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If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated
solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the
difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that
the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen
bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor
separation) in a diverse range of enzymes and has been argued to support the existence of short
low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state
model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For
numerical results, we use a parameterization of the model for symmetric O–H· · ·O bonds [R.
H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the
O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting
effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ
as a function of R with NMR experimental results for enzymes, and in particular with an earlier
model parametrization Φ(R), used previously to determine bond lengths. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4927391]

I. INTRODUCTION

The issue of low-barrier hydrogen bonds in proteins
and whether they play any functional role, particularly in
enzyme catalysis, is controversial.1–10 Identifying such short
hydrogen bonds, characterised by a donor-acceptor distance
of R ≃ 2.45–2.65 Å, is not completely straightforward.11 In
protein X-ray crystallography, the standard errors in inter-
atomic distances are about 10%–30% of the resolution. Hence,
for an X-ray structure with 2.0 Å resolution, the standard errors
in the distances are ±(0.2–0.6) Å. This uncertainty makes it
difficult to distinguish between short strong bonds and the
more common weak long bonds, with R > 2.8 Å.12 NMR
provides an alternative method of bond length determination
via the 1H chemical shift. An independent NMR “ruler”
involves isotopic fractionation, where one measures how much
the relevant protons (H) exchange with deuterium (D) in a
solvent,

Pr–H + Dsolvent
 Pr–D + Hsolvent. (1)

Here, Pr–H denotes a protein with a proton in the relevant
hydrogen bond. The fractionation ratio can also be determined
from UV spectroscopy.13

The fractionation ratio is the equilibrium constant of
Eq. (1),

Φ ≡ [Pr–D][Hsolvent]
[Pr–H][Dsolvent] . (2)

Translated into partition functions,Φ is essentially determined
by the zero-point energy (ZPE) of a D relative to a H in the
protein. As described by Kreevoy and Liang,13 the ratio is

a)Email: r.mckenzie@uq.edu.au. URL: condensedconcepts.blogspot.com.

given by

kBT lnΦ = ZH–Pr − ZD–Pr + ZD,solvent − ZH,solvent, (3)

where T is the temperature and ZH–Pr denotes the zero-point
energy of a proton participating in the relevant hydrogen bond
in the protein. Throughout this paper, we set T = 298 K.

Fractionation is a purely quantum effect. If the nuclear
dynamics were classical, the fractionation ratio would be
one. It would also be one if there were no changes in the
vibrational frequencies — more correctly, zero-point energies
— of both H and D when they moved from the solvent to
the protein. However, the vibrational potentials are different
in the two environments. The donor-acceptor distance, R, is
typically shorter in the protein, indicating a stronger H-bond
and a softer X–H stretch potential (X is the H-bond donor).
Consequently, the difference between H and D zero-point
energies gets smaller14 and Φ gets smaller with decreasing R.
However, for very short bonds, typically when the donor and
acceptor share the H or D atoms, the stretch frequencies begin
to harden andΦ starts to increase.Φ then has a non-monotonic
dependence on R.15

Mildvan and collaborators11,16 considered a particular
parametrisation of the H-bond potential to connect the
observed fractionation ratio with donor-acceptor bond lengths
in a range of proteins. They generally find reasonable agree-
ment between determinations of the length from the fraction-
ation factor and that from the NMR chemical shift. In partic-
ular, the uncertainty is less than that deduced from X-rays.

In this paper, we systematically investigate how the
fractionation factor Φ varies with the donor-acceptor distance
R. Specifically, we consider the relative importance of different
contributions toΦ. We find that the competing quantum effects

0021-9606/2015/143(4)/044309/6/$30.00 143, 044309-1 © 2015 AIP Publishing LLC
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associated with the X–H stretch and bend modes are the most
significant. Non-degeneracy of the two bend modes and tunnel
splitting of the stretch mode have small but noticeable effects.
The only important effect of the secondary geometric isotope
effect is that it enhances the contribution from the tunnel
splitting, mostly for R ∼ 2.4–2.6 Å. For most values of R, the
value of Φ we calculate differs from the earlier model relation
due to Mildvan et al.16 that has been used to determine bond
lengths in enzymes.

II. METHOD

We calculate the H/D zero-point energies, and hence
Φ, with the electronic ground state potential of a two-
diabatic state model.17 For X and Y as donor and acceptor,
the two diabatic states of the model are X–H · · ·Y and
X · · ·H–Y, which are modelled as Morse oscillators. The
coupling between the diabats is a function of R, the X–Y
distance, as well as the H–X–Y and H–Y–X angles; it
decreases exponentially with increasing R and gets weaker
with larger angular excursions of the H atom. Previously, we
showed that this model can give a quantitative description of
the correlations observed18 for a diverse range of chemical
compounds between R and X–H bond lengths, vibrational
frequencies, and isotope effects.14

We now briefly discuss the domain of applicability of
this simple model to hydrogen bonds in proteins, which are
certainly complex and diverse chemical systems. First, our
focus is on a small (but potentially important) sub-class of
hydrogen bonds: short strong bonds. Second, we consider
the simplest possible model that might capture the essential
features of these bonds, independent of the finer structural
details of a specific protein. The goal is to obtain physical
insight into the different quantum effects that contribute to the
fractionation factor, as well as their (non-monotonic) trends
with donor-acceptor distance. H-bonds in proteins vary from
weak to strong and can further be modified by coupling
to other neighbouring H-bonds.19 Also important are the
proximity to and accessibility to the solvent and anisotropic
electric fields arising from neighbouring charged amino acid
residues. An example of the latter occurs in the Photoactive
Yellow Protein (PYP) where the existence of a possible low
barrier H-bond may be dependent on deprotonation of the
neighbouring Arg52 residue.7,20 A key feature of the two-
diabatic state model used here is that it takes the donor-
acceptor bond distance and the pKa difference as the key
bond descriptors. These are inputs from available experimental
information. These two parameters will certainly be modified
by chemical substituents,21 solvent, and perturbations from the
local electric field as indicated above. Description of multiple
H-bonds requires generalisation of the model considered here
to include more than two diabatic states.22

The parametrization used in Refs. 14 and 17 was for
O–H · · ·O symmetric hydrogen bonds, i.e., the donor and
acceptor have the same proton affinity (pKa). In the present
work, we retain this parametrization. This is an approximation
for comparisons with H-bonds in proteins, which are generally
asymmetric (donor and acceptor with different pKa). Many
H-bonds in proteins are actually N–H · · ·O bonds. However,

as the H-bonds become stronger (R . 2.5 Å), the equal
proton affinity approximation becomes more reliable. At such
distances, the donor and acceptor effectively share the H atom.
In the diabatic state model, the off-diagonal coupling element
becomes large enough to strongly suppress or eliminate the
barrier for the H atom transfer. Kreevoy and Liang,13 Bao
et al.,23 and Oltrogge and Boxer21 considered how asymmetry
in the one-dimensional proton transfer potential modifies the
fractionation factor. Non-degeneracy smaller than 800 cm−1

(or equivalently, a pKa difference of about 2) has only a small
effect on the proton transfer potential and the fractionation
factor when R < 2.5 Å.

The total vibrational zero-point energy for Pr–H/D is

Z(R) ≡ Z ∥(R) + Z⊥,o(R) + Z⊥, i(R). (4)

The three terms are the zero-point energy associated with X–H
vibrations parallel to the hydrogen bond (stretch), out-of-plane
bend (o), and in-plane bend (i) of X–H · · ·Y, respectively. (The
plane typically refers to that of X–H.) The simple summation
in the above equation points to our assumption that these
modes are uncoupled.

The O–H/D stretch zero-point energy is calculated
numerically by using the sinc-function Discrete Variable Rep-
resentation (DVR)24 to solve the one-dimensional Schrödinger
equation as a function of R. This gives an essentially exact
treatment for the significant anharmonic and tunnelling effects
that occur for low-barrier bonds.14

We treat zero-point energies of bend modes as half their
classical harmonic frequencies as a function of R. To break
the degeneracy of the two modes, we use the result from the
model itself that hardening of the two bend motions is similar,

Ω⊥,o/i(R)2 = ω2
⊥,o/i + 2 f (R), (5)

where ω⊥,o/i is the frequency in the absence of a H-bond
and the function f (R) is given in Eq. (6) of Ref. 17. At
least in the R range of interest, f (R) is a positive function
that monotonically decreases with increasing R (compare
Figure 1). In general, ω⊥, i > ω⊥,o and so, Ω⊥, i > Ω⊥,o. Here,
we take ω⊥,o = 650 cm−1 and ω⊥, i = 650 or 1600 cm−1. The
ω parameters for the deuterium isotope are taken to be

√
2

smaller than for the H isotope.
Eq. (3) for Φ assumes that only the ground state energies

of the species is relevant (at the temperature of interest). For a
symmetric proton transfer potential, one expects a first excited
state due to tunnel splitting that would be close in energy to
the ground state. In our model, this appears along the X–H
stretch coordinate. Hence, the first excited state for the H/D
motion makes a further multiplicative contribution of the form

Φtun =
1 + exp(−δED/kBT)
1 + exp(−δEH/kBT) (6)

to the fractionation factor, where δEH/D ≡ E0− − E0+ is the
tunnel splitting.

Another contribution to Φ comes from the secondary
geometric isotope effect (SGIE) where the X–Y distance
changes upon deuteration. This is a subtle effect with a non-
monotonic dependence on R.14,25,26 As shown in Ref. 14 and
references therein, it arises because the rates of change with
R of the zero-point energy for H and D are different (compare
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FIG. 1. Competing quantum effects. The zero-point energies of the out-of-
plane bend mode and of the two lowest stretch quantum states (due to tunnel
splitting, E0±) are shown for both H and D isotopes as a function of the
donor-acceptor distance R. The black curves [H-stretch (E0±)] correspond
to the stretch mode of the H isotope, while green curves [D-stretch (E0±)]
are those of the D isotope (solid: +, dot-dashed: −). Blue (H-bend) and
magenta (D-bend) curves are out of plane bend zero-point energies for the
H and D isotopes, respectively. With increasing R, the stretch zero-point
energies increase and those of the bend decrease. Note how for R < 2.55 Å
(2.45 Å), the tunnel splitting of the stretch mode for the H (D) isotope
becomes observable.

Figure 1). The net effect is that true minima of the total system
energy with respect to R for both H and D (RH and RD) are
shifted relative to the classical minimum (Ro). The difference
between the minima is largely under 0.04 Å with RD > RH ,
but the resulting effects on frequencies are substantial. There
are two consequences of SGIE for the fractionation ratio. First,
the zero point energy for the H and D should be calculated at
their respective minima. Second, an elastic energy associated
with the stretching of the donor-acceptor distance, of the form
1
2 K(RH/D − Ro)2, must be included. Here, K is the elastic
constant that is parametrised empirically in Ref. 14. We have
included both consequences of the SGIE in our calculation.

The above details describe the calculation of the
[Pr–D]/[Pr–H] part of Φ, in Eq. (2), as a function of R. The
corresponding ratio for the solvent is taken to be the calculated
model value at R = 2.8 Å, approximately the relevant length
in water. Later, we discuss how our results are not particularly
sensitive to this exact choice of a reference distance.

III. RESULTS AND DISCUSSION

A. Role of competing quantum effects

Figure 1 shows the computed trends of the stretch and
bend zero-point energies from the model for both H and D
isotopes. The solid black (H) and green (D) curves show the
O–H/D stretch zero-point energies. The limiting energies at
large R are those of O–H and O–D bonds, about 1800 and
1300 cm−1, respectively. Of relevance to the fractionation fac-
tor, Φ is the difference between these curves, which decreases
(for the most part) with decreasing R. From Eq. (3), this leads
to a drop inΦ. The black curve in Figure 2 shows the fraction-
ation ratio with only the O–H/D stretch zero-points included.

A countervailing influence on Φ(R) comes from the
bends, which harden in frequency with decreasing R. Figure 1

FIG. 2. Effect of the bend modes and tunnel splitting on the fractionation
ratio. The black curve (stretch) includes solely the effects of the X–H stretch
vibrational mode. The blue curves include the effect of the in-plane (bi)
and out-of-plane (bo) bending vibrational modes. The upper dashed curve
(stretch, bo = bi) is for degenerate bend modes, while the lower solid curve
(stretch, bo , bi, tunnel) includes the contribution from the first excited X–H
stretch state (tunnel splitting) for non-degenerate bend modes.

shows the zero-points only for the out-of-plane bends for
the H and D cases. Their limiting values at large R are
1
2ωH,⊥,o (=325 cm−1) and 1

2
√

2
ωH,⊥,o (=230 cm−1), respec-

tively, where ωH,⊥,o = 650 cm−1. The corresponding trends
for the in-plane bend (not plotted) are obtained from Eq. (5),
settingωH,⊥, i = 1600 cm−1. The consequences of the opposite
trends for the hydrogen and deuterium bend and stretch
frequencies — more compactly, competing quantum effects —
have been the subject of much recent study.14,26–30

Presently, for Φ, it is ZH − ZD that matters, which
evidently also showcases the competition between the X–H
bends and the X–H stretch. The solid blue curve in Figure 2
shows that the hardening of the bend modes with decreasing
R significantly increases the fractionation ratio compared to
the contribution from just the stretch mode. This is one of the
main results of this paper. Kreevoy and Liang13 previously
pointed out that bending modes could alter their results for the
correlation of Φ and R. They gave the rough estimate that Φ
could be increased by a factor of about 1.7. Edison, Weinhold,
and Markley also mentioned the effect of the bend modes,31

finding values of Φ > 1 for weak bonds.

B. Role of non-degeneracy of the bend modes

For the main results of this paper, the bend modes are
made non-degenerate using Eq. (5) since the out-of-plane and
in-plane modes are different in frequency in reality. We briefly
investigate how different the fractionation factor would be if
the degeneracy were retained.

The dotted blue curve in Figure 2 shows the plot ofΦwith
both bends having frequencies corresponding to the out-of-
plane mode. Evidently, the change is relatively small, but not
negligible. As per the model, the smaller the bend frequency,

the faster it hardens, Ω⊥(R)/ω⊥ =


1 + 2 f (R)/ω2
⊥. Hence,

changing one of the bend’s frequencies to 1600 cm−1 reduces
ZH − ZD relative to the degenerate case. Bend non-degeneracy
can reduce the fractionation by about 10%-20% compared to
the degenerate case.
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C. Role of the tunnel splitting

For long H-bonds, the proton transfer potential has a high
barrier and the tunnel splitting of the vibrational ground state is
negligible.14 However, for R < 2.55 Å, the splitting becomes
significant, as can be seen in Figure 1. A multiplicative
correction Φtun (Eq. (6)) introduces the effect of the thermal
population of the first low-lying excited state. This factor
is always larger than one because the H tunneling splitting
is larger, δEH > δED. When the tunnel splitting is much
larger than the thermal energy kBT (i.e., for R < 2.4 Å),
the correction factor is extremely close to unity. When the
tunnel splitting is much less than kBT , the correction factor is
approximately (1 + (δEH − δED)/2kBT).

Figure 2 shows that the tunnel splitting has a small but
non-negligible effect in the range, R ∼ 2.4–2.6 Å. We should
also clarify the nomenclature here. For sufficiently small R,
the barrier is no longer present, and so there is strictly no
“tunnel splitting.” We just have two well-separated vibrational
energies instead. Note that in a solvent, there will be local
dynamical fluctuations of the local electric field that couple
to the electric dipole moment associated with the X–H stretch
and for large enough fluctuations, the tunnel splitting will not
appear because it will be destroyed by quantum decoherence.32

Also, when the proton affinity of the donor and acceptor differs
by more than about 500 cm−1 (1.5 kcal/mol or 1.3 pKa units),
this effect may be absent.

D. Role of the secondary geometric isotope effect

The SGIE has a significant effect on the stretch mode
vibrational frequencies for R ∼ 2.4–2.5 Å, where the proton
transfer barrier has effectively disappeared. Its inclusion
yielded better agreement of the H/D stretch frequency ratio;
compare Figure 8 in Ref. 14, where this ratio is 1 (1.15) with
(without) SGIE, which is a sizeable change for strong short
H-bonds.

Figure 3, however, points to a more modest influence of
the SGIE on the fractionation ratio. The only significant effect
is how it modifies the contribution from the tunnel splitting.
Without the SGIE, the correction factor is approximately (1
+ (δEH(R) − δED(R))/2kBT). With the SGIE, the correction
factor is approximately (1 + (δEH(RH) − δED(RD))/2kBT).
This is larger because RD > RH , and an increase in donor-
acceptor distance of as little as 0.02 Å for D relative to H can
increase the energy barrier and thereby noticeably decrease
δED(RD).14

If tunneling contributions are suppressed by, e.g., a
sizeable difference in pKa’s between the donor and acceptor,
the above analysis suggests that the SGIE would have only a
small influence on the fractionation factor. The key effect that
appears to govern the magnitude range of Φ(R) according to
our model is the competing quantum effect between the X–H
stretch and X–H bends.

E. Sensitivity to choice of reference distance

Calculation of Φ, in Eq. (2), requires knowledge of the
ratio of H/D concentration in the solvent. In the reported

FIG. 3. Corrections due to the secondary geometric isotope effect (SGIE)
are shown as the dashed curves: the blue dashed line (stretch, bo , bi,
SGIE) is without including tunneling and the red dashed line (stretch, bo
, bi, tunnel, SGIE) is with tunneling. The solid curves of the same colour
are from Figure 2, which do not include the SGIE. The green curve is the
empirical function, defined by Eq. (7), and given in Ref. 16. Note that the
slight undulation in the dashed curves below 2.4 Å can be traced to the very
rapid change of the SGIE (RD−RH) in that region; see the lower panel of
Figure 7 in Ref. 14.

calculations, we took this ratio to be given by the value
calculated within our model at R = 2.8 Å, approximately
the relevant length in water. Our results are not particularly
sensitive to this exact choice of this reference distance. For
R > 2.7 Å the difference between the H and D zero-point
energies is small. This can be seen from Figure 2. Even for
the case of purely stretch modes, taking the reference distance
to be R = 2.7 Å would only increase Φ(R) by about 10%
compared to the values shown in our curves.

F. Comparison with experiment

To put our results in context, we now briefly review
previous measurements of Φ that have been used to deduce a
value for R in a specific molecule.

Based on calculations from a model one-dimensional
quartic potential,23 Mildvan et al.16 considered a relation
between the fractionation factor and donor-acceptor distance,

R = (2.222 + 1.192Φ − 1.335Φ2 + 0.608Φ3) Å. (7)

It was used together with measurements of fractionation ratios
for 18 H-bonds in several different enzymes to deduce the
length R. The values they obtained for R were mostly in
agreement with values of R deduced from NMR chemical
shifts and from X-ray crystallography. Values of Φ ranged
from 0.32 to 0.97 and the corresponding values of R were in
the range 2.49–2.68 Å. However, Figure 3 shows significant
differences between equation (7) and our results.

Klug et al.33 studied crystals of the dihydrated sodium salt
of hydrogen bis(4-nitrophenoxide) and found a fractionation
ratio of 0.63 ± 0.04. Using the Kreevoy and Liang13 parametri-
sation, they noted that this value was inconsistent with the
bond length observed via X-rays, R = 2.452 Å, and with the
value of Φ = 0.31 ± 0.03 deduced from UV spectroscopy for
bis(4-nitrophenoxide) in acetonitrile solution. Consequently,
they suggested that “the solid was not in isotopic equilibrium
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with the solvent from which it was precipitated.” However,
their results are consistent with our parameterisation of Φ
versus R, if tunnel splitting is not included.

Loh and Markley34 found fractionation factors in the
range 0.28-1.47 for the different H-bonds in the protein
staphylococcal nuclease. Clearly, we cannot explain their
Φ values larger than unity. However, it should be pointed
out that many of these bonds are weak with donor-acceptor
distances in the range, R ∼ 2.8–3.3 Å and that no clear
correlation was observed between the values of Φ and R. Loh
and Markley did note a difference between the fractionation
factors of backbone amide bonds that are solvent-exposed
(average value 0.98) and those that are not (average value
0.79). This observation is consistent with what one might
anticipate: solvent accessibility could affect the effective pKa

of the donor and/or acceptor. A consequent change (increase)
in distance between them may also ensue. These would lead
to a weakening of the H-bond, and therefore move Φ values
closer to 1. In the model we employ, this solvent effect would
enter parametrically as a difference in effective pKa and donor-
acceptor distance. However, the works of Khare et al.35 and
LiWang and Bax36 point to minimal effects. The former, which
reported on the immunoglobulin G binding domains of protein
G, found little difference between average fractionation factors
(average Φ of 1.05 for α-helical, 1.13 for β-sheet, and 1.08
for solvent-exposed residues). LiWang and Bax gave similar
findings for ubiquitin. A recent study of the core of protein
kinase A also found no correlation between Φ values and
secondary structure.37

Thakur et al.38 have recently developed a new method
for the rapid determination of H/D exchange from two-
dimensional NMR spectra. Section S5 of the supplementary
material shows fractionation values for three different proteins.
For 80 different amino acid residues in Tim23, the values
ranged from 0.81 to 1.73. For 58 different amino acid residues
in ubiquitin, the values ranged from 0.34 to 1.67. For 54
different amino acid residues in Dph4, the values ranged from
0.45 to 2.04.

Recently, an extensive study was made of mutants of
the green fluorescent protein with a short H-bond between
the chromophore and the amino acid Asp148.21 The donor-
acceptor bond length estimated from X-ray structures was
2.4 ± 0.2 Å. The pKa of the chromophore was systematically
varied by 3.5 units through halogen substitutions. This range
covers the pKa matching (degenerate diabatic states) required
for strongest bonds.17 The experimental results were compared
to calculations based on a one-dimensional proton transfer
potential based on same diabatic state model used here. The
measured fractionation factors (deduced from analysis of UV
absorption spectra) were in the range 0.54–0.9, taking a
minimum value for pKa matching. This observation and a
value of Φ = 0.54 for R = 2.4 ± 0.2 Å are consistent with our
analysis when the bend modes and tunnel splitting are taken
into account.

Edison, Weinhold, and Markley performed ab initio
calculations for a wide range of peptide clusters.31 They
observed a correlation between the fractionation ratio and the
donor-acceptor distance. For R > 2.55 Å, the fractionation
was larger than one and for R ≃ 2.45 Å, Φ ≃ 0.6.

IV. CONCLUSIONS

We have shown that the H/D fractionation factorΦ is quite
sensitive to the donor-acceptor distance R in hydrogen bonds,
and so, in principle, can be used as a “ruler” for determining
bond lengths. However, caution is in order because there are
a number of subtle effects that modify the exact form of
the relationship between Φ and R. These include competing
quantum effects between stretch and bend modes, non-
degeneracy of the bend modes, tunnel splitting, the secondary
geometric isotope effect, and differences between the proton
affinity of the donor and acceptor.

Our results raise questions about whether values of Φ as
small as 0.3 are really possible for short bonds, contrary to
some measurements and previous theoretical claims. Equally,
our results cannot explain Φ values that are much larger
than 1 for long bonds. The discrepancy for short bonds may
be due to our assumption that the stretch and bend modes
are independent. Although our model quantitatively describes
many experimental results for bond lengths, vibrational
frequencies, and isotope effects, for R ∼ 2.45 Å, it does give
stretch mode frequencies that are higher than observed. (See
Figure 6 in Ref. 14 and the associated discussion.) This
would also lead to a larger fractionation factor than observed.
Addressing this issue will require a systematic investigation of
solutions to the vibrational Schrödinger equation for a higher-
dimensional (probably four dimensional) potential energy
surface. We leave that for a future study.
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