere and Reverse

Sphere) and γ = 0.1 (BBOB) and are used to calculate FDCx∗ and FDCx̂∗ . The resulting FDC

coefficients (averaged over the 30 samples at each D) are shown in Figures 4.24 and 4.25.

The standard deviation for FDCx∗ and FDCx̂∗ for the BBOB problems for most functions

and dimensions was generally very low (average of 0.1087 and 0.1212 respectively), and

was at most 0.3961 and 0.3875 respectively.

The FDCx∗ coefficients shown in Figures 4.24 and 4.25a are very similar to the FDCx∗

coefficients resulting from the fixed-step random walks (see Figures 4.22 and 4.23). That is,
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Figure 4.25: FDC using a Lévy random walk for the BBOB problem set.
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the coefficients fluctuate slightly, but are generally quite consistent as D increases. Modifica-

tions 1 (Lp norm with small p) and 2 (fixed-step random walks) yielded convergent FDCx̂∗

coefficients, with little discriminatory power in high dimensions. The FDCx̂∗ coefficients dis-

played in Figure 4.25b are less convergent than modifications 1 and 2. While the coefficients

decrease between D = 6 and D = 30, the values remain quite constant (with minor fluc-

tuations) for D > 30. In addition, the coefficients generally increase between D = 150 and

D = 200. Overall, the Lévy random walks provides a wider variety of FDCx̂∗ coefficients,

that, in contrast to the other approaches, do not appear to converge as D increases.

4.5.2 Summary

The results in this case study show that using an explicit reference solution not taken from

the sample, such as the global optimum (x∗), yields FDC coefficients (FDCx∗) that are invari-

ant to the dimensionality effects shown for dispersion in Section 4.4 and discussed in [3, 13].

In contrast, FDC coefficients (FDCx̂∗) calculated by using a solution from the sample as the

reference point resulted in decreasing/convergent values as dimensionality increased. The

convergence of FDCx̂∗ was particularly evident for uniform random samples in conjunc-

tion with the Lp norm. For this scheme, lower p values in the Lp norm resulted in poorer

discrimination between the BBOB problems. Overall, the FDC coefficients calculated using

Lévy random walks provided the best separability between the BBOB problems.

4.6 Summary

Sampling of high dimensional continuous optimization problems is an important but non-

trivial task, and the resulting adequacy of the sample is highly influenced by the sampling

methodology used, distance metric and sample size. This chapter reviewed and discussed

the advantages and limitations of several well-established sampling methodologies, includ-

ing systematic sampling, uniform random sampling, Latin Hypercube sampling, orthogonal

sampling and random walks. The importance of sample size was discussed with respect to

both theory and practice. Adverse effects from combining certain distance metrics with par-

ticular sampling methodologies was also theoretically and empirically analysed.

A major contribution of this chapter is the novel application of Lévy random walks as

an effective sampling technique for high dimensional continuous problems. Experimental

results on the Sphere, Reverse Sphere and BBOB problem set showed that the Lévy walk
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yielded dispersion and FDC estimates that, unlike uniform random sampling and fixed-

step random walks, were not significantly affected by increasing dimensionality. Hence,

given the comparable and often superior results to uniform random sampling and fixed-

step walks (arguably the most widely used sampling techniques for continuous landscape

analysis), Lévy random walks are used extensively in the experimental investigations in

Chapters 7 and 8 of this thesis.
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CHAPTER 5

Length Scales in Optimization

If you torture the data enough, nature will

always confess.

Ronald Coase

A significant contribution of this thesis is to develop a framework that can be used to study

the structural characteristics of a problem landscape, L = (S , f , d), independent of any par-

ticular optimization algorithm. The following chapter proposes length scale as an important

summary of optimization problem information. The chapter begins by defining length scale

and describing several important properties. Small, intuitive problems are analysed using

length scale to demonstrate how problem structure is captured and can be inferred. This

chapter also introduces the length scale distribution as an important and useful summary of

length scale information. Methods to estimate the length scale distribution are discussed,

and properties of the distribution are outlined. The chapter concludes by reviewing con-

cepts related to length scale.

5.1 Length Scale

Definition 5.1. Let xi, xj ∈ S be two distinct (xi 6= xj) solutions with corresponding objective

function values f (xi) and f (xj), and let d : S × S → IR be a distance function between solutions.

The length scale, r, is defined as:

r(xi, xj) =

∣∣ f (xi)− f (xj)
∣∣

d(xi, xj)
(5.1.1)

The length scale intuitively measures the magnitude of objective function difference with

respect to a step between two points in the search space1. The development of length scale
1The relationship between length scale and similar concepts in the optimization and wider literature, such

as the difference quotient and Lipschitz constant, is discussed in Section 5.5.
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is motivated by the analysis of continuous problems, however because r relies solely on

the black-box information available from the problem landscape (i.e. S , d and f ), it is also

applicable to discrete/combinatorial problems.

Contrary to the approaches previously used in developing landscape analysis tech-

niques, length scale information makes no assumptions regarding the structure within land-

scapes, nor does it capture specific landscape properties. Rather, all information provided in

the black-box setting (i.e. the ability to evaluate f at any point x ∈ S) is captured and utilised,

therefore implicitly capturing the landscape structure required to describe, characterise and

differentiate problems.

Because the length scale is defined over distinct pairs of solutions, d(xi, xj) > 0, the

denominator of Equation 5.1.1 can never be 0. However, no restrictions are made upon f ,

and so it is possible to obtain r = ∞ when
∣∣ f (xi)− f (xj)

∣∣ = ∞. Since length scale is defined

as the change in magnitude of the objective function over a finite interval in the search space,

its range is [0, ∞].

5.1.1 Effect of the Distance Function

As has been discussed and demonstrated in Chapter 4, choosing a suitable distance met-

ric is non-trivial and it can produce unpredictable and often surprising results. Generally,

an appropriate distance metric preserves the geometric relationships between points, and

a comprehensive survey of distances can be found in [44]. Because Euclidean distance is

used in the vast majority of continuous optimization algorithms and analysis techniques, it

is utilised throughout the analysis of continuous problems in this thesis. However precau-

tions are taken with the sampling methodology to ensure that the distance between pairs of

solutions within the sample does not converge in high dimensional problems (further details

are deferred until Section 6.2 of Chapter 6). For the combinatorial problems analysed in this

thesis, the distance is explicitly provided and is based on problem definitions, applications

and analysis commonly adopted in the literature.

5.1.2 Analytical Length Scale Expressions

For situations where the objective function is known, it may be possible to derive an analytic

expression for all length scales. Such expressions are amenable to analysis and inference re-

garding problem structure. The analytic expressions can also be used to obtain finite samples

of length scales directly.
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The following examples illustrate the derivation and utility of length scale expressions.

Example 5.1. 1-D linear objective function

Given f (x) = ax where x, a ∈ IR and d(xi, xj) =
∣∣xi − xj

∣∣, the length scale between xi and xj is:

r =

∣∣ f (xi)− f (xj)
∣∣

d(xi, xj)

=

∣∣axi − axj
∣∣∣∣xi − xj
∣∣

= |a|

For this problem, r captures the intuition that any step in S will be accompanied by a propor-

tional change in f . This objective function is simple, but it is important to illustrate that the

length scale of any finite set of samples from the search space (e.g. the points visited by an

optimization algorithm) is invariant to the location(s) in S or the order in which the points

were taken. The length scale of a D-dimensional neutral/flat landscape (i.e. f (x) = c, c ∈ IR)

is also a special case of a linear function where r = 0.

For most continuous problems, r will not be a constant over S . In different regions of

the space, the length scale value will depend on the local structure of the problem landscape

from which xi and xj are drawn. Landscape structures such as varying slopes, basins of

attractions, ridges and saddle points will affect the resulting length scale values. The 1-D

absolute value function defined in Example 5.2 contains a single minimum at x = 0 that

affects the resulting length scales.

Example 5.2. 1-D absolute value function

Given f (x) = a |x| where x, a ∈ IR and d(xi, xj) =
∣∣xi − xj

∣∣, the length scale between xi and xj is:
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r =

∣∣ f (xi)− f (xj)
∣∣

d(xi, xj)

=

∣∣a ∣∣xi
∣∣− a

∣∣xj
∣∣∣∣∣∣xi − xj

∣∣
=


a, xi, xj < 0 or xi, xj > 0

a ||x
i|−|xj||
|xi−xj| , xi ≥ 0, xj < 0 or xi < 0, xj ≥ 0

The length scale expression captures the linear nature of the function within each of the

sub-domains x ≥ 0 and x ≤ 0, however steps across the minimum result in slightly more

complex length scale values. Transitions directly across the minimum (xi = −xj) will result

in a length scale of 0, and since
∣∣xi − xj

∣∣ ≥ ∣∣∣∣xi
∣∣− ∣∣xj

∣∣∣∣ (xi, xj ∈ IR), length scales across the

minimum (where xi 6= −xj) will be within (0, a].

The 1-D quadratic function offers slightly different structure to the 1-D absolute value

function, but is also symmetric about a single minimum at x = 0.

Example 5.3. 1-D quadratic objective function

Given f (x) = ax2 where x, a ∈ IR and d(xi, xj) =
∣∣xi − xj

∣∣, the length scale between xi and xj is:

r =

∣∣ f (xi)− f (xj)
∣∣

d(xi, xj)

=

∣∣axi2 − axj2
∣∣∣∣xi − xj

∣∣
=
|a|
∣∣(xi − xj)(xi + xj)

∣∣∣∣xi − xj
∣∣

= |a|
∣∣∣xi + xj

∣∣∣
Here, steps between points that are relatively close to the optimum result in relatively small

length scales compared to the same-sized steps further from the optimum. This suggests

that an algorithm needs to reduce the size of the steps it makes to successfully approach the

optimum of this problem. Indeed, gradient descent algorithms are known as efficient and

effective approaches for such problems because the gradient smoothly approaches 0 at the

optimum.
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The derivation of an analytical length scale expression is not always feasible; the length

scale expression for certain problems may be too complex to reduce and/or interpret, while

other problems may not have an accessible problem definition (e.g. a black-box problem).

For these problems, a multiset of length scale values can be obtained by calculating r be-

tween pairs of solutions sampled from the search space. Insight into the structural nature of

problems can be gained through statistical and information theoretical analysis of the length

scale values obtained from a sample. In Chapter 6, a novel sampling methodology is pro-

posed to obtain an adequate sample of r values, and new landscape analysis techniques are

developed to characterise and distinguish problems based on the length scale samples.

5.2 Properties of Length Scale

From an information perspective, the structural regularities that fundamentally define a

landscape are captured by distance, and are therefore invariant to isometric (distance pre-

serving) mappings such as translation, rotation and reflection [20]. An equivalence relation

[146] is defined (in terms of structure and information) between two problems if there is an

isometric mapping between the search spaces as well as between the objective functions. For

example, consider f : IRD → IR, and let g(x) = f (x− α1) + α2 where x, α1 ∈ IRD and α2 ∈ IR.

While both S and f have been translated (by α1 and α2 respectively) to define g, the structure

of the landscape has not changed, and so from a landscape analysis perspective - and from

the point of view of any reasonable optimization algorithm - f and g are equivalent (denoted

f ≡ g). Because equivalent problems share the same structure, they should be characterised

equivalently, and so it follows that problem characteristics with an invariance to isometric

mappings are attractive. This is analogous to algorithm design, where algorithms are in-

variant to transformed, but equivalent problems (e.g. the invariance of Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [70]).

Length scale is the ratio of two distance functions, hence it is invariant to isometric map-

pings including translation, rotation and reflection. For uniform scaling of S by α ∈ IR \ {0},
the length scale values are scaled by a factor of 1

α . Likewise, for scaling of f by α, the length

scale values are scaled by α. Other transformations (e.g. shearing) have the potential to

drastically alter the structure of the landscape, and length scale is sensitive to such transfor-

mations.

From Definition 5.1, if two length scales are identical, then the objective functions are

equivalent between the pairs of solutions used to evaluate Equation 5.1.1. That is, given
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solution pairs Sa = {xi, xj} and Sb = {xp, xq}, and functions fa : Sa → IR and fb : Sb → IR,

if:

∣∣ fa(xi)− fa(xj)
∣∣

d(xi, xj)
=
| fb(xp)− fb(xq)|

d(xp, xq)
(5.2.1)

then fa ≡ fb. Additionally, two nonequivalent functions will always produce non-equal

length scales. Hence length scale is a very useful indicator of functional equivalence (over

pairs of solutions) in the context of optimization. Assuming enumeration of all solutions

(which is possible in the combinatorial case), two equivalent problems will yield identical

length scales, and therefore, identical length scale distributions.

In the discrete/combinatorial context, the search space can be exhaustively enumerated

and the length scale values calculated between all combinations of solution pairs. The result-

ing multisets of length scales are equivalent if and only if the problems are equivalent. Two

equivalent functions will yield the same sets of length scales, while two nonequivalent func-

tions will yield different sets of length scales. Thus, the length scale multiset completely and

unambiguously describes and characterises a given landscape. In the continuous context,

exhaustive enumeration is infeasible in practice, and so length scales are calculated from

finite samples of the search space. Hence, two problems are likely to be equivalent if the

multiset of length scales produced from the finite samples are equivalent. Problems with

sub-regions of equivalence will have length scales in common, and so problem similarity

can be measured by the degree to which problems share common length scales.

In practice, the length scale values calculated from a finite sample of solutions are highly

dependent on the sample. For some problems, such as continuous or high-dimensional com-

binatorial problems, it is infeasible to sample all solutions in S , and so it is possible to obtain

two different length scale sets from two equivalent problems. This can occur when each of

the samples captures a nonequivalent sub-space of the problem (i.e. the solutions and their

respective objective function values differ), or when a different number of samples is taken

for each problem. In addition, if the sub-space where two nonequivalent problems differ is

not sampled, then it is also possible to obtain identical length scale sets for two nonequiv-

alent problems. An intuitive example is comparing a constant (flat) objective function to a

needle-in-a-haystack (NIAH) objective function; if the needle is not captured in the sample

of the NIAH, then the two length scale sets (assuming equal size) will be identical. It is

therefore imperative that the sampling methodology employed produces an adequate and

representative sample of the problem. An adequate sample will yield length scales that are
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uniformly drawn from the true, underlying distribution of length scales. Further discussion

is deferred until Section 6.2, where a novel sampling methodology and adequacy assessment

criteria to obtain such a sample is outlined.

5.3 Length Scale Distribution

By considering r as a random variable, the length scales in a landscape can be summarised

by their distribution. Continuous landscapes have an infinite number of solutions, and

hence r is treated as a continuous random variable.

Definition 5.2. Let r be a continuous random variable taking values from the set R = [0, ∞) (i.e.

r ∈ R). The length scale distribution is defined as the probability density function p(r).

To assist with readability, many of the following definitions and techniques are based on

probability densities, rather than probability mass functions. In most cases, the definitions

and techniques described have intuitive equivalents for probability mass functions, and

hence are applicable for discrete/combinatorial problems. Precise definitions and formu-

lae for the discrete/combinatorial case can be found in Appendix B.

The length scale distribution describes the probability of observing different length scale

values for a given problem landscape. Consider Example 5.1 (1-D linear function) again.

Since r = a, p(r) is a Dirac delta function with a spike at r = |a|:

p(r) =


∞ if r = |a|

0 otherwise

(5.3.1)

where ∫ ∞

0
p(r)dr = 1 (5.3.2)

It follows that the D-dimensional flat function also results in a Dirac delta function with a

spike at r = 0. Figure 5.1 illustrates p(r) for f (x) = 2x.

Now reconsider Example 5.3 (1-D quadratic function), where r = |a|
∣∣xi + xj

∣∣. Assuming

uniform enumeration of S , r is the absolute value of the sum of two independent, continu-

ous uniform random variables (multiplied by the constant |a|). Introducing lower (bl) and

upper (bu) bounds for f , let Z = X + Y, where X, Y ∼ U [bl, bu] and are independent. The

distribution for Z is triangular [66]:
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Figure 5.1: p(r) for f (x) = 2x.

pZ(z) =



z−2bl
(bu−bl)2 , 2bl ≤ z ≤ (bl + bu)

2bu−z
(bu−bl)2 , (bl + bu) < z ≤ 2bu

0 otherwise

(5.3.3)

A density, ps, can be produced by scaling another density, p(x), by a factor of s via the

relation ps(x) = 1
s p( x

s ). Hence, the 1-D quadratic’s length scale distribution is a “folded”

triangular distribution:

p(r) =
1
|a|

∣∣∣∣pZ

(
r
|a|

)∣∣∣∣
=

1
|a|

(
pZ

(
r
|a|

)
+ pZ

(−r
|a|

))

Figure 5.2 illustrates p(r) for f (x) = 2x2, x ∈ [−10, 10].

For simple problems where an analytical formulation of the problem is known, such as

Examples 5.1 and 5.3, an expression for p(r) can be derived. However, in most situations

the analytical formulation of the problem is unknown or difficult to derive p(r) from. In sit-

uations where analytical formulation is difficult or unknown, length scale values calculated

from a sample of the landscape can be used to estimate p(r). Probability density estimates

are used in a wide variety of practical applications, and there exists many approaches and
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Figure 5.2: p(r) for f (x) = 2x2, x ∈ [−10, 10].

techniques to derive accurate estimators. The length scale distribution, p(r), is an important

aspect of the framework presented in this thesis, and so the following section digresses in

order to discuss and review relevant probability density estimation techniques.

5.3.1 Probability Density Estimation

In probability density estimation, various techniques and methods are used to estimate a

probability density function for a given sample of data. The application of density estima-

tion in this thesis is to estimate the length scale distribution from a univariate sample of

length scale values. While numerous density estimation techniques exist for multivariate

data (e.g. see [79, 150]), the following review focuses on density estimation of univariate

data, X =
[
x1, x2, . . . , xn]. It is assumed that points in X are drawn independently from an

unknown probability density, p, and the aim is to obtain an estimator, p̂. There are three

general approaches to density estimation; parametric, semi-parametric and non-parametric.

Parametric density estimation assumes that p is from a particular type or family of den-

sity functions, with corresponding parameters Θ = (θ1, θ2, . . . , θk). The aim is to choose the

type of density and its corresponding parameters such that p̂ models the data well. When

little is known about the data, choosing a density family/type can be difficult, and so there

exist a range of model selection techniques (e.g. Bayesian Information Criterion, minimum

description length and structural risk minimisation) that can be employed to indicate the

preferred density from a set of candidates [149]. However, these methods still require prac-

titioners to specify a set of candidate models, from which the preferred model is chosen.
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Maximum Likelihood Estimation or Bayesian Estimation are typically used to estimate the

model parameters, Θ. In Maximum Likelihood Estimation, the parameters are assumed to

be fixed and their values are chosen such that the probability of the data is maximised [79].

In contrast, Bayesian Estimators model (and hence estimate) the density’s parameters with

a probability distribution. Using this approach, a prior distribution, p(Θ), is assumed and a

posterior distribution is estimated using Bayes’ Theorem:

p(Θ|X) =
p(X|Θ)p(Θ)∫

p(X|Θ′)p(Θ′)dΘ′
(5.3.4)

Evaluation of
∫

p(X|Θ′)p(Θ′)dΘ′ can be difficult in practice for some families of distribu-

tions [4]. Parametric estimation typically models the data using a small number of parame-

ters, and so it is advantageous in applications where storage of the density is an important

consideration. However, specification of the data’s parametric family can be very difficult

and can lead to erroneous modelling when little or no information is known about the nature

of the data.

A semi-parametric estimator models data using a combination of parametric and/or

non-parametric components. Semi-parametric models are useful when there is no single

density suitable for all of the data, rather, there are a number of densities, each suitable

for a specific subset of the data. One popular semi-parametric estimator is the mixture model,

which uses a weighted summation of component densities to produce a density estimate [4].

More specifically, given k component densities, p(X|Gi), such that ∑k
i=1 p(Gi) = 1, the den-

sity estimate is:

p(X) =
k

∑
i=1

p(X|Gi)p(Gi) (5.3.5)

The component densities of the mixture model can be a mixture of parametric and non-

parametric models.

In non-parametric density estimation, no explicit assumptions regarding the underly-

ing distribution of X are made. Instead, there is an assumption that X is fundamentally

“smooth”, which essentially means that similar inputs are assumed to yield similar out-

puts [4]. This is quite a reasonable assumption, after all, inference and prediction is rather

fruitless on noisy, random and erratic data. Non-parametric techniques are also known as

memory-based or lazy algorithms, because their specification often requires the entire dataset,

X [79]. In contrast, parametric models are simply defined by the density family and its
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corresponding parameters, which together are often much smaller than |X|. Despite their

larger space requirements, non-parametric density estimators are advantageous in scenarios

where little is known or can be assumed about the nature of X.

Because non-parametric density estimators do not assume an explicit distribution of the

data, they are applicable to a wide variety of data. The work in this thesis utilises density

estimation on univariate data only, and so techniques designed and better-suited to mul-

tivariate data are omitted from this review. One of the most well-known non-parametric

density estimators is the histogram. Histograms discretise X into “bins” of specified width h,

and the density is defined as [79]:

p̂(x) =
1

nh

n

∑
i=1

w
(

x− xi

h

)
(5.3.6)

where xi ∈ X and w is the weight function:

w(u) =


1 if |u| < 0.5

0 otherwise

(5.3.7)

Histograms are computationally very efficient to build and store, however they lack

smoothness and may contain drastic fluctuations in probability between adjacent bins. In-

creasing h can improve the smoothness of the estimator, however this can also introduce

more empty bins, and hence regions of 0 probability. The weight function acts as a harsh in-

clusion/exclusion operator; x’s probability is based purely on points from X that are within

a strict finite range (dictated by h) of x. To achieve smoothness, the range could be relaxed

such that points very close to x contribute largely to its probability, and as the distance from

x increases, the contributions gradually (and smoothly) decrease. This is the main idea be-

hind kernel density estimators which use a kernel function, K, in-place of the weight function,

w [79]:

p̂(x) =
1

nh

n

∑
i=1

K
(

x− xi

h

)
(5.3.8)

where h ∈ IR+ is known as the bandwidth and influences the smoothness of the estimate. For

the purpose of density estimation, the kernel function, K, is non-negative and integrates to

1:
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Figure 5.3: Kernel density estimator with a Gaussian kernel for X = [1, 4, 4.5, 6, 10] and
h = 1.5.

1.
∫ ∞
−∞ K(u)du = 1

2. K(u) ≥ 0, ∀u ∈ IR

K essentially dictates how the points nearby x influence its density value, and so it is often

also symmetric about 0. A histogram is thus a kernel density estimator with a uniform dis-

tribution (with range equal to the bin width) as K. One of the most popular kernel functions

used in practice is the Gaussian kernel [79]:

K(u) =
1√
2π

exp−
1
2 u2

(5.3.9)

Conceptually, kernel density estimation using a Gaussian kernel fits a (scaled) Gaussian

component to each point in X (i.e. µ = xi, σ = h). The probability of x is then the sum of all

the components’ probabilities at x. Because Gaussian distributions have an infinite support,

p̂ also has infinite support. Figure 5.3 illustrates the contributions of the individual Gaussian

components for X = [1, 4, 4.5, 6, 10] and h = 1.5; nearby points largely contribute towards

the density values, and the density is non-zero and generally quite smooth overall.

The computational running time of the length scale framework is dependent on the run-

ning time of the kernel density estimation. Thus in order to analyse the length scale frame-

work’s efficiency in later sections, the computational efficiency of kernel density estimation

must first be reviewed. Computation of Equation 5.3.8 for a single evaluation point requires

iterating over all n data points in X, and thus takes O(n) time (assuming the evaluation of

K takes O(1) time). Hence, computing the density for a set of m evaluation points requires
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O(mn) time. Various modifications can be made to reduce the computational complexity.

One commonly used approach reduces the running time to O(mg) by “binning” the the

points in X into a reduced set of g points that are equally spaced throughout the interval

of X [135]. Further reductions in running time can be made using more sophisticated ap-

proaches, such as Fast Fourier Transforms and evaluating the density at only the binned

points. While these can achieve significant improvements to speed, such modifications may

not be suitable for certain applications and can affect the accuracy of p̂.

The smoothness of p̂ is highly influenced by the bandwidth, h. Large values of h cor-

respond to a large overlap between kernels and thus yield a smooth density, while small

values yield a sharper density that is more sensitive to fluctuations in the data. The selec-

tion of an appropriate bandwidth is a hard problem in itself, and there exist a wide range

of well-established techniques that derive h from the input data and type of kernel function

being used. Perhaps the simplest class of bandwidth estimation methods are the so-called

“rule-of-thumb” methods [155]. In these methods, the bandwidth is derived from the band-

width that is optimal for data originating from a particular type of distribution (e.g. Gaus-

sian). While this does seem to counter the entire philosophy of non-parametric techniques

(i.e. techniques that assume no particular form on the data), “rule-of-thumb” bandwidth

selection can achieve satisfactory results when the data resembles some similarity to the as-

sumed density. For example, if the data is unimodal, symmetric and thin tailed, then using

a Gaussian kernel with a bandwidth that is optimal for a Gaussian will likely achieve satis-

factory results. In practice, rule-of-thumb methods are generally avoided as the bandwidths

chosen are sensitive to outliers and tend to over-smooth the data [79].

More accurate bandwidths can be derived by analysing and utilising the data itself, al-

though such techniques are often computationally more costly than rule-of-thumb meth-

ods. In Leave-One-Out-Cross-Validation, n estimators are constructed by leaving out a sin-

gle data point in turn. The bandwidth is then chosen such that the error (according to a

particular criterion) between the n estimators is minimised [79]. Given that n different esti-

mators are constructed, cross-validation methods are very computationally expensive and

can be impractical for datasets where n � 100. An alternative class of bandwidth selec-

tion methods, known as “plug-in” methods, derive h via computations involving estimates

of the density’s derivative functionals. The estimation of the density derivative functionals

are crucial to the success of these methods, and one of the most effective approaches is the

“solve-the-equation” technique [79, 155]. Here, an initial bandwidth is substituted into a

non-linear equation which is then solved and used to obtain an improved bandwidth esti-
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mate. This process is usually iterated multiple times, thus increasing the accuracy of h. The

solve-the-equation plug-in method runs in O(n2), but for the specific task of estimating h for

a univariate Gaussian kernel, O(n) can be achieved using the ε-exact algorithm [135]. Exper-

imental comparisons of the ε-exact algorithm and the original solve-the-equation method

on synthetic and real-world data show that the ε-exact algorithm does indeed achieve O(n)

running time, with negligible differences in the accuracy of h.

Well-known non-parametric estimators that were not discussed above include nearest-

neighbour estimators, variable-kernel estimators, adaptive kernel estimators, projection

pursuit estimators, delta sequence estimators and orthogonal series estimators (see [78] for

a review). While all are valid methods, kernel estimators are used throughout this thesis as

they are particularly appropriate for length scale data, which is univariate with little or no

information known regarding its underlying distribution. In addition to its appropriateness

for length scale data, kernel density estimation is intuitive, well-established in the literature,

widely used in practice and there are existing tools and algorithms to improve performance

with negligible detriment to the estimator’s accuracy. While kernel estimators are used for

the majority of density estimation in this thesis, for small, illustrative examples where the

accuracy of p̂ is not imperative, histograms are used instead.

5.4 Properties of the Length Scale Distribution

The length scale is defined as the change in objective function value with respect to a step

in the search space. For unknown f (i.e. black-box), r ∈ [0, ∞], and so in general, p(r) is

supported over the semi-infinite interval [0, ∞]. This interval can potentially be restricted if

additional function and domain information is known.

The majority of the length scale distributions of continuous problems in this thesis tend

to be unimodal, long tailed distributions. While this phenomenon is observed throughout

the continuous problems analysed in this thesis, it is certainly not true across all continuous

problems. To illustrate this point, the following investigation contrives problems to produce

multimodal length scale distributions. This is achieved by combining multiple 1-D linear

functions, each defined at a separate partition of the domain. Individually, each function’s

corresponding p(r) has a “spike” positioned at |a|, and so by combining functions with dif-

ferent values of a, a multimodal p(r) can be obtained. For example, consider a 1-D piecewise

function consisting of two linear functions:
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Figure 5.4: Examples of multimodal length scale distributions.

f (x) =


ax, x ≤ 0

bx, x > 0

(5.4.1)

where a 6= b. The subsequent length scale distribution has two modes positioned at a and b

respectively. Figure 5.4 shows two realisations of Equation 5.4.1 where S = [−10, 10]. Solu-

tions were enumerated from S by increments of 0.01, the length scales between all solutions

were calculated and p(r) was estimated using a histogram with 100 bins.

This concept can be extended to produce piecewise functions consisting of n linear com-

ponents. In the following, S = [0, 10] is partitioned into n equally sized pieces. The domain
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Figure 5.5: n = 10 with sequentially assigned pieces.

of piece i is [10(i−1)
n , 10i

n ] and fi(x) = ix. Figures 5.5 to 5.7 displays example functions and

length scale distributions for the piecewise function where n = 10, 30 and 100.

For the sequentially-assigned functions (Figures 5.5b to 5.7b), increasing the number of

pieces, n, initially increases the number of modes. However, as the number of modes in-

creases, the length scales begin to reduce the distinction between modes. Eventually, a

threshold is reached (here, at n ≈ 100) where the modes are no longer distinguishable,

and instead, the distribution resembles a triangular distribution. Indeed as n continues to

increase, the distribution smoothly tends towards a triangular distribution with lower and

upper bounds 0 and n respectively and single mode at n
2 . This is actually quite intuitive; as

n increases, f more closely approximates a quadratic function.

The examples above show that by assigning the piece functions sequentially to the do-
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Figure 5.6: n = 30 with sequentially assigned pieces.
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Figure 5.7: n = 100 with sequentially assigned pieces.
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Figure 5.8: n = 10 with uniform randomly assigned pieces.

main, multimodal length scale distributions up to a certain number of modes can be pro-

duced. Next, the n linear piece functions are assigned uniform randomly along the domain.

That is, n different linear pieces are produced ( fi(x) = ix) and each function is assigned a

(uniform) random partition of the domain. As in the above examples, the pieces are com-

bined such that the functional transitions between domain partitions has no discontinuities.

Figures 5.8 to 5.10 shows the results of the piecewise functions and length scale distributions

for these problems.

The randomly-assigned piecewise functions exhibit similar (yet more erratic) behaviour

to the sequentially-assigned piecewise functions. Specifically, as n increases, the modes be-

come less pronounced and are rendered indistinguishable by the remaining length scales.

However, the randomly-assigned piecewise functions do not appear to produce triangular
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Figure 5.9: n = 30 with uniform randomly assigned pieces.
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Figure 5.10: n = 100 with uniform randomly assigned pieces.
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length scale distributions as n increases. Instead, the p(r)s tend towards a unimodal sym-

metric distribution with shrinking variance as n increases. As previously shown in Exam-

ple 5.1, a 1-D linear function results in a p(r) with a single mode positioned at the gradient

of the linear function. The results in Figure 5.10 reflects the similarity of the piecewise func-

tion to the 1-D function; as n increases, f appears increasingly more similar to a 1-D linear

function with small perturbations, and the resulting p(r) in Figure 5.10b has a single, narrow

mode.

5.5 Related Work

Length scale is related to a number of other existing concepts in the optimization and wider

literature. While the length scale value in Equation 5.1.1 bears similarity to other con-

cepts discussed below, it is fundamentally and uniquely concerned with capturing relative

changes in the objective function at a wide variety of solution intervals, particularly for the

purpose of analysing and understanding optimization problems.

The definition of r is related to the difference quotient (also known as Newton’s quotient and

is a generalisation of finite difference techniques) from calculus and numerical analysis. The

difference quotient is defined as f (x+h)− f (x)
h and used to estimate the derivative at x, as h→ 0

[125]. Numerous applications, including the implementation of gradient-based algorithms,

utilise approximations of this form when the gradient of f is not available. Finite difference

methods are widely used in the solution of differential equations, but are not typically used

in the context of landscape analysis.

Length scale should not be confused with the derivative of a function. Fundamentally,

length scale aims to capture the relative change in objective function value between solutions

at a wide variety of distance intervals. In contrast, the derivative is defined at a single point,

and while approximations (like the difference quotient) typically utilise pairs of points, the

points are infinitesimally close to each other. Crucially, r is defined for problems where no

notion of a derivative exists, such as combinatorial problems, black-box continuous prob-

lems and non-differentiable continuous problems.

Length scale is also related to the Lipschitz constant, defined as a constant, L ≥ 0, where

the Lipschitz condition
∣∣ f (xi)− f (xj)

∣∣ ≤ L‖xi − xj‖, ∀xi, xj is satisfied [152]. The ideal Lips-

chitz constant is the smallest L for which the Lipschitz condition holds, and functions satis-

fying the condition are known as Lipschitz continuous.

The definition of the Lipschitz constant is very similar to length scale, more specifically,
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the maximum length scale of a problem is equal to the ideal Lipschitz constant. However,

the differences in the definitions of r and L define vastly different values; valid Lipschitz

constants may overestimate the largest rate of change, while length scales will always un-

derestimate or be equal to the largest rate of change. Consider again Example 5.3: the 1-

D quadratic objective function (defined in Section 5.1). The length scales of this function

are given by |a|
∣∣xi + xj

∣∣. For convenience, bounds x ∈ [0, 1] are introduced a = 1 (hence

f = x2). Given that xi, xj ∈ [0, 1], valid r values are in (0, 2). For bounds [0, 1], Lipschitz con-

stants in [1, ∞) satisfy the Lipschitz condition. Hence, values for r and L are very different

for this simple function.

Lipschitzian optimization algorithms are a class of global optimization algorithms that

use knowledge of Lipschitz constants to solve Lipschitz continuous problems [75]. A func-

tion’s Lipschitz constant is not always known a priori (e.g. in the black-box scenario), and

so various methods have been developed in order to estimate L from the landscape. Es-

timating L is itself a global optimization problem, and so heuristics are used to actively

search the landscape for L. Heuristics vary between methods, with many calculating what

are essentially length scales between solution pairs, and refining the search to solutions with

large/promising length scales [10, 178, 204]. Because the aim is to accurately estimate L, only

the supremum of the length scales along the trajectory is of interest and hence retained. The

remaining sample of length scales are of no use in the Lipschitzian optimization context, and

so they are never analysed and simply discarded. Consequently, notions and concepts sim-

ilar to length scale analysis are absent from the Lipschitzian optimization literature. While

the techniques used to estimate L illustrate potential approaches for sampling r, the sample

is biased due to the heuristics used to search for L. Therefore, the resulting length scales

do not present an accurate representation of the landscape and are of little use from a land-

scape analysis perspective. In summary, the Lipschitzian optimization community utilise

length scales, however there is no evidence that the length scales have been analysed, and

the methodologies used to generate samples of r are not suitable for landscape analysis.

To summarise, length scale analysis captures information regarding all rates of change,

over a wide variety of intervals (distances) on the problem. While the concept of length scale

is similar to the difference quotient and the Lipschitz constant, to the best of knowledge, the

utilization of this information at all scales has not been previously performed in the context

of optimization problem analysis.
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5.6 Summary

Length scale, r, has been proposed as a fundamental property of optimization problems. In

practice, length scale values can be calculated from a finite sample of candidate solutions

and their objective functions values. The simplicity of length scale means that it can be read-

ily calculated from samples of the landscape and/or algorithm search data. Length scale is

invariant to isometric mappings including translation, rotation and reflection, and it is sensi-

tive to scaling and shearing. Common r values indicates functional equivalence between the

pairs of solutions over which the r values are calculated. Likewise, nonequivalent functions

will yield different length scale values. Hence, r is an indicator for functional equivalence

over pairs of solutions.

The length scale distribution, p(r), is an important summary of length scale information.

When the analytic form of f is known, an analytic expression for p(r) may be derived. The

expression for p(r) facilitates analysis of landscape structure through direct interpretation

and/or sampling. In practice, f is often unknown or difficult to derive an expression for

p(r). In this scenario, a finite multiset of r values can be obtained from sampling the prob-

lem landscape, and p(r) can be estimated using a probability density estimator such as a

kernel estimator or histogram. While the majority of length scale distributions analysed in

this thesis are unimodal, long-tailed distributions, it has been shown that multimodal dis-

tributions are possible.
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CHAPTER 6

Length Scale Analysis: Techniques and

Practical Considerations

But the truth is, it’s not the idea, it’s never

the idea, it’s always what you do with it.

Neil Gaiman

The length scale proposed in Chapter 5 encapsulates the structural information in problem

landscapes. This chapter proposes a new method to sample length scale values in practice,

and techniques to subsequently analyse the length scale information. Section 6.1 reviews se-

lected techniques from the visualisation, set-theory, clustering, statistics and machine learn-

ing literature, and unique procedures are developed to apply relevant techniques to length

scale data. In Section 6.2 a novel methodology is proposed to obtain an adequate sample of

length scales in practice. Important practical considerations, including the time and space

complexities of the methods, are discussed in Section 6.3. The chapter concludes in Sec-

tion 6.4 with a summary of its contributions.

6.1 Analysing Length Scales

For a given optimization problem, the length scales are a multiset of scalar values that con-

tain important structural information. As argued in Section 5.2, the exhaustive multiset

of length scales completely describes and hence identifies a problem. This section investi-

gates the utility of length scale information by analysing the length scales to infer structural

features of a problem landscape, as well as using the length scales to compare the struc-

tural similarity between problems. While this section mainly outlines relevant analysis tech-

niques, experiments in Chapter 7 utilise the techniques developed in order to analyse sets of
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artificial, benchmark and real-world-like problems from both continuous and combinatorial

optimization.

6.1.1 Heatmaps of Length Scale Values

Heatmaps are a commonly used technique to visualise the data from a two dimensional

matrix. Typically, such matrices occur when a measurement is taken between the entities of

two sets. To build a heatmap, the first set is enumerated (according to some order) along

the x-axis, the second set is likewise enumerated along the y-axis, and the grid-points at

coordinates (p, q) are coloured according to the measurement between the entities that p

and q represent. Thus, for 1-D problems, the length scale values between explicit steps in

the search space can be viewed by using a heatmap, where the x-axis corresponds to the

start of the step, xi, the y-axis corresponds to end of the step, xj, and the colour of pixels

at the coordinate (xi, xj) reflects the length scale value. This technique involves sampling

the search space evenly within a bounded region. The constraints defined for constrained

problems make suitable bounds, however bounds must be introduced for unconstrained

problems.

To demonstrate the information afforded by a heatmap, consider Example 5.3 (the 1-

D quadratic function). In this example, consider f (x) = 2x2, x ∈ [−10, 10] with x sampled

incrementally: S′ = {−10,−9.999, . . . , 10}. Figure 6.1 shows the resulting heatmap of length

scales between all 20001 solutions in S′. Pixels are coloured according to their value in

the range of the length scales sampled, where black represents low values, red represents

intermediate values and yellow/white represents high values.

Length scale is symmetric by definition, and so heatmaps will be symmetric across the

diagonal drawn from the upper left corner and the lower right corner. The length scale value

between a solution and itself is not defined, and so the leading diagonal (indicated by the

blue line) in the heatmap is also not defined.

The heatmap in Figure 6.1 shows how length scales capture the symmetric structure

of the quadratic function. Steps directly across the minimum (i.e. from x to −x and vice

versa) result in no change in f , and hence r = 0 (coloured in black). For this function, the

largest length scales are at the edges of the search space (e.g. between 9.9 and 10), where the

landscape is the steepest. Because of the precision used to enumerate the function, this is a

step between 9.999 and 10 (or -9.999 and -10), which results in r = 39.998. Note that as the

precision of the step size approaches 0, r asymptotically approaches the gradient, which is
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Figure 6.1: Heatmap of r for f (x) = 2x2, x ∈ [−10, 10]. The blue line indicates where xi = xj,
and hence r is undefined.

40 for the step on the edge of the quadratic. The heatmap shows that similarly sized steps

towards the middle of the landscape (e.g. between 0 and 0.001) results in small length scales.

Saddle points, and hence potential optima, can be observed when a length scale value of 0

occurs. For this problem, there is a clear optimum represented by the dark region. Overall,

the change in length scales is very smooth, and reflects the smooth nature of the quadratic

landscape.

To illustrate the richness of length scale information provided by heatmaps, the follow-

ing artificial 1-D function is used and contains a variety of different topological features,

including neutrality, linear slopes, convex basins of attraction and funnels.

Example 6.1. 1-D “mixed-structure” function defined as follows and shown in Figure 6.2a.
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f (x) =



−1, 1 ≤ x < 1.5

50(x− 1.75)2 − 4.15, 1.5 ≤ x < 2

5.125x− 11.25, 2 ≤ x < 3

50(x− 3.25)2 + 1, 3 ≤ x < 3.5 where x ∈ [0, 6]

0.75(x− 4.35)2 + 3.583, 3.5 ≤ x < 5

3 log(|x− 5.6|) + 5.5, 5 ≤ x < 5.5

3 log(|x− 5.4|) + 5.5, 5.5 ≤ x ≤ 6

0 otherwise

Figure 6.2b shows the length scales calculated between pairs of points, xi, xj, at increments

of 10−3 across the search space, S = [0, 6]. The values have been shaded using a logarithmic

scale to better visualise magnitudes of change in r. The blue line across the leading diagonal

indicates undefined length scales, where xi = xj.

It is clear from the length scales in Figure 6.2b that there are many different structures

within the landscape. While it may not be immediately obvious what the structures are, the

boundaries between them can be identified by the sudden transitions in shade/colour and

pattern. For example, the colour change from black to light yellow at xi ≈ xj ≈ 1.5 on the

diagonal of the figure indicates a large change in structure. Here, the change in structure

is caused by the transition between the flat/neutral region (1 ≤ x < 1.5) and the quadratic

region (1.5 ≤ x < 2). Likewise, the change in colouring at xi ≈ xj ≈ 5 shows a change

in structure, caused by the transition between the quadratic region at 3.5 ≤ x < 5 and the

funnel region at 5 ≤ x ≤ 6.

As the heatmap is symmetric, the nature of the structures within the landscape can be

further understood by analysing the lower (or upper) triangle in Figure 6.2b. Darker shades

represent small changes in objective function values between the candidate solutions xi and

xj, while lighter shades indicate large jumps in f . Solid blocks of colour, such as between

[0, 1], signal a constant change in objective function when the solutions are drawn from a

region. The dark lines and curves show steps in the space where f (xi) ≈ f (xj), e.g. moving
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Figure 6.2: 1-D mixed-structure function enumerated at increments of 10−3.
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from a point on one side of a basin or funnel to a point on the other side of the minimum

with equal objective function value. Approximate locations of optima, such as x = 3.25,

may be located by observing dark lines where the area on either side of the line changes to

lighter shades.

The visualisation in Figure 6.2b also shows how simple structures, such as convex and

concave basins of attraction, can combine to give a complex objective function from the

viewpoint of an algorithm that only has solutions (and their respective f -values) sampled

from the landscape. Consider steps within [3, 6]; the change in objective function values

vary significantly in a complex, unpredictable manner. This is the only type of information

that black-box optimization algorithms can use when solving a given problem.

Direct visualisation of length scales using heatmaps is limited for multidimensional

problems. In these situations it may be possible to view the length scale heatmap of par-

ticular dimensions, or of the search space resulting from dimensionality reduction [93].

6.1.2 Length Scale Set

The length scale values sampled from a landscape form a multiset, and this can be viewed

using simple graphing techniques such as plotting the sorted set, scatterplots and box-and-

whisker plots. Figure 6.3 shows the sorted length scale values for the 1-D quadratic (Exam-

ple 5.3 where a = 2) and mixed-structure function (Example 6.1). The length scales used

here are the same set used to produce the heatmaps in Figures 6.1 and 6.2b. By positioning

the r values along a common domain ([0, 1] in Figure 6.3), comparisons between length scale

sets can be made.

Figure 6.3 shows that the mixed-structure function has a wider variety of length scale

values than the quadratic. In particular, the mixed-structure function has length scales over

10 orders of magnitude smaller and 3 orders larger than the quadratic’s length scales. Note

that due to the logarithmic scaling of the y-axis, length scales of 0 are absent from the graph

(the mixed-structure function’s curve begins after the 1-D quadratic’s because the mixed-

structure has more length scales of 0). The quadratic’s curve indicates that the length scale

set is predominately made up of length scales in [0, 10], with few values outside this range.

Indeed, both curves show that the majority of length scales fall between a relatively very

small range, and that the extreme length scale values within each set make up only a small

proportion of the set.

There exist many other approaches to measure and quantify the similarity between sets.
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Figure 6.3: Sorted length scale multisets for the 1-D quadratic (where a = 2) and 1-D mixed-
structure functions.

Arguably the most simplest and well-known measure is the Jaccard index, which given two

sets A and B, is defined as the proportion of common/intersecting elements to the union of

A and B [94]. Mathematically:

J(A, B) =
|A ∩ B|
|A ∪ B| (6.1.1)

Thus, 0 ≤ J ≤ 1, and J(A, B) = 1 if A = B, while J(A, B) = 0 if A and B have no elements in

common. The Jaccard index is 0.0023 for the samples of length scales from the 1-D quadratic

(where a = 2) and mixed-structure function shown in Figure 6.3.

Related set similarity measures that are also based on manipulations of the set unions

and intersections include the Tanimoto similarity and Sørensen similarity. A plethora of other

similarity measures can also be found in the clustering literature [196]. A solution to a clus-

tering problem is simply an assignment of each data point into a particular cluster. Hence,

each cluster can be thought of as a set of data points, with the constraint that the sets of

clusters are disjoint. Therefore, a clustering solution is essentially a set of disjoint sets. A

common clustering task is to measure the similarity between two or more cluster solutions.

This task typically arises when one wishes to quantify how close a clustering solution is to

the optimal solution (if known), or when one wishes to compare the solutions given by dif-

ferent clustering algorithms. While this literature is concerned with computing the similar-

ity between two or more sets of sets, nonetheless, techniques from this domain are relevant.

Existing measures generally involve counting the number of similar/dissimilar pairs of el-

ements, measuring the overlap of elements between the sets, or measuring the information
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shared between the sets (see [196] for a comprehensive review).

Counting and overlap-based similarity measures rely on the discrepancy between the

explicit values within the sets, and so they will often fail to indicate similarity between

scaled/translated but otherwise identical sets (e.g. B = 10A). Length scale is sensitive

to scalings of f and/or S , and so the resulting length scale sets for scaled, but structurally

identical problems can vary by a factor. For example, the length scales for the 1-D quadratic

are dependent on a, and so the length scale sets for two different realisations of this func-

tion will differ depending on the value of a. Thus counting and overlap based measures,

including the Jaccard index, are not appropriate for measuring the similarity of length scale

sets, and hence by proxy, the structural similarity of problems. To illustrate this point, the

Jaccard index between length scale multisets from 1-D quadratics with a = 1 and a = 2 (enu-

merated in the same manner as above) is 0.1941, despite the functions differing by simply a

scalar factor (and hence containing the same structural information).

On the other hand, information-based approaches utilise the probabilistic properties of

the occurrences of elements in the sets, rather than the explicit values of the elements. Be-

cause of this, information-based similarity measures between length scale sets are more suit-

able for quantifying the similarity between problems. A popular technique in this area is the

Variation of Information (VI), which is defined as [111]:

VI(A, B) = H(A) + H(B)− 2I(A, B) (6.1.2)

where H(A) is the entropy of A:

H(A) = − ∑
ai∈A

p(ai) log2 p(ai) (6.1.3)

and I(A, B) denotes the mutual information between A and B:

I(A, B) = − ∑
ai∈A

∑
bj∈B

p(ai, bj) log2
p(ai, bj)

p(ai)p(bj)
(6.1.4)

where p(ai, bj) is the probability that ai and bi are both in A ∩ B. VI was developed specifi-

cally for measuring clustering solutions for a given dataset of size n, and therefore assumes

|A| = |B| = n. It is a metric bounded by log2n, and so it can be normalised in order to

provide a more intuitive measure that is within [0, 1].

VI measures the amount of information that is lost and gained when the clustering so-

lution A is used instead of B. For the purpose of measuring length scale set similarity, VI
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can be thought of as the amount of information that is lost and gained when the length scale

set changes from A to B. As previously discussed, the length scale sets of 1-D quadratics

with a = 1 and a = 2 contain the same information, and intuitively, the VI between them is

0 (indicating that no information is lost or gained by using one set over the other). In con-

trast, the length scale sets of the 1-D quadratic (with a = 2) and the mixed-structure function

contain some common information (i.e. the mixed-structure function contains quadratics),

however the mixed-structure set also contains additional information pertaining to struc-

tures not found in the 1-D quadratic. The (normalised) VI calculated between these sets is

approximately 0.5524, which indicates that there is a mixture of shared and unique informa-

tion in the sets.

While VI and other information-based set similarity techniques may be an attractive

proxy for quantifying problem similarity, they are of course based on the finite set of length

scales sampled, and so may vary across different samples. It is also difficult to apply these

techniques to sets of differing sizes; when a discrepancy in size occurred in the above, the

smaller of the sets were “padded” with additionally sampled length scales. Furthermore,

because the normalisation is based on the size of the set, the values of the normalised VI

should only be used to compare sets of the same size. For example, if the VI was calculated

between two problems using 1000 length scale values, then it should only be compared to

VIs calculated using 1000 length scale values.

In summary, the length scale set can be analysed and compared using sorted plots,

scatterplots, box and whisker plots and explicit similarity measures. While counting and

overlap-based methods are commonly used to quantify set similarity, they are not invariant

to scaled (but structurally identical) sets. Information theoretic similarity measures, such

as the Variation of Information, are based on the probabilistic properties of the sets, and

consequently, are typically invariant to set scalings.

6.1.3 Length Scale Distribution

The length scale distribution, p(r), provides a statistical model from which to visualise,

analyse and interpret length scale values. The distribution is a highly useful summary of

the length scale values; it can easily be visualised and facilitates the application of existing

statistical analysis techniques. For example, the sorted length scale sets of the 1-D quadratic

(where a = 2) and mixed-structure function shown in Figure 6.3 can be better visualised by

their respective length scale distributions (using kernel density estimators with “solve-the-

108



CHAPTER 6: LENGTH SCALE ANALYSIS: TECHNIQUES AND PRACTICAL CONSIDERATIONS

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

r

p(
r)

(a) 1-D quadratic

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

p(
r)

r
(b) 1-D mixed-structure

Figure 6.4: Example length scale distributions.

equation plug-in” bandwidth estimation), shown in Figure 6.4.

The distributions in Figure 6.4 are clear summaries of the length scale information. As

previously derived in Equation 5.3, the 1-D quadratic is a folded triangular distribution,

and Figure 6.4a nicely illustrates where this name originates from. Figure 6.4a shows that

the most probable r is 0, and as r increases, its probability decreases in a smooth, linear

manner. The range of r values in Figure 6.4a indicates that the steps encountered in the

sample do not contain drastic (relative) fluctuations in objective function value. The 1-D

mixed-structure function also contains a frequent amount of small length scales, however

large (relative) objective function fluctuations are also possible (note the logarithmic scaling

of the x-axis in Figure 6.4b).
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Measure 1-D Quadratic Mixed-Structure

Mean 13.3337 1.8793

Median 11.716 1.1039

Mode 0 0

Standard Deviation 9.4283 2.4525

Range 39.998 1000

1st Quartile 5.36 0.5270

3rd Quartile 20 2.1814

Skewness 0.5657 9.0731

Kurtosis 2.4 1843.2

Table 6.1: Sample Estimates of Common Statistical Measures

The general hypothesis that follows is that problems with structure of similar com-

plexities should yield similar length scale distributions. Subsequently, summaries of p(r)

are potentially very useful for characterising and comparing problems. Perhaps the most

well-known summaries of distributions are classical statistical measures of central tendency

(mean, median and mode), shape (skewness and kurtosis) and variability (range, quartiles

and standard deviation). Statistical measures of p(r) are summaries of the r values, and so

it follows that they may not be unique, but will vary depending on the structure present in

the sampled r values. Hence while two structurally different problems will yield different

p(r)’s, there is no guarantee that their corresponding summary statistics are unique. Ta-

ble 6.1 contains common statistical measures calculated for the length scale sets for the 1-D

quadratic (where a = 2) and the mixed-structure function. Note that despite being different

problems, the mode is 0 for both problems. The mean and median also measure the central

tendency of the data, and Table 6.1 shows that the 1-D quadratic tends to be centred around

length scales that are approximately an order of magnitude larger than the mixed-structure

function. The skewness and kurtosis of the 1-D quadratic are much smaller than the mixed-

structure function. Large skewness values indicate the degree of asymmetry in the data,

while large kurtosis values indicate the heaviness of the distributions tail(s).

As for the length scale set, concepts from information theory can also be used to char-

acterise p(r). Shannon entropy is widely used as a measure of the uncertainty of a random

variable [40]. Specifically, entropy measures the expected amount of information needed to

describe the random variable. Let supp(r) be the set of r values for which p(r) > 0 (supp(r)
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is commonly referred to as the support set of r). The entropy of a probability density func-

tion is known as differential entropy and is defined as [40]:

h(r) = −
∫

supp(r)

p(r) log2
(

p(r)
)

dr (6.1.5)

Appendix B contains the definition for the discrete case. One important difference between

(discrete) entropy (H(r)) and (continuous) differential entropy (h(r)) is that the H(r) ≥ 0,

while h(r) can be negative.

Consider the circumstances in which h(r) is minimal; the outcome of the random variable

for the Dirac delta function can only be one possible value: a. Because only one possible

value can occur, intuitively, there is absolutely no uncertainty and so the differential entropy

is minimal. One might expect the differential entropy to be 0, however it is actually −∞

[116]. This is because the density of the Dirac delta distribution can be substituted for the

density of a Laplace distribution as λ → ∞. By making this substitution, the differential

entropy as λ→ ∞ is:

lim
λ→∞

log2

(
2e
λ

)
= ∞ (6.1.6)

Now consider the circumstances in which h(r) is maximal. As previously mentioned, dif-

ferential entropy measures the uncertainty of a random variable. Hence to maximise h(r),

the outcome of the random variable r must be maximally uncertain. Maximal uncertainty

means that all possible outcomes of the random variable are equally probable, and conse-

quently, r is uniformly distributed in a bounded region. Hence, uniformly distributed length

scale values maximise h(r). The differential entropy for r ∼ U [a, b] is log2(b− a) [40].

In terms of landscape structure, the 1-D constant and linear functions are very simplistic

and contain minimal structural information. The p(r)s for such landscapes are Dirac delta

functions, which have minimal differential entropy. In contrast, very complex (i.e. random)

landscape structure is required to produce uniformly varying length scale values. For such

complex landscapes, h(r) is maximal. Hence, there is a close relationship between the struc-

tural complexity of landscapes and the resulting value of h(r). Indeed, given a particular

landscape with unknown structural complexity within these two extremes, the resulting

h(r) can be used as an indicator of the structural complexity.

Analogous to the similarity measures between length scale sets, tools from information

theory can be used to directly compare two length scale distributions. One commonly used

111



CHAPTER 6: LENGTH SCALE ANALYSIS: TECHNIQUES AND PRACTICAL CONSIDERATIONS

measure of similarity between two distributions is the relative entropy (also known as the

Kullback-Leibler divergence) [92]. Given two length scale distributions p(r) and q(r), the rela-

tive entropy measures how similar q(r) is to p(r), and it is defined by:

DKL(p||q) =
∫ ∞

0
p(r) log2

p(r)
q(r)

dr (6.1.7)

where the convention 0 log2 0 = 0 is used and p is absolutely continuous with respect to q

(see Appendix B for discrete definitions).

Relative entropy is not a symmetric measure and DKL(p||q) 6= DKL(q||p) in general. To

obtain a symmetric measure, one can instead use the symmetric Kullback-Leibler divergence,

also known as the Jeffrey divergence or J-divergence, which was originally defined by Kullback

and Leibler in [92] (Equation 2.5):

DJ(p||q) = DKL(p||q) + DKL(q||p) (6.1.8)

Given that the relative entropy can be used to measure the similarity between two distribu-

tions, the relative entropy between length scale distributions is a proxy for comparing the

structural characteristics between landscapes. This insight is a crucial contribution of the

thesis; the structural similarity between two problems can be quantified without explicitly

measuring and comparing specific structural properties. Consequently, the J-divergence is

a primary component of the framework proposed to analyse and characterise optimization

problems.

While the explicit dissimilarity estimates resulting from calculating the J-divergence are

useful for directly comparing problems, they can also be further analysed to gain insight into

the relationship between problems. For example, given a set of n problems, the dissimilarities

between all 1
2 n(n− 1) pairs of problems can be calculated. There are a plethora of techniques

that can be applied to infer relationships from dissimilarity data, and in this thesis two pop-

ular techniques are utilised: hierarchical clustering and dimensionality reduction.

As mentioned above in Section 6.1.2, cluster analysis is used to infer groups and relation-

ships in multivariate data. Hierarchical clustering is a well-known clustering technique that

can be used to visualise potential clusters or groups of objects from a given set [4].

Dimensionality reduction techniques are frequently used in machine learning to reduce

a D-dimensional dataset to K dimensions, typically for K � D [93]. To achieve a reduction

in dimensionality, a measure of distance or similarity is used to quantify the inter-point re-

lationships, and the techniques strive to embed the points in the reduced dimensional space
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while preserving the inter-point relationships. Here, the inter-point relationships become

more important than the actual points themselves, and so there exist a subset of dimen-

sionality reduction techniques that operate purely on the similarities between points (i.e.

they require no knowledge of the original dataset). In doing so, these techniques take a

similarity matrix as input, and output a K-dimensional dataset of points that are spatially

distributed according to the input similarities. Therefore, dimensionality reduction tech-

niques that operate on similarity matrices can be applied to pairwise J-divergence values,

and subsequently be used to produce 2-D and 3-D visualisations of the relationships be-

tween problems.

Well-known dimensionality reduction techniques that operate on similarity matrices in-

clude Principal Component Analysis, Multi-Dimensional Scaling and Stochastic Neighbour

Embedding (SNE). A current state-of-the-art dimensionality reduction technique is t-SNE; a

probabilistic, non-linear method that aims to distribute points in a lower-dimensional space

such that the original, high-dimensional neighbourhood relationships are preserved [186].

To achieve this, a non-convex cost function modelling the discrepancy between the low and

high dimensional relationships is minimised using a variant of stochastic gradient descent.

t-SNE is parameterised by a perplexity term, which essentially controls the number of effec-

tive neighbours near a given point.

6.2 Sampling Length Scales in Practice

As mentioned previously, when exact derivation and/or enumeration of the length scales

for a problem is infeasible, a representative sample of length scales can be analysed instead.

Let p(r) be the true length scale distribution, and let p̂(r) be the length scale distribution

estimated from a finite sample of length scales. Intuitively, as the number of sampled length

scales increases towards complete enumeration, p̂(r) converges to p(r). However in prac-

tice, the methodology used to sample r and the overall size of the sample will affect the

convergence of p̂(r) to p(r).

Two solutions are required to compute a single r value, and so a sample of solution pairs

is required to construct a sample of r. There are many different methods and schemes appli-

cable to calculating and collating length scale values from samples of solutions. One method

is to calculate the r values between all unique pairwise combinations of a sample of solu-

tions. More specifically, with an initial sample of m solutions (assumed to adequately cover

S), all (m
2 ) unique combinations of pairs are used to construct a sample of length scales.
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Using this technique, m(m−1)
2 length scales are sampled from m unique solutions in the land-

scape. While this approach uses the maximum information available from m solutions, it

is limited in that a length scale sample of size O(n) is based on only O(
√

n) unique solu-

tions. It is conjectured here that to obtain a sample of length scales representative of the true

distribution, r should be sampled from as wide a variety of solutions in S as possible. In

the extreme case, n length scales can be calculated using n pairs of unique solutions, i.e. 2n

unique solutions. If computational effort/storage is an important consideration, the number

of unique solutions used to generate the length scales can be reduced. For example, n length

scales can be generated via a sample of n unique solutions by pairing each solution with

exactly two other solutions. One way to achieve this is by randomly permuting the order

of the samples and calculating r between subsequent solutions in the (permuted) sample.

This method is further outlined in Algorithm 6.1, where a multiset of length scales (using

Euclidean distance) are calculated from a given sample and objective function.

Algorithm 6.1 Generation of the length scale multiset
Input:

Sample of solutions, S ′ ←
[
x1, . . . , xn]

Objective function, f : S ′ → IR
1: S ′′ ← RandomPermutation(S ′)
2: for i← 1 to n do
3: xi ← S ′′[i]
4: xj ← S ′′[(i + 1) mod n]

5: r[i]← | f (x
i)− f (xj)|
‖xi−xj‖

6: end for
7: return r

The method used to generate the initial samples of solutions is an important aspect of the

length scale analysis framework and deserves careful consideration. As investigated in the

context of Dispersion and FDC in Chapter 4, uniform random sampling of high dimensional

continuous problems can yield a sparse sample where the Euclidean distances between solu-

tions are similar [3, 13]. Hence, a uniform random sample is not ideal for generating length

scales in high dimensions; the denominator of r (i.e. the distance between solutions) would

be similar across all sampled r, thereby essentially reducing r to the magnitude of change in

the objective function. The purpose of the length scale analysis framework is to analyse the

objective function at a variety of scales (i.e. distances), and so a sample of solutions at varying

distances apart in S is required. Lévy random walks were successfully used in Chapter 4 to

produce representative samples continuous optimization problems, appropriate for subse-

quent landscape analysis. Hence in this thesis, candidate solutions of continuous problems
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are sampled using a Lévy random walk, where steps are taken in a random, isotropic direc-

tion and step sizes are sampled from a Lévy distribution [156]. As previously discussed in

Section 4.3, the Lévy distribution pertaining to step size is defined by scale (γ) and location

(δ) parameters. δ determines the minimum possible step size, and is therefore set to 0 in all

experiments in this thesis. γ essentially controls the magnitudes of step sizes generated. To

determine appropriate values of γ, the distributions of distances between solutions gener-

ated were examined, and γ was adjusted to ensure that steps spanning the diameter of S
were obtained.

The sample size required to produce an adequate sample will vary based on the structure

of the landscape. For the 1-D linear and constant objective functions, any pair of solutions

will yield the single length scale value that captures the inherent simplicity of the problem’s

single structural feature (i.e. slope). However, problems with more complex structures, such

as the 1-D mixed-structure function defined in Example 6.1, will require many samples to

adequately explore and capture the characteristics of the landscape structures.

Of course, the underlying structure of the problem is unknown in the black-box scenario,

and so choosing an appropriate sample size is difficult in practice. Even when structural

information is available, the number of solutions required to adequately sample and sum-

marise a structure is unclear. For example, 20001 solutions were used to sample the 1-D

quadratic displayed in Figure 5.2, but perhaps more or less solutions could have been sam-

pled to achieve a similar result. In this thesis, sample sizes are made as large as practically

possible. In addition, a methodology is proposed below to assess the convergence of a sam-

ple.

6.2.1 Assessing Sampling Adequacy with Length Scale Analysis

If p(r) is known, the KL-divergence can be used to directly measure convergence, since

DKL (p || p̂) = 0 when p̂(r) = p(r). Often, p(r) is unknown, and so the KL-divergences

between different sample sizes (i.e. DKL ( p̂n+1 || p̂n)) can be assessed as an indicator for con-

vergence. That is, once an adequate sample size is achieved, subsequent sampling will not

drastically alter the distribution, and so the KL-divergence between the subsequent sample

size and the current sample size will be negligible.

The following experiment investigates the conjecture that length scale is affected by the

variety of the solutions in the sample. Specifically, the following sampling methodologies

are compared:
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• MU1: generate a uniform random sample of n solutions and calculate (n
2) length scales

from all pairwise solution combinations.

• MU2: generate a uniform random sample of (n
2) solutions and calculate (n

2) length

scales using Algorithm 6.1.

• ML1: generate a Lévy random walk of n solutions and calculate (n
2) length scales from

all pairwise solution combinations.

• ML2: generate a Lévy random walk of (n
2) solutions and calculate (n

2) length scales

using Algorithm 6.1.

To evaluate the different methodologies, length scales are calculated for Example 5.3 (1-D

quadratic function), where p(r) is known. Using each sampling methodology, (n
2) length

scale values are generated, where n = [10, 50, 100, 500, 1000, 5000, 10000], and 30 different

samples are generated for each n. To obtain a wide coverage of S = [−1, 1], γ is set to

10−3 for both Lévy walks. p̂(r) is estimated from the samples via kernel density estimation

with a Gaussian kernel, using the “solve-the-equation plug-in” method [154] for bandwidth

selection. The KL-divergence is estimated via numerical approximation of Equation 6.1.8.

Figure 6.5a shows the mean and standard deviation (as error bars) of DKL (p || p̂) for each

sample size. In the black-box scenario, p(r) is unknown, and so to practically assess the

convergence of calculation, the KL-divergence between the distributions for each sample

size and its subsequent sample size (e.g. n = 10 and n = 50) is calculated. The mean

and standard deviation of the divergences between sample sizes is shown in Figure 6.5b.

Since KL-divergence is non-negative, error bars yielding negative values are omitted from

the figure.

Figure 6.5a shows that for small samples of r, both uniform random sampling methods

are superior to the Lévy random walks on this 1-D problem. This seems reasonable as large

steps in a Lévy walk are not as probable as small steps, and so it can take a number of sam-

ples before Lévy walks adequately explore the landscape. Interestingly, a larger diversity in

the sample of solutions appears to produce better-represented length scales, as illustrated by

the fact that DKL (p || p̂) for ML2 is≤ 1 much faster than ML1. Furthermore, on this problem

ML2 is comparable to uniform random sampling after 103 samples. Thus the conjecture that

a variety of solutions yields well-represented length scales is well-founded; for both uniform

random sampling and Lévy random walks, using Algorithm 6.1, as opposed to calculating

the length scales between all solution-pair combinations, gives a more accurate sample for
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Figure 6.5: Estimating sampling adequacy via convergence of p̂(r).
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almost all sample sizes.

The divergences of the p̂(r)’s from a black-box perspective are shown in Figure 6.5b.

Both variants of the uniform random sample have small divergences and are therefore quite

stable, even for a low number of samples. ML2 achieves a very low divergence (say, ≤ 0.1

bits) after approximately 103 samples, whereas ML1 doesn’t achieve low divergence until

106 samples. Small KL-divergences does not necessarily mean that p̂(r) has converged to

p(r), however they do indicate how much length scale information (in terms of bits) might

be gained by sampling further. If little can be gained, either all the important structure

has been sampled (in which case, p̂(r) is a good estimate of p(r)), or there exists important

structure that is hard to find (e.g. a needle in a haystack). In the former case the sample

is adequate, but in the latter case, near-complete enumeration is required, which is a major

challenge for any sampling technique.

The trends in Figure 6.5b closely follow those in Figure 6.5a, suggesting that the black-

box methodology proposed provides a good summary of convergence, and hence can reli-

ably assist practitioners in determining the adequacy of their samples. This practical tech-

nique is used in the experiments within Chapters 7 and 8 to determine and ensure adequate

sample sizes.

6.3 Practical Considerations

In practice, using a sample of r values may result in different landscapes yielding the same

sets of length scales, and hence length scale summaries. Identical sets of r values can be

obtained from two landscapes sharing similar structure, where the structure discriminating

them is not captured in the sample. However, any practical landscape analysis technique is

limited to the information obtainable via sampling. Compressing O(n) length scale values

into a single summary value (e.g. the mean of sampled r values or h(r)) may incur informa-

tion loss. This too is an unavoidable issue for many existing landscape techniques. Hence,

while the use of length scale summaries may aid in characterising and analysing problems,

they are not necessarily unique for individual problem instances. For example, consider a

flat (i.e. neutral) landscape and a needle-in-a-haystack (NIAH) landscape where there is a

single, small global basin on an otherwise flat landscape. Clearly, if the global basin in the

NIAH landscape is not sampled, then the two landscapes will yield identical length scales.

Unfortunately, inadequate sampling is an unavoidable issue for all practical landscape anal-

ysis techniques, and length scale is certainly no exception.
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A sample of n length scale values requires O(n) storage. For large representations of r,

such as the IEEE Standard 754 for double-precision (64-bit) floating points used throughout

this thesis, storage can be cumbersome for very large n. For example, 241 ≈ 2.199× 1012

length scales (represented using double precision) can be loaded into 16GB of RAM. Like

any large dataset, compression schemes, such as applying a lossless compressor, can be

used to reduce the burden of persistent length scale storage (e.g. on a hard disk).

Computation of a single r value involves a ratio of the distance between objective func-

tion values (scalar values) and the distance between two solutions (multivariate values).

Hence, assuming dimensionality D, a single length scale is computed in O(D) time, and

a set of n length scale values is be computed in O(nD) time. As previously discussed in

Section 5.3.1, the evaluation of m points from a kernel density estimator built using n points

with the ε-exact bandwidth selection algorithm [135] requires O(mn2) time. Hence because

the J-divergence requires iterating over the m evaluation points for the two distributions be-

ing compared, it runs in O(mn2) time. Therefore to calculate the J-divergence between two

optimization problems, n length scales are sampled ((O(nD)) the J-divergence is calculated

based on m evaluation points from a kernel density estimator (O(mn2)), all of which totals

to O(mn3D) time.

The success of the length scale analysis is heavily dependent on the size of the length

scale sample, n. While the computational time is, in the worst case, cubic with n, approx-

imations and modifications can be made to reduce the complexity. For example, the com-

plexity of the bandwidth selection step can be reduced by using a sub-sample of randomly

sampled r values from the original set. Using a sub-sample of size p � n, the total running

time of computing a J-divergence is O(mpn2D). Careful experimental design choices can

also reduce the computational complexity. For example, the J-divergences between all prob-

lems within a problem set can be calculated such that the evaluation points from each kernel

density estimator are computed only once, yet used multiple times.

6.4 Summary

Analytical properties of length scale have been discussed and techniques for problem anal-

ysis were proposed using statistical and information-theoretic summaries of length scale.

Length scale analysis on simple example problems illustrated the framework’s ability to

capture important problem structures and the complexity of their interactions. A major con-

tribution of this chapter is the application of the entropic Jeffery divergence (J-divergence)
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for quantifying the similarity between length scale distributions. The J-divergence between

length scale distributions effectively measures the similarity of the length scale informa-

tion between problems, and hence is a proxy for the similarity between problems. The

J-divergence between length scale distributions was also used to develop a novel method-

ology for assessing the adequacy of samples (that can vary in size) from the landscape. The

proposed methodology is applicable to sampling both continuous and combinatorial opti-

mization problems.
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CHAPTER 7

Length Scale Analysis: Results

An experiment is a question which science

poses to Nature, and a measurement is the

recording of Nature’s answer.

Max Planck

This chapter utilises the length scale analysis techniques proposed in Chapter 6 to anal-

yse continuous and combinatorial optimization problems. To investigate the ability of the

length scale information to capture structural features, experiments on artificial continuous

problems, the Black-Box Optimization Benchmarking (BBOB) problem set, Circle in a Square

(CiaS) packing problems, the Travelling Salesman Problem (TSP) and the Number Partition-

ing Problem (NPP) are presented. In addition to analysing the length scale values of these

problems, the experiments also include a comparison of length scale and several popular

landscape analysis methods.

7.1 Analysis of Continuous Artificial Problems

7.1.1 Elliptical Function

The 2-D elliptical function, defined in Table A.1, is essentially a quadratic bowl with el-

liptical contours, where the eccentricity of the contours is defined by a constant, a ∈ IR.

Larger values of a yield functions with steeper, narrower contours, which have been

shown to be a problematic landscape structure for certain Estimation of Distribution Al-

gorithms [23, 64, 117]. Therefore, the elliptical function provides a simple and intuitive

landscape from which the ability of the length scale analysis to capture varying levels of

eccentricity can be assessed.
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Figure 7.1: Example length scale distributions for ellipse functions with a = 1, 5.5 and 10.

The aim of this small experiment is to investigate how well the length scale analysis

captures the structural changes between elliptical functions with varying degrees of eccen-

tricity. The elliptical functions used are defined in Table A.1, where x ∈ S = [−1, 1]2 and

a ∈ [1, 1.25, . . . 10]. Therefore, a total of 37 elliptical functions are analysed. At each value

of a, 2.5× 105D = 106 length scales are generated using Algorithm 6.1 with samples from

a Lévy random walk parameterised by γ = 10−3 and δ = 0. Figure 7.1 shows the length

scale distributions of three different elliptical functions at equal intervals throughout a, i.e.

a = 1, 5.5 and 10.

The length scale distributions vary significantly depending on the value of a. Figure 7.1

illustrates that the vast majority of length scales are quite small (0 ≤ r ≤ 2.5) for low values

of a. As a increases, larger length scales occur, resulting in a longer and thicker tail. Despite

the increased prevalence of larger r, the mode of all of the distributions is 0.

For the length scale data obtained over all values of a, heatmaps summarising the J-

divergence, DJ , between all pairs of problems as well as t-SNE (perplexity of 5) visualisations

of these DJ values are shown in Figures 7.2 and 7.3. Due to the stochastic nature of t-SNE,

1000 different trials were conducted, with a maximum of 1000 iterations for each trial. The

results show the best (i.e. lowest cost) t-SNE result, and the cost of 0.2040 indicates that the

discrepancy of distances between points in the original data and reduced data is moderate,

and so the visualisation is not able to fully reflect the relationships between the DJ values.

The DJ values reflect the similarity between length scale distributions, and is therefore a

proxy for the similarity between problems. Hence, pairs of problems with small DJ values

will likely be close in proximity in t-SNE reductions, and so Figure 7.3 (and other t-SNE
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Figure 7.2: Heatmap of DJ values calculated between pairs of 2-D ellipse functions, where
a = 1, 1.25, . . . , 10.

visualisations) can be used to grasp an intuition into the relationships between the problems.

The heatmap in Figure 7.2 clearly shows that the greatest difference between problems

(depicted by white pixels) are generally between low and high eccentricities (e.g. a = 1 vs

a = 10). Problems with similar eccentricities (i.e. along the leading diagonal) have low DJ

values, regardless of where on the eccentricity spectrum they are. For example, DJ between

problems a = 1 and a = 1.25 is approximately the same as DJ between a = 9.75 and a = 10.

This is true across all of a, that is, DJ between an and an+1 remains constant and suggests

that the structural changes caused by small increases in eccentricity are quite regular. The

light colouring of the bottom-left corner of the heatmap in Figure 7.2 indicates that elliptical

functions with low a values are highly different to elliptical functions with high a values.

However, as a increases, the functions become increasingly more similar. The lower-right

corner of the heatmap in Figure 7.2 is much darker than the upper-left, suggesting that

as a increases, the difference between an instances at a set eccentricity apart becomes less

pronounced. For example, the J-divergence between problems a = 1 and a = 5.5 is larger

than the J-divergence between a = 5.5 and a = 10.

Figure 7.3 shows the t-SNE visualisation of the problem similarities (and hence, “prob-

lem space” according to DJ). Here, the problems are labelled with their respective a value,

and the markers are shaded from white to black as a transitions from 1 to 10. Figure 7.3

also captures the general trend that problems with similar eccentricities are similar to each

other; the problems are spatially ordered according to a. The problems are initially spatially

ordered in a linear manner throughout both the dimensions of the reduced space (i.e. a = 1
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Figure 7.3: t-SNE of DJs (cost of 0.2040) calculated between pairs of 2-D ellipse functions,
where a = 1, 1.25, . . . , 10.

to a = 3.5 roughly form a diagonal line). Then, at a ≈ 3.5, the problems’ positions change

direction in the space, but are still ordered linearly throughout the space. The positioning of

the problems ensures that the largest spatial distance is between low eccentricities and high

eccentricities.

By examining the bottom of the dendrogram shown in Figure 7.4, it is clear that problems

of similar eccentricities (a values) are clustered together. For example, a = 1 forms a clus-

ter with a = 1.25 at approximately DJ = 0.0721, a = 1.5 forms a cluster with a = 1.75 at

approximately DJ = 0.0618, and so forth. Overall, the dendrogram is quite balanced; mov-

ing upwards from the bottom, instances typically form clusters that double in size. There is

however a slight skew in the balance; instances 1 ≤ a ≤ 3 are separated from the remainder

of the problems. By examining the dendrogram from the top, it is clear that the problems

form two major clusters; 1 ≤ a ≤ 3 and 3.25 ≤ a ≤ 10. The large DJ connecting these clus-

ters indicates that they are quite well-separated. Moving downwards, the problems can be

further clustered into four clusters by using a DJ threshold of approximately 2 (the clusters

can be identified by drawing a line across DJ = 2): 1 ≤ a ≤ 1.75, 2 ≤ a ≤ 3, 3.25 ≤ a ≤ 6 and

6.25 ≤ a ≤ 10. The size of the four clusters are non-uniform and increase as a increases. For

example, the cluster 1 ≤ a ≤ 1.75 has only 4 instances, whereas the cluster 6.25 ≤ a ≤ 10 has

16. Thus it is clear from the dendrogram that as a increases, the problems become generally

more similar.
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Figure 7.5: Example length scale distributions for 1-D Rastrigin.

7.1.2 Rastrigin

The perturbation term A in the Rastrigin function (Table A.1) dictates the ruggedness of

the problem landscape. The goal of this experiment is to investigate how the change in

perturbation affects the length scales of the problems. Intuitively, problems with similar

perturbation values are likely to be more similar than problems with very different levels of

perturbation. The dimensionality is fixed at D = 1, and A = 0, 0.25, . . . , 10. A total of 2.5×
105 solutions are sampled from S = [−5.12, 5.12] using a Lévy random walk parameterised

by γ = 0.005 and δ = 0. Figure 7.5 shows the length scale distributions three different

Rastrigin functions using A = 1, 5 and 10.

In contrast to the elliptical functions in Figure 7.1, the length scale distributions of the

Rastrigin functions do not vary significantly. Because 1-D Rastrigin with A = 0 is simply a

1-D quadratic with a = 1, it is expected that p(r) for A = 0 to be a triangular distribution.

Figure 7.5 confirms this, and it shows that as A increases, the tail length and thickness in-

creases, indicating that larger length scales become more frequent. Large length scales occur

when there are relatively large fluctuations in objective function values, which is indeed the

case for large A. Hence, the length scale distribution is sensitive to the structural changes in

the Rastrigin function.

Heatmaps summarising the DJ values between Rastrigin problems as well as t-SNE (per-

plexity of 5, best result from 1000 trials with a maximum of 1000 iterations) visualisations of

the problem space are shown in Figures 7.6 and 7.7. The cost values from t-SNE indicate that

the discrepancy of distances between points in the original data and reduced data is low.
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Figure 7.6: Heatmap of DJ values calculated between pairs of 1-D Rastrigin functions with
A = 0, 0.25, . . . , 10.
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Figure 7.7: t-SNE of DJs (cost of 0.1303) calculated between pairs of 1-D Rastrigin functions
with A = 0, 0.25, . . . , 10.
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Overall, the heatmap and t-SNE visualisation shown in Figures 7.6 and 7.7 are very dif-

ferent to those resulting for the ellipse functions (Figures 7.2 and 7.3). The heatmap in par-

ticular shows that the largest difference between problems is between A = 0 and A = 10,

and that for A > 1, the similarity between problems is rather constant (DJ ≈ 2). Problems

close to the leading diagonal are an exception; the DJ values are very low, indicating that

problems with similar A are structurally similar.

Problems in the t-SNE visualisation (Figure 7.7) are labelled with their respective value

of A, and the markers are shaded from white to black as A transitions from 0 to 10. Ap-

propriately, the largest amount of space in the visualisation is between A = 0 and A = 10.

Interestingly, the problems are almost perfectly ordered/organised in a sequential, linear

manner according to their respective values of A. This is a clear reflection of the gradual

change that the increase in perturbation causes on the landscape structure.

Importantly, the above analysis shows that the length scale values, together with DJ and

t-SNE, make a framework that is very good at identifying the known/induced relationship

between these problems, with no prior knowledge, based purely on black-box samples from

the landscape.

The dendrogram in Figure 7.8 shows the clusters produced by hierarchical clustering

with unweighted average distance linkages, and is also able to give an excellent represen-

tation of the increase in problem similarity that occurs between Rastrigin problems as A in-

creases. Looking at Figure 7.8, as A increases, the heights of the connection between neigh-

bouring As (e.g. A = 5 and A = 5.25) generally decreases, indicating that the DJ values

between neighbouring problems is decreasing. An exception to this is A = 0 and A = 0.25,

which are also very small. This behaviour is likely due to the nature of the landscape; for

A = 0 and A− 0.25, the perturbations are small (and perhaps negligible) resulting in low DJ

values. Then, as A increases, the perturbations begin to majorly alter the landscape struc-

ture, and so problems have larger J-divergences. Finally, a threshold is reached where the

perturbations are so frequent and large that the problems once again resemble each other.

Using the dendrogram to cluster the problem set into two groups yields A1 = {0, . . . , 1.25}
and A2 = {1.5, . . . , 10}. Excluding the initial split into two clusters, the dendrogram is quite

balanced; clusters tend to recursively split in an even manner. In contrast to the elliptical

functions in Figure 7.4, the dendrogram of the Rastrigin problems has many more “lev-

els” of clustering, indicating that there are no obvious major clusters. This corroborates the

heatmap, which shows that the majority of DJ values between problems are alike.
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7.2 Analysis of BBOB Problems

The noiseless BBOB problem set (see Appendix A.1.2) is comprised of 24 artificial (single-

objective) continuous optimization problems that scale with dimensionality. The problems

are unbounded, unconstrained, noiseless and generally treated as black-box functions for

the purposes of benchmarking algorithms (although global optima are known for all prob-

lems, they are use only to quantitatively analyse algorithm performance). The developers of

the BBOB problem set remark [72]:

Our intention behind the selection of benchmark functions was to evaluate the

performance of algorithms with regard to typical difficulties which we believe

occur in continuous domain search. We hope that the function collection reflects,

at least to a certain extend and with a few exceptions, a more difficult portion of

the problem distribution that will be seen in practice (easy functions are evidently

of lesser interest).

There is little doubt that the BBOB problems contain a variety of landscape structures; F1 is

a quadratic bowl, F2 contains elliptical contours, F3 is highly multimodal and hence rugged,

F5 is a linear slope, F7 mainly consists of plateaus, while F8, F12 and F13 contain valleys and

ridges. In addition, many of the landscapes consist of multiple structures (e.g. F21), which

combine and interact to create complex hybrid-structures. However, the BBOB problems

are highly contrived and purposefully constructed to contain “typical” landscape features

thought to be difficult for heuristic search. Therefore, the structural features within the prob-

lem set are quite biased to the landscape structures that the developers believe are typically

difficult. Consequently, it is unlikely that the BBOB problems represent a large proportion

of the distribution of problems observed in practice [105]. Furthermore, given the limited

understanding of what landscape structures and features contribute to the difficulty of con-

tinuous optimization problems, it is also highly unlikely that the BBOB problems represent

a difficult portion of the problem distribution observed in practice.

Despite the contrived, and hence biased, nature of the BBOB problems, they are clearly

more complex than the highly artificial 2-D elliptical functions and 1-D Rastrigin functions

examined in Section 7.1. There is also well-documented knowledge [112, 113, 120] and in-

tuition [72] regarding BBOB landscape structures and features, which is highly useful in

assessing the validity of results from landscape analysis techniques. Therefore, the BBOB

problems provide an excellent set from which to investigate the efficacy and robustness of

130



CHAPTER 7: LENGTH SCALE ANALYSIS: RESULTS

the length scale analysis framework, particularly in comparison to existing landscape anal-

ysis techniques.

In this section the ability of the length scale analysis framework to characterise BBOB

problems is investigated and compared with existing landscape analysis techniques. More

specifically, the experiments aim to investigate how well the correlation length, FDC, in-

formation content, partial information content, information stability, dispersion and the en-

tropy of the length scale distribution (h(r)) can differentiate between different problems

within the problem set. These features were chosen because they yield scalar values, are

easy to interpret and (with the exception of h(r) of course) are widely used in the landscape

analysis literature. The robustness of the length scale analysis, and whether or not there is a

relationship between r and the “difficulty” of problems (as measured by the best performing

algorithms out of all BBOB competitions prior to 2015) is also investigated. Problems with

largely varying length scales are likely to contain a richer, more complex landscape. Conse-

quently, the behaviour and performance of algorithms may be reflected by the length scale

analysis. The methodology used in these experiments is general and can be easily applied

to other black-box problems.

Each feature is calculated from a sample of solutions resulting from a Lévy random walk

in S = [−5, 5]D, where D is the dimensionality of the problem. 2-D, 5-D, 10-D and 20-

D problems are analysed and Euclidean distance is used as the distance metric between

solutions. The range of solutions yielded from Lévy random walks with various parameter

settings was examined, and a setting of γ = 10−3 was found to produce widely ranging

samples across D. Sample sizes of 1000D2, 5000D2 and 10000D2 were tested on instances

from all the BBOB problems, across 2-D, 5-D, 10-D and 20-D, and there was only a negligible

(≤ 1 bit) average difference in sampling more than 1000D2 solutions, as seen in Figure 7.9

(for 20-D problems). Thus in this experiment, all features are calculated from a sample of

solutions obtained using a Lévy random walk of 1000D2 solutions in S = [−5, 5]D.

The robustness of the features is investigated by examining them over varying instances

of the problems, and varying samples of those instances. 30 problem instances are produced

by supplying seeds 1 to 30 to the BBOB problem generator. For each instance, 30 different

samples (of size 1000D2) of S are generated, meaning for a given problem in dimension D

(e.g. 2-D Sphere), there are 30× 30 samples of the problem. Hence each feature is calculated

900 times for a single problem.

FDC is calculated using the global optimum, x∗, as well as the best solution in the sample

(each estimator is denoted as FDCx∗ and FDCx̂∗ respectively). The latter gives insight into

131



CHAPTER 7: LENGTH SCALE ANALYSIS: RESULTS

1000D^2 to 5000D^2 5000D^2 to 10000D^2
10

−3

10
−2

10
−1

10
0

10
1

10
2

Sample Size Change

D
K

L

 

 

 F1

 F2

 F3
 F4
 F5

 F6

 F7
 F8

 F9

 F10
 F11

 F12

 F13

 F14  F15 F16

 F17

 F18

 F19
 F20 F21 F22
 F23
 F24

F1−5
F6−9
F10−14
F15−19
F20−24

Figure 7.9: DKL between p(r)s from subsequent sample sizes 1000D2, 5000D2 and 10000D2

on the BBOB problems in 20-D.

how well FDC performs when the problem is treated as a black-box. Information content

and partial information content are estimated with ε = 0, meaning transitions in objective

function are “neutral” if and only if the change in the objective function value is 0 (to ma-

chine precision). Dispersion is calculated using the fittest 5% of solutions in the sample,

and it is normalised using bound-normalisation, described in Section 4.4.1. The correlation

length, l, is calculated using Equation 3.2.4. Length scale distributions are estimated via

kernel density estimation as described in Section 6.2, and the entropy, h(r), is estimated by

numerical evaluation of Equation 6.1.5.

Linear and non-linear transformations are applied to many of the BBOB problems, and

hence length scales may vary between problem instances. Problems are also randomly trans-

lated, and while length scale is invariant to translation, the translation performed on these

problems is analogous to shifting and re-labelling the bounds. Consequently, structure orig-

inally within the bounds may be removed, and structure originally outside the bounds may

be introduced. This can affect the resulting length scales, and so length scale is not expected

to be completely invariant between different problem instances. While the structural fea-

tures that fundamentally define a problem may vary slightly across randomised instances,

robust features will capture these structures consistently across the instances.

7.2.1 Length Scale Distribution Results

The length scale distributions varied widely across the BBOB problems. Due to the large

variations in the length scales, it is difficult to visualise all distributions on a single graph.
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Figure 7.10: Ellipsoidal Function in 2-D.
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Figure 7.11: Ellipsoidal Function in 5-D.

Instead, groups of similar problems have been identified and visualised together.

Figures 7.10 to 7.13 show the length scale distributions for the 2-D, 5-D, 10-D and 20-D F2

and F10, both characterised as Ellipsoidal problems in the set (F10 is a rotated version of F2).

The distributions are almost identical and are quite consistent across D. This empirically

confirms that length scales are invariant to rotations of the search space. Interestingly, the

variation between sampled length scale distributions, shown as the grey shading, is quite

high for 2-D problems, and as D increases, the variability generally decreases. In general,

there is more variation for the larger probabilities (e.g. the tail in Figure 7.10 has less vari-

ability than the mode), and so the high variation exhibited in the 2-D p(r)s may be because

the shape of the distributions are more triangular in comparison to the 5-D, 10-D and 20-D
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Figure 7.12: Ellipsoidal Function in 10-D.

0 2 4 6 8 10

x 10
6

0

0.2

0.4

0.6

0.8

1

x 10
−6

r

p(
r)

 

 

F2
F10

Figure 7.13: Ellipsoidal Function in 20-D.
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Figure 7.14: Rastrigin Functions in 2-D.

p(r)s.

As D increases, the range of length scales remains constant, however the shape of the

distributions varies steadily. Specifically, the p(r)s in 2-D are quite “triangular”, and as D

increases, the tail becomes thinner and the mode is higher, indicating more “small” r values

are encountered. This is likely due to the objective function, which is essentially f (x) =

∑D
i 106 i−1

D−1 x2
i . Here, the objective function value of a solution is influenced by two factors; 1)

the actual value of each solution component, xi and 2) the value of the term 106 i−1
D−1 at each

of the components. The term 106 i−1
D−1 varies between 1 and 106 in exponential increments

dictated by D. Thus as D increases, there is a wider variety of terms spaced exponentially

within
[
1, 106]. As a result, there are an increasing number of “small” terms as D increases,

thus reducing the magnitude of f , and consequently, the size of the length scales. Therefore,

the change in shape of p(r) is a direct reflection on the nature of the objective function.

The average J-divergences between F2 and F10 are approximately 6.3516 (2-D), 3.3611 (5-D),

2.6600 (10-D) and 0.8131 (20-D), indicating that the two problems are relatively more similar

as D increases.

In contrast to Figures 7.10 to 7.13, p(r) for F3 (Rastrigin), F4 (Büche-Rastrigin) and F15

(rotated Rastrigin) are shown in Figures 7.14 to 7.17 and vary across both the problems and D.

An exception is F3 and F15; F15 is a non-separable and less regular variant of F3, and as a re-

sult, they have almost identical length scales. Once again this illustrates length scale’s invari-

ance to rotated search spaces. F4 contains similar, but asymmetric structure to F3, and the

length scales are sensitive to this, causing a slightly different (but still similar) distribution.

In 2-D, the distributions are all very similar, however as D increases, the tail of F4 becomes
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Figure 7.15: Rastrigin Functions in 5-D.
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Figure 7.16: Rastrigin Functions in 10-D.
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Figure 7.17: Rastrigin Functions in 20-D.
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Figure 7.18: Rosenbrock Functions in 2-D.
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Figure 7.19: Rosenbrock Functions in 5-D.

thicker and the mode is lower. This indicates that there are an increasing amount of larger

r values in F4 as D increases. The average J-divergences between F3 and F15 are approx-

imately 15.5612 (2-D), 19.0032 (5-D), 9.6518 (10-D) and 2.6141 (20-D), the J-divergences be-

tween F3 and F4 are approximately 13.4518 (2-D), 23.7855 (5-D), 21.7836 (10-D) and 20.3402

(20-D), while the J-divergences between F4 and F15 are approximately 15.0893 (2-D), 24.4685

(5-D), 24.2549 (10-D) and 21.1355 (20-D).

The length scale distributions for F8 (Rosenbrock) and F9 (rotated Rosenbrock) are shown

in Figures 7.18 to 7.21. The larger peak in the F9 distribution indicates that it has more low-

valued length scales than F8. Both F8 and F9 are instances of Rosenbrock with a rotation

about f . Consequently, the problems differ by a sample rotation of the search space, and so
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Figure 7.20: Rosenbrock Functions in 10-D.
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Figure 7.21: Rosenbrock Functions in 20-D.
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Figure 7.22: Ellipsoidal, Rastrigin and Rosenbrock Functions in 2-D.

the landscapes are structurally identical. Figures 7.18 to 7.21 clearly shows that the result-

ing length scales and their distributions are similar, thus empirically confirming that length

scale is invariant to rotations of S . The average J-divergences between F8 and F9 are ap-

proximately 12.8588 (2-D), 2.0693 (5-D), 0.7195 (10-D) and 0.4340 (20-D) indicating that the

two problems are indeed almost identical. In comparison, the largest J-divergence out of all

problems is 269.2115 between F4 and F19, which is significantly larger than the J-divergences

between F2/F10, F3/F4/F15 and F8/F9.

The scaling on the r axis across Figures 7.10 to 7.21 also shows that length scales can be

very different between two problems. For example, r ∈
[
0, 106] for the Ellipsoid problems,

while r ∈ [0, 5000] for the Rastrigin problems. To further illustrate the difference in scaling,

the length scale distributions for F2, F3 and F8 in 2-D are shown in Figures 7.22 and 7.23.

It is clear that problems with similar structure have similar length scale distributions and

low DJ between them, while problems with different structure have different length scale

distributions and large DJ between them1. This demonstrates p(r) and DJ as powerful tools

for characterising and differentiating optimization problems. In addition, the distributions

are surrounded by very thin shading, indicating that the standard deviation across samples

is low.
1The largest J-divergence out of all BBOB problems is 269.2115 between F4 and F19, which is significantly

larger than the J-divergences reported above.
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Figure 7.23: Rastrigin and Rosenbrock Functions in 2-D.
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Figure 7.24: Correlation Length of the BBOB problem set in D = 2, 5, 10 and 20.

7.2.2 Results Comparing Length Scale to Existing Features

In this section, FDC, information content, partial information content, information stability

and dispersion are evaluated for their ability to characterise and distinguish problems in

the BBOB problem set. The features are also compared to the entropy of the length scale

distribution, h(r) (other summaries of r, such as the mean and variance, could similarly be

calculated). Figures 7.24 to 7.31 displays the mean and one standard deviation (as error bars)

for each feature across the 24 BBOB problems and D.

Correlation length, l, is intended to indicate the ruggedness of a landscape, and it specif-

ically captures the maximum distance between solutions such that the correlation between

objective function values is significant. The correlation lengths shown in Figure 7.24 are
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Figure 7.25: Dispersion of the BBOB problem set in D = 2, 5, 10 and 20.

positive and generally high across the BBOB problem set, and apart from problems F16, F21,

F22 and F23, the correlation lengths are of very similar values. In addition, the correlation

lengths vary by a small constant factor across D; as D increases, l increases by a constant (al-

though the size of this constant decreases as D increases). The variations are likely caused

by structural changes to the problems as D increases, and the degree to which the structures

are being adequately sampled. The sample size used in these experiments increases with

D, and so it is likely that as D increases, the structures required to distinguish problems at

particular dimensions are not being adequately sampled. While most values of l are quite

similar across D, F17, F18, F21 and F22 vary slightly. The standard deviation in correlation

length is small, mostly around 0.05 (2-D F18 varies the most, with a standard deviation of

0.11), and decreases slightly as D increases for all problems.

High dispersion values indicate that the “good” solutions in the sample are well-

separated and distributed throughout S , thus implying a rugged landscape. Because bound-

normalisation is used in conjunction with a Lévy random walk, the convergence of Disper-

sion values (previously discussed and illustrated in Chapter 4) to 1√
6

should not occur. Since

both l and dispersion aim to measure ruggedness, it is not surprising that the problems in

Figure 7.25 with higher dispersion values mostly correspond to the problems in Figure 7.24

with low l. Both Figures 7.24 and 7.25 show F16 and F23 to be more rugged than the other

problems. Evidently, the dispersions of F16 and F23 are also quite invariant to dimension-

ality. F1 to F15 are generally quite smooth compared to F16 to F23. In contrast to l, the

dispersion varies more noticeably with D. Similar to correlation length, the variations are

likely caused by structural changes and sampling variations as D increases. Like l, as D in-
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Figure 7.26: FDCx∗ of the BBOB problem set in D = 2, 5, 10 and 20.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Problem ID

F
D
C

x̂
∗

 

 

2−D
5−D
10−D
20−D

Figure 7.27: FDCx̂∗ of the BBOB problem set in D = 2, 5, 10 and 20.

creases, the differences in dispersion between the problems becomes less pronounced (e.g.

the range of dispersions for 2-D problems is 0.26, compared to 0.09 for 20-D), most likely

caused by the limitations of sampling an exponentially-increasing search space. Overall,

l and dispersion provide very limited ability to characterise and differentiate between the

BBOB problems.

High FDC values indicate a strong correlation between the f -values of solutions and their

distance from the global optimum. Figures 7.26 and 7.27 show considerably different values

across the problem set. For some problems, the FDC variants actually indicate conflicting

landscape characteristics, e.g. FDCx∗ indicates F4 is slightly deceptive (which it is), while

this is not the case with FDCx̂∗ . This is an important result, as it demonstrates that FDCx̂∗
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Figure 7.28: Information content of the BBOB problem set in D = 2, 5, 10 and 20.
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Figure 7.29: Partial information content of the BBOB problem set in D = 2, 5, 10 and 20.

is not always a reliable approximation of FDCx∗ and so conclusions based on the theory of

FDC may be incorrect if drawn from FDCx̂∗ results. F6 and F24 are also deceptive problems

for some algorithms, however neither FDC variant were able to detect this. FDCx∗ and

FDCx̂∗ are largely invariant across D. Across the problem set, FDCx̂∗ is typically larger than

FDCx∗ , and FDCx∗ has a lot more variation between samples. FDCx̂∗ exhibits similar trends

to correlation length; F16, F21, F22 and F24 are far less correlated than the other problems.

The similarity between FDCx̂∗ and l is not surprising as they are both based on correlations

among the objective function values of points within the sample.

Information content and partial information content are shown in Figures. 7.28 and 7.29

respectively, and it is clear that they are largely unable to differentiate the BBOB problems.
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Figure 7.30: Information stability of the BBOB problem set in D = 2, 5, 10 and 20.

Information content measures the variety of fluctuations in f along the sample. A value of

log62 (≈ 0.3869) indicates a highly rugged landscape with no neutral regions, and the re-

sults (erroneously) suggest that the BBOB problems are all highly rugged. Indeed, F1 and

F5 are very smooth, and yet their information content values suggest otherwise. Partial in-

formation content indicates the degree of modality by measuring the variety of non-neutral

regions in the sample, and the results in Figure 7.29 are very similar to information content.

With the exception of F7, the partial information content is invariant to both the problems

and D, and has very small variance between samples. F7 contains numerous neutral re-

gions, which both information content and partial information content appear to have de-

tected. Figure 7.29 and further analysis of F7’s information content (not shown here) suggest

that the 5-D problem contain significantly more “mode-like” structures than the 2-D, 10-D

and 20-D problems. Subsequent results for 7− D, 9− D, 11− D and 19− D F7 problems

showed similar behaviour to 5-D, suggesting that in general, F7 problems with odd-D are

more multimodal than even-D. Figure 7.29 also indicates F17, F19, F23 and F24 are more

multimodal than the other problems.

The information stability is the largest transition in objective function values encountered

along the walk, i.e. max
(∣∣ f (xi)− f (xj)

∣∣). Hence, it is conceptually very similar to max (r).

Figure 7.30 and 7.31 show the information content and h(r) respectively; both contain very

similar trends, however there are some minor differences (e.g. h(r) is more varied across D

for F21 to F23). Both information stability and h(r) are generally well-correlated with the

conditioning of the problem; high conditioned problems, like F12, have high information

stability and h(r) values.
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Figure 7.31: Length scale entropy of the BBOB problem set in D = 2, 5, 10 and 20.
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Figure 7.32: Maximum r of the BBOB problem set in D = 2, 5, 10 and 20.

The length scale entropy will vary depending on the distribution’s shape and location.

The magnitudes of the length scale values varies significantly across the BBOB problems,

however the values generally yield unimodal, long-tailed distributions. Consequently, the

similarity between h(r) and information stability is likely due to the similarity in the shapes

of the length scale distributions across the BBOB problems. As shown in Figures 7.32 to 7.35,

statistical measures such as the maximum, median, mean and variance of r also exhibit

similar trends to h(r) and information stability. While the results here show similar trends

in the length scale statistics, length scale distributions with different shapes and locations

can produce different trends.

Encouragingly, information stability and the length scale statistics exhibit a strong ability
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Figure 7.33: Median of r of the BBOB problem set in D = 2, 5, 10 and 20.
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Figure 7.34: Mean of r of the BBOB problem set in D = 2, 5, 10 and 20.
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Figure 7.35: Variance of r of the BBOB problem set in D = 2, 5, 10 and 20.
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to differentiate the BBOB problems, are invariant to D and show very little variance between

samples. Thus in terms of characterising the BBOB problems, information stability and the

length scale statistics are clearly superior to the other landscape features analysed.

To summarise, the features compared in these experiments show some ability to capture

landscape structure, however, most features are unable to be used to detect the known differ-

ences across the BBOB problem set. In terms of characterising and distinguishing problems,

the existing features seem limited. There were two notable exceptions, information stability

and the length scale statistics, that produced a wide range of consistent, reliable values with

clear relationships to the problems.

7.2.3 Results Comparing Length Scale with an Ensemble of Features

The length scale analysis in Section 7.2.1 was clearly able to characterise and distinguish the

BBOB problems, while many of the existing features in Section 7.2.2 struggled. Collectively,

the existing features may offer a greater ability to characterise and distinguish problems

[77, 164], and so this experiment evaluates the ability of an ensemble of these existing fea-

tures to characterise problems, and compares this to the length scale analysis. Given that

the features were largely invariant to D across the BBOB problems analysed above, the fol-

lowing analysis focuses on 20-D BBOB problems.

For the feature-ensemble approach, each problem is represented by a 7-D feature-vector

consisting of the correlation length, dispersion, FDCx∗ , FDCx̂∗ , information content, par-

tial information content and information stability, averaged across the seeds/walks. The

features are normalised by their appropriate bounds, and because information stability is

unbounded, it is normalised by the range of information stability values obtained across the

problems. Each of the 20-D BBOB problems are thus represented by a 7-D feature vector that

can be further analysed via clustering and visualisation techniques.

As discussed in Section 6.1.3, the J-divergence between two length scale distributions is

a measure of problem similarity. Hence the J-divergences between problems can be used to

implicitly define the problem space. That is, the J-divergences can be used to infer certain

properties of the problem space, without knowledge of the explicit locations of problems

within the space. In contrast to the feature-ensemble approach, this approach does not ex-

plicitly define, and hence constrain, the problem space.

t-SNE [186] is again used to visualise the problem spaces resulting from the length scale

and the feature-ensemble approaches. In order to apply t-SNE, the average J-divergences
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between the 24 BBOB problems (across the different walks/seeds) were used to calculate a

24× 24 dissimilarity matrix. To apply t-SNE with the feature-ensemble approach, a 24× 24

distance matrix was generated by calculating the Euclidean distance between problems’

feature-vectors. Based on the recommendations in [186] and exploratory experimentation,

the perplexity was set to 5 for all visualisations in these experiments. Similarly to the pre-

vious experiments on artificial problems, 1000 different trials were conducted, with a max-

imum of 1000 iterations for each trial. Figure 7.36 shows the best t-SNE visualisation (in

terms of the final cost) from the trials for each approach. The cost of a t-SNE solution in-

dicates the discrepancy between the neighbourhood relationships in the two-dimensional

visualisation and the original high-dimensional data, and were quite consistent across the

1000 trials. Specifically, the costs of the feature-ensemble approach ranged between 0.1064

and 0.5522 with a median cost of 0.1314, while the costs of the length scale approach ranged

between 0.1979 and 0.3244 with a median cost of 0.2034.

While the feature-ensemble approach shown in Figure 7.36a has lower error, the relation-

ships between structurally similar problems according to the known BBOB function prop-

erties are not evident, and overall, it is less discriminating between problems. For example

F8 (Rosenbrock) and F9 (Rotated Rosenbrock) are well separated in the space, despite the

problems differing only by rotation. In contrast, Figure 7.36b shows that the length scale

analysis better reflects the known relationships between BBOB functions; not only are F8

and F9 close, but so are F2 and F10 (ellipsoidal problems) as well as F3 and F15 (Rastrigin

problems).

To analyse cluster structure in the data, hierarchical clustering was applied to the J-

divergence matrix and the feature-vector distance matrix using unweighted average dis-

tance linkages. The resulting dendrograms for the 20-D BBOB problems can be seen in

Figure 7.37. The clusters yielded from both hierarchical clustering correspond well with the

clusters in the visualisations produced by t-SNE. However, the clusters and relationships

suggested by the t-SNE visualisations and dendrograms do not correspond to the problem

categories in the original BBOB specification. The BBOB problems and categories were de-

fined by researchers with the aim of providing a wide variety of test problems with different

landscape structures. This was done using intuition in two and three dimensions, modi-

fying previously proposed problems and experience with algorithms. Hence, the defined-

categories might not truly reflect the underlying structures within the problems.

The feature-ensemble approach shown in Figure 7.37a lacks strong clusters, although

there are perhaps three weak clusters (F7, F16/F23 and the remaining problems). While
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Figure 7.36: Feature spaces of 20-D BBOB problems reduced via t-SNE.
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Figure 7.37: Dendrograms of the 20-D BBOB problems.
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many similar problems are close in proximity (e.g. F3/F15, F9/F19, F17/F18 and F21/F22),

many structurally-dissimilar problems are also close in proximity (e.g. F1/F8, F3/F20,

F12/F18, F24/F9). In contrast, the J-divergence of length scales (Figure 7.37b) clusters the

problems into many different classes that correspond well with the underlying structures of

the problems. For example, F8 and F9 are together, as are the elliptically-structured F2, F10

and F11, and the Gaussian-constructed F21 and F22. There are some exceptions; F17 and F18

are separated despite both being Schaffer F7 functions (F18 is moderately ill-conditioned).

Compared to the feature-ensemble approach, the length scale approach appears to be more

indicative of the defined BBOB problem structures.

7.2.4 Relationship to Problem Difficulty

Landscape properties are often related to algorithm performance in an attempt to explain

why certain algorithms perform well on one problem, but poorly on another. The BBOB

problem set not only provides practitioners with an opportunity to compare their algorithms

with other, state-of-the-art techniques, but results can yield insights into the behaviour of al-

gorithms on the problem landscape structures. Consequently, there is a copious amount of

published and publicly available algorithm performance and trajectory data for the BBOB

problems. This provides an exciting research opportunity, as the landscape properties mea-

sured above can be directly compared to algorithm performance.

The purpose of this experiment is to evaluate how well length scale measures and exist-

ing measures correlate with the difficulty of BBOB problems. Defining what constitutes a

“difficult” problem is non-trivial; as discussed in Section 3.1, a problem that is difficult for

one algorithm may be easy for another. In these experiments, the difficulty of a problem

is measured by the performance of the best performing algorithm. The performance of an

algorithm on a given problem is measured by its Expected Running Time (ERT) [71]:

ERT( fprecision) = tsuccess +
1− psuccess

psuccess
t f ail (7.2.1)

where tsuccess and t f ail are the average number of function evaluations for successful and

failed trials respectively, and psuccess denotes the number of successful trials. It can be equiv-

alently written as:

ERT( fprecision) =
#FEs while | f (x∗)− f (x̂∗)| ≥ fprecision

#success
(7.2.2)
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where #FEs is the number of function evaluations conducted in all trials and #success is

the number of successful trials. For example, if a minimisation algorithm successfully finds

x∗ for 20 out of 30 trials, and throughout all trials a total of 1500 function evaluations are

made while the current (at the time of the objective function evaluation) best solution, x̂∗,

has worse f -value than f (x∗) + fprecision, then the resulting ERT is 1500
20 .

The BBOB developers advocate ERT as it allows comparisons of performance profiles

from differing dimensionality, search spaces, global optimum values and so on [71]. How-

ever, ERT is parameterised by fprecision, which specifies how close the algorithm must get to

the global optimum. For the purpose of analysing difficulty, this is a non-trivial choice to

make and can contribute to the perceived difficulty of the problem. For example, a large

ERT calculated with large precision (e.g. 1) indicates that the algorithm is far away from

the global optimum, and hence the problem is difficult. However, using a large ERT may

not be very informative; algorithms that can quickly find the area of the global solution will

appear to do well (and hence yield a small ERT), despite the fact that they may not be able

to converge on the global solution. Conversely, using a small ERT may be too restrictive and

harsh on the algorithm. In this scenario, algorithms that are able to get close to the global

optimum quickly may still have a large ERT because they take time to converge. Hence, the

choice in precision is an explicit choice in the trade-off between deeming a problem hard

because the global area is hard to find and/or the global optimum is hard to converge on.

With these considerations in mind, the ERT (with a precision of 10−8) of the best per-

forming algorithm is used in the following experiments as a proxy for problem difficulty.

The high precision will yield a wider range of ERT values than lower precisions.

Algorithm performance results from previous BBOB competitions are available from

http://coco.gforge.inria.fr/doku.php. The ERTs for all algorithms participating in the

2009, 2010, 2012 and 2013 competitions are used in these experiments.

To investigate the relationship between problem difficulty and landscape features, the

landscape features analysed in Section 7.2.2 are directly compared to the ERT values. Pear-

son’s correlation coefficient, ρp, was used (with a significance level of 0.01) to quantify the

correlation between the landscape features and problem difficulty. More specifically, for a

given feature (e.g. FDC), there are 900 estimates of the feature for each of the 24 problems in

each dimension (e.g. 2-D Sphere). Hence there are a total of 900× 24 pairs of feature/ERT

values for a given dimension. Table 7.1 contains the Pearson correlation coefficient between

these feature estimates and ERT values, separated by dimensionality. Each correlation is

tested against the hypothesis that there is no correlation, and the resulting p-values are re-
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Feature 2-D 5-D 10-D 20-D

Correlation Length -0.2073 -0.1625 -0.0431 -0.0456

Dispersion 0.1756 0.0997 -0.0503 -0.0890

FDCx∗ 0.0489 0.2717 0.2439 0.3538

FDCx̂∗ -0.1056 0.0152 (0.03) 0.1123 0.1176

Information Content 0.0681 0.0517 0.0422 0.0776

Partial Information Content 0.0654 0.3235 0.0416 0.0667

Information Stability -0.0207 -0.0210 -0.0150 (0.03) -0.0241

Length Scale Entropy -0.2063 -0.2904 -0.1399 -0.1409

Table 7.1: Pearson’s correlation coefficient, ρp, between BBOB ERT values and problem met-
rics.

ported in brackets when greater than 0.01.

All features in Table 7.1 have relatively low correlation coefficients, with information

content, partial information content and information stability essentially uncorrelated with

ERT. The largest correlation was only 0.3538 for FDCx∗ on 20-D problems. Interestingly,

FDCx∗ was rather uncorrelated in low dimensions, and as dimensionality increased, corre-

lation also increased. This trend was also observed for FDCx̂∗ . The correlation length feature

is slightly negatively correlated with ERT for 2-D problems (ρp = −0.2073), however as di-

mensionality increases, the correlation diminishes (ρp = −0.0456 in 20-D). Perhaps the most

consistent feature with correlation across dimensionality is the length scale entropy, which

ranges between -0.2904 (5-D) and -0.1399 (10-D). Overall, while there are some correlations

between the features and ERT, these correlations are not very strong and vary considerably

with dimensionality.

The correlation coefficients in Table 7.1 indicate that there is a lack of linear relation-

ship between the features and ERT, however a non-linear, more complex relationship may

still exist. To investigate if this is the case, each feature was averaged across the 900 sam-

ples and compared to the problem’s difficulty (i.e. ERT) using scatter plots, shown in Fig-

ures 7.38 to 7.45.

With the exception of information content and partial information content, the features

in Figure 7.38 to 7.45 have a complex relationship with ERT. As none of the figures have

a clear trend (linearly or non-linearly), there is no obvious, direct relationship between the

features and problem difficulty. However, some of the figures show slight trends and clear

clusters of problems, which indicates a complex relationship between the features and prob-
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Figure 7.38: Relationship between correlation length and the best ERT.
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Figure 7.39: Relationship between dispersion and the best ERT.

lem difficulty. Problems are generally spread throughout the best ERT, with lower dimen-

sional problems having lower ERT values, and high dimensional problems having high ERT

values. While this reflects the notion that higher dimensional problems are generally more

difficult to solve, there are some exceptions. Two exceptions are the F1 (Sphere) and F5

(Linear Slope) problems, which have low ERT values with almost no regard to D.

The relationship between correlation length and the best ERT, shown in Figure 7.38 is

rather complex; there appears to be no correlation between the feature and ERT, however

some problems cluster together based on their type. For example, F1, F2, F5, F9, F16 and

F23 appear near each other, despite differences in D.

The combination of dispersion and ERT, shown in Figure 7.39, further clusters the BBOB
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Figure 7.40: Relationship between FDCx∗ and the best ERT.
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Figure 7.41: Relationship between FDCx̂∗ and the best ERT.

problems into their respective dimensionality’s. In general, the value of ERT generally in-

creases as the value of dispersion increases. Looking closely at the problems for each D in

isolation, the same trends are exhibited. For example, F1 and F5 are always found towards

the lower left hand side of the dimension’s cluster; while F24 is always found at the top

right. The results for correlation length, information stability and length scale also show

moderate segregation by D, but it is not as pronounced as the discrimination in Figure 7.39.

Overall, dispersion has a slightly positive correlation with the best ERT, and the combination

of dispersion and ERT can be used to discriminate problems by their dimensionality.

In contrast to dispersion, FDCx̂∗ , shown in Figure 7.41 has a slight negative correlation

with the best ERT, and the problems are well-mixed with respect to D. The problems also
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Figure 7.42: Relationship between information content and the best ERT.
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Figure 7.43: Relationship between partial information content and the best ERT.

seem to be positioned similarly with respect to D; F1 and F5 are at the bottom-right of the

single cluster, and F16 and F23 are positioned at the top-left. The problems in Figure 7.41

are much more spread out than the FDCx∗ vs best ERT problems in Figure 7.40. Here, the

problems are distributed throughout FDCx∗ in a much smaller range, however F4, F19 and

F24 are exceptions. Figure 7.40 does not show any clear trends, although problems F1, F4,

F5, F19 and F24 are quite well-separated from the single major cluster.

Figure 7.45 shows that, like correlation length, there is no discernible correlation between

length scale entropy and the best ERT value. A few of the problems are also quite well-

spread through the space, with quite different clusters than correlation length. For example,

F6, F8, F9, F10, F11, F12, and F20 are all quite separated. As previously shown in Sec-
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Figure 7.44: Relationship between information stability and the best ERT.
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Figure 7.45: Relationship between length scale and the best ERT.
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tion 7.2.2, there is a strong similarity between length scale entropy and information stability,

and this is reflected in Figures 7.44 and 7.45. Again, F6, F8, F9, F10, F11, F12 and F20 are

separated, and there is no clear relationship between information stability and the best ERT.

Overall, neither the problem features nor ERT can adequately characterise the problems

on their own, however, when used in combination, interesting insights can be drawn. Due

to the differences in the problems segregated, the combination of correlation length, length

scale entropy and ERT will likely produce better problem discrimination. While informa-

tion content and partial information content were very limited, the remaining techniques

are often able to cluster a small subset of the problems. The ability to identify particular

subsets of problems indicates that perhaps none of the features can capture all landscape

structures required to distinguish and discriminate individual problems, but rather, each

feature specialises in capturing a specific structural property (inherent to the problems clus-

tered). This is clearly related to feature ensembles in classification, where combinations of

features generally have more discriminatory power together than alone [4].

7.3 Analysis of Circle in a Square Problems

The purpose of this experiment is to analyse the landscapes of Circle in a Square (CiaS)

packing problems (see Appendix A.1.3) and evaluate the ability of existing landscape fea-

tures and the length scale analysis to (robustly) characterise these problems. In particular,

the experiments investigate how well correlation length, dispersion, FDC, information con-

tent, partial information content, information stability and the entropy of the length scale

distribution (h(r)) characterise the packing problem for an increasing number of circles.

CiaS packing problems represent a challenging class of optimization problems. In gen-

eral, they cannot be solved using analytical approaches or via gradient-based mathematical

optimization. These problems are also believed to generally contain an extremely large num-

ber of local optima. For the related problem of packing equal circles into a larger circular

region, Grosso et al. [67] use a computational approach to estimating the number of local op-

tima by repeatedly running a local search algorithm over a large number of trials. Although

a conservative estimate, this indicates that the number of local optima grows unevenly but

steadily, with at least 4000 local optima for packing 25 circles and more than 16000 local

optima for packing 40 circles.

CiaS problems are parameterised by the number of circles, nc, and little is known about

how nc affects the structure of the problem. By considering the optimum solution, the (op-
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(b) nc = 3

Figure 7.46: Circle centres of the optimal Circle in a Square packings for similar nC that show
very different arrangements of circle centres.

timal) arrangement of 2 circle centres in a square intuitively seems very different compared

to 3 circle centres (see Figure 7.46), and yet the arrangement of 99 circle centres seems very

similar to 100 circle centres (see Figure 7.47). While the illustrations in Figures 7.46 and 7.47

only show the circle centres of the optimal packings, it does give a sense of the way in which

the CiaS problem scales with nc.

Given a solution of nc circles, the ordering of the circles in the solution vector may be

permuted without affecting the objective function value of the solution. Hence, for any

given solution, there are nc! equivalent solution vectors. Generating nc! equivalent solutions

for each solution in the sample is obviously computationally infeasible for large nc, and so

159



CHAPTER 7: LENGTH SCALE ANALYSIS: RESULTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Square Dimension 1

Sq
ua

re
 D

im
en

si
on

 2

(a) nc = 99
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(b) nc = 100

Figure 7.47: Circle centres of the optimal Circle in a Square packings for similar nC that show
very similar arrangements of circle centres.
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Figure 7.48: Four globally optimal packings for nc = 2. The centres of each circle are shown,
where circles 1 and 2 and represented by � and 3 respectively.

the issue of permutation is ignored for these experiments. This is a reasonable design choice

as algorithms are unlikely to generate permuted solutions, and so the landscapes analysed

here are the landscapes an algorithm would typically search. Furthermore, in the black-box

scenario, information such as this is not known a priori.

The correlation length, dispersion, information content, partial information content, in-

formation stability and entropy of the length scale distribution are all calculated based on

the settings from the BBOB experiments (described in Section 7.2). FDC is again calculated

using the best known solution [168], as well as the best solution in the sample, as reference

points. Because some solutions may be rotated and/or reflected in the 2-D packing space

without affecting their objective function value, many of the packings have multiple global

optima. For example, Figure 7.48 illustrates the 2-D packings of the 4 equivalent global op-

tima for nc = 2. For packings with multiple global optima, FDCx∗ is estimated based on the

distance between solutions and their closest global optimum.

Each feature is calculated from a sample of solutions resulting from a Lévy random walk

of 1000× 2nc steps in S = [0, 1]2nc , where nc is the number of two dimensional circles being

packed. To provide a large sample of problems, 2 to 100 circles are analysed, and Euclidean

distance is used as the distance metric between solutions. The robustness of each feature

is assessed by examining the variation between different samples. For each problem, 30

different samples (of size 1000× 2nc) of S are generated, resulting in 30 estimates of a given

feature. Results are reported using the mean of the 30 estimates for each feature. Error bars

on the figures indicate one standard deviation over the 30 estimates.
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Figure 7.49: Length scale distributions for nc = 2, 3, 4 and 5.

7.3.1 Length Scale Distribution Results

Because each problem is sampled 30 times, 30 length scale distributions are estimated for

each problem. To visualise the p(r)s, a single representative distribution is constructed and

shown (based on the average probabilities for each r), with grey shading indicating 1 stan-

dard deviation of the probabilities at the given r.

The length scale distributions for nc = 2, 3, 4 and 5, shown in Figure 7.49, are all smooth,

left-skewed unimodal distributions with little variation between the 30 samples. Clearly,

as nc increases, the range of length scales decreases, and smaller length scales occur with

greater probability. Figure 7.50 shows the length scale distributions for nc = 97, 98, 99 and

100. In contrast to the small values of nc, the large values of nc have very similar distribu-

tions. The scaling on the r axis across Figures 7.49 and 7.50 illustrates that length scales can

vary significantly between problems. In particular, the scale of the r values in Figure 7.50

is very small, indicating that the change in objective function value observed relative to the

size of the change in solution is very small. This is likely to be an artifact of the nature of the

objective function. The objective function is based on the maximum of the minimum distance

between any two circle centres. Assuming the circles are distributed with roughly even cov-

erage, increasing the number of circles will decrease the minimum distance between any

two circles. Hence the overall decrease in magnitude of the r values is likely due to the

decrease in magnitude of f .

Figures 7.49 and 7.50 also show that as nc increases, the mode decreases and the tail thins.

To quantify the change in shape of p(r), the ratio of mode and 99th percentile are shown
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Figure 7.50: Length scale distributions for nc = 97, 98, 99 and 100.
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Figure 7.51: Ratio of the mode and 99th percentile of r, suggesting a non-uniform decrease
in r values as nc increases.

in Figure C.8. It is clear that the 99th percentile is decreasing at a faster rate. This result

suggests that the decrease in magnitude of r is non-uniform across the r values. Specifically,

as nc increases, there is an increase in the number of (relatively) small length scales.

Overall, the analysis of the length scale distributions suggests that the structure of the

problem varies considerably as nc increases from low values. However, for larger values of

nc, the structure is quite similar between problems, resulting in similar length scale distri-

butions. In general, the magnitude of r is decreasing as nc increases, however the decrease

is not uniform across r values.

163



CHAPTER 7: LENGTH SCALE ANALYSIS: RESULTS

0 20 40 60 80 100
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

nc

C
or

re
la

tio
n 

Le
ng

th

Figure 7.52: Correlation Length of the CiaS problems for nc = 2, . . . , 100.

7.3.2 Results Comparing Length Scale to Existing Features

Similar to the BBOB experiments in Section 7.2.2, this experiment investigates how well

correlation length, dispersion, FDC, information content, partial information content and

information stability characterise the circle packing problems. The length scale entropy,

h(r), is also included and compared to the existing features. Figures 7.52 to 7.59 displays the

mean and one standard deviation (as error bars) for each feature across the CiaS problems.

The correlation lengths shown in Figure 7.52 are generally very low and do not discrimi-

nate between the circle packing problems. At nc = 2, the correlation length is approximately

0.1352, and as nc increases, the correlation length decreases until a value of approximately

0.0074 is reached (at nc = 10). The values remain rather constant, with only slight fluctu-

ations, as nc increases. Furthermore, The standard deviation between samples, shown as

error bars, is quite low. Correlation lengths near 0 indicate extremely rugged landscapes.

Hence, the results in Figure 7.52 suggest that the CiaS problems are highly rugged, and

that ruggedness increases as nc increases until a threshold of ruggedness is reached. While

correlation length is able to detect a high degree of ruggedness, it is unable to distinguish

between problems for nc > 10.

The bound-normalised Dispersion values for the CiaS problems are shown in Figure 7.53,

and range between 0.5044 and 0.5627, with small variability between samples (indicated by

the small error bars). Encouragingly, the use of a Lévy walk and bound-normalisation has

prevented the values from converging to 0. The dispersion metric is defined on the interval

[0, 1], with near-0 values indicating a close proximity between fit solutions, and near-1 values
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Figure 7.53: Dispersion of the CiaS problems for nc = 2, . . . , 100.
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Figure 7.54: FDCx∗ of the CiaS problems for nc = 2, . . . , 100.

indicating a wide spread of fit solutions throughout S . Hence the values in Figure 7.53 indi-

cate that fit solutions are moderately dispersed throughout the solution for all values of nc,

with fit solutions being slightly more dispersed for lower values of nc, and slightly more clus-

tered for large values of nc. In terms of dispersion’s ability to differentiate and classify the

CiaS problems, Figure 7.53 shows that it is very limited; the values (particularly for nc > 10)

are very similar and non-unique across the problems. Interestingly, correlation length is also

unable to differentiate problems for nc > 10, which suggests that the landscape structures

dispersion and correlation length inherently rely upon are inadequately characterising the

CiaS problems.

In general, both estimators of FDC (shown in Figure 7.54 and 7.55 respectively) have
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Figure 7.55: FDCx̂∗ of the CiaS problems for nc = 2, . . . , 100.

small standard deviation (errorbars) over samples, which decreases as the number of circles

increases. FDC values are typically small and negative for small nc, and as nc increases,

values increases towards 0. However, an exception of this trend occurs at the transition

from nc = 2 to nc = 3, where the FDCx̂∗ transitions from -0.0245 to -0.0578. Values then

steadily increase towards 0 as nc increases.

Figure 7.54 and 7.55 generally indicate that for low numbers of circles (i.e. nc < 20), the

objective function values of solutions is slightly negatively correlated with their distance to

the global optimum, however, as the number of circles increases, the objective function val-

ues of the solutions has essentially no correlation with their distance to the global optimum.

A negative value of FDC in the context of a minimization problem indicates that in general,

the f -values of the sampled solutions gets better as the distance from their closest global

optimum increases. Such a circumstance can be caused by many factors (and their interac-

tions), including the presence of many local optima and multiple global optima, which CiaS

problems are known to have (as discussed in Section 7.3 above). The FDC values alone give

no further insight into such factors, nor do they adequately differentiate between problems

of varying nc (particularly for nc > 40).

The information content and partial information content features are highly correlated

for the CiaS problems (the sample correlation coefficient is 0.9988). Consequently, having

calculated information content, no additional information is obtained from the partial infor-

mation content (and vice versa). The values of information content and partial information

content are roughly constant over all of the CiaS problems, with small fluctuations as indi-

cated by the scale on the axes in Figures 7.56 and 7.57. Comparisons with the information
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Figure 7.56: Information content of the CiaS problems for nc = 2, . . . , 100.
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Figure 7.57: Partial information content of the CiaS problems for nc = 2, . . . , 100.
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Figure 7.58: Information stability of the CiaS problems for nc = 2, . . . , 100.

content and partial information content of highly rugged landscapes in [190] suggest that

the values (and fluctuations) obtained are reasonable. Similar to other features, the stan-

dard deviation decreases as nc increases. The information content and partial information

content features indicate that the problems do not significantly change in ruggedness. Most

importantly, the features are clearly unable to differentiate and characterise CiaS problems.

In contrast to information content and partial information content, the information sta-

bility feature, shown in Figure 7.58, exhibits a strong, smooth trend as nc increases and has

very small standard deviation between samples. In particular, as nc increases, the informa-

tion stability is a monotonically decreasing function, approaching 0. This is determined by

the nature of objective function values in CiaS problems and the evaluation of solutions. As

discussed in the context of the length scale distribution analysis, the objective function value

assigned to a solution is the minimum distance between any two circle centres (multiplied

by -1, as this analysis assumes minimisation). As nc increases, the radius of the circles de-

creases, and so for a random solution, the minimum distance between any two circle centres

is expected to also decrease. Consequently, the magnitude of the minimum objective func-

tion value of a random solution is also expected to decrease as nc increases. Information

stability is simply the largest change in objective function value between two steps in the

walk. Thus, while information stability is a robust and unique characteristic the problem

for changing nc, the decrease in information stability that is observed in Figure 7.58 is likely

to be due to the decrease in magnitude of the objective function, rather than the landscape

structure. Furthermore, analysis of individual information stability values does not give

much insight into landscape structure. For example, at nc = 2, the average information
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Figure 7.59: Length scale entropy of the CiaS problems for nc = 2, . . . , 100.

stability over the 30 samples is approximately 1.1213. This merely indicates that the largest

change in objective function values (between a step in the walk) is 1.1213; no information

regarding other changes in objective function values, the distribution of objective function

values or the interaction of solutions and objective function values is captured.

The entropy of the length scale distribution, h(r), is shown in Figure 7.59. It clearly

characterises the problem. Specifically, as nc increases, h(r) decreases in a smooth, highly

predictable manner. The h(r) values in Figure 7.59 have very low standard deviation across

the repeated samples, which suggests that for these problems, it is a highly robust landscape

feature.

Since h(r) is decreasing as nc increases, the information required to describe r is decreas-

ing, meaning that there is an increasing frequency of similar length scales. This in turn

indicates that as nc increases, the diversity of the changes in objective function between two

solutions is decreasing. Figure 7.49 nicely illustrates this; p(r) for nc = 2 has a much heavier

tail than p(r) for nc = 5, indicating nc = 5 has less diversity of length scales, and hence, less

diversity in objective function changes.

A second experiment is included in Appendix C, which is based on the same experimen-

tal setup, except a uniform random walk is used instead of the Lévy random walk. The

results using the uniform random walk are quite similar to the results above, with the small

exception of the FDC coefficients, which appear to be much more volatile when the uniform

random walk is employed.
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7.3.3 Results Comparing Length Scale with an Ensemble of Features

Similar to the analysis conducted on the BBOB problems in Section 7.2.3, here the seven

existing features (correlation length, dispersion, FDCx∗ , FDCx̂∗ , information content, partial

information content and information stability) estimated on the CiaS are combined into a

feature ensemble and visualised in a two dimensional “problem space”. The features are

normalised by their appropriate bounds (information stability is normalised by its range).

The 7-D feature space is reduced using t-SNE (with the Euclidean distances between features

vectors as input).

The J-divergences estimated between the length scale distributions of the CiaS problems

are also used to infer the problem space. Specifically, the average J-divergences between

the CiaS problems across the 30 different samples were used to calculate a dissimilarity

matrix, and t-SNE was applied. Based on the recommendations in [186] and exploratory

experimentation, the perplexity was set to 5 for all t-SNE reductions in these experiments.

Due to the stochastic nature of t-SNE, 1000 different trials were conducted, with a maximum

of 1000 iterations for each trial. Figure 7.60 shows the best t-SNE visualisation (in terms of

the final cost) for each approach. The costs of t-SNE solutions were quite consistent across

the 1000 trials; the feature-ensemble approach ranged between 0.2235 and 3.1630 with a

median cost of 0.2606, while the length scale approach ranged between 0.1186 and 4.5436

with a median cost of 0.1820.

The visualisation of the feature-ensemble t-SNE solution (Figure 7.60a) shows that the

CiaS problems form two major clusters, roughly based on nc. Specifically, the problems

are split roughly around nc = 50 (with a few exceptions). The visualisation shows that

as nc increases from 2, the locations of the problems progressively follow a linear pattern,

indicating that the similarity between problems of small nc and large nc are dissimilar. As

the number of circles passes 40, the pattern deteriorates and a second cluster is formed.

The second cluster consists mainly of problems where nc ≥ 40. The second cluster does

not follow a linear pattern, rather, problems are arranged roughly in the shape of a circle,

indicating that the problems are similar.

The t-SNE visualisation of the J-divergences between problems (Figure 7.60b) is quite

different to the feature-ensemble approach. In particular, the J-divergences form 4 clear

clusters, approximately defined by 2 ≤ nc ≤ 32, 33 ≤ nc ≤ 66, 67 ≤ nc ≤ 86 and 87 ≤
nc ≤ 100. There are a few exceptions; nc = 30, 70 and 96 are in different clusters compared

to instances with one less/more circle to pack (e.g. nc = 30 is positioned in a different

170



CHAPTER 7: LENGTH SCALE ANALYSIS: RESULTS

−400 −200 0 200 400 600
−1500

−1000

−500

0

500

1000

  2−19

  20−23
  24

  25

  26−41
  42   43

  44

  45

  46

  47

  48  49
  50

  51
  52

  53

  54

  55
  56

  57

  58

  59

  60

  61  62

  63

  64

  65
  66

  67

  68

  71

  69−75

  76

  77
  78

  79

  80

  81  82

  83−85

  86
  87

88−96

  97  98

  99
  100

(a) Feature-ensemble approach (cost of 0.2235)
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Figure 7.60: Feature spaces of CiaS problems (nc = 2, . . . , 100) reduced via t-SNE.
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Figure 7.61: Dendrograms of the CiaS problems (nc = 2, . . . , 100) problems.

cluster to nc = 29 and nc = 31). However, because nc = 30, 70 and 96 remain close to

instances of similar packing sizes (e.g. nc = 30 is positioned in cluster 33 ≤ nc ≤ 66), the

separation is likely due to t-SNE. Indeed, the dendrogram in Figure 7.61b shows instances

nc = 30, 70 and 96 are similar to instances differing by one circle. The problems in clusters

2 ≤ nc ≤ 32 and 33 ≤ nc ≤ 66 are positioned in a linear pattern (as nc increases), while

the problems in clusters 67 ≤ nc ≤ 86 and 87 ≤ nc ≤ 100 are more circular. As discussed

above, linear patterns indicate a dissimilarity between problems, while circular patterns

indicates similarity. Hence, the t-SNE visualisations of both the feature-vector distances and

J-divergences shows that as nc increases, problems of similar nc values become increasingly

more similar.
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The dendrograms for the feature-ensemble and length scale approaches are shown in

Figure 7.61. To aid in visualisation and interpretation, the 99 CiaS problems are categorised

into 10 groups based on their similarities (as measured by DJ and the Euclidean distance

between feature vectors). Both dendrograms show that there is a strong similarity between

CiaS problems with large numbers of circles; problems where nC > 19 and nC ≥ 60 form

the largest clusters in Figures 7.61a and 7.61b respectively. The dendrograms also show

that the largest dissimilarity between problems is between low (e.g. 2) and high (e.g. 100)

values of nC. The feature-ensemble approach (Figure 7.61a) assigns clusters to the individual

problems nc = 2 to nc = 7, whereas the J-divergence approach (Figure 7.61b) only assigns

nC = 2 and nC = 3 their own clusters. Hence while both dendrograms show similar trends,

the feature-ensemble dendrogram shows a greater dissimilarity between problems with low

numbers of circles.

To summarise, both the feature-ensemble and length scale approaches to analysing the

similarity between the CiaS problems indicates that problems with a small number of cir-

cles to pack are more dissimilar than problems with a large number of circles to pack. In

particular, it appears that as nc increases, the similarity between problems also increases.

7.4 Analysis of TSPLib

Thus far, the length scale analysis has been used to characterise continuous optimization

problems. However, length scale can also be readily applied to combinatorial problems,

and so the experiments and results in this section and Section 7.5 and 7.6 focus on analysing

well-known combinatorial problem sets. In particular, this section examines TSPLib, which

is a widely-used Travelling Salesman Problem benchmarking set.

The TSPLib collection is an interesting problem library to analyse as there are a wide

variety of instances, with some of the instances sharing similar sources, distance metrics,

and/or number of cities (n). The aim of this experiment is to apply the length scale analysis

to a subset of instances from TSPLib to evaluate whether the length scales capture rela-

tionships between the instances. Some of the instances within TSPLib come from a similar

source, and so it is expected that there may be structural similarity between such problems.

The TSPLib instances in Table A.3 range between 17 and 100 cities. A 100-city symmetric

TSP has 99!
2 (≈ 4.67× 10155) candidate solutions, while a 100-city asymmetric TSP has 99!

(≈ 9.33× 10155) candidate solutions, and so clearly, complete enumeration of the solutions

in all of the TSPLib instances is infeasible. Therefore in this experiment, a sample of r values
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is obtained using Algorithm 6.1 with 2.5 × 105n solutions generated by uniform random

sampling of feasible tours. A tour can be represented by a sequence of integers from 1 to n;

integers uniquely identify each city, and the order of the sequence corresponds to the order

in which the cities are visited. Uniform random (feasible) tours are generated by uniform

randomly permuting the order of integers in the sequence (1, . . . , n). The objective function

value of a solution is the total distance of the tour solution. Using the TSP and ATSP solution

distances defined in Equations A.2.7 and A.2.8 (see Appendix A.2.1) respectively, the length

scale between two TSP solutions can be calculated via:

r(xa, xb) =

∣∣∣∑i 6=j Di,jxa
i,j − Di,jxb

i,j

∣∣∣
distTSP(xa, xb)

(7.4.1)

and the length scale for two candidate ATSP solutions is:

r(xa, xb) =

∣∣∣∑i 6=j Di,jxa
i,j − Di,jxb

i,j

∣∣∣
distATSP(xa, xb)

(7.4.2)

7.4.1 Length Scale Analysis Results

The resulting length scale distributions in Figures 7.62 to 7.65 show that instances from a

common source have strong similarities in their length scale distributions. While instances

from a common source clearly have similar length scale distributions, the difference in axes

between the sources illustrates that there is a clear difference between sources. For exam-

ple, Figures 7.62 and 7.64 show that the p(r)s of instances from a particular source can be

very different to the p(r)s of instances from other sources. The length scale distributions are

shown together in Figures 7.66 and 7.67. While some instances have very similar length scale

distributions (e.g. the “kro”-type instances), the length scale distributions can also vary by

orders of magnitude (e.g. “br17”). It is clear that problems from similar sources have more

similar length scale distributions than problems from different sources. Overall, the length

scale distributions are a feature of these problem landscapes that can distinguish sources.

Instance p43 has a particularly interesting length scales, as shown by the length scale

multiset and length scale distribution in Figure 7.68. Almost all length scales within this

problem are close to one of four values; 1, 5000, 10000 and 25000. As a result, p(r) has four

clear modes. While the majority of length scale distributions examined in this thesis are
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Figure 7.62: Length scale distributions of “kro”-type instances from TSPLib.
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Figure 7.63: Length scale distributions of “bay”-type instances from TSPLib.
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Figure 7.64: Length scale distributions of “gr”-type instances from TSPLib.
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Figure 7.65: Length scale distributions of “ft”-type instances from TSPLib.

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7

8

x 10
−3

r

p(
r)

 

 

kro
bay
gr
ulysses
br17
ft
p43
ry48p

Figure 7.66: Length scale distributions of the TSPLib instances.
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Figure 7.67: Zoomed-in length scale distributions taken from Figure 7.66.
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Figure 7.68: Length scales for instance p43.

unimodal, Figure 7.68b illustrates that multimodal distributions are possible in practice.

Heatmaps summarising the DJ between problems as well as t-SNE (perplexity of 5, best

result from 1000 trials with a maximum of 1000 iterations) visualisations of the problem

space are shown in Figures 7.69 and 7.70. The final cost of the optimization for t-SNE is

0.2041, which indicates that the visualisation is an adequate depiction of the relationships

between instances.

The heatmap in Figure 7.69 clearly shows that instances from similar sources (e.g. “kro”)

have small J-divergences and are therefore similar to each other. While instances from dif-

ferent groups are generally dissimilar, the largest difference between instances is between

p43 and ft53. For many of the instances, p43 is the most different instance in comparison to
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Figure 7.69: Heatmap of DJ values calculated between pairs of TSPLib instances.
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Figure 7.70: t-SNE of DJs (cost of 0.2041) calculated between pairs of TSPLib instances.
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Figure 7.71: Dendrogram of DJs calculated between pairs of TSPLib instances.

the other instances. Interestingly, there is no discernible difference between symmetric and

asymmetric “kro”-type instances.

Figure 7.70 shows the t-SNE visualisation of the problem similarities (and hence, “prob-

lem space”). Here, the instances are labelled with their name marked according to their

TSP type class (symmetric problems are black circles, asymmetric are represented by white

squares). Figure 7.70 captures the general trend that instances from similar sources are sim-

ilar to each other. Here, the “kro”-type instances form their own cluster (without regard to

(a)symmetry). The remaining instances form a second cluster, and within this cluster are

loosely organised according to their problem source and type. For example, all “ftv”-type

problems are located together, as are the “ulysses”-type problems. There is one exception;

gr24 is not located with the remaining “gr”-type problems. Overall, Figure 7.70 illustrates

that DJ nicely discriminates between the TSPLib instance sources.

The dendrogram in Figure 7.71 also demonstrates the similarity of problems from com-

mon sources. Instances are generally clustered according to their source. For example, all

“kro”-type problems form a cluster, as do the “ftv”-type problems. Interesting, the “gr”-

type problems are split between different clusters. Using the dendrogram to cluster the in-

stances into two clusters yields {br17, ry48p, kroA100, kroB100, kroC100, kroD100, kroE100,

kro124p} and the remaining problems, which closely matches the problem space visualisa-

tion in Figure 7.70.
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7.4.2 Existing Results

TSPLib instances have been widely used to benchmark and compare the performance of

algorithms. Consequently, a large amount of the TSPLib literature has a strong emphasis

on analysing algorithm behaviour and performance. Developing an understanding of al-

gorithm behaviour is often closely associated with landscape analysis, and as a result, a

relatively large amount of analysis has been conducted on TSPLib instances. However, due

to the strong focus on algorithm behaviour, the analysis is often aimed at understanding

algorithm behaviour, rather than the problem itself.

Draskoczy [46] calculated FDC coefficients (using the global optimum as reference) for

5 TSPLib instances (not studied in the experiments above) with 5 different distances, based

on commonly used move operators. Merz and Freisleben [115] also analysed the FDC cal-

culated between random solutions and the global optimum (as the reference point) for 9

TSPLib problems (their experiments used two distances induced by the move operators 3-

opt and Lin-Kernighan). In addition, distinct local optima were determined using random

restarts of a local search and the following features were derived and analysed: 1) the min-

imum distance between the global optimum and a local optimum, 2) the average distance

between all local optima and the global optimum, 3) the average distance between all local

optima and 4) the total number of distinct local optima. The aforementioned analyses are

obviously very computationally expensive and rely on knowledge of the global optimum,

which is not readily available in many situations (e.g. black-box and real world problems).

The resulting FDC coefficients of the TSPLib instances analysed in [46, 115] are mainly

positive. The analysis of the distances between local and global optimum indicates that

many of the instances defined using Euclidean-distance have a central massif/big-valley

structure, where the global optimum is centrally located between local optima. As a re-

sult, many of these instances are reportedly “easy to solve”, and contain relatively smooth

transitions in objective function values [115, 137].

Elementary landscape analysis on symmetric TSPLib instances (with a focus on the 2-

opt move operator) also indicates a degree of smoothness between random neighbouring

solutions [203]. The elementary landscape analysis also showed that TSPLib instances are

partially decomposable, meaning that for certain move operators, the calculation of f for a new

solution generated by adding/removing tour edges does not involve an entire calculation

of the tour. Instead, the calculation of the previous tour can be modified to include/exclude

the added/removed edges.
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In contrast to the highly algorithm-focused analysis discussed above, Smith-Miles and

Tan [164] analysed the kroA1OO, kroB1OO, kroC1OO, kroD1OO, kroE1OO, and rd1OO TSPLib

instances using 40 different TSP features (a thorough review of the TSP features can be found

in Smith-Miles and Lopes [163]). Their results showed that the landscape features were not

able to adequately discriminate between the TSPLib instances. The results in Section 7.4.1

are in agreement that the “kro”-type instances are highly similar, and so perhaps the lack of

discrimination in [164] is simply because the problems are fundamentally similar in struc-

ture.

To summarise, much of the landscape analysis of TSPLib instances has been performed

with a strong focus on understanding algorithm behaviour. In addition, many of the fea-

tures used to analyse the instances are highly TSP-specific, and rely on information, such

as the global optimum, that is not readily available in real-world or black-box problems.

In contrast, the length scale analysis conducted in this section is able to accurately distin-

guish and discriminate between instances using only a finite sample of solutions and their

objective function values.

7.5 Analysis of Asymmetric Travelling Salesman Problems

Asymmetric Travelling Salesman Problems (ATSPs) are known to undergo phase transi-

tions in various structural features of the problem as well as the difficulty of some exact

solvers [206]. For further details on how to generate ATSPs throughout various stages of

the phase transition, please refer to Appendix A.2.1. The aim of this experiment is to in-

vestigate how the length scales of ATSP instances change throughout various stages of the

phase transition, and whether or not length scale analysis is sensitive to the phase tran-

sition. Zhang [206] previously analysed the landscapes of random ATSP instances with

n = 100, 200, . . . , 1000, 1500 cities, where distances are generated uniform randomly from

integers in the range [0, . . . , b10bc], where b > 0. The results show that the phase transition

is invariant to n and typically occurs within β = [0.5, 3.5], where β = b
log10 n . In addition,

Zhang [206] shows that the critical point of the phase transition is 2 as the expected number

of distinct distances in D approaches ∞. Because the number of cities does not affect the

phase transition behaviour, this experiment focuses on 10-city problems (i.e. n = 10) and

uses b = β = 0.5, 0.6, . . . 6.5 to generate the instances at various stages of the phase transi-

tion. At each value of b, 10 random ATSP instances are generated using 10 distinct distance

matrices, where entries in each matrix (excluding the leading diagonal) are sampled uniform
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Figure 7.72: Proportion of unique distances averaged across 10 random instances of each b.

randomly from integers in the set [0, . . . , b10bc].
One particular problem-feature of TSPs is the fraction of unique distances in the distance

matrix. Zhang [206] showed that this feature (among others) exhibits a phase transition as

b increases. Figure 7.72 shows the fraction of unique distances, calculated for each ATSP

instance and averaged across the 10 instances at each value of b. The results show that the

problems generated exhibit the phase transition behaviour described in [206].

A 10-city ATSP instance has a total of 9! (362880) candidate solutions, which is feasible

to completely enumerate. A sample of r values is obtained using Algorithm 6.1 with all 9!

solutions as the sample, S ′. The length scale for two candidate ATSP solutions is defined in

Equation 7.4.2.

7.5.1 Length Scale Analysis Results

Figure 7.73 shows the length scale distributions for b = 0.5, 2.1 and 6.5, which correspond

to three different parts of the phase transition (specifically, an average fraction of distinct

numbers of 0, 0.4788 and 1 respectively). The length scales are very consistent between

ATSP instances at a given value of b, and as b increases, the magnitude of the length scales

also increases.

Clearly, as b increases, the magnitude of the length scales increases. From the definition

of length scale, such an increase can be caused by an increase in the magnitude of the change

in objective function and/or a decrease in magnitude of the distance between solutions.

For these experiments, all candidate solutions are utilised and so the search space (i.e.
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Figure 7.74: ATSP distance distributions for the ATSP instances.

set of candidate solutions) is identical across b. Consequently, the resulting ATSP distances

between all pairwise solution combinations are also identical across b. However, not all

the conceivable distances between solutions (i.e. all pairwise distances) are used in these

experiments, rather, a random subset (due to the use of Algorithm 6.1) is used. Therefore

there may be some variation in the ATSP distances, however this is expected to be low.

To investigate how much variation there is in the subsets’ distances, Figure 7.74 shows a

box and whisker plot of the ATSP distance probabilities across all of the random subsets

used in the experiments. Because 10 instances are generated at each value of b, there are a

total of 10× 37 random subsets. Note that because n = 10, the number of shared edges is

between 0 and 10. Since ATSP distance is calculated between unique candidate solutions, the

distance distribution is a probability mass function with probabilities defined at distances of

0, 1
10 , . . . , 1.

Figure 7.74 shows that, as expected, the ATSP distance probabilities have very small

variance across the random subsets. Therefore, the increase in magnitude of length scale

values exhibited in Figure 7.73 can only be due to an increase in the difference of objective

function values. This is indeed the case for the ATSP problems; the objective function is

based on the total distance of the tour, and as b increases, the range from which the distances

are generated increases. Consequently, the total tour distance (i.e. objective function value)

increases, thereby increasing the difference between objective function values, and thus, r.

To further examine the behaviour of the ATSP instances, a heatmap summarising the

average DJ between problems, a t-SNE (perplexity of 5, best result from 1000 trials with a

maximum of 1000 iterations) visualisation of the problem space and dendrogram are shown
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Figure 7.75: Heatmap of DJ values calculated between pairs of ATSP instances with b =
0.5, 0.6, . . . , 6.5.

in Figures 7.75 to 7.77. While most J-divergences are between 0 and 900, some extreme values

occur; DJ(b = 0.5, b = 6.5) = 413592.34. The outlying J-divergences make the visualisations

difficult to interpret, and so log10 DJ is used to generate both the heatmap and dendrogram.

The cost value of 0.2473 from t-SNE indicates that the discrepancy of distances between

points in the original data and reduced data is moderate, and so the visualisation is not able

to fully reflect the relationships between problems.

The heatmap in Figure 7.75 clearly shows that the greatest difference between problems

(depicted by white pixels) is between low values of b and high values of b (e.g. b = 0.5

and b = 6.5). Problems with similar b (i.e. along the leading diagonal) have low DJ values,

except for a section where 1.3 ≤ b ≤ 1.6 which corresponds to the beginning of the phase

transition. This is a highly exciting result; the phase transition behaviour is incredibly well-

described by the DJ values. Consequently, the length scale analysis applied to instances of

ATSPs has detected the phase transition, but with no prior knowledge of its existence, and

based purely on black-box samples from the landscape.

Figure 7.76 shows the t-SNE visualisation of the problem similarities (and hence, “prob-

lem space”). Here, the problems are labelled with their respective b values, and the markers

are coloured and shaped according to their approximate position in the phase transition.

Blue dots denote before the transition, red circles denote the transition itself and problems

after the transition are marked by black squares. Remarkably, the problem space visuali-

sation is able to separate the problems into their respective phases. The problems before

the transition (blue dots) form a tight cluster and are very well-separated from the other
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Figure 7.76: t-SNE of DJs (cost of 0.2473) calculated between pairs of ATSP instances with
b = 0.5, 0.6, . . . , 6.5.

problems, indicating that they are structurally similar to each other, but very different to the

problems during and after the transition. Problems during the transition (the red circles) are

well-organised and curl around the problem space, showing that while there are some sim-

ilarities in problem structure, the structure is changing as b increases. Interestingly, b = 1.4

and b = 1.6 (at the start of the transition) are exceptions and are more similar to problems at

the end of the transition (b = 3.5 and b = 3.6). Problems after the transition (black squares)

form a linear progression as b increases.

The dendrogram in Figure 7.77 also clearly shows that problems of similar values of b

have low DJs compared to problems with very different values of b. Using the dendrogram

to cluster the problems into two major clusters yields problems before the phase transition

(i.e. b ≤ 1.3) and problems after the phase transition begins (i.e. b ≥ 1.3). While the

dendrogram can identify problems before the phase transition, it is unable to distinguish

problems during the phase transition from problems after the phase transition.

To summarise, the length scales are clearly able to capture the information required to

describe the phase transition behaviour of the ATSPs. Remarkably, the length scales are

calculated purely from the information available in the black-box setting, and have no prior

notion of the phase transition behaviour. Clearly, length scale is a very powerful summary

of landscape information.
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7.5.2 Existing Results

TSPs have been well-studied in the problem analysis literature, and as a result, over 40 TSP-

specific problem features have been proposed and analysed to date (see [163] for a review).

The motivation driving the development of many of the TSP features is to correlate the fea-

ture with a notion of problem difficulty. For example, Cheeseman et al. [34] showed that

the standard deviation of the distance matrix has a strong relationship with the computa-

tional cost of Little’s algorithm (an exact solver). TSP features include but are not limited to

statistical measures (e.g. variance) of the distance matrix, measures of the number of back-

bones, characteristics of city clusters and traditional landscape analysis techniques such as

autocorrelation and the number of local optima [88, 163, 173]. While there are numerous

features proposed, only a handful exhibit the TSP phase transition behaviour, and of these,

none are practically feasible to estimate and solely reliant on black-box information. For ex-

ample, Slaney and Walsh [159] define the backbone of an optimization problem as the set of

“frozen” decision variables, that is, variables with constant values across all of the optimal

solutions. While computation of a TSP backbone technically requires no domain knowl-

edge, it does require finding all optimal solutions, which is NP-hard. To achieve tractability,

Kilby et al. [88] define an approximation of the backbone based on various exploitations of

the problem, which are only known through a deep level of TSP domain understanding.

Hence, tractable measures of the TSP backbone rely heavily on intricate TSP domain knowl-

edge. Hernando et al. [73] propose two problem measures for capturing phase behaviour;

1) the proportion of the global basin of attraction with respect to S and 2) the proportion of

unique local optima with respect to S . These measures are also heavily dependent on prior

information (e.g. the global optimum) and require enumeration of all local optima, which

is a very computationally expensive task for large n. As demonstrated in the above experi-

ment, length scale is very adept at capturing phase behaviour, while it is remarkably easy to

apply, practically feasible and operates solely on black-box information.

7.6 Analysis of Number Partitioning Problems

The Number Partitioning Problem (NPP) defined in Appendix A.2.2 is known to undergo

phase transitions in terms of the number of global optima, the size of plateaus, and the

difficulty of exact solvers [17, 22, 174]. This section investigates how the length scales of

instances of NPP change throughout different stages of the phase transition. As outlined
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in Appendix A.2.2, the phase transition of the NPP is determined by the control parameter,

k = log2
M
N (the number of bits required to encode the set divided by the number of elements

in the set).

Alyahya and Rowe [6] have recently analysed the landscapes of NPP instances consist-

ing of 20 elements (i.e. n = 20), where k = 0.4, 0.5, . . . , 1.3. In order to draw comparisons

with existing literature, the experiments conducted in this section use a similar experimen-

tal setup. Using the derivation for the critical control parameter value (kc) defined in Equa-

tion A.2.10, kc = 1 − ln( 10π
3 )

40 ln(2) ≈ 0.9153. Therefore, instances at k = 0.4, 0.425, . . . , 1.3 are

generated in order to observe the phase transition behaviour. A single instance is generated

by populating S with integers uniformly selected (without replacement) from {1, . . . , m},
where m = 2nk. Due to the random generation of the NPP instances, 10 different instances

are generated for each value of k.

Because n = 20, there are a total of 219 unique and feasibly enumerable candidate solu-

tions. Candidate solutions are represented by a bit-string of length n, where the element at

position i in the bit-string is 0 if assigned to the first partition, and 1 if assigned to the second

partition. In these experiments Hamming distance is used as a measure of distance between

solutions. Length scales are calculated from the complete set of enumerated solutions using

Algorithm 6.1.

7.6.1 Length Scale Analysis Results

The length scales for NPPs are very consistent between instances at a given value of k. As

k increases, the magnitude of the length scales also increases. To best illustrate this, the

(sorted) length scale sets are shown in Figure 7.78 (note the log-scale on the y-axis). Each line

represents the (sorted) length scale set from a NPP instance. Lines are coloured according to

k, with blue representing k = 0.4 and red representing k = 1.3.

Clearly, as k increases, the magnitude of the length scales increases. This behaviour is

very similar to the ATSP instances analysed in Section 7.5, where the length scale values

increased as b increased. To briefly review, an increase in r can be caused by an increase in

the magnitude of the change in objective function and/or a decrease in magnitude of the

distance between solutions. For these experiments, the search space (i.e. set of candidate

solutions) is identical across k. The solutions are fully enumerated, and so the resulting

Hamming distances between all pairwise solution combinations are also identical across k.

However, not all of the conceivable distances between solutions (i.e. all pairwise distances)
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Figure 7.78: Length scale sets for the NPP instances. Lines are coloured according to k, with
blue representing k = 0.4 and red representing k = 1.3.
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Figure 7.79: Hamming distance distributions for the NPP instances.

are used in these experiments, instead, a random subset (due to the use of Algorithm 6.1)

is used. Therefore some variation in the Hamming distances may occur, however this is

expected to be low. To investigate how much variation there is in the subsets’ distances,

Figure 7.79 shows a box and whisker plot of the Hamming distance probabilities across all

of the random subsets used in the experiments. Because 10 instances are generated at each

value of k, there are a total of 10× 37 random subsets. Note that since Hamming distance

is calculated between unique candidate solutions, the distance distribution is a probability

mass function with probabilities defined at distances of 1, . . . , 19.

Figure 7.79 shows that, as expected, the Hamming distance probabilities have very small

variance across the random subsets. Therefore, the increase in magnitude of length scale
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Figure 7.80: Length scale sets for the NPP instances normalised by 2nk. Lines are coloured
according to k, with blue representing 0.4 ≤ k ≤ 0.8, green representing 0.8 < k ≤ 1 and red
representing 1 < k ≤ 1.3.

values exhibited in Figure 7.78 can only be due to an increase in the difference of objective

function values. This makes sense with some reflection of the problem definition. The ob-

jective function is based on the discrepancy of the integers in S1 and S2, which are generated

from randomly sampling {1, . . . , m}, m = 2nk. Thus for each increase in k, m increases by a

factor of 2nk. This results in larger integers in S1 and S2, which leads to larger objective func-

tion values and larger length scales. However, one must be careful not to conclude that the

change in f as k increases is solely caused by the scaling of 2nk. While the scaling is certainly

a contributing factor, so too is the nature of the landscape structure, which may change as

k increases. To illustrate this point, Figure 7.80 shows the length scales in Figure 7.78, nor-

malised by 2nk.

The normalised length scale sets exhibit different values across k. Here it is clear that

instances after the phase transition (coloured in red) have a wide variety of length scale val-

ues, while instances prior to the phase transition (coloured in blue) have a smaller variety

of (larger) length scale values. The length scales of instances close to the phase transition

(coloured in green) do not vary as much as the aforementioned sets. This can also be ob-

served from the length scale distributions, shown in Figure 7.81.

Overall, Figures 7.80 and 7.81 illustrate that k highly influences the value and variety

of the length scales for an instance. Given that k affects the length scales, length scale in-

formation may potentially be used to infer k, and hence, the particular area of the phase

transition that a given problem belongs to. To evaluate the discriminatory power of the
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Figure 7.81: Example p(r)s for the 10 NPP instances normalised by 2nk. Lines are coloured
according to k, with blue representing k = 0.4, green representing k = 0.925 and red repre-
senting k = 1.3.

length scales, a heatmap summarising the average DJ between problems, a t-SNE (perplex-

ity of 5, best result from 1000 trials with a maximum of 1000 iterations) visualisation of the

problem space and dendrogram are shown in Figures 7.82 to 7.84. To obtain the visualisa-

tions, the J-divergences were calculated for all pairs of problems within each of the 10 sets of

problems, and the results were averaged. For example, given 10 instances of NPP at k = 0.4

and k = 0.425, DJ(k = 0.4, k = 0.425) = 1
10 ∑10

i=1 Di
J(k = 0.4, k = 0.425), where Di

J is the

J-divergence between instances i.

The heatmap in Figure 7.82 is very different to the heatmaps for the elliptical functions

(Figure 7.2), Rastrigin functions (Figure 7.6), TSPLib instances (Figure 7.69) and ATSPs (Fig-

ure 7.75). The leading diagonal is very dark, indicating that problems produced by very

similar values of k, such as k = 0.4 and k = 0.425, are structurally very similar. However, the

DJ values slightly underneath the leading diagonal are white, indicating that the problems

are structurally very different in relation to the other problems. The light colour follows

linearly (as a diagonal line) down the heatmap, and is positioned approximately 5 instances

away from the leading diagonal. The increment of k between problems is 0.025, meaning

given a problem at ki, problems at approximately ki + 5× 0.025 are very different. For ex-

ample, k = 1 and k = 1.125 are structurally very different. The instance pairings below the

white diagonal are grey coloured, with a slightly lighter shade of grey towards the lower left

corner (k = 0.4 and k = 1.3). The grey colouring suggests that the instances are moderately

different compared with the other instances in the set. Therefore, instances with different k
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Figure 7.82: Heatmap of DJ values calculated between pairs of NPP instances with k =
0.4, 0.425, . . . , 1.3.

values, such as k = 0.4 and k = 1.3 are structurally dissimilar, with a greater dissimilarity

between larger discrepancies in k. Overall, the heatmap suggests that the instances are gen-

erally structurally dissimilar, with the exception of instances with close (but not too close) k

values.

The final cost of the t-SNE optimization was 0.2272, indicating that the visualisation in

Figure 7.83 is a moderately accurate representation of the J-divergences between the in-

stances. The visualisation clearly shows a relationship with k; instances are generally or-

dered from light (low k values) to dark (high k values). There are two particularly interesting

regions in Figure 7.83: the change in direction at approximately k = 0.9 and the change in

direction at approximately k = 1.15. The phase transition between easy and hard landscapes

reportedly occurs at approximately 0.9153. Remarkably, the t-SNE visualisation reflects this

transition; the instances follow a linear pattern as k increase from 0 to 0.9, suggesting that

the changes in problem structure are gradual and smooth. Then, at 0.9 the location of the

instances changes significantly, suggesting that for k > 0.9, the instances are structurally

very different to previous instances. The locations of the instances continues to change as k

increases, indicating that the instances continue to vary significantly with structure.

The dendrogram, shown in Figure 7.84 exhibits similar relationships between instances

as discussed above. Problems of similar k values have a small J-divergence between them. In

particular, the J-divergences between groups of 4 instances are quite low, however merging

groups of 4 problems generally requires a considerably increase in J-divergence (e.g. DJ >

9). The large increase in merging clusters of 4 problems likely corresponds to the large J-
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Figure 7.83: t-SNE of DJs (cost of 0.2272) calculated between pairs of NPP instances with
k = 0.4, 0.425, . . . , 1.3.

divergences between problems 5 instances apart, shown by the white diagonal (below the

leading diagonal) of the heatmap in Figure 7.82. Overall, the dendrogram is very balanced;

problems with similar k values form small clusters, which in turn combine to form larger

clusters, each containing a similar number of instances.

7.6.2 Existing Results

Unlike the Travelling Salesman Problem, the performance of polynomial-time heuristics,

such as the Karmarkar-Karp Differencing Algorithm, is incredibly poor for large instances

of the Number Partitioning Problem [17]. In order to try and understand why the NPP is

difficult for heuristics, the landscapes of NPP instances have been analysed using techniques

from statistical mechanics and traditional problem landscape analysis. However because

much of the analysis relies on complete enumeration of solutions, small instances (i.e. 10 ≤
n ≤ 20) are typically examined.

A barrier tree is a tree constructed for a landscape where leaves represent local minima

and internal nodes represent the fittest saddle points connecting local minima [171]. Hence,

barrier trees represent much of the information regarding valley structures (i.e. the path

from one local optimum to another) inherent to a landscape. The construction of a barrier

tree requires complete enumeration of S , and is therefore only practically feasible for small

landscapes. Stadler et al. [174] constructed barrier trees for NPP landscapes and calculated

a variety of tree properties to determine if the transition between “easy” and “hard” prob-

lems could be captured. Specifically, NPP instances were generated with elements uniform
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randomly sampled from an interval of integers, for problems of size n = 12, 14, 16, 18 and

20. Then, five measures of barrier tree symmetry and balance were calculated on 100 ran-

dom instances at each n. The results showed that all five measures, along with the fraction

of local minimum, remained constant across the phase transition. However, a single prop-

erty, imprudently coined the difficulty, was able to detect traces of the phase transition. In

this context, the “difficulty” is defined as the maximum of the ratio between the height of

the node connecting the global optimum and a local optimum, and the objective function

value difference between them, and it is directly related to the optimal convergence speed

of simulated annealing [32]. Stadler et al. [174] also remarked that the barrier trees strongly

resembled random trees and become completely balanced as n→ ∞, and that consequently,

local search techniques are unlikely to produce good solutions to the NPP.

Klemm et al. [89] investigated the behaviour of local optima, with regards to their preva-

lence in funnels for the NPP. Problems of size n = 8, 10 and 12 were examined, with 30

instances generated by uniform randomly choosing integers from an interval for each n.

Their results showed that the fraction of local optima within funnels is inversely propor-

tional to the total number of local optima. The relationship between their findings and the

known phase transition is not explored or discussed.

The correlation between similar objective function values and their corresponding so-

lutions for NPP instances is theoretically and empirically examined in [8]. 10000 instances

are randomly generated for n = 20, and the solutions of similar f -values are found to be

uncorrelated. The lack of correlation means that the landscape is “locally random”, and so

it is difficult to generate solutions with slightly better objective function values than the cur-

rent solution. Consequently, convergence is often difficult for local search heuristics on NPP

instances.

Recently, Alyahya and Rowe [6] examined the number of minima and plateaus, as well

as basin size and its correlation with f -values on NPP instances of size n = 20. Two different

neighbourhood definitions are used; solutions at a Hamming distance equal to one, and less

than or equal to two. 30 instances are generated for k = 0.4 to k = 1.3 at increments of 0.1,

and integers are sampled randomly from 5 different distributions. The results show that the

number of global minima and the number of plateaus change with respect to k. Specifically,

“easy” problems have numerous global optima and large plateaus, while “hard” problems

have only 2 global optima, and small plateaus.

None of the aforementioned properties are able to detect phase transitions based on

black-box information. More specifically, all of the existing properties rely on knowledge
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of the global optimum, knowledge of all local optima and/or enumeration of all possible

solutions, which is difficult and computationally time consuming in practice [6, 89, 174]. In

contrast to the existing landscape analysis on the NPP, the length scale analysis performed

in this section relies solely on the information available in the black-box scenario, i.e. solu-

tions and their respective objective function values. The analysis is clearly able to detect the

presence of a phase transition near the critical parameter, kc = 0.9153 for n = 20. In addi-

tion, the analysis of the length scale distributions showed that instances prior to the phase

transition have less “large” length scales than instances after the phase transition. This indi-

cates that the “easy” problems have less sporadic changes in objective function values, and

are therefore smooth in comparison to the “hard” problems. This supports the results in

[6], which suggest that “easy” instances have larger plateaus, and hence less rugged regions

than “hard” problems.

7.7 Summary

The length scale framework developed in Chapters 5 and 6 was used in this chapter to anal-

yse a variety of continuous and combinatorial optimization problems. In particular, contin-

uous artificial problems, the BBOB problem set, CiaS packing problems, TSPLib, ATSP and

NPP instances were analysed using a variety of techniques including plots of length scale

sets, length scale distributions, heatmaps, t-SNE problem space visualisations and dendro-

grams of clusters produced by hierarchical clustering.

The summaries of length scale information (such as p(r) and h(r)) were shown to be sta-

tistically robust to different samples of given problem instances. The stability/robustness

of length scale analysis can be attributed to its underlying methodology, where information

regarding both the solutions and their objective function values are combined and effectively

utilised. In comparison, many existing landscape analysis techniques ignore potentially im-

portant information. For example, information content is purely concerned with the variety

of objective function fluctuations in the landscape; available information such as the mag-

nitude of the fluctuations or location of the fluctuations is ignored. Likewise, FDC is con-

cerned purely with the correlation between the objective function values of solutions and

their distance to a reference solution. While FDC does incorporate both the solutions and

their objective function values, it is with regard to a reference solution. Available informa-

tion, such as the distances between solutions, is ignored.

The length scale analysis of the artificial continuous functions demonstrated the ability
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of the framework to capture important landscape structures such as eccentricity and modal-

ity. Experimental results on the BBOB and CiaS problem sets showed that the length scale

analysis provides a greater ability to discriminate between the problems in comparison to

seven well-known landscape analysis techniques. While all the landscape features analysed

provide insight into the nature of the problems, correlation length, FDC, information con-

tent, partial information content and dispersion were found to be limited in their ability to

characterise and differentiate the problems.

The length scale analysis of Travelling Salesman Problems and Number Partitioning

Problems demonstrated the flexibility of the length scale framework, and in particular, how

easily it can be applied to combinatorial problems with varying notions of distance. In addi-

tion to the successful application to combinatorial problems, some incredibly powerful in-

sights were drawn. Firstly, the length scale analysis of symmetric and asymmetric instances

from the TSPLib benchmarking set was able to categorise the TSPLib instances based on

their source. Secondly, length scale analysis on Asymmetric TSPs (ATSPs) generated along a

known phase transition was able to detect the phase transition. In a similar experiment, the

well-documented phase transition of NPP instances was also captured using the length scale

analysis. It is imperative to emphasize that all experiments treated the problems as a black-

box, and so the categorisation of TSPLib instances and detection of the phase transitions is

based purely on black-box information.
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CHAPTER 8

Quantifying Problem Similarity with

Information Distance

The eternal mystery of the world is its

comprehensibility.

Albert Einstein

In Chapter 6, it was shown that the length scale analysis framework can be used effec-

tively to explicitly quantify optimization problem similarity via the Jeffrey divergence (J-

divergence) between length scale distributions. This chapter proposes an alternative uti-

lization of the framework for quantifying problem similarity. The proposed approach is

based on the notion of Information Distance, a universal distance function originating in Kol-

mogorov Complexity theory as a measure of the (dis)similarity in information between two

arbitrary objects. While Information Distance is a theoretical measure, in practice it can

be approximated by the Normalised Compression Distance (NCD). The chapter begins with a

review of Kolmogorov Complexity theory, with a particular emphasis on Information Dis-

tance and the NCD. In Section 8.2, a unique methodology for calculating the NCD between

optimization problems is developed, and practical considerations are discussed. The abil-

ity of the NCD to accurately measure problem similarity is experimentally investigated in

Section 8.3. In particular, the NCD values are calculated between artificial continuous prob-

lems, the BBOB problem set, Circle in a Square (CiaS) packing problems, Travelling Sales-

man Problems (TSPs) and Number Partitioning Problems (NPPs). Both the NCD proposed

in this chapter and DJ proposed in Chapter 6 are novel measures of optimization problem

similarity, and so the relationship between the two measures is also theoretically and empir-

ically examined in Section 8.4. The chapter concludes with a summary of its contributions

in Section 8.5.
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8.1 Kolmogorov Complexity Theory

Kolmogorov Complexity theory (also known as algorithmic information theory) encompasses

many theories and techniques for measuring and comparing the information in objects

such as pictures, music and even optimization problems. This section reviews fundamental

theoretical concepts from the literature that are required for the application of Information

Distance to quantifying optimization problem similarity, proposed in subsequent sections.

An overview of Kolmogorov Complexity and its application in the optimization context is

given, and the notion of Information Distance, a universal distance function, is formally

outlined.

8.1.1 Kolmogorov Complexity

Given a finite binary string, x, the Kolmogorov Complexity, K(x), quantifies the string’s

information content or complexity. Formally, K is defined as a function, K : {0, 1}∗ → N,

from finite binary strings of arbitrary length to the natural numbers, N [96]. K has been

extended to other representations such as sets and functions [68], however this thesis focuses

on the complexity of finite binary strings. Informally, K(x) is measured by the minimum

number of bits required to completely and unambiguously describe x. A “description” is

defined as any program running on a Universal (prefix) Turing Machine that prints the string

and halts. K(x) is then the length (in bits) of the smallest such program. Programs written

in any universal programming language (e.g. C, Java or Python) can be transformed to run

on a Universal Turing Machine. Formally, let p be a program that prints a binary string and

halts, and let l(p) be the program’s length. Then, the Kolmogorov Complexity of x with

respect to a Universal (prefix) Turing Machine U is:

KU(x) := min
p:U(p)=x

l(p) (8.1.1)

A more rigorous definition and further details can be obtained from [68, 96], but the above

definition is adequate for the purpose of this work. For a simple, well-structured string, the

shortest program will capture and compress exploitable structure, and so the resulting pro-

gram length (and hence complexity) will be small in relation to string’s length. For example,

consider the string “1111111111’; such a string is intuitively simple and there exists a small

program (e.g. akin to “print 10 1s’) that prints the entire string and halts. Indeed, the string

of 1s can be made arbitrarily large while the program remains relatively very small, e.g.
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“print 2100 1s’. Now consider the string “0010111010’; this string has very little exploitable

structure, and so the smallest program will likely have to print the entirety of the string, e.g.

“print 0010111010’. Here, the length of this program is essentially the length of the actual

string, and so the complexity is high.

8.1.2 Information Distance

Information Distance is a universal distance function based on the notion that the

(dis)similarity between two objects can be quantified by the minimal amount of information

required to transform one object into the other, and vice versa [11, 96]. Intuitively, Informa-

tion Distance is the length of the shortest program that: 1) transforms x to y when given

y as auxilary input; 2) transforms string y to string x when given x as input and; 3) halts.

Consider such a program in more detail; if x and y are identical strings, the program is ex-

tremely small because no conversion is required (x is already converted to y and vice versa).

However, if x and y are not identical but share some mutual information, then the program

size is moderate; the shared information can be ignored (as no conversion is required), but

some conversion is required between the unshared information. Finally, if x and y differ

completely, a program is required to convert all the information in x to y, and vice versa.

This program is unable to utilise shared information, and as a result it is relatively large.

Formally, the Information Distance is defined as [97]:

ID(x, y) = min {l(p) : U(p, x) = y, U(p, y) = x} (8.1.2)

where U(p, x) = y denotes running program p on Universal Prefix Turing Machine U with

input string x, such that the output is string y.

The Information Distance is an absolute distance, and indicates the total difference in the

information between strings x and y. If two strings comprised of 106 bits differ by only 100

bits, intuitively, they are relatively quite similar. In contrast, if two strings comprised of 100

bits differ in all 100 bits, they are intuitively very different. The Normalised Information

Distance (NID) normalises the Information Distance to allow relative comparisons [97]:

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} (8.1.3)

where x and y are two finite binary strings and K(x|y) and K(y|x) are the (conditional)

Kolmogorov Complexities of x given y as input, and y given x as input respectively.
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The NID is a relative distance metric, meaning two strings of differing sizes can be com-

pared and the resulting distance is in [0, 1]. A value of 0 indicates that the strings are identical

in terms of information, while 1 indicates the strings are maximally different.

8.1.3 Normalised Compression Distance

Kolmogorov Complexity is uncomputable and thus cannot be directly used in practice. In-

formation Distance and Normalised Information Distance rely on K, and so they too cannot

be directly used in practice. However, because K relies on the smallest description of x,

any description of x (including itself) will form an upper bound on its Kolmogorov Com-

plexity. Therefore, approximations of K can be made using lossless compression algorithms.

Given an input string, lossless compression algorithms produce an encoded string that can

be unambiguously decoded without loss of information [104]. The encoding is essentially

a description of the string, and hence the encoding’s length forms an upper bound on the

string’s complexity. To achieve unambiguous decoding, lossless compression algorithms

map each unique input string to a unique encoding, meaning there is a one-to-one mapping

between input strings and encodings. Consequently, for each compressible string (i.e. its

encoding is smaller than itself), there exists an incompressible encoding (i.e. its encoding

is larger than itself). However, it is important to note that for incompressible input strings

where the encoding is larger than the original, most compressors will output the original

string, rather than the (larger) encoding.

Given a lossless compressor, Z, K(x) can be approximated by the length of the com-

pressed x, denoted by |Z(x)|. Hence, by substituting K(. . .) with |Z(. . .)|, the Normalised

Compression Distance (NCD) can be used to approximate the Normalised Information Dis-

tance [36, 97]:

NCD(x, y) =
|Z(xy)| −min{|Z(x)| , |Z(y)|}

max{|Z(x)| , |Z(y)|} (8.1.4)

where xy is the concatenation of strings x and y. Here, the term max{K(x|y), K(y|x)} from

(8.1.3) has been substituted with (K(xy)−min{K(x), K(y)}) as they are equal up to an ad-

ditive logarithmic term, O (log K(xy)), which is commonly ignored [36, 37, 194]. This ef-

fectively means that provided a suitable compressor and concatenation operator exist, the

NCD can be used to approximate the NID between two finite arbitrary binary strings.

NCD operates under the assumption that the compressor used is normal, meaning that

Z satisfies the following axioms up to an additive term O(log n), where n is the maximum
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length of the input:

1. Idempotency: |Z(xx)| = |Z(x)| and |Z(ε)| = 0, where ε is the empty string

2. Monotonicity: |Z(xy)| ≥ |Z(x)|

3. Symmetry: |Z(xy)| = |Z(yx)|

4. Distributivity: |Z(xy)|+ |Z(w)| ≤ |Z(xw)|+ |Z(yw)|

It is assumed that most popular compression algorithms in use closely adhere to the normal-

ity properties, though this is rarely tested experimentally. Cebrian et al. [33] investigated the

normality of GZIP, BZIP2 and PPMZ on the Calgary Corpus and it was found that certain

block-sizes of GZIP and window sizes of BZIP2 can violate the idempotency axiom. The Cal-

gary Corpus is mainly comprised of text data, and so the degree to which the compressors

adhere to the normality properties on other data types (e.g. images or songs) is unknown.

The accuracy of NCD can also be affected by how well the string representation cap-

tures the information in the object and the ability of the compressor to exploit structural

regularities in the representation. For example, consider computing the NCD between two

pieces of piano music. Each piece can be represented in a variety of ways; one could use

a sound recording of the piece, a listing of the notes played, or even an image of the sheet

music. These representations induce specific structural features in their respective binary

representations, and so it is important to use a compressor that is capable of exploiting such

structures. For example, if a sound recording representation is chosen, compressors specif-

ically designed for sound data, such as the Free Lossless Audio Compressor (FLAC), are

likely to obtain good compression. In certain cases, satisfactory results may be achieved

using general-purpose compressors. For example, [194] used GZIP in computing the NCD

between a heterogeneous dataset consisting of four mitochondrial gene sequences, four ex-

cerpts from a novel, four MIDI files, two Linux executables and two compiled Java classes.

The resulting distances clustered objects into their respective “types”and distributed the ob-

jects according to their inherent similarities. For example, their results showed that Musical

Instrument Digital Interface (MIDI) files of music were clustered together, and within this

cluster, MIDI files of Jimi Hendrix were well-separated from MIDI files of movements from

Debussy’s “Suite Bergamasque”).

NCD has been found to be competitive with (and often superior to) many state-of-the-

art specialised techniques in anomaly detection, classification, and clustering [86]. NCD has
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been successfully used in applications from a wide variety of areas including bioinformatics

[52, 90, 97], linguistics [36, 97], music classification [37] and plagiarism detection [35].

8.2 Normalised Compression Distance Between Optimiza-

tion Problems

The Normalised Information Distance is a universal distance metric, meaning that it is ap-

plicable to any two objects, and in practice it is approximated by the NCD. The following

section proposes the application of the NCD to quantify the similarity between optimiza-

tion problems. Crucial components of NCD include a suitable, binary representation of the

objects (e.g. ASCII for texts) and a compressor (e.g. GZIP). Therefore to begin, a suitable

representation, based on the length scale, r, developed in Chapter 5, is described. Following

this, a range of generalised and type-specific compressors are experimentally investigated

to evaluate their ability to compress length scale information. The methodology developed

in this section is a significant and novel contribution, as it allows the explicit quantification

of problem similarity, based purely on the information available in the black-box setting.

8.2.1 Representing Optimization Problems with Length Scale

In the black-box scenario, information regarding a problem is limited to the solutions in

a search space, x ∈ S , and their respective objective function values, f (x) ∈ IR. Using

this information, an objective function can be unambiguously described via a string of con-

catenated objective function values, evaluated on a finite, indexed sample of the search

space [20, 50]. The indexing of the sample is very important, as it provides an explicit

ordering of the solutions and ensures that the description string is unique for each objec-

tive function. Without an indexing, problems with a common set of f values will yield

identical representations, regardless of the distribution of the f values over S (and hence

problem structure). The description resulting from an indexed enumeration of f facilitates

Kolmogorov Complexity analysis, and has subsequently been used in the development of

No Free Lunch theorems [47, 177] and investigating the connection between problem com-

plexity and algorithmic performance [20, 50]. Hence, while Kolmogorov Complexity anal-

ysis has been previously used in the optimization context [20, 50], it is largely restricted to

theoretical applications and the analysis of simple artificial problems.

204



CHAPTER 8: QUANTIFYING PROBLEM SIMILARITY WITH INFORMATION DISTANCE

Determining an index/order of solutions that is appropriate for a wide variety of prob-

lems is difficult in practice. Such an index must be appropriate for problems with varying

search space bounds, dimensionality and solution representation. A fixed index, such as lex-

icographic ordering of solution vectors, can be used for problems with common dimension-

alities and solution representations and where bounds can easily be re-scaled/normalised.

However, such a method precludes comparisons of problems with differing dimensional-

ity, bounds and potentially, representation. Furthermore, the index would ideally produce

a sequence of objective function values that maintains the regularities and structure within

the problem, but for many problems (e.g. black-box), no such index is known a priori [20].

Indeed, the index can potentially change or obfuscate problem regularities and structures.

For example, lexicographic ordering of problems differing by a simple transformation of

the search space - such as a rotation or reflection - will yield different string representations

(and hence differ in their NCD), despite the fact that they are identical from an information

perspective.

In order to quantify the distance between arbitrary optimization problems, a represen-

tation is required that is not reliant on the search space bounds, dimensionality or sample

type/order. Therefore, it is highly advantageous that the length scale (Definition 5.1) satis-

fies these properties (see Section 5.2). Length scale is an indicator of functional equivalence

over pairs of solutions. Problems with local regions of equivalence will have a partition of

r values in common, and so problem similarity can be measured by the degree to which

problems share common r values. In Section 6.1.2, this idea was explored using the notion

of the Variation of Information (VI) between length scale multisets. The VI is similar to NID,

and theoretical and empirical comparisons in the context of clustering validation and com-

parison concluded that NID satisfies more desirable properties (i.e. NID is a normalised

metric with tight theoretical bounds) than other commonly used clustering validation and

comparison measures including VI, the Rand index and Mutual Information [192].

Perhaps the most important and useful property of the length scale multiset is that it

provides a description of the landscape that is invariant to the order in which solutions are

sampled. In other words, the length scale multiset can be used as a unique representation

of optimization problems, without requiring an index/order over the solutions sampled.

Consequently, the r values are well-suited to Kolmogorov Complexity analysis, and in par-

ticular, the application of the NCD.

Algorithm 8.1 proposes a novel the methodology for calculating the NCD between two

optimization problems. The methodology requires only a sample of solutions from each
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problem, their respective objective function values and a lossless compressor. The samples

of each function are used to generate length scale multisets (denoted ra and rb). The ordering

of length scale multisets is arbitrary by definition, and so ra, rb and ra ∪ rb are sorted to aid in

compression. The resulting length scale multisets (and their union) are compressed, and the

NCD is calculated by substituting the size of the compressed-binaries into Equation 8.1.4.

Algorithm 8.1 Normalised Compression Distance (NCD)
Input:

Sample of solutions, S ′a ←
[
x1, . . . , xn]

Sample of solutions, S ′b ←
[
x1, . . . , xm]

Objective function, fa : S ′a → IR
Objective function, fb : S ′b → IR
Lossless normal compressor, Z

1: ra ← LengthScales(S ′a, fa)
2: rb ← LengthScales(S ′b, fb)
3: ba ← SaveAsBinary(Sort(ra))
4: bb ← SaveAsBinary(Sort(rb))
5: bab ← SaveAsBinary(Sort(ra ∪ rb))

6: ncd← |Z(bab)|−min{|Z(ba)|,|Z(bb)|}
max{|Z(ba)|,|Z(bb)|}

7: return ncd

8.2.2 Suitable Compression Algorithms

While arbitrary data can be compressed using general-purpose compression algorithms (e.g.

GZIP), many lossless compressors are designed for particular types of data (e.g. TIFF is

specifically designed for image data). Type-specific compressors achieve good compression

by exploiting structures and regularities that are commonly found within the targeted data

type [148]. As a result, input strings from the intended domain are generally mapped to

small encodings, while strings outside the intended domain may be mapped to large en-

codings. Hence good compression is generally achieved in practice, and incompressibility

often occurs when atypical data is given as input (e.g. TIFF applied to text data), or when

the input data is unstructured/random.

By definition, r ∈ [0, ∞], but in practice, the length scale value between two solutions is

calculated and stored using a finite precision floating point number. In this thesis, length

scales are represented by the IEEE Standard 754 for double-precision floating points, mean-

ing the length scale multiset is an ordered sequence of IEEE 754 double-precision (64-bit)

floating point values.

Both generalised and type-specific compression algorithms are available for compressing
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sequences of 64-bit floating point values. Current popular and state-of-the-art generalised

compression algorithms include GZIP , BZIP2, LZMA and PPMd [148]. While generalised

compressors have no explicit heuristics to detect and uncover complex numerical patterns

and regularities in the length scale multiset, they may be successful at capturing more gen-

eral regularities, such as repeated bit patterns. For example, length scales of similar magni-

tudes will yield similar exponents in the IEEE 754 double-precision representation. Under

these assumptions, a generalised compressor could potentially achieve good compression

by exploiting repeated bit-patterns (stemming from similar exponents) in the bit-string rep-

resentation of the length scale multiset.

Few lossless compression algorithms have been developed specifically for sequences

of 64-bit floating point numbers; FSD [49] is particularly suited to compressing gradually

changing sequences, PLMI [98] was developed specifically for compressing 2D and 3D se-

quences, while DFCM [134] focuses on compressing arbitrary sequences quickly. An exten-

sion of the work in Ratanaworabhan et al. [134] is FPC: a lossless, single-pass, linear time

compressor [25]. FPC is parameterised by a single parameter, table size, that controls the

size of two predictors (that are effectively hash tables) used by the algorithm. Increasing

the table size generally achieves better compression, but with the caveat of slower speed.

Parallelised and self-tuning versions of FPC have also been developed [26, 27], although

initial explorative experiments conducted for the experiments in this chapter showed little

improvements in compression, at a greater effort in implementation and computational cost.

FPC has been compared to BZIP2, GZIP, DFCM, FSD and PLMI on a variety of datasets, and

it generally achieves competitive or superior compression ratios using a factor of 2 to 300

less time [25].

Given that there are many lossless compression algorithms available, it is not immedi-

ately clear which is the most practically suitable for the length scale data (i.e. a multiset

of increasing double-precision floating point values). The degree of compression achieved,

computational resources required and ease of implementation are all important consider-

ations when selecting a compressor. Therefore, the following experiment investigates the

ability of GZIP, BZIP2, LZMA, PPMd and FPC to compress length scale data. The degree

to which each compressor satisfies the normality properties defined in Section 8.1.2 is also

assessed. To obtain a reasonable representation of length scale multisets, length scales are

calculated from the 10 dimensional Griewank, Michalewicz (m = 20), Rastrigin (A = 10)

and Rosenbrock problems, as defined in Table A.1. For each problem, 30 Lévy random

walks of length 2.5× 105D2 are used to generate 30 length scale multisets. Thus there are
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GZIP BZIP2 LZMA PPMd FPC

Griewank 0.6433 0.7716 0.5608 0.8729 0.6836

Michalewicz 0.6374 0.7679 0.5550 0.8700 0.6829

Rastrigin 0.6352 0.7661 0.5529 0.8684 0.6826

Rosenbrock 0.6351 0.7661 0.5526 0.8687 0.6826

Table 8.1: Compression Ratios

a total of 4 × 30 representative length scale multisets. The walks were parameterised by

γ = 0.0005× range(S) and δ = 0.

The compression ratio for a given input string x is defined as |Z(x)|
|x| , that is, the length

of the encoding divided by the length of the input [148]. Small compression ratios indi-

cate that the compressor is able to exploit structural regularities in the data. Using each

compressor, the compression ratio was calculated for each of the 30 length scales multisets

across the problems. To achieve maximum compression, FPC’s table size was set to 230

bytes, and 7zip’s [127] implementations of GZIP, BZIP2, LZMA and PPMd were used with

the “ultra”compression setting. Table 8.1 contains the average compression ratio for each

compressor (on each problem) across the 30 walks.

The standard deviations for the compression ratios across the walks were very low and

ranged between 5.9784× 10−6 (FPC over the Griewank walks) and 4.1977× 10−4 (LZMA

over the Michalewicz walks), indicating that the compressors give consistent results across

the different walks. The compression ratios for each compressor do not vary significantly

between problems, and this is likely because all of the inputs are the same length and consist

of increasing sequences of 64-bit floating points. LZMA achieved superior compression

ratios compared to the other compressors. Despite being designed specifically for 64-bit

floating point data, FPC achieved only the third best compression ratio.

As previously discussed in Section 8.1.2, the accuracy of the NCD also relies on the

degree to which the normality properties are satisfied. For an idempotent compressor,

|Z(ε)| = 0 and |Z(xx)|
|Z(x)| = 1 for input x. Likewise, a symmetrical compressor will yield

|Z(xy)|
|Z(yx)| = 1 for inputs x and y. There are 4 different problems, each with 30 walks in these

experiments. Using the length scale multiset for each walk as inputs, there are 4× 30 differ-

ent combinations of xx and 4× 30× 29 different combinations of xy (and yx). The degree

to which each compressor is idempotent and symmetric is calculated by averaging |Z(ε)|,
|Z(xx)|
|Z(x)| and max{|Z(xy)|,|Z(yx)|}

min{|Z(xy)|,|Z(yx)|} over the different samples. The monotonicity and distributivity
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GZIP BZIP2 LZMA PPMd FPC

|Z(ε)| (bytes) 30 14 86 86 1
|Z(xx)|
|Z(x)| 2.0000 2.0000 1.9999 2.0008 1.9995

max{|Z(xy)|,|Z(yx)|}
min{|Z(xy)|,|Z(yx)|} 1.0000 1.0000 1.0000 1.0000 1.0018

Monotonicity violations (%) 0 0 0 0 0.0287

Distributivity violations (%) 0 0 0 0 0.0287

Table 8.2: Evaluation of the normality properties

properties are tested in a similar manner; all possible combinations of samples are generated

and the number of times each property is violated is counted. Table 8.2 displays the ratios for

the idemonpotent and symmetry properties as well as the monotonicity and distributivity

violations as a percentage of the total number of samples.

Table 8.2 shows varying levels of compliance to the idempotent property; all of the com-

pression algorithms produced small outputs for the empty string (the largest being LZMA

and PPMd at 86 bytes), however all failed to detect that xx was a repeated dataset. Sym-

metry was observed very well across the compressors; all compressors produced outputs

that differed in size by less than 1%. Encouragingly, GZIP, BZIP2, LZMA and PPMd all

completely complied with the monotonicity and distributivity axioms, and although FPC

violated the axioms, it did so in only 0.0287% of the datasets.

Overall, GZIP, BZIP2 and LZMA achieved good compression ratios and closely adhered

to the normality properties. While PPMd complied with normality, its compression ratios

were not as competitive as the other compressors. In contrast, FPC achieved good compres-

sion ratios, but slightly violated both the monotonicity and distributivity properties. All of

compressors tested in these experiments are arguably suitable for compressing the length

scale data, particularly with the intention of calculating NCDs. Given LZMA’s ability to

compress the data and and adhere to most of the normality properties, it is used in the

experiments throughout the remainder of this chapter.

8.2.3 Computational Complexity

Consider calculating the NCD between two optimization problems. The proposed approach

requires storing both problems’ length scale multisets (ra and rb), as well as the union of the

multisets (ra ∪ rb). Assuming a total of n length scale values are sampled for each problem

and p is the number of bits required to represent a single r value (p = 64 bits in this thesis),
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the total storage requirement is 4np: np for ra, np for rb, and 2np for ra ∪ rb. Hence, the total

space requirements to calculate the NCD values between two problems is O(np).

Calculation of n length scales for a D-dimensional problem takes O(nD) time (D time

is required to compute Euclidean distance between D-dimensional solutions, and this is

repeated for each of the n solution pairs). Most modern compressors run in O(n) time [25,

148], and so assuming O(n) time to compress n length scale values, the total running time

to calculate NCD is O(nD).

Given a set of problems, P , there are |P|(|P|−1)
2 pairs of problems, and hence to compute

the NCD value between each pair of problems, a total of |P|(|P|−1)
2 calculations is required.

Naively, each NCD value can be computed one at a time: n length scales are sampled for

each problem, and the resulting length scale multisets and concatenated length scale multi-

set are compressed (the lengths of the compressions are then used to calculate NCD). There

are clear inefficiencies in this design; the length scale sets are continually re-sampled and

compressed multiple times (e.g. the multiset for a problem is sampled and compressed

|P| − 1 times.). Efficient experimental design can therefore reduce the running time of the

calculation of NCD between pairs of problems in P . Instead of generating and saving the

length scale sets for each NCD calculation one at a time, firstly all length scale sets (and the

combinations of their concatenations) are compressed and saved. Then, the NCD between

all combinations of problems in P is simply calculated using a look-up table of the lengths of

the compressed multisets. This approach essentially minimises the number of saves to disk

and compressions of length scale multisets, however it does require all |P| compressed-

multisets to be stored, as well as all |P|(|P|−1)
2 combinations of the multiset concatenations,

requiring a total of O(|P|2 np) space. Hence while this experimental design can improve the

speed of NCD calculations between problems in a set, there is a significant trade-off in the

amount of storage required to do so.

8.3 Results

The following experiments implement and execute the methodology proposed in Section 8.2

to calculate the NCD between optimization problem instances. The following experiments

analyse the same problems as the length scale analysis conducted in Chapter 7, with the

addition of the Griewank function. These experiments are directly focused on calculating

and analysing the NCD values between problems, as well as analysing the resulting NCD

values in conjunction with known problem similarities.
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To begin, artificial continuous problems, namely the elliptical, Rastrigin and Griewank

functions, are analysed to evaluate the ability of the NCD to reflect known structural sim-

ilarities and differences between problems. A similar experiment is also conducted for the

BBOB problems, and the NCD results are compared with existing knowledge and intuition

regarding problem structures. Circle in a Square packing problems are also analysed in or-

der to provide insight into real-world problem relationships. Then, instances from TSPLib

are analysed in order to evaluate the efficacy of NCD applied to combinatorial problems

with known similarities. In addition, two well-known combinatorial optimization problems

that exhibit phase transitions, the Asymmetric Travelling Salesman Problem and Number

Partitioning Problem, are also analysed to evaluate whether or not the phase transitions are

detectable from the NCD values.

The NCD calculated between two given optimization problems is a scalar value repre-

senting a similarity-based feature between problems, and is therefore a similar type of fea-

ture as the J-divergence (Equation 6.1.8). Hence, the techniques used to analyse J-divergence

data can also be readily applied to NCD data. Consequently, the following experimental re-

sults are summarised using three main visualisations; 1) a heatmap of the explicit NCD val-

ues, 2) a dendrogram of the clusters produced by hierarchical clustering (with unweighted

average distance linkages) and 3) a two-dimensional visualisation of the problems spaced

at distances reflective of their respective NCD values. Due to the symmetrical properties

of NCD, heatmaps depict only the lower triangle of the NCD matrix. Problem-space visu-

alisations are constructed using t-SNE [186]. In each experiment, an exhaustive search is

conducted to determine the perplexity value (from the set [1, 1.5, . . . , 50]) that minimises the

average cost of 100 trials of t-SNE on the data, with a maximum of 1000 iterations.

8.3.1 Elliptical Functions

The 2-D elliptical function, defined in Table A.1, is essentially a quadratic bowl with ellip-

tical contours, where the eccentricity of the contours is defined by a constant, a ∈ IR. For

a = 1, the contours are circular, and as a increases, the contours become increasingly more

elliptical. The elliptical function provides a simple and intuitive landscape from which the

similarity between instances can be directly controlled via a. Therefore, this experiment in-

vestigates the relationship between problems of varying a values and the resulting NCD

between them. In this experiment, S = [−1, 1]2 and a ∈ [1, 1.25, . . . 10] (i.e. a total of 37

elliptical functions are analysed). At each value of a, 2.5 × 105D = 106 length scales are
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Figure 8.1: Heatmap of NCD values calculated (using LZMA) between pairs of 2-D elliptical
functions, where a = 1, 1.25, . . . , 10.

generated using Algorithm 6.1 with samples generated from a Lévy random walk param-

eterised by γ = 10−3 and δ = 0. LZMA with the “ultra”compression setting (a dictionary

size of 64MB, BT4 matchfinder and BCJ2 filter) is used to compress the length scale multi-

sets, and a perplexity of 19.5 (cost of 0.1451) is used in the t-SNE dimensionality reduction.

Heatmaps summarising the NCD between problems as well as t-SNE visualisations of the

problem space are shown in Figures 8.1 to 8.3.

The NCD values shown in the heatmap (Figure 8.1) are all very high; while NCD is

defined over the interval [0, 1], the values between elliptical functions are in the range

[0.9535, 0.9779]. An absolute interpretation suggests that the problems are all (approximately

equally) different, however, the relative differences between the NCD values are much more

interesting and provides insight into the relationships between problems. Experimental re-

sults conducted with more length scale samples (not shown) produced a significantly larger

range in NCD values, however the relative differences remained the same. This suggests

that the range of NCD values can be improved by additional sampling, however this does

not affect relative conclusions drawn from the results.

The light/white colouring of the lower left-hand corner of the heatmap shows that the

greatest NCD is between problems of low and high eccentricities (e.g. the NCD between

a = 1 and a = 10 is the largest value). In contrast, the leading diagonal in the heatmap is

very dark, indicating that the most similarity between the elliptical functions occurs between

problems of similar a values. The shading of the leading diagonal is very consistent, mean-

ing that problems with similar eccentricities have similar NCD values, regardless of where
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Figure 8.2: t-SNE of NCD values (cost of 0.1451) calculated (using LZMA) between pairs of
2-D elliptical functions, where a = 1, 1.25, . . . , 10.

on the eccentricity spectrum they are. For example, the NCD between problems a = 1 and

a = 1.25 is approximately the same as the NCD between a = 9.75 and a = 10. This is true

across all of a, that is, the NCD between an and an+1 remains constant and suggests that the

structural changes caused by small increases in eccentricity are quite regular.

Figure 8.2 shows the t-SNE visualisation of the problem similarities (and hence, “problem

space” according to the NCD values). The cost value of 0.1451 from t-SNE indicates that the

two-dimensional visualisation is an accurate representation of the NCDs between problems.

Problems in Figure 8.2 are labelled with their respective a value, and the markers are shaded

from white to black as a transitions from 1 to 10. Figure 8.2 captures the general trend that

problems with similar eccentricities are similar to each other; the problems are spatially

ordered according approximately to a. Furthermore, the positioning of the problems ensures

that the largest spatial distance is between low eccentricities and high eccentricities.

Viewing the dendrogram in Figure 8.3 from the bottom, it is clear that problems with

similar a values are more similar than problems with very different a values. By examining

the dendrogram from the top, it is clear that the problems form two major clusters; 1 ≤
a ≤ 3 and 3.25 ≤ a ≤ 10. The large NCD connecting these clusters indicates that they are

quite well-separated. Moving downwards, the problems can be further clustered into three

clusters by using a NCD threshold of approximately 0.958: 1 ≤ a ≤ 3, 3.25 ≤ a ≤ 7, and

7.25 ≤ a ≤ 10. Moving downwards again, the three clusters disintegrate into numerous

sub-clusters, suggesting that for the elliptical functions considered, there is at most 3 clear

clusters according to hierarchical clustering.
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Figure 8.4: Heatmap of NCD values calculated (using LZMA) between pairs of 1-D Rastrigin
functions, where A = 0, 0.25, . . . , 10.

8.3.2 Rastrigin

The Rastrigin function (see Appendix A.1.1) also provides a simple, intuitive landscape that

can be changed using one parameter; the perturbation term A. The goal of this experiment

is to investigate how the change in perturbation affects the similarity between the problems.

Results in Section 7.1.2 showed that problems with similar perturbation values were more

similar than problems with very different levels of perturbation. Similar to the experiments

in Section 7.1.2, the dimensionality is fixed at D = 1, and A = 0, 0.25, . . . , 10. A total of

2.5× 105 solutions are sampled from S = [−5.12, 5.12] using a Lévy random walk param-

eterised by γ = 0.005 and δ = 0, and length scales are calculated using Algorithm 6.1.

Figures 8.4 to 8.6 show the resulting heatmap, t-SNE (perplexity of 32) problem space visu-

alisation and dendrogram of the NCD values between problems.

The heatmap in Figure 8.4 shows that the explicit NCD values are quite high across the

set and are arguably quite similar. Despite their similarities, clear trends are evident. As

expected, the largest distance between problems is generally between the smoothest and

most rugged problems: NCD(A = 0, A = 10) = 0.9606. Looking along the diagonal of Fig-

ure 8.4, as A increases, the shading becomes darker. This indicates that problems with small

A values have a slightly larger distance between them than problems at large A values. The

dendrogram in Figure 8.6 also confirms this; as A increases, the NCD between problems

generally decreases. t-SNE’s final cost value of 0.3205 suggests that the visualisation in Fig-

ure 8.5 is not a very accurate summary of the problem space, however it generally reflects

that the largest differences occur between low and high values of A.
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Figure 8.5: t-SNE of NCD values (cost of 0.3205) calculated (using LZMA) between pairs of
1-D Rastrigin functions, where A = 0, 0.25, . . . , 10.

8.3.3 Griewank

The structure of the Griewank problem (Appendix A.1.1) becomes increasingly more con-

vex as dimensionality increases [100], and so this experiment investigates whether the NCD

values can reflect changes in the landscape structure that occur as dimensionality increases,

particularly, the increasing similarity to a convex function. Specifically, the NCD between

Griewank functions from 1 to 15 dimensions is calculated. To evaluate whether the NCD

can detect an increasing resemblance to a convex function as dimensionality increases, the

NCD between Griewank functions and the convex component, 1 + 1
4000 ∑D

i=1 x2
i , is also cal-

culated. 2.5× 105D2 solutions are sampled from S = [−600, 600]D using a Lévy random

walk parameterised by γ = 0.5 and δ = 0. Heatmaps summarising the NCD results be-

tween problems, a t-SNE (with perplexity of 19.5) visualisation of the problem space and a

dendrogram of the clustering of problems are shown in Figures 8.8 to 8.9.

t-SNE obtained a cost of 0.0497, indicating that the discrepancy of distances between

points in the original data and reduced data is very low and that the visualisation is a reli-

able summary of the problem space. The t-SNE visualisation in Figure 8.7 nicely illustrates

the behaviour of the Griewank problem; Griewank is always very similar to its convex com-

ponent, and problems of high dimensions (e.g. D = 14 and 15) are more similar than prob-

lems of lower dimensions (e.g. D = 1 and 2). The heatmap and dendrogram shown in Fig-

ures 8.8 and 8.9 provides greater insight into Griewank’s behaviour (“G” denotes Griewank,

while “C” denotes the convex component). The heatmap shows that the largest dissimilar-

ity to D = 1 Griewank is D = 15 Griewank. Using the dendrogram, clustering Griewank
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Figure 8.7: t-SNE of NCD values (cost of 0.0497) calculated (using LZMA) between pairs
of Griewank instances, where D = 1, 2, . . . , 15. “G”denotes Griewank functions, while
’C”denotes the convex component.
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into two clusters results in {D = 1}, and {D > 1}, while clustering into three clusters yields

{D = 1}, {D = 2, D = 3} and {D > 3}. This pattern generally continues and illustrates that

as D increases, the Griewank problems become more similar. The heatmap and dendrogram

also confirm the expectation that lower dimensional problems (e.g. D = 1) are less convex

than higher dimensional problems. However, it appears that as D increases, the similarity

between Griewank and its convex component peaks at approximately D = 6, and for D > 6,

Griewank and its convex component become increasingly more dissimilar.

8.3.4 Black-Box Optimization Benchmarking Problems

One of the major motivations behind the development of the BBOB problem set is to provide

a set of problems that reflect a diverse range of structural features that are thought to be

challenging for algorithms to solve in practice [72]. Hence, the BBOB problems have been

purposefully constructed using predefined notions of challenging structures. As previously

argued in Section 7.2, there is little doubt that the BBOB problem set contains a variety of

challenging structures, however the amount of variety has not been explicitly quantified.

The BBOB problems are therefore an interesting problem set over which to calculate NCD

values. The aim of this experiment is to estimate the NCD values between BBOB instances

and assess the degree to which the known and conjectured similarities and differences in the

BBOB problems are reflected by the resulting NCD values.

These experiments are based on the experimental procedure in Section 7.2. Specifically, a

Lévy random walk (parameterised by γ = 10−3 and δ = 0) of 50000D steps is used to sample

S = [−5, 5]D, and length scales are calculating using Algorithm 6.1. In these experiments,

2, 5, 10 and 20-D problems are analysed, and 30 instances are generated for each problem

by supplying seeds 1 to 30 to the BBOB generator. NCD is calculated on the (sorted) length

scale values, and LZMA used to compress the values. The results report the mean NCD

value between problem pairs (averaged over the 30 instances). Heatmaps summarising the

mean NCD between problems, t-SNE visualisations of the problem space and dendrograms

of the clustering of problems are shown in Figures 8.10 to 8.21.

The NCD values between BBOB problems displayed in the heatmaps (Fig-

ures 8.10 to 8.13) are generally quite high (ranging between 0.93 and 1), and so relative com-

parisons between values, indicated by the shading of heatmap cells, gives better insight

into the relationships between problems. For example, F8 and F9 are shaded black in all

heatmaps, indicating that there is a stronger similarity between them than any other prob-
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Figure 8.10: Heatmap of NCD values calculated (using LZMA) between pairs of 2-D BBOB
instances.
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Figure 8.11: Heatmap of NCD values calculated (using LZMA) between pairs of 5-D BBOB
instances.
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Figure 8.12: Heatmap of NCD values calculated (using LZMA) between pairs of 10-D BBOB
instances.
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Figure 8.13: Heatmap of NCD values calculated (using LZMA) between pairs of 20-D BBOB
instances.
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Figure 8.14: t-SNE of NCD values (cost of 0.0611) calculated (using LZMA) between pairs of
2-D BBOB instances.

lem pairing. F8 and F9 are Rosenbrock functions differing by a rotation of the search space,

and hence they are identical from an information/structural perspective. The heatmaps

also display many problems for which there is a high dissimilarity (indicated by light/white

shading). For example, F12 (Bent Cigar function) is highly dissimilar to all of the other BBOB

problems, even across D.

The shading patterns, and hence relative similarities, reflected by the heatmaps are gen-

erally quite consistent across D, suggesting that the landscape structures scale with D, and

that this is captured by the NCD analysis. There are, however, a few NCD values that are

exceptions to this general trend; for example, F10 increases its similarity with respect to

both F8 and F9 as D increases, while F3 decreases its similarity with respect to F21, F22 and

F23. The change in similarity is likely due to subtle changes in landscape structure as D

increases. For example, F8 and F9 have a ridge that changes its orientation D− 1 times, and

so this may affect the similarity between F8 (or F9) and problems that remain structurally

consistent across D.

Figures 8.14 to 8.17 show the two-dimensional representations of the NCD values, deter-

mined by t-SNE. Each problem is marked according to its respective problem classification

defined by the BBOB developers. The problems exhibit no clear clustering according to

their respective BBOB classes. However, there are clearly strong relationships between the

problems, and these relationships persist as D increases. For example, problems within the

subsets {F1, F5, F19}, {F2, F10, F11, F12}, {F3, F4, F15}, {F6, F8, F9} and {F21, F22, F23} are

positioned in close proximity to each other. Many of the problems in the subsets are known
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Figure 8.15: t-SNE of NCD values (cost of 0.0534) calculated (using LZMA) between pairs of
5-D BBOB instances.
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Figure 8.16: t-SNE of NCD values (cost of 0.0443) calculated (using LZMA) between pairs of
10-D BBOB instances.
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Figure 8.17: t-SNE of NCD values (cost of 0.0370) calculated (using LZMA) between pairs of
20-D BBOB instances.

to have similar landscape structures: F2, F10 and F11 are ellipsoidal functions, F3, F4 and

F15 are variants of the Rastrigin function, F8 and F9 are (rotationally different) Rosenbrock

functions, and F21 and F22 contain Gaussian-shaped modes. Overall, the t-SNE visuali-

sations suggests that there are a variety of landscape structures in the BBOB problem set,

and that the NCD methodology is capable of capturing known landscape similarities and

differences.

Dendrograms of the hierarchical clustering of NCD values (for each D) are shown in

Figures 8.18 to 8.21. The dendrograms exhibit similar groupings across D, and are quite

well-balanced. By analysing the dendrograms from the bottom, only a few problems have

a relatively small NCD value between them (specifically, F10 and F11, F14 and F17, F15 and

F18, and F21 and F22). Moving further up, it is clear that problems with known similari-

ties form clusters. For example, F8 and F9 have a relatively low NCD compared to other

problems. Top-down analysis of the dendrograms suggests that there are generally three

main clusters; {F2, F10, F11, F12}, {F6, F8, F9, F20} and the remaining problems. Interest-

ingly, clustering the problems into 5 clusters does not yield the 5 pre-defined BBOB classes

(indeed, F12 forms its own cluster entirely).

Due to the generality and simplicity of the NCD methodology, comparisons between

problems differing in their type and/or dimensions can easily be made. To further investi-

gate the landscape changes as D increases, the NCD values between BBOB problems in dif-

ferent dimensions is calculated, and the resulting heatmap and t-SNE visualisation is shown

in Figures 8.22 and 8.23 respectively.
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Figure 8.18: Dendrogram of NCD values calculated (using LZMA) between pairs of 2-D
BBOB instances.
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Figure 8.19: Dendrogram of NCD values calculated (using LZMA) between pairs of 5-D
BBOB instances.
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Figure 8.20: Dendrogram of NCD values calculated (using LZMA) between pairs of 10-D
BBOB instances.
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Figure 8.21: Dendrogram of NCD values calculated (using LZMA) between pairs of 20-D
BBOB instances.
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Figure 8.22: Heatmap of NCD values calculated (using LZMA) between pairs of 2, 5, 10 and
20-D BBOB instances.
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Figure 8.23: t-SNE of NCD values (cost of 0.4136) calculated (using LZMA) between pairs of
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The heatmap (Figure 8.22) nicely illustrates the consistency of the shading patterns across

D, shown by the repetitive pattern near the leading diagonal. More importantly, it also

shows that there is a greater dissimilarity between problems of widely varying D, than prob-

lems of similar D. For example, the region pertaining to 2 and 20-D problems is much lighter

than the region associated with 2 and 5-D problems. One possible explanation is that sim-

ilar problems within a given dimension share a common structure (e.g. a ridge), however

because structures can change significantly with D, they bear little resemblance between D,

and so comparisons of a particular structure over D will yield dissimilar values.

The t-SNE visualisation (Figure 8.23) also reflects the large dissimilarity between largely

varying D; the problems are positioned horizontally in the space in the order of their di-

mensionality. Furthermore, the problems appear to be largely clustered according to there

respective D. There are notably a few problems that do not adhere to this strict clustering;

F12 is positioned between the clusters, and is rather invariant to D. The 20-D F21, F22 and

F23 problems are also separated from the main 20-D cluster, and instead are located between

the 5-D and 10-D clusters. Clearly, the NCD values capture the changes in landscape struc-

ture over D, and analysis of the NCD values shows that some problems are more affected

by D than others.

In summary, the analysis of NCD values has provided some valuable insights into the

relationships between the BBOB problems. Specifically, the relative relationships between

problems tends to remain the same as D increases, suggesting that the structural informa-

tion within the BBOB problems scales with D. However, as shown in Figures 8.22 and 8.23,

the problems increasingly differ between dimensions as D increases, meaning that a function

in 2-D is unlikely to bear similarity to the same function in 20-D. The NCD analysis con-

ducted in this section also shows that the BBOB problem set contains a variety of structural

features, however there are also a few strikingly similar problems, namely, F2/F10, F8/F9

and F21/F22. Given the duplication of information within these problems, F10, F9 and F22

could potentially be removed without affecting the integrity of the benchmark set.

8.3.5 Circle in a Square Problems

The results of the Circle in a Square (CiaS) packing problems in Section 7.3 suggest that prob-

lems with similar numbers of circles, nc, are more similar than problems at highly different

values of nc, and that as nc increases, the problems become increasingly more similar. This

experiment investigates the relationship between CiaS problems of varying values of nc, by
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Figure 8.24: Heatmap of NCD values calculated (using LZMA) between pairs of CiaS in-
stances, where nc = 2, 3, . . . , 30.

calculating and analysing the NCD between pairs of CiaS problems. The CiaS analysis in

Section 7.3 indicates that problems where nc > 30 are highly similar, and so this experiment

analyse problems where nc = 2, 3, . . . , 30. A total of 5× 105nc solutions were sampled from

S = [0, 1]2nc using a Lévy random walk parameterised by γ = 5× 10−4 and δ = 0. Length

scales are calculated using Algorithm 6.1. A heatmap summarising the NCD between prob-

lems, t-SNE (with perplexity of 4) visualisations of the problem space and a dendrogram of

the clustering of problems are shown in Figures 8.24 to 8.26.

The heatmap of NCD values in Figure 8.24 agrees with the results in Section 7.3; as nc

increases, the problems become increasingly more similar. In addition, the dark colouring

along the diagonal and white colouring on the lower left corner shows that problems at

similar values (e.g. nc = 10 and nc = 11) of nc are similar, particularly in comparison to

problems at largely differing values of nc (e.g. nc = 2 and nc = 30). The cost of 0.0885 from

t-SNE indicates that the discrepancy of distances between points in the original data and

reduced data is very low and that the visualisation of the problem space in Figure 8.25 is

a good summary of the problem space. The sharp decrease in NCD values between prob-

lems in the dendrogram (Figure 8.26) also indicates that the problems becoming increasingly

more similar as nc increases.

8.3.6 TSPLib

TSPLib contains Travelling Salesman Problems gathered from a variety of sources and ap-

plications, such as printed circuit board routing and geographical city layouts. In addition
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Figure 8.25: t-SNE of NCD values (cost of 0.0885) calculated (using LZMA) between pairs of
CiaS instances, where nc = 2, 3, . . . , 30.

to the underlying source problem, the problems differ mainly in the number of cities, type of

distance between cities and symmetry of their distance matrix (symmetrical vs asymmetric).

The aim of this experiment is to calculate the NCDs between TSPLib instances and evalu-

ate whether the NCD values correlate with similarities known regarding the source, size,

distance type and symmetry. The same subset of TSPLib instances examined in Section 7.4

(and summarised in Table A.3) is used in this experiment. Similar to previous experiments,

2.5× 105 × n random solutions (i.e. tours) are generated for each problem, and length scale

values are calculated using Algorithm 6.1. Figures 8.27 to 8.29 show the heatmap, t-SNE

visualisation (perplexity of 10) and dendrogram of the TSPLib instances.

The NCD values between TSPLib instances ranged between 0.1123 and 1, which is a

much wider range than the NCD values resulting from the continuous optimization prob-

lems. The heatmap in Figure 8.27 shows that the “kro”-type instances are all very similar to

each other, and are very different to the remaining benchmark problems. The NCD values

show that the asymmetric kro124p instance is less similar to the other “kro”-type problems,

suggesting that the symmetry is captured by the NCD values. The bayg29 and bays29 in-

stances are also very similar to each other. Problems from similar sources are generally more

similar than problems of differing sources. For example, ulyssess16 and ulyssess22, as well

as the “ftv”-type problems. Out of all of the TSPLib instances examined, the heatmap indi-

cates that p43 is a highly unique problem, which agrees with the analysis in Section 7.4.

The t-SNE visualisation in Figure 8.28 (cost of 0.1026) accurately represents the NCDs

between instances. There are no trends related to the size of the instances. Remarkably,
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Figure 8.27: Heatmap of NCD values calculated (using LZMA) between pairs of TSPLib
instances.

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

 

 

  kroA100

  kroB100

  kroC100

  kroD100
  kroE100

  bayg29

  bays29
  gr17

  gr21  gr24

  gr48

  ulysses16

  ulysses22

  br17

  ft53

  ft70

  ftv33

  ftv35

  ftv38

  ftv44

  ftv47
  ftv55

  ftv64

  p43

  ry48p

  kro124p

Symmetric
Asymmetric

Figure 8.28: t-SNE of NCD values (cost of 0.1026) calculated (using LZMA) between pairs of
TSPLib instances.
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the problems are quite well clustered according to their source and symmetry. The asym-

metric problems are generally located in the bottom-right of the space, while the symmetric

are quite dispersed. The “kro”-type problems form a clear cluster, as do the “bay”-type

problems. This clustering is also exhibited in the dendrogram in Figure 8.29. Overall, the

dendrogram shows that apart from the 2 clusters formed by the “kro”-type and “bay”-type

problems, the problems are all quite different to each other, which is a desirable property of

benchmarking problem sets.

8.3.7 Asymmetric Travelling Salesman Problems

Instances of Asymmetric Travelling Salesman Problems (ATSPs) randomly generated with

distances sampled uniformly from integers in the range [0, . . . , b10bc] (where b > 0) have

been shown to exhibit a phase transition in the performance of exact solvers, as well as

specific TSP-related landscape properties such as the size of backbones [206]. The aim of

this experiment is to analyse the NCDs between ATSP instances generated throughout the

phase transition, and to evaluate whether the phase transition behaviour is reflected in the

estimated NCD values between instances. The experimental setup is identical to the experi-

ments in Section 7.5; 10-city problems are randomly generated using b = 0, 0.1, . . . 6.5 (thus

a total of 66 problems)1. For each value of b, ten TSP instances are generated using ten sep-

arate distance matrices, where entries in each matrix (excluding the leading diagonal) are

sampled uniform randomly from integers in the range [0, 1, . . . , b10bc]. All 9! solutions are

enumerated for each problem instance and the length scale values are calculated using Al-

gorithm 6.1. Because there are ten TSP instances for each value of b, the NCD between TSP

instances at two different b values is estimated by averaging the NCD for 10 combinations

of instances.

Figure 8.31 shows the NCD values between problem instances parameterised by b, aver-

aged over the ten trials. The NCD values spanned from 0.3150 to 1, indicating that there are

a wide range of strong similarities and differences in the set. The heatmap shows very in-

teresting behaviour between particular combinations of b. Firstly, comparing instances from

low values of b (b < 1.5) to any other instance results in high dissimilarity (i.e. they are struc-

turally very different). This holds true for high values of b (b > 5.5) as well. Indeed, most

problem pairs have quite high dissimilarity, except for an area along the diagonal where

2.5 ≤ b ≤ 4.5. Problem pairs off the diagonal in this range (meaning quite different b values)

1Figure 7.72 shows that the phase transition occurs between approximately 1.4 ≤ b ≤ 3.7.
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Figure 8.30: Heatmap of the mean NCD values calculated (using LZMA) between pairs of
random ATSP instances, generated with b = 0, 0.1, . . . 6.5.
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Figure 8.31: t-SNE of the mean NCD values (cost of 0.0419) calculated (using LZMA) be-
tween pairs of random ATSP instances, generated with b = 0, 0.1, . . . 6.5.
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have a much lower NCD. This indicates that for the entire problem set, the only problems

that are structurally related (as measured by NCD) are problems with similar values of b in

the range 2.5 ≤ b ≤ 4.5 (e.g. b = 3 and b = 3.1).

The problem space visualisation resulting from applying t-SNE (with perplexity 15) to

the average NCD values is shown in Figure 8.31. The points are shaded according to their

b values, with light shades corresponding to low values, and dark shades to high values.

Figure 8.31 displays a progression of very structured, incrementally shaded points; prob-

lems clearly transition from white to black across the problem space. The positioning of

the problems in the space forms a “U”-shape; problems after the critical point2 in the phase

transition form a “bend’, while problems at either end of the transition are at the “tips” of

the “U”-shape.

The dendrogram in Figure 8.32 also illustrates phase-transition behaviour. As b increases,

the NCD values between problems clearly transition from high to low, and then once b ≈ 3.5,

the problems’ NCD values transition from low to high. The dendrogram also shows that

the problems are partitioned into three major clusters (0.5 ≤ b ≤ 1.6, 1.7 ≤ b ≤ 4.2 and

4.3 ≤ b ≤ 6.5), which closely correspond to the different stages of the phase transition.

8.3.8 Number Partitioning Problems

The Number Partitioning Problem (NPP), described in Appendix A.2.2, is another combina-

torial optimization problem that exhibits phase transitions in the difficulty of exact solvers,

as well as the number of global optima and size of plateaus [17, 22, 174]. Instances can

be generated at a particular stage of the phase transition through the control parameter, k.

Specifically, k = 1
n log2 m, where n is the number of elements to partition, and the elements

are integers uniform randomly chosen from {1, . . . , m}, where m = 2nk. Instances before the

critical point kc = 1− ln( 10π
3 )

40 ln(2) ≈ 0.9153 are generally easy, while instances after kc are hard.

Therefore, the NPP provides a very good opportunity to evaluate the ability of the NCD to

detect structural similarities between instances. Hence, this experiment calculates and anal-

yses the NCDs between randomly generated instances throughout the phase transition. Ten

random instances of size n = 20 are generated at each k, where k = 0.4, 0.425, . . . , 1.3. The

NCD between NPP instances at two different k values is estimated by averaging the NCD

for ten combinations of instances. Figures 8.33 to 8.35 show the heatmap, t-SNE visualisation

(perplexity of 4) and dendrogram of the resulting NCD values.

2The critical point is 2, as the expected number of distinct distances in D approaches ∞ [206].
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Figure 8.33: Heatmap of the NCD values calculated (using LZMA) between pairs of NPP
instances, where k = 0.4, 0.425, . . . , 1.4.
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Figure 8.34: t-SNE of the NCD values (cost of 0.1158) calculated (using LZMA) between pairs
of NPP instances, where k = 0.4, 0.425, . . . , 1.4.
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The NCD values ranged between 0.3508 to 0.9994, indicating a wide range of similari-

ties and differences between problems. The dark region along the leading diagonal of the

heatmap in Figure 8.33 shows that the strong similarities occur for instances with similar

values of k, where k < 0.9. Notably, instances along the leading diagonal where k > 0.9

are lightly-coloured, and hence very different. The phase transition for n = 10 occurs at ap-

proximately 0.9153, and so the sudden change in NCD between instances along the leading

diagonal closely matches the phase transition. The results confirm that on a second class of

combinatorial optimization problems (i.e. in addition to the ATSP instances in Section 8.3.7),

NCD is a feature that can capture a known structural property of the problem landscape. To

reiterate, this is achieved using only black-box sample information.

The t-SNE visualisation in Figure 8.34 is an accurate representation of the NCD values

(i.e. cost of 0.1158). The visualisation resembles the elliptical function’s t-SNE visualisation

in Figure 8.5; as k increases, the problems are located in a linear trend, with the exception

of instances k > 1.075, which curve away from the remaining problems. These instances

belong to the “hard” stage of the phase transition, and so the change in trend is likely be-

cause the problems are increasingly more different. The phase transition occurs at 0.9153,

however there is no noticeable change in the location of the problems in the t-SNE at this

point. Therefore, the t-SNE visualisation reflects that the hard problems are quite different

to the problems before the phase transition, however the location of the phase transition is

not clearly discernible from Figure 8.34.

In contrast, the change in problem similarity as the phase transition occurs is nicely illus-

trated from the dendrogram (Figure 8.35). Analysing the dendrogram from the top, the in-

stances can be clustered into two major groups; k ≤ 0.85 and k > 0.875. This is very close to

the theoretical phase transition. In addition, the cluster containing instances where k ≤ 0.85

generally shows that for low k, the instances are very similar to each other (e.g. the NCD

connecting 0.4 and 0.45 is very low). In contrast, the cluster containing instances k > 0.875

shows that the NCD values between instances is very high (e.g. the NCD connecting 1 and

1.025 is very high). This suggests that instances in the former cluster are quite similar, while

instances in the latter are quite different. The results in the dendrogram corroborates well

with the interpretations of the heatmap and t-SNE visualisation.
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8.4 Quantifying Problem Similarity: Kolmogorov vs Shan-

non

This chapter proposed and demonstrated the utility of the Normalised Compression Dis-

tance (NCD) as a practical measure of black-box problem similarity. The calculation of the

NCD requires estimates of the Kolmogorov Complexities of problems’ length scale multisets

(denoted by r), which in this work are approximated using a lossless compressor, Z. In

Chapter 6, the Shannon entropy of the length scale distribution (denoted by h(r)) is used

to quantify the amount of information in an optimization problem. Restated, Z(r) and

h(r) each analyse the information in optimization problems using Kolmogorov Complex-

ity theory and Shannon information theory respectively. From a philosophical perspective

on information, Kolmogorov Complexity theory and Shannon information theory are re-

lated. This section theoretically and experimentally explores the relationship between Kol-

mogorov Complexity theory and Shannon information theory, with a particular focus on the

novel contributions proposed in this thesis.

8.4.1 Kolmogorov Complexity vs Shannon Entropy

Kolmogorov Complexity theory and Shannon information theory (often referred to as simply in-

formation theory or classical information theory) are both theoretical frameworks concerned

with analysing and quantifying the information in objects [68]. While the theories share

a common aim, the underlying assumptions regarding the objects of interest are quite dif-

ferent. In particular, Shannon’s theory assumes that an object is an outcome of a known

random source (i.e. a known distribution), and the Shannon entropy aims to quantify the

minimum information required to communicate an arbitrary object, given that the recipient

has knowledge of the source. In contrast, Kolmogorov Complexity is concerned with the

amount of information required to describe an object, and no prior knowledge regarding

an object’s source/distribution is assumed [68]. Consider a data source that emits only two

messages with equal probability; m1 and m2. In the Shannon framework, it is assumed that

the recipient of the message knows all possible messages that can be sent (thus while the

outcome is random, it is from a known distribution of outcomes). Under this assumption, a

message can be communicated using a single bit by allowing 0 to denote m1 and 1 to denote

m2. Hence in this scenario, the Shannon entropy for communicating an arbitrary message,

out of only two possible messages, is 1 bit. However, the amount of information within the
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messages themselves can be made arbitrarily large. For example, let m1 be “I will be late for

dinner” and m2 be “0111100011101010”. The amount of information in each of these mes-

sages, and hence their respective Kolmogorov Complexity, is clearly more than 1 bit. Thus

in general, Shannon information theory is predominately applied to quantifying the infor-

mation required to unambiguously communicate objects, while Kolmogorov Complexity

theory is concerned with unambiguous descriptions of the objects themselves.

Kolmogorov Complexity and Shannon entropy have an interesting theoretical relation-

ship; assuming that a given object comes from a computable distribution, the Shannon en-

tropy is (loosely speaking) approximately equal to the object’s expected Kolmogorov Com-

plexity. Formally, this is described by the following Theorem [68, 96]:

Theorem 8.1. Let P be a computable probability distribution on the set of binary strings of arbitrary

length, {0,1}*. Then,

0 ≤∑
x

P(x)K(x)− H(P) ≤ K(P) + O(1) (8.4.1)

Applied to the concept of length scale (Section 6.1.3), the Shannon entropy of the length scale

distribution quantifies the information in the random variable, r. Hence, h(r) in Chapter 6

quantifies the information in a single length scale value, with respect to the distribution of

r values sampled. In contrast, the lossless compression of the length scale multiset (used

to approximate the Kolmogorov Complexity) quantifies the information in the multiset of

length scale values. Therefore, the objects analysed in this thesis by the Shannon and Kol-

mogorov Complexity theories are not the same; h(r) quantifies the information in a single

length scale, while Z(r) quantifies the information in the length scale multiset, r. Conse-

quently, Theorem 8.1 is not directly applicable in theoretically relating h(r) and Z(r).

8.4.2 Results: Normalised Compression Distance vs Jeffrey Divergence

While the Shannon entropy and Kolmogorov Complexity approaches proposed in this the-

sis to characterise and compare optimization problems operate on slightly different objects,

there is still clearly a deep philosophical relationship between them. For example, the NCD

and DJ are both information-theoretic based measures of optimization problem similarity.

Specifically, given two optimization problems, NCD and DJ quantify their similarity using

Kolmogorov Complexity theory and Shannon information theory respectively. To investi-

gate the relationship between the two measures, the NCD and DJ values from problems
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Figure 8.36: NCD vs DJ for 2-D elliptical functions, where a = 1, 1.25, . . . , 10.
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Figure 8.37: NCD vs DJ for 1-D Rastrigin functions, where A = 0, 0.25, . . . , 10.

analysed in this chapter and Chapter 7 are empirically compared. In particular, the result-

ing NCD and DJ values for the elliptical functions, Rastrigin problems, BBOB problems,

CiaS problems, TSPLib instances, ATSPs and NPPs are plotted against each other in Fig-

ures 8.36 to 8.42.

The relationships between the NCD and DJ values calculated for the 2-D elliptical func-

tions (Figure 8.36), 1-D Rastrigin functions (Figure 8.37), and CiaS problems (Figure 8.39) are

non-linear and monotonic. There is a much more complex relationship between the NCD

and DJ values calculated between instances of BBOB problems (Figure 8.38), TSPLib (Fig-

ure 8.40), the ATSP (Figure 8.41) and the NPP (Figure 8.42). Despite the non-linearity and

complexity of the relationships between DJ and the NCD displayed in Figures 8.36 to 8.42,
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Figure 8.38: NCD vs DJ for 2, 5, 10 and 20-D BBOB problems.
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Figure 8.39: NCD vs DJ for Circle in a Square problems, where nc = 2, 3, . . . , 100.
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Figure 8.40: NCD vs DJ for TSPLib instances.
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Figure 8.41: NCD vs DJ for Asymmetric Travelling Salesman Problem instances, randomly
generated with b = 0, 0.1, . . . 6.5.
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Figure 8.42: NCD vs DJ for Number Partitioning Problem instances, where k =
0.4, 0.425, . . . , 1.4.
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Problem Pearson’s ρp Spearman’s ρs Kendall’s τ

Elliptical Function 0.9469 0.9726 0.8618

Rastrigin 0.7241 0.6840 0.5070

Circle in a Square 0.6515 0.9863 0.9067

BBOB 2D 0.1590 0.1472 0.1057

BBOB 5D 0.1490 0.2522 0.1741

BBOB 10D 0.088 (0.1591) 0.1879 0.1356

BBOB 20D 0.0684 (0.2787) 0.2337 0.1892

TSPLib 0.3442 0.5721 0.4203

ATSP 0.1707 0.2242 0.1522

NPP 0.1919 -0.1161 -0.1107

Table 8.3: Correlation coefficients between NCD and DJ with α = 0.05

the relationship is clearly non-random. This suggests that the two measures share similari-

ties as well as differences in the structural features that they capture.

In order to explicitly quantify the correlation between NCD and DJ , the Pearson’s ρp,

Spearman’s ρs and Kendall’s τ correlation coefficients are calculated using a significance

level of α = 0.05. Pearson’s ρp coefficient measures the linear correlation between the explicit

NCD and DJ values. To quantify the extent of non-linear correlation, ρs and τ utilise only

rank information regarding the NCD and DJ values, thereby measuring how well the NCD

and DJ can be represented with a monotonic function. The resulting correlation coefficients

are summarised in Table 8.3. The resulting p-values are all less than 0.05 (with the exception

of ρs for 10-D and 20-D BBOB problems, whose p-values are reported in brackets), meaning

that the correlations are statistically significant.

The 2-D elliptical and 1-D Rastrigin functions yielded high ρp coefficients in Table 8.3,

indicating that there is a linear correlation between the NCD and DJ values. The remaining

problems have relatively small ρp coefficients, however the ρs and τ coefficients for the CiaS

problems indicates that there is a strong non-linear relationship between the NCD and DJ

values. The TSPLib instances also have moderate ρs and τ values, suggesting some degree

of non-linear correlation. The NPP instances yield a positive ρp value, yet negative ρs and τ

values, indicating that linear correlation is not a good summary of this data.
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8.4.3 Discussion

Theoretical analysis into the relationship between the NCD and DJ measures of problem

similarity investigated in Section 8.4.1 showed that the measures cannot be directly related.

Subsequent comparisons of empirical results in Section 8.4.2 suggested that the relationship

between the measures is generally very complex and highly non-linear. Hence while both

NCD and DJ are measures of problem similarity, an important research direction is to deter-

mine the differences between them, and in particular, the structural features that each of the

measures use to discriminate between problem landscapes.

There are no sets of problems for which the “ground truth” similarity is known, and so

a rigorous comparison of the similarity measures’ accuracies cannot be made. However,

it must be stressed that both the DJ and NCD measures of problem similarity produced

significant results on the continuous and combinatorial problems analysed in this thesis.

Clearly, both measures are valuable, complementary measures of problem landscape simi-

larity. Thus in practice, both measures (or a measure based on some combination of the two)

can be used to analyse and compare optimization problems.

The NCD and DJ approaches both require a sample of n length scale values. The exper-

iments in this thesis used the same sampling technique to obtain r values for both of the

measures. The calculation of DJ requires estimation of Equation 6.1.8, which is performed

in practice by evaluating m points on kernel density estimators constructed from each of

the problems’ multisets of (sampled) r values. As previously discussed in Section 6.3, the

J-divergence between two D-dimensional problems requires O(mn3D) time (where n is the

size of the sample, and m is the number of evaluation points), and O(n) space if the length

scales and/or kernel density estimators are stored.

The main disadvantage to the DJ measure is its large running time. That said, one ma-

jor advantage of the DJ approach is that it computes length scale distributions, which can

be subsequently analysed to gain additional insights into problem structure (e.g. see Sec-

tion 6.1.3). Hence, while the estimation of DJ may be computationally expensive, it has the

inherent benefit of additionally analysing the computed models for valuable insights.

As outlined in Section 8.2.3, the NCD methodology runs in O(n) time. Hence, the NCD

methodology may be preferable in situations where running time is an important consider-

ation and computation of DJ is infeasible. The NCD approach is also arguably simpler to

implement; it relies solely on samples of length scale values from the problems and a suit-

able compressor for the length scale data. In addition, the NCD approach can theoretically
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be used to compare optimization problems with completely different types of objects (e.g.

music, images and text files).

The NCD and DJ developed in this thesis measure problem similarity, and they differ

in their resulting values, computational complexities, ease of implementation and capacity

for additional analysis. Hence, to answer the question proposed at the beginning of this

section, both measures are useful, but each methodology comes with different benefits and

limitations that may be important or irrelevant in particular scenarios and applications.

8.5 Summary

This chapter proposed using the (Normalised) Information Distance as a measure of black-

box optimization problem similarity. Normalised Information Distance relies on the Kol-

mogorov Complexity of the problems, and thus is purely a theoretical notion. In prac-

tice, lossless compression algorithms can be used to approximate Kolmogorov Complexity.

Hence by utilising lossless compression, the Normalised Compression Distance (NCD) can

be used to quantify problem similarity in practice.

The success of the NCD relies on two major components; the binary string used to repre-

sent a given optimization problem and the compressor used to compress the binary string.

The limitations of numerous binary representations were discussed and the multiset of sam-

pled length scales was proposed as a suitable representation. In addition, the suitability

of numerous well-known general-purpose compressors as well as compressors suitable for

length scale data were discussed and empirically compared using length scale data. The

results suggest that many of the compressors are suitable for length scale data, and that the

general-purpose compressor LZMA is slightly superior.

The NCD was then used to measure the similarity between a wide variety of continuous

and combinatorial optimization problems. The problems consisted of artificial problems

(with known structural features), benchmark problems (with known/conjectured structural

features) and real-world-like problems. The problems were treated as a black-box; only the

solutions and their respective objective function values were available to the NCD method-

ology The resulting similarity values were subsequently analysed and interpreted using

heatmaps, dendrograms of hierarchical clustering and visualisations of the problem space

produced by t-SNE. The results clearly demonstrated that the NCD is able to capture known

structural similarities as well as phase-transition behaviour, purely via black-box informa-

tion.
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Previous work in this thesis proposed using the J-divergence to measure problem similar-

ity. At a fundamental level, both of the NCD and DJ measures use information to quantify

problem similarity. In addition to exploring the philosophical relationship between NCD

and DJ , this chapter also empirically investigated the relationship between NCD and DJ in

practice. Resulting NCD and DJ values for many of the problems analysed in this thesis

suggests that the two measures have a complex, non-linear relationship and are therefore

complementary to each other. From a practical perspective, NCD is arguably easier to im-

plement and has a faster running time than DJ , but DJ utilises models of the length scale

distributions, which can be additionally analysed for further insights into the problems.

Overall, the NCD is a general, yet powerful similarity measure; it relies purely on black-

box information and can be readily applied to both continuous and combinatorial optimiza-

tion problems. Experimental analysis of the similarities between artificial, benchmark and

real-world-like problems demonstrated a strong ability to capture known structural similar-

ities, dissimilarities and phase transitions.
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Conclusion

Science never solves a problem without

creating ten more.

George Bernard Shaw

This chapter concludes the thesis by reflecting on the work’s novel contributions. Section 9.1

summarises the contributions of each chapter by highlighting important arguments, con-

cepts, methodologies and results. Limitations of the work and potential avenues for future

work are discussed in Section 9.2.

9.1 Summary and Conclusions

Chapter 2 formally introduces the optimization problem, and outlines several relevant con-

cepts and definitions, including the notion of a landscape as a model of the relationship be-

tween candidate solutions and their objective function values. A review of landscape def-

initions in the literature shows that there are several competing definitions with varying

degrees of rigor. In order to consolidate the literature, a landscape definition - based on

the objective function, search space and a suitable distance function - is provided. An ex-

amination of the topological concepts and notions of ruggedness, ridges, valleys, plateaus

and funnels shows that many of these concepts lack rigorous definitions. In addition, it is

unclear how the topological notions scale with dimensionality, and in particular, whether

the landscape descriptors are able to capture the complexity of high dimensional structures.

An argument is made for the development of problem features and properties that are not

derived from two and three dimensional landscape intuition.

Chapter 3 reviews the ability of problem landscape features and analysis techniques pro-

posed in the literature to analyse and characterise black-box optimization problems. While
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techniques from the evolutionary computation literature are predominately reviewed, re-

lated analysis in the geography, ecology, biology, chemistry and physics literature is also dis-

cussed. In contrast to continuous optimization, a considerable amount of landscape analysis

has been developed for combinatorial optimization. There are many important differences

between combinatorial and continuous optimization that can negatively affect the adapta-

tion of techniques between the domains. Despite this, many techniques applied to contin-

uous problems originate from combinatorial optimization. Regardless of whether problem

features originate in the combinatorial or continuous domain, it is shown that existing tech-

niques are quite limited. One significant limitation is the inability of the techniques to fully

utilise all of the black-box information available. Furthermore, many techniques compress

landscape information into a single scalar value, which in turn leads to information loss and

a lack of discriminatory power.

Landscape analysis techniques rely heavily on finite samples of solutions, and Chapter 4

reviews the methodologies commonly employed to sample continuous optimization prob-

lems. The review raises serious concerns regarding the efficacy of the sampling methodolo-

gies commonly used in high dimensional continuous problem analysis. In order to address

the concerns, a Lévy random walk is proposed for the analysis of high dimensional contin-

uous problems. Two case studied are conducted to investigate the affect of the concerns and

sampling adequacy of the Lévy random walk. The first study, conducted on the dispersion

metric, shows that the use of uniform random sampling in conjunction with Euclidean dis-

tance (as is often used in the literature) is flawed and results in convergent dispersion values

as dimensionality increases. Encouragingly, the Lévy random walk reduces the convergence

of the dispersion values. In the second case study, fitness distance correlation is shown to be

similarly affected in the black-box scenario. As for dispersion, the negative effects are re-

duced by the Lévy random walk.

Chapter 5 proposes the notion of length scale as a fundamental feature of problem land-

scapes. The length scale intuitively measures the magnitude of objective function difference

with respect to a step between two solutions in the search space. Several important prop-

erties and summaries of length scale information are described, including the length scale

distribution. In practice, length scale values can be calculated from a finite sample of candi-

date solutions and their objective functions values, and the length scale distribution can be

estimated using kernel density estimation. While length scale is related to the notion of finite

differences and the Lipschitz constant, it uniquely captures information regarding all rates of

change, over a wide variety of intervals (distances) on the problem.
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In Chapter 6, analysis techniques from set theory, statistics, machine learning and vi-

sualisation are proposed to analyse and compare problems based a sample of length scale

values. One major contribution of this chapter is the application of the Jeffrey divergence

(J-divergence) between length scale distributions to explicitly quantify the similarity be-

tween optimization problems. That is, given two optimization problems, the J-divergence

between the problems’ respective length scale distributions is a proxy for problem similarity.

A unique methodology based on the length scale distribution is also developed in order to

assess the adequacy of a sample of solutions and respective objective function values. Prac-

tical considerations are discussed, including the time and space complexities of sampling,

density estimation, and the calculation of the J-divergence.

Chapter 7 investigates the ability of the length scale framework to analyse and com-

pare optimization problems in practice. Specifically, continuous artificial problems with

adjustable landscape structures, a popular benchmarking set, real-world representative

geometric packing problems, Traveling Salesman Problems (TSP) and Number Partition-

ing Problems (NPP) are analysed and compared using the length scale distribution and J-

divergence. Visualisation of the distributions, as well as heatmaps, hierarchical clustering

and dimensionality reduction of J-divergences clearly shows known structural features and

similarities between problems. Remarkably, the length scale analysis of TSP and NPP in-

stances generated along known phase transitions is able to detect the phase transitions. The

patterns and trends evident in the analyses are consistent, indicating that any limitations of

the analysis techniques (e.g. poor parameter settings) do not significantly impact on the re-

sults. A comparison with state-of-the-art landscape features (correlation length, dispersion,

fitness distance correlation, information content, partial information content and informa-

tion stability) shows that the length scale framework provides valuable insights into the

nature of the problems, is statistically robust, and adept at characterising and differentiat-

ing between problems. The variety of problems analysed demonstrates the flexibility of the

length scale framework, and in particular, how easily it can be applied to both continuous

and combinatorial problems.

While the J-divergence can be used to explicitly quantify optimization problem similarity,

Chapter 8 proposes an alternative similarity measure, based on a universal distance function

in Kolmogorov Complexity theory known as Information Distance. Information Distance is a

theoretical measure, but in practice is approximated by the Normalised Compression Distance

(NCD). A review of Kolmogorov Complexity theory and Information Distance is provided,

and limitations of the existing Kolmogorov Complexity analysis in the optimization liter-
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ature are identified. To overcome these limitations, a unique methodology for calculating

the NCD between optimization problems is developed based on finite sets of length scale

values. Practical considerations regarding the compression of length scale values are dis-

cussed, and experimental results suggest that the general compressor, LZMA, is suitable for

compressing length scale values. The NCD methodology is applied to the continuous artifi-

cial problems, benchmarking set, geometric packing problems, TSPs and NPPs. The results

clearly demonstrate that the NCD is able to capture known structural similarities as well

as phase-transition behaviour, purely via black-box information. At a fundamental level,

both the NCD and J-divergence problem similarity measures developed in this thesis use

the length scale information to quantify problem similarity. The philosophical relationship

between NCD and J-divergence is discussed, and theoretical analysis shows that while the

measures are similar, they operate on subtly different summaries of length scale informa-

tion. A comparison of the resulting NCD and J-divergence values for many of the problems

analysed in this thesis suggests that the two measures have a complex, non-linear relation-

ship and may provide complementary information. From a practical perspective, NCD is

arguably easier to implement and has a faster running time than the J-divergence, but J-

divergence utilises important models that can be additionally analysed for further insights

into the problems.

Overall, the contributions in this thesis together form a framework and practical tech-

niques to study the structural characteristics of a problem landscape, independent of any

particular optimization algorithm. Results on a variety of continuous and combinatorial op-

timization problems clearly demonstrate the ability of the framework to detect important

structural features from purely black-box information (i.e. finite samples of candidate solu-

tions and their respective objective function values). Importantly, the developed framework

is easy to implement, applicable to both continuous and combinatorial problems, and highly

amenable to the incorporation of additional analysis techniques.

9.2 Limitations and Future Work

The length scale framework is clearly able to capture the structural features that are required

to distinguish and differentiate between problems. It would be interesting to relate particu-

lar summaries of length scale values to well-defined topological properties. For example, it

should be possible to explore the relationship between landscape modality and the shape of

the length scale distribution.
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While the techniques used to experimentally analyse length scale values provided valu-

able insights, the effectiveness of the techniques are influenced by many factors, including

parameterisations and the overall appropriateness of the techniques for the task at hand. For

example, the use of t-SNE for producing a two-dimensional representation of the relation-

ships between problems (according to their J-divergences) assumes that the relationships

can adequately be represented in two-dimensional space. While the majority of the result-

ing t-SNE reductions in this thesis produced accurate (i.e. low-cost) representations (e.g.

Figures 8.14 to 8.17), inaccurate results were produced in certain instances (e.g. Figure 8.5).

The ordering and organisation of problems in the heatmaps and dendrograms can be

difficult for instances with no obvious ordering, such as the Black-Box Optimization Bench-

marking (BBOB) problem set and TSPLib. For example, in the TSPLib problem set, problems

are grouped along the heatmap axes according to their source (see Figures 7.69 and 8.27),

however the groups are ordered arbitrarily. In such circumstances, trends in heatmaps can

be difficult to observe. Encouragingly, the conclusions drawn from the distribution plots,

heatmaps, dendrograms and t-SNE visualisations were largely consistent across the visual-

isations. This suggests that the techniques are reliable and that the inherent limitations of

each methodology do not significantly impact on results.

There is considerable scope to apply a range of other techniques for modelling and sum-

marising length scale information. The experiments in this thesis predominately used en-

tropy to summarise the length scale distribution, but other ideas from statistics and infor-

mation theory (including those already discussed in Section 6.1) deserve investigation. In

particular, the current methods used to analyse length scales ignore spatial information,

such as the locations of the solutions. More discriminative ability may be possible by com-

bining complementary summaries of length scale information, as well as existing landscape

features.

The set of solutions evaluated by an algorithm during a run could also be analysed in the

length scale framework. Comparisons between the landscape’s length scales and the algo-

rithm’s resulting length scales can be made, and possible insights into algorithm behaviour

may be drawn. In addition, this information could potentially be used to make online al-

gorithm parameter adjustments. Similar to the comparisons of problem length scale distri-

butions conducted in this thesis, the length scale distributions of the solutions produced by

algorithm instances could also be directly compared to each other. Exploration of the rela-

tionship between algorithm performance and length scale metrics (e.g. the entropy of the

length scale distribution, h(r)) is also an interesting avenue for future work. In Section 7.2.4,
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algorithm performance results for the BBOB problems were examined against h(r), however

it would be very interesting to investigate the ability of h(r) to discriminate or predict algo-

rithm results for the other problems in this thesis, such as TSP or NPP instances along the

phase transitions.

The experiments conducted in this thesis indicate that the J-divergence and NCD mea-

sures are powerful problem discriminators. Algorithm prediction models often utilise fea-

ture ensembles to compare and discriminate between problems, and hence the use of the

J-divergence and/or NCD as problem discriminators in algorithm prediction models is a

promising avenue for future work.

In order to adequately yet efficiently test the performance of algorithms, benchmark

problem sets ideally contain a wide variety of landscape structures with only a modest

number of problems. The J-divergence and NCD results for the BBOB and TSPLib prob-

lems show that there are some similarities, and hence, redundancies in these benchmark

sets. By removing the redundant problems, the size of a benchmark set may be reduced

without significantly affecting the coverage of problem structures. Hence, the J-divergence

and NCD measures developed could be used to identify benchmark redundancies, leading

to more efficient benchmark testing. The J-divergence and NCD measures could also be

used to investigate the degree to which benchmark functions reflect real-world problems,

which is a research area of interest and debate in the optimization community.

Thousands of new metaheuristic algorithms are proposed each year with the aim of im-

proving the performance of existing algorithms and solving new/unsolved problems. A

greater understanding of the structural features in the optimization problems of interest

will likely lead to better-designed algorithms for solving them. Landscape features, such as

the length scale framework developed in this thesis, shed light into the nature of black-box

problems and may be used to analyse algorithm behaviour, design better heuristics and in-

fluence/guide heuristics during search. Certain algorithm frameworks already utilise basic

landscape features (e.g. hyperheuristics and algorithm portfolios), and will greatly benefit

from the development of more descriptive and discriminating features.
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APPENDIX A

Test Problems

This appendix describes the optimization problems analysed in this thesis. The problems

include various continuous artificial problems, problems from the Black-Box Optimization

Benchmarking (BBOB) set, Circle in a Square (CiaS) packing problems, Travelling Salesman

Problems (TSP) and Number Partitioning Problems (NPP).

A.1 Continuous Problems

A.1.1 Artificial Problems

There are many problems with artificial and contrived structures that have been defined in

the optimization literature [181]. Often, such problems are purposefully constructed with

a particular structural feature in mind, and then subsequently used to experimentally in-

vestigate algorithm behaviour. The problems defined in Table A.1 were carefully selected

from the optimization literature, and contain a variety of structural features that have been

shown to affect the behaviour of many algorithms (see Simon [157] for a survey of popular

benchmark problems).

Sphere

The Sphere function is essentially a quadratic, separable, multi-dimensional bowl. Hence it

is symmetric and convex. The gradient changes smoothly as solutions approach the global

optimum, which is located at x∗ = [0]D. Any algorithm that can efficiently solve a convex

problem (e.g. Broyden-Fletcher-Goldfarb-Shanno quasi-Newton) will likely perform well

on the Sphere function.
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Name Definition Bounds

2-D Ellipse f (x) = x2
1 + ax2

2 x ∈ [−1, 1]2, a ∈ IR

Griewank fD(x) = 1 + 1
4000 ∑D

i=1 x2
i −∏D

i=1 cos
(

xi√
i

)
x ∈ [−600, 600]D

Michalewicz fD(x) = −∑D
i=1 sin xi sinm ix2

i
π x ∈ [0, π]D

Rastrigin fD(x) = AD + ∑D
i=1
(
x2

i − A cos (2πxi)
)

x ∈ [−5.12, 5.12]D

Rosenbrock fD(x) = ∑D−1
i=1 (1− xi)

2 + 100(xi+1 − x2
i )

2 x ∈ [−5, 10]D

Sphere fD(x) = ∑D
i=1 x2

i x ∈ [−1, 1]D

Table A.1: Artificial Objective Functions

2-D Ellipse

The 2-D elliptical function is very similar to the 2-D Sphere function, however it has elliptical

contours (as opposed to circular). The 2-D elliptical function is convex, unimodal and has a

single global optimum located at x∗ = [0]D. The parameter a controls the eccentricity of the

elliptical function; at a = 1, the ellipse is perfectly circular, and as a increases, the contours

of the function narrow and the eccentricity becomes more pronounced. Elliptical functions

are frequently used to test the sensitivity of algorithms to elliptical contours (ranking-based

algorithms are typically invariant).

Rastrigin

The Rastrigin function (see Table A.1) is a non-convex, highly multimodal function. It is

parameterised by a perturbation term, A, that controls the magnitudes of oscillations in f ,

and so A can be used to adjust the degree of ruggedness in problem instances. At A = 0,

the problem is a smooth, convex function that is equivalent to the Sphere function, and as

A increases, the oscillations (and hence modes) in the function become more pronounced.

Ignoring the perturbations caused by the oscillations, the Rastrigin function is globally con-

vex. The global optimum is located at x∗ = [0]D.

Rosenbrock

The Rosenbrock function (see Table A.1) is a non-convex, unimodal, smooth optimization

problem with a global minimum at x = [1]D. The global optimum is located in a narrow,

largely neutral parabolic-shaped valley. Rosenbrock is often deemed difficult, due to the

neutrality of the valley that algorithms must navigate in order to find the global optimum.
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Griewank

The Griewank function can be broken down into two major components; a convex struc-

ture defined by 1 + 1
4000 ∑D

i=1 x2
i , and an oscillating, non-convex structure defined by

∏D
i=1 cos

(
xi√

i

)
. While the number of local optima increases exponentially with dimensional-

ity, the non-convex component shrinks in volume, and hence its contribution to the overall

structure of the function becomes increasingly less relevant [100]. Consequently, an increas-

ing majority of the Griewank function is convex as dimensionality increases, which in turn

can make the function “easier”; any algorithm that can efficiently solve a convex problem

(e.g. Broyden-Fletcher-Goldfarb-Shanno quasi-Newton) will likely perform well. The global

optimum is located at x∗ = [0]D.

Michalewicz

The Michalewicz function contains D! axis-aligned neutral valleys that span across S . The

global optimum occurs at the intersection of the valleys, and its location is dependant on the

dimensionality. The steepness of the valleys are defined by m, and increases as m increases.

A.1.2 Black-Box Optimization Benchmarking Set

The Black-Box Optimization Benchmarking (BBOB) problem set [72] consists of a variety

of continuous artificial benchmark functions. The problems are scalable with dimension

and defined over IRD, although the specific search space used in algorithm performance

competitions is S = [−5, 5]D. The problems are randomly translated in both the search

space and f , meaning different instances can be produced by supplying a different seed to

the benchmark generator. The BBOB problems are classified into one of five classes, based

on the expert intuition of the developers [72]. The five classes are:

1. Separable

2. Low or moderate conditioning

3. Unimodal and high conditioning

4. Multimodal with adequate global structure

5. Multimodal with weak global structure
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Table A.2 describes known properties of the BBOB problems, including whether problems

are unimodal or multimodal, and the degree of conditioning. Further details can be found

in [72].

A.1.3 Circle Packing in a Square

Circle in a Square (CiaS) packing problems are a class of well-studied geometric packing

problems. Given the unit square defined in a 2D Euclidean space and a pre-specified number

of circles, nc, constrained to be of equal size, the problem is to find an optimal packing; i.e. to

position the circles and compute the radius length of the circles such that the circles occupy

the maximum possible area within the square. All circles must remain fully enclosed within

the square, and cannot overlap.

Mathematically, the problem can be stated as follows [2]. Let C(zi, v) be the circle with

radius v and center zi = (yi
1, yi

2) ∈ IR2. Then the optimization problem is:

vn = max v (A.1.1)

C(zi, v) ⊆ [0, 1]2, i = 1, . . . , nc (A.1.2)

Cint(zi, v) ∩ Cint(zj, v) = ∅ ∀ i 6= j (A.1.3)

where Cint is the interior of a circle.

Alternatively, the problem can be reformulated as finding the positions of nc points inside

the unit square such that their minimum pairwise distance is maximized. In this case the

problem (and constraint) can be restated as:

dn = max min
i 6=j
‖ wi −wj ‖2 (A.1.4)

wi ∈ [0, 1]2, i = 1, . . . , nc (A.1.5)

It is known that a solution to (A.1.4) can be transformed into a solution to (A.1.1) using the

following relation:

vn =
dn

2(dn + 1)
.

From the point of view of evaluating metaheuristic optimization algorithms, the prob-
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lem given by Equation A.1.4 is convenient because generating a feasible candidate so-

lution simply requires placing a set of nc points within the unit square. Note that the

optimization problem is over 2nc continuous variables (the coordinates of each point wi

in the unit square). A candidate solution is then a vector of the circle coordinates, i.e.

x =
[
w1

1, w1
2, . . . , wn

1 , wn
2
]
. Hence in this thesis, the objective function for CiaS problems is:

fn(x) = −dn (A.1.6)

using dn from Equation A.1.4.

CiaS packing problems can be considered as a simplified version of a number of differ-

ent real-world problems and have received a large amount of attention in the mathematical,

optimization and operations research literature (see Castillo et al. [31] for an overview). For

most values of nc below 60 and for certain other values, provably optimal packings have

been found using either theoretical or computational approaches (see [180] and the refer-

ences therein). For larger values of nc, finding provably optimal packings in general be-

comes increasingly difficult and time-consuming. The Packomania website [168] maintains

a large list of the optimal (or best known) packings for many values of nc from 2 up to 10000,

along with references and other related resources.

A.2 Combinatorial Problems

A.2.1 Travelling Salesman Problem

The Travelling Salesman Problem is a well-studied NP-hard combinatorial optimization

problem where the objective is to find a tour through n cities, such that each city is vis-

ited exactly once and the total distance of the tour is minimised. The TSP can be de-

fined using a directed graph, G = (V, D), where the vertex set V = {1, . . . , n} represents

the cities, and the distance matrix D = (di,j) specifies the distance from city i to j. Let

x = (x1,1, . . . , xn,1, . . . xn,n) be a solution vector where

xi,j =


1 if i is connected to j

0 otherwise

(A.2.1)
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Then, the TSP can be formulated as:

min ∑
i 6=j

Di,jxi,j (A.2.2)

where

n

∑
i=1,i 6=j

xi,j = 1 (j ∈ V, i 6= j) (A.2.3)

n

∑
j=1,j 6=i

xi,j = 1 (i ∈ V, j 6= i) (A.2.4)

∑
i,j∈S

xij ≤ |S| − 1 (S ⊂ V, 2 ≤ |S| ≤ n− 2) (A.2.5)

A related problem is the NP-complete decision TSP, where the objective is to decide if, given

a distance k, there exists a tour through the n cities (visiting each city exactly once) that is

shorter than k [48, 76].

A notion of distance between TSP solutions is based on the number of common edges

between the solutions, which can be calculated via the Hamming distance between the so-

lution/tour matrices.

shared(xa, xb) = ∑
i 6=j

xa
i,j ∧ xb

i,j (A.2.6)

If city i is connected to city j in a symmetric TSP solution, then xi,j = 1 and xj,i = 1. Conse-

quently, the number of shared edges calculated above in Equation A.2.6 will be twice what

is actually shared.

Hence given two symmetric TSP solutions, xa and xb, the distance between solutions is

defined as:

distTSP(xa, xb) = 1− shared(xa, xb)

2n
(A.2.7)

While the distance between two asymmetric TSP solutions is:

distATSP(xa, xb) = 1− shared(xa, xb)

n
(A.2.8)
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TSPLib

TSPLib is a collection of hundreds of TSP (and related problem) instances assembled from

a variety of real-world and artificial sources. TSPLib has been widely used in the TSP com-

munity for benchmarking algorithm performance and assessing the discriminatory power

of problem features [164]. The library includes instances with a wide variety of cities and

distance metrics, including L1, L2 and L∞ norms in 2D and 3D as well as geographical dis-

tance (i.e. distance measured along the surface of the earth). The subset of instances used in

this dissertation are summarised in Table A.3.

Phase Transitions in Asymmetric Travelling Salesman Problems

Both the decision and optimization versions of the TSP have been shown to exhibit phase

transition behaviour [34, 206]. For the optimization TSP, Zhang [206] showed that the tour

distance and size of backbones, as well as the performance of a well-known branch and

bound algorithm, have two characteristically different values, and that the transition be-

tween these values is very abrupt. Problems were constructed by generating distances uni-

form randomly from integers in the range [0, . . . , b10bc], where b > 0. The parameter b

essentially controls the diversity of distances in D, and is normalised by log10(n) to allow

comparisons between problems of varying n. Phase transitions are typically exhibited as
b

log10(n)
is varied at minor increments from 0 to 6.5.

A.2.2 Number Partitioning Problem

The number partitioning problem is a classic NP-hard combinatorial problem [58]. Given

a multiset of positive integers, S, the objective is to partition or separate S into two disjoint

subsets, S1, S2, such that the sums of each set are as close as possible. This can be formulated

as an optimization problem in the following way. Let S = {s1, s2, . . . , sn}, where si are drawn

randomly (according to some distribution, e.g. Uniform) from {1, 2, . . . , m}. Let S1, S2 be

two disjoint subsets of S, i.e. S1, S2 ⊂ S such that S1 ∪ S2 = S and S1 ∩ S2 = ∅. Let x = 0, 1n

represent a candidate solution where if position i is set, then si ∈ S1 (and hence if i is not set,

then si ∈ S2). Then, the objective is to minimise the discrepancy of the set:

f (x) = max

{
n

∑
i

sixi,
n

∑
i

si(1− xi)

}
(A.2.9)

The optimal discrepancy is 0 for even n, and 1 for odd. Because x ∈ {0, 1}n, and there are
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Name Type Number of Cities (n) Distance Type

kroA100 Symmetric 100 2-D L2

kroB100 Symmetric 100 2-D L2

kroC100 Symmetric 100 2-D L2

kroD100 Symmetric 100 2-D L2

kroE100 Symmetric 100 2-D L2

kro124p Asymmetric 100 2-D L2

bayg29 Symmetric 29 Geographical

bays29 Symmetric 29 Geographical

gr17 Symmetric 17 Explicit

gr21 Symmetric 21 Explicit

gr24 Symmetric 24 Explicit

gr48 Symmetric 48 Explicit

ulysses16 Symmetric 16 Geographical

ulysses22 Symmetric 22 Geographical

br17 Asymmetric 17 Explicit

ft53 Asymmetric 53 Explicit

ft70 Asymmetric 70 Explicit

ftv33 Asymmetric 33 Explicit

ftv35 Asymmetric 35 Explicit

ftv38 Asymmetric 38 Explicit

ftv44 Asymmetric 44 Explicit

ftv47 Asymmetric 47 Explicit

ftv55 Asymmetric 55 Explicit

ftv64 Asymmetric 64 Explicit

p43 Asymmetric 43 Explicit

ry48p Asymmetric 48 Explicit

Table A.3: TSPLib Instances
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a total of 2n possible candidate solutions. However, the NPP contains a natural symmetry

between candidate solutions and their compliments. That is, given a candidate solution x,

f (x) = f (x̄). Hence while there are 2n possible solutions, there are only 2n−1 unique solutions

due to the symmetry.

The NPP is known to undergo a phase transition in a number of landscape properties as

well as difficulty for heuristic algorithms [17, 22, 61, 174]. The stage of the phase transition

can be controlled using the parameter k = 1
n log2 m. There is a single critical stage at which

the problem structure and difficulty changes drastically. For k < kc, there are numerous

global optima, few plateaus and problems are generally known as “easy”. At k > kc, prob-

lems have few global optima, many plateaus and are generally seen as difficult. Borgs et al.

[22] derive kc by the following:

kc = 1− ln
(

π
6 n
)

2n ln(2)
(A.2.10)
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Definitions and Formulae for

Combinatorial Problems

Length Scale Distribution

Definition B.1. Let r be a discrete random variable taking values from the set R ⊂ IR (i.e. r ∈ R).

The length scale distribution is defined as the probability mass function p(r).

Note ∑
r∈R

p(r) = 1.

Entropy

H(r) = − ∑
r∈R

p(r) log2 p(r) (B.0.1)

where the convention 0 log2 0 = 0 is used.

KL Divergence

DKL(p||q) = ∑
r∈R

p(r) log2
p(r)
q(r)

(B.0.2)

where 0 log2 0 = 0 and q(i) = 0 implies p(i) = 0.
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Length Scale Analysis of Circle in a

Square Problems

The following results are based on the experiments in Section 7.3 of Chapter 6, where a

Lévy random walk is the basis for estimating several landscape analysis features in Circle

in a Square (CiaS) packing problems. The results in this appendix are for a uniform random

sample, as opposed to the Lévy random walk. The motivation behind using a uniform ran-

dom walk is twofold; firstly, to examine how the features perform with such a sample, and

secondly, to relate the results to intuition regarding uniform packings. In particular, the ob-

jective function value assigned to a solution is the minimum distance between any two circle

centres (multiplied by -1, as this analysis assumes minimisation). As nc increases, the radius

of the circles decreases, and so for a random solution, the minimum distance between any

two circle centres is expected to also decrease. Hence, as nc increases, the objective function

value of uniform random packings should decrease.

C.1 Results Comparing Length Scale to Existing Features

C.1.1 Fitness Distance Correlation

In general, both estimators of FDC (shown in Figure C.1a and C.1b) have relatively small

standard deviation (errorbars) over trials, which decreases as the number of circles increases.

FDC values are typically small and negative for small nc, and as nc increases, values in-

creases towards 0. An exception of this trend occurs at the transition from nc = 2 to nc = 3,

where the FDC values decrease noticeably; FDCx∗ transitions from 0.1048 to -0.0649, while

FDCx̂∗ transitions from -0.0265 to -0.0633. In the case of FDCx̂∗ , values then steadily increase

towards 0 as nc increases. On the other hand, FDCx∗ shows fluctuations in FDC as nc ini-
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Figure C.1: FDC for CiaS problems. Lines show the mean of the 30 trials, while error bars
indicate one standard deviation.

tially increases, and from approximately nc = 40 the values steadily increase towards 0 as

nc increases. The fluctuations generally correlate with problems where symmetrical global

solutions exist for at least one of the problems (e.g. the transition from nc = 9 to nc = 10).

Furthermore, for nc ≥ 40 packings (where the FDC values are rather stable) the majority of

problems (i.e. approximately 85%) have assymetrical global solutions.

Figure C.1a and C.1b generally indicate that for low numbers of circles (i.e. nc < 20),

the f -values of random solutions is slightly negatively correlated with their distance to the

global optimum, however, as the number of circles increases, the f -values of random solu-

tions has essentially no correlation with their distance to the global optimum. A negative
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value of FDC in the context of a minimization problem indicates that in general, the objec-

tive function values of the sampled solutions gets smaller as the distance from their closest

global optimum increases. Such a circumstance can be caused by many factors (and their in-

teractions), including the presence of many local optima and multiple global optima, which

CiaS problems are known to have (as discussed in Section 7.3 of Chapter 6). The FDC values

alone give no further insight into such factors, nor do they adequately differentiate between

problems of varying nc (particularly for nc > 40).

The landscape at nc = 2 has a positive FDCx∗ value and yet a negative FDCx̂∗ value.

Compressing the complex interaction between fitness and distance (to the global optimum)

to a correlation coefficient may obviously lose important structural information, and so

fitness-distance scatter plots can be used to visualise and better understand FDC and the

landscape structure. The fitness-distance scatter plots for FDCx∗ and FDCx̂∗ at nc = 2 are

shown in Figure C.2a and C.2b respectively.

Figure C.2a shows a general lack of correlation between f -values and distance to x∗,

however there are a few subsets of solutions that show correlation in their distribution.

In particular, there is one area of strong positive correlation (i.e. solutions in Figure C.2a

where f (x) > −0.8), indicating that the objective function values increase as the distance

from x∗ increases. There are also two areas of weak negative correlations (i.e. solutions

where f (x) < −1), where the objective function values decrease as the distance from x∗

increases. The positive correlation is much stronger than the two weaker correlations, and

thus overall there is a positive FDCx∗ value (albeit a small one). Figure C.2b shows quite

different structure compared to Figure C.2a, in particular, there are much larger distances

between solutions and x̂∗. The overall shape and trends in the data are also substantially

different. Figure C.2b shows little evidence of the weak negative correlations that are present

in Figure C.2a. While there is perhaps a small subset of solutions with positive correlation

(i.e. solutions in Figure C.2b where the distance to x̂∗ is less than 1), there is a prominent

subset of solutions with a negative correlation (i.e. solutions where the distance to x̂∗ is

greater than 1), thus explaining why FDCx̂∗ is negative (albeit small).

In general, the interesting structure shown in Figure C.2a and C.2b was not evident when

looking at scatterplots for nc ≥ 5. For example, the fitness-distance scatter plots for nc = 9

and nc = 10 are examined and shown in Figure C.3a and C.3b respectively. While there are

no obvious trends in either Figure C.3a or C.3b, the overall shape of the data distribution is

different. Solutions in Figure C.3a have a smaller distance to x∗ as well as a smaller range

in the distances to x∗ compared to solutions in Figure C.3b. This is not surprising given that
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Figure C.2: Typical fitness-distance scatter plots for nc = 2 circles.
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Figure C.3: Typical fitness-distance scatter plots using x∗ as the global optimum.

global solutions for nc = 9 have 8 symmetries, compared with 1 for nc = 10, and so it is

expected that solutions with a greater number of global optimum to compare to will have

both smaller distances and a smaller range of distances. Thus, while there are no obvious

differences in the trends in Figure C.3a and C.3b, the difference between the number of

global optima affects the value and range of distances obtained, which in turn likely causes

fluctuations between FDCx∗ values.

C.1.2 Dispersion

The bound-normalised dispersion values for the CiaS problems are shown in Figure C.4

and reveals a relatively large decrease in dispersion from 2 circles to 10 circles. A decrease
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Figure C.4: Bound-Normalised dispersion for CiaS problems as nc increases.

in dispersion indicates that high quality solutions are increasingly closer together. Hence,

Figure C.4 indicates that high quality solutions for nc = 10 are closer together in S than

high quality solutions for nc = 2. Following the initial decrease in dispersion values, from

nc = 10 to nc = 40, the dispersion increases slightly. The slight increase of dispersion is

very interesting, however analysis of the distance distributions of the fittest 5% of solutions

for nc = 20, 40 and 80 did not give an obvious explanation into the increase in dispersion.

Figure C.4 also shows that for nc > 40, dispersion is slightly decreasing, meaning that for

nc > 40, high quality solutions are slightly closer together as nc increases. Overall, the

bound-normalised dispersion has small variability between samples, however because the

dispersion values are very similar and non-unique across problems, it would seem to be of

limited use differentiating and characterising the CiaS packing problems.

C.1.3 Information Content, Partial Information Content and Information

Stability

The information content and partial information content features were found to be highly

correlated for the CiaS problems (the sample correlation coefficient is 0.999). Consequently,

only the information content is shown in Figure C.5a. The value of information content is

roughly constant over all of the CiaS problems, with small fluctuations as indicated by the

scale on the information content axis in Figure C.5a. Comparisons with the information

content and partial information content of highly rugged landscapes in [190] suggest that

the values (and fluctuations) obtained are reasonable. Similar to other features, the standard
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Figure C.5: Information-Theoretic Analysis for CiaS problems as nc increases.

deviation decreases as nc increases. The information content indicates that the problems do

not significantly change in ruggedness. Most importantly, however, the technique is clearly

unable to differentiate and characterise CiaS problems.

In contrast to information content, the information stability feature, shown in Fig-

ure C.5b, exhibits a strong, smooth trend as nc increases and has very small standard devia-

tion between trials. In particular, as nc increases, the information stability is a monotonically

decreasing function approaching 0. This is determined by the nature of objective function

values in CiaS problems and the evaluation of solutions. Information stability is simply the

largest change in objective function value between two steps in the walk. Because the mag-

nitude of objective function values (for random solutions) are generally decreasing as nc in-
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Figure C.6: h(r) for CiaS problems as nc increases.

creases, it is no surprise that the information stability is also decreasing as nc increases. Thus,

while information stability is a robust and unique characteristic the problem for changing

nc, it is likely due to the decreasing nature of f , rather than changes in landscape structure.

Furthermore, analysis of individual information stability values does not give much insight

into landscape structure. For example, at nc = 2, the average information stability over the

30 trials is approximately 1.13. This merely indicates that the largest change in f -values (be-

tween a step in the walk) is 1.13; no information regarding other changes in f -values, the

distribution of objective function values or the interaction of solutions and objective function

values is captured.

C.2 Interpreting Length Scale Distributions of the Circle in

a Square Problems

The entropy of the length scale distribution, h(r), is shown in Figure C.6. It clearly charac-

terises and discriminates problems of different nc. In addition, h(r) has very low standard

deviation across the repeated samples, which suggests that for these problems, it is a highly

robust landscape feature.

The decrease in h(r) (as nc increases) indicates that the diversity of the changes in objec-

tive function between two random solutions is decreasing. The length scale distributions in

Figures C.7a and C.7b confirm this; Figure C.7a has a heavier tail than C.7b. In particular,

for nc = 100, p(r) favours “small” length scales compared to p(r) for nc = 2. Further insight

294



APPENDIX C: LENGTH SCALE ANALYSIS OF CIRCLE IN A SQUARE PROBLEMS

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r

p(
r)

(a) nc = 2

0 1 2 3 4

x 10
−3

0

200

400

600

800

r

p(
r)

(b) nc = 100

Figure C.7: The change in shape of p(r) as nc increases.

can be gained by comparing these distributions. Examining this more closely, the ratio of

mode and 99th percentile shown in Figure C.8. As nc increases, both the mode and 99th

percentile of p(r) are decreasing, with the 99th percentile decreasing at a faster rate.

The range of length scales is also very different between nc = 2 and nc = 100, which

is evidence of the decrease of the magnitude of objective function values for random solu-

tions as nc increases (as already discussed in the context of information stability). However,

the analysis of p(r) and h(r) provides compelling evidence that the decrease is complex

and non-uniform across solutions. If it were a uniform decrease across solutions, the length

scale values would merely be scaled by a factor and there would be no change in the shape

of p(r). Hence, length scale analysis has uncovered two valuable insights into the nature
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Figure C.8: Ratio of the mode and 99th percentile of r, confirming the significant change in
the shape of p(r) as nc increases.

of CiaS packing problems; as the number of circles packed increases, it is expected that 1)

the packing of a random configuration gets better and that 2) moving from one random

configuration to another will produce increasingly less significant changes in quality. While

both these insights are known in the circle packing literature, the length scale analysis is

able to uncover such insights using purely black-box information. Furthermore, the sec-

ond insight is extremely useful and not identifiable from other existing landscape analysis

techniques. This knowledge could potentially be used to help algorithm practitioners de-

sign more effective restart strategies for this problem, as well as aid in the judgement of

algorithm convergence.
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