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Abstract 
 

Variation in crop growth and mycorrhizal colonization within and between crops can be influenced 

by several factors. Soil plays a major role in this variation and sustainable management practices are 

suggested to improve soil fertility and crop productivity. Among the sustainable approaches, 

biochar is gaining interest world-wide for carbon sequestration and improving crop productivity. 

Studies on the comparative influence of biochar from different sources and their application rates on 

growth of vegetable crops and their colonization by arbuscular mycorrhizal fungi are inadequate.  

 

Pot experiments were conducted in a glasshouse to determine the growth pattern of lettuce, true 

potato seedlings (TPS) and single node cuttings of TPS in response to five application rates (0, 10, 

30, 50 and 100 t ha-1) of Green Waste biochar. The results showed that biochar had significant 

effect on growth of lettuce but no consistent influence on TPS and single node cuttings. Among the 

biochar rates, 30 t ha-1 had the greatest influence on overall growth of lettuce. The pH and electrical 

conductivity increased as the biochar rates increased. Application of Sugarcane Trash and Green 

Waste A biochar was also beneficial for cabbage growth in a separate pot trial.  

 

Two pot experiments in sand compared the influence of Sugarcane Trash, Green Waste A and 

Green Waste B biochars on onion and tomato at rates of 10, 30, 50, 100 t ha-1 with a control. This 

study confirmed biochar was beneficial for growth parameters and mycorrhizal colonization. Onion 

roots had greater colonization than tomato roots. Among the application rates, 30 t ha-1 of each 

biochar had greater effect on onion in terms of morphological growth and colonization of roots 

while 50 t ha-1 was more effective on tomato.   

 

Effect of zinc (Zn), copper (Cu) and mycorrhizal rates were tested in a calcareous soil amended 

with Sugarcane Trash biochar at the rate of 30 t ha-1 in a glasshouse study. These were compared 

with controls such as soil, soil plus biochar and soil plus biochar plus mycorrhizae. Soil plus 

biochar plus mycorrhizae was more beneficial than soil and soil plus biochar.  Soil plus biochar was 

more effective than soil. Mycorrhizal colonization in this highly alkaline calcareous soil confirmed 

mycorrhizal tolerance to alkalinity. Lower rates (50 mg kg-1 of soil) of Zn and Cu had greater 

positive effect on plant growth and colonization.  

 

In two separate pot trials, ferrosol and podsol soils were balanced for pH by biochar and lime. Lime 

+ biochar (L + B), lime + biochar + Nitrogen at a rate of 110 kg ha-1 (L + B + N) and lime + 

Nitrogen + Phosphorus and potassium equivalent to biochar (L + N + PK) were tested for growth of 
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tomato. The treatment L + B + N was beneficial over L + B application. The application of L + N + 

PK had the greatest positive effect on performance of tomato in both soils. 

 

In two separate pot experiments for ferrosol and podsols soils, Sugarcane Trash and Green Waste A 

biochars at a rate of 30 t ha-1 and mycorrhizal inoculum rates 0 and 5 g kg-1 of soil were tested for 

growth and colonization of onion. Sole effects of biochar and mycorrhizal rates were prominent but 

there were little effects of their interactions. In ferrosol soils, Sugarcane Trash biochar and 

mycorrhizal rates of 5 g kg-1 produced more growth than other treatments.  

In a pot trial, podsol and ferrosol soils were balanced for pH in which lime (L), lime + washed 

biochar (L + W), lime + washed biochar + mycorrhizae (L + W + M), lime + extracted nutrients (L 

+ E), lime + extracted nutrients + mycorrhizae (L + E + M), lime + P and K equivalent to biochar 

(L + PK) and P and K equivalent to biochar + mycorrhizae (L + PK + M) were tested. The effect of 

treatments in ferrosol was greater than in podsol for most of the parameters. Mycorrhizae had 

greater positive effect than L. L + E had more beneficial effect compared to L + W. The L + PK + 

M had greater effect on plant growth.  

In a field trial, Sugarcane Trash and Green Waste A biochar rates of 10, 20 and 30 t ha-1 plus 

control and nitrogen at a rate of 110 kg ha-1 were tested in ferrosol soil. The results confirmed that 

the biochar application was beneficial for shallot growth and colonization. The rate of 10 t ha-1 was 

considered as optimum for plant growth and mycorrhizal colonization in ferrosol soil while the rate 

of 30 t ha-1 was best for the crops grown in sand in pot trials. This difference was considered to be 

due to higher nutrient levels in the field even though pot trials were fertilized with nutrient solution 

on a regular basis. 
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Chapter 1. General introduction 
 

Increasing crop productivity is of global concern, and will require the development of new 

technologies. Inputs to optimize crop productivity can be applied through soil and water and a crop 

will thrive if all inputs are optimal. To achieve optimum crop productivity, the soil should be fertile 

because plants absorb nutrients from this source. The continuing need for increased crop 

productivity dictates increasing demands on soil fertility world-wide (Wild 2003). Thus, the soil is 

one of the most important considerations for plant growth and development. However, to keep soil 

fertile is highly technical and requires thorough knowledge of soil quality and health; this refers  to 

the soil's fitness to support crop growth without becoming degraded or otherwise harming the 

environment (Acton & Gregorich 1995).  

 

The government of Queensland has clearly defined that soil fertility decline generally occurs when 

the quantities of nutrients applied to the soils are less than those removed by crops at harvest 

(https://www.qld.gov.au/environment/land/soil/soil-health/fertility-decline/). This type of fertility 

decline has been a great issue all over the world (Harden 2001; Lal 2001; Tiwari et al. 2010), but 

this problem is quite serious in the soils of Hindu Kush Himalayan region (FAO 1994, 1999), where 

Nepal lies. Soil fertility decline has become a great threat in the hills of Nepal due to nutrient losses 

through various ways (Tripathi et al. 1999; Gardner et al. 2000; Tripathi et al. 2000; Paudyal 2001); 

for example, about 1.3 million tonnes of plant nutrients are estimated to be displaced from soils of 

Nepal annually (Atreya et al. 2005) due to several reasons including erosion.  

 

Sustainable soil fertility management has been suggested as essential to the prosperity of many 

households in the mid-hills of Nepal (Pilbeam et al. 2005). Therefore, sustainable management of 

soil using inputs such as compost, cattle manure, poultry manure, microorganisms and biochar, and 

their known crop performance benefits are matters of interest.  

 

Most soils of South Asia have extremely low levels of carbon (C) ranging from 8 to 10 g kg-1 and  

the potential of carbon sequestration in Nepal has been estimated to be about 0.7-1.2 Tg C yr-1 (Lal 

2004). This information demands the inputs of carbon in degraded soils of the developing countries. 

Among the carbon sequestering inputs, biochar is one of the major concerns of the scientists. 

 

Soils of South and South East Asian countries in which cereals are extensively grown are invariably 

deficient in nitrogen (N) and organic matter (De Datta & Hundal 1984). Similarly, soil fertility is 

https://www.qld.gov.au/environment/land/soil/soil-health/fertility-decline/
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declining in Nepal (Gardner et al. 2000; Tripathi et al. 2000; Gami et al. 2001; Panthi 2010), 

associated largely with the loss of organic matter, declining soil N (Pande 2005) and widespread 

phosphorous (P) deficiencies. Nepal is divided into three eco-regions: high altitude mountains, mid 

hills and southern plains or terai; and each region and cropping system has unique soil fertility 

issues. For example, total N, available phosphorus, available potash and organic matter content 

decrease with increases in altitude in Nepal (Panthi 2010). In the mid hills, phosphorus deficiencies 

are widespread because the bedrock is generally low in P and soils are acidic, hence limiting P 

availability to plants (Sharpley et al. 1993). Significant amounts of N, phosphorus, organic matter 

and other nutrients have been lost from mid hill soils under a maize based cropping system (Atreya 

et al. 2005) while rice based cropping systems on Nepal’s plains tend to be deficient in organic 

matter, N, P and K (Mandal 2002). 

 

One way to improve soil fertility in both intensive and marginal agriculture is to apply amendments 

to increase soil organic matter content and health (Abington 1992; Sherchan & Karki 2005; Tiwari 

et al. 2010). In addition, loss of organic C from cultivated agricultural soils has generated interest in 

C-sequestration (Gami et al. 2009). Traditionally, soil amendments have included farm yard manure 

(Bista et al. 2010), composted manure (Shrestha et al. 2000 ), poultry manure (Uddin et al. 2009) 

and cattle manure (Abington 1992). When combined with beneficial microbes such as arbuscular 

mycorrhizal fungi (Young et al. 1986), they have improved plant performance by enhancing 

decomposition of organic matter and phosphorus availability.  

 

One novel technology gaining interest world-wide is the application of biochar as a soil amendment 

for carbon sequestration and improved crop production (Glaser et al. 2000; Skjemstad et al. 2002; 

Lehmann & Rondon 2006; Rondon et al. 2007; Chan et al. 2008a; Brandstaka et al. 2010; 

Luostarinen et al. 2010). However, to date, very little research has been conducted to identify 

combined effects of crops, biochars from different sources, biochars with varying level of heavy 

metal concentration and biochar application rates in different soils and ecological systems. 

Comparative interaction of vegetable crops, biochar types and application rates has been 

inadequately studied. If these combinations are found to be beneficial for mycorrhizal association, 

crop growth and development, their usefulness in developing countries such as Nepal may be 

discovered.  

 

Recently, biochar effects on crop performance (Carter et al. 2013), microorganisms (Warnok et al. 

2007), heavy metals (Kochanek et al. 2014) and soil nutrients stock (Brandstaka et al. 2010) have 

been intensively studied. However, the influence of biochar on colonization of horticultural crops 
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by arbuscular mycorrhizal fungi in different soil types including sand-biochar medium has been 

inadequately studied. Therefore, the experiments under this study aim to answer the following 

questions: 

 

1) Biochar effects on crop growth: Do crops tested for biochar effects show similar responses? Do 

the biochars produced from different feedstocks have similar effects? What is the appropriate 

application rate of biochar for optimum plant growth?  

 

2) Biochar effects on colonization of crops by arbuscular mycorrhizal fungi: Do the biochars 

produced from different feedstock have different effects on mycorrhizal colonization of the same 

crop? What is the difference in mycorrhizal colonization from different application rates of biochar? 

Is there any interaction effect between biochar types and their application rates? Do the crops differ 

in colonization due to the effect of biochar types and application rates?  

 

3) Zinc (Zn) and copper (Cu) effects on mycorrhizal colonization in biochar amended soil: How do 

Zn and Cu influence mycorrhizal colonization when they are amended in biochar added soil?  

 

4) Effects of biochar-added soil and soil balanced for nutrients available in biochar: Is there any 

difference between the effect of biochar (with associated nutrients) on plant growth and that caused 

by the equivalent amount of nutrients alone? Is N contained in biochar available in soil for plant 

growth? Is the effect different in different biochars and soil types?  

 

5) Comparative effects of soil types, biochar types and mycorrhizal inoculum: Is there any 

difference in plant growth between inoculated and non-inoculated soils? Is the colonization and 

plant growth similar in different biochars added to the same soil? Do plants respond differently to 

different soils and different biochar types?  

 

6) Effects of washed biochar and extracted nutrients of biochar: Is there any difference in the 

performance and colonization of onion plants by mycorrhizae when pure biochar and extracted 

solutions of biochar are added to different soils?  

 

7) Verification of biochar effects in the field condition: Are the results of glasshouse experiments 

similar to those in the field? Which is the most effective biochar for optimum plant growth and 

colonization? What is the appropriate application rate of biochar for plant growth and colonization 

in the field?  
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These questions are addressed in the following sections. Chapter 2 reviews the literature which 

provides information on research work undertaken so far and gaps in knowledge needed to be filled 

by research. Chapters 3 to 9 answer the questions asked above. Chapter 10 summarizes the research 

finding by drawing conclusions on how the biochars influence plant growth and mycorrhizal 

colonization. The implication and future research goals arising from these findings are also 

discussed in this chapter. 
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Chapter 2. Literature review 
 

The investigations on the effects of biochar on soil, plant and environment are being undertaken 

worldwide. However, the results are not uniform. A logically organized complete study of the 

effects of biochars from different feedstock on different crops, their interaction with 

microorganisms and agriculturally important heavy metals such as Zn and Cu could confirm to what 

extent biochar is beneficial for crop lands. 

 

The literature review section evaluates biochar effects on crop, soils and arbuscular mycorrhizal 

fungi, the effects of AM fungi on crop, soil fertility and heavy metal remediation, and the 

interaction effects of biochar and mycorrhizae on crops and soil nutrients.  

 

This section also emphasizes why and how this study was understood to be a researchable issue. 

This section ends with the need for this thesis research, explaining the research gap that this thesis 

aims to fill.  

  

2.1 Biochar 

2.1.1 What is biochar? 

Biochar has been defined in similar ways by several authors. It is a ‘black carbon manufactured 

through pyrolysis of biomass’ (Lehmann et al. 2006); ‘the high carbon materials produced from the 

slow pyrolysis (heating in the absence of oxygen) of biomass’ (Chan et al. 2007); and ‘a fine-

grained and porous substance, similar in its appearance to charcoal produced by natural burning or 

by the combustion of biomass under oxygen-limited conditions’ (Sohi et al. 2009). In fact, it is a 

product of biomass obtained from heating in a suitable temperature regime in the absence of oxygen 

(the process of fast or slow pyrolysis) or from a gasification system. 

 

2.1.2 Origin of biochar 

The occurrence of charcoal in ‘Terra Preta’ in some soils of the Amazon basin was reported by 

Sombroek (1966) who indicated the presence of black carbon derived from incomplete combustion 

of cooking fires (Glaser et al. 2001). This soil is also called as ‘terra preta do indio’ or ‘black-earth-

like’ anthropogenic soil which was possibly made by the several activities of pre-Columbian 

residents with their slash and char activities (Taylor 2010). It was a soil management practice of 

these ancient Amerindians of the Amazon region (Petersen et al. 2001; Lehmann & Joseph 2012). 

These highly fertile soils have up to 70 times more black carbon than the surrounding soils and also 
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contain high level of N, P, K, calcium, organic matter and aromatic humic substances (Glaser et al. 

2001).  

 

The term ‘biochar’ was invented by the late Peter Read, a New Zealander, by describing it as a soil 

amendment for agricultural purpose but it was called ‘agrichar’ until an Australian Company 

trademarked it and it was the first ingredient in the Terra Preta recipe (Bates 2010).  Lehmann and 

Joseph (2012) have distinguished the term biochar from charcoal in that it is charred organic matter 

that is applied to soil not only to improve soil properties but also to promote soil remediation or 

other environmental services while the charcoal is used as fuel or source of heat, as a filter, as a 

reductant in iron-making or as a colouring agent in industry or art.      

 

2.1.3 Sources of biochar 

Biochars can be produced from many organic materials and under different conditions resulting in 

products of varying properties (Baldock & Smernik 2002; Nguyen et al. 2004; Guerrero et al. 

2005). It can be produced from a wide range of biomass sources, for example, woods and barks, 

agricultural wastes such as olive husks, corncobs and tea waste (Demirbas 2004; Ioannidou & 

Zabaniotou 2007), greenwaste (Chan et al. 2007), animal manures and other waste products 

(Downie et al. 2007; Chan et al. 2008a; Lima et al. 2008). Biochar is a mixture of char and ash with 

the major part (70 – 95%) carbon (C) (Brandstaka et al. 2010; Luostarinen et al. 2010). It can also 

be produced from poultry litter (Revel et al. 2012), sewage sludge (Khan et al. 2013), rice-husk 

(Carter et al. 2013; Lu et al. 2014), wheat straw (Junna et al. 2014) and several other materials. 

 

2.1.4 Biochar and carbon sequestration 

The relatively stable nature of biochar allows for carbon sequestration value (Lehmann et al. 2006). 

Lehmann et al. (2006) estimated that about 5-10 Gt C is sequestrated per year which is the 

equivalent or more than the present global emissions from fossil fuel use. In addition, biochar 

carbon added almost 40% of the carbon to soil (Glaser et al. 2000; Skjemstad et al. 2002). Lehmann 

(2007a) predicted that the retention times of carbon in biochar would be at least hundreds, but more 

likely thousands of years. In addition, as a pyrolysed product, biochar is protected from rapid 

microbial degradation and is able to securely sequester carbon, contributing to mitigation of 

greenhouse gas emissions (Lehmann et al. 2006). Day et al. (2004) emphasized that using biochar to 

sequester carbon in soil to mitigate climate change could only be economical if the sequestered C 

has beneficial soil amendment and/or fertilizer value.  
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2.1.5 Biochar and climate change 

Some authors have indicated the effectiveness of biochar in mitigating climate change due to the 

greenhouse effect. Lehmann (2007b) mentioned that greenhouse gas emission can be reduced by 

sequestering carbon as biochar that stores carbon for hundreds of years or more with its relative 

recalcitrance against microbial decay and slower return of carbon as carbon dioxide to the 

atmosphere. Rondon et al. (2005) tested charcoal in a soybean crop and Brachiaria humidicola and 

found that the net fluxes of methane and nitrous oxide from pots cropped were significantly reduced 

by the addition of charcoal. Woolf et al. (2010) estimated that biochar can reduce annual net 

emissions of carbon dioxide (CO2), methane and nitrous oxide by a maximum of 1.8 Pg CO2-C 

equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and 

total net emissions over the course of a century by 130 Pg CO2-Ce. The nitrous oxide production 

from the top soil layer could be reduced by increasing soil pH following the application of biochar 

(Deng 2013). 

 

Literature shows varying effect of biochar on carbon sequestration and greenhouse gas emission in 

different soil conditions and regions. For example, Lehmann et al. (2006) have emphasized that 

about 50% of the initial carbon is sequestered by biochar compared to 3% by burning. Elimination 

of carbon emission in the form of methane (CH4) has also been explained by Renner et al. (2007). 

Biochar may suppress methane (CH4) and nitrous oxide (N2O) emissions from soil (Sohi et al. 

2009). In an experiment, no significant increase in N2O and CO2 emissions and CH4 soil 

consumption and production was observed in char-treated plots (Castaldi et al. 2011). However, soil 

N2O production was suppressed by 49% with biochar within 48 h of wetting (Case et al. 2012). By 

addition of biochar, the efflux of N2O and CO2 increased in bare soil in dry conditions while N2O 

efflux increased from vegetated wet soil  and decreased from vegetated dry soil (Sarino et al. 2013) 

indicating the role of soil moisture in greenhouse gas emission. When manure-derived biochar was 

added to the soil in temperate conditions, it increased N2O and CO2 emission but did not change 

CH4 emission (Troy et al. 2013).  

  

2.1.6 Effects of biochar on soils  

Some authors have reported that biochar can be beneficial as soil amendment for improving the 

quality of agricultural soils (Glaser et al. 2002; Lehmann et al. 2003).   Currently, very little biochar 

material is being used in agriculture in Australia and elsewhere, due to the fact that its agronomic 

values in terms of crop response and soil health benefits are inadequately quantified (Chan et al. 

2007). Some literature on its effects on soil is described in this section.  
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Biochar application in soils has positive influences on improving soil quality and plant growth 

(Chan et al. 2007; Chan et al. 2008a). The general effects of biochar on soil have been listed by 

Brandstaka et al. (2010). They characterize it as beneficial for sequestration of carbon, improvement 

of cation exchange capacity, durability of soil aggregates, microbial activity, bioenergy production 

and water retention capacity; reduction of nitrous oxide and methane emissions from soils, leaching, 

soil erosion and need of fertilization and thereby enhancement of soil fertility and crop yields 

(Brandstaka et al. 2010). Other authors have also described its value for reduction of greenhouse 

gas emissions (Yanai et al. 2007; Van Zwieten et al. 2010b) and adsorption of anions and cations to 

prevent leaching of applied nutrients (Major et al. 2009). According to  Chan et al. (2008a), biochar 

produced from green waste by pyrolysis significantly increased soil pH, organic carbon, and 

exchangeable cations with a substantial decrease in tensile strength at higher rates of biochar 

application (>50 t ha-1) in alfisol soil. Similar results were observed when biochar produced from 

poultry litter was tested (Chan et al. 2008b). Van Zwieten et al. (2010a) tested two biochars 

produced from the slow pyrolysis of paper mill waste, in  two agricultural soils in a glasshouse and 

found that the biochars differed slightly in their liming values (33% and 29%), and carbon content 

(50% and 52%). The thermal processing of wastes into biochar has been identified as an 

opportunity to destroy contaminants (Glover 2009), making beneficial land application possible. 

Since extracts from biochar derived from poultry litter increased microbial growth but that from 

pine timber inhibited it (Das et al. 2008), the effect of biochar on microbes may depend on its 

feedstock. 

 

The biochar effects on soil aggregation depend on soil and biochar types (Herath et al. 2013). 

Hardie et al. (2014) incorporated biochar in soil and found after thirty months observation that it 

had no significant effect on some soil properties. Tammeorg et al. (2014) evaluated 0, 5, 10, 20 and 

30 t ha-1 of biochar with or without inorganic fertilizer or meat bone meal for two years, and found 

biochar improved nitrate N content, water retention capacity, soil organic carbon and K content. 

Biochar derived from wheat straw decreased soil bulk density and increased soil field capacity, 

dissolved organic carbon and  available P (Alburquerque et al. 2014). 

 

Reports are also available for the effect of biochar on nutrient availability. A biochar produced from 

corn cobs increased nitrate N in the first ten days of crop growth and thereafter it decreased; while it 

decreased P content when biochar was applied solely and increased it after addition of nitrogenous 

or phosphate fertilizer (Nelson et al. 2011). This finding indicates the use of biochar combined with 

application of other sources of fertilizers could be beneficial for improving plant growth and soil 

nutrient status. 
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The pyrolysis method could play an important role in soil properties. For example, mineralization of 

N could be enhanced by application of biochar produced from slow pyrolysis rather than fast 

pyrolysis (Bruun et al. 2012). Similarly, there are varied responses of soils to biochar for the 

leaching of nutrients and the sorption of nutrients on biochar (Yao et al. 2012). In a three-year field 

experiment, there was no difference between biochar added and not-added soil but reapplication of 

biochar after three years significantly increased available P, exchangeable K and calcium, dissolved 

organic carbon, soil moisture and electrical conductivity (Quilliam et al. 2012).      

  

2.1.7 Biochar effects on crops 

There are varied responses of crops to biochar (Chan et al. 2008a). Van Zwieten et al. (2010a) 

tested two biochars produced from the slow pyrolysis of paper mill waste, in two agricultural soils 

in a glasshouse and found that they significantly increased biomass in wheat, soybean and radish in 

ferrosol soil but reduced wheat and radish biomass in calcaresol, amended with fertilizer in both 

soils. A significant decrease in dry matter content of radish was obtained when biochar was applied 

at 10 ton ha-1 (Chan et al. 2008a).  In a separate experiment, there was no significant effect of 

biochar rates (0, 7 and 15 tons ha-1) on turnip, wheat, rape and faba bean yields (Brandstaka et al. 

2010).  

 

Asai et al. (2009) showed that biochar increased rice grain yields at sites with low P  availability, 

which might be due to improved saturated hydraulic conductivity of the top soil, xylem sap flow of 

the plant and response to N and NP chemical fertilizer treatments. Limiting soil N content by 

biochar application in N deficient soils could be due to the high C/N ratio, hence it might reduce 

crop productivity temporarily (Lehmann et al. 2003). However, some biochars contain considerable 

amount of micronutrients. For example, pecan-shelled biochar contained greater amount of copper 

(Cu), magnesium (Mg) and zinc (Zn) than the soil (Novak et al. 2009). In a separate experiment, 

concentrations of heavy  metals including Cu and Zn increased in sewage sludge biochar but those 

of available heavy metals decreased (Lie et al. 2014). Furthermore, poultry litter biochar was also 

rich with considerable amounts of Zn, Cu and manganese (Mn) (Inal et al. 2015). Thus, it is 

essential to compare its effect solely and in combination with other nutrient sources. Some authors 

(Verheijen et al. 2009; Brandstaka et al. 2010) have emphasized the need for further research on 

potential benefits of biochars as well as their economics. However, their interactions with other 

organic sources as well as microbes and release of nutrients from them are insufficiently assessed. 

 

Biochar at the rates of 20 and 40 t ha-1 without N fertilization in a carbon poor calcareous soil of 

China increased maize yield by 15.8% and 7.3% while the rates with 300 kg ha-1 N fertilization 
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enhanced the yield by 8.8% and 12.1%, respectively (Zhang et al. 2012). In addition, biochar 

application in a nutrient-poor, slightly acidic loamy sand soil had little effect on wheat yield in the 

absence of mineral fertilization but when applied with the highest rate of mineral fertilization, it 

produced yield 20–30 % more than mineral fertilizer alone (Alburquerque et al. 2014). 

 

The yield of tomato fruit was significantly higher in beds with charcoal than without charcoal 

(Yilangai et al. 2014). Biochar application increased vegetable yields by 4.7-25.5% as compared to 

farmers’ practices (Vinh et al. 2014). In another work, biochar did not increase annual yield of 

winter wheat and summer maize but the cumulative yield over four growing season was 

significantly increased in a calcareous soil (Liang et al. 2014). Biochar of maple was tested at 

different concentrations for root elongation of pea and wheat but no significant difference was 

observed (Borsari 2011), possibly due to little effect of biochar in the short-term. The wood chip 

biochars produced at 2900C and 7000C had no effect on growth and yield of either rice or leaf beet 

(Lai et al. 2013). A biochar significantly increased growth and yield of French bean as compared to 

no biochar (Saxena et al. 2013). A rice-husk biochar tested in lettuce-cabbage-lettuce cycle 

increased final biomass, root biomass, plant height and number of leaves in comparison to no 

biochar treatments (Carter et al. 2013). 

 

An oak biochar derived from a slow pyrolysis process was tested for four years at 0 t ha-1, 5 t ha-1 

and 25 t ha-1 with 100% and 50% of N fertilizer on a maize -soybean rotation in an alfisol soil, 

resulting in an overall positive trend in total above-ground biomass and grain yield (Hottle 2013). A 

poultry-litter biochar derived from slow pyrolysis tested in cotton showed that a higher level (3000 

kg ha-1) with urea produced better cotton growth than the lower rate (1500 kg ha-1) which, in turn, 

did better than the control (Coomer et al. 2012) . 
 

2.2 Soil microorganisms 
Microorganisms are considered as the driving force for basic metabolic processes involving specific 

enzyme activities in the soil (Nannipieri et al. 2003). Several authors (Linderman 1992; Glick 1995; 

Kennedy 1998; Bowen & Rovira 1999; Barea et al. 2005) have indicated that soil-borne microbes 

interact with soil constituents as well as plant roots at the root–soil interface. Kennedy (1998) 

argued that the differing physical, chemical, and biological properties of the root-associated soil, 

compared with those of the root-free bulk soil, are responsible for changes in microbial diversity 

and for increased numbers and activity of micro-organisms in the rhizosphere micro-environment. 

The release of root exudates and decaying plant material provide sources of carbon compounds for 

heterotrophic soil biota (Werner 2001). Microbial activity in the rhizosphere affects rooting patterns 
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and the supply of available nutrients to plants, thereby modifying the quality and quantity of root 

exudates (Bowen & Rovira 1999; Barea 2000; Gryndler 2000; Barea et al. 2005).  
 

Soil microorganisms are important for various functions in the soil environment. Among them, the 

major ones are the decomposition and transformation of organic materials, which are mostly 

derived from above and below-ground plant residues, thereby contributing to carbon cycling, 

nutrient turnover, or the production of trace gases (Araújo et al. 2009). Microbial respiration can be 

used as a soil quality indicator (Brendecke et al. 1993) by using it to quantify their activity (Alef & 

Nannipieri 1995). The soil environment around the root system is a centre of attraction for the 

microbes due to the presence of root exudates and rhizodeposits (Smalla et al. 2006; Hartmann et al. 

2008). All microorganisms are not equally active for plant systems, for example, some of them may 

be neutral or deleterious to plant growth while other microbes may support the host plants 

(Raaijmakers et al. 2002).  In fact, various factors can influence the soil microbial community and 

function; among them, organic matter quality, nutrient input, soil types, vegetation, management 

systems, and soil contamination are very important (Bending et al. 2002; Johnson et al. 2003; 

Renella et al. 2004). 
 

Beneficial microorganisms are also known as plant growth promoters. They can not only stimulate 

plant growth and yield but also reduce pathogen infection as well as biotic or abiotic plant stress 

without conferring pathogenicity (Welbaum et al. 2004; Loon & Bakker 2006; Lugtenberg & 

Kamilova 2009). Plant beneficial microorganisms have been given due interest for their application 

either as biofertilizers or as pesticides or for phytoremediation applications (Sturz et al. 2000; Berg 

2009; Lugtenberg & Kamilova 2009; Weyens et al. 2009). Their biomass and activity are greater in 

soils amended with organic fertilizers than with conventional ones (Drinkwater et al. 1995). 

However, in many cases, some of them fail to induce the desired effects when applied in the field. 

This might be due to inadequate rhizosphere environment and/or plant colonization, which is an 

important step required for exhibiting beneficial effects (Lugtenberg et al. 2001). Therefore, not 

only mechanisms responsible for plant growth promotion need to be investigated, but also a 

thorough understanding of all steps involved in plant colonization is required to improve the 

efficiency and reliability of inoculant strains (Compant et al. 2010).  
 

2.2.1 Effect of nutrient management practices on soil microbial activity 

The effect of soil nutrient management on microbial activity and functional diversity was the 

concern of various studies (Bulluck et al. 2002; He et al. 2006).  Mader et al. (2002) showed that 

soils under an organic management system had higher microbial functional diversity than those 

under conventional farming systems. This could be due to soil amendments of crop residues or 
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other organic materials establishing an environment favourable for the microbial community 

(Bending et al. 2002). It was suggested that different fertilizer treatments could affect soil microbial 

properties and the use of soil microbial indicators to assess soil quality change needs to be further 

studied (Kong et al. 2008). Araujo et al. (2009) indicated that soil microbial activity, biomass and 

bulk density were significantly improved in organic management compared with the conventional 

system. 

 

2.2.2 Microorganisms versus conventional fertilizers 

Conventional inputs are manmade or synthetic products, for example, effects of chemical fertilizer 

on microbes have been investigated in several ways. Kong et al. (2008) compared the effect of 

various combinations of conventional fertilizers (NPK-fertilizer treatments) on microbial activity 

and found variation in soil microbial biomass C ranging from 94 to 145 mg kg−1, where the NK 

treatment showed a lower biomass whereas functional diversity of soil microbes ranged from 4.13 

to 4.25 mg kg-1 increasing from control to double and triple-fertilizer treatments. However, the soil 

microbial biomass and its functional diversity and evenness did not show any significant 

differences. This result suggests that the long-term application of chemical fertilizers would not 

result in significant changes in microbial characteristics of vertisol soil. Nevertheless, particular 

chemical fertilizers have specific effects on soil microorganisms, for example, ammonium sulphate 

is a very strong biocide that hinders N fixation and kills nematodes and earthworms whereas 

superphosphate has a negative effect on free-living N-fixing bacteria (Primavesi 1990). According 

to Barabasz et al. (2002), high rates of N fertilization caused significant changes in microbiocenoses 

resulting in the decline of some beneficial microbes as well as the occurrence of carcinogenic 

nitrosamines in soil. A side-effect of the conventional nutrient supply system through incorrect 

agrotechniques such as improper fertilization is that it reduces soil fertility of arable soils and 

hinders microbial activity and qualitative selection of their community (Jenkinson 1982; Doran et 

al. 1996; Barabasz et al. 2002).  

 

2.2.3 Micro-organisms as biofertilizers 

Biofertilizers are considered as organic as well as natural sources of plant nutrients. The role and 

importance of biofertilizers in sustainable crop production and soil have been documented (Wani & 

Lee 1995).  However, progress in the field of biofertilizer production technology is greater in Asia 

because the deficit of synthetic fertilizer could be fulfilled by their addition, they are cheaper than 

chemical fertilizers for farmers in lower socio-economic regions and they provide a sustainable way 

of improving soil fertility without environmental hazards (Sheraz Mahdi et al. 2010).  
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2.2.4 Characteristics of microbial fertilizers 

Microbial fertilizers have specific characteristics like N fixation, P solubilization, S oxidation and 

organic matter decomposition; they are also called bio-inoculants (bacterium or fungus) and supply 

nutrients to plants to improve their growth and yield (Deshmukh 1998). These bio-inoculants 

influence plant growth by colonizing plant surfaces, forming endophytic associations, or interacting 

with other microbes in the rhizosphere or phyllosphere. For example,  N-fixers increase soil fertility 

and crop yields (Kachroo & Razdan 2006; Subashini et al. 2007) by improving soil biota and 

reducing the use of chemical fertilizers (Subashini et al. 2007). Some examples of N fixing and 

phosphate solubilizing organisms and their effects on soil and crops are mentioned below.  

       

2.2.5 Microbial inoculants 

There are several microbial inoculants identified for fixing N and P. Rhizobial inoculants applied to 

leguminous plants and arbuscular mycorrhizal (AM) fungi to muskmelon were effective in reducing 

chemical fertilizer amounts by one third to half (Young et al. 2003). Rhizobial strain inoculation 

alone or in combination with AM fungi increased N2 fixation and soybean yield (from 5 to 134%) 

and was suggested as an efficient biological fertilizer (Young et al. 1988). Inoculation of Rhizobium 

improved yield and yield components of green gram over the control (Bhat et al. 2010).  

 

Since P is relatively insoluble and thus less available in the root zone, phosphate solubilising 

bacteria are helpful for this purpose. The bacterial genera that can solubilize phosphate are 

Rhizobium, Burkholderia, Achromobacter, Agrobacterium, Microccocus, Aereobacter, 

Flavobacterium and Erwinia (Sheraz Mahdi et al. 2010). 

 

2.2.6 Effects of microbial inoculants on crops 

Phosphate solubilising bacteria improved both growth and quality of crops but drastically reduced 

the usage of chemical fertilizers (Young et al. 2003). Azotobacter chrooccocum + P fertilizer 

showed the highest alkaline phosphate activity in peach root (Godara et al. 1995). Application of 

Glomus fasciculatum + A. chrooccocum + 50% of the recommended dose of P fertilizer resulted in 

the greatest root length, plant height, bulb girth, bulb fresh weight, root colonization and P uptake in 

onion (Mandhare et al. 1998). In a separate experiment, inoculation with Azotobacter + Rhizobium 

+ VAM with rock phosphate as a P fertilizer significantly increased straw and grain yield of wheat 

(Elgala et al. 1995).  
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Azotobacter in combination with Bacillus enhanced tolerance to salinity reflecting the better 

performance of growth, dry matter accumulation, and yields of wheat (Mahmoud & Mohamed 

2008). 

    

2.3 Arbuscular Mycorrhizal (AM) Fungi  
The term ‘mycorrhiza’ means ‘fungus roots’ and is characterized by a symbiotic association 

between host plants and a certain group of fungi at the root system, in which the fungus is benefited 

by receiving carbon compounds from photosynthates of the host plant and the host is benefited with 

required and inaccessible nutrients such as P, Ca, Cu, and Zn with the help of ramifying fine 

absorbing hyphae of the fungus (Sheraz Mahdi et al. 2010).  

 

According to their association types, Brundrett et al. (1996) have classified mycorrhizae as follows: 

Vesicular-arbuscular mycorrhizae: These types of mycorrhizae are called VAM which are the 

members of the Zygomycetes fungi. Their name ‘vesicular arbuscular’ is derived from their 

characteristic structures, ‘arbuscules’, which occur in cortical cells and vesicles are found within or 

between the cells. These classes are those studied in this thesis and are further described in the 

following section. 

Ectomycorrhiza: These are the members of Basidiomycetes. They form a mantle around roots and 

a hartig net between root cells. 

Orchid mycorrhizae: These types of mycorrhizae are associated with orchid roots. They produce 

hyphal coils within roots or stems.  

Ericoid Mycorrhiza: These mycorrhizae are found in plants members of Ericales such as tea, 

persimmon, brazil nut, azalea, kiwi fruit, blueberry, cranberry, and rhododendron. They develop 

hyphal coils in epidermal cells of root hairs. 

Ectendo-, arbutoid and motropoid mycorrhizae are similar to ericoid mycorrhizae but they have a 

more specific anatomy.  

 

Among the endo-mycorrhizae, vesicular-arbuscular mycorrhizae (VAM) occur in a range of 

environments from desert to aquatic (Mosse et al. 1981). There are six genera of fungi that contain 

species, which are known to produce symbiotic relationships with plants; among them two (Glomus 

and Sclerocytis) produce chlamydospores while Gigaspora, Scutellospora, Acaulospora and 

Entrophospora develop spores similar to azygospores (Sheraz Mahdi et al. 2010).  
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The oldest and most popular of these associations are the AM fungi symbioses and have been 

estimated to have evolved about 400 million years ago coinciding with the appearance of the first 

land plants while crop domestication began about 10,000 years ago (Sawers et al. 2008). 

 

A few members of this fungi form sporocarps with a little amount of sterile mycelium, the majority 

(80%) of the species form both vesicles and arbuscules while the remaining (~20%) do not form 

vesicles; therefore, those should be called ‘arbuscular mycorrhizal fungi’ (Brundrett et al. 1996). 

The images shown in Plate 2.1 represent how Glomus mycorrhiza colonize and develop in plant 

tissues.  

   

       
A    B    C 

Plate 2.1 Glomus mycorrhizal network in root cells, B. fully developed single vesicle C. arbuscule 
marked by oval outline. Images captured during the present study.   

 

2.3.1 Role of AM fungi in agricultural soils 

The fungi are mostly abundant in agricultural soils accounting for 5-50% of soil microbes (Olsson 

et al. 1999). Biomass of their hyphae was estimated to be about 54-900 kg ha-1 (Zhu & Michael 

Miller 2003). Their by-products may account for 3000 kg ha-1 (Lovelock et al. 2004). Rillig et al. 

(2001) estimated that the pools of organic carbon such as glomalin produced by them might exceed 

soil microbial biomass  by a factor of 10-20. Jakobsen & Rosendahl (1990) found that the external 

mycelium attained about 3% of root weight. These fungi can develop mycelium of a length of 10-

100 m per cm of root length (McGonigle & Miller 1999). 

 

The fungi were found to improve soil structure by binding soil particles together, forming micro-

aggregates, meshing of micro-aggregates and binding carbon resources to the soils (Miller & 

Jastrow 2000). AM fungal hyphae are small in size; thus they can penetrate organic material better 

than plant roots and decompose and compete for the recently mineralized N so that they capture 
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simple organic N compounds thereby shortening the N cycle (Hodge 2003). Another important role 

of AM fungi in soils is in water economy of plants such that their association improves the 

hydraulic conductivity of the root at lower soil water potentials contributing to better water uptake 

by plants (Sheraz Mahdi et al. 2010). 

 

The impacts of AM fungi on development of aluminium tolerance in plants have been outlined by 

Seguel et al. (2013). They have concluded that AM fungi provide biosorption of aluminium to their 

hyphae probably by glomalin and organic acids exudated from the roots where they are colonized 

but they have accepted that this mechanism is not fully understood. 

 

Aroca et al. (2013) suggested that AM symbiosis can alleviate salt stress. They have proposed a 

mechanism whereby the fungi alter hormonal profiles and affect plant physiology in which the plant 

produces strigolactone in salt stress conditions and strigolactone promotes symbiosis to cope with 

the stress. Porcel et al. (2012) reviewed the literature and concluded that the tolerance of 

mycorrhizal plants to salt stress is possibly mediated through increased K+: Na+ ratios, 

accumulation of proline, glycine, betaine or soluble sugars, photosynthetic and water use efficiency 

and antioxidant enzymes in plant tissues. They have also proposed that the involvement of cation 

proton antiporters and cyclic-nucleotide-gated channels could be a mechanism of salt tolerance of 

mycorrhizal plants but it is yet to be investigated. 

 

2.3.2 Responses of crops to AM fungi 

Inoculation increased soybean yields by 7-45% over the non-inoculated treatments (Young et al. 

1986). Chang & Young (1992) observed that tea cuttings inoculated with AM had significantly 

increased growth. It was demonstrated in Mexico that in a soil with low phosphate availability, 

wheat growth capacity was highest in AMF inoculated plants reducing the need for phosphate 

fertilizer applications indicating that the mycorrhiza-mediated growth for plant dry weight, number 

of grains per spike, and 1000 grain weight was higher at 5 and 10 kg than at 20 kg P ha−1. 

(Mohammad et al. 2004). Further, onion, sweet potato, tomato and cassava were highly dependent 

on mycorrhiza for their growth and development (Khasa et al. 1992). The AMF reduced the effects 

of drought stress in peanut (Arachis hypogaea) (Quilambo et al. 2005). Some positive results of rice 

seedling inoculation with AMF species on biomass, plant tissue mineral content, and grain yield of 

the Prakash cultivar of cowpea were found in inundated fields of India (Secilia & Bagyaraj 1992), 

and in the Pusa Basmati-1 cultivar sown in soils deficient in P and Zn (Purakayastha & Chhonkar 

2001). According to Krishna et al. (2006), a mix of AMF strains resulted in increased survival 

percentage, shoot length, fresh and dry weight, leaf area, and photosynthetic rate of grape vines. 
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Trindade et al. (2006) reported that a total of 24 different AMF species colonized papaya (Carica 

papaya) roots. 

 

2.3.3 Mechanisms of nutrient uptake  

VAM can improve uptake of P and other nutrients. Bolan et al. (1987) argued that the fungi could 

break the bond between iron (Fe) and P (Fe-P form is stable and unavailable) but did not explain the 

mechanism. The mechanism behind the P uptake by mycorrhizal fungi includes the production of 

glomalin that contains very substantial amounts of iron (up to 5% of the glomalin pool) assuming 

that this iron was derived initially from unavailable Fe-P forms in the NaOH-Pi fraction; the 

destabilization of this bond could have released P that was taken up (Lovelock et al. 2004). The life 

time for hyphae varied from days to months (Staddon et al. 2003) and could range from 6 to 42 

years for glomalin secretion (Rillig et al. 2001). Even under relatively favourable conditions for 

decomposition, 40% of AM fungi hyphae  and 75% of total glomalin  could be extracted from the 

soil 150 days after being separated from their host (Steinberg & Rillig 2003). Apart from this, VAM 

fungi increase the efficiency and uptake of several micronutrients, for example, Zn, Cu and Fe 

through the secretion of nutrient mobilizing enzymes and organic acids (Sheraz Mahdi et al. 2010).  

 

2.3.4 Mechanisms of AMF tolerance to heavy metals (HM) 

HM-tolerant species of AMF 

Recent reports claim that the effect of heavy metals is specific to AMF species. For example, 

Glomus etunicatum was more sensitive to Cd, Pb and Zn than was Glomus intraradices (Pawlowska 

& Charvat 2004). Similarly, Glomus sps and Glomus mosseae were more sensitive than Glomus 

claroideum (del Val et al. 1999). The degree of infection of onions with Glomus mosseae was 

reduced when Zn, Cu, Ni or Cd were added to the soil medium (Gildon & Tinker 1983). The 

infection rates of Glomus caledonium were the highest but its sporulating ability was the poorest 

among the three AMF when their response to heavy metals (Cu and Cd) was tested (Liao et al. 

2003) In a separate experiment, Glomus lamellosum, Glomus intraradices and Glomus proliferum 

exhibited tolerance to 5 ppm lead (Khade & Adholeya 2008). Glomus intraradices showed a heavy 

metal tolerance in a variety of plants in diverse heavy metal soils under optimum fertilization 

(Hildebrandt et al. 1999; Kaldorf et al. 1999). However, some reports indicated that the high 

concentrations of heavy metals had adverse effects on AMF (Leyval et al. 1997).  

 

HM-tolerant plant species 

Heavy metal tolerance also depends on plant species which can cope with adverse effects of metals; 

these type of plants are called metallophytes (Hildebrandt et al. 2007). Protection by AMF that 
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colonize plant roots and reduce the uptake of heavy metals into plant cells could be a mechanism 

that allows metallophytes to thrive on polluted soils (Weissenhorn et al. 1995; Leyval et al. 1997; 

Kaldorf et al. 1999; Berreck & Haselwandter 2001; Ouziad et al. 2005; Vogel-Mikus et al. 2005). 

Maize grown in heavy metal soils had more of the essential elements such as K, P and Mg but less 

of the heavy metals such as Ni, Fe, Zn, or Cu when symbiotically grown with G. intraradices 

(Kaldorf et al. 1999). 

 

Adaptation of spores to HM-rich conditions 

Spores and presymbiotic hyphae are generally sensitive to heavy metals in the absence of plants 

(Göhre & Paszkowski 2006). EC50 values (effective concentration reducing germination or hyphal 

growth to 50%) vary with the strain, but overall effect of heavy metals such as Zn, Pb and Cd is 

negative; however, spores from polluted soils were more tolerant than the spores from non-polluted 

soils (Shalaby 2003). This result indicates the adaptation of strains in contaminated environments. 

The interaction of heavy metal themselves can play a role in the degree of sensitivity of spores and 

hyphae to heavy metals. For instance, addition of Zn plays an antagonistic role on the toxicity of Pb 

and/or Cd on pre-symbiotic hyphal growth, while Pb and Cd acted synergistically (Shalaby 2003) 

 

Sensitivity to HM types 

HM have specific effects on colonization of AMF. In soils with 8% Zn and 863 µg g-1 Cd, 35% of 

clover roots were colonized (Gildon & Tinker 1981). In fact, VAM can decrease Zn toxicity in 

grasses growing in Zn-polluted soils (Dueck et al. 1986). Similarly, colonization of AMF in Agrotis 

capillaris was significantly higher in Zn and Cd-polluted soils (Griffioen et al. 1994). However, 

their infection was lower in Zn and Pb polluted soil where HM levels were lower (Diaz & Honrubia 

1993). Controversially, some authors (Hildebrandt et al. 1999; Audet & Charest 2006) have 

proposed that mycorrhizal colonization of the roots increased with increasing heavy metals in soils, 

but others (Gildon & Tinker 1981; Graham et al. 1986; McGee 1987; Chao & Wang 1991) 

indicated some inhibition of AMF colonization by heavy metals occurs. In fact, most reports 

suggest that mycorrhiza have some degree of metal tolerance. 

 

Metal binding mechanism 

AMF can bind HM in two processes: they either release glomalin in soil that binds metals outside 

the rhizosphere (Gonzalez-Chavez et al. 2004; Göhre & Paszkowski 2006) or metals are bound to 

chitin of hyphal cell wall to reduce their local concentrations in the soil (Zhou 1999; Göhre & 

Paszkowski 2006). On average, 28 mg Cu per gram of glomalin is sequestered by Gigaspora rosea 

(Joner et al. 2000) while up to 0.5 mg Cd is bound per mg biomass of fungal hyphae (Joner et al. 
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2000). Gonzalez-Chavez et al. (2004) found that up to 4.3 mg Cu, 0.08 mg Cd and 1.12 mg Pb can 

be extracted from a gram of glomalin. 

 

2.3.5 Phytoremediation by AMF 

The roles of AM fungi in HM tolerance in plants can be summarized as phytoremediation of soil 

pollutants (Wang et al. 2007). Based on the type of pollutants, different strategies such as 

phytostabilization, phytodegradation, and phytoextraction can be used (Barea et al. 2005). AM can 

help phytoremediation activities, particularly in phytostabilization (Gonçalves et al. 1997; Leyval et 

al. 1997; Orłowska et al. 2002; Regvar et al. 2003; Turnau et al. 2006). Phytostabilization involves 

preventing the spread and leaching of HM into soil; this can be attained through resistant plant  and 

AMF species, metal binding process and chelation in the fungus cell wall (Gaur & Adholeya 2004; 

Göhre & Paszkowski 2006)  These reduce both soil erosion and transfer of heavy metals to aquifers, 

thus minimising their dispersion by wind while phytoextraction takes advantage of the ability of 

plants to hyper-accumulate metals (Turnau et al. 2006).  

 

Phytoextraction involves removing metals through plant harvest, phytomining, combustion for 

energy or storage at low volume after drying (Kramer 2005; Peuke & Rennenberg 2005). Among 

the possible mechanisms by which AM fungi improve the resistance of plants to heavy metals is the 

ability of the AM fungi to sequester heavy metals through the production of chelates or by 

absorption (Salt & Kramer 2000). AM plants translocate less heavy metals to their shoots than the 

corresponding non-AM hyper-accumulating plants (Barea et al. 2005). Although AM fungi do not 

necessarily stimulate phytoextraction, the potential to increase the biomass of the plants, to enhance 

nutrient and water uptake and to improve soil conditions are important reasons to include AM fungi 

in further research (Barea et al. 2005; Turnau et al. 2006).  

 

The mechanisms of HM detoxification or degradation during the symbiosis are listed by Gaur & 

Adholeya (2004) and can be achieved by the following processes: chelates such as histidine, 

organic acids from plants and glomalin from fungus, which take part in metal binding; binding of 

metals by cell wall components of symbionts; selective entry of metals by plasma membrane of 

symbionts, presence of metal transporters in plasma membrane, chelates in the cytosol 

(metallotheins, organic acids, aminoacids and metal specific chaperones), sequestration of HM in 

vacuoles, transport of HM in fungal hyphae and metal export from arbuscules to the plants 

(Adholeya 2004).   
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2.3.6 AMF-Biochar interactions 

Some reports emphasize that biochar amendments can increase AMF % root colonization in plant 

roots (Elmer & Pignatello 2011) grown in acidic soils (Ezawa et al. 2002; Matsubara et al. 2002; 

Yamato et al. 2006), while others show decrease in AMF abundance (Warnock et al. 2010). 

Improved colonization was also found due to decreased infection of plant pathogens after addition 

of AMF and char as activated carbon similar to biochar (Matsubara et al. 2002). Inhibited 

colonization after char amendment  might be due to improved availability of P (Warnock et al. 

2007). Addition of biochar increased ecto-mycorrhizal (ECM) colonization (Harvey et al. 1976; 

Harvey et al. 1978; Harvey et al. 1979; Mori 1994). 

  

Alteration of mycorrhizal abundance under biochar amended conditions has been explained by four 

mechanisms: biochar changes soil nutrient availability, alters activity of other micro-organisms, 

detoxifies allelochemicals or alters plant-AMF signalling processes and serves as a refuge from 

hyphal grazers (Warnock et al. 2007). Availability of N, P and metal ions (Tryon 1948; Lehmann et 

al. 2003; DeLuca et al. 2006; Gundale & DeLuca 2006; Warnock et al. 2007) increased or 

decreased pH, increased CEC, enhanced water holding capacity and decreased bulk density (Tryon 

1948), and addition of small amount of nutrients contained in biochar (Lehmann et al. 2003; 

Topoliantz et al. 2005; Gundale & DeLuca 2006; Yamato et al. 2006) are examples of changes in 

soil properties by biochar. Decrease in N uptake in plants after biochar addition has also been 

reported by some authors (Lehmann et al. 2003). 

 

2.4 Role of biochar on signalling process of mycorrhizae 
Signalling between AMF and plants occurs in the rhizosphere (Bais et al. 2004; Harrison 2005; Bais 

et al. 2006; Paszkowski 2006). Plants secrete CO2, flavonoids, sesqueterpenes and strigolactones 

that favour AMF colonization (Bécard & Piché 1989; Nair et al. 1991; Xie et al. 1995), hyphal 

branching and spore germination (Gianinazzi-Pearson et al. 1989; Akiyama et al. 2005). Provided 

that the function of flavonoid compounds could be inhibitory or stimulatory on micro-organisms 

due to the change in pH (Angelini et al. 2003), addition of biochar increases pH which may have 

some stimulatory effects on AMF abundance, because biochar is a reservoir of both signalling and 

inhibitory compounds (allelochemicals) (Warnock et al. 2007). The activated carbon adsorbs AMF 

signalling compounds (strigolactones); after desorbing strigolactones with acetone, strigolactones 

stimulate hyphal branching and growth of Gigaspora margarita (Akiyama et al. 2005). Actually, 

water plays an important role in desorbing signalling molecules and makes them available for 

hyphal stimulation; if the water continues to remove these signalling compounds from biochar 

permanently, there will be a net decrease in the number of signal molecules resulting in decreased 
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spore germination, hyphal growth and fungal abundance (Warnock et al. 2007). In addition, 

activated carbon can absorb phenolic compounds, which are toxic to AMF (Vaario et al. 1999; 

Herrmann et al. 2004).       
 

2.5 Protection of mycorrhizae by biochar against soil predators 
Biochar particles can protect AMF from soil predators (Saito 1990; Pietikäinen et al. 2000; Ezawa 

et al. 2002) such as mites, collembola, large protozoans and nematodes (Warnock et al. 2007) 

providing shelter for them, including in its pores (<16µm) (Kawamoto et al. 2005; Glaser 2007; 

Hockaday et al. 2007) which are of suitable size (cell diameter of bacteria 1-4 µm, hyphal size 2-64 

µm but the majority <16µ) (Swift et al. 1979). 

 

2.6 Current research issues 
Warnock et al. (2010) have suggested that research activities should cover the potential effects of 

biochar feedstock properties, production conditions and application rates on AMF because 

functional relationships between biochar application, improved soil fertility and AMF are not clear; 

some biochars may decrease AMF abundance and biochar properties can differ with their feedstock 

identities. Solaiman et al. (2010) identified the need of comparative evaluation of a range of biochar 

sources. The future research should be focussed on efficacy of different chars in different 

ecosystems because their impact relies on the source of biochars, production conditions, application 

regimes, target molecules and site specific parameters (Ennis et al. 2011). For any objective, for 

example, disease suppression, interaction of biochar rates and different biochar types on different 

crops and in different soils should be a priority of study (Elmer & Pignatello 2011). Different 

biochar types and basic manipulative experiments should be carried out to identify the interactions 

between biochar and soil microorganisms (Lehmann et al. 2011). 

 

The composition of mycorrhizal species is important to mycorrhizal functioning (Van Der Heijden 

et al. 1988). Sharif & Moawad (2006) identified the occurrence, distribution and identification of 

indigenous VA mycorrhiza in various field crops, their interactions with other soil micro-organisms 

and management through agronomic practices as matters of investigation. Others felt lack of 

sufficient information on experimental biochar such as source material, production temperature, 

application rate, application method, and materials used in controls could be a matter of research 

(Warnock et al. 2007). Similarly, they recognized that the examination of the management context 

of biochar application on AMF, and negative effects of biochar (quality and application rate) on 

environment (soil nutrient content, plant species) as important research needs. Yet, data on response 

of mycorrhizal fungus species to biochar are not readily available (Warnock et al. 2007).    
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Some research needs were proposed for AMF-heavy metal relationships, for example, the 

relationship between AM infection and metal concentration (Gildon & Tinker 1983), the extent to 

which AMF can alleviate metal toxicity in plants under field conditions (Leyval et al. 1997), 

development of AMF ecotypes tolerant to different stress situations (del Val et al. 1999), interaction 

between AMF and HM and molecular mechanisms of HM tolerance in AMF (Leyval & Joner 2001; 

Martin et al. 2001), assessment of efficiency of AMF on phytoremediation (Göhre & Paszkowski 

2006), the relationship among AMF, P nutrition and plant growth as well as mechanisms of 

absorption and transportation of HM by AMF and comparison between sterile and HM rich media 

with AMF inoculation (Wang et al. 2007). Other general research needs are survey of 

mycorrhizosphere under various environmental stresses (Audet & Charest 2007), identification of 

metal toxicity and its mechanism (Khade & Adholeya 2008), and identification of appropriate 

combination of plants and soil microbes to effectively control the stress of heavy metals (Miransari 

2011). 
 

To fully assess the interaction of biochar fertilizers, farming systems and microbes, several 

bioassays at different times throughout the cropping season should be undertaken (Solaiman et al. 

2010). Recently, Lehman et al. (2011) reviewed biochar effects on several micro-organisms and 

classified research areas such as microbial abundance and root abundance as low priority, microbial 

community and faunal community as medium, and faunal abundance, microbial function, root 

function, biochar inoculants, biochar enzyme interaction, biochar pathogen control and 

environmental risk as high priority. 

 

2.7 Crops of interest  
To evaluate the effect of biochar on growth performance, lettuce (leafy), potato (tuber), cabbage 

(brassica) and onion (bulbous) and tomato (fruit vegetable) were assessed to represent different 

classes of vegetable crops. Among them, onion and tomato were selected for further mycorrhizal 

assessment based on their response to mycorrhizae representing highly responsive (onion) and 

moderately responsive (tomato). From the literature review, it can be confirmed that mycorrhizal 

association is more prominent in onion (bulb crop) than tomato. Therefore, a good comparison can 

be performed on these two crops for biochar types. 
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2.8 Conclusions and future goals 
Long-term soil fertility management has been a great challenge to developing countries because of 

continued soil fertility degradation due to several natural factors and inappropriate management 

practices. We cannot modify or change the natural factors but we can apply certain sustainable 

management practices that can reduce their adverse effects on soil fertility and crop growth. For 

example, in Nepalese soils, N and P are the most limiting factors for crop yields which are lower 

than yields of other developed countries. Many research reports have focussed on the role that poor 

soil management practices play in reducing crop yields. Considering this fact, many research works 

were undertaken on soil fertility management in the past. Research findings on the effect of organic 

manures such as compost, cattle manure and poultry manure on soil quality and fertility have been 

documented. Similarly their influence on performance of various crops has also been published. In 

combination with organic manures, the effect of inoculation of some micro-organisms such as AM 

fungi was also evaluated on various crops and soil environments and the evidence was reported. 

Yet, there are limited research reports available on long-term fertility maintenance practices in the 

field that promote carbon sequestration, N release at the appropriate time and amount, and P uptake 

especially in acidic soils. Considering these research issues, the present study aims to test biochar 

types, and their application rates for AMF association in partially (tomato) and highly (onion) 

mycorrhyzal crops. In conclusion, the study will determine the interactive effect of biochar-AMF on 

soil and crop systems. The future goal of this study is to increase global yields of organic foods and 

vegetables. The purpose is to reduce poverty, hunger and malnutrition and improve personal health 

with the increased consumption of healthy organic foods. Thus the research addresses many 

millennium goals such as environmental sustainability.  The outputs of the study will be 

combinations of crop, biochar and rate of application for optimum AMF association for sustainable 

management of soil fertility and improved plant growth.  
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Chapter 3. Biochar effects on crop growth 
 
3.1 The influence of biochar on growth of lettuce and potato 
 

3.1.1 Abstract 

Pot experiments were conducted in a glasshouse to determine the growth pattern of lettuce, true 

potato seedlings (TPS) and single node cuttings of TPS in response to biochar. The treatments were 

arranged in a randomized complete block design with 5 treatments (0, 10, 30, 50 and 100 t ha-1) of 

biochar from green waste with 5 replications in lettuce, 10 in TPS and 5 in single node cuttings of 

TPS. The observations recorded on growth parameters showed that biochar had significant effect on 

growth of lettuce but no consistent effect on growth of TPS and single node cuttings. Among the 

biochar rates, 30 t ha-1 had the greatest influence on overall growth of lettuce. The pH and electrical 

conductivity increased as the biochar rates increased in all experiments. These results provide an 

avenue for soil management systems by using biochar as an amendment in horticultural crops. 

However, their verification in the field is important for specific recommendations.  

 

3.1.2 Introduction 

Biochar is described as a ‘black carbon manufactured through pyrolysis of biomass’ (Lehmann & 

Rondon 2006); ‘the high carbon materials produced from the slow pyrolysis (heating in the absence 

of oxygen) of biomass’ (Chan et al. 2007); and ‘a fine-grained and porous substance, similar in its 

appearance to charcoal produced by natural burning or by the combustion of biomass under oxygen-

limited conditions’ (Sohi et al. 2009).  It can be produced from a wide range of biomass sources, for 

example, woods and barks, agricultural wastes such as olive husks, corncobs and tea waste 

(Demirbas 2004; Ioannidou & Zabaniotou 2007), green waste (Chan et al. 2007), animal manures 

and other waste products (Downie et al. 2007; Chan et al. 2008a; Lima et al. 2008).  Biochar is a 

mixture of char and ash with the major part (70 - 95%) carbon (C) (Brandstaka et al. 2010; 

Luostarinen et al. 2010). The relatively stable nature of biochar allows for carbon sequestration 

value such that the amount sequestrated per year by natural processes is equivalent to or more than 

the present global emissions from fossil fuel use (Lehmann et al. 2006). In addition, biochar carbon 

constitutes almost 40% of the carbon in some soils (Glaser et al. 2000; Skjemstad et al. 2002).  

Lehmann (2007a) predicted that the retention times of the carbon in biochar would be at least 

hundreds, but more likely thousands of years. As a pyrolysed product, biochar is protected from 

rapid microbial degradation and is able to securely sequester carbon, contributing to mitigation of 

greenhouse gas emissions (Lehmann et al. 2006).  Day et al. (2004) emphasized that using biochar 
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to sequester carbon in soil to mitigate climate change would only be economical if the sequestered 

C has beneficial soil amendment and/or fertilizer values. Some authors have reported that it can 

improve the quality of agricultural soils (Lehmann et al. 2003).   Currently, very little biochar  is 

being used in agriculture in Australia and elsewhere, due to the fact that its agronomic value in 

terms of crop response and soil health benefits are inadequately quantified (Chan et al. 2007). Thus, 

this paper aims to report the influence of biochar application on growth of lettuce, true potato 

seedlings (TPS) and single node cuttings of TPS. 

 

3.1.3 Materials and methods 

Pot trials were conducted in a glasshouse at the nursery unit of The University of Queensland, 

Gatton Campus Australia in the winter season of 2011. Lettuce and potato were selected for the 

target crops to compare biochar effects on crops from different families (leafy and tuber). Lettuce 

was selected because it was confirmed from other works undertaken in UQ as a more responsive 

crop to nutrients. Similarly, potato was selected because it was of special research interest. A 

randomized complete block design with five treatments consisting of 5 replications for lettuce, 10 

for TPS and 5 for single node cuttings of TPS was used. The replications were more for TPS than 

lettuce to allow more power to detect any real variations among treatments for genetically variable 

seedlings (Major et al. 2009). The treatments were 0, 10, 30, 50 and 100 t ha-1 of green waste 

biochar. Biochar was thoroughly mixed with sand. The biochar was produced through rapid-slow 

pyrolysis using a kiln which was truck-mountable with interrupted combustion within a direct 

flaming pyrolysis system at the temperatures of 400-700°C. Core granular sand with the bulk 

density of 1.22 g cm-3 was used for the trial. It was highly porous with pH 5.2 and thoroughly 

washed to remove clay particles before using. The proportion of sand and biochar was calculated 

considering the pot area derived by the diameter (12 cm2) of the pots. 

 

Lettuce seeds of variety Archangels Nr were obtained from South Pacific Seeds and were sown 

directly in the sand-biochar mix on 21 July and harvested on 21 September. True potato seeds from 

a randomly pollinated open field variety were collected from a field of New South Wales (an 

unknown variety)  and were germinated in Agar + Gibberellic acid (GA3) medium on 4 July 2011; 

seedlings were then transferred to a seed germination tray filled with potting mix on 11 July 2011. 

They were transplanted into the sand biochar medium by uprooting on 21 July. Shoots with single 

nodes were cut from these plants on the same day and planted in the sand-biochar medium. Both 

TPS and single node cuttings were harvested on 21 September 2011 (after eight weeks). For 

germination of TPS, 10 g of agar was added to 500 mL of distilled water and microwaved for three 

minutes until all dissolved. Once dissolved, it was topped up to 1 L with cold water and mixed well. 
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Then 0.1 g GA3 was added to 250 mL of distilled water and poured into agar after cooling. Previous 

observation showed that the GA had a significant effect on breaking dormancy of TPS (data not 

shown). After one week of seed placement in light, there was 46% germination in seeds treated with 

GA whereas it was only 4% in agar without GA. Similarly, after nine days, germination increased 

sharply reaching 85% in GA while it was only 16% in agar without GA. In the dark, 65% seeds 

germinated in agar with GA while only 15% seeds germinated in agar. Two hundred seeds were 

placed in 10 Petri dishes with Agar + GA medium; as radicles protruded from the seedcoat, 

seedlings were transferred to Petri dishes with agar but without GA. When enough seeds 

germinated, they were transplanted into 500 mL pots filled with sand biochar mix and placed in the 

glasshouse. 

  

Observations were recorded on plant height, number of leaves, shoot fresh weight, root fresh 

weight, shoot dry weight, root dry weight, total fresh weight, total dry weight, root length, root 

width and shoot to root ratio for lettuce. For TPS and single node cuttings, plant height, number of 

leaflets per plant, number of tubers per plant and number of stolons per plant were recorded. Plant 

heights and number of leaves were noted weekly and other parameters were recorded after harvest 

for all experiments. Root lengths were measured from collar line to the tip of the longest root and 

root width was assessed at the widest region of root system when spread on the table after washing 

and oven drying. The pH and electrical conductivity (EC) were analyzed for lettuce and TPS grown 

medium only. The pH and EC were determined by pH meter and conductivity meter using standard 

procedures recommended by Rayment and Higginson (1992). Statistical analysis was done through 

two-way analysis of variance in Minitab 16, version 4.0 (Minitab 2005) and graphs were plotted 

using Sigma Plot technique, version 12.0 (Systat Software 2007).  

 

3.1.4 Results  

Lettuce 

Significant differences among treatments were observed in lettuce for weekly plant height (Table 

3.1). Biochar at a rate of 30 t ha-1 and 50 t ha-1 had similar effect and produced the maximum height 

in the first week. From second to seventh week the influence of 30, 50 and 100 t ha-1 was similar 

but significantly greater than 0 t ha-1 (Plate 3.1). In all weeks the control had the least influence.  

Differences were also significant for the weekly number of leaves in third, fourth and fifth weeks 

after seeding (Table 3.2). Biochar at a rate of 30 t ha-1 produced more leaves in the third, fourth and 

fifth weeks than that of 0 t ha-1. The rates of 30 and 50 t ha-1 had similar effects on number of leaves 

in third and fifth weeks. In all weeks, the control treatment had the lowest value. The coefficient of 

variation (CV) was greater (>20%) in the initial two weeks; thereafter, it was below 20% for plant 
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height and number of leaves indicating the maintenance of growth uniformity by lettuce plants as 

they became older. 

 

The treatment effect was also significant for shoot fresh weight (Figure 3.1), root fresh weight 

(Figure 3.2), shoot dry weight (Figure 3.3), total fresh weight (Figure 3.4), total dry weight (Figure 

3.5) and root length (Figure 3.6).  Differences in treatments were non-significant for root dry 

weight, root width and shoot root ratio. The influence of a rate of 30 t ha-1 was significantly greater 

than that of 0, 10 and 100 t ha-1 for shoot fresh weight; however, it was at a par with that of 50 t ha-

1. For root fresh weight, the effect of 30, 50 and 100 t ha-1 was similar while 30 t ha-1 was superior 

to 0 and 10 t ha-1. Similarly, the rates of 10, 30 and 50 t ha-1 had similar influence on shoot dry 

weight but 30 t ha-1 had significantly greater effect than 0 and 100 t ha-1.  Total fresh weight was 

significantly increased by biochar rates up to 30 t ha-1 but was not different to 50 t ha-1 (Figure 3.4). 

Similarly, the effect of 30 t ha-1 was also superior to 0 and 100 t ha-1 for total dry weight (Figure 

3.5). Up to 10 t ha-1, root length was similar to the control but it was significantly greater for higher 

rates (Figure 3.6). For those observations recorded after harvest, the CV was below 20% indicating 

the uniform performance of individual plants across replications. The addition of biochar to sand 

increased the pH significantly ranging from 7.6 for 10 t ha-1 to 8.7 for 100 t ha-1 biochar (Table 3.3).  

Biochar also increased electrical conductivity, from 0.290 dS m-1 in 10 t ha-1 to 1.207 dS m-1 in 100 

t ha-1.  

 
Table 3.1 Weekly plant height as influenced by the application rates of biochar 

Biochar rates in 

sand (t ha-1) 

Plant height (cm) over weeks 

1st 2nd 3rd 4th 5th 6th 7th 

0 0.92b 2.76b 4.54c 8.16c 9.54c 9.96c 11.04b 

10 1.16ab 3.10b 5.02bc 9.16bc 12.16b 12.50b 12.58ab 

30 1.84a 3.70ab 6.34ab 11.12a 12.74ab 12.90ab 13.04a 

50 1.78a 4.40a 7.48a 10.88ab 13.50ab 13.66ab 13.76a 

100 1.34ab 3.72ab 6.74ab 10.92ab 13.58a 14.00a 14.16a 

F-Probability ** ** ** ** ** ** ** 

LSD (α0.05) 3.302 0.448 0.729 0.755 0.522 0.530 0.808 

** = Significant at α0.01 level of significance 
The values that do not share the same letters are significantly different at α = 0.05 level of 
significance 



28 
 

Table 3.2 Weekly numbers of leaves per plant as influenced by the application rates of biochar 

Biochar rates in 

sand (t ha-1) 

Number of leaves per plant over weeks 

1st 2nd 3rd 4th 5th 6th 7th 

0 4 4.2 5.2b 8.0b 9.6b 11.4 11.8 

10 4 4.0 6.0ab 7.8b 10.6ab 12.4 12.6 

30 4 4.4 6.6a 10.0a 11.6a 12.8 13.0 

50 4 4.6 6.8a 9.4ab 11.4a 12.8 13.2 

100 4 4.0 6.2ab 9.0b 10.6ab 12.6 13.4 

F-Probability ns ns ** * ** ns ns 

LSD (α0.05) - - 0.413 0.819 0.552 - - 

ns = non-significant, * = Significant at α0.05 level of significance, ** = Significant at α0.01 level of 

significance; the values that do not share the same letters are significantly different at α = 0.05 level 

of significance. 
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Figure 3.1 Shoot fresh weight of lettuce as influenced by application rates of green waste biochar. 

Data with the different letters are significantly different at α=0.05 level of significance. 

Vertical bars represent the standard error (SE) of means. 
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Figure 3.2 Root fresh weight of lettuce as influenced by application rates of green waste biochar. 

Data with the different letters are significantly different at α=0.05 level of significance. 

Vertical bars represent the standard error (SE) of means. 
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Figure 3.3 Shoot dry weight of lettuce as influenced by application rates of green waste biochar. 

Data with the different letters are significantly different at α=0.05 level of significance. 

Vertical bars represent the standard error (SE) of means. 
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Figure 3.4 Total fresh weight of lettuce as influenced by application rates of green waste biochar. 

Data with the different letters are significantly different at α=0.05 level of significance. 

Vertical bars represent the standard error (SE) of means. 
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Figure 3.5 Total dry weight of lettuce as influenced by application rates of green waste biochar. 

Data with the different letters are significantly different at α=0.05 level of significance. 

Vertical bars represent the standard error (SE) of means. 
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Figure 3.6 Root length of lettuce as influenced by application rates of green waste biochar. Data 

with the different letters are significantly different at α=0.05 level of significance. Vertical bars 

represent the standard error (SE) of means. 

 
 

Table 3.3 Mean values for pH and electrical conductivity of sand-biochar mix for pots with lettuce 

and TPS 

Crop Biochar rates in sand (t ha-1) 

0 10 30 50 100 

EC 

(dS 

m-1) 

Salt 

% 

pH EC 

(dS 

m-1) 

Salt 

% 

pH EC 

(dS 

m-1) 

Salt 

% 

pH EC 

(dS 

m-1) 

Salt 

% 

pH EC 

(dS 

m-1) 

Salt 

% 

pH 

Lettuce 0.27 0.092 7.43 0.29 0.099 7.67 0.55 0.187 8.53 0.63 0.214 8.63 1.21 0.411 8.7 

TPS 0.25 0.085 7.77 0.29 0.098 8.43 0.53 0.180 8.83 0.67 0.228 8.83 1.04 0.354 8.93 

 

 

 

 

 
Plate 3.1 Biochar rate effects on lettuce, from left to right 0, 10, 30, 50 and 100 t ha-1 showing little 

growth in 0 and 100 t ha-1, greater height in 30 and 50 t ha-1 
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True potato seedlings 

No significant differences were observed between treatments for weekly plant heights except in the 

third week after transplanting (data not shown due to non-significant results). The CV>20% was 

high indicating great variation in growth between individual plants over the measurement period. 

Similarly, no significant effect of treatments was revealed in all parameters. For example, plant 

height increased until the 6th week when level of biochar was increased up to 30 t ha-1. A similar 

trend was seen in number of leaflets. There was no positively greater effect on plant parameters 

when the application rates of biochar were increased from 0 to 100 t ha-1. Biochar also increased pH 

and electrical conductivity, an indicator of salt concentration, from 0.297 dS m-1 in 10 t ha-1 to 1.04 

dS m-1 in 100 t ha-1.  

Single node cuttings of TPS  

The results showed no significant differences among the treatments in all observations except in 

weekly plant height during the first week of growth (data not shown). However, the results showed 

a general trend of increment in plant height up to a certain rate of biochar application, and then a 

decrease at higher rates. Plant performance was so erratic that the variation between individual 

plants was great (CV>20%) over the replications. 

 

3.1.5 Discussion 

The overall response of lettuce plants to biochar rates up to 30 t ha-1 indicates its sensitivity whereas 

higher rates had no further effect. Number of lettuce leaves was similar during early and late stages 

of growth. This pattern indicated the maximum number of leaves was produced when lettuce plants 

were vegetatively more active. Lettuce plants showed greater uniformity than TPS. However, some 

variation was still present for plant height in the initial weeks of growth but it attained uniformity 

over time. 

 

Addition of biochar was beneficial for increasing leaf number in lettuce but only up to 30 t ha-1. 

This may be due to sensitivity of lettuce to salts as indicated by electrical conductivity analysis 

(Table 3.3). The erratic root width values could be a possible cause of non-significant differences 

between biochar rates for shoot to root ratio. 

 

Other reports have also explained the beneficial effect of biochar on lettuce growth. For example, a 

rice-husk biochar produced by gasification process increased final biomass, root biomass, plant 

height and number of leaves compared to no biochar application (Carter et al. 2013). Even in 

alkaline soil, biochar application increased growth of lettuce (Gunes et al. 2014). Significant 

increase in biomass yield of lettuce was also observed at 2% pine forest waste biochar application 
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rate in alkaline loamy sand soil (Artiola et al. 2012). Though the effect of biochar was positive on 

lettuce, it may be different for other crops. In a report, no effect of biochar amendment was 

observed for growth of sweet pepper and geranium while coriander shoot growth was increased and 

lettuce shoot biomass decreased when a biochar was amended with potting soil (Gravel et al. 2013). 

In fact, the influence of biochar may vary depending on feedstock of biochar, pyrolysis temperature 

and test crops as indicated by Olszyk et al. (2014). They have reported that biochars from different 

feedstock (pine chips, poultry litter, swine solid and switch grass) produced by pyrolysis at 3500C, 

5000C and 7000C had different influences  on corn, soybean, lettuce and carrot when it was added to 

soil at 1% application rate by weight. 

 

TPS were tested to record the degree of variation in plant growth and to determine whether they 

would be suitable for further experiments on biochar. The results showed great variation between 

individual plants over replications and within treatments. Thus, they could not be used for further 

experiments. The variation was also evident when nodal cuttings of these plants were treated with 

the same biochar rates. TPS-derived plants showed phenotypic variation (Sharma et al. 2007) as a 

result of genetic variation. In potato, the biochar rates did not influence growth parameters 

uniformly over the weeks. For example, increased plant height was greater due to biochar at 30 t ha-

1 in the third week while it was greater due to 50 t ha-1 from the fourth to the seventh week. 

However, the results indicate that application of biochar is beneficial to plant height after four 

weeks when plants need more nutrients as they start growing vigorously. The single node cuttings 

of TPS, although they were vegetatively propagated, showed genetic variation among individual 

plants because they were isolated from separate mother plants. 

 

In this exploratory experiment, plant growth was better at the high rate (30 t ha-1) but the economy 

of this may be questioned. This rate was appropriate for soil-less sand medium; however, the 

recommendation for different soils may vary. From this experiment, it was concluded that further 

experiments on biochar rates should be limited; considering 30 t ha-1 as an appropriate upper level 

of biochar application. 

 

Addition of biochar increased pH of the medium which indicated its liming value (Table 3.3). 

According to (Chan et al. 2008a), biochar produced from green waste by pyrolysis significantly 

increased soil pH and exchangeable cations in alfisol soil. Similar results were observed when 

biochar produced from poultry litter was tested (Chan et al. 2008b). Van Zwieten et al. (2010a) 

tested two biochars produced from slow pyrolysis of paper mill waste in two agricultural soils in a 
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glasshouse, and found that they differed slightly in their liming values by 33% and 29% 

respectively. 

 

As the responses of lettuce, TPS and single node cuttings of TPS varied, this supported (Chan et al. 

2008a)  on the differential influence of biochar on different crops. A significant decrease in dry 

matter content of radish was obtained when biochar was applied at 10 t ha-1 but the cause was 

unclear (Chan et al. 2008a). There was no significant effect of biochar rates (0, 7 and 15 t ha-1) on 

turnip, wheat, rape and faba bean (Brandstaka et al. 2010). Van Zwieten et al. (2010a) tested two 

biochars produced from the slow pyrolysis of paper mill waste in two agricultural soils in a 

glasshouse and found that they significantly increased N uptake in wheat and biomass in wheat, 

soybean and radish in ferrosol soil but reduced wheat and radish biomass in calcaresol soil, 

amended with fertilizer in both soils. Thus, the influence of biochar may also be dependent on soil 

types. Therefore, the further focus of research should be given to test various biochars in different 

soils and crop species. 

 

3.1.6 Conclusion 

The influence of biochar on plant growth varied between plant species and plant materials such as 

seedlings and cuttings. Biochar from green waste was tested on lettuce, TPS and single node 

cuttings of TPS as pot trials showed varying effects. Biochar application affected growth parameters 

significantly greater than that of control in lettuce. For lettuce, 30 t ha-1 was most effective for 

optimal growth in sand culture. For potato, no conclusive results could be obtained but the trend in 

plant growth indicated some influence of biochar. Further investigation of several biochars in 

different crop species is important to understand their influence on  growth. 

 

3.2 Growth response of cabbage (Brassica oleraceae var. capitata, cv Hearty) to two 

biochars in a pot trial 
 
3.2.1 Abstract 

A pot trial was conducted in a glasshouse to compare growth response of cabbage (Brassica 

oleraceae var. capitata, cv. Hearty) to two biochars.  A 2 x 4 + 1 factorial arrangement with six 

replications was used.  The factors ‘Biochar Type’ with two levels (‘Sugarcane Trash’ and Green 

Waste A’) and their ‘Application Rates’ with four levels (10, 30, 50 and 100 t ha-1) were compared 

with a control (No biochar). Three-week-old uniform seedlings were transplanted into 1.6 litre pots 

and irrigated with half strength Hoagland’s solution at a rate of 30 mL per pot three times a week 

followed by irrigation flush 24 hours after application.  Observations were recorded on growth 
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parameters and pH and electrical conductivity (EC) of growth medium.  Presence of biochars 

significantly increased overall growth as compared to the control.  These results represent the 

growth response of cabbage to biochars in a sand medium; however verification using different 

soils is necessary before general recommendations can be made.  

 
3.2.2 Introduction 

Carbon deficiency is a crucial issue in degraded agricultural soils. Carbon is basically supplied 

through composts and manures at the farm level but they are decomposed rapidly and are either 

used by the crops or lost through several means including through regular cropping without 

replenishment of carbon sources.  The carbon deficient soil cannot produce the crops with optimum 

production.  This issue demands improving crop production as well as soil condition in the long 

term by adding to the soil relatively stable carbon sources, one of which is biochar.   

 

Biochar has recently created international attention for use as a soil amendment.  Biochar is a black 

carbon manufactured through pyrolysis of biomass (Lehmann et al. 2006; Chan et al. 2007; Chan et 

al. 2008a).  It is similar in its appearance to charcoal produced by natural burning (Sohi et al. 2009) 

but differs in structure and composition. This is a rich source of carbon but is very different in 

composition and behaviour compared to soil organic matter.  Different feedstocks can be used to 

produce biochar resulting in varying properties depending upon the nature of the material and 

production conditions (Guerrero et al. 2005).  Several feedstocks have been identified as sources to 

produce biochar, for example,  woods, barks, agricultural wastes such as olive husks, corncobs and 

tea waste (Ioannidou & Zabaniotou 2007), green waste (Chan et al. 2008a), animal manures and 

other waste products (Downie et al. 2007; Chan et al. 2008a; Lima et al. 2008).  It is noteworthy to 

mention that biochar is a mixture of char and ash with the major part (70 - 95%) carbon (C) 

(Brandstaka et al. 2010; Luostarinen et al. 2010).  Presumably, these authors are referring to the 

char particles only and not the ash. 

 

The potential effects of feedstock properties, production conditions and application rates of biochar 

need to be determined before its widespread application (Warnock et al. 2010).  Adequate study on 

quantification of agronomic value of biochars in terms of crop responses is very important (Chan et 

al. 2007; Chan et al. 2008a).  Solaiman et al. (2010) identified the need for comparative evaluation 

of a range of biochar sources.  The efficacy of different chars in different ecosystems is also an 

important research issue (Ennis et al. 2011) as ecosystems have varied soil conditions.  Similarly, 

the interaction of biochars and their application rates should be determined (Elmer & Pignatello 

2011) to know the influence of biochar on crop performance and soils.  In this context, the present 
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paper aims to compare the effects of two biochars, their application rates and the interactions of two 

biochars with the rates of cabbage growth.  

 

3.2.3 Materials and methods 

A pot trial was conducted in a glasshouse of the University of Queensland, Gatton Campus, 

Australia to study the response of cabbage (Brassica oleraceae capitata, cv Hearty) to two biochars.  

A 2 x 4 + 1 factorial arrangement with six replications was used.  The factors ‘Biochar Type’ with 

two levels (‘Sugarcane Trash’ and Green Waste A’) and their ‘Application Rates’ with 4 levels (10, 

30, 50 and 100 t ha-1) were compared with a control (No biochar).  

 

The biochar rates were calculated on the basis of pot surface area.  The pH of sand was 5.2 before 

use and was increased up to 7.0 for control pots by adding dolomite. The biochars were thoroughly 

mixed in coarse sand and used to fill 1.6 litre pots.  Before filling, fabric cloth was placed in the 

base of each pot to moderate drainage from the bottom holes.  Three-week-old, uniform seedlings 

were transplanted into the pots.  

 

The roots of the seedlings were washed with tap water before transplanting to remove the 

propagation mix and nutrients from the root surface.  The plants were irrigated with modified 

Hoagland’s solution (Hoagland & Arnon 1950; Epstein & Bloom 2005; Mattson & Lieth 2008) 

(half strength of original) (Appendix 2) at a rate of 30 mL per pot three times a week.  Pots were 

irrigated 24 hours after Hoagland’s solution application to leach the salts deposited by the solution. 

Biochars were analyzed by several methods for other studies (Kochanek et al. 2014) (Appendix 1).   

 

Observations were recorded on plant parameters such as: length of the longest outer leaf (for six 

weeks), number of leaves per plant, root fresh weight, shoot fresh weight, root dry weight and shoot 

dry weight.  The pH (Appendix 4) and EC (Appendix 3) of the growth medium (sand + biochar) 

were determined by pH meter and conductivity meter using standard procedures of 1:5 water 

(Rayment & Higginson 1992).  The EC values were adjusted using a 4% correction factor by 

adding 2% for each degree of temperature below 250C recommended by the same authors as the 

ambient room temperature was 230C during the observation.  
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Table 3.4  a. One Way ANOVA, b. General Linear Model for factorial analysis, c. 

Combined ANOVA from one-way ANOVA and general linear model 

a 

Source Df 

Replication (r) ( r-1), 6-1 = 5 

All treatments (t) (t-1), 9-1= 8 

Error (T-t), 54-9 = 45 

Total (T) (tr-1), 9 x 6-1= 53 

b 
Source Df 

Replication (r) (r-1), 6-1 = 5 

Biochar (b) (b-1), 2-1= 1 

Application rates (a) (a-1), 4-1= 3 

Biochar x Application rates (b-1) (a-1), (1)(3)= 3 

Error ba(r-1), 2 x 4 (6-1) = 40 

Total (T) (T-1), 54-1= 53 

c 
Source Df 

All treatments (t) (t-1), 9-1= 8 

Biochar (b) (b-1), 2-1= 1 

Application rates (a) (a-1), 4-1= 3 

Biochar x Application rates (b-1) (a-1), (1)(3)= 3 

Factorial subset (f) (b-1) + (a-1) +  (b-1) (a-1), 1 + 3 + 3 = 7 

Extra treatment [(t-1) –f], 8-7 = 1 

Error (T-t), 54-9 = 45 

Total (T) (T-1), 54-1= 53 

 

Statistical analysis was carried out by using the one-way analysis of variance for all treatments, 

General Linear Model for factorial subset in Minitab 16, version 4.0 (Minitab 2005)  and these two 

analyses were combined in Microsoft Excel 2010, version 14.0 (Microsoft 2010) to get a complete 

analysis as given in Table 3.4.  Grouping of treatments was carried out by using Tukey’s range test 

in Minitab. 
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3.2.4 Results 

Effects of Biochar types 

Significant differences (p<0.05) for  biochar type were found for leaf length in fifth and sixth weeks 

of planting, number of leaves per plant, root fresh weight and soil pH. Among the parameters, leaf 

length (Figure 3.7), number of leaves and root fresh weight (Table 3.5) were greater in Sugarcane 

Trash while the soil pH (Table 3.5) was higher in Green Waste biochar applied plants.  When these 

biochar applied plants were compared with a control (no biochar treatment), they had significantly 

greater performance.   

 

 
Figure 3.7 Leaf length of the longest outer leaf of cabbage as influenced by biochar types. Different 

letters in the same block indicate significant differences (P<0.05) between the treatment 

means (N = 24 for biochar types, 6 for control, n was different due to the structure of 

design, 2 x 4+1 in 6 replications) in a single season. The bars represent the standard 

error of the means. 

 

Table 3.5 Mean values for number of leaves, root fresh weight and soil pH in response to 

Sugarcane Trash and Green Waste biochar. Different letters in the same column indicate 

significant differences (p < 0.05) between the treatment means (N = 24 for biochar types, 

6 for control, n was different due to the structure of design, 2 x 4+1 in 6 replications) in a 

single season. The ± values are the standard error of the mean.   

Biochar types No of leaves Root fresh weight Soil pH 

Sugarcane Trash 13.0 ± 0.23a 12.55 ± 0.19a 8.2 ± 0.4b 

Green Waste 12.1 ± 0.16b 11.18 ± 0.34b 8.6 ± 0.06a 

Control 10.3 ± 0.21c 7.22 ± 0.55c 7.4 ± 0.16c 
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Effects of Application rates 

For application rates, there was statistical difference for leaf length at fifth week after planting 

(Figure 3.8). However, overall data showed that the application of any biochar rate was beneficial 

over no application (Plate 3.2). The differences were also significant for number of leaves, shoot 

fresh weight, shoot dry weight (Table 3.6), root fresh weight, root dry weight, shoot to root ratio, 

soil pH and soil electrical conductivity (Table 3.7).  

 
Figure 3.8 Leaf length of the longest outer leaf of cabbage as influenced by application rates of 

biochar (control, 10, 30, 50 and 100 t ha-1). Different letters in the same block indicate 

significant differences between the treatment means at α=0.05 level of significance (N = 

12 for application rates, 6 for control, N was different due to the structure of design, 

2x4+1 in 6 replications) in a single season. Vertical bars on the blocks represent 

standard error of the means. 

 

Table 3.6 Mean values for number of leaves, shoot fresh weight and shoot dry weight in response 

to biochar application rates. Different letters in the same column indicate significant 

differences between the treatment means (N = 12 for biochar application rates, 6 for 

control, n was different due to the structure of design, 2x4+1 in 6 replications) at α=0.05 

level of significance in a single season. 

Biochar rates 

(t ha-1) 

No of leaves Shoot fresh 

weight (g) 

Shoot dry 

weight (g) 

10 12.0 ± 0.35c 65.5 ± 3.18c 12.02 ± 0.43c 

30 12.3 ± 0.18b 80.04 ± 2.82b 13.8 ± 0.29b 

50 13.0 ± 0.28ab 91.05 ± 3.22ab 15.3 ± 0.0.21a 

100 12.9 ± 0.27a 101.13 ± 4.59a 15.9 ± 0.41a 

Control 10.3 ± 0.21d 38.04 ± 3.92d 8.75 ± 0.62d 
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In most of the growth parameters, the effect of 50 and 100 t ha-1 was similar but greater than lower 

rates except in shoot to root ratio. The ratio was similar for 10, 30 and 50 t ha-1 but these ratios were 

different from that of 0 and 100 t ha-1. Increasing rates of biochar enhanced the soil pH and soil EC 

indicating their increased liming value and salt contents. Application of biochar had significantly 

more positive effect than the control.  

 

Table 3.7 Mean values for root fresh weight, root dry weight and shoot to root ratio, soil pH and 

electrical conductivity (EC). Different letters in the same column indicate significant 

differences between the treatment means (N = 12 for biochar application rates, 6 for 

control, n was different due to the structure of design, 2x4+1 in 6 replications) at α=0.05 

level of significance in a single season. 

Biochar 

rates 

(t ha-1) 

Root fresh 

weight (g) 

Root dry 

weight (g) 

Shoot to 

root ratio 

Soil pH Electrical 

conductivity 

(dS m-1) 

10 10.82 ± 0.35b 1.08 ± 0.04b 11.27 ± 0.59ab 7.96 ± 0.08c 0.23 ± 0.01d 

30 12.10 ± 0.34ab 1.34 ± 0.05a 10.39 ± 0.35b 8.34 ± 0.04b 0.29 ± 0.01c 

50 12.56 ± 0.36a 1.51 ± 0.06a 10.26 ± 0.26b 8.58 ± 0.08ab 0.40 ± 0.02b 

100 11.99 ± 0.44ab 1.33 ± 0.06a 12.14 ± 0.40a 8.80 ± 0.07a 0.51 ± 0.02a 

Control 7.22 ± 0.55c 0.67 ± 0.06c 13.24 ± 0.46a 7.40 ± 0.16d 0.22 ± 0.04e 

 

   
a      b 

Plate 3.2 Differential growth of cabbage due to application rates of biochar after six weeks of 

planting, a. Sugarcane Trash, b. Green Waste. Application rates for both plates from left 

to right: 0, 10, 30, 50, 100 t ha-1. Plants with 0 t ha-1 biochar showing poor (1st plant from 

the left in both plates) performance compared to other treatments in both plates. 

 
Effects of Interactions of biochar type and application rates 

Interaction of biochar type and their application rates showed significant differences for the leaf 

length in 2nd, 3rd, 4th, and 5th weeks (Table 3.8), and soil EC (Figure 3.9). Initially, Sugarcane Trash 

at the rate of 10 t ha-1 had greater effect on leaf length than the other interactions of the same 
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biochar while the interactions of Green Waste and application rates were similar indicating little 

effect of biochar in initial stages of growth and possibly less requirement of food materials in the 

plant system. The interactions showed greater effects on these parameters than the control after the 

3rd week, indicating the application of biochar was beneficial.    

 

Table 3.8 Mean values for length of longest outer leaf over weeks. Different letters in the same 

column indicate significant differences between the treatment means (N = 6) at α=0.05 

level of significance in a single season. 

Biochar type x 

Application rate (t ha-1) 

Leaf length (cm) over weeks 

Second Third Fourth Fifth 

Sugarcane Trash x 10 11.9 ± 0.28a 15.2 ± 0.16a 20.1 ± 0.21a 20.4 ± 0.50ab 

Sugarcane Trash x 30 10.3 ± 0.31b 13.4 ± 0.23abc 19.0 ± 0.45ab 21.5 ± 0.46ab 

Sugarcane Trash x 50 9.8 ± 0.18b 12.8 ± 0.38bc 18.1 ± 0.52abc 22.2 ± 0.29a 

Sugarcane Trash x 100 9.2 ± 0.23b 12.0 ± 0.50c 17.4 ± 0.51bc 20.5 ± 0.53ab 

Green Waste x 10 9.9 ± 0.60b 12.4 ± 0.52bc 16.4 ± 0.56c 17.9 ± 0.42c 

Green Waste x 30 10.6 ± 0.44ab 13.2 ± 0.36bc 18.1 ± 0.56abc 19.8 ± 0.30bc 

Green Waste x 50 10.5 ± 0.19ab 14.0 ± 0.52ab 20.0 ± 0.38a 22.2 ± 0.69a 

Green Waste x 100 10.5 ± 0.30ab 13.4 ± 0.47abc 18.7 ± 0.23ab 21.6 ± 0.60ab 

Control 8.9 ± 0.43b 10.1 ± 0.33d 11.9 ± 0.71d 14.5 ± 0.56d 

 

 
Figure 3.9 Electrical conductivity of the growth medium (sand amended with biochar) as 

influenced by the interaction of biochar type with application rates of biochar (control, 

10, 30, 50 and 100 t ha-1). Data with the different letters are significantly different at 

α=0.05 level of significance (N = 6). Vertical bars represent the standard error (SE) of 

means. 
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Biochar properties 

Biochars were analyzed for their nutrients and other properties (Appendix 1). Acid neutralizing 

capacity and potassium levels were higher in Green Waste than Sugarcane Trash while N and 

phosphorus were higher in Sugarcane Trash. 

 

3.2.5 Discussion 

Poor response of cabbage plants to biochar type indicates little immediate effect on plant growth. 

However, all parameters showed beneficial effect of biochar application over control. The 

significant effect of biochar on leaf length at the later stage of growth showed that the biochar may 

influence growth in the long-term. Generally, the significant increase in leaf length and number of 

leaves occurred 4-12 weeks after sowing (Olaniyi & Ojetayo 2011), but the period may vary when 

the growth rate is modified through transplanting as occurred in the present study.   

 

The positive influence of biochar produced from food wastes and bamboo on cabbage growth was 

also reported by Fujiia et al. (2011).  Tayxayngavong (2008) showed that biochar increased 

germination rate in all soils tested, enhanced plant height and green biomass yield of maize in peaty 

and clay soils but did not affect it in loam.  In the present study, in coarse sand with biochar 

amendment, cabbage growth increased with increased rate of biochar but was statistically non-

significant until the fourth week.  In addition, there was no evidence of reduced growth of cabbage 

at high pH values of media for biochar-treated plants.  

 

Root fresh weight was greater in Sugarcane Trash-treated plants than Green Waste-treated ones. 

Most likely the fine structure, lower pH and salt content of Sugarcane Trash biochar was more 

favourable for root growth. Less fresh weight produced by Green Waste could also be linked to its 

salinity (2.69 dS m-1).  In fact, cabbage can tolerate salinity of 1.2 dS m-1 but yield reduction of 10% 

can occur when it reaches 2.2 dS m-1 (Evans 2006).   

 

The increased growth in biochar treated plants as compared to control plants could be associated 

with the porosity of the biochar that retained more water in pots.  Another possibility might be 

additional nutrients, especially phosphorus, which would be available to biochar treated plants due 

to the ash content of the chars despite the regular irrigation flush.  

 

The greatest value for shoot fresh and dry weights was due to the largest rates (50 and 100 t ha-1) of 

biochars.  However, the experiment was not designed to continue until harvest of cabbage heads.  

That root fresh weight was similar at high rates such as 50 t ha-1 and 100 t ha-1 might be associated 
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with small pot size (1.6 L).  Van Zwieten et al. (2010a) showed that the biochars increased biomass 

in soybean, wheat and radish in ferrosol but reduced biomass of wheat and radish in a calcaresol.  A 

significant decrease in dry matter content of radish was obtained when biochar was applied at 10 

ton ha-1 (Chan et al. 2008a) but the cause was unclear.  In a separate experiment, there was no 

significant effect of biochar rates (0, 7 and 15 tons ha-1) on turnip, wheat, rape and faba bean 

(Brandstaka et al. 2010). 

 

Shoot to root ratio was greater in control but values for shoot and root dry weight were smaller than 

for treatments. This result does not confirm that the control is better because both shoot and root 

growths were very poor. 

 

The interaction of biochar type and application rate was significantly positive for leaf length at 

second, third, fourth and fifth weeks of planting. However, the effect was more prominent in later 

weeks. It confirmed the view that the effect might take longer to be noticeable. When the 

interactions were compared with the control, all interactions had greater effect on the observed 

parameters over control. This positive effect of interactions confirmed that the application of 

biochar was beneficial for cabbage growth.    

 

Chan et al. 2008a found significantly higher soil pH, organic carbon, and exchangeable cations at 

higher rates (>50 t ha-1) of green waste biochar in alfisol soil.  Similar results were observed when 

poultry litter biochar was tested (Chan et al. 2008b).  Van Zwieten et al. (2010a) tested two biochars 

produced from slow pyrolysis of paper mill waste in two soils amended with fertilizer and found 

that they differed in liming values (33% and 29%) and carbon content (50% and 52%).  

 

The highly alkaline nature of biochars (pH > 8) may be a problem in neutral soils for crops that 

prefer near neutral or moderately acidic soils.  In the present study, the regular application of 

modified Hoagland’s solution may have negated the reduced availability of nutrients due to 

increased pH.  

 

As an agronomic input, the nutrient solution was applied regularly but most of the nutrients were 

leached due to the irrigation of the following day. This practice of nutrient application constrained  

the analysis of the amount of nutrients used by plants and availability of nutrients in the growth 

medium. However, it was important to know the nutrient uptake of plants and availability in soil. 

The temperature range in the glasshouse was considerably favourable for cabbage but the pot size 

might have been too small because the roots were coming out from the bottom holes of the pot 
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indicating insufficient space for root development. Even though planting was done at the 

appropriate time, no additional granular fertilizer was applied. The increased pH due to biochar 

applications was probably associated with less availability of some micronutrients responsible for 

optimum growth and development. Plants were harvested before head formation during juvenile 

growth period, therefore, optimum performance, nutrient availability and other parameters could not 

be observed. 

 

Biochars were added to sand medium at different rates but due to the mixed results, no conclusion 

could be drawn as to which specific type, rate and interaction was best.  However, the results 

indicated that both biochars were similar for major parameters, rates >30 t ha-1 were beneficial for 

increased growth and any rate was better for cabbage growth than none. Previously, the use of 

biochar with fertilizer has been shown to have a positive influence on crops in semi-arid soils of 

Australia (Chan et al. 2008a).  Therefore, it should be used as a long-term fertility management tool 

in combination with other types of fertilizers.  Mature crop yield data were not obtained in this work 

as it was a short-term trial in small pots.  It would be very important to observe yield and post-

harvest parameters to draw conclusions.  However, it can be suggested that cabbage is more tolerant 

to high rates of biochar than other vegetable crops such as lettuce and potato.  In previous 

experiments, lettuce was found to be less tolerant to rates >30 t ha-1 of Green Waste biochar 

(Upadhyay et al. 2014). 

 

3.2.6 Conclusion 

Biochars made from Sugarcane Trash and Green Waste were tested for growth responses of 

juvenile cabbage. The overall effect of biochar application on cabbage growth was greater than that 

of the control. Cabbage was found tolerant to high levels of biochar. To find the optimum rate of 

biochar application, further investigation of biochars and application rates in different crops and 

soils is important before a general recommendation can be made. 
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Chapter 4. Biochar effects on colonization of crops by arbuscular 

mycorrhizal fungi 
 

4.1 Abstract 
Two pot trials were conducted on onion and tomato to investigate the effects of biochar types and 

their application rates on growth and colonization of the crops by arbuscular mycorrhizal fungi. The 

trials were conducted in 3x4+1 factorial arrangement consisting of 13 treatment combinations of 3 

types of biochar, 4 application rates and a control. The plants were grown in sand medium mixed 

with biochar. The rates of biochar were calculated based on pot area. Growth parameters and 

mycorrhizal colonization were recorded for analysis. One Way ANOVA for overall effect, General 

Linear Model for factorial analysis and combined ANOVA for complete effect were applied. The 

results showed biochar as a beneficial soil amendment for growth parameters of both crops as well 

as for enhancing soil pH, electrical conductivity and mycorrhizal colonization. All biochars had 

similar effects on growth parameters when compared at the same rates. Onion roots had more 

colonization than tomato. Among the application rates, 30 t ha-1 of each biochar had better effect on 

onion while 50 t ha-1 was more effective on tomato in terms of morphological growth and 

colonization pattern of roots.  

 

4.2 Introduction 
Waste management has been a great challenge to agriculture, industries, municipalities and other 

various sectors. Agriculturists have given attention to developing appropriate technologies by using 

wastes produced from agricultural fields. Among the technologies, biochar has been given due 

interest as a way to manage carbon and to use it as a soil amendment. Some of the effects of biochar 

on crop and soil have been documented. For example, biochar application in soils has positive 

influences on improving soil quality and plant growth (Chan et al. 2007; Chan et al. 2008a). The 

general effects of biochar on soil have been listed by Brandstaka et al. (2010). Other authors have 

also described its value for reduction of greenhouse gas emissions (Yanai et al. 2007; Van Zwieten 

et al. 2010b) and adsorption of anions and cations to prevent leaching of applied nutrients (Major et 

al. 2009). Chan et al. (2008a) found biochar produced from green waste promising for increasing 

soil pH, organic carbon, and exchangeable cations with a substantial decrease in tensile strength at 

higher rates (>50 t ha-1) in alfisol. Similar results were observed when biochar produced from 

poultry litter was tested (Chan et al. 2008b). Van Zwieten et al. (2010a) tested two biochars 

produced from the slow pyrolysis of paper mill waste, in  two agricultural soils in a glasshouse and 

found that the biochars differed slightly in their liming values (33% and 29%), and carbon content 
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(50% and 52%). The thermal processing of wastes into biochar has been identified as an 

opportunity to destroy contaminants (Glover 2009), making beneficial land application possible. 

Since extracts from biochar derived from poultry litter  increased microbial growth but that from 

pine timber inhibited it (Das et al. 2008), the effect of biochar on microbes depends upon its 

feedstock source. 

 

There are varied responses of soils and crops to biochar (Chan et al. 2008a). Two biochars produced 

from the slow pyrolysis of paper mill waste and tested in a glasshouse on two agricultural soils 

amended with fertilizer significantly increased biomass of wheat, soybean and radish in ferrosol soil 

but reduced biomass of wheat and radish in calcaresol (Van Zwieten et al. (2010a). Biochar rates 

affect plant performance (Jeffery et al. 2011; Jones et al. 2012); however it depends on crops 

selected (Brandstaka et al. 2010), for example, a significant decrease in dry matter content of radish 

was obtained when biochar was applied at 10 t ha-1 (Chan et al. 2008a) while there was no 

significant effect of biochar rates (0, 7 and 15 t ha-1) on turnip, wheat, rape and faba bean 

(Brandstaka et al. 2010). Biochar increased rice grain yields at sites with low P availability, which 

might be due to improved saturated hydraulic conductivity of the top soil, xylem sap flow of the 

plant and response to N and NP chemical fertilizer treatments (Asai et al. 2009).  

 

Some of the influences of biochar on beneficial microbes have also been documented. Among the 

beneficial microbes, arbuscular mycorrhizal fungi has been given due emphasis by scientists. Yet 

reports are controversial. Some reports emphasize that biochar amendments can increase AMF % 

root colonization (Elmer & Pignatello 2011) in acidic soils (Ezawa et al. 2002; Matsubara et al. 

2002; Yamato et al. 2006), while others show decrease in AMF abundance (Warnock et al. 2010). 

Alteration of mycorrhizal abundance under biochar amended conditions has been explained by four 

mechanisms: changes in soil nutrient availability, alteration of other micro-organisms, 

detoxification of allelochemicals and provision of a refuge from hyphal grazers (Warnock et al. 

2007).  

Some recent reports have encouraging findings on relationship of AM fungi and biochar. For, 

example, AM fungi can mediate plant P uptake from microsites of biochar that are too small (<10 

μm) for plant roots to enter (Hammer et al 2014). Improved uptake of P and growth of maize by 

combined application of AM fungi and biochar was also reported by Mau and Utami (2014). 

Furthermore, the relationship between AMF, biochar and plant performance may be dpendent on 

composition of media as indicated by Conversa et al (2015) that the best plant performance was 

achieved when AMF inoculation was applied in 30% biochar amendment. Increase in plant dry 

weight and P uptake was also reported by Momayezi et al (2015). However, it may depend upon 
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quality of biochar, which is related to the chemical constituents of its feedstock, and nutrient status 

of soil. Thus, it is essential to compare biochar effects on mycorrhizal colonization solely and in 

combination with other nutrient sources. The comparative influence of biochars from different 

feedstock source on colonization of crop roots by mycorrhizal fungi has not been adequately 

assessed. In this paper effects of three biochars on colonization of onion and tomato roots by 

vesicular arbuscular mycorrhizal fungi are compared. 

 
4.3 Materials and methods 

4.3.1 Experimental Site and Environment 

The trials were conducted in winter season in 2012 and 2013 in a glasshouse at the University of 

Queensland, Gatton Campus, Australia. The first year trials were conducted in a bay of a small 

glasshouse with fluctuating temperature and light. There was an effect from the shade cloth on the 

roof and from adjacent bays. The daily temperature range was 17-330C during the first week of 

planting and 11-190C during the last week of observation.  Following the experience of the first 

year, subsequent trials were conducted in a larger glasshouse where the plants had full access to 

sunlight and temperature was controlled. 

   

4.3.2 Biochar types 

Three types of biochar were used for the experiment viz. Sugarcane Trash, Green Waste A and 

Green Waste B. Sugarcane Trash and Green Waste A were produced by rapid-slow pyrolysis 

method. The kiln was truck mountable, interrupted combustion within a direct flaming pyrolysis 

system with temperature at 400-7000C. Green Waste B was produced by slow, continuous 

pyrolysis. The kiln was a fixed, non-relocatable unit, no oxygen ingress, indirectly heated with 

highest heating temperature 550°C. General characteristics of the biochars are given in Appendix 1. 

4.3.3 Mycorrhizal inoculum and species 

The mycorrhizal inoculant MycoApply (Mycorrhizal Applications International (MAI), Australia) 

was applied at a rate of 10 g per pot just before planting. There were seven species of mycorrhiza 

among which four species (G. aggregatum, G. intraradices, G. mosseae, G. etunicatum) were endo- 

and three species were ecto-mycorrhizas. 

  

4.3.4 Seed source and seedlings 

Onion (variety: Rio Red Rock) and tomato (variety: Rebel F1) seeds were received from South 

Pacific Seeds, New South Wales, Australia.Seedlings were raised in sterilized propagation mix and 

planted after emergence of two true leaves. Plant roots were washed gently to remove the mix 

before planting. Coarse sand was autoclaved at 1210C with a pressure of 105 kp afor an hour to kill 
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other micro-organisms. This autoclaving system was available at preparation room of soil science 

laboratory at the University of Queensland, Gatton Campus.  

  

4.3.5 Biochar calculation and mixing 

Biochar rates were calculated based on the area of the pots. The calculated amount of biochar was 

mixed with the sand by a mixer as shown in plate 4.1.  

 

 
Plate 4.1 Mixer mixing the biochar with sand. The mixer was wiped thoroughly with a piece of 

cloth between two biochar rates to minimize the mixing of residual biochar from the 

previous rate. 
 
4.3.6 Pots and nutrients 

Plastic pots of 1.6 L volume were used. Nutrients were supplied through modified Hoagland’s 

solution (Hoagland and Arnon 1950; Mattson and Lieth 2008; Epstein and Bloom 2004). This 

solution was modified with 25% P (Appendix 2) to minimize the negative effect on mycorrhizal 

infection and was applied at a rate of 50 mL per pot. 

  

4.3.7 Experimental design and treatments 

The experiments were continued for seven weeks as mycorrhizal associations can be formed within 

this period (Brundrett et al. 1996). These glasshouse experiments were conducted in a 3x4+1 (3 

biochars, 4 application rates, 1 control) design with factorial arrangements in randomized complete 

blocks (Factor A: biochar type, Factor B: application rates, plus a control) with 3 replications and 

13 treatments for each crop (Table 4.1).  
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Table 4.1 Treatment composition for the experiments 

Treatments Factor A (Biochar type) Factor B (Application rates t ha-1) 

1 Sugarcane Trash 10 

2 Sugarcane Trash 30 

3 Sugarcane Trash 50 

4 Sugarcane Trash 100 

5 Green Waste A 10 

6 Green Waste A 30 

7 Green Waste A 50 

8 Green Waste A 100 

9 Green Waste B 10 

10 Green Waste B 30 

11 Green Waste B 50 

12 Green Waste B 100 

13 Control 0 

 
 
4.3.8 Observation  

Observations were recorded on plant height up to seven weeks after planting, shoot fresh weight, 

shoot dry weight, root fresh weight, soil pH, soil electrical conductivity, root length, percent of root 

length colonized, colonized root length, P and Zn content of onion and tomato plants. 

 

Plant height was recorded from the ground level to the base of the fully developed terminal leaf of 

tomato and the tip of the longest leaf of onion. Shoot fresh weight was taken immediately after 

harvest while shoot dry weight was recorded after drying at 650C for two weeks. Root fresh weight 

was recorded after absorbing moisture by tissue paper as given in Plate 4.2. The tissue paper was 

changed several times to maximize the moisture absorbed. 

 

 
Plate 4.2 Moisture absorbing from root by tissue paper 
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Root length was determined by WinRhizo software (Regents Instruments Inc., Canada) and Epson 

1600 scanner (Seiko Epson Corporation, Japan) as shown in the plate 4.3. Soil pH, EC and nutrient 

contents were determined by applying the standard techniques given in Appendix 4, 3, 5, 6, 7 and 9, 

respectively. 

  

 
 

Plate 4.3 Root length measurement through WinRhizo software 

4.3.9 Mycorrhizal care and Analysis 

Procedures for mycorrhizal inoculation and analysis were adapted from Brundrett et al. (1995). 

Sand was sterilized with steam at 1210C with a pressure of 105 kPa for 1 hour and biochar for 30 

minutes. This autoclaving system was available at preparation room of soil science laboratory at the 

University of Queensland, Gatton Campus. Pots were sterilized with 2% household bleach and 

cleaned; a fine mesh cloth (<40µm pore size) was placed on the bottom of the pots to block the 

large holes to allow water to drain but not lose mycorrhizal spores. Pots were filled with sand 

biochar mix and watered to field capacity (approx. 10% w/w) with Hoagland’s nutrient solution.  At 

the centre of the filled pot, a 3-4 cm hole was made in which 10 g of mycorrhizal inoculum was 

placed. Five seedlings were transplanted into a pot. Hoagland’s solution was applied for nutrition 

(modified to 25% P, Appendix 2) every alternate day and irrigated on the following day. Plants 

were grown for seven weeks as mycorrhizal associations can  form within this period (Miyasaka et 

al. 2003).  

 

Roots were examined for mycorrhizal associations and other relationships. Roots were uprooted and 

washed avoiding loss of fine laterals, then immersed in a bucket of water and agitated gently. They 

were cleaned vigorously with a hose over a 2 mm pore size screen ensuring finest laterals were not 

lost. Root samples were stored in 50% ethanol after taking root fresh weight. Roots were chopped 

into 2 cm long segments and a 2 g sample was taken for examination. Roots were put in falcon 
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tubes (50 mL) and autoclaved in KOH 10% (w/v) at 1210C for 25 minutes and then rinsed in a fine 

sieve. Roots were stained in trypan blue 0.05% w/v in lactoglycerol solution (1:1:1 lactic acid, 

glycerol and water) (Bevege 1968; Phillip & Hayman 1970; Kormanik & McGraw 1982) by 

autoclaving for 25 minutes at 1210C. To prepare this solution, trypan blue was dissolved in water 

and equal volumes of lactic acid and glycerol were added. Roots were rinsed on a fine sieve after 

staining. Then roots were stored in plastic vials with tight-sealing lids containing 50% glycerol. The 

colonization was measured by the gridline intersection method (Giovannetti & Mosse 1980) (Plate 

4.4) in which cleared and stained roots were randomly dispersed with a fine forceps and a dissecting 

needle in a 8 x 8 square cm Petri plate with gridlines where horizontal and vertical lines were 

followed. The colonized or non-colonized portions of roots on the line intersects were counted 

separately. The number of root segments colonized and spread on each vertical and horizontal 

intersect was counted and divided by the total number of segments. The root length occupied by 

mycorrhizae (proportion) was observed under the microscope and images were captured as shown 

in Plate 4.5. 

 
Plate 4.4 Petri plate with 8x8 square cm used for counting colonized roots by mycorrhiza by 

gridline intersect method. 
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Plate 4.5 Capturing image of mycorrhizae through microscope. The blue lid Falcon tubes were used 

for storage of the roots 

 

4.3.10 Statistical analysis  

Statistical analysis was done using Minitab 16, version 4.0 (Minitab 2005) statistical package. The 

data were analysed in three steps. Firstly, all data (including control) were analyzed (Table 4.2) by 

one-way ANOVA to obtain experimental error variance and all treatment variance. Secondly, the 

factorial subset was analysed through General Linear Model of ‘biochar type’ ‘application rates’ 

biochar type*application rates. Thirdly, the results of the two analyses were combined to get final 

results including comparison with the control in Microsoft Excel 2010, version 14.0 (Microsoft 

2010). The individual standard errors of the means were derived from the standard deviation of the 

mean (SD) and number of observations (N). The Figures were plotted in Microsoft Excel software. 

The mycorrhizal data were transformed by log-transformation for analysis and then values were 

back-transformed.  
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Table 4.2 a. One Way ANOVA for all treatments, b. General Linear Model for factorial analysis, 

combined ANOVA from one-way ANOVA and general linear model 

a. 

Source Df 

Replication (r) ( r-1), 3-1 = 2 

All treatments (t) (t-1), 13-1= 12 

Error (T-t), 38-12 = 26 

Total (T) (tr-1), 13 x 3-1= 38 

b 
Source Df 

Replication (r) (r-1), 3-1 = 2 

Biochar (b) (b-1), 3-1= 2 

Application rates (a) (a-1), 4-1= 3 

Biochar x Application rates (b-1) (a-1), (2)(3)= 6 

Error ba(r-1), 3 x 4 (3-1) = 24 

Total (T) (T-1), 36-1= 35 

c 
Source Df 

All treatments (t) (t-1), 13-1= 12 

Biochar (b) (b-1), 3-1= 2 

Application rates (a) (a-1), 4-1= 3 

Biochar x Application rates (b-1) (a-1), (2)(3)= 6 

Factorial subset (f) (b-1) + (a-1) +  (b-1) (a-1), 2 + 3 + 6 = 11 

Extra treatment [(t-1) –f], 12-11 = 1 

Error (T-t), 39-13 = 26 

Total (T) (T-1), 39-1= 38 

 

4.4 Results  

4.4.1 Onion trial 

Effect of biochar types 

Significant differences were observed for plant height in the second year due to the effect of biochar 

type (Table 4.3) but no differences were found in the first year. In the second year, the grouping of 

means overlapped until the second week after planting. In the third week and onwards, Sugarcane 

Trash and Green Waste A biochar had similar and greater positive effect than the Green Waste B 
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biochar. All biochars increased plant height as compared to the control. At the end of the 

observation period (7th week of planting), the plant height increased by >100% due to Sugarcane 

Trash and Green Waste A while it increased by >75% by Green Waste B compared to the control 

indicating all biochars were positively influencing growth. 

 

Table 4.3 Mean values for weekly plant height as influenced by biochar types in the second year. 

 

Different letters in the same column indicate significant differences between the treatment means (N 

= 12 for biochar types, 3 for control) at α=0.05 level of significance. The ± values indicate standard 

error of the means. 

 

Biochars were significantly different for root length in the second year only (Table 4.4) where 

Sugarcane Trash had greater influence on root length which was at a par with Green Waste A. 

Green Waste A and Green Waste B were also at a par but Sugarcane Trash and Green Waste B 

were statistically different. The root length of biochar applied plants was at least double that for the 

control plants indicating the effectiveness of biochar. 

 

Table 4.4 Mean values for weekly plant height as influenced by biochar types 

in the second year. 

Biochar types Root length (cm) 

Sugarcane Trash 705.3 ± 44.03a 

Green Waste A 605.0 ± 23.82ab 

Green Waste B 578.2 ± 28.38b 

Control 280.8 ± 12.87c 

Biochar types Plant height (cm) in weeks 

1st 2nd 3rd 4th 5th 6th 7th 

Sugarcane Trash 9.24 ± 
0.16a 

15.76 ± 
0.26ab 

18.01 ± 
0.41a 

21.72 ± 
0.48a 

24.56 ± 
0.72a 

28.48 ± 
0.72a 

36.44 ± 
0.94a 

Green Waste A 9.00 ± 
0.25ab 

16.26 ± 
0.18a 

17.84 ± 
0.13a 

21.81 ± 
0.34a 

24.21 ± 
0.38a 

28.46 ± 
0.63a 

35.40 ± 
1.03a 

Green Waste B 8.30 ± 
0.18b 

15.17 ± 
0.22b 

16.43 ± 
0.31b 

19.74 ± 
0.57b 

21.55 ± 
0.51b 

24.83 ± 
0.65b 

30.86 ± 
0.82b 

Control 7.80 ± 
0.17b 

12.43 ± 
0.67c 

14.10 ± 
0.49c 

14.43 ± 
0.62c 

14.48 ± 
0.72c 

15.99 ± 
1.20c 

17.67 ± 
1.15c 
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 Different letters in the same column indicate significant differences between the treatment means 

(N = 12 for biochar types, 3 for control) at α=0.05 level of significance. The ± values indicate 

standard error of the means. 

Table 4.5 Mean values for colonized percent of root length. Log 10 values followed by 

back transformed mean of original mean in parenthesis 

Biochar types Colonized % root length 

Year 1 Year 2 Mean 

Sugarcane Trash 1.06 (10.97) ± 0.04b 1.31 (21.8)  ± 0.23a 16.4 

Green Waste A 1.26 (17.6) ± 0.02a 1.22 (17.5)  ± 0.03b 17.6 

Green Waste B 1.18 (15.92) ± 0.04a 1.19 (16.1) ± 0.13b 16.01 

Control 0.37 (1.38) ± 0.07c 0.73 (6.7) ± 0.21c 4.04 

 

Different letters in the same column indicate significant differences between the treatment means 

(N = 12 for biochar types, 3 for control) at α=0.05 level of significance. The ± values indicate 

standard error of the means. 

 

Significant differences were also observed for colonized percent of root length, colonized root 

length and their logarithmically transformed values (Table 4.5 and Table 4.6) in each year of 

observation. In both years, Green Waste A and Green Waste B had similar effect on the percent of 

colonized root length while Sugarcane Trash had less colonization in first year and greater in 

second year than the other biochars. Interestingly, all biochars had significantly higher colonization 

than the control. It was notable that the difference for average colonization of two years between the 

least and the most colonizing biochars was only about 1% while the difference was about four times 

greater in biochar applied roots than in control.  

 

Table 4.6 Mean values for colonized root length. Log 10 values followed by back transformed 

mean of original mean in parenthesis 

Biochar types Colonized root length 

Year 1 Year 2 Mean 

Sugarcane Trash 1.80 (70.57) ± 0.02b 2.14 (164.48) ± 0.04a 117.5 

Green Waste A 2.04 (120.54) ± 0.02a 1.95 (103.38) ± 0.02b 112.0 

Green Waste B 1.89 (107.56) ± 0.05b 1.95 (104.8) ± 0.03b 106.2 

Control 0.53 (3.64) ± 0.12c 1.18(18.15) ± 0.19c 10.9 
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The difference in biochar types was statistically significant for electrical conductivity and soil pH in 

2nd year only (Table 4.7). Sugarcane Trash and Green Waste A were at a par and the two green 

wastes were similar. However, there was a difference between Sugarcane Trash and Green Waste 

B. These results were not solely reliant on the concentration of salts in biochar because the EC was 

determined after harvesting of plants and several applications of Hoagland’s nutrient solution 

during the plant growth. 

 

The pH of soil was greatest in sand amended with Green Waste A, reflecting its high acid 

neutralizing capacity (Table 4.7). Green Waste B and Sugarcane Trash had similar effect on soil 

pH. Treatments with biochar showed significantly greater pH than the control.  

 

Table 4.7 Mean values for soil Electrical conductivity and pH. 

Biochar types Electrical conductivity 

(dS m-1) 

Soil pH 

Sugarcane Trash 1.9 ± 0.11a 7.3 ± 0.03b 

Green Waste A 1.6 ± 0.16ab 7.9 ± 0.09a 

Green Waste B 1.3 ± 0.05b 7.3 ± 0.06b 

Control 0.8 ± 0.06c 6.7 ± 0.07c 

 

Different letters in the same column indicate significant differences between the treatment means 

(N = 12 for biochar types, 3 for control) at α=0.05 level of significance. The ± values indicate 

standard error of the means. 

 

Effect of biochar application rates 

Significant differences were observed between application rates for several parameters in both 

years. The trend for plant height was to increase as application rates of biochar increased (Table 

4.8). Overall height was less in the first year than in the second. Rates of 30 t ha-1 and greater were 

more effective for increasing height than lower rates. At the seventh week after planting in the 

second year, 50 and 100 t ha-1 had similar effect on height followed by 30 t ha-1while  30 t ha-1 was 

highest in the first year. Average data showed a great difference between control and 10 t ha-1, 10 t 

ha-1 and other high levels and control versus all treatments. As a result of less difference between 

the means for 30, 50 and 100 t ha-1, 30 t ha-1 was likely to be a preferable rate for onion plants. 

Differences in plant growth were clearly distinguished (Plate 4.6).   
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Table 4.8 Mean values for weekly plant height of onion. a. 2nd and 3rd week, b. 4th and 5th week, c. 

6th and 7th week of planting. Different letters in the same column indicate significant 

differences between the treatment means (N = 9 for biochar rates, 3 for control) at α=0.05 

level of significance. The ± values indicate standard error of the means. 

a. 2nd and 3rd week 

Application 

rates (t ha-1) 

Plant height (cm) in weeks 

2nd week 3rd week 

 1st year 2nd year Mean 1st year 2nd year Mean 

10 8.42 ±  

0.21b 

14.96 ± 

0.28b 

11.69 11.31 ± 

0.28c 

15.68 ± 

0.27c 

13.50 

30 13.12 ± 

0.24a 

16.01 ± 

0.22ab 

14.57 18.03 ± 

0.32a 

17.53 ± 

0.32b 

17.78 

50 13.17 ± 

0.13a 

15.44 ± 

0.31ab 

14.31 16.11 ± 

0.39b 

17.42 ± 

0.46b 

16.77 

100 13.28 ± 

0.18a 

16.51 ± 

0.21a 

14.90 15.17 ± 

0.33b 

19.08 ± 

0.26a 

17.13 

Control 5.38± 0.12c 12.43 ± 

0.67c 

10.91 8.32± 

0.32d 

14.10 ± 

0.49c 

11.21 

b. 4th and 5th week 

Application 

rates (t ha-1) 

Plant height (cm) in weeks 

4th week 5th week 

 1st year 2nd year Mean 1st year 2nd year Mean 

10 12.86 ± 

0.34d 

17.23 ± 

0.51c 

15.05 14.75 ±  

0.36c 

18.86 ±  

0.70c 

16.81 

30 21.63 ± 

0.38a 

20.70 ± 

0.47b 

21.17 25.81±  

0.42a 

22.70 ±  

0.62b 

24.26 

50 19.31 ± 

0.45b 

22.21 ± 

0.76ab 

21.76 23.16 ± 

0.66ab 

24.88 ±  

0.70ab 

24.02 

100 17.51 ± 

0.37c 

24.22 ± 

0.40a 

20.87 21.81 ± 

 1.11b 

27.31 ±  

0.47a 

24.56 

Control 9.63 ± 

 0.37e 

14.43 ± 

0.62d 

12.02 11.90 ± 

 0.45c 

14.48 ±  

0.72d 

13.19 
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c. 6th and 7th week 

Application 

rates (t ha-1) 

Plant height (cm) in weeks 

6th week 7th week 

 1st year 2nd year Mean 1st year 2nd year Mean 

10 17.92 ±  

0.36d 

20.52 ± 

0.97c 

19.22 20.89 ±  

0.399d 

25.39 ± 

1.11c 

23.14 

30 30.78 ±  

0.36a 

26.76 ± 

0.90b 

28.77 35.77 ±  

0.23a 

32.70 ± 

1.44b 

34.24 

50 27.78 ±  

0.57b 

29.89 ± 

0.85ab 

28.84 31.59 ±  

0.22b 

38.76 ± 

1.00a 

35.18 

100 25.08 ±  

0.33c 

31.87 ± 

0.38a 

28.48 29.33 ±  

0.12c 

40.04 ± 

0.75a 

34.70 

Control 14.80 ±  

0.65e 

15.99 ± 

1.19c 

15.40 17.73 ±  

0.87e 

17.67 ± 

1.15d 

17.7 

 
 

         

A     B    C 

Plate 4.6 Effect of biochar application rates (control, 10, 30, 50 and 100 t ha-1 from left to right in 

each plate) on growth of onion after 7 weeks of planting, from left to right A. Sugarcane 

Trash, B. Green Waste A and C.  Green Waste B. 

 

Shoot fresh weight was greater in the second year than in the first (Figure 4.1). In the first year, the 

shoot weight increased up to 100 t ha-1 but in the second year, it declined after 30 t ha-1.  The weight 

in the second year was four times more than in the first year when biochars were applied at 30 t ha-

1. When they were applied at 10, 50, 100 t ha-1 and control, the weight was three times more in the 

second year than in the first year. However, the average weight was similar in 30, 50 and 100 t ha-1. 

All application rates showed a greater shoot fresh weight than the control. The great difference 

between the years was associated with the weight of more leaves and bulbs formed in the second 

year in an environment quite different from the first year.    
 



58 
 

 
Figure 4.1 Shoot fresh weight of onion as influenced by the biochar application rates. The different 

letters in the same data series indicate significant differences between treatment means 

(N = 9 for biochar rates, 3 for control) at α=0.05 level of significance. The bars represent 

the standard error of the means. 

 

  
Figure 4.2 Shoot dry weight of onion as influenced by the biochar application rates. Different 

letters in the same series indicate significant differences between the treatment means (N = 9 for 

biochar rates, 3 for control) at α=0.05 level of significance. The vertical bars indicate standard error 

of the means. 

 

The shoot dry weight increased up to  100 t ha-1 but it was not five times or more than 10 t ha-1 

(Figure 4.2). There was no difference between the means of shoot dry weight at 50 and 100 t ha-1 in 

both years. In the second year, no clear difference in weight was observed between 30, 50 and 100 t 
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ha-1. There was some difference in weight between 10 t ha-1 and control but they were similar in the 

second year. The average dry weight increased up to application of 30 t ha-1 biochar and thereafter 

declined. This variation in dry weight over the years was mainly due to their growth in different 

environments and the duration of drying. They were dried for 48 hours at 650C. 

      
 

Treatment means were significantly different for root fresh weight in the second year only (Table 

4.9). Root fresh weights produced by 30, 50 and 100 t ha-1 were statistically similar but they were 

different from 10 t ha-1 and control. Control and 10 t ha-1 produced similar root fresh weight. The 

highest root fresh weight was recorded for 30 t ha-1 biochar followed by 50 and 100 t ha-1. The rate 

of 30 t ha-1 and more produced two times more weight than the control. 

 
Table 4.9 Mean values for root fresh weight of onion as influenced by biochar 

rates in the second year. 

Application Rates (t ha-1) Root fresh weight (g) 

10 2.37 ± 0.10b 

30 4.86 ± 0.40a 

50 4.46 ± 0.43a 

100 4.07 ± 0.43a 

Control 2.33 ± 0.18b 

 

Different letters in the same column indicate significant differences between the treatment means 

(N = 9 for biochar rates, 3 for control) at α=0.05 level of significance. The ± values indicate 

standard error of the means. 

 

Means of electrical conductivity and pH of growth medium increased as rate of biochars increased 

in the second year (Figure 4.3). Data showed no difference between treatments in the first year. In 

the second year, the EC and pH were greatest in the sand amended with 100 t ha-1 biochar. Sand 

showed neutral pH when amended with 10 t ha-1. However, pH of the medium treated with 30 and 

50 t ha-1 was statistically similar. As the values are antilogarithms, differences were higher when 

they were converted into positive logarithmic value.  
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Figure 4.3 Soil electrical conductivity (EC) and pH as influenced by biochar rates in the 2nd year. 

Different letters in the same column indicate significant differences between the 

treatment means (N = 9 for biochar rates, 3 for control) at α=0.05 level of significance. 

Vertical bars indicate standard error of the means. 

 

There were no differences among 30, 50 and 100 t ha-1 for root length of onion in both years (Table 

4.10). The rates of 10 t ha-1 and control were also similar for root length. Average data showed that  

30 t ha-1 produced root length more than 2.5 times compared to the control. The average data also 

revealed that the root length increased up to 30 t ha-1 and thereafter decreased. 

 

Table 4.10 Mean values for root length of onion as influenced by biochar rates 

Application 

Rates (t ha-1) 

Root length (cm) 

1st year 2nd year Mean 

10 362.7 ± 32.43b 336.9 ± 23.63b 349.8 

30 743.8 ± 27.60a 748.1 ± 39.70a 746.0 

50 754.2 ± 44.03a 716.6 ± 42.93a 735.4 

100 719.1 ±59.93a 716.5 ± 41.90a 717.8 

Control 264.1 ± 18.65b 280.8 ± 12.87b 272.5 

 

Different letters in the same column indicate significant differences between the treatment means 

(N = 9 for biochar rates, 3 for control) at α=0.05 level of significance. The ± values indicate 

standard error of the means. 
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Colonization of root length significantly increased by addition of biochar in both years (Table 4.11). 

In the first year, 30 t ha-1 increased the percent of colonization by 13.8 times over the control. 

Likewise, the colonization percentage increased by about 6.9, 12.6, and 9.2 times over the control 

with 10, 50 and 100 t ha-1 biochar. Means of 30, 50 and 100 t ha-1 statistically overlapped indicating 

30 t ha-1 had similar colonization percent to 100 t ha-1. 

 

In the second year, no difference was observed between the means of control and 10 t ha-1 but they 

were less than the means for 30, 50 and 100 t ha-1. The means of these three treatments were 

similar. The average of the two-year means showed that application of 10, 30, 50 and 100 t ha-1 

biochar could increase colonization percent by 2.4, 5.2, 4.7 and 4.0 times, respectively over the 

control. The colonization patterns are shown in the Plate 4.7. 

 

Increasing the application rates of biochar had significantly positive effect on the colonized root 

length in both years (Table 4.12). In the first year, the increment was 9.8, 39.2, 36.5, 25.0 times 

greater than control with 10, 30, 50 and 100 t ha-1 respectively. The means of 30 and 50t ha-1 were 

statistically similar but greater than the mean of 100 t ha-1. In the second year, the colonized length 

was 2.1, 9.5, 8.0 and 7.8 times more than the control for 10, 30, 50 and 100 t ha-1 respectively. The 

length was similar with the application of 30, 50 and 100 t ha-1. On average, colonization was 

greatest with 30 t ha-1 biochar which was 14.4 and 4.3 times more than the control and 10 t ha-1, 

respectively. 

 

Table 4.11 Mean values for colonized precent of root length of onion as influenced by 

biochar rates. Different letters in the same column indicate significant 

differences between the treatment means (N = 9 for biochar rates, 3 for control) 

at α=0.05 level of significance. The ± values indicate standard error of the 

means. 

Application rates 

(t ha-1) 

Colonized % of root length 

Year 1 Year 2 Mean 

10 1.00 (9.6) ± 0.04c 1.03 (11.7) ± 0.03b 10.7 

30 1.29 (19.3) ± 0.04a 1.35 (22.7) ± 0.01a 21.0 

50 1.25 (17.6) ± 0.03ab 1.30 (20.1) ± 0.02a 18.9 

100 1.12 (12.9) ± 0.03bc 1.29 (19.9) ± 0.02a 16.4 

Control 0.37 (1.4) ± 0.07d 1.07 (6.7) ± 0.21b 4.05 
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Table 4.12 Mean values for colonized root length of onion as influenced by biochar rates. 

Different letters in the same column indicate significant differences between 

the treatment means (N = 9 for biochar rates, 3 for control) at α=0.05 level of 

significance. The ± values indicate standard error of the means. 

Application rates 

(t ha-1) 

Colonized root length (cm) 

Year 1 Year 2 Mean 

10 1.48 (35.4) ± 0.03c 1.55 (37.7) ± 0.12b 36.6 

30 2.13 (141.2) ± 0.03a 2.22 (172.2)  ± 0.03a 156.7 

50 2.10 (131.5) ± 0.03a 2.14 (144.9) ± 0.03a 138.2 

100 1.93 (90.1) ± 0.03b 2.14 (142.1) ± 0.03a 116.1 

Control 0.53 (3.6) ± 0.12d 1.18 (18.2) ± 0.19c 10.9 

 

 

Table 4.13 Mean values for root fresh weight and colonized root length of onion as influenced by 

interaction of biochar types and application rates. The different letters in the same 

column indicate significant difference between interactions (N = 3) at α=0.05 level of 

significance. The ± values represent the standard error of the means. 

Biochar types Biochar rates ( t ha-1) Root fresh weight (g) Log colonized root length 

Sugarcane Trash 10 2.26 ± 0.48ab 1.48 (30.4) ± 0.04cd 

30 1.83 ± 0.47b 2.01 (103.2) ± 0.02ab 

50 2.44 ± 0.61ab 1.97 (93.3) ± 0.04ab 

100 2.42 ± 0.38ab 1.74 (55.4) ± 0.03bc 

Green Waste A 

 

10 2.31 ± 0.70ab 1.77 (59.1) ± 0.03bc 

30 2.09 ± 0.04ab 2.23 (171.7) ± 0.04a 

50 5.87 ± 1.67a 2.18 (152.6) ± 0.04a 

100 2.43 ± 0.49ab 1.99 (98.7) ± 0.04ab 

Green Waste B 

 

 

10 2.03 ± 0.70b 1.20 (16.83) ± 0.11d 

30 3.29 ± 0.99ab 3.16 (148.8) ± 0.09a 

50 1.95 ± 0.27b 2.15 (148.6) ± 0.10a 

100 1.88 ± 0.80b 2.05 (116.1) ± 0.09ab 

Control  1.04 ± 0.43b 0.53 (3.64) ± 0.12e 
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Interaction effects 

The interaction of biochar types and application rates was not significant for any parameter except 

root fresh weight and colonized root length in the first year and soil EC and pH in the second year. 

The details of the parameters are shown in Tables 4.13 and 4.14. These data could indicate that 

some interactions had significantly positive effect on root fresh weight, colonized root length, EC 

and pH over the control.  
 

Table 4.14 Mean values for soil EC and pH of onion as influenced by interaction of biochar 

types and application rates. The different letters in the same column indicate 

significant difference between interactions (N = 3) at α=0.05 level of significance. 

The ± values represent the standard error of the means. 

Biochar types Biochar rates (t ha-1) EC (dS m-1) pH 

Sugarcane trash 10 0.8 ± 0.00c 7.1 ± 0.05de 

30 1.1 ± 0.17c 7.3 ± 0.09cde 

50 2.1 ± 0.16abc 7.5 ± 0.08cde 

100 3.6 ± 0.55a 7.6 ± 0.06bcd 

Green waste A 10 0.8 ± 0.18c 6.9 ± 0.09e 

30 0.9 ± 0.12c 7.9 ± 0.28bc 

50 1.8 ± 0.32bc 8.2 ± 0.18ab 

100 2.6 ± 0.69ab 8.7 ± 0.14a 

Green waste B 10 0.8 ± 0.06c 6.9 ± 0.09e 

30 1.0 ± 0.07c 7.1 ± 0.10de 

50 1.5 ± 0.24bc 7.4 ± 0.12cde 

100 1.7 ± 0.12bc 7.7 ± 0.18bcd 

Control  0.8 ± 0.06c 6.7 ± 0.07e 
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Plate 4.7 Patterns of mycorrhizal colonization of onion roots observed at 40x in microscope 

 
4.4.2 Tomato trial 

Effect of biochar type 

 

Table 4.15 Mean values for root fresh weight of tomato as influenced by biochar types in the 

first year. The different letters in the same column indicate significant difference 

between treatments (N = 12 for biochar types and 3 for control) at α=0.05 level of 

significance. The ± values represent the standard error of the means.    

Biochar types Root fresh weight (g) 

Sugarcane trash 6.28 ± 0.19b 

Green waste A 7.93 ± 0.45a 

Green waste B 6.44 ± 0.40b 

Control 3.31 ± 1.00c 

 

Statistically, all biochar types were similar for most of the parameters in first year of observation 

except root fresh weight (Table 4.15). Mean root fresh weight for Green Waste A was 1.65 and 1.49 

g more than for Sugarcane Trash and Green Waste B respectively. However, the weight was two 

times greater in the plants treated with biochars than control. 

 

Hyphae  

Vesicle  

Mycorrhizal network  
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In the second year, means of soil EC and colonized percent of root length were different between 

biochar types (Table 4.16). EC was greater in soil treated with Green Waste A than the Sugarcane 

Trash biochar. The two green waste biochars showed similar ECs. These data are not a result of sole 

effect of biochars because additional salts were applied through Hoagland’s nutrient solution to 

fulfil the plant requirement for nutrients. 

 

The colonized percent of root length was significantly higher in biochar treated roots than the 

control. The percentages were 3.9, 3.3 and 3.2 times more than the control for Sugarcane Trash, 

Green Waste A and Green Waste B respectively. Green Waste A and B were similar for the 

percentage but had lower root length values than Sugarcane Trash.  

 

Table 4.16 Mean values for colonization levels of root length and colonized root length of tomato 

as influenced by biochar types in the second year. The different letters in the same 

column indicate significant difference between treatments (N = 12 for biochar type and 

3 for control) at α=0.05 level of significance. The ± values represent the standard error 

of the means. 

Biochar types EC (dS m-1) Colonized % root length 

Sugarcane trash 0.48 ± 0.02b 1.10 (12.91) ± 0.02a 

Green waste A 0.59 ± 0.03a 1.04 (11.02) ± 0.02b 

Green waste B 0.56 ± 0.02ab 1.02 (10.58) ± 0.01b 

Control 0.23 ± 0.03c 0.50 (3.30) ± 0.10c 
 
 

The pH was similar in the sand amended with Sugarcane Trash, Green Waste B and Control (Figure 

4.4). Yet, they tended to increase as expected for the acid neutralizing capacity of the respective 

biochar. The average data of two years showed that the pH was maintained around neutral in 

control and it was beyond 8 in Green Waste A treated sand. However, the difference is small in the 

Figure; the actual difference is higher because it is antilogarithmic value of hydrogen ion 

concentration that could differentiate by a value of 10. 
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Figure 4.4 Soil pH over years as influenced by biochar types. The different letters in the same 

series indicate significant difference between treatments (N = 12 for biochar type and 

3 for control) at α=0.05 level of significance. The vertical bars represent the standard 

error of the means. 

 

Effect of application rates 

Significant differences between application rates for plant height were observed after the fifth week 

of planting (Table 4.17) in both years. The morphological difference in plant architecture due to 

different rates of biochar has been shown in Plate 4.8. Overall growth was greater in the second 

year than in the first. In the fifth week, plant height was similar for 30, 50 and 100 t ha-1 in the 

second year, while 30 and 50 t ha-1 had greater plant height than 10,  100 t ha-1 and control in the 

first year. The average of two years’ data showed that addition of 50 t ha-1 biochar resulted in 2.3, 

1.5, 1.1 and 1.2 times greater plant height than control. 

 

In 6th week, height was about 2 times more in 2nd year than the 1st year. The rate of 50 t ha-1 

produced the greatest height in 2nd year while it was at a par with that for 30 t ha-1 in 1st year. In 1st 

year, all biochar rates produced greater height than control. On average, height produced by 50 t ha-

1 was 2.5, 1.5, 1.2 and 1.2 times of that generated by control, 10, 30 and 100 t ha-1 respectively. 

 

In the seventh week, all biochar rates produced greater plant height than the control in both years. In 

the second year, application of 50 t ha-1 biochar produced the greatest plant height which was 2 

times the height of the control, 1.5 times 10 t ha-1 and 1.2 times 30 and 100 t ha-1 rates. In the first 

year, 30 and 50 t ha-1 produced similar heights but greater than control and 10 t ha-1. On average, 

the height created by 50 t ha-1 biochar was 2.4, 1.5, 1.1 and 1.2 times that of control, 10, 30 and 100 

t ha-1 respectively.   
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Table 4.17 Mean values for weekly plant height as influenced by biochar rates. The different letters in the same column indicate significant 

difference between treatments (N = 9 for biochar application rates and 3 for control) at α=0.05 level of significance. The ± values 

represent the standard error of the means. 

Application rates 

 (t ha-1) 

Plant height (cm) in weeks 

5th week 6th  week 7th week 

1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 

10 14.4 ± 1.29c 32.8 ± 0.65b 23.6 20.5 ± 1.65c 39.6 ± 0.99c 30.0 24.3 ± 1.19c 42.5 ± 0.87c 33.4 

30 20.7 ± 0.53ab 41.7 ± 1.38a 31.2 28.2 ± 0.91ab 49.7 ± 1.45b 39.0 32.5 ± 0.82ab 53.7 ± 1.44b 43.1 

50 22.6 ± 0.66a 46.7 ± 1.75a 34.7 30.0 ± 0.72a 59.7 ± 0.56a 45.0 34.3 ± 0.62a 63.5 ± 0.69a 48.9 

100 17.2 ± 1.02bc 42.6 ± 0.62a 29.9 24.2 ± 1.35bc 50.8 ± 1.04b 37.5 28.8 ± 1.11b 53.8 ± 1.03b 41.3 

Control 9.4 ± 1.05c 20.2 ± 3.22c 14.8 13.1 ± 1.18d 22.8 ± 4.64c 18.0 16.5 ± 1.26d 25.1 ± 3.92d 20.8 

 

     
  

A     B     C 

Plate 4.8 Effect of biochar application rates (control, 10, 30, 50 and 100 t ha-1 from left to right in each plate) on growth of tomato after six weeks of 

planting, A. Sugarcane Trash, B. Green Waste A and C. Green Waste B 
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Shoot fresh weight was greater in the second year than in the first. In the second year, the weight 

was similar for 30, 50 and 100 t ha-1 biochar but it was significantly higher than 10 t ha-1 and 

control (Figure 4.5). All the biochar rates increased the weight over control. 

 

In the first year, the effect of application rates on shoot fresh weight was significantly greater for 50 

and 100 t ha-1 than the rest. The height for 30 t ha-1 was significantly greater than 10 t ha-1 and 

control. Interestingly, 10 t ha-1 and control produced similar shoot fresh weight. 

 

The two-year average data showed that fresh weight increased up to 50 t ha-1 thereafter started 

declining. Here, 50 t ha-1 was most effective for shoot fresh weight.  

  

 
Figure 4.5 Shoot fresh weight of tomato as influenced by biochar rates. The different letters in the 

same series indicate significant difference between treatments (N = 9 for biochar 

application rates and 3 for control) at α=0.05 level of significance. The vertical bars 

represent the standard error of the means. 
 

Application rates were significantly different for shoot dry weight (Figure 4.6). In the second year, 

weight for 50 t ha-1 was greater than for control, 10 and 100 t ha-1. The rate 30 t ha-1 was similar for 

50 and 100 t ha-1. The rate of 10 t ha-1 produced significantly lower weight than higher rates but 

greater weight than the control.  

 

In the first year, 30, 50 and 100 t ha-1 produced similar but significantly greater shoot dry weight 

than 10 tha-1 and control. Control had lower weight than 10 t ha-1 and  higher rates. 
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The average weight increased from addition of 10 t to 50 t ha-1 biochar and thereafter decreased. 

The optimum rate was 50 t ha-1 biochar for weight but increase in weight was not proportional to 

increased amount of biochar.   

 

 

 
Figure 4.6 Shoot dry weight of tomato as influenced by biochar rates. The different letters in the 

same series indicate significant difference between treatments (N = 9 for biochar 

application rates and 3 for control) at α=0.05 level of significance. The vertical bars 

represent the standard error of the means. 
 

There were significant differences for root fresh weight due to the effect of biochar rates in both 

years of observation (Table 4.18). In the first year, 10, 30 and 50 t ha-1 were similar for weight but 

these weights were significantly greater than the weight for control. The weights for 10, 30, 50 and 

100 t ha-1 were respectively 1.9, 2.2, 2.4 and 1.8 times more than for control. In the second year, 50 

t ha-1 produced the greatest root fresh weight while weights with 30 and 100 t ha-1 were similar. All 

biochar rates produced greater root fresh weight than control. For example, the weight with 50 t ha-1 

biochar was 3.5 times greater than control. The average weight for 50 t ha-1 was 2.9 times the 

weight of the control. 

 

Soil pH increased as biochar rates increased in both years. All biochar rates increased the pH from 

neutrality as pH was maintained at neutral by adding dolomite.  
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Table 4.18 Mean values for root fresh weight of tomato and soil pH as influenced by biochar rates. 

The different letters in the same column indicate significant difference between 

treatments (N = 9 for biochar application rates and 3 for control) at α=0.05 level of 

significance. The ± values represent the standard error of the means. 

Application 

rates (t ha-1) 

Root fresh weight (g) Soil pH 

1st year 2nd year Mean 1st year 2nd year Mean 

10 6.41 ± 0.49ab 5.36 ± 0.34c 5.89 7.0 ± 0.07c 7.2 ± 0.03b 7.1 

30 7.21 ± 0.37ab 8.59 ± 0.32b 7.90 7.2 ± 0.05bc 7.6 ± 0.23b 7.5 

50 7.83 ± 0.43a 10.35 ± 0.18a 9.09 7.5 ± 0.13b 7.7 ± 0.03b 7.6 

100 6.09 ± 0.38b 9.04 ± 0.18b 7.57 7.9 ± 0.05a 8.6 ± 0.02a 8.3 

Control 3.31 ± 1.00c 2.97 ± 0.96d 3.14 7.0  ± 0.06c 6.8 ± 0.02b 6.9 

 

Significant differences between biochar rates were observed for EC and root length in the second 

year only (Table 4.19). In that year, EC increased as the level of biochar increased.  EC increased 

by 63% and 144% when the biochar rate was raised from 10 to 30 t ha-1 and 50 t ha-1 respectively. 

However, EC increased by 50% when the rate was raised from 30 to 50 t ha-1. The increment was 

23% when the biochar rate doubled from 50 to 100 t ha-1. It was notable that EC values were not 

only associated with the salts contained in biochar but they were also related to the salts added from 

the nutrient solution. 
  
Root length was significantly higher in biochar applied plants than in control plants. Root length 

increased up to 50 t ha-1; thereafter it decreased. There were 26.5%, 54.4% and 22.1% increments in 

root length from application of 30, 50 and 100 t ha-1 biochar over the rate of 10 t ha-1, respectively. 

Similarly, there were 67%, 111.3%, 157.9% and 103.9% increments in root length by 10, 30, 50 

and 100 t ha-1 biochar over control, respectively. However, the increment in root length by 

increasing from 10 to 30 t ha-1 was greater (26.5%) as compared to the same increase from 30 to 50 

t ha-1 (22%). The results indicated that extremely high rates of biochar could be harmful for root 

development.  
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Table 4.19 Mean values for soil EC and root length of tomato as influenced by biochar rates. 

The different letters in the same column indicate significant difference between 

treatments (N = 9 for biochar application rates and 3 for control) at α=0.05 level of 

significance. The ± values represent the standard error of the means. 

Application rates (t ha-1) EC (dS m-1) (2nd year) Root length (cm) (2nd year) 

10 0.27 ± 0.02d 1538 ± 32.93c 

30 0.44 ± 0.02c 1946 ± 47.77b 

50 0.66 ± 0.03b 2375 ± 44.50a 

100 0.81 ± 0.02a 1878 ± 26.67b 

Control 0.23 ± 0.03e 921 ± 55.08d 

  

Mycorrhizal colonization assessment revealed no clear distinction between the biochar rates in first 

year but significant difference was observed between 10 t ha-1 and higher rates in the second year 

(Table 4.20). All biochar rates were significantly different from the control. On average, the highest 

colonized percent of root length was observed for 50 t ha-1 which was 5.2 times more than control. 

The colonized percentage of root length at the lowest biochar rate (10 t ha-1) was 3 times more than 

control. The colonization observed for highest biochar rate (100 t ha-1) indicated that mycorrhizae 

could colonize even at these rates but there might be some decrease at extremely high rates. The 

patterns of colonization are shown in Plate 4.9.  

 

The biochar rate of 10 t ha-1 produced significantly greater colonized root length than control but 

yielded lower colonized root length than the other rates in first year (Table 4.21). The rates 30, 50 

and 100 t ha-1 showed similar colonized root length. In second year, 50 t ha-1 produced significantly 

higher colonized root length than other rates. Among the rates, 30 and 100 t ha-1 were similar for 

length. However, all biochar rates had greater colonized root length than control. The average 

colonized root length showed that the length for 10, 30, 50 and 100 t ha-1 biochar was 5.1, 9.6, 13.9 

and 9.98 times greater than control. The increment in colonized root length was lower (45.2%) with 

the increase from 30 to 50 t ha-1 compared to the same increase from 10 to 30 t ha-1 (85.7%).     
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Table 4.20 Mean values for colonized percent of root length of tomato as influenced by 

biochar rates. Log values are with the per cent in parenthesis. The different 

letters in the same column indicate significant difference between treatments (N 

= 9 for biochar application rates and 3 for control) at α=0.05 level of 

significance. The ± values represent the standard error of the means. 

Application rates (t ha-1) Colonized % root length 

1st year 2nd year Mean 

10 0.71 (4.97) ± 0.10b 0.95 (9.06) ± 0.02b 7.02 

30 0.94 (7.90) ± 0.03ab 1.06 (11.53) ± 0.02a 9.72 

50 1.11 (11.98) ± 0.02a 1.10 (12.80) ± 0.01a 12.39 

100 0.97 (8.54) ± 0.02a 1.10 (12.61) ± 0.02a 10.58 

Control 0.24 (1.44)  ± 0.24c 0.50 (3.30) ± 0.10c 2.37 
 
 

Interaction effects 

There was no significant difference between the interactions of biochar type and rates for most of 

the parameters. However, all interactions had greater effect than the control. The difference was 

observed for plant height in 5th, 6th and 7th week after planting (Table 4.21, Table 4.22) but no 

conclusive results could be drawn due to the overlapping grouping of treatment means. Mean values 

for shoot dry weight and soil pH showed that interactions were superior to control for the first year 

(Table 4.23). In the second year, significant differences for shoot fresh weight and soil EC occurred 

(Table 4.24) but, again, due to overlapping grouping of the means, no conclusion could be drawn. 

There was still a great difference between the interactions and control for shoot fresh weight 

indicating that any biochar could give higher values than the control. As these results were only 

significant for a single year, they need to be verified in further trials.    
 

                          

Plate 4.9 Patterns of mycorrhizal colonization of tomato showing network of vesicles and hyphae 

colonized in roots magnified at 40x left, 20x right. 
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Table 4.21 Mean values for weekly plant height of tomato as influenced by the interactions of 

biochar types and application rates in the first year.  The different letters in the same 

column indicate significant difference between treatments (N = 3) at α=0.05 level of 

significance. The ± values represent the standard error of the means. 

Biochar types  Biochar rates (t ha-1) Plant height (cm) in weeks (1st year) 

Fifth Sixth Seventh 

Sugarcane trash 

 

 

10 13.9 ± 1.82bc 21.2 ± 2.74abc 25.5 ± 2.08bcd 

30 23.6 ± 0.64a 31.0 ± 0.39ab 34.5 ± 1.26a 

50 20.0 ± 1.30ab 27.1 ± 2.83abc 31.8 ± 1.80abc 

100 10.6 ± 1.74c 17.2 ± 3.25c 22.3 ± 2.68cd 

Green waste A 

 

 

 

10 14.8 ± 2.67bc 20.7 ± 2.90abc 23.3 ± 1.20d 

30 18.9 ± 1.47abc 27.5 ± 1.40abc 31.0 ± 1.00abcd 

50 24.1 ± 0.95a 31.9 ± 0.55a 35.6 ± 0.55a 

100 21.2 ± 1.82ab 28.5 ± 1.89abc 32.7 ± 1.33ab 

Green waste B 

 

 

 

10 14.6 ± 2.21bc 19.5 ± 2.951bc 24.2 ± 2.89bcd 

30 19.5 ± 0.65ab 26.3 ± 2.92abc 32.0 ± 2.02abc 

50 23.8 ± 1.17a 31.2 ± 0.35a 35.5 ± 0.87a 

100 19.7 ± 1.72ab 27.0 ± 1.89abc 31.5 ± 1.76abc 

Control  9.4 ± 1.05c 13.1 ± 1.18d 16.5 ± 1.26e 
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Table 4.22 Mean values for weekly plant height of tomato as influenced by the interactions of 

biochar types and application rates in the second year. The different letters in the same 

column indicate significant difference between treatments (N = 3) at α=0.05 level of 

significance. The ± values represent the standard error of the means. 

Biochar types Biochar rates (t ha-1) Plant height (cm) in weeks (2nd year) 

Fifth Sixth Seventh 

Sugarcane trash 10 24.8 ± 0.44c 31.0 ± 2.08e 34.1 ± 0.44e 

 30 46.3 ± 2.19ab 54.7 ± 3.33abc 59.8 ± 2.19abc 

 50 48.7 ± 2.03ab 60.3 ± 0.88a 65.2 ± 2.03a 

 100 44.3 ± 0.67ab 51.0 ± 1.53abcd 54.8 ± 0.66bcd 

Green waste A 10 38.0 ± 1.73ab 44.3 ± 0.67d 47.7 ± 1.73d 

 30 41.3 ± 0.67ab 49.3 ± 1.33bcd 53.7 ± 0.66bcd 

 50 42.3 ± 6.49ab 60.3 ± 0.33a 63.7 ± 6.49ab 

 100 41.7 ± 1.67ab 50.7 ± 3.18abcd 53.5 ± 1.67bcd 

Green waste B 10 35.7 ± 1.20bc 43.3 ± 2.40d 45.7 ± 1.20d 

 30 37.3 ± 4.33abc 45.0 ± 2.89cd 47.6 ± 4.34d 

 50 49.0 ± 0.58a 58.3 ± 1.67ab 61.4 ± 0.58abc 

 100 41.7 ± 0.88ab 50.7 ± 0.67abcd 53.1 ± 0.88cd 

Control  20.2 ± 3.22c 22.8 ± 4.64f 25.1 ± 3.92f 
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Table 4.23 Mean values for shoot dry weight of tomato and soil pH as influenced by the 

interactions of biochar types and application rates in the first year. The different letters 

in the same column indicate significant difference between treatments (N = 3) at 

α=0.05 level of significance. The ± values represent the standard error of the means. 

Biochar types Biochar rates  

(t ha-1) 

Shoot dry weight 

(g) 

pH 

Sugarcane trash 10 5.05 ± 0.97b 6.83 ± 0.09d 

 30 11.27 ± 0.37ab 7.00 ± 0.10cd 

 50 9.87 ± 1.37ab 7.10 ± 0.06cd 

 100 4.82 ± 1.37b 7.40 ± 0.12bcd 

Green waste A 10 5.48 ± 0.72b 7.03 ± 0.09cd 

 30 8.15 ± 0.35ab 7.17 ± 0.09cd 

 50 14.17 ± 1.10a 7.43 ± 0.18bcd 

 100 10.57 ± 2.29ab 7.70 ± 0.12bc 

Green waste B 10 4.67 ± 0.86b 7.00 ± 0.17cd 

 30 7.67 ± 0.31ab 7.50 ± 0.10bcd 

 50 10.88 ± 2.24ab 8.07 ± 0.45ab 

 100 9.34 ± 1.81ab 8.63 ± 0.03a 

Control  2.52 ± 0.94c 7.00  ± 0.06c 
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Table 4.24 Mean values for shoot fresh weight of tomato and soil EC as influenced by the 

interactions of biochar types and application rates in the second year. The 

different letters in the same column indicate significant difference between 

treatments (N = 3) at α=0.05 level of significance. The ± values represent the 

standard error of the means. 

Biochar types Biochar rates ( t ha-1) Shoot fresh weight (g) EC (dS m-1) 

Sugarcane trash 

 

 

 

10 20.50 ± 1.72e 0.27 ± 0.03f 

30 68.37 ± 7.58abc 0.37 ± 0.07ef 

50 86.67 ± 4.12a 0.63 ± 0.03bc 

100 76.73 ± 4.45ab 0.66 ± 0.03bc 

Green waste A 

 

 

10 39.80 ± 4.87de 0.27 ± 0.03f 

30 46.27 ± 6.65cd 0.57 ± 0.03cde 

50 69.17 ± 2.27abc 0.73 ± 0.07bc 

100 75.33 ± 2.21ab 0.80 ± 0.06ab 

Green waste B 

 

 

10 36.17 ± 2.73de 0.27 ± 0.03f 

30 54.93 ± 7.95bcd 0.40 ± 0.00def 

50 73.70 ± 3.75ab 0.60 ± 0.06bcd 

100 73.3 ± 3.19ab 0.97 ± 0.03a 

Control  11.93 ± 2.15f 0.23 ± 0.03f 

 

4.5 Discussion 
Parameters with non-significant results have not been shown in Tables and Figures but it was 

notable that biochar type, application rates and their interactions were significantly different from 

control for both crops. This confirms results of previous experiments on lettuce and cabbage that 

application of biochar is beneficial for plant growth. 

 

P and Zn were analyzed from plant and soil samples but there were no significant differences. 

Application of Hoagland’s nutrient solution added equal amounts of nutrients but the amount of 

leachate was unknown. Therefore, the actual amount of the nutrients supplied by biochar and the 

solution separately could not be detected. 

 

Biochar types were similar for their effect on observed parameters except for a few cases. The main 

reason could be that nutrient requirement was fulfilled by Hoagland’s solution. There was no 
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interaction of these chars with soil so that no decomposition and release of inherent nutrients could 

be expected.  

 

There was no difference between biochar types for plant height in the first year. It was associated 

with less effective growth environment. In the second year, the plants were grown in a controlled 

glass house with greater light availability for photosynthesis. In the first year, trials were set up in a 

small bay of a glasshouse where shading effect was prevalent with comparatively low temperature 

and less light. 

 

The variation in colonization over two years may have also been related to environmental 

differences. The previous report (Guadarrama & Álvarez-Sánchez 1999) confirmed that the 

mycorrhizal abundance was greater in the dry season than the rainy season. In the present case the 

environment in the glasshouse was drier in the second year than that of the glasshouse of the first 

year because there was shade and more moisture due to less evaporation in the first year.  

 

The soil EC and pH values were not solely dependent upon biochar content. Salts were added by 

Hoagland’s solution. The amount of nutrients and cations leached due to irrigation flush following 

nutrient application was not measured; therefore, it could not be determined what the contribution 

of biochars was to EC and pH.  

 

The great difference in biochar application rates for the results over the two years was mainly due to 

difference in light and temperature. In the first year, the temperature range was 17-330C in the first 

week of planting and 12-190C in the last week of observation. In the second year, the plants were 

grown under a constant range of temperature (28-300C). 

  

The trend for plant height was similar to previous research, for example, the increase in height of 

tomato and pepper due to biochar amendment in soil-less medium was also reported by Graber et al. 

(2010). To view the real effect of biochars, it may take some years as no significant effect of 

application rates was observed on plant growth in the first and second years of application but it 

was significant in the third year when it was applied at  0, 25 and 50 t ha-1 (Jones et al. 2012). In the 

present experiment, similar height due to different rates in initial weeks was found which indicated 

the slowly decomposing characteristics of biochar. More likely it takes time for differences to be 

expressed.  
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The lower plant height at > 30 t ha-1 in onion and 50 t ha-1 in tomato indicated some negative effect 

of biochar on plant growth at high rates. This effect could be due to increased stress from 

accumulation of salts on the surface of biochar applied at higher rates. 

 

Shoot fresh and dry weight of onion were similar for 50 and 100 t ha-1 of each biochar indicating 

tolerance of onion. There was significant increase in crop productivity when biochar was applied at  

10, 25, 50 and 100 t ha-1 (Jeffery et al. 2011). Significant increase (up to 140%) in maize yield was 

found for biochar applied at 20 t ha-1  two years after application (Major et al. 2010). Yield increase 

compared to control was 42% at 10 t ha-1 and 96% at 50 t ha-1 (Chan et al. 2008b). Biochar at 30 t 

ha-1 also had significant effect on increasing grain yield, above ground biomass and dry matter in 

durum wheat (Vaccari et al. 2011). In the present study, trials were too short for final yield harvest 

but shoot yield was significantly influenced by application rates. Root fresh weight of onion was 

highest when 30 t ha-1 of biochar was applied. This result indicated optimum development of roots 

at that rate. Effect of biochar on root biomass and length was significant in the case of rice 

(Noguera et al. 2010). 

 

The effect of biochars on soil pH was greater in the tomato grown medium than onion. The reason 

for similarity in pH among biochars in onion grown medium was unclear; however it could be 

associated with the lower absorption of cations by onion roots than tomato. Sugarcane trash biochar 

had a lower pH as it had lower (0.66%) acid neutralizing capacity (Apendix 1) than the other chars.  

 

Variation in mycorrhizal colonization might be linked with germinability of spores and ability to 

colonize in biochar amended sand as well as capacity of plant roots to provide entry for 

mycorrhizae. Mycorrhizal colonization was denser in onion than in tomato indicating difference in 

colonization pattern of species. While onion, sweet potato, tomato and cassava are highly dependent 

on mycorrhizae (Khasa et al. 1992), their percentage of colonization may differ. In the present 

study, highest colonization of onion was found to be ~21% while it was only ~12% for tomato. This 

pattern of colonization may also be associated with the feedstock source of biochar and the fertility 

status of soil. For example, colonization of potato, oat, sunflower, mungbean, wheat, chickpea, 

berseem, barley, alfalfa, nursery rice and tobacco was less in fertile soils than in marginal soils 

(Sharif and Moawad 2006). Colonization might well increase if the crop growing period was 

extended beyond the short period (seven weeks) here.  

 

The nutrient concentrations (especially P) in Sugarcane Trash biochar were higher than other 

selected biochars which contributed to the deficient sand medium greatly for supplying essential 
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nutrient for sustaining mycorrhizae. As the sand was irrigated alternately with nutrient solution and 

water, Sugarcane Trash biochar held enough nutrients for mycorrhizal development in nutrient 

deficient medium. The lower pH of Sugarcane Trash compared with the other two biochars may 

have contributed significantly to nutrient availability, plant growth and colonization. As far as the 

effect of application rates is concerned, colonized per cent of root length of tomato was increased 

with increasing the dose and the highest effect was observed at 50 t ha-1, while effect of 100 t ha-1  

decreased and was similar to that for 30 t ha-1. The possible mechanism behind this phenomenon 

could be that the increased sand pH with increased level of biochar (beyond 50 t ha-1) was less 

favourable for mycorrhizal development than the other rates. There might also be some negative 

effects of accumulated salts on mycorrhizae due to the high dose of biochar (100 t ha-1) that 

elevated the EC level. 

 

Although biochar treatments resulted in increased mycorrhizal colonization, no significant 

differences in P and Zn uptake were detected perhaps due to effects of applying Hoagland’s 

solution with 25% P.  However, it is very important to try to determine the contribution of 

mycorrhizae to nutrient uptake in the presence of biochar.  This experiment was conducted in sand 

medium necessitating addition of nutrient solution; therefore, further experiments are needed in 

various soils to discover the optimum rate of a particular biochar for plant growth and mycorrhizal 

colonization.  As the purpose of the present experiments was to detect the influence of biochar on 

colonization of onion and tomato roots by AM fungi, these were of short duration.  However, 

effects of longer term treatments in field trials are required.    

 

Plant growth and colonization were relatively better at high biochar rates (30 and 50 t ha-1) but 

economy of these rates may be questioned.  These rates were appropriate for soil-less sand medium; 

however, soils with higher nutritional status may require lower rates. 

   

The interactions showed no significant differences. The most obvious cause was that biochars 

performed similarly; however, they were derived from different feedstock and processes. To see 

interaction effects, the trial should be conducted long-term in the same medium and environment.   

 

4.6 Conclusion 
Use of biochar as soil amendment was beneficial for growth parameters such as plant height, shoot 

fresh weight, shoot dry weight and root fresh weight of onion and tomato. Biochars were also 

beneficial for enhancing soil pH, electrical conductivity and mycorrhizal colonization. All biochars 

had similar effects on growth parameters when compared at the same rates. Onion roots had more 
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colonization than tomato. Among the application rates, 30 t ha-1 of each biochar had better effect on 

onion while 50 t ha-1 was more effective on tomato in terms of morphological growth and 

colonization pattern of roots. The experiment was conducted in sand medium and needs to be 

verified in different soils to address an agro-economically feasible type and application rate of 

biochar.  

 

Another important consideration is how soil contaminated with heavy metals affects colonization of 

the crop by the fungi in presence of biochar. The results after the addition of Zn and Cu to biochar 

amended soil will be discussed in the upcoming chapter.    
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Chapter 5. Zinc and copper effects on growth and mycorrhizal 

colonization of onion in biochar amended soil 
 

5.1 Abstract 
Three Zn rates, 3 Cu rates and two mycorrhizal inoculation rates were tested along with three 

controls in a 3x3x2+3 factorial arrangement as a pot trial to find out their effect on growth and 

colonization of onion in a biochar-added calcareous soil. The experiment consisted of 21 treatments 

with 4 replications. The pH of alkaline calcareous soil was maintained under neutrality and 

Sugarcane Trash biochar added at a rate of 30 t ha-1 before planting. Growth parameters, uptake of 

Zn and Cu and mycorrhizal colonization were recorded for analysis. One Way ANOVA for overall 

effect, General Linear Model for factorial analysis and combined ANOVA for complete effect were 

applied. The results showed the best positive effect of biochar plus mycorrhizae on all recorded 

parameters compared to other treatments. Biochar application was more effective than no biochar. 

Among the Zn and Cu rates, combination of lower rates of 50 mg kg-1 of each nutrient had better 

effect than the other combinations.   

 

5.2 Introduction 
Heavy metals are a great concern for their effects on microbial growth and behaviour. Among 

microbes, arbuscular mycorrhizal fungi are considered as one of the most important symbionts that 

enhance uptake of some immobile nutrients and still they are under study. Their responses to heavy 

metals have been studied and many promising results indicating their specific effect on particular 

AMF species have been found. For example, Glomus etunicatum was more sensitive to Cd, Pb and 

Zn than was G. intraradices (Pawlowska & Charvat 2004). Similarly, Glomus sps and Glomus 

mosseae were more sensitive than was Glomus claroideum (del Val et al. 1999).  

 

Infection of onions with Glomus mosseae was reduced when Zn, Cu, Ni or Cd were added to soil 

medium (Gildon & Tinker 1983). Infection rates of Glomus caledonium were the highest but 

sporulating ability was the poorest among three AMF species when tested for response to heavy 

metals (Cu and Cd) (Liao et al. 2003).  In a separate experiment, Glomus lamellosum, Glomus 

intraradices and Glmus proliferum exhibited tolerance to 5 ppm lead (Khade & Adholeya 2008).  

Glomus intraradices showed a heavy metal tolerance in a variety of plants in soils with diverse 

heavy metals under optimum fertilization (Hildebrandt et al. 1999; Kaldorf et al. 1999).  
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However, some reports indicated that high concentrations of heavy metals have adverse effect on 

AMF (Leyval et al. 1997). Similarly, heavy metal tolerance also depends on plant species which can 

cope with adverse effects of metals; these plants are called metallophytes (Hildebrandt et al. 2007). 

Protection by AMF that colonize plant roots and reduce the uptake of heavy metals into plant cells 

could be a mechanism that allows metallophytes to thrive on polluted soils (Weissenhorn et al. 

1995; Leyval et al. 1997; Kaldorf et al. 1999; Berreck & Haselwandter 2001; Ouziad et al. 2005; 

Vogel-Mikus et al. 2005).  

 

Maize grown in heavy metal soils had more essential elements such as K, P, Mg but fewer heavy 

metals such as Ni, Fe, Zn, or Cu when symbiotically grown with Glomus intraradices (Kaldorf et 

al. 1999) possibly indicating the mycorrhizal species-specific screening of metals. 

 

Heavy metals also have a specific effect on different phases of AMF development. Spores and 

presymbiotic hyphae are generally sensitive to heavy metals in absence of plants (Göhre & 

Paszkowski 2006). EC50 values (effective concentration reducing germination or hyphal growth by 

50%) vary with strain, but overall effect of heavy metals such as Zn, Pb and Cd was negative; 

however, spores from polluted soils were more tolerant than the spores from non-polluted soils 

(Shalaby 2003) indicating adaptation of strains in contaminated environments.  

 

The interaction of heavy metals themselves can play a role on the degree of sensitivity of spores and 

hyphae to heavy metals. For instance, Zn plays an antagonistic role on toxicity of Pb and/or Cd on 

pre-symbiotic hyphal growth, while Pb and Cd acted synergistically (Shalaby 2003). In soils with 

8% Zn and 863 µg g-1 Cd, 35% of clover roots were colonized (Gildon & Tinker 1981).  

 

In fact, AMF can decrease Zn toxicity to grasses growing in Zn-polluted soils (Dueck et al. 1986). 

Similarly, colonization of AMF in Agrostis capillaris was significantly higher in Zn and Cd-

polluted soils (Griffioen et al. 1994).  However, infection was lower in Zn and Pb polluted soil than 

in less polluted soils (Diaz & Honrubia 1993).  

 

Some authors (Hildebrandt et al. 1999; Audet & Charest 2006) have proposed that mycorrhizal 

colonization of roots increased with increasing heavy metals in soils, but others (Gildon & Tinker 

1981; Graham et al. 1986; McGee 1987; Chao & Wang 1991) indicated some inhibition of AMF 

colonization by them. In fact, the majority of reports suggest that mycorrhizae have some degree of 

metal tolerance.  
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Degree of tolerance may be governed by several physiological mechanisms, for example, 

expression of genes involved in heavy metal tolerance (Repetto et al. 2003; Rivera-Becerril et al. 

2005). A metallothionein (a metal-binding protein) gene of Gigaspora margarita (BEG 34) is 

regulated in symbiotic mycelia by Cu (Lanfranco et al. 2002) and Zn-transporter gene (ZintZnT1) 

of Glomus intraradices is harmonized by short and long term exposure to Zn indicating protection 

against Zn stress (Gonzalez-Guerrero et al. 2005). Similarly, ABC transporter gene of Glomus 

intraradices depends on Cd and Cu (González-Guerrero et al. 2006). Therefore, symbiotic 

mycorrhizal cells could cope with heavy metal-induced oxidative stress (Ouziad et al. 2005). 

However, heavy metal toxicity alleviation by AMF varies with metal types, their concentrations, 

symbiotic partners and plant growth conditions (Weissenhorn et al. 1995; Leyval et al. 1997; 

Hildebrandt et al. 1999; Turnau & Mesjasz-Przybylowicz 2003).  

 

A metal binding mechanism has been illustrated in two processes: fungi release glomalin in soil that 

binds metals outside the rhizosphere (Gonzalez-Chavez et al. 2004; Göhre & Paszkowski 2006) or 

metals are bound to chitin of hyphal cell walls that reduces their local concentrations in the soil 

(Zhou 1999; Göhre & Paszkowski 2006). On average, 28 mg Cu per gram of glomalin is 

sequestered by Gigaspora rosea (Joner et al. 2000) while up to 0.5 mg Cd is bound per mg biomass 

of fungal hyphae (Joner et al. 2000). Gonzalez-Chavez et al. (2004) found that up to 4.3 mg Cu, 

0.08 mg Cd and 1.12 mg Pb can be extracted from a gram of glomalin. 

 

Several heavy metals have been found in biochar but concentrations vary. For example, biochars 

used in this study contained aluminium, arsenic, cadmium, cobalt, chromium, copper, nickel, lead, 

selenium, zinc and others (Kochanek et al. 2014) but zinc and copper were selected for this study. 

 

The effect of heavy metals and biochar amended soil on colonization of plant roots by AMF has not 

been adequately studied. To discover the extent of colonization, this study describes the influence of 

biochar on the colonization of onion roots by AM fungi in Zn and Cu amended low fertility soil. 

 

5.3 Materials and methods 

5.3.1 Experimental Site and Environment 

The trials were conducted in winter season in 2012 and 2013 in a glasshouse at the University of 

Queensland, Gatton Campus, Australia. The first year trials were conducted in a bay of a small 

glasshouse with fluctuating temperatures and light. There was shading effect from shade cloth on 

the roof and other adjacent bays. The daily temperature range was 17-330C during the first week of 

planting and 11-190C during the last week of observation.  Later trials were conducted in a large 
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glasshouse where the plants had full access to sunlight and temperature was controlled within a 

fixed range.  

  

5.3.2 Biochar type 

Sugarcane Trash biochar was used as a soil amendment at a rate of 30 t ha-1.  

  

5.3.3 Mycorrhizal inoculum and species 

The inoculum described in Chapter 4 was also used in this study.  

Seed source and seedlings 

Onion (variety: Rio Red Rock) seeds were prepared as described in Chapter 4. 

To ensure optimum mycorrhizal colonization, plants were allowed to grow for six weeks and then 

cut at ground level and seedlings of the same onion variety produced by the same procedure were 

planted. This was done in both years. Observations were recorded on the second crop. 

 

5.3.4 Soil source and characteristics 

Soil with low P and Zn was collected from Felton, Queensland from  the top 10 cm surface layer 

and autoclaved at 1210C with a pressure of 105 kPa for an hour to sterilize it. This autoclaving 

system was available at preparation room of soil science laboratory at the University of Queensland, 

Gatton Campus. EC, P, Zn and Cu content of this soil reported by Phosyn Analytical and Yara 

Megalab were 0.18 dS m-1, 4 ppm (Olsen), 0.4 ppm (DTPA) and 1.8 ppm (DTPA), respectively. As 

the soil was calcareous alkaline (pH 9), elemental sulphur was added at 100 g m-3 to reduce pH to 

nearly neutral. Soil was kept moist for two weeks to enhance the reaction of sulphur. Soil of 1 kg 

per pot was used. 

 

5.3.5 Biochar, Zn and Cu calculation and mixing 

In the exploratory experiment in Chapter 3.1, Green Waste biochar at a rate of 30 t ha-1 was the best 

for plant growth. In cabbage and tomato, the higher rates were effective. Consideration was given to 

the fact that the greater amount of phosphorus contained in Sugarcane Trash biochar would reduce 

the mycorrhizal colonization at higher rates. High rates also increased soil pH in previous 

experiments which might be unfavourable for colonization of AMF and also would be expensive 

from an economic point of view, therefore the rate of 30 t ha-1 was selected for this trial. Sugarcane 

Trash biochar at 30 t ha-1 (25 g kg-1 of soil which is equivalent to 2.5% w/w) was mixed in the soil. 

Characteristics of this biochar are discussed in Chapter 4. Amounts of Zn sulphate heptahydrate 

(ZnSO4.7H2O) and Cu sulphate pentahydrate (CuSO4.5H2O) were calculated on the basis of Zn 

(22.7%) and Cu (32%) requirement for treatments of 50, 500 and 1000 mg kg-1. Amounts of these 
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metals in soil and biochar were considered as negligible. The calculated amounts of biochar, Zn and 

Cu were added to the soil using a mixer as described in Chapter 4.  

 

5.3.6 Pots and nutrients 

Plastic pots of 1.6 L volume (12 cm diameter) were used. Nutrients were supplied through modified 

Hoagland’s solution (Hoagland and Arnon 1950; Mattson and Lieth 2008; Epstein and Bloom 

2004). This solution was modified with 25% phosphorus to minimize the negative effect on 

mycorrhizal infection and was applied at 50 mL per pot only once after planting of the first and 

second crops.  

 

5.3.7 Experimental design and treatments 

A factorial arrangement (3 x 3 x 2 + 3; Zn, Cu and mycorrhizae, respectively + 3 extra treatments) 

(Table 5.1) was applied for growth parameters and nutrients while 3 x 3 +1, Zn (3 levels), Cu (3 

levels) and a control was used for colonization data (Table 5.2). Thus there were 21 treatments for 

growth and nutrient data and 10 treatments for colonization study.  

  

This trial design for growth and nutrients can be described as a 3 x 3 x 2 factorial + 3. The data 

were analyzed as a simple treatment structure.  Assuming the design as completely randomized (not 

blocked), with no missing data, the ANOVA was like Analysis 1 as given in Table 5.3. 

 

Means and standard errors from this were used for further illustrations. This gave an overall test of 

treatment, but did not give information about the specific effects of the factors (Zn, Cu and 

mycorrhiza and interactions).  Therefore, the factorial subset was analysed by General Linear 

Model of Minitab 16, version 4.0 (Minitab 2005) to get results as Analysis 2 as given in Table 5.4. 
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Table 5.1 Trial design for growth parameters and nutrients 

Treatment 

combinations 

Factor A (Zn 

Levels, mg kg-1) 

Factor B (Cu levels, 

mg kg-1) 

Factor C 

(Mycorrhiza, g kg-1) 

1 50 50  10 

2 50 50 0 

3 50 500 10 

4 50 500 0 

5 50 1000 10 

6 50 1000 0 

7 500 50 10 

8 500 50 0 

9 500 500 10 

10 500 500 0 

11 500 1000 10 

12 500 1000 0 

13 1000 50 10 

14 1000 50 0 

15 1000 500 10 

16 1000 500 0 

17 1000 1000 10 

18 1000 1000 0 

19 Soil only   

20 Soil + Biochar   

21 Soil + Biochar  10 
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Table 5.2 Trial design for mycorrhizal colonization data 

Treatment 

combinations 

Factor A (Zn, mg kg-1) Factor B (Cu, mg kg-1) 

1 50 50  

2 50 500 

3 50 1000 

4 500 50 

5 500 500 

6 500 1000 

7 1000 50 

8 1000 500 

9 1000 1000 

10 Soil + Biochar + mycorrhiza 

 

Table 5.3 Analysis of variance for Analysis 1 

Source df 

Treatment  20 

Error 42 

Total 62 

 

Table 5.4 Analysis of variance obtained from General Linear Model for Analysis 2 

Source                  df 

Zn 2 

Cu  2 

Zn*Cu                   4 

Mycorr 1 

Zn*Mycorr 2 

Cu*Mycorr  2 

Zn*Cu*Myc        4 

(total factorial) 17 

Error 36 

Total 53 
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Table 5.5 Analysis of variance for analysis 3 (Combined for growth parameters and nutrients) 

Source df                            ss                            ms 

Overall treatment            20             from (1)  

Zn  2                       from (2)  

Cu 2                       from (2)  

Zn*Cu                   4                       from (2)  

Mycorr 1                       from (2)  

Zn*Mycorr          2                       from (2)  

Cu*Mycorr         2                       from (2)  

Zn*Cu*Myc        4                       from (2)  

(total factorial) 17   

‘Extra treatments’           3  (by subtraction) SS/df 

Error 42  from (1)  

Total   62 from (1)  

 

Table 5.6 Combined ANOVA for colonization data (Process of (1) and (2) is similar to 
Analysis 1 and 2 above after excluding factor 3, Mycorrhiza) 

Source                                df                            ss                            ms 

Overall treatment            9             from (1)  

Zn                         2                       from (2)  

Cu                  2                       from (2)  

Zn*Cu                    4                       from (2)  

(total factorial ) 8   

‘Extra treatment’             1               (by subtraction)                SS/df 

Error                                       20            from (1)  

Total                                       29            from (1)  

 

Finally, these two analyses were combined because the second analysis gave correct degrees of 

freedom, sums of squares and mean squares for the factorial part, but an incorrect error term and 

total term (it did not use all the data).  The first analysis had the correct error and total terms, but 

had not split the variation up fully. It was obtained by manipulating the sum of squares from both 

analysis as Treatment SS from (1) – Total factorial SS from (2) = SS for extra treatments (with 20-

17 = 3 degrees of freedom). Then factorial SS from (2) and the error and total from (1) were taken 
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to get the following combined ANOVA (Table 5.5). For colonization data, ANOVA was as 

described in Table 5.6. 

 

5.3.8 Mycorrhizal care and Analysis 

The procedure for mycorrhizal care and analysis was the same as given in Chapter 4. 

  

5.3.9 Nutrient analysis 

Nutrients were analysed in the Chemical Analysis Laboratory, St Lucia Campus of the University 

of Queensland. Methods were taken from different references mentioned in Appendix 5-9.  
 

5.3.10 Statistical analysis 

Observations were recorded on weekly plant height for six weeks, shoot fresh weight, shoot dry 

weight, root fresh weight, root dry weight, Zn, Cu and P content of plant tissue, and electrical 

conductivity, pH, Zn and Cu content of soil. Root length, percent of root length colonized and 

colonized root length were also observed.  

Plant height was recorded between the soil level and tip of the longest upright leaf. Shoot fresh 

weight was recorded immediately after harvest while shoot dry weight was determined by drying at 

650C for two weeks. 

The bulk of roots was washed with tap water and cleaned by removing all traces of soil and biochar. 

The roots were then air dried on a bed of thick tissue paper to absorb the external moisture. Then 

the fresh weight of roots was taken on an electronic balance that measured to three decimal places.  

Root length was determined by WinRhizo software and Epson 1680 modified flatbed scanner 

(Régent Instruments Inc., Québec, CA). Mycorrhizal colonization was recorded as recommended by 

Brundrett et al. (1996) and described in Chapter 4.  

Statistical analyses were undertaken in Minitab 16, version 4.0 (Minitab 2005). Comparisons of 

means were made by Tukey’s Pair comparison test in MiniTab.   

5.4 Results   

5.4.1 Effect of Zn rates 

Zn rates were significantly different for plant height up to six weeks of growth in both years of 

observation (Table 5.7). Plant height was greater in the second year than the first year of 

observation due to the effect of Zn. In every week, plant height decreased as the rate of Zn was 

increased indicating the negative effect of high Zn rates on plant growth. The height of onion plants 
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in the sixth week showed that height was 3.6, 4 and 3.8 cm less in first year, second year and 

average of two years respectively when Zn rates were increased from 50 to 1000 mg kg-1 of soil. 

 

Shoot fresh weights in both years of observation were significantly different for Zn rates (Figure 

5.1). The weight increased by 308.8%, 313.6% and 351.8% in the second year compared to the first 

year from Zn rates of 50, 500 and 1000 mg kg-1, respectively. Shoot fresh weight decreased as rates 

of Zn increased. Shoot fresh weight decreased by 33.4%, 26.4% and 28.0% in the first year, second 

year and average of both years when the Zn rates increased from 50 to 1000 mg kg-1 of soil.  

 

Statistically, there were significant differences for shoot dry weight for 50 mg and other rates of Zn 

but values for 500 and 1000 mg kg-1 remained similar in both years (Figure 5.2). Shoot dry weight 

increased by 138.9%, 12.3% and 0.9% due to 50, 500 and 1000 mg kg-1 respectively in the second 

year of observation. Weight decreased by 10.5% in the first year and 62.2% in the second year 

when rates increased from 50 to 1000 mg kg-1. On average, weight decreased by 46.9% when Zn 

rate increased from 50 to 1000 mg kg-1. 

 

Significant differences among Zn rates were observed for root length of onion in both years (Figure 

5.3A). Root length increased by 3%, 8.9% and 12.9% due to 50, 500 and 1000 mg kg-1 respectively 

in the 2nd year compared to the 1st year. Root length decreased by 39.3%, 33.4% and 36.3% in the 

1st year, the 2nd year and on an average respectively when rates increased from 50 to 1000 mg kg-1. 

Similarly, root fresh weight increased by 47.6%, 36.3% and 27.9% in the 2nd year compared to the 

1st year due to rates of 50, 500 and 1000 mg kg-1 (Figure 5.3B). Weight decreased by 28.8%, 38.4% 

and 34.6% in the 1st year, 2nd year and on an average when rates increased from 50 to 1000 mg kg-1. 

 

Soil electrical conductivity was less in the second year than the first year (Table 5.8). In the second 

year, it decreased by 4.9%, 13.1% and 14.4% in the soil amended with Zn at 50, 500 and 1000 mg 

kg-1. Increasing rates from 50 to 1000 mg kg-1 increased conductivity by 78.5%, 60.6% and 69.5% 

in the first year, the second year and on an average of two years respectively. However, available 

soil phosphorus content was significantly increased by Zn rates in the second year only, indicating 

17.6% more phosphorus in soil amended with Zn at 1000 mg kg-1 than 50 mg kg-1 (Table 5.8). Soil 

Zn content also increased significantly in both years as Zn rates increased. The increment in Zn 

content was greater in the second year which could be due to less leaching of salts from the pots 

after irrigation.   
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Table 5.7 Mean values for plant height of onion as influenced by Zn rates in 1st year, 2nd year and mean of the two years. The different letters in the 
same column indicate significant difference between treatments (N = 18) at α=0.05 level of significance. The ± values represent the standard 
error of the means. 

The values within the column that do not follow the same letter are significantly different (p < 0.05). The ± values represent the standard error of the 

means (N = 18). 

Zn rates 

(mg kg-1) 

Plant height (cm) in weeks 

2nd week 3rd week 4th week 5th  week 6th week 

1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 

50 9.7 ± 

0.05a 

10.8 ± 

0.05a 

10.3 13.9 ± 

0.11a 

15.0 ± 

0.11a 

14.5 19.1 ± 

0.29a 

20.8 ±. 

0.32a 

19.9 23.4 ± 

0.34a 

26.9 ± 

0.50a 

25.1 27.6 ± 

0.39a 

29.3 ± 

0.49a 

28.5 

500 8.1 ± 

0.06b 

9.2 ± 

0.11b 

8.7 11.6 ± 

0.24b 

12.6 ± 

0.26b 

12.1 16.9 ± 

0.42b 

18.5 ± 

0.46b 

17.7 21.1 ± 

0.43b 

24.6 ± 

0.60b 

22.9 25.2 ± 

0.56b 

26.8 ± 

0.63b 

26.0 

1000 7.3 ± 

0.05c 

8.5 ± 

0.10c 

7.9 10.5 ± 

0.11c 

11.6 ± 

0.11c 

11.1 15.6 ± 

0.28c 

17.1 ± 

0.29c 

16.3 19.7 ± 

0.32c 

22.7 ± 

0.40c 

21.2 24.0 ± 

0.49c 

25.3 ± 

0.56b 

24.7 
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Figure 5.1 Shoot fresh weight of onion as influenced by Zn rates in 1st year, 2nd year and the 

average of the two years. The different letters in the same series indicate significant 

difference between treatments (N = 18) at α=0.05 level of significance. The vertical bars 

represent the standard error of the means. 

  

 
Figure 5.2 Shoot dry weight of onion as influenced by Zn rates in 1st year, 2nd year and the average 

of the two years. The different letters in the same series indicate significant difference 

between treatments (N = 18) at α=0.05 level of significance. The vertical bars represent 

the standard error of the means.   
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A       B 

Figure 5.3 A. Root length; B. root fresh weight of onion as influenced by Zn rates in 1st year, 2nd 

year and mean of two years. The different letters in the same series indicate significant 

difference between treatments (N = 18) at α=0.05 level of significance. The vertical bars 

represent the standard error of the means. 

 

Table 5.8 Mean values for electrical conductivity, soil P and soil Zn as influenced by Zn rates in 1st 

year, 2nd year and mean of the two years. The different letters in the same column 

indicate significant difference between treatments (N = 18) at α=0.05 level of 

significance. The ± values represent the standard error of the means.   

Zn rates 

(mg kg-1) 

Electrical conductivity (dS m-1) Soil P (mg 

kg-1) 

Soil Zn (mg kg-1) 

1st year 2nd year Mean 2nd year 1st year 2nd year Mean 

50 1.44 ± 

0.00c 

1.37 ± 

0.02c 

1.41 3.6 ± 

0.04c 

14.7 ± 

0.19c 

15.0 ± 

0.21c 

14.9 

500 2.06 ± 

0.00b 

1.79 ± 

0.01b 

1.93 4.1 ± 

0.01b 

148.7 ± 

0.92b 

406.6 ± 

0.97b 

277.7 

1000 2.57 ± 

0.00a 

2.20 ± 

0.01a 

2.39 4.3 ± 

0.02a 

284.3 ± 

1.19a 

804.7 ± 

0.60a 

544.5 

 

Phosphorus and Zn content in plants were significantly different due to the effect of Zn rates (Table 

5.9). Phosphorus content was higher in the soil amended with low rate (50 mg kg-1) of Zn compared 

to the rates of 500 and 1000 mg kg-1 in both years of observation. There was 0.8, 0.6 and 0.7 units 

less phosphorus content in soil amended with 1000 mg kg-1 than with 50 mg kg-1 in the first year, 

the second year and on average, respectively. Decrease in P with higher Zn may be due to inhibition 

of AM and is supported by reduced colonization. Zn content of plants was also higher in the second 
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year than in the first year at all levels of Zn (Table 5.6). The Zn content of plants due to 1000 mg 

kg-1 was 5.9, 5.6 and 5.8 times the Zn content due to 50mg kg-1 in the first year, the second year and 

on average, respectively.  

 

Table 5.9 Mean values for plant P and plant Zn as influenced by Zn rates in 1st year, 2nd year and 

the mean of the two years. The different letters in the same column indicate significant 

difference between treatments (N = 18) at α=0.05 level of significance. The ± values 

represent the standard error of the means.   

Zn rates 

(mg kg-1) 

Plant P (mg kg-1) Plant Zn (mg kg-1) 

1st year 2nd year Mean 1st year 2nd year Mean 

50 1.6 ± 0.12a 1.4 ± 0.03a 1.5 37.9 ± 0.53c 35.3 ± 0.17c 36.6 

500 0.9 ± 0.01b 0.9 ± 0.00b 0.9 88.2 ± 1.20b 92.8 ± 1.16b 90.5 

1000 0.8 ± 0.02b 0.8 ± 0.00c 0.8 225.3 ± 0.96a 196.9 ± 0.51a 211.1 
 

Colonized percent of roots by mycorrhizae was greater in the first year than in the second year for 

all application rates of Zn (Table 5.10). Colonization decreased as the level of Zn increased from 50 

to 1000 mg kg-1 in both years. The colonized percent of root length in the soil amended with Zn at 

50 mg kg-1 was 80%, 120% and 92.6% greater than the Zn rate of 1000 mg kg-1 in the first year, the 

second year and on average, respectively.  

 

Table 5.10 Mean values for colonized percent of root length as influenced by Zn rates in 1st year, 

2nd year and the mean of the two years. The different letters in the same column indicate 

significant difference between treatments (N = 18) at α=0.05 level of significance. The ± 

values represent the standard error of the means.   

Zn rates (mg 

kg-1) 

Colonized % of root length 

1st year 2nd year Mean 

50 55.6 ± 3.60a 30.8 ± 0.75b 43.2 

500 47.8 ± 3.51a 18.1 ± 0.66c 32.9 

1000 30.8 ± 3.27b 14.0 ± 0.45c 22.4 

 
5.4.2 Effect of Cu rates 

Significant differences (P < 0.05) were observed for shoot fresh weight, root length, root fresh 

weight, electrical conductivity, plant content of P, Zn and Cu, soil content of Zn and Cu, percent of 

colonized root length and colonized root length for application rates of Cu in both years of 
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observation. Significant differences were also observed for shoot dry weight and soil phosphorus in 

the second year. 

 

Shoot fresh weight was greater in the second year compared to the first year (Figure 5.4A). Weight 

significantly decreased as the rate of Cu increased in both years. Shoot fresh weight decreased by 

13.5%, 19.2% and 18.2% in the first year, the second year and on the average respectively when Cu 

rates were raised from 50 to 1000 mg kg-1. Shoot dry weight reduced by 63.4% as Cu rates rose by 

20 times (Table 5.11). Root length decreased by 15.7%, 15.0% and 15.4% in the first year, the 

second year and on average respectively as Cu rates increased from 50 to 1000 mg kg-1 (Figure 

5.4B). Similarly, root fresh weight decreased by 17.9% in the first year, 13.3% in the second year 

and 15.2% on average respectively when the Cu rates increased by 20 times (Figure 5.5). 
 

   

     A  

 

       B 
Figure 5.4 A. Shoot fresh weight and B. root length of onion as influenced by Cu rates in 1st year, 

2nd year and the average of the two years. The different letters in the same series 

indicate significant difference between treatments (N = 18) at α=0.05 level of 

significance. The vertical bars represent the standard error of the means.   
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Figure 5.5 Root fresh weight of onion as influenced by Cu rates in 1st year, 2nd year and the average 

of the two years. The different letters in the same series indicate significant difference 

between treatments (N = 18) at α=0.05 level of significance. The vertical bars represent 

the standard error of the means.   
 

Table 5.11 Mean values for shoot dry weight and EC as influenced by Cu rates in 1st year, 2nd year 

and the mean of the two years. The different letters in the same column indicate 

significant difference between treatments (N = 18) at α=0.05 level of significance. The ± 

values represent the standard error of the means.   

Cu rates 

(mg kg-1) 

Shoot dry weight (g) EC (dS m-1) 

2nd year 1st year 2nd year Mean 

50 8.94 ± 0.30a 1.42 ± 0.00c 1.35 ± 0.00c 1.39 

500 4.75 ± 0.07b 2.07 ± 0.00b 1.85 ± 0.02b 1.96 

1000 3.28 ± 0.14c 2.57 ± 0.00a 2.17 ± 0.01a 2.37 
 

Electrical conductivity increased as Cu rates increased (Table 5.11) while P content decreased by 

0.5, 0.42 and 0.46 units in the first year, the second year and on average respectively as Cu rates 

increased from 50 to 1000 mg kg-1 (Table 5.12). Zn content of plant increased by 69.1, 7.5 and 30.8 

units in first, second  years and on average respectively when Cu rates increased by 20 times, 

indicating a difference between years. High rates of Cu may have inhibited mycorrhizal 

colonization, thereby reducing uptake of phosphorus. The plant Zn was stimulated by Cu rates in 

the first year but not in the second year. The reason behind this was unclear.   Cu content of plant 

due to Cu at 1000 mg kg-1 was 64.7, 113.3 and 89.0 units greater than the rate of 50 mg kg-1 in the 

first year, second year and on average respectively.  
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Table 5.12 Mean values for plant P, Zn and Cu of onion as influenced by Cu rates in 1st year, 2nd 

year and mean of the two years. The different letters in the same column indicate 

significant difference between treatments (N = 18) at α=0.05 level of significance. The ± 

values represent the standard error of the means.   

Cu rates 

(mg kg-1) 

Plant P (mg kg-1) Plant Zn (mg kg-1) Plant Cu (mg kg-1) 

1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 

50 1.4 ± 

0.10a 

1.3 ± 

0.03a 

1.3 87.0 ± 

0.76b 

111.5 ± 

0.47a 

99.3 10.3 ± 

0.71c 

12.2 ± 

0.52b 

11.3 

500 1.1 ± 

0.06b 

1.0 ± 

0.01b 

1.0 108.4 ± 

0.79b 

109.0 ± 

0.43a 

108.7 26.7 ± 

1.33b 

115.7 ± 

0.72a 

71.6 

1000 0.9 ± 

0.03b 

0.8 ± 

0.01c 

0.9 156.1 ± 

1.20a 

104.0 ± 

1.11b 

130.1 75.0 ± 

0.60a 

125.5 ± 

0.86a 

100.2 

 

Soil Zn and Cu increased as Cu rates increased in both years (Table 5.13). Soil Zn was 33.5, 6.0 and 

19.7 units more in soil amended with 1000 mg kg-1 than with 50 mg kg-1 in the first year, the second 

year and on average, respectively. However, soil Cu was 278.3, 808.8 and 543.6 units greater due to 

effect of 1000 mg kg-1 than 50 mg kg-1 in the first year, the second year and average. Soil P in the 

first year increased by 0.4 units from Cu rate of 1000 mg kg-1 compared to 50 mg kg-1. Colonized 

percent of root length of onion decreased as Cu rates increased (Table 5.14). Colonized percent of 

root length was 21.4, 10.5, and 16.0 units greater due to 50 mg kg-1 compared to 1000 mg kg-1 in 

the first year, the second year and on average respectively.  

 

5.4.3 Interaction effect of Zn and Cu 

There were significant differences for shoot fresh weight, shoot dry weight, soil Zn and plant P for 

interactions of Zn and Cu rates in both years of observation (Figure 5.6, Figure 5.7 and Table 5.15). 

The differences were also significant for plant Cu in first year, soil P, plant Zn, EC, root length and 

colonized per cent of root length in the second year. Shoot fresh weight was significantly higher due 

to the interaction of low rates of Zn and Cu compared to other interactions (Table 5.16). The 

interactions of Cu rates beyond 50 mg kg-1 with higher rates of Zn were similar in the first year 

while the interactions of 50 mg kg-1 of Zn with 50 and 500 mg kg-1 Cu had greater fresh weight than 

the other rates. Fresh weight was greater in the second year than in the first year in all interactions. 

In the second year, the interaction of 50 and 50 mg of each element and 50 and 500 mg of each 

element were similar in that they had higher shoot dry weight than the remaining interactions. On 

average, interactions of lowest rates (50 and 50 mg kg-1) were 3.8 times higher than highest rates 

(100 and 100 mg kg-1) of both elements.    
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Table 5.13 Mean values for soil Zn, soil Cu and soil P as influenced by Cu rates in 1st year, 2nd year and mean of the two years. The different letters in 

the same column indicate significant difference between treatments (N = 18) at α=0.05 level of significance. The ± values represent the 

standard error of the means.   

Cu rates (mg kg-1) Soil Zn (mg kg-1) Soil Cu (mg kg-1) Soil P (mg kg-1) 

1st year 2nd year Mean 1st year 2nd year Mean 2nd year 

50 131.7 ± 0.95c 405.8 ± 0.64c 268.8 22.1 ± 0.78c 38.9 ± 0.66c 30.5 3.8 ± 0.04c 

500 150.9 ± 1.13b 408.8 ± 0.50b 279.9 165.7 ± 1.41b 389.6 ± 0.85b 277.7 4.0 ± 0.02b 

1000 165.2 ± 0.35a 411.8 ± 0.82a 288.5 300.4 ± 0.72c 847.8 ± 1.01a 574.1 4.2 ± 0.01a 
 

 

Table 5.14 Mean values for colonized percent of root length of onion as influenced by Cu rates in 1st year, 2nd year and mean of the two years. The 

different letters in the same column indicate significant difference between treatments (N = 9) at α=0.05 level of significance. The ± values 

represent the standard error of the means.   

Cu rates (mg kg-1) Colonized % of root length 

1st year 2nd year Mean 

50 55.3 ± 2.64a 26.0 ± 0.77a 40.7 

500 45.0 ± 3.18ab 21.4 ± 0.42b 33.2 

1000 33.9 ± 3.70b 15.5 ± 0.68c 24.7 
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Figure 5.6 Shoot fresh weight of onion as influenced by the interaction of Zn and Cu rates in 1st 

year, 2nd year and the average of the two years. The inner Cu rates are split under the 

outer Zn rates. The different letters in the same series indicate significant difference 

between treatments (N = 6) at α=0.05 level of significance. The vertical bars represent 

the standard error of the means.   
    

 
Figure 5.7 Shoot dry weight of onion as influenced by the interaction of Zn and Cu rates in 1st year, 

2nd year and the average of the two years. The inner Cu rates are split under the outer Zn 

rates. The different letters in the same series indicate significant difference between 

treatments (N = 6) at α=0.05 level of significance. The ± values represent the standard 

error of the means.   
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Soil P, plant Zn and soil EC content were higher in soil amended with the higher rates of Zn in the 

second year; however, the interaction effects overlapped for treatment means. Soil Zn was also 

higher in soils amended with high rates of Zn and Cu. Plant P was greater for the interaction of low 

rates of each element. Plant Cu was higher for the interaction of higher rates of each element in the 

first year. In fact, most of the interaction means of the above-mentioned parameters overlapped 

statistically; no clear recommendations could be made.  

 

Root length and colonized percent of root length were significantly higher due to the effect of the 

interactions of low rates of each element in the second year (Table 5.17). Root length was 34% less 

for the highest rates of each element as compared to their lowest rates. Colonized percent of root 

length in the interactions of lowest rates (50 mg kg-1 of each element) was 3.8 times the length of 

the highest rates (1000 mg kg-1).  

 

5.4.4 Effect of mycorrhizae  

 Plant height (Table 5.18), shoot fresh weight (Figure 5.8A), shoot dry weight (Figure 5.8B), and 

root length, root fresh weight and plant P were significantly different for mycorrhizal rates in both 

years (Table 5.18). Treatments were also significantly different for soil EC, soil P, soil Zn and plant 

Zn in the second year (Table 5.19). Mycorrhizal inoculum at 10 g kg-1 was found beneficial over no 

inoculation. In the sixth week of growth, plant height was 5.9, 6.8 and 6.4 units greater in 

mycorrhizae inoculated plants. Shoot fresh weight of inoculated plants was 65.9% greater than the 

non-inoculated plants in the first year while it was 9.5% greater in the second year. Average shoot 

fresh weight increased by 18.4% from mycorrhizae. Shoot dry weight was increased by 16.1%, 

15.8% and 15.9%. 
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Table 5.15 Mean values for soil P, soil Zn and plant P as influenced by the interaction of Zn and Cu rates (mg kg-1) in 1st year, 2nd year and the 

mean of the two years. The different letters in the same column indicate significant difference between treatments (N = 6) at α=0.05 

level of significance. The ± values represent the standard error of the means.   

Zn rates (mg kg-1) Cu rates (mg kg-1) Soil P (mg kg-1)  Soil Zn (mg kg-1) Plant P (mg kg-1) 

  2nd year 1st year 2nd year Mean 1st year 2nd year Mean 

 

50 

50 3.1 ± 0.10e 13.3 ± 0.30g 13.3 ± 0.19d 13.3 2.3 ± 0.30a 1.9 ± 0.10a 2.1 

500 3.8 ± 0.02d 14.3 ± 0.45g 14.9 ± 0.32d 14.6 1.4 ± 0.17b 1.2 ± 0.02b 1.3 

1000 4.0 ± 0.02cd 16.6 ± 0.17g 16.9 ± 0.50d 16.8 1.09 ± 0.07bc 1.0 ± 0.03c 1.1 

 

500 

50 4.0 ± 0.01c 136.7 ± 1.87f 402.1 ± 1.57c 269.4 1.0 ± 0.02bc 1.0 ± 0.00c 1.0 

500 4.1 ± 0.01c 145.8 ± 1.90e 405.6 ± 0.93c 275.7 1.00 ± 0.02bc 0.9 ± 0.01cd 1.0 

1000 4.1 ± 0.02bc 163.7 ± 0.74d 412.3 ± 2.26b 288.0 0.9 ± 0.01bc 0.9 ± 0.01cd 0.9 

 

1000 

50 4.2 ± 0.03bc 245.2 ± 2.12c 801.9 ± 1.10a 523.6 0.9 ± 0.01bc 0.9 ± 0.00cd 0.9 

500 4.3 ± 0.04ab 292.5 ± 2.78b 805.9 ± 1.12a 549.2 0.8 ± 0.03c 0.8 ± 0.01d 0.8 

1000 4.4 ± 0.01a 315.2 ± 0.74a 806.2 ± 0.87a 560.7 0.7 ± 0.06c 0.6 ± 0.01e 0.6 
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Table 5.16 Mean values for plant Zn, plant Cu and soil electrical conductivity as influenced by the 

interaction of Zn and Cu rates. The different letters in the same column indicate 

significant difference between treatments (N = 6) at α=0.05 level of significance. The ± 

values represent the standard error of the means.   

Zn rates (mg kg-1) Cu rates (mg kg-1) Plant Zn (mg kg-1) Plant Cu (mg 

kg-1) 

EC (dS m-1) 

2nd year 1st year 2nd year 

 

50 

50 37.21 ± 0.13d 7.81 ± 0.42d 0.88 ± 0.01h 

500 35.49 ± 0.35d 19.39 ± 3.09cd 1.46 ± 0.06g 

1000 33.07 ± 0.35d 46.47 ± 0.84bc 1.78 ± 0.00e 

 

500 

50 97.38 ± 0.93b 9.46 ± 0.79d 1.45 ± 0.00g 

500 94.99 ± 0.92b 25.32 ± 2.31cd 1.89 ± 0.01d 

1000 85.92 ± 3.24c 65.73 ± 0.93b 2.04 ± 0.02c 

 

1000 

50 199.90 ± 1.07a 13.72 ± 1.94cd 1.71 ± 0.01f 

500 196.53 ± 0.84a 35.23 ± 0.96bcd 2.19 ± 0.02b 

1000 194.37 ± 0.72a 112.83 ± 1.31a 2.69 ± 0.03a 

 

Table 5.17 Mean values for root length, colonized per cent of root length as influenced 

by the interaction of Zn and Cu rates in 2nd year. The different letters in the 

same column indicate significant difference between treatments (N = 6) at 

α=0.05 level of significance. The ± values represent the standard error of the 

means.   

Zn rates 

(mg kg-1) 

Cu rates 

(mg kg-1) 

2nd year 

Root length Colonized % of root length 

 

50 

50 382.5 ± 1.78a 39.5 ± 1.53a 

500 348.6 ± 2.41b 32.2 ± 1.17b 

1000 342.4 ± 0.82b 20.6 ± 1.13cd 

 

500 

50 315.1 ± 1.65c 20.9 ± 1.57c 

500 311.9 ± 1.70c 18.1 ± 0.25de 

1000 303.8 ± 1.97cd 15.4 ± 1.22def 

 

1000 

50 292.9 ± 2.13d 17.6 ± 0.52cde 

500 259.7 ± 0.59e 13.9 ± 0.52ef 

1000 251.3 ± 1.40e 10.4 ± 0.35f 
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Table 5.18 Mean values for plant height as influenced by mycorrhizal rates over weeks in 1st year, 2nd year and the mean of the two years. The 
different letters in the same column indicate significant difference between treatments (N = 27) at α=0.05 level of significance. The ± 
values represent the standard error of the means.   

Mycorrhizal 

rates (mg kg-1) 

Plant height (cm) in weeks 

2nd week 3rd week 4th week 5th week 6th week 

 1st 

year 

2nd 

year 

Mean 1st 

year 

2nd 

year 

Mean 1st 

year 

2nd 

year 

Mean 1st 

year 

2nd 

year 

Mean 1st 

year 

2nd 

year 

Mean 

10 9.8 ± 

0.04a 

10.8 ± 

0.08a 

10.3 14.2 ± 

0.06a 

15.3 ± 

0.05a 

14.7 20.0 ± 

0.06a 

22.1 ± 

0.09a 

21.0 24.2 ± 

0.14a 

28.2 ± 

0.19a 

26.2 28.6 ± 

0.18a 

30.5± 

0.22a 

29.6 

0 7.0 ± 

0.04b 

8.3 ± 

0.07b 

7.7 9.9 ± 

0.18b 

10.9 ± 

0.20b 

10.4 14.4 ± 

0.38b 

15.5 ± 

0.41b 

15.0 18.6 ± 

0.41b 

21.3 ± 

0.55b 

20.0 22.7 ± 

0.53b 

23.7 ± 

0.61b 

23.2 
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A       B 

Figure 5.8 A. Shoot fresh weight and B. shoot dry weight of onion as influenced by the 

mycorrhizal rates in 1st year, 2nd year and the average of the two years. The different 

letters in the same series indicate significant difference between treatments (N = 27) at 

α=0.05 level of significance. The vertical bars represent the standard error of the means.   

 

Mycorrhizal inoculation increased root lengths in the first year, the second year and on average they 

were 1.9, 1.7 and 1.8 times the lengths produced in no inoculation, respectively. Root fresh weight 

also increased by 1.9, 1.6 and 1.8 times by mycorrhizae over no mycorrhizae in the first year, the 

second year and on the average, respectively. Plant P increased by 0.2, 0.12 and 0.16 units by the 

mycorrhizae in the first year, the second year and on an average, respectively. Soil EC, soil P and 

soil Zn was higher in non-mycorrhizal plants in the second year. However, plant Zn content was 

enhanced by mycorrhizae by 7.8 units over no mycorrhizae in the same year (Table 5.20). 

 

Table 5.19 Mean values for root length, root fresh weight and plant P as influenced by mycorrhizal 

rates in 1st year, 2nd year and the mean of the two years. The different letters in the 

same column indicate significant difference between treatments (N = 27) at α=0.05 

level of significance. The ± values represent the standard error of the means.   

Mycorrhizal 

rates (g kg-1) 

Root length (cm) Root fresh weight (g) Plant P (mg kg-1) 

1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd 

year 

Mean 

10 298.0 ± 

0.96a 

312.0 ± 

0.78a 

305.0 6.98 ± 

0.22a 

9.10 ± 

0.12a 

8.04 1.2 ± 

0.07a 

1.1 ± 

0.02a 

1.2 

0 159.4 ± 

0.71b 

179.3 ± 

0.83b 

169.3 3.60 ± 

0.16b 

5.52 ± 

0.07b 

4.56 1.0 ± 

0.04b 

1.0 ± 

0.01b 

1.0 
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Table 5.20 Mean values for soil electrical conductivity, soil P, soil Zn, and plant Zn as influenced 

by mycorrhizal rates in the 2nd year. The different letters in the same column indicate 

significant difference between treatments (N = 27) at α=0.05 level of significance. The 

± values represent the standard error of the means.   

Mycorrhizal rates 

(g kg-1) 

Mean values in 2nd year 

Soil EC (dS m-1) Soil P (mg kg-1) Soil Zn (mg kg-1) Plant Zn (mg kg-1) 

5 1.71 ± 0.01b 3.9 ± 0.02b 405.3 ± 0.54b 112.2 ± 0.63a 

0 1.87 ± 0.01a 4.1 ± 0.01a 412.2 ± 0.55a 104.4 ± 0.58b 

 

5.4.5 Interaction effect of Zn and Mycorrhizae 

The interactions of Zn and mycorrhizae were significantly different for plant height and soil Zn in 

both years of observation (Table 5.21). They were also significantly different for shoot fresh weight 

in the first year (Table 5.22) and shoot dry weight, root fresh weight, soil EC, soil P and plant P in 

the second year (Table 5.23). Interaction of Zn rates with mycorrhizal inoculation had a positive 

effect on plant height over no inoculation. Plant height was 8.8, 4.4, 4.5 units greater in the  

interaction of Zn rates 50, 500 and 1000 mg kg-1 with mycorrhizae over no mycorrhizae in the 1st 

year while it was 9.3, 5.5, 5.7 units greater in the 2nd year. 
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Table 5.21 Mean values for plant height over weeks and soil Zn as influenced by the interaction of Zn and mycorrhizal rates in 1st year, 2nd year and 

mean of the two years; a. 2-4 weeks; b.5-6 weeks and soil Zn. The different letters in the same column indicate significant difference 

between treatments (N = 9) at α=0.05 level of significance. The ± values represent the standard error of the means.   

a. 

  Plant height (cm) in weeks 

Zn rates (mg 

kg-1) 

Mycorrhizal rates (g 

kg-1) 

2nd week 3rd week 4th week 

1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 

 

50 

 

10 12.18 ± 

0.06a 

13.11 ± 

0.08a 

12.65 17.58 ± 

0.07a 

18.62 ± 

0.08a 

18.10 23.29 ± 

0.06a 

25.53 ± 

0.09a 

24.41 

0 7.27 ± 

0.08d 

8.51 ± 

0.05d 

7.89 10.32 ± 

0.20c 

11.42 ± 

0.22c 

10.87 14.96 ± 

0.58c 

15.97 ± 

0.63c 

15.47 

 

500 

 

10 9.09 ± 

0.11b 

10.03 ± 

0.20b 

9.56 12.81 ± 

0.13b 

13.85 ± 

0.12b 

13.33 18.81 ± 

0.16b 

20.74 ± 

0.20b 

19.78 

0 7.10 ± 

0.03d 

8.43 ± 

0.06de 

7.77 10.29 ± 

0.46c 

11.21 ± 

0.51c 

10.75 15.06 ± 

0.82c 

16.31 ± 

0.90c 

15.69 

 

1000 

10 7.99 ± 

0.05c 

9.14 ± 

0.07c 

8.57 12.11 ± 

0.08b 

13.20 ± 

0.07b 

12.66 17.99 ± 

0.08c 

19.88 ± 

0.18b 

18.94 

0 6.67 ± 

0.09e 

7.91 ± 

0.18e 

7.29 8.97 ± 

0.20d 

10.07 ± 

0.20d 

9.52 13.17 ± 

0.56c 

14.30 ± 

0.55c 

13.74 
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b. 

Zn rates (mg 

kg-1) 

Mycorrhizal rates (g 

kg-1) 

Plant height (cm)  in weeks  

5th week 6th week Soil Zn (mg kg-1) 

1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 

50 10 27.58 ± 

0.18a 

31.64 ± 

0.21a 

29.61 32.06 ± 

0.12a 

33.91 ± 

0.23 a 

32.99 13.12 ± 

0.25e 

13.10 ± 

0.28e 

13.11 

0 19.13 ± 

0.66c 

22.09 ± 

0.97c 

20.61 23.28 ± 

0.76c 

24.64 ± 

0.94c 

23.96 16.33 ± 

0.28e 

16.96 ± 

0.31e 

16.65 

500 10 22.99 ± 

0.22b 

27.17 ± 

0.21b 

25.08 27.37 ± 

0.30b 

29.53 ± 

0.34b 

28.45 130.53 ± 

1.59d 

401.60 ± 

1.28d 

266.07 

0 19.23 ± 

0.84c 

22.10 ± 

1.18c 

20.67 22.96 ± 

1.08c 

24.01 ± 

1.21c 

23.49 166.94 ± 

0.93c 

411.69 ± 

1.45c 

289.32 

1000 10 21.91 ± 

0.28b 

25.74 ± 

0.50b 

23.83 26.22 ± 

0.43b 

28.17 ± 

0.51b 

27.20 232.41 ± 

1.89b 

801.31 ± 

0.94b 

516.86 

0 17.41 ± 

0.58c 

19.69 ± 

0.62c 

18.55 21.73 ± 

0.88c 

22.47 ± 

1.00c 

22.1 336.12 ± 

1.44a 

808.01 ± 

0.74a 

572.07 
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Shoot fresh weight from interactions of Zn rates 50, 500 and 1000 mg kg-1 with mycorrhizae in the 

first year increased by 44.2%, 19.6% and 25.8% respectively over no mycorrhizae. In the second 

year, shoot dry weight increased by 20.5% in the interaction of Zn at 50 mg kg-1 with mycorrhizae 

compared to without mycorrhizae. Other interactions were similar for shoot dry weight. Root fresh 

weight was two times greater in the interaction of Zn at a rate of 50 mg kg-1 with mycorrhizae 

compared to the interaction without mycorrhizae. Root fresh weight was 1.2 and 1.98 times greater 

for the interaction of Zn rate 50 mg kg-1 with mycorrhizae compared to interaction of Zn rate 500 

and 1000 mg kg-1 with mycorrhizae, respectively. 

 

Soil EC was greater in the interactions in which there was an absence of mycorrhizae compared to 

the respective interactions with mycorrhizae. For soil P, there was no difference between the 

respective Zn rates with and without mycorrhiza but difference was observed between Zn rates with 

mycorrhiza. For instance, interaction of Zn rate 50 mg kg-1 with mycorrhizae resulted in 13.2% and 

18.6% less soil P compared to the interaction of Zn rate 500 and 1000 mg kg-1 with mycorrhizae, 

respectively. However, plant P was 57.9%, 92.3% greater in the interaction of Zn rates 50 mg kg-1 

with mycorrhizae compared to 500 and 1000 mg kg-1 with mycorrhizae, respectively. 

 

Table 5.22 Mean values for shoot fresh weight as influenced by the interaction of Zn and 

mycorrhizal rates in the 1st year. The different letters in the same column indicate 

significant difference between treatments (N = 9) at α=0.05 level of significance. The 

± values represent the standard error of the means.   

Zn rates (mg kg-1) Mycorrhizal rates (g kg-1) Mean values for the first year 

Shoot fresh weight (g) 

50 10 27.58 ± 0.14a 

0 19.13 ± 0.56c 

500 10 22.99 ± 0.48b 

0 19.23 ± 0.69c 

1000 10 21.91 ± 0.44b 

0 17.41 ± 0.31c 
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Table 5.23 Mean values for shoot dry weight, root fresh weight, soil electrical conductivity, plant P 

and soil P as influenced by the interaction of Zn and mycorrhizal rates in 2nd year. The 

different letters in the same column indicate significant difference between treatments 

(N = 6) at α=0.05 level of significance. The ± values represent the standard error of the 

means.   

Zn 

rates 

(mg 

kg-1) 

Mycorr

hizal 

rates (g 

kg-1) 

Mean Values for the second year 

Shoot dry 

weight (g) 

Root fresh 

weight (g) 

Soil electrical 

conductivity 

(dS m-1) 

Plant P (mg 

kg-1) 

Soil P (mg kg-1) 

50 10 10.21 ± 0.38a 11.66 ± 0.17a 1.30 ± 0.00f 1.50 ± 0.07a 3.50 ± 0.07c 

0 8.47 ± 0.46b 5.77 ± 0.04c 1.44 ± 0.04e 1.23 ± 0.02b 3.77 ± 0.02c 

500 10 4.42 ± 0.22c 9.73 ± 0.27b 1.74 ± 0.01d 0.95 ± 0.01c 4.03 ± 0.01b 

0 3.78 ± 0.20c 5.94 ± 0.21c 1.84 ± 0.01c 0.92 ± 0.00c 4.08 ± 0.01b 

1000 10 3.58 ± 0.12c 5.89 ± 0.19c 2.08 ± 0.02b 0.78 ± 0.00d 4.25 ± 0.03a 

0 3.48 ± 0.11c 4.84 ± 0.07d 2.31 ± 0.01a 0.72 ± 0.01d 4.30 ± 0.02a 

 

5.4.6 Interaction effect of Cu and Mycorrhizae 

Interactions of Cu rates and mycorrhizal rates were significantly different for shoot fresh weight, 

shoot dry weight and soil Zn in the first year while differences were observed for soil P and plant P 

in the second year (Table 5.24).  

 

In the first year, Cu rates with mycorrhizae produced similar shoot fresh weight while they were 

different from interaction without mycorrhizae, indicating positive effect of interaction of Cu and 

mycorrhizae. Shoot dry weight had overlapping rankings for most treatments but a clear difference 

between lowest and highest Cu rates with mycorrhizae was found. Soil Zn increased with increased 

rate of Cu for interactions lacking mycorrhizal inoculation. 

 

In the second year, the interactions of lowest Cu rates with and without mycorrhizae gave less soil P 

compared to the highest rates with or without mycorrhizae. However, plant P was greater in the 

interaction of the lower rates of Cu with or without mycorrhizae. Soil P was greater in the 

interactions with the absence of mycorrhizae. 
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Table 5.24 Mean values for shoot fresh weight, shoot dry weight and soil Zn in first year and soil P 

and plant in 2nd year as influenced by the interaction of Cu and mycorrhizal rates. The 

different letters in the same column indicate significant difference between treatments 

(N = 9) at α=0.05 level of significance. The ± values represent the standard error of the 

means. 

Cu 

rates 

(mg 

kg-1) 

Mycorr

hizal 

rates (g 

kg-1) 

Mean values for the 1st year Mean values for the 2nd year 

Shoot fresh 

weight (g) 

Shoot dry 

weight (g) 

Soil Zn (mg 

kg-1) 

Soil P (mg 

kg-1) 

Plant P (mg 

kg-1) 

50 10 16.26 ± 0.32a 4.18 ± 0.04a 111.5 ± 1.58f 3.6 ± 0.07d 1.4 ± 0.07a 

0 8.72 ± 0.54c 3.37 ± 0.10c 152.0 ± 1.04c 3.9 ± 0.01c 1.1 ± 0.00b 

500 10 14.28 ± 0.38ab 3.95 ± 0.03ab 126.5 ± 1.79e 4.0 ± 0.02bc 1.0 ± 0.01bc 

0 9.22 ± 0.45c 3.47 ± 0.09c 175.2 ± 1.39b 4.1 ± 0.02ab 0.9 ± 0.01cd 

1000 10 13.20 ± 0.45b 3.74 ± 0.15bc 138.1 ± 0.69d 4.2 ± 0.01a 0.8 ± 0.01d 

0 8.42 ± 0.63c 3.41 ± 0.08c 192.2 ± 0.15a 4.2 ± 0.02a 0.8 ± 0.02d 
 

5.4.7 Interaction effect of Zn, Cu and Mycorrhizae 

The results revealed that there were some differences between interaction of Zn, Cu and 

mycorrhizae for shoot fresh weight, shoot dry weight and soil Zn in the first year (Table 5.25), and 

for EC, root fresh weight, plant P and soil P in second year (Table 5.26). Treatment groupings 

overlapped for all parameters but the lowest rates of Zn and Cu with mycorrhizae had more positive 

effect for the described parameters than the rest of the interactions.   

 

The general morphological differences and mycorrhizal associations between plants grown in the 

treatment structures are shown in Plate 5.1 and Plate 5.2 below.  
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Table 5.25 Mean values for shoot fresh weight, shoot dry weight and soil Zn for the first year as 

influenced by the interaction of Zn, Cu and mycorrhizal rates. The different letters in the 

same column indicate significant difference between treatments (N = 3) at α=0.05 level 

of significance. The ± values represent the standard error of the means.   

Zn rates 

(mg kg-1) 

Cu rates 

(mg kg-1) 

Mycorrhizal 

rates (g kg-1) 

Mean values for the first year 

Shoot fresh weight 

(g) 

Shoot dry 

weight (g) 

Soil Zn (mg kg-1) 

50 50 10 24.47 ± 0.25a 5.04 ± 0.10a 11.61 ± 0.13k 

0 9.03 ± 1.12fgh 3.32 ± 0.10bc 15.04 ± 0.58k 

500 10 17.10 ± 0.26b 3.85 ± 0.04bc 13.17 ± 0.67k 

0 9.27 ± 0.57efgh 3.61 ± 0.25bc 15.35 ± 0.61k 

1000 10 16.63 ± 0.22bc 3.98 ± 0.32b 14.59 ± 0.32k 

0 8.53 ± 1.03fgh 3.63 ± 0.22bc 18.60 ± 0.12k 

500 50 10 14.60 ± 0.87bcd 3.80 ± 0.05bc 116.66 ± 3.37j 

0 9.03 ± 0.96fgh 3.53 ± 0.26bc 156.69 ± 1.62hi 

500 10 13.43 ± 1.04bcde 3.85 ± 0.08bc 128.00 ± 3.05j 

0 10.47 ± 1.09defgh 3.58 ± 0.08bc 163.64 ± 2.27h 

1000 10 12.57 ± 0.50cdef 3.82 ± 0.31bc 146.93 ± 1.48i 

0 8.53 ± 1.49fgh 3.30 ± 0.09c 180.50 ± 0.14g 

1000 50 10 9.70 ± 0.26efgh 3.71 ± 0.02bc 206.17 ± 3.34f 

0 8.10 ± 0.56gh 3.25 ± 0.08c 284.20 ± 2.60c 

500 10 12.30 ± 0.35defg 3.15 ± 0.02c 238.37 ± 4.37e 

0 7.93 ± 0.52h 3.20 ± 0.07c 346.57 ± 3.44b 

1000 10 10.40 ± 1.25defgh 3.42 ± 0.12bc 252.70 ± 1.42d 

0 8.20 ± 0.50gh 3.29 ± 0.01c 377.60 ± 0.40a 
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Table 5.26 Mean values for soil electrical conductivity, root fresh weight, plant P, and soil P for the 

second year as influenced by the interaction of Zn, Cu and mycorrhizal rates. The 

different letters in the same column indicate significant difference between treatments 

(N = 3) at α=0.05 level of significance. The ± values represent the standard error of the 

means.   

Zn 

rates 

(mg 

kg-1) 

Cu 

rates 

(mg 

kg-1) 

Mycorrh

izal rates  

(g kg-1) 

Mean values for the 2nd year 

Electrical 

conductivity (dS 

m-1) 

Root fresh 

weight (g) 

Plant P  

(mg kg-1) 

Soil P  

(mg kg-1) 

50 50 10 0.78 ± 0.01n 11.64 ± 0.42ab 2.32 ± 0.20a 2.69 ± 0.20h 

0 0.99 ± 0.00m 6.30 ± 0.05d 1.47 ± 0.01b 3.52 ± 0.01g 

500 10 1.37 ± 0.01l 12.67 ± 0.12a 1.26 ± 0.02bc 3.76 ± 0.02fg 

0 1.54 ± 0.12ij 5.58 ± 0.07d 1.14 ± 0.03cd 3.86 ± 0.03ef 

1000 10 1.76 ± 0.01h 10.68 ± 0.23bc 0.94 ± 0.02def 4.06 ± 0.03cdef 

0 1.81 ± 0.00gh 5.43 ± 0.11d 1.07 ± 0.04cde 3.92 ± 0.04def 

500 50 10 1.42 ± 0.00jk 10.39 ± 0.04bc 098 ± 0.00def 4.01 ± 0.01 cdef 

0 1.48 ± 0.00ij 5.87 ± 0.45d 0.96 ± 0.00def 4.02 ± 0.01cdef 

500 10 1.87 ± 0.01fg 9.46 ± 0.20c 0.94 ± 0.02def 4.04 ± 0.03 cdef 

0 1.92 ± 0.01f 6.11 ± 0.25d 0.94 ± 0.00def 4.07 ± 0.01cde 

1000 10 1.94 ± 0.01ef 9.34 ± 0.79c 0.94 ± 0.01def 4.04 ± 0.02 cdef 

0 2.14 ± 0.03d 5.85 ± 0.34d 0.88 ± 0.00ef 4.15 ± 0.03bcde 

1000 50 10 1.63 ± 0.01h 6.53 ± 0.16d 0.87 ± 0.00efg 4.19 ± 0.06abcd 

0 1.78 ± 0.00gh 5.57 ± 0.03d 0.86 ± 0.00efg 4.16 ± 0.02bcde 

500 10 2.04 ± 0.04e 5.93 ± 0.55d 0.85 ± 0.00efg 4.19 ± 0.05abcd 

0 2.34 ± 0.01c 5.33 ± 0.07d 0.75 ± 0.01fgh 4.29 ± 0.05abc 

1000 10 2.59 ± 0.06b 5.22 ± 0.06de 0.62 ± 0.01gh 4.39 ± 0.01ab 

0 2.80 ± 0.01a 3.63 ± 0.20e 0.55 ± 0.01h 4.46 ± 0.02a 

 

5.4.8 Effect of extra treatments 

The three extra (control) treatments were evaluated in the experiments to compare their effect on 

the given parameters within them and with rates of Zn, Cu, mycorrhizae and their interactions 

(Table 5.27 to Table 5.33). Results for controls revealed that application of biochar was more 

beneficial than none confirming results from previous experiments (Chapters 2, 3 and 4). Here, 

application of mycorrhizae, in addition to biochar, had greater effect than none of each.  
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When these controls were compared to sole effects and interaction effects of the above-mentioned 

results, application of biochar plus mycorrhizae was superior to all treatments for growth of onion 

and mycorrhizal colonization. Soil was low in P and Zn, so application of biochar, Zn, Cu, 

mycorrhizae or interaction of Zn, Cu and mycorrhizae was positive compared to no amendment. 
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Table 5.27 Effect of extra treatments on plant height over weeks in the 1st year, 2nd year and mean of the two years. The different letters in the same 

column indicate significant difference between treatments (N = 3) at α=0.05 level of significance. The ± values represent the standard error 

of the means.   

 

Treatments 

Plant height (cm) in weeks 

2nd week 3rd week 4th week 5th week 6th week 

1st year 2nd 

year 

Mean 1st year 2nd 

year 

Mean 1st year 2nd 

year 

Mean 1st year 2nd 

year 

Mean 1st year 2nd 

year 

Mean 

soil 6.5 ± 

0.15c 

7.0 ± 

0.32c 

6.8 7.4 ± 

0.09c 

9.0 ± 

0.21c 

8.2 9.6 ± 

0.22b 

13.7 ± 

0.15c 

11.7 12.5 ± 

0.18b 

18.9 ± 

0.50c 

15.7 16.1 ± 

0.38b 

20.8 ± 

0.36c 

18.4 

Soil + Biochar 6.9 ± 

0.37b 

11.0 ± 

0.72b 

9.0 9.6 ± 

1.10b 

13.9 ± 

0.35b 

11.8 11.5 ± 

1.17b 

18.0 ± 

0.27b 

14.8 14.2 ± 

0.70b 

21.9 ± 

0.31b 

18.0 18.3 ± 

0.79b 

26.6 ± 

0.15b 

22.5 

Soil + Biochar 

+ Mycorrhiza 

11.3 ± 

0.13a 

14.9 ± 

0.61a 

13.1 20.1 ± 

0.24a 

21.8 ± 

0.53a 

21.0 28.1 ± 

0.30a 

28.9 ± 

0.50a 

28.5 32.3 ± 

0.66a 

32.5 ± 

5.14a 

32.4 35.6 ± 

0.10a 

39.4 ± 

0.74a 

37.6 

 

Table 5.28 Effect of extra treatments on shoot fresh weight and shoot dry weight in the 1st year, 2nd year and mean of the two years. The different 

letters in the same column indicate significant difference between treatments (N = 3) at α=0.05 level of significance. The ± values represent 

the standard error of the means.   

Treatments Shoot fresh weight (g) Shoot dry weight (g) 

1st year 2nd year Mean 1st year 2nd year Mean 

soil 11.30 ± 0.17c 45.21 ± 7.92b 28.26 4.50 ± 0.03a 5.39 ± 0.82b 4.95 

Soil + Biochar 14.70 ± 1.55b 43.91 ± 11.00b 29.31 4.57 ± 0.06a 7.44 ± 1.83ab 6.01 

Soil + Biochar + Mycorrhiza 36.33 ± 0.46a 69.63 ± 16.86a 52.98 4.84 ± 0.14a 7.47 ± 1.17a 6.16 
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Table 5.29 Effect of extra treatments on root length and root fresh weight in the first year, second 

year and the mean of the two years. Values within the same column that do not follow 

the same letter are significantly different (p < 0.05). The ± values represent the standard 

error of the mean (N = 3). 

Treatments Root length (cm) Root fresh weight (g) 

1st year 2nd year Mean 1st year 2nd year Mean 

soil 359.4 ± 6.21b 240.4 ± 13.17b 299.9 3.53 ± 0.22b 3.60 ± 0.53c 3.57 

Soil + Biochar 350.9 ± 3.86b 255.1 ± 3.37b 303.0 4.96 ± 0.10b 6.77 ± 0.35b 5.87 

Soil + Biochar 

+ Mycorrhiza 

478.8 ± 2.79a 311.2 ± 12.62a 395.0 11.56 ± 0.07a 10.80 ± 1.00a 11.18 

 

Table 5.30 Effect of extra treatments on soil electrical conductivity, plant P and plant Zn in the first 

year, second year and the mean of the two years. Values within the same column that do 

not follow the same letter are significantly different (p < 0.05). The ± values represent 

the standard error of the mean (N = 3). 

Treatments Electrical conductivity 

(dS m-1) 

Plant P (mg kg-1) Plant Zn (mg kg-1) 

1st year 2nd year Mean 1st year 2nd year Mean 1st year 2nd year Mean 

soil 1.02 ± 

0.18a 

0.11 ± 

0.21b 

0.57 0.9 ± 

0.3a 

0.8 ± 

0.51b 

0.8 0.8 ± 

0.41c 

0.5 ± 

0.10c 

0.6 

Soil + Biochar 1.05 ± 

0.36a 

0.80 ± 

0.44a 

0.93 1.1 ± 

0.25a 

1.4 ± 

0.20b 

1.2 1.4 ± 

0.69a 

0.8 ± 

0.06b 

1.1 

Soil + Biochar 

+ Mycorrhiza 

0.98 ± 

0.19a 

0.80 ± 

0.75a 

0.89 1.5 ± 

0.33a 

2.4 ± 

0.21a 

2.0 1.6 ± 

0.31b 

1.3 ± 

0.15a 

1.4 

 

Table 5.31 Effect of extra treatments on soil P in second year and soil Zn in the first year, second 

year and the mean of the two years. The different letters in the same column indicate 

significant difference between treatments (N = 3) at α=0.05 level of significance. The ± 

values represent the standard error of the means.   

Treatments Soil P (mg kg-1) Soil Zn (mg kg-1) 

2nd year 1st year 2nd year Mean 

soil 3.00 ± 0.40a 0.78 ± 0.23a 1.28 ± 1.39d 1.03 

Soil + Biochar 3.60 ± 0.20a 1.68 ± 0.60a 0.87 ± 0.31d 1.28 

Soil + Biochar + Mycorrhiza 2.57 ± 0.21b 0.89 ± 0.27a 1.20 ± 0.12d 1.05 
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Table 5.32 Effect of extra treatments on soil Cu and plant Cu in the first year, second year and the 

mean of the two years. The different letters in the same column indicate significant 

difference between treatments (N = 3) at α=0.05 level of significance. The ± values 

represent the standard error of the means.   

Treatment Soil Cu (mg kg-1) Plant Cu (mg kg-1) 

1st year 2nd year Mean 1st year 2nd year Mean 

Soil 1.06 ± 0.16 1.04 ± 0.15d 1.05 0.42 ± 0.24 0.80 ± 0.10b 0.61 

Soil + Biochar 1.90 ± 0.76 1.60 ± 0.41d 1.75 0.93 ± 0.27 1.17 ± 0.06a 2.1 

Soil + Biochar 

+ Mycorrhiza 

1.46 ± 0.84 1.18 ± 0.07d 1.32 0.66 ± 0.24 1.00 ± 0.10a 0.83 

 

Table 5.33 Effect of control on colonized per cent of root length in the 1st year, 2nd year and the 

mean of the two years. The ± values represent the standard error of the mean (N = 3). 

Treatment Colonized % of root length 

1st year 2nd year Mean 

Biochar + Mycorrhizae 78.3 ± 4.64 61.9 ± 3.8 70.12 
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A      B      C      D 

       
  E    F G H 

   
 I          J 

Plate 5.1 Effect of mycorrhizal inoculation on growth of onion plants grown in various combinations of Zn and Cu rates added to a medium of soil and 

biochar at a rate of 30 t ha-1, A-C = Cu 50, 500 and 1000 mg kg-1 with Zn 50mg kg-1 of soil; D-F = Cu 50, 500 and 1000 mg kg-1 with Zn 

500mg kg-1 of soil; G-I = Cu 50, 500 and 1000 mg kg-1 with Zn 1000mg kg-1 of soil; J = control pots with soil, soil + biochar, soil + biochar 

+ mycorrhiza. In each plate, mycorrhizal inoculation shows better growth of plants than no mycorrhiza.   
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A    B    C     D   E 

                  

 F    G   H     I   J 

Plate 5.2 Effect of various combinations of Zn and Cu rates added to a medium of soil and biochar at a rate of 30 t ha-1 on mycorrhizal colonization, A-

C = Cu 50, 500 and 1000 mg kg-1 with Zn 50mg kg-1 of soil; D-F = Cu 50, 500 and 1000 mg kg-1 with Zn 500mg kg-1 of soil; G-I = Cu 50, 

500 and 1000 mg kg-1 with Zn 1000mg kg-1 of soil; J = control plants with soil + biochar + mycorrhiza. Plates showing the lower rates of Cu 

should have more mycorrhizal colonization and increasing rates of both metals reduce the colonization. Magnified by 40x. 
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5.5 Discussion 
Soil was amended with biochar for all treatments except a control (soil only) at a rate of 30 t ha-1. 

This rate was experimentally verified for other horticultural crops such as lettuce and tomato in 

sand medium. Influence of all other treatments was more positive on the recorded parameters than 

soil without any amendment; however it also showed some degree of colonization. From this 

experiment, it can be emphasized that biochar had positive effects on plant traits, mycorrhizal 

development and soil and plant nutrient contents. EC was quite high which would be associated 

with acid neutralizing value of biochar and added nutrients. Biochar has been reported by 

Brandstaka et al. (2010) and others for its positive influence on improving soil quality and plant 

growth (Chan et al. 2007; Chan et al. 2008a), liming values (Van Zwieten et al. 2010a) and 

contaminant destruction (Glover 2009).  

 

Some reports emphasize that biochar amendments can increase AMF % root colonization in plant 

roots (Elmer & Pignatello 2011) grown in acidic soils (Ezawa et al. 2002; Matsubara et al. 2002; 

Yamato et al. 2006), while others show decreased abundance (Warnock et al. 2010). However, the 

colonization was detected in the present study even at the higher rates of Zn, Cu and biochar 

amended soil. In some cases, inhibited colonization after char amendment might be due to improved 

availability of P (Warnock et al. 2007) if soil had adequate P.  

 

Comparing the results on mycorrhizal colonization in biochar and mycorrhizae added sand in 

Chapter 4 and biochar and mycorrhizae added calcareous soil in Chapter 5, the findings were 

interesting. In Table 4.5 of Chapter 4, mycorrhizal colonization was around 4% in control while it 

was about 17% in biochar treatments. Even though they were statistically different, the colonization 

was very low in both conditions. It indicated that the commercial inoculum was less effective in 

sand medium. But, in Table 5.33 of chapter 5, mycorrhizal colonization in biochar and mycorrhizae 

added soil was about 70%. This difference might come from different structure of the two soil 

media in which rate of mycorrhizal establishment, association and development differed. The other 

possible reason for this difference may be less leaching of mycorrhizal spores from clay soil than 

from sand medium due to their difference in porosity. There was still some chance of leaching of 

nutrients and mycorrhizal spores from the sand medium, however, fabric cloth placed on the bottom 

of the pots in both experiments was used to reduce leaching of nutrients and spores.  

 

Plant Zn and Cu were observed in higher amounts where higher rates of Zn or Cu were applied. 

However, these results did not exceed the data range given in previous literature. For example in 

this study, the highest content of Zn 225.32 mg kg-1 was found in plants treated with Zn at a rate of 
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1000 mg kg-1 of soil. It was reported that the Zn content of leafy vegetables and herbs grown in 

heavy metal contaminated soil were 738mg and 414 mg kg-1 dry weight, respectively (Kachenko & 

Singh 2004). Similarly, the Zn content of vegetables grown in soils contaminated by base metal 

mining was 39-710 mg kg-1 (Davies & White 1981). The Zn content in plants of heavy metal 

contaminated soil ranged from 98 to 244 mg kg-1 (Kashem & Singh 1999), though the crops were 

not vegetables. Similarly Cu content of plant was 125 mg kg-1 dry weight in the present study which 

was also comparable with the previous reports; for example, it was 9.6 – 245 mg kg-1 in vegetables 

(Kachenko & Singh 2004).  

     

Zn increased plant height up to 50 mg kg-1. It might increase beyond this level but that requires 

further study. As onion has been classified as sensitive to Zn deficiency (Chapman 1966), the rate 

needs to be verified. As a recommendation, 10 kg ha-1 was optimum for onion crop (Khan et al. 

2007) while in the present study, Zn rate of 50 mg per pot was equivalent to about 11 kg ha-1 

considering the  pot diameter (12 cm) and the soil had very low Zn content (0.4 mg kg-1 of soil). 

Thus, a basal rate of 50 mg kg-1 of soil was used. Reduced plant height due to increased Zn rates 

could be due to Zn toxicity. Similar results were found for Cu. Plants showed Cu toxicity at higher 

rates, however, Cu is less available if soil pH is above 4 (Mathur & Levesque 1983). In the 

experimental soil, pH was around 7. High rates of Cu could change the soil nutrient composition so 

that plant height would be reduced. Similar effects of Cu on plant height in later weeks would be 

associated with increased plant tolerance after vigorous growth. Greater plant height in mycorrhizal 

plants from the second week to the sixth week of planting suggested that networks of mycorrhiza 

were established from the earlier planting. 

  

High rate of Zn reduced Cu content in plants and created stress that ceased growth (Bonnet et al. 

2000). This fact was also associated with the present study as higher rates of Zn had negative effect 

on plant growth. Interaction of Zn and mycorrhiza increased growth during the recording period 

indicating that mycorrhizal inoculation had positive effect on Zn uptake. Mycorrhiza can detoxify 

high rates of Zn (Dueck et al. 1986). The effect could also be associated with other factors such as 

P, as elevated Zn levels interfere with P uptake (Shetty et al. 1995). Interaction of Cu and 

mycorrhiza on plant height was visible only in the second week of planting but the reason behind 

this was unclear. However, it could be associated with supply of Cu from mycorrhizal activity. 

 

Lower shoot fresh weight due to elevated Zn levels would be linked to Zn toxicity and low P as the 

soil was designated as low P soil. Nutrient solution with 25% P was added to sustain plants but it 

might not have been sufficient for optimum shoot growth.  
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Minimum temperature of about 100C at night was maintained  for onion by air cooling in the 

glasshouse during the morning and evening but higher temperatures were still a problem during the 

day (beyond 260C) in the first year. In the second year, the experiment was conducted in a larger 

glasshouse with a fixed range of temperature. This could be a major factor for better plant growth in 

the second year. 

 

The shoot fresh and dry weights were very high in second year in part because plants were at 

bulbing stage. Day length is not very important in bulb formation but high temperature plays a 

major role (Abdalla 1967). The temperature and light conditions were also improved in the second 

year of the study.  

 

Root mass could be increased if the soil were loamy or more porous but clayey calcareous soil in 

this study could impair porosity and root aeration. Increased level of Zn also decreases root length 

(Denny & Wilkins 1987) but the toxic concentration of a particular nutrient may vary depending 

upon crop type (Dang et al. 1990), soil composition, biological activity in soil and other factors 

(Påhlsson 1989). Zn with Cu and some other nutrients in excess amount can reduce rooting capacity 

as observed in white poplar (Castiglione et al. 2007). 

  

Mycorrhizal colonization can increase plant dry weight (Chen et al. 2007). Higher shoot fresh 

weight and dry weight due to interaction of mycorrhiza and Cu have also been reported by 

Malekzadeh & Ordubadi (2012) indicating that mycorrhizae prevented Cu toxicity in plants by 

acting as an agent to filter its flow from roots to plant tissue (Malekzadeh et al. 2007). 

  

The interaction effect of Zn, Cu and mycorrhiza were not consistent over the term of the present 

study. However, there could be positive influence on plant and mycorrhizal parameters because 

mycorrhizae develop protective mechanisms against heavy metals (Gildon & Tinker 1983). To 

determine the interaction effects more consistently, long-term experiments should be carried out 

maintaining the soil pH around or below neutral. 

  

Elemental sulphur was used to reduce pH of soil to near 7; pots were planted after two weeks which 

would not be long enough duration for soil reactions. The pH level should be in the acidic range for 

optimum uptake of Zn, but to make a balance for all nutrients it was maintained at 7. Soil pH was 

tested after addition of biochar due to the limitation of planting but soil was alkaline after plant 
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harvest. The results may have been clearer if the pH were maintained at 7 or below after the 

addition of biochar.  

  

Salt concentration increased due to the effect of Zn and Cu, however, mycorrhiza was observed to 

increase salt concentration in soil as EC was higher in mycorrhizal plants. A previous study also 

explains that the mycorrhiza restrict salt absorption by plants (Huang et al. 2005), thus they can 

accumulate in the rhizosphere increasing EC; however, there was no significant difference between 

mycorrhizal and non-mycorrhizal soil for EC content. Yet there was some difference in Zn content 

of soil. Interaction of Zn with Cu, Cu with mycorrhiza and Zn with Cu and mycorrhiza had the 

similar trend that explains the role of mycorrhiza in restricting the absorption of excess Zn.  

 

Cu content of plants was lower in mycorrhizal plants in extra treatments which supports the theory 

on the role of mycorrhiza in restriction of excess intake of heavy metals explained above. Plant P 

content was higher for low rate of Zn in this experiment, however, Zn supply had little effect on 

tissue P in wheat (Zhu et al. 2001) but excess phosphorus can induce Zn deficiency (Marschner & 

Cakmak 1986). Soil was low P and plant P content was probably added by biochar and nutrient 

solution by the activity of mycorrhiza. Therefore, the higher concentration of P at higher rates of Zn 

could be linked with mycorrhiza and other factors. Similar trend of P content was observed for Cu 

supply; however the role of Cu on P uptake has been inadequately explained by previous 

researchers. Mycorrhizae increase the uptake of Zn and Cu, but mycorrhizal activity is suppressed 

by P fertilization (Lambert et al. 1979). Interaction effect of Zn and Cu on plant P content is not 

adequately studied but some authors mentioned that Cu in excess interferes with the mechanism to 

absorb or translocate other nutrients (Struckmeyer et al. 1969) and inhibits root elongation 

(Woolhouse & Walker 1981; Fageria 2001). Plant P increase by mycorrhizal inoculum is  well-

established and the mechanism for enhanced absorption of P by hyphae and solubilization of soil P 

by releasing organic acids from mycorrhizal network has been explained by Bolan (1991). 

 

Mycorrhizal tolerance to heavy metals has been described by Hildebrandt et al. (2007). Mycorrhizal 

development on soybean plants grown in the greenhouse in soil was enhanced by adding 18 mg Zn 

per kg soil on a dry weight basis while higher rates of 45 and 135 mg kg-1 Zn resulted in decreased 

infection (McIlveen & Cole Jr 1979). In the present study, the lowest rate was 50 mg kg-1 and better 

colonization occurred at this rate than higher rates. Thus this study supports the previous one that 

lower rates of Zn stimulate but higher rates reduce development. It could not be concluded that the 

highest rate was inhibitory because some colonization was also detected at those rates, however, 50 

mg Zn and 50 mg Cu per kilogram of soil could be recommended from this experiment. Yet, a 
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rigorous study is needed to identify the deleterious rates of heavy metals for mycorrhiza.  Glomus 

mosseae was able to colonize pepper in Cu contaminated soils (Latef & Hamed 2011). Present 

results also supported the view of this author. Adequate literature is lacking on the interaction 

effects of Zn and Cu on mycorrhizal development, however there is a potential of mycorrhiza for 

remediation in Cu and Zn contaminated soils. In this study, increasing rates of Zn and Cu in 

combination reduced mycorrhizal development which could be associated with the rooting ability of 

the plants in contaminated soil.  

      

A low P calcareous soil was used for the experiment. Other types of soil as well as other biochars 

need to be trialled. Similarly, the rates of Zn covered a wide range but even the highest 

concentration did not prevent mycorrhizal colonization. Therefore, rates more than 1000 mg kg-1 of 

each metal should be included to determine the lethal doses. However, the aim was to find whether 

the AMF could tolerate the range of Zn and Cu levels in biochar amended soil. It was noteworthy 

that AM application increased nutrient uptake but application of higher rates of Zn and Cu had 

inhibitory effect on colonization of crops by arbuscular mycorrhizal fungi. 

 

5.6 Conclusion 
Effects of Zn, Cu and mycorrhizae were tested to determine the effective rates and interactions on 

plant growth and mycorrhizal colonization. The study confirmed that the addition of biochar and 

mycorrhizae was beneficial over no use. This study also confirmed that the mycorrhizal 

colonization could be found in a calcareous alkaline soil. Biochar amended soil increased overall 

growth and mycorrhizal colonization. Individual effects of Zn and Cu were more distinct than their 

interactions. Mycorrhizal effect was greater in all recorded parameters than where there was no 

application of mycorrhizae. Limited mycorrhizal colonization was found for high rates of Zn and 

Cu thus verifying the tolerance of mycorrhizae to these metals. This experiment adds information 

on the soil management system and resolving environmental pollution caused by Zn and Cu 

contamination in agricultural soils.  

 

In these studies, effects of biochar with nutrient solution or biochar with Zn and Cu were studied. 

However, actual contribution of biochar could not be detected, though it was found beneficial over 

no biochar addition. To determine the influence of nutrients present in biochar on growth of a crop, 

further study was conducted to compare the effect of biochar alone and nutrients supplied 

equivalent to biochar in two types of soils viz. ferrosol and podsol. The details of this study will be 

described in the upcoming chapter. 
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Chapter 6. Performance of tomato in pH adjusted ferrosol and podsol 

soils amended with biochar, nitrogen and equivalent amounts of P 

and K 
 

6.1 Abstract 
Two pot experiments were conducted in a ferrosol and a podsol soils to determine the effect of 

biochar, nitrogen and equivalent amount of P and K on growth of tomato crop. The soils were 

balanced for pH with the use of biochar and lime to determine the difference between lime + 

biochar, lime + biochar + N and lime + N + PK equivalent to biochar consisting of nine treatments 

with 4 replications. Sugarcane Trash, Green Waste A and Green Waste B biochars were used for the 

experiments. Nitrogen was applied at a rate of 110 kg ha-1 and P and K were calculated based on 

their amount in respective biochar. Pots were irrigated up to field capacity preventing leaching of 

water and nutrients. Observations were recorded on growth parameters, NPK content in plant and 

soil. The treatments had positive effect on shoot fresh weight and shoot dry weight of tomato. The 

treatment lime + biochar + nitrogen (L + B + N) was beneficial over lime + biochar (L + B) 

application. The application of lime + nitrogen + phosphorus and potassium equivalent to biochar ( 

L + N + PK) had the significantly greatest positive effect on performance of tomato in both soils. 

 

6.2 Introduction 
There are a number of papers which report positive effects of biochar addition on crop growth and 

development  (Asai et al. 2009; Van Zwieten et al. 2010a; Coomer et al. 2012; Zhang et al. 2012; 

Carter et al. 2013; Saxena et al. 2013; Vinh et al. 2014). Some reports have also illustrated negative 

(Lehmann et al. 2003; Chan et al. 2008a) or no (Brandstaka et al. 2010; Borsari 2011; Lai et al. 

2013) response of crops to biochar. Some reports emphasized that the effect was positive when 

biochar was added in combination with N fertilization (Hottle 2013). Others have noted that biochar 

in combination with mineral fertilizers had greater positive effect than mineral fertilizer alone 

(Alburquerque et al. 2014). However, more studies are required to understand the difference in the 

performance of plants when different biochar preparations are used. 

 

Biochar preparations contain different amounts of ash depending upon the method and conditions of 

preparations as well as biochar itself. Ash and biochar particles are different fractions of biochar. 

For example, biochars (n = 94) can have ash contents from 0.4% to 88.2% (Enders et al. 2012). 

These variations were mainly due to different feedstocks and pyrolysis methods. Ash contains all 
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the P and K originally present in the pyrolised material (Kuligowski & Poulsen 2009). Biochar ash 

contains nutrients including K and P (Amonette & Joseph 2009). Biochar also contains minerals 

including K chloride, amorphous silica (SiO2), calcite (CaCO3) hydroxyapatite (Ca10(PO4)6(OH)2), 

Ca phosphates, anhydrite (CaSO4), nitrates, oxides and hydroxides of Ca, Mg, Aluminium, 

Titanium, Mn, Zn or Fe (Amonette & Joseph 2009). 

 

Generally, biochar raises soil pH (Chan et al. 2008b) which is mostly dependent on ash content. The 

acidity or alkalinity of a biochar is a function of both the ash content as well as the pyrolysis 

temperature, for example, pH ranged from 4.48 for Oak biochar pyrolysed at 300 °C to 11.62 for 

Paper at 600 °C; and from  8.6 for the biochar with less than 8% ash to below 7.5 for less than 1.5% 

ash content (Enders et al. 2012). Biochar pH also varied significantly among feedstocks, ranging 

from 6.93 to 10.26, which resulted from the presence of greater quantities of salts of alkali and 

alkaline elements (Na, K, Ca, Mg) and calcite (Singh et al. 2010). Alkalinity of ash is explained as 

K2O and/or Na2O formed during the combustion of plant material and these dissolve in water 

during extraction to form hydroxides (Onyegbado et al. 2004).  

 

The ash of biochar made from plant parts generally contains very small amounts of N  (Major no 

date). During the pyrolysis process, significant proportions of biomass N are lost by volatilization 

(Chan & Xu 2009)  and the rest may be converted into more resistant forms that may not be readily 

plant available. The N remaining in the biochar is poorly available to plants (Gaskin et al. 2010), 

since a fraction of it is found inside aromatic C structures and heterocyclic compounds (Chan & Xu 

2009). One exception may be N in biochars derived from animal manures (Chan et al. 2008b; Tagoe 

et al. 2008). Limiting soil N content by biochar application in N deficient soils could also be due to 

the high C/N ratio, hence it might reduce crop productivity temporarily (Lehmann et al. 2003). 

Thus, it is essential to compare the effect of biochar applied alone and in combination with other 

nutrient sources.  

 

More studies are required to understand the difference in the performance of plants when different 

biochar preparations are used. There is a need to identify the differences between the effects of 

biochars and the equivalent NPK contents amended to balance the nutrient concentrations at the 

same soil pH in different type of soils.  

 

The present study is concerned with whether the effect of biochar (with associated ash and 

nutrients) on plant growth is greater than that caused by the equivalent amount of nutrients alone. 
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The other issue this study tries to resolve is whether the N contained in the carbon matrix of biochar 

is available in soils for plant growth.  

 

This study aims to compare the performance of tomato plants influenced by the nutrients contained 

in biochar preparation (mixture of biochar and ash, the product of charring after pyrolysis) with 

their equivalent amounts added to a podsol and a ferrosol soil each adjusted to a given pH value. 

The experiment also verifies if N present in biochar particles of the biochar preparations is available 

in soil to improve plant growth.     

 

This chapter addresses the effect of nutrients present in biochar preparations and their equivalent 

amounts added to low fertility podsol and ferrosol soils on tomato crop when they are adjusted to a 

similar level of pH and balanced for P and K.   

 

6.3 Materials and Methods 
As mentioned above, biochar preparations are mixture of ash and char particles, these two 

components were not separated in the study. This experiment was designed to test two hypotheses. 

Firstly, the P and K contents of biochar preparations (supplied mostly from ash) had similar effects 

to their equal amounts supplied from chemical fertilizers. Secondly, the N content of biochar 

preparations (contained in char particles) and N supplied from chemical fertilizer had similar effects 

on plant growth. To determine availability of N (from char particles) and P and K (from ash), plant 

performance was compared in two types of soil: ferrosol and podsol soils. To determine the 

availability of N separately, N treated pots were included as treatments.  For N treatments, a 

recommended dose of 110 kg N per hectare was applied as described in online information on the 

nutrient management of tomato section published by Ikisan (Annonymous 2000). The details of the 

methodology are given below. 

 

6.3.1 Experimental site 

The experiments were conducted in a controlled environment of a glasshouse that was used for the 

trials in Chapter 4 and 5 at the Gatton Campus, The University of Queensland, Australia. 

 

6.3.2 Cultivar and source of seeds 

Tomato seeds of a determinate variety Rebel F-1 were obtained from South Pacific Seeds, New 

South Wales. These seeds were used for other previous experiments of the present study (thesis). 
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6.3.3 Pot preparation, seed germination and seedling preparation  

Plastic pots of 2.5 litre capacity and 16 cm diameter were selected for the experiments. A fine fabric 

cloth was placed on the bottom of the pots and pots were placed on the trays in which the drained 

water and nutrient solutions could be collected and reused to prevent loss of nutrients and water. 

The pots were then filled with the soils treated with biochar or nutrients. Seeds were germinated in 

4.5 x 3 x 2.5 cm (height-length-breadth) dimensioned, rectangular (100 cells, 10 rows and 10 cells 

per row) germination tray filled with propagation mix. Two seeds were sown at a depth of 2 cm and 

covered with propagation mix. The trays were watered gently through a wash bottle immediately 

after seeding. Just after maximum germination, the seedlings were thinned to one seedling per cell. 

The tray was kept in an air-conditioned bay of a glasshouse to protect the seedlings from high 

temperature stress. Seedlings were watered every morning until they germinated.  

 

After germination, the watering was reduced to once every alternate day to harden seedlings so that 

they could tolerate transplanting shock after transfer from fertile potting mix to less fertile podsol 

and ferrosol soils. The seedlings were watered two hours before transplanting and then uprooted 

gently to minimize damage and stress to the seedlings. Roots of uprooted seedlings were cleaned by 

dipping and gentle shaking into water in a tray as shown in the Plate 6.1. After removing all clods 

or particles of propagation mix, seedlings were transplanted into the pots filled with treated podsol 

and ferrosol soils. 

 

 
Plate 6.1 Cleaning of roots to remove nutrients and propagation mix 

 

6.3.4 Sources and characteristics of soils 

A low-fertility podsol soil, as used by Spark and Swift (2008a), was collected from the Poona 

region close to the Queensland Coast (~200km north of Brisbane) for use for these experiments. 

The podsol soil sample was taken from the A Horizon consisting of an ash-grey layer made up of 

largely quartz (sand). The soil had bulk density 1.45 g cm-3, water holding capacity 0.28 cm3, cation 



128 
 

exchange capacity 0.96 and lime requirement 1.2 t ha-1. The pH and EC were 4.0 and 30 µS cm-1 

(Spark & Swift no date).  

 

A low-fertility ferrosol soil as described by Spark and Swift (Spark & Swift 2008b) was collected 

from a cleared forested site in the Kingaroy region of Queensland (~300 km west of Brisbane) and 

was also used for the experiment. These soils are formed from rocks of volcanic origins and are 

nearly always red coloured (Spark & Swift 2008a). They generally have good soil structure, lack 

strong texture contrast between A and B horizons and have a high free iron content in the B horizon 

(subsoil). These soils are well drained and are often deep and highly fertile, and are typically found 

on the crests, upper, mid- and lower slopes of plateau remnants. The soil had bulk density 0.93 g 

cm-3), water holding capacity 0.39 cm3, cation exchange capacity 14 and lime requirement 6.2 tha-1. 

The pH and EC were 5.38 and 198 µS cm-1 (Spark & Swift 2008a).  

  

The bulk density was determined to select appropriate size of the pots for two soils as they had 

different volume. However, the same size pots were used for this experiment to maintain uniformity 

between the trials. 

 

6.3.5 Source and characteristics of biochar 

Three biochars from different feedstock (Sugarcane Trash, Green Waste A and Green Waste B) 

described in previous chapters was used for the experiment. The details of N, P, K content of these 

biochar is given in Appendix 1. The pH and electrical conductivity (EC) of the biochars have been 

determined by Kochanek et al. (2014). The pH of Sugarcane Trash, Green Waste A and Green 

Waste B was 8, 9.4 and 8.9 respectively. The EC of these biochars were 1.4, 3.4 and 2.3 µS cm-1 

respectively.  

    

6.3.6 Soil preparation 

A bulk of 24 kg soil (2 kg x 3 treatments without biochar x 4 replications) was separated from the 

whole lot and mixed with the recommended amount of lime. This soil was used in the pots for N, P, 

K additions equal to the nutrients contained in each of the three biochars plus supplementary 

micronutrient application. The remaining 48 kg of soil was divided into three for three types of 

biochars and each biochar was mixed at a rate of 20 t ha-1 in case of podsol soil and 30 t ha-1 for the 

ferrosol soil. The rate was different because their liming value was different as described below. 

These separate bulks of soil-biochar mixtures were used to fill the pots. After filling into the pots, 

the nutrients were calculated, weighed and applied as specified in the treatments illustrated in Table 

6.4 and Table 6.6. 
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6.3.7 Calculation of lime requirement 

To verify the previous results of lime requirement of podsol and ferrosol soils to maintain pH 6.5 as 

recommended by Spark & Swift (2008a), the previous requirement of 1.2 t ha-1 for podsol soil was 

tested with 1.0, 1.2 and 1.4 t ha-1 and the requirement of 6.2 t ha-1 for ferrosol soil was tested with 

6.0, 6.2 and 6.4 t ha-1 to confirm the requirement experimentally.  

 

The initial pH of podsol and ferrosol soils was analysed by the methods 1:5 water and 1:1 water 

described by Rayment and Higginson (1992). Recording of podsol soil was taken on the fifth day 

and of ferrosol soil on the sixth day after adding water. The amount of lime that was required to 

increase pH up to 6.5 was selected for the experiments. For podsol soil, the required amounts of 

lime at a rate of 1.0, 1.2 and 1.4 t ha-1 were 100.4 mg, 120.6 mg and 140.4 mg per 100 g of soil, 

respectively. Similarly, the rates of 6.0, 6.2 and 6.4 t ha-1 of lime for ferrosol soil were equal to 

612.9, 623.0 and 643.1 mg per 100 g of soil. Each of the biochars had different lime equivalence. 

From the calculations, Sugarcane Trash 19.9 mg, Green Waste A 181.2 mg and Green Waste B 42.2 

mg were required for 100 g of soils at a rate of 30 t ha-1. The results given in Table 6.1 revealed that 

the rate of Sugarcane Trash should be increased to 40 t ha-1 while the rate of Green Waste A should 

be reduced to 20 t ha-1 to meet the requirement according to their liming values. 

 

The results revealed that the application of biochars at 30 t ha-1 was not sufficient to raise the pH of 

ferrosol soil above pH 6 because mean ferrosol soil pH values following the addition of 30 t ha-1 

biochar are 5.5, 6.0 and 5.7 for Sugarcane Trash, Green Waste A and Green Waste B, respectively. 

This requires certain amounts of lime to increase the values above 6. In podsol soil, Green Waste B 

had the pH within the range of 6-7; while the Green Waste A raised the pH beyond 7 and Sugarcane 

Trash had a value below 6. The results indicated that 30 t ha-1 of Green Waste A raised the soil pH 

too high so that it was decided to apply a lower amount (20 t ha-1) of all three biochars in podsol 

soil and to add lime to Sugarcane Trash and Green Waste B to balance the amount of CaCO3 

required. This was considered to be the effective way to retain the podsol soil pH within the range 

of 6-7 which is the optimum requirement for growth of tomato. 

 

The recommended doses of lime for podsol and ferrosol soil indicated by Spark and Swift (no date) 

were 1.2 and 6.2 t ha-1, respectively to raise the pH to around 6. These values were verified 

experimentally (Table 6.2). The rate (1.2 t ha-1) recommended for podsol soil was still the most 

effective among 1, 1.2 and 1.4 t ha-1 as pH was around 6.6 in the soil. Thus the lime rates of 1.2 t 

ha-1 for podsol soil and 6.0 t ha-1 for ferrosol soil were applied for the main experiment. 
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Thus, it can be calculated as 10,000m2= 1.2 t ha-1, for a pot of 0.020096 m2 = 2411.52 mg lime for 

podsol soil. Similarly for ferrosol soil, 10,000m2 = 6 t ha-1, for a pot of 0.020096 m2 = 12057.6 mg 

lime. 

 

6.3.8 Nutrient solutions 

Solutions of N, P, and K, Ca and Mg were prepared separately as mentioned at Appendix 2 

(Hoagland recipes). They were applied to each pot just after transplanting. A supplementary 

solution of micronutrients was applied as calculated on the basis of Hoagland’s solution in 

Appendix 2. After adding the solutions, water was added to the soil to maintain it near field 

capacity. Depending upon the plant performance, an additional dose of micronutrients was added 

during the growth phase of tomato.  

 

Table 6.1 Soil pH for ferrosol and podsol soils amended with same amounts of CaCO3 from 

different biochars and lime. 

Soil type Source of lime 

Amount of 

lime/lime 

equivalent (mg 

100 g-1 of soil) Soil pH (1:1 soil-water) 

   

Rep 1 Rep 2 Rep 3 ‘Mean’ 

Podsol Sugarcane Trash 19.94 5.6 5.6 5.8 5.7 

Podsol Green Waste A 181.2 7.07 6.9 7.13 7.0 

Podsol Green Waste B 42.2 6.5 6.2 6.4 6.4 

Podsol lime 19.94 5.91 5.95 5.2 5.7 

Podsol lime 181.2 7.3 7.02 7.02 7.1 

Podsol lime 42.2 6.32 6.18 6.23 6.2 

Podsol 

  

3.85 

 

3.70* 3.8 

Ferrosol Sugarcane Trash 19.94 5.46 5.45 5.45 5.5 

Ferrosol Green Waste A 181.2 6.04 5.97 5.97 6.0 

Ferrosol Green Waste B 42.2 5.80 5.63 5.74 5.7 

Ferrosol lime 19.94 5.38 5.38 5.37 5.4 

Ferrosol lime 181.2 6.00 6.00 6.00 6.0 

Ferrosol lime 42.2 5.40 5.48 5.55 5.5 

Ferrosol 

  

5.15* 5.25 

 

5.2 
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*=1:5water method 

Table 6.2 Verification of lime requirement for podsol and ferrosol soils 

Treatments Lime 

rate (t 

ha-1) 

soil 

type 

pH of soils 

Stirring method (1:1 

water) 

Shaking method (1:5 

water) 

Mean 

Rep 1 Rep 2 Rep 3 Rep 4 

1 1 Podsol 6.5 6.5 6.57 6.5 6.5 

2 1.2 Podsol 6.6 6.6 6.6 6.5 6.6 

3 1.4 Podsol 7.7 6.9 6.97 6.1 6.9 

4 6 Ferrosol 6.62 6.64 6.72 6.7 6.7 

5 6.2 Ferrosol 6.85 6.88 6.82 6.87 6.9 

6 6.4 Ferrosol 6.99 7.00 6.98 7.01 7.0 

 

6.3.9 Determination of field capacity 

To determine the water content in the pots near field capacity, three pots were weighed after placing 

fabric cloth in the pots and filling with soil in each (dry weight) (Table 8.3). Then water was 

supplied through a shower applied gently with lowest force so that the water spread into soil as 

much as possible and drainage could be seen. As the podsol soil was fine and sandy, the water was 

applied to all inner areas of the soil surface. When it started draining from the bottom holes, then 

watering was stopped. When drainage came to an end, the moist pot was weighed and the dry 

weight was subtracted from the wet weight to give the water holding capacity. Experimentally, the 

water requirement was 776 ml per pot for ferrosol soil and 564 ml per pot for podsol soil. Water 

movement in ferrosol soil was very slow while it was fast in podsol soil. Considering this fact, 

about 80% of required water (620~600 ml) was supplied to minimize the drainage and water 

logging. Similarly, 70% (394~400 ml) of required water was supplied for podsol soil. During plant 

growth, roots were dense and reduced the space for water; less water was required to discourage 

drainage and water logging. Thus, the amount of water supplied did not exceed the amounts 

indicated and there was no drainage from the pots during the experiment. 

  

6.3.10 Experimental design 

Pot experiments were conducted as a multi-factorial arrangement with three treatments under each 

biochar for each soil. Thus nine treatment combinations were arranged for a soil type (Table 6.3 and 

6.5) in four replications. These treatment combinations consisted of limed soil with three biochars 



132 
 

(three treatments), limed soil with biochars plus N at a rate of 110 kg ha-1 (three treatments), and 

limed soil plus N 110 kg ha-1 plus P and K equal to biochars (three treatments). 

  

These treatments were designed to test whether the difference is within and between the soils of 

similar pH amended with the same amounts of nutrients (P and K) supplied by biochar preparations 

(mixture of char and ash) and by chemical fertilizers. The treatments were also designed to compare 

the N effect of that contained in biochar versus the same amount supplied through chemical 

fertilizer. Treatments 1, 4 and 7 were lime and biochar which is the amount of lime required to 

balance the pH supplied by Sugarcane Trash, Green Waste A and Green Waste B biochar 

preparations, respectively. Treatment 2, 5 and 8 were designed by adding N at the rate of 110 kg ha-

1 to the treatments 1, 4 and 7 to see the difference of N application. Treatments 3, 6 and 9 were 

designed by adding N as previous treatments and P and K equivalent to respective biochars to 

compare the effect of P and K supplied by chemical fertilizer and that contained in biochar 

preparation (char and ash).      

 

Treated pots of ~ 2.5 l volume were arranged randomly on the benches of the glasshouse. A 

standard amount of 2 kg soil was weighed and all pots were filled with the same amount of soil. 

Biochars were added at a rate of 20 t ha-1 for podsol soil and 30 t ha-1 for ferrosol soil. Seedlings 

were germinated and transplanted as discussed in Seed Germination and Seedling Preparation 

section of this Chapter. The experiments were continued until flowering at which stage roots were 

developed and plants were harvested.  

 

6.3.11 Observations  

Observations were recorded on weekly plant height, number of branches, fresh and dry weights of 

roots and shoots, electrical conductivity, and soil pH, NPK of soil and plant tissues. Plant height 

was measured from the ground level to the base of the uppermost leaf. Fresh weights of shoots and 

roots were recorded separately. Fresh plant materials were kept in a dryer at 65OC for two weeks 

after being put into thin paper envelopes in an upright position and leaving the envelope open to 

ventilate. Dry weight was recorded after two weeks in the drying room. Electrical conductivity, soil 

pH and nutrients were determined by the methods given in Appendix 3-9. 
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Table 6.3 Treatment combinations for ferrosol soil trial calculated on a hectare basis 

Treatment code Description 

L + B1 Lime @ 6 t ha-1 (5.8 t ha-1 CaCO3 from lime + 0.2 t ha-1 CaCO3 from 

Sugarcane Trash biochar @ 30 t ha-1) 

L + B1 + N Lime @ 6 t ha-1 (5.8 t ha-1 CaCO3 from lime + 0.2 t ha-1 CaCO3 from 

Sugarcane Trash biochar @ 30 t ha-1) + N (110kg ha-1) 

L +N + PK1 Lime @ 6 t ha-1 (lime only) + N (110kg ha-1) + P & K~ Sugarcane Trash 

biochar @ 30 t ha-1 

L + B2 Lime @ 6 t ha-1 (4.2 t ha-1 CaCO3 from lime + 1.8 t ha-1 CaCO3 from Green 

Waste A @ 30 t ha-1) 

L + B2 + N Lime @ 6 t ha-1 (4.2 t ha-1 CaCO3 from lime + 1.8 t ha-1 CaCO3 from Green 

Waste A @ 30 t ha-1) + N (110 kg ha-1) 

L + N + PK2 Lime @ 6 t ha-1 (lime only) + N (110kg ha-1) + P & K~ Green Waste A @ 30 

t ha-1) 

L + B3 Lime @ 6 t ha-1 (5.58 t ha-1 CaCO3 from lime + 0.42 t ha-1 CaCO3 from 

Green Waste B @ 30 t ha-1) 

L + B3 + N Lime @ 6 t ha-1 (5.58 t ha-1 CaCO3 from lime + 0.42 t ha-1 CaCO3 from 

Green Waste B @ 30 t ha-1) + N (110 kg ha-1) 

L + N + PK3 Lime 6 t ha-1 (lime only) + N (110kg ha-1) + P & K~ Green Waste B @ 30 t 

ha-1 

 

Table 6.4 Amount of NPK (mg pot-1), lime (mg pot-1) and biochar (g pot-1) added to the 

ferrosol soil 

Treatment code N (as NH4NO3) P (as TSP) K (as KCl) Lime (CaCO3) Biochar 

L + B1    11661.6 60.3 

L + B1 + N 632   11661.6 60.3 

L +N + PK1 632 330.5 376.6 12057.6  

L + B2    8439.6 60.3 

L + B2 + N 632   8439.6 60.3 

L + N + PK2 632 222.2 852.0 12057.6  

L + B3    11212.8 60.3 

L + B3 + N 632   11212.8 60.3 

L + N + PK3 632 174.5 672.6 12057.6  
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Table 6.5 Treatment combinations for podsol soil trial calculated on a hectare basis 

Treatment 

code 

Description 

L + B1 Lime @ 1.2 t ha-1 (1.068 t ha-1 CaCO3 from lime + 0.132 t ha-1 CaCO3 from 

Sugarcane Trash @ 20 t ha-1) 

L + B1 + N Lime @ 1.2 t ha-1 (1.068 t ha-1 CaCO3 from lime + 0.132 t ha-1 CaCO3 from 

Sugarcane Trash @ 20 t ha-1) + N (110 kg ha-1) 

L + N + PK1 Lime @ 1.2 t ha-1 (lime only) + N (110 kg ha-1) + P and K equivalent to 

Sugarcane Trash @ 20 t ha-1 

L + B2 Lime @ 1.2 t ha-1 (only from Green Waste A @ 20 t ha-1) 

L + B2 + N Lime @ 1.2 t ha-1 (only from Green Waste A @ 20 t ha-1) + N (110 kg ha-1) 

L + N + PK2 Lime @ 1.2 t ha-1 (lime only) + N (110 kg ha-1) + P and K equivalent Green 

Waste A @ 20 t ha-1 

L + B3 Lime @ 1.2 t ha-1 (0.92 t ha-1 CaCO3 from lime + 0.28 t ha-1 CaCO3 from 

Green Waste B @ 20 t ha-1) 

L + B3 + N Lime @ 1.2 t ha-1 (0.92 t ha-1 CaCO3 from lime + 0.28 t ha-1 CaCO3 from 

Green Waste B @ 20 t ha-1) + N (110 kg ha-1) 

L + N + PK3 Lime @ 1.2 t ha-1 (lime only) + N (110 kg ha-1) + P and K equivalent to 

Green Waste B @ 20 t ha-1 

 

Table 6.6 Amount of NPK (mg pot-1), lime (mg pot-1) and biochar (g pot-1) added to the 

podsol soil 

Treatment code  N (as NH4NO3) P (as TSP) K (as KCl) Lime (CaCO3) Biochar  

L + B1    2147 40.2 

L + B1 + N 632   2147 40.2 

L + N + PK1 632 220.3 251.1 2411  

L + B2    0 40.2 

L + B2 + N 632   0 40.2 

L + N + PK2 632 148.23 568.1 2411  

L + B3    1849 40.2 

L + B3 + N 632   1849 40.2 

L + N + PK3 632 98.16 448.5 2411  
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6.3.12 Soil and plant sample analysis 

Soil and plant samples were analyzed by adapting the methods explained in Appendix 4-9. 

 

6.3.13 Statistical analysis  

ANOVA were undertaken using Minitab version 16 and graphs were plotted by Excel 8 

package. The ANOVA were applied as the General Linear Model of Minitab. Paired 

grouping was organised by Tukey’s family error test. Standard errors of the means were 

derived by standard deviations divided by square root of number of observations (N). 

Correlation coefficients were derived by Excel.  

 

6.4 Results 

6.4.1 Plant height 

Treatments were significantly different for plant height from the fifth to the eighth week of 

transplanting (Figure 6.1). Morphological differences are shown in Plate 6.2. Initially, there 

was less difference between soils; however the difference was more at the eighth week. In the 

eighth week, plants were taller in podsol soil than in ferrosol soil treated with L + B1 and L + 

B1 + N, L + B2 and L + B2 + N and L + B3 and L + B3 + N.  Interestingly, the plants were 

taller in ferrosol soil than in podsol soil when treated with L + N + PK1, L + N + PK2 and L 

+ N + PK3. Among the treatments, L + N + PK1, 2 and 3 were superior within their SCT, 

GWA and GWB categories of biochar, respectively. Comparing these three treatments, there 

was difference in plant height but the trend was decreasing from L + N + PK1 through L + N 

+ PK2 to L + N + PK3.  
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Figure 6.1 Tomato plant height from 5th to 8th week of transplanting in ferrosol and podsol 

soils. The treatments were significantly different at α=0.05 level of significance. 

The vertical bars represent standard error of the mean (N = 4). SCT = Sugarcane 

Trash, GWA = Green Waste A and GWB = Green Waste B. Description of 

treatment combination is given for ferrosol in Table 6.4 and for podsol in Table 

6.5. 

 

6.4.2 Shoot fresh weight and shoot dry weight 

Shoot fresh weight and shoot dry weight were greater in ferrosol soil than in podsol soil 

(Figures 6.2 and 6.3). For all categories of biochar, the treatments L + B1, L + B2 and L + B3 

produced less fresh weight than the treatments with + N and + N + PK. Among the sole 

biochar treatments with lime L + B1, L + B2 and L + B3, the L + B1 had greater weight than 

the remaining treatments. The treatments L + B1 + N and L + B2 + N had greater weight than 

L + B3 + N. The treatments with N + PK of all categories of biochar were superior to other 

treatments within the biochar category, however, the treatments with N + PK were similar in 

the case of podsol soil while the weights were slightly decreasing in ferrosol soil from SCT 

through GWA to GWB.  

 

The category of all biochar had greater shoot dry weight in ferrosol soil than in podsol soil, 

however the difference was higher in SCT and GWA categories. In all categories, L + N + 

PK treatments were superior to others. Among the L + N + PK treatments, L + N + PK1 had 

the highest shoot dry weight in podsol soil while L + N + PK3 had the highest weight in 
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podsol soil. Overall results revealed that addition of N at a rate of 110 kg ha-1 plus P and K 

from chemical fertilizers with their equivalent amounts contained in respective biochar to the 

soils had greater positive effect than their absence. Addition of N including biochar had lesser 

positive effect than the addition of P and K. Among the biochar sole treatments, there was 

less difference in shoot dry weight in podsol soil but Sugarcane Trash produced greater 

weight in ferrosol soil. 

       

 

 
Figure 6.2 Tomato shoot fresh weight in ferrosol soil and podsol soils. The bars represent 

standard error of the mean (N = 4). All treatments were significantly different 

from each other at α=0.05 level of significance. SCT = Sugarcane Trash, GWA = 

Green Waste A and GWB = Green Waste B. Description of treatment 

combination is given for ferrosol in Table 6.4 and for podsol in Table 6.5. 
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Figure 6.3 Tomato shoot dry weight in ferrosol and podsol soils. The bars represent standard 

error of the mean (N = 4). All treatments were significantly different from each 

other at α=0.05 level of significance. SCT = Sugarcane Trash, GWA = Green 

Waste A and GWB = Green Waste B. Description of treatment combination is 

given for ferrosol in Table 6.4 and for podsol in Table 6.5. 

 
6.4.3 Root fresh weight and root dry weight 

Root fresh weight was greater in podsol soil than in ferrosol soil; however, the results for root 

dry weight were opposite which would be associated with higher moisture content of the 

roots at harvesting in podsol soil (Table 6.7). Greater root dry weight in ferrosol soil should 

be linked with appropriate soil environment for root development. The root dry weight was 

greater when the soil was treated with L + B + N or L + N + PK in each category of biochar. 

As mentioned above, the treatments with L + N + PK were superior to others within the 

category. Among the biochar sole, L + B1 had the greatest positive effect followed by L + B2 

and L + B3 in ferrosol soil but the results were inconsistent in podsol soil.   
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Table 6.7 Mean values for root fresh weight and root dry weight as influenced by the 

treatments in ferrosol and podsol soils. The ± values represent the standard error 

of the means (N = 4). The column values within each subset of means followed 

by the same letter are significantly different at α=0.05 level of significance. 

Description of treatment combination is given for ferrosol in Table 6.4 and for 

podsol in Table 6.5. (p < 0.05). 

  Treatments Root fresh weight (g) Root dry weight (g) 

Ferrosol Podsol Ferrosol Podsol 

L + B1 8.42 ± 0.73b 6.30 ± 0.18b 1.87 ± 0.06b 0.55 ± 0.07b 

L + B1 + N 7.69 ± 0.31b 21.59 ± 0.51a 2.12 ± 0.09b 1.90 ± 0.29a 

L + N + PK1 18.90 ±1.50 a 24.72 ± 0.51a 3.20 ± 0.34a 2.20 ± 0.11a 

L + B2 6.69 ± 0.36b 8.29 ± 0.77c 1.25 ± 0.25b 0.59 ± 0.12c 

L + B2 + N 8.76 ± 1.07b 14.33 ± 1.79b 1.32 ± 0.11b 1.45 ± 0.08b 

L + N + PK2 24.57 ±1.42a 25.23 ± 1.02a 3.50 ± 0.12a 2.15 ± 0.15a 

L + B3 5.97 ± 0.54b 8.74 ± 0.67c 1.05 ± 0.48b 0.58 ± 0.33c 

L + B3 + N 6.87 ± 0.49b 14.72 ± 188b 1.22 ± 0.09b 1.39 ± 0.24b 

L + N + PK3 12.53 ± 2.33a 21.91 ± 1.81a 3.10 ± 0.15a 2.27 ± 0.31a 

 

6.4.4 Soil EC and N P K levels after plant harvest 

Soil electrical conductivity represents the concentration of salts in soil. N content of soil was 

total N, P was Colwell P (available P) and K values were exchangeable K. The cmol(+) kg-1 

values of K were multiplied by 390 to convert into mg kg-1
 and were further divided by 1000 

to express in g kg-1 of soil. Total N was determined by combustion method, P by 0.5 M 

sodium bicarbonate at pH 8.5 and analyzed by Inductively Coupled Plasma Atomic Emission 

Spectrometry (ICPAES) and exchangeable K was derived from 1 M ammonium choride at 

pH 7 followed by ICPAES analysis as given in Appendices 5, 6 and 7, respectively. 
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Table 6.8 Mean values for soil electrical conductivity (dS m-1), total amounts (g kg-1) of total 

N, extractable P and extractable K in soil as influenced by the treatments in 

ferrosol and podsol soils. Description of treatment combination is given for 

ferrosol in Table 6.4 and for podsol in Table 6.5. 

Treatments Soil EC N P K 

Ferrosol Podsol Ferrosol Podsol Ferrosol Podsol Ferrosol Podsol 

L + B1 1.45 1.53 2.72 0.67 0.031 0.019 1.08 0.06 

L + B1 + N 1.55 1.70 2.75 0.72 0.020 0.010 0.94 0.02 

L + N + PK1 1.46 1.50 2.40 0.58 0.003 0.005 0.76 0.01 

L + B2 2.30 2.53 2.75 0.63 0.026 0.014 1.29 0.15 

L + B2 + N 2.50 2.80 2.77 0.73 0.015 0.012 1.13 0.13 

L + N + PK2 2.33 2.62 2.46 0.59 0.002 0.004 0.94 0.03 

L + B3 1.93 2.03 2.79 0.66 0.020 0.010 1.26 0.12 

L + B3 + N 2.18 2.33 2.85 0.77 0.016 0.009 1.18 0.11 

L + N + PK3 2.07 2.30 2.52 0.53 0.002 0.001 0.96 0.01 

 

Soil electrical conductivity was greater in podsol soil than in ferrosol soil. The treatments L + 

B2, L + B2 + N and L + N + PK2 had greater EC the than the rest of the treatments (Table 

6.8). Within the categories, L + B + N had the highest EC followed by L + N + PK and L + 

B.  Soil N was greater in L + B + N treatments as N was added by both biochar and 

ammonium nitrate. Extractable P and K content were higher in L + B treatments followed by 

L + B + N and L + N + PK. The reason behind this could be due to the fact that P and K 

supplied by TSP and KCl should be more readily available than that supplied by biochar. 

Another reason could be the amount of P and K attached to or absorbed by the dense roots of 

L + N + PK treatments as the root fresh and dry weights were higher in these treatments.  

 

6.4.5 Plant N, P and K  

Plant N was derived by the combustion method; P and K were derived by acid digestion 

methods as given in Appendices 5 and 9. Plant N was greater in treatments for ferrosol soil 

than podsol soil. The L + N + PK treatments of all of the three categories showed greater 

amounts of N indicating that most of the N provided by biochar and soil was unavailable 

(Table 6.9). Plant N was less in L + B compared to the other treatments. The treatments L + 

B3, L + B3 + N and L + N + PK3 had greater amounts of N compared to their corresponding 
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treatments. However, some differences were observed in podsol soil. In podsol soil, the effect 

of L + N + PK1 had greater effect than L + B1 while the effect of L + B2 + N and L + N + 

PK2 was similar but greater than L + B2. The effect of L + N + PK3 was greatest followed by 

L + B3 + N and L + B3 within the category. Sufficiency ranges of N for tomato showed that 

the plant N was deficient for optimum plant growth in all the treatments. 

 

Table 6.9 Mean values for plant N, P and K (mg g-1 dry weight) as influenced by the 

treatments in ferrosol and podsol soils. Sufficiency ranges of NPK for tomato was 

adapted from Rosen and Eliason (1996).  Description of treatment combination is 

given for ferrosol in Table 6.4 and for podsol in Table 6.5. 

Treatments N P K Sufficiency 

range  Ferrosol Podsol Ferrosol Podsol Ferrosol Podsol 

L + B1 17.4 9.1 2.4 2.52 35.0 12.42 N = 40-60 

P = 2.5-8.0 

K = 29-50 

L + B1 + N 19.6 9.9 2.7 2.65 35.9 12.88 

L + N + PK1 28.6 13.6 3.1 3.15 38.1 13.44 

L + B2 15.6 8.4 2.3 2.42 36.6 15.88 

L + B2 + N 19.6 9.8 2.6 2.49 36.9 19.77 

L + N + PK2 28.8 12.4 2.8 3.01 40.8 22.56 

L + B3 18.4 10.2 2.0 1.70 36.2 14.44 

L + B3 + N 20.9 11.3 2.2 1.79 36.8 15.44 

L + N + PK3 25.5 16.7 2.4 1.89 38.7 17.46 

 

Plant P in L + B1, L + N + PK1, L + B2 and L + N + PK3 showed greater plant P in podsol 

soil than ferrosol soil while the rest of the treatments gave higher plant P in ferrosol soil. The 

plant P ranged from 2.2 mg kg-1 dry weight (L + B3 + N) to 2.8 mg kg-1 dry weight (L + N + 

PK2) indicating the plants of the treatments L + B1, L + B2, L + B3 and L + B3 + N had P 

deficiency. Similar effects were observed in podsol soil, that the plant P was greater in L + N 

+ PK treatments followed by L + B + N and L + B treatments of the same category. It was 

noticed that the P ranged from 1.70 (L + B3) to 3.15 (L + N + PK1) indicating all treatments 

of the first category and L + N + PK2 of the second category had sufficient P content in the 

plant for optimum growth.  

 

Interestingly, the plant K content was significantly greater and sufficient for plant growth in 

the treatments for ferrosol soil while it was deficient in the treatments for podsol soil. In both 
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soils, the K content was in order of L + N + PK > L + B + N > L + B in all categories. It 

indicated that the added amount of K could not meet the requirement of plant growth. Overall 

results demonstrated that the nutrients supplied by chemical fertilizers were more effective 

than that contributed by biochar.  

 

6.4.6 Comparison between supplied and harvested amount of NPK 

The amounts of NPK were determined from soil, biochar and chemical fertilizers added to 

the respective treatments and their amounts harvested from the dry matter of the plants (shoot 

and root) (Table 10, 11 and 12). The little amount of N taken up by the plants ranged from 

0.04 g to 0.69 g per pot as compared to supplied N from 5.48 to 5.84 g per pot in ferrosol soil. 

A significantly higher amount of N was absorbed by the plants in the treatments of L + N + 

PK treatments of all categories in both soils. The treatments L + B1, L + B1 + N and L + N + 

PK1 showed the greater amounts of harvested N compared to their corresponding treatments 

of the other categories in both soils. The treatments with L + B had the least amount of 

harvested N.  Similarly, the plant N ranged from 0.02 to 0.27 g per pot as compared to the 

supplied N range from 1.28 to 1.56 g per pot in podsol soil; however the per cent of amounts 

harvested was greater in ferrosol soil. In the trial, the same amount of N was supplied to all 

the treatments except to L + B treatments. Plants could not take up the entire readily available 

N supplied by chemical fertilizer because the growth was continuing and plants were 

harvested during their optimum growth (8 weeks) when they had just started flowering. 

 

The amount of P absorbed by the plants ranged from 0.005 to 0.075 g per pot as compared to 

supplied P from 0.045 to 0.081 g per pot in ferrosol soil. There was significantly higher 

amount of P absorbed by the plants in the L + N + PK treatments of all categories in both 

soils. The treatments L + B1, L + B1 + N and L + N + PK1 showed the greater amounts of 

harvested P compared to their corresponding treatments of the other categories in both soils. 

The treatments with L + B had the least amount of harvested P in both soils.  Similarly, the 

plant P ranged from 0.004 to 0.038 g per pot as compared to the supplied P range from 0.023 

to 0.047 g per pot in podsol soil; however the per cent of amounts harvested was greater in 

ferrosol soil.  

 

The amount of K harvested by the plants ranged from 0.08 to 0.92 g per pot as compared to 

supplied K from 2.44 to 2.69 g per pot in ferrosol soil. There was significantly higher amount 

of K absorbed by the plants in the treatments of L + N + PK treatments of all categories in 
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both soils. The treatments L + B1, L + B1 + N and L + N + PK1 showed the greater amounts 

of harvested K compared to their corresponding treatments of the other categories in ferrosol 

soil while L + B1, L + B1 + N and L + N + PK2 had greater amounts of harvested K in 

podsol soil. The treatments with L + B had the least amount of harvested K in ferrosol soil.  

Similarly, the plant K ranged from 0.03 to 0.27 g per pot as compared to the supplied N range 

from 0.17 to 0.33 g per pot in podsol soil; however the per cent of amounts harvested was 

greater in ferrosol soil.  

 

In conclusion, the N, P and K were higher in the plants treated with chemical fertilizers. The 

same amounts of P and K supplied by biochar had less effect than those supplied from 

chemical fertilizer. This fact indicates further verification of this research is needed by means 

of a longer-term study. 

 

6.4.7 Correlation between NPK and shoot dry weight 

Correlation coefficients for shoot dry weight against N, P and potash contained in soil and 

shoot dry matter were determined by their values of four replications (N = 4) (Table 6.13 and 

Table 6.14). In both soils, the relationship between shoot dry weight and N, P, or K of plant 

and soil was strong enough in all treatments to contribute to increase the shoot dry weight (r 

= >0.55) except for soil K and shoot dry weight in ferrosol soil in L + N + PK3 treatment (r = 

0.45). The main reason behind this lower correlation coefficient was that the K values were 

similar in three replications, yet the shoot dry weight was increasing. The similar values 

might be reliant on the sampling of soils. These results confirmed that the increasing level of 

NPK in soil or plant of each treatment will contribute to increase the shoot dry weight. 

   

6.5 Discussion 
These experiments were conducted to determine if there was any difference in the 

performance of tomato plants when biochars and the equivalent NPK contents were amended 

to balance the nutrient concentrations at the same soil pH in a podsol soil and a ferrosol soil. 

The overall results revealed that tomato plants performed better in the soils treated with the N 

at a rate of 110 kg ha-1 plus P and K equivalent to the amount in biochar. As P level was 

greater in Sugarcane Trash biochar, and K was higher in Green Waste A, the treatments with 

the equivalent level of nutrients contained in the biochars but supplied instead by fertilizers 

had better performance of tomato plants. 
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Table 6.10 Amounts of N (g pot-1) content of soil before planting and plant uptake after 

harvest in the treatments for ferrosol and podsol soils.  Description of treatment 

combination is given for ferrosol in Table 6.4 and for podsol in Table 6.5.   

Treatments N content 

Ferrosol Podsol 

 Soil Plant Soil Plant 

Total Soil Char Chemical Total Soil Char Chemical 

L + B1 5.58 5.26 0.32  0.14 1.36 1.10 0.22  0.03 

L + B1 + N 5.80 5.26 0.32 0.22 0.31 1.54 1.10 0.22 0.22 0.10 

L + N + PK1 5.48 5.26  0.22 0.69 1.32 1.10  0.22 0.17 

L + B2 5.54 5.26 0.28  0.05 1.28 1.10 0.18  0.02 

L + B2 + N 5.76 5.26 0.28 0.22 0.23 1.50 1.10 0.18 0.22 0.04 

L + N + PK2 5.48 5.26  0.28 0.57 1.32 1.10  0.22 0.15 

L + B3 5.62 5.26 0.36  0.04 1.34 1.10 0.24  0.02 

L + B3 + N 5.84 5.26 0.36 0.22 0.14 1.56 1.10 0.24 0.22 0.03 

L + N + PK3 5.48 5.26  0.22 0.44 1.32 1.10  0.22 0.27 
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Table 6.11 Amounts of P (g pot-1) content of soil before planting and plant uptake after 

harvest in the treatments for ferrosol and podsol soils. The soil P values are 

extractable and plant P values are total. Description of treatment combination is 

given for ferrosol in Table 6.4 and for podsol in Table 6.5. 

Treatments P content 

Ferrosol Plant Podsol Plant 

Total Soil Char/Chemical Total Soil Char/Chemical 

L + B1 0.081 0.015 0.066 0.019 0.047 0.003 0.044 0.010 

L + B1 + N 0.081 0.015 0.066 0.042 0.047 0.003 0.044 0.027 

L + N + PK1 0.081 0.015 0.066 0.075 0.047 0.003 0.044 0.038 

L + B2 0.059 0.015 0.044 0.008 0.033 0.003 0.030 0.005 

L + B2 + N 0.059 0.015 0.044 0.030 0.033 0.003 0.030 0.009 

L + N + PK2 0.059 0.015 0.044 0.055 0.033 0.003 0.030 0.026 

L + B3 0.045 0.015 0.030 0.005 0.023 0.003 0.020 0.004 

L + B3 + N 0.045 0.015 0.030 0.014 0.023 0.003 0.020 0.005 

L + N + PK3 0.045 0.015 0.030 0.041 0.023 0.003 0.020 0.021 

 

Table 6.12 Amounts of K (g pot-1) content of soil before planting and plant uptake after 

harvest in the treatments for ferrosol and podsol soils. The soil K values are 

extractable and plant K values are total. Description of treatment combination is 

given for ferrosol in Table 6.4 and for podsol in Table 6.5. 

Treatments K content 

Ferrosol Plant Podsol Plant 

Total Soil Char/Chemical Total Soil Char/Chemical 

L + B1 2.44 2.24 0.198 0.28 0.17 0.038 0.132 0.05 

L + B1 + N 2.44 2.24 0.198 0.56 0.17 0.038 0.132 0.13 

L + N + PK1 2.44 2.24 0.198 0.92 0.17 0.038 0.132 0.16 

L + B2 2.69 2.24 0.447 0.12 0.33 0.038 0.292 0.03 

L + B2 + N 2.69 2.24 0.447 0.43 0.33 0.038 0.292 0.07 

L + N + PK2 2.69 2.24 0.447 0.81 0.33 0.038 0.292 0.27 

L + B3 2.59 2.24 0.353 0.08 0.27 0.038 0.235 0.03 

L + B3 + N 2.59 2.24 0.353 0.24 0.27 0.038 0.235 0.05 

L + N + PK3 2.59 2.24 0.353 0.67 0.27 0.038 0.235 0.26 
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Table 6.13 Correlation coefficient (r) between N and P and K content of soil and shoot dry 

weight. Description of treatment combination is given for ferrosol in Table 6.4 and for podsol 

in Table 6.5. 

Treatments Correlation coefficient between (r =) 

N and Shoot dry weight P and shoot dry 

weight 

K and shoot dry weight 

Ferrosol Podsol Ferrosol Podsol Ferrosol Podsol 

L + B1 0.96 0.94 0.81 0.97 0.97 0.94 

L + B1 + N 0.89 0.88 0.87 0.89 0.88 0.77 

L + N + PK1 0.98 0.93 0.93 0.77 0.83 0.66 

L + B2 0.90 0.80 0.91 0.82 0.94 0.97 

L + B2 + N 0.82 0.56 0.80 0.94 0.94 0.80 

L + N + PK2 0.83 0.78 0.74 0.96 0.87 0.74 

L + B3 0.98 0.41 0.64 0.59 0.71 0.82 

L + B3 + N 0.98 0.96 0.90 0.99 0.92 0.92 

L + N + PK3 0.89 0.59 0.72 0.79 0.45 0.94 

 
Table 6.14 Correlation coefficient (r) between N, P and K content of plants and shoot dry 

weight. Description of treatment combination is given for ferrosol in Table 6.4 and for podsol 

in Table 6.5. 

Treatments Correlation coefficient between (r=)  

N and shoot dry weight P and shoot dry weight K and shoot dry weight 

Ferrosol Podsol Ferrosol Podsol Ferrosol Podsol 

L + B1 0.98 0.98 0.75 0.87 0.95 0.98 

L + B1 + N 0.97 0.84 0.98 0.65 0.95 0.97 

L + N + PK1 0.82 0.96 0.90 1.00 0.87 0.72 

L + B2 0.98 0.99 0.99 0.54 0.99 1.00 

L + B2 + N 0.93 0.62 0.97 0.90 0.98 0.95 

L + N + PK2 0.67 0.57 0.93 0.93 0.97 0.97 

L + B3 0.99 0.64 1.0 0.80 1.00 0.87 

L + B3 + N 0.97 0.99 0.98 0.93 0.83 0.96 

L + N + PK3 0.95 0.99 0.69 0.89 0.93 0.74 
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L + B1  L + B1 +N L + N + PK1  L + B2  L + B2 + N L + N + PK2     L + B3 L + B3 + N L + N + PK3 
 

Plate 6.2 Morphological performance of tomato in ferrosol soil. 

L + B1= Lime @ 6 t ha-1 (5.8 t ha-1 CaCO3 from lime + 0.2 t ha-1 CaCO3 from Sugarcane Trash biochar @ 30 t ha-1); L + B1 + N = Lime @ 6 t ha-1 

(5.8 t ha-1 CaCO3 from lime + 0.2 t ha-1 CaCO3 from Sugarcane Trash biochar @ 30 t ha-1) + N (110kg ha-1); L + N + PK1 = Lime @ 6 t ha-1 (lime 

only) + N (110kg ha-1) + P & K~ Sugarcane Trash biochar @ 30 t ha-1; L + B2 = Lime @ 6 t ha-1 (4.2 t ha-1 CaCO3 from lime + 1.8 t ha-1 CaCO3 from 

Green Waste A @ 30 t ha-1); L + B2 + N = Lime @ 6 t ha-1 (4.2 t ha-1 CaCO3 from lime + 1.8 t ha-1 CaCO3 from Green Waste A @ 30 t ha-1) + N (110 

kg ha-1); L + N + PK2 = Lime @ 6 t ha-1 (lime only) + N (110kg ha-1) + P & K~ Green Waste A @ 30 t ha-1); L + B3 = Lime @ 6 t ha-1 (5.58 t ha-1 

CaCO3 from lime + 0.42 t ha-1 CaCO3 from Green Waste B @ 30 t ha-1); L + B3 + N = Lime @ 6 t ha-1 (5.58 t ha-1 CaCO3 from lime + 0.42 t ha-1 

CaCO3 from Green Waste B @ 30 t ha-1) + N (110 kg ha-1); L + N + PK3 = Lime 6 t ha-1 (lime only) + N (110kg ha-1) + P & K~ Green Waste B @ 30 

t ha-1. In each row, well growing plants (right) treated with lime plus N at a rate of 110 kg ha-1 plus P and K equivalent to  biochar, some growth but 

less branching plants (middle) were treated with biochar plus N at a rate of 110 kg ha-1. Nutrient deficient plants (left) were treated with biochar sole 

(left). The plants supplied nutrients from chemical fertilizer had better growth and early flowering. 
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   L + B1 L + B1 +N  L + N + PK1      L + B2       L + B2 +N    L + N + PK2   L + B3   L + B3 +N  L + N + PK3 
 

Plate 6.3 Morphological performance of tomato in podsol soil.  

L + B1 = Lime @ 1.2 t ha-1 (1.068 t ha-1 CaCO3 from lime + 0.132 t ha-1 CaCO3 from Sugarcane Trash @ 20 t ha-1); L + B1 + N = Lime @ 1.2 t ha-1 

(1.068 t ha-1 CaCO3 from lime + 0.132 t ha-1 CaCO3 from Sugarcane Trash @ 20 t ha-1) + N (110 kg ha-1); L + N + PK1 = Lime @ 1.2 t ha-1 (lime 

only) + N (110 kg ha-1) + P and K equivalent to Sugarcane Trash @ 20 t ha-1; L + B2 = Lime @ 1.2 t ha-1 (only from Green Waste A @ 20 t ha-1); L 

+ B2 + N = Lime @ 1.2 t ha-1 (only from Green Waste A @ 20 t ha-1) + N (110 kg ha-1); L + N + PK2 = Lime @ 1.2 t ha-1 (lime only) + N (110 kg ha-

1) + P and K equivalent Green Waste A @ 20 t ha-1; L + B3 = Lime @ 1.2 t ha-1 (0.92 t ha-1 CaCO3 from lime + 0.28 t ha-1 CaCO3 from Green Waste 

B @ 20 t ha-1); L + B3 + N = Lime @ 1.2 t ha-1 (0.92 t ha-1 CaCO3 from lime + 0.28 t ha-1 CaCO3 from Green Waste B @ 20 t ha-1) + N (110 kg ha-1); 

L + N + PK3 = Lime @ 1.2 t ha-1 (lime only) + N (110 kg ha-1) + P and K equivalent to Green Waste B @ 20 t ha-1. In each row, well growing plants 

(right) treated with lime plus N at a rate of 110 kg ha-1 plus P and K equivalent to biochar, some growth but less branching plants (middle) were treated 

with biochar plus N at a rate of 110 kg ha-1. Nutrient deficient plants (left) were treated with biochar sole (left). The plants supplied nutrients from 

chemical fertilizer had better growth and early flowering. 
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These experiments were developed to test the hypothesis that the effect of biochar (with associated 

nutrients) on plant growth was greater than that caused by the equivalent amount of nutrients alone. 

This hypothesis was not substantiated because the nutrients alone had greater effect on plant growth 

than the biochars with their associated nutrients. Another hypothesis tested in this study was that N 

contained in the carbon matrix of biochar was not available in soils for plant growth. This 

hypothesis was supported because the biochar without added N had less effect on plant growth. 

  
The growth pattern of the plants was similar between the treatments equivalent to each of the 

biochars (L + N + PK). There was no difference in plant growth between the treatments during the 

early stage which was mainly due to the low fertility soils that have fewer nutrients to supply. The 

added nutrients had little effect on the growth in that period because the seedlings had less 

developed root systems which were inadequate to absorb the soil nutrients and they largely used 

their own stored nutrients for growth. Morphologically, the ferrosol soil had better growth of plants 

than the podsol soil; however the effect of nutrients supplied by the chemical fertilizer was more 

than that of the biochar. By visual observation, plants appeared to be nutrient deficient in L + B 

treatments. There was also some difference between the L + B and L + B + N treatments. The great 

difference for plant growth between ferrosol and podsol was mainly associated with their nutrient 

contents. The NPK contents were higher in ferrosol (5.26, 0.015 and 2.24 g pot-1, respectively) than 

in podsol (1.10, 0.003 and 0.038 g pot-1); these are given in Table 6.10, 6.11 and 6.12, respectively. 

  

The literature on comparison of the effect of biochar in different soils and comparing the effect of 

different biochars and their interactions is inadequate. However, some previous reports have 

summarized the benefits of biochar as sequestration of carbon, improvement of cation exchange 

capacity, durability of soil aggregates, microbial activity, bioenergy production and water retention 

capacity; reduction of nitrous oxide and methane emissions from soils, leaching, soil erosion and 

need of fertilization and thereby enhancement of soil fertility and crop yields (Brandstaka et al. 

2010). Other reports emphasised the adsorption of anions and cations by biochar to prevent leaching 

of applied nutrients (Major et al. 2009). In this study leaching of applied nutrients was prevented by 

maintaining the water content by applying the calculated amount of water so as not to exceed field 

capacity. However there could also be a role for biochar to reduce leaching of nutrients which could 

not be determined from this experiment.  

Van Zwieten et al. (2010a) tested two biochars produced from the slow pyrolysis of paper mill 

waste, in two agricultural soils in a glasshouse and found that the biochars differed slightly in their 

liming values (33% and 29%). The lime requirement of podsol and ferrosol soils in the present 
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study also confirmed that the ferrosol soil needed more biochar than the podsol; soil and Green 

Waste A had the higher liming value than Sugarcane Trash and Green Waste B (Appendix 1). 

No immediate effect on plant growth of adding biochar to these two soils was observed. Hardie et 

al. (2014) incorporated biochar in soil and found after thirty months observation that it had no 

significant effect on soil moisture content, drainable porosity between –1.0 and −10 kPa, field 

capacity, plant available water capacity, aggregate stability and the permanent wilting point but had 

significantly higher near-saturated hydraulic conductivity, soil water content at −0.1 kPa, and 

significantly lower bulk density than the unamended control. Tammeorg et al. (2014) reported that 

biochar improved nitrate N content, water retention capacity, soil organic carbon and K content, 

while the present study had less effect on the availability of NPK which could be associated with 

the shorter duration of the study. In another study biochar derived from wheat straw decreased 

available P (Alburquerque et al. 2014) which was not comparable to the present results because the 

control soils (without biochar and nutrients) were not included in the study. 

 

A biochar produced from corn cobs was found to increase nitrate N in the first ten days and 

thereafter it decreased; while it decreased P content when applied alone and increased after addition 

of nitrogenous or phosphate fertilizer (Nelson et al. 2011). In the present study, nitrate N was not 

studied but total N and extractable P and K were increased after addition of chemical fertilizers 

(Table 6.10). 

 

Mineralization of N could be enhanced by application of biochar produced from slow pyrolysis 

rather than the fast pyrolysis (Bruun et al. 2012). The biochar tested in this study were medium type 

as described in the Materials and Methods Section of this Chapter. 

  

In a three-year field experiment, there was no difference between biochar added and not-added soil 

but reapplication of biochar after three years significantly increased available P, exchangeable K 

and calcium, dissolved organic carbon, soil moisture and electrical conductivity (Quilliam et al. 

2012). These results recommend continuing the experiment to see the long-term effect; however, 

the present study had limitations of time so it could not be extended for years. 

      

Van Zwieten et al. (2010a) tested two biochars produced from the slow pyrolysis of paper mill 

waste, in  two agricultural soils in a glasshouse and found that they significantly increased N uptake 

in wheat and biomass in wheat, soybean and radish in ferrosol soil. In this study, soils with and 

without biochar were not compared but N uptake differed in both soils.  
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In separate studies presented in previous chapters (Chapter 5), a positive effect of biochar addition 

on plant growth and mycorrhizal colonization was observed in a calcareous soil. The use of biochar 

was beneficial over no use for growth of cabbage, lettuce, onion and tomato, although equal 

amounts of nutrients were supplied through Hoagland’s nutrient solution. Comparison of biochar 

and no biochar could also be observed in ferrosol and podsol soils in upcoming chapters. 

  

Asai et al. (2009) showed that biochar increased rice grain yields at sites with low P availability;  

but in this study, biochar addition alone produced less dry matter than the addition of P and K 

equivalent to the biochar plus  110 kg ha-1 N. The N content in L + B treatment and L + B + N 

treatment had similar effect. Biochar at the rates of 20 and 40 t ha-1 without N fertilization in a 

carbon poor calcareous soil in China increased maize yield by 15.8% and 7.3% while the rates with 

300 kg ha-1 N fertilization enhanced the yield by 8.8% and 12.1%, respectively (Zhang et al. 2012). 

This result was contradictory to our results for ferrosol and podsol soils which found that shoot 

fresh weight and dry weight were higher in biochar with N fertilization. However, it might not be 

comparable between different crops and different soil types.   

 

In addition, biochar application in a nutrient-poor, slightly acidic loamy sand soil had little effect 

on wheat yield in the absence of mineral fertilization but when applied with the highest rate of 

mineral fertilization, it increased yield by 20–30% more than mineral fertilizer alone 

(Alburquerque et al. 2014) which is also similar to the present results on dry matter yield, however, 

the crop was harvested before fruiting. Yet, the present study showed that the chemically fertilized 

plants started flowering six weeks after planting while the plants with biochar sole remained un-

flowered until the time of harvest (eight weeks after planting). 

 

The soil test after plant harvest showed that the application of biochar and lime balanced the pH 

within the range of plant requirement (~7). The dry matter yield was strongly correlated with the 

application of biochar, biochar plus N or N plus PK showing the increased correlation by increased 

level of nutrients in soil samples (within a replication). The overall treatment effect on plant 

morphology was outstanding, which can be seen in the Plate 6.3. 

 

Biochars had different concentrations of NPK (Appendix 1) and also had different bulk densities. 

Therefore, they need to be balanced for their comparison. A brief illustration of general information 

is presented in Appendix 10. 
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6.6 Conclusion 
The soils balanced for pH with the use of biochar and lime were prepared to determine the 

difference between lime + biochar, lime + biochar + N and lime + N + PK equivalent to biochar in 

ferrosol and podsol soils. The overall results showed the treatments had positive effect on shoot 

fresh weight and shoot dry weight of tomato. The treatment L + B + N was beneficial over L + B 

application. The application of L + N + PK had the significantly greatest positive effect on 

performance of tomato. 

 

The present study was conducted for only eight weeks which was insufficient to address many plant 

and nutrient related issues. It is considered that the experiment should be extended for at least three 

years to see the biochar effect on soil and plant growth. It would also be worthwhile to compare 

different types of crops and soils during the same period.  

 

As the main purpose of the PhD research was developed for mycorrhizal study, an experiment was 

further established to determine the mycorrhizal colonization in similar treatments. The details of 

the study on the influence of the similar treatments on mycorrhizal colonization of onion roots was 

carried out in both the podsol and ferrosol soil, which will be discussed in the next chapter.    
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Chapter 7. Comparative effects of soil types, biochar types and 

mycorrhizae on growth and colonization of onion in soils with 

adjusted pH. 
 

7.1 Abstract 
Ferrosol and podsol soils, Sugarcane Trash and Green Waste A biochars, and inoculum of AM 

fungi at a rate of 0 and 5 g kg-1 of soil were tested to determine their sole and interaction effects on 

growth of onion plants and colonization of their roots by AM fungi. Experiment was conducted in a 

2 x 2 x 2 factorial arrangement consisting of 8 treatment combinations in 4 replications. Biochars 

were applied at a rate of 30 t ha-1. Observations were recorded on growth parameters, mycorrhizal 

colonization and nutrient contents. The sole effect of soil type, biochar type and mycorrhizal rates 

was prominent but there were little effects of their interaction. Ferrosol soils, Sugarcane Trash 

biochar and mycorrhizal rates of 5 g kg-1 were positively effective over their corresponding 

treatments. The interactions were not enough to affect the plant performance and colonization of 

onion roots by mycorrhizae.  

 

7.2 Introduction 
There are many references on the study of biochars, their effects on crops and mycorrhizae, which 

were cited in previous chapters. From the conclusions drawn in the previous chapter, it was 

recommended that a comparative study on soil types and biochar types be conducted. Therefore, the 

research question was to determine the difference in mycorrhizal colonization and performance of 

onion when biochars were applied at the same rate to a podsol and a ferrosol soil balanced to the 

same pH. The hypothesis was that biochar types have different influences on mycorrhizal 

colonization of onion when added to ferrosol and podsol. The specific aim of the study was to 

compare the plant performance and mycorrhizal colonization as influenced by the types of soil and 

biochars when each soil is adjusted to the same pH value and thus nutrient availability of biochars 

should be similar. The experiment also emphasized the examination of mycorrhizal colonization in 

two soil types and two biochars.  

    

7.3 Materials and Methods 

7.3.1 Biochar types 

The biochars were made from sugarcane trash and green wastes and had different compositions. 

These two biochars were relatively better for plant growth and mycorrhizal colonization from my 
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previous experiments in sand medium (Chapter 4). The general information about biochar and their 

NPK concentration is given in Appendix 1.  

 

Biochar amounts were calculated based on the area of pots. The pot area based on the average 

diameter of 12 cm was 0.011304 cm2. The biochar rate of 30 t ha-1 was ~ 34.0 g pot-1. 

  

7.3.2 Cultivar, source of seeds and pot preparation 

Onion seeds of variety Rio Red Rock were obtained from South Pacific Seeds, New South Wales. 

These seeds were also used for previous experiments of the present study. 

 

Plastic pots of 1.5 litre volume with the average diameter of ~12cm were selected for the 

experiments. A fine fabric cloth was placed on the bottom of the pots and pots were placed on the 

trays in which the drained water and nutrient solutions could be collected and reused to prevent loss 

of nutrients and water. The pots were then filled with the soils treated with biochar with or without 

mycorrhizal inoculum.   

 

7.3.3 Seed germination and seedling preparation 

Seeds were germinated in 4.5 x 3 x 2.5 cm (height-length-breadth) dimensioned, rectangular (100 

cells, 10 rows and 10 cells per row) germination trays filled with propagation mix. Three seeds were 

sown at a depth of 1.5 cm and covered with the potting mix. The tray was watered gently through a 

wash bottle immediately after seeding. After maximum germination, the seedlings were thinned to 

one seedling per hole. Seedlings were watered every morning until they germinated. After 

germination, the watering was reduced to once every alternate day to harden them so that they could 

tolerate transplanting shock after transfer from fertile propagation mix to less fertile podsol and 

ferrosol soils. 

  

The seedlings were watered 2 hours before transplanting and then uprooted gently without any 

damage and stress to the seedlings. Roots of uprooted seedlings were cleaned by dipping and gentle 

shaking into water in a tray. After removing all particles of propagation mix, seedlings were 

transplanted into pots filled with treated podsol and ferrosol soils. 

 

7.3.4 Source of mycorrhizae 

The MycoApply product of mycorrhizae was used as soil inoculum of mycorrhizae. The inoculum 

was the same as described in previous chapters. Five grams were placed in treatment pots. 
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7.3.5 Source and characteristics of soil  

The low fertility and acidic podsol soil was collected from the Tent Hill area near Lockyer Valley, 

Queensland (~120 km from Brisbane) while low-fertility ferrosol was collected from fallow grassy 

land in the Kingaroy region of Queensland (~300 km west of Brisbane) in 2014. The composite 

podsol soil was taken from both the A and B Horizon (up to 30 cm depth from the surface) 

consisting of a light-red layer. The soil had bulk density 1.41 g cm-3), water holding capacity 0.26 

cm3, cation exchange capacity 0.92 and lime requirement 1.5 t ha-1. The pH and EC were 4.5 and 

0.04 dS m-1.  

 

Ferrosol soils are generally formed from rocks with volcanic origins and are nearly always red 

coloured (Spark & Swift no date). They generally have good soil structure, lack strong texture 

contrast between A and B horizons and have a high free iron content in the B horizon (subsoil). 

These soils are well drained and are often deep and highly fertile, and are typically found on the 

crests, upper, mid- and lower slopes of plateau remnants. The soil had bulk density 0.95 g cm-3), 

water holding capacity 0.40 cm3, cation exchange capacity 1.2 and lime requirement 6.0 t ha-1. The 

pH and EC were 5.2 and 0.08 dS m-1 (Spark & Swift no date).  

 

7.3.6 Calculation of lime requirement 

The current pH of podsol soil was analyzed by the methods 1:5 water and 1:1 water described in 

Appendix 4. The amount of lime required to increase pH up to 6.5 was selected for the experiment 

and the procedure was the same as described in Chapter 6. The pH of the podsol and ferrosol soils 

was 4.6 and 5.2 respectively. The rates of lime for podsol and ferrosol to raise the pH up to 6.5 were 

1.89 and 6.2 t ha-1, respectively. The acid neutralizing capacity (% CaCO3) of Sugarcane Trash and 

Green Waste A biochar was 6% and 0.66%, respectively. When a rate of 30 t ha-1 of each biochar 

was applied, the amount of lime equivalent supplied through Sugarcane Trash was 0.2 t ha-1 while it 

was 1.8 t ha-1 through Green Waste A. For podsol, 1.69 and 0.09 t ha-1 of pure lime were added with 

the addition of 30 t ha-1 Sugarcane Trash and Green Waste A biochar, respectively. Similarly, for 

ferrosol, 6 and 4.2 t ha-1 of pure lime were added with the addition of 30 t ha-1 Sugarcane Trash and 

Green Waste biochar, respectively. Thus, the same amount of biochar was added to both soils. Lime 

was mixed in the soils two weeks before planting. Then the pots were filled with soils and water 

maintained at field capacity until planting to allow sufficient reaction time between soil and lime.  
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7.3.7 Nutrient solution 

A low-P (25% P) Hoagland’s nutrient solution (Appendix 2) prepared for other previous 

experiments was applied at a rate of 50 mL per pot just after transplanting. After adding the 

solutions, water was added to maintain soil at field capacity.  

 

7.3.8 Determination of field capacity 

Field capacity was determined by the same procedure followed in Chapter 6. 

 

7.3.9 Experimental design 

Pot experiments were conducted in a glasshouse as a 2 x 2 x 2 factorial arrangement with soil types, 

biochar types and mycorrhizal inoculum rates as factors in four replications. The treatment 

combinations consisted of two soils (ferrosol and podsol), two biochar types (Sugarcane Trash and 

Green Waste A) and two inoculum rates of mycorrhizae (5 g and 0 g kg-1 of soil) (Table 7.1). The 

pots of ~ 1.5L volume were arranged randomly on the bench of the glasshouse. A standard amount 

of 1 kg soil was weighed and all pots were filled with the same amount of soil. Biochars were added 

at a rate of 30 t ha-1 to both soils.  

7.3.10 Observations 

Observations were recorded on plant height at harvest (eight weeks after planting), fresh and dry 

weight of shoots, fresh weight of roots, soil EC, soil pH, soil N, P, K and plant N, P, K. Plant height 

was measured from the ground level to the tip of the longest leaf. Fresh above ground parts were 

weighed and kept in a dryer at 65OC for two weeks after putting them into thin paper envelopes in 

an upright position and leaving the envelopes open to ventilate. Dry weight was taken after two 

weeks in the drying room. Electrical conductivity, soil pH and nutrients were determined by the 

methods given in Appendix 3-9. Nutrients and mycorrhizal colonization were analyzed by the 

procedures adopted in previous chapters.  

 

7.3.11 Statistical analysis 

ANOVA was undertaken in Minitab 16, version 4.0 (Minitab 2005) and graphs were plotted by 

Sigma Plot programme, version 12.0 (Systat Software 2007). The standard error was derived from 

the standard deviation of the mean divided by the number of observations. The number of 

observations for soil types, biochar types and mycorrhizal rates was 16 while it was 8 for the 

interactions of soil and biochar, soil and mycorrhizae, and biochar and mycorrhizae. The number 

for the interaction of soil types, biochar types and mycorrhizal rate was 4. The standard errors of the 

factors and their dual interactions were calculated in Microsoft Excel 2010, version 14.0 (Microsoft 

2010) by using the following formula: 
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Where, SQRT = Square root 

SUMSQ = Sum of squares  

a:b = the standard deviations to be averaged after squared 

n = number of standard deviations to be averaged 

N = Number of observations for the factors and interactions. 

 

7.3.12 Nutrients and lime content (%CaCO3) of biochars 

Biochars had different concentrations of NPK and also had different bulk densities. Therefore, they 

need to be balanced for their comparison. A brief illustration of general information is presented in 

Appendix 1. 

Table 7.1 Treatment structures in factorial arrangement. 

Soil Type Biochar type Mycorrhizal rates (g kg-1) 

Ferrosol 

Sugarcane Trash 
5 

0 

Green Waste A 
5 

0 

Podsol 

Sugarcane Trash 
5 

0 

Green Waste A 
5 

0 

 

7.4 Results 

7.4.1 Effect of soil type 

Ferrosol and podsol soils were significantly different for plant height at harvest, shoot fresh and dry 

weight, root fresh weight, soil P, soil K, plant P (Table 7.2), root length, percent of colonized root 

length and colonized root length of onion. Overall plant performance was better in ferrosol than 

podsol. Plant height in ferrosol was 13.5% greater than in podsol. Shoot fresh weight was 25.2% 

higher in ferrosol while shoot dry weight was 32.5% higher in the same soil. Comparing the root 

fresh weight, ferrosol had 18.9% greater root fresh weight than the podsol. It would be noteworthy 

that the nutrient availability of the soils was different given that pHs of the soils were balanced. 



158 
 

 

Soil N and P but not K were higher in ferrosol before planting (Table 7.3). However, the soils had 

similar N content after harvest. Soil P after plant harvest was 2.11 units higher in ferrosol than in 

the podsol. In addition, the K content was 1.5 times higher in podsol than the ferrosol. Plant P was 

also higher in ferrosol than in podsol. Root length, percent of colonized root length and colonized 

root length were higher by 28.2%, 3.58 units and 26.5 units in ferrosol over podsol (Table 7.4). 

  

7.4.2 Effect of biochar type 

Biochar types were different for root fresh weight, soil EC, plant N, plant P, root length and % 

colonized root length (Table 7.5). Remaining parameters had similar mean values for both biochars. 

Root fresh weight, plant P, root length and % colonized root length were 0.63, 0.02, 53.7 and 1.7 

units higher, respectively, due to Sugarcane Trash biochar compared to Green Waste A. 

Conversely, soil EC and plant N were higher in Green Waste by 0.33 and 0.07 units over Sugarcane 

Trash.     

 

Table 7.2 Mean values for plant and soil parameters influenced by the soil types. The means within 

the column that do not share the same letter are significantly different at α=0.05 level of 

significance. The ± values indicate the standard error of the mean (N = 16).  

Soil type Plant 

height at 

harvest 

(cm) 

Shoot 

fresh 

weight 

(g) 

Shoot dry 

weight 

(g) 

Root 

fresh 

weight 

(g) 

Soil P 

(mg kg-1) 

Soil K 

(mg kg-1) 

Plant P 

(%) 

Ferrosol 38.61 ± 

0.68a 

15.74 ± 

0.35a 

1.586 ± 

0.051a 

4.24 ± 

0.10a 

7.03 ± 

0.23a 

115.3 ± 

8.2b 

0.20 ± 

0.002a 

Podsol 34.02 ± 

1.06b 

12.57 ± 

0.31b 

1.197 ± 

0.052b 

3.55 ± 

0.06b 

4.92 ± 

0.24b 

281.9 ± 

10.2a 

0.14 ± 

0.002b 
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Table 7.3 N, P and K content of ferrosol and podsol before adding biochar, lime and 

mycorrhizae 

Soil type N (%) P (mg kg-1) K (mg kg-1) 

Ferrosol 0.36 10 132.6 

Podsol 0.22 7 302.3 

 

Table 7.4 Mean values for root length, percentage colonized root length and colonized root length 

influenced by the soil types. The means within the column that do not share the same 

letter are significantly different at α=0.05 level of significance. The ± values indicate the 

standard error of the mean (N = 16).  

Soil type Root length (cm) % colonized root length 

Ferrosol 364.6 ± 13.8a 20.06 ± 0.34a 

Podsol 284.5 ± 19.4b 16.48 ± 0.23b 

 

Table 7.5 Mean values for plant and soil parameters influenced by the biochar types. The means 

within the column that do not share the same letter are significantly different at α=0.05 

level of significance. The ± values indicate the standard error of the mean (N = 16). The 

means without ± values had negligible standard error. 

Biochar type Root fresh 

weight (g) 

Soil 

electrical 

conductivity 

(dS m-1) 

Plant N 

(%) 

Plant P (%) Root length 

(cm) 

colonized 

root length 

(%) 

Sugarcane Trash 4.21 ± 0.05a 0.44 ± 0.02b 1.17b 0.181a 351.4 ± 19.5a 19.1 ± 0.35a 

Green Waste A 3.58 ± 0.04b 0.78 ± 0.03a 1.24a 0.161b 297.7 ± 13.8b 17.4 ± 0.21b 

 

7.4.3 Effect of mycorrhizal rates 

Application of mycorrhizae had significant effect on shoot fresh weight, shoot dry weight and root 

fresh weight over no application of mycorrhizae (Figure 7.1). Shoot fresh weight, shoot dry weight 

and root fresh weight were increased by 8.1%, 15.4% and 12.8%, respectively by mycorrhizal 

inoculum at a rate of 5 g kg-1 of soil over no application. Mycorrhizal effects were also significant 

on soil EC, soil P and plant P (Table 7.6). Soil EC was reduced by 10.3% by application of 

mycorrhizae over no application while available soil P and plant P increased by 26.4%, and 26.7% 

for mycorrhizae over no application.  
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Figure 7.1 Shoot fresh weight, shoot dry weight, and root fresh weight influenced by the 

mycorrhizal rates. The blocks within the series that do not share the same letter are 

significantly different at α=0.05 level of significance. The bars on the blocks indicate 

the standard error of the mean (N = 16). 

 

Table 7.6 Mean values for soil electrical conductivity, soil P and plant P content influenced 

by the soil types. The means within the column that do not share the same letter are 

significantly different at α=0.05 level of significcance.The ± values indicate the 

standard error of the mean (N = 16).  

Mycorrhizal rates 

(g kg-1) 

Soil electrical conductivity 

(dS m-1) 

Soil P 

(mg kg-1) 

Plant P 

(%) 

5 0.58 ± 0.02b 5.2 ± 0.10b 0.187a 

0 0.64 ± 0.03a 6.7 ± 0.13a 0.154b 

 

7.4.4 Interaction effects 

The interactions were similar for many parameters. Interaction of soil type and biochar types were 

significantly different for soil P (Figure 7.2) and plant P (Figure 7.3) only. Soil P and plant P were 

in the order of Ferrosol + Sugarcane Trash biochar> Ferrosol + Green Waste A biochar> Podsol + 

Sugarcane Trash biochar> Podsol + Green Waste A biochar. Soil P and plant P in both biochars 

within podsol were similar but the trend was decreasing from Sugarcane Trash to Green Waste A. 

Interactions of soil type and mycorrhizal inoculation were similar for all parameters (data not 

shown) indicating mycorrhiza could be similarly active with both soils. Interaction of biochar type 

and mycorrhizal rates had significant effect on soil EC (Figure 7.4). The EC was reduced by 46.7% 

by the interaction of Sugarcane Trash biochar with 5g of mycorrhiza per kg of soil over the 

interaction of Green Waste A with the same rate of mycorrhizae. The reduction was 66.3% by the 
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interaction of Sugarcane Trash with the mycorrhizal inoculum over the interaction of Green Waste 

and no mycorrhiza. In both the biochars, interaction of biochar with mycorrhizal inoculum had 

better effect on soil EC than their interaction with no mycorrhizal inoculum. 

 

The interactions of soil type, biochar type and mycorrhizal rates were significantly different for 

plant uptake of P only (Figure 7.5). The P content was greater in the interactions with ferrosol than 

the podsol. Interactions of Sugarcane Trash biochar and mycorrhizal rate of 5 g per kg were more 

effective than the other interactions. With both biochars, application of mycorrhiza was beneficial 

over no application. 

 
Figure 7.2 Soil P content after harvesting the crop influenced by the interaction of soil types and 

biochar types. The blocks that do not share the same letter are significantly different at 

α=0.05 level of significance. The bars on the blocks indicate the standard error of the 

mean (N = 8).  
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Figure 7.3 Plant P content after harvesting the crop influenced by the interaction of soil types and 

biochars. The blocks that do not share the same letter are significantly different at 

α=0.05 level of significance. The bars on the blocks indicate the standard error of the 

mean (N = 8).  

 
Figure 7.4 Soil electrical conductivity influenced by the interactions of biochar types and 

mycorrhizal rates (M5= 5g per kg which is 10g per pot; M0 = No mycorrhizal 

inoculation). The bars on the blocks indicate the standard error of the mean (N = 8). The 

blocks that do not share the same letter are significantly different. Presumably the 

mycorrhizal treatments took up more nutrients thereby reducing soil levels. 
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Figure 7.5 Plant P content influenced by the interaction of soil types, biochar types and mycorrhizal 

rates. (SCT = Sugarcane Trash; GWA = Green Waste A; M5= 5g per kg which is 10g 

per pot; M0 = No mycorrhizal inoculation). The blocks that do not share the same letter 

are significantly different at α=0.05 level of significance.  

 

7.5 Discussion 
The differences in the effects of soil types, biochar types and mycorrhizal rate were highly 

promising for some parameters of onion. The interactions were similar for most of the parameters 

indicating that there is no need to integrate these factors as they can work solely. However, the 

effects of biochar and mycorrhizae were encouraging for some parameters even in this short 

duration trial which has significance for further studies. 

 

The performance of onion plants was better in ferrosol than the podsol. The main reason could be 

the comparatively higher content of N and P in ferrosol than the podsol (Table 7.3). Mycorrhizal 

colonization was better in ferrosol which could be due to the finer soil structure and higher water 

holding capacity. The AM dependency may be dependent upon several soil and plant factors. For 

example, generally, plants perform better when soil nutrients are adequately available. However, the 

adequate concentration of P in the soil (and root) is not compatible with mycorrhizal colonization 

and infection (Menge et al. 1978). In the present study, the P content in both soils was low (<10 mg 

kg-1); that is most likely the main reason for colonization in both soils.  

 

Among the biochars, Sugarcane Trash had better effect on plant parameters. This could be due to its 

fine structure that provided favourable conditions to hold moisture and nutrients. However the P 



164 
 

content of Sugar Cane Trash is 1100 mg kg-1 of biochar, the amount of P added to the soil from 30 t 

ha-1 biochar (34 g per pot) was 37.4 mg. When this amount is added to the amount of P in ferrosol 

and podsol, the figure becomes 47.5 mg for ferrosol and 44.4 mg per pot for podsol. These levels of 

P are favourable for mycorrhizal development which is discussed below.  

  

There are several studies on critical levels of P for mycorrhizal colonization. A list of previous 

works on the P levels critical for mycorrhizal colonization has been reported (Swift 1999). When 

the soil level of bicarbonate-soluble P exceeded 140 mg kg-1, the rate of infection decreased 

(Amijee et al. 1989). Abbott and Robson (1977) reported that the mycorrhizae Glomus fasciculatum 

ceased to be effective when the soil P level reached 133 mg kg-1. Schubert and Hayman (1986) 

indicated that mycorrhizae became ineffective when 100 mg or more of P was added per kilogram 

of soil (100 ppm). No infection was observed when 1.5 grams or more of monocalcium phosphate 

was added to each kilogram of soil (Mosse 1973). Other researchers have also emphasized that soils 

containing or given more P are detrimental for mycorrhizal infections (Baylis 1967). The 

development of mycorrhizal relationships was greatest when soil P levels were 50 mg kg-1 

(Schubert & Hayman 1986). 

 

The soil EC on mycorrhizal soils was less due to the mobilization of salts especially P and zinc by 

mycorrhizae for plant uptake and their own use. Thus less nutrient was left in soil to affect EC 

readings. In a study, mycorrhizal colonization was observed at different salt concentrations (Neera 

and Machanda 2008). The role of AM fungi in alleviating salt stress has been reviewed by Evelin et 

al. (2009) concluding that the fungi enhanced salt tolerance of plants by enhanced nutrient 

acquisition  (P, Na, Mg and Ca), maintaining K+ : Na+ ratio and other biochemical changes. 

Inoculation with AM fungi reduced soil EC readings (Sheng et al. 2012), for example, Glomus 

fasciculatum reduced EC under  saline conditions (Suhail and Mahdi 2013).  

 

Many of the interactions were ineffective for plant growth and mycorrhizal colonization. The most 

important consideration is the duration of the crop and soil. The trial length was eight weeks which 

was possibly not enough for soil reactions between biochar and lime. Greater effectiveness of 

mycorrhizal inoculation could be observed by planting a second crop with minimum disturbance of 

soil allowing the first crop roots to act as an inoculum. Limitation of time and season for the trial as 

well as the nature of the trial were not possible here. The duration was possibly also not long 

enough for the reaction of soil and biochar as it was reported in the previous chapters that the 

carbon sequestered in biochar could be utilized in the long-term.  
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The study was organized in a glasshouse for a single season, but the need to recommend a multi-

season trial was noted.     

 

7.6 Conclusion 
The sole effect of soil type, biochar type and mycorrhizal rates was prominent but there were little 

effects of their interaction. Ferrosol soils, Sugarcane Trash biochar and mycorrhizal rates of 5 g kg-1 

were positively effective over their corresponding treatments. The interactions were not enough to 

affect the plant performance and colonization of onion roots by mycorrhizae. Considering the 

results of this experiment, the effects of washed and pure biochars in addition to their equivalent P 

and K will be evaluated in the next chapter.  
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Chapter 8. Effect of washed biochar, extracted nutrient of biochar and 

P and K equivalent to biochar on onion growth with or without 

mycorrhizae  
 

8.1 Abstract 
Two pot trials were conducted to compare the effects of washed biochar and extracted nutrients 

with and without mycorrhizae on growth and colonization of onion in pH adjusted ferrosol and 

podsol soil. The experiment was carried out in a randomized complete block design consisting of 7 

treatments (lime, lime + washed biochar, lime + washed biochar + mycorrhizae, lime + extracted 

nutrients, lime + extracted nutrients + mycorrhizae, lime + P and K equivalent to biochar, lime + P 

and K equivalent to biochar + mycorrhizae) in 4 replications. Observations were recorded on plant 

growth, mycorrhizal colonization and soil and plant nutrient contents. The results showed that the 

effect of ferrosol was greater than podsol on most of the parameters. Application of mycorrhizae 

was beneficial over soil with lime only. Extracted nutrients had beneficial effect over washed 

biochar indicating the importance of the soluble component in ash. Extracted nutrients had slightly 

greater effect than washed biochar; however, they were statistically similar in many cases. Lime 

plus P and K equivalent to biochar plus mycorrhizae had greater effect on plant growth and nutrient 

content. The P and K levels were increased when biochar was added with or without mycorrhizae. 

 

8.2 Introduction 
This chapter describes an experiment to determine whether there is any difference in the 

performance and colonization of onion plants by mycorrhizae when washed biochar, their extracted 

water soluble nutrients and equivalent amount of P and K are amended to podsol and ferrosol soils 

balanced for the same pH. This study compares the effect of washed biochar, extracted nutrients, P 

and K equivalent to the biochar. The study is also seeking to compare the application of 

mycorrhizae and no mycorrhiza within each amendment. The comparison is also carried out 

between the amendments and no amendment on plant growth and mycorrhizal colonization. The 

emphasis of the research is to determine differences between the washed biochar and the P and K 

equivalent to it. 

 

When water is applied to biochar, a large amount of ash is washed out and nutrients may be lost 

through this process. The effect of washing biochar on nutrients availability is also a matter for 

study. Therefore, the present study aims to determine the effect of washed biochar and extracted 
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solution of nutrients from biochar. This study was developed to confirm if the amount of nutrients 

in ash content are adequate to make a positive influence on plant performance and mycorrhizal 

colonization.  

 

8.3 Materials and methods 

8.3.1 Preparation of Biochar 

The biochar was made of sugarcane trash with composition given in Appendix 1. It had acid 

neutralizing capacity of 0.66%, P content 1100 mg kg-1 and K 8.4 cmol(+) (8.4 x 390 = 3276 mg 

kg-1) compositions. This biochar was relatively better for plant growth and mycorrhizal colonization 

than other biochars (previous chapters). This biochar was washed, dried and applied to the soils. 

 

Biochar amount was calculated based on the area of pots. The pot area based on the average 

diameter of 12 cm was 0.011304 cm2. The biochar rate of 30 t ha-1 was equivalent to ~ 34.0 g pot-1.  

 

Thirty t ha-1 of biochar (34 g pot-1) was weighed for the experiment because this amount had 

relatively greater positive effects on plant performance in previous experiments. The fine ground 

dry biochar was poured into the water in a beaker and was stirred for 5 minutes. The solution was 

sieved through a 2-mm sieve. The filtered solution was used as water extracted nutrients and the 

screened fine particles were considered as washed biochar. Washing of this biochar was carried out 

by applying deionized water at a proportion of 1:5 (biochar: water, w: v). Beakers were rewashed 

with de-ionized water and rewashed solution was also applied to the pot. Beakers were thoroughly 

cleaned with household bleach and deionized water and wiped dry with tissue paper after each lot to 

maintain the nutrient content of each dose. The washed biochar and extracted solution were applied 

to pots filled with the soils separately. 

 

8.3.2 Cultivar, and source of seeds and pot preparation 

Onion seeds of variety Rio Red Rock were obtained from South Pacific Seeds, New South Wales. 

These seeds were also used for other previous experiments of the present study.Plastic pots of 1.5 

litre volume with average diameter of ~12cm were selected for the experiments. A fine fabric cloth 

was placed on the bottom of the pots and pots were placed on trays in which the drained water and 

nutrient solutions could be collected and reused to prevent their loss. Pots were then filled with the 

soils treated with washed biochar, extracted nutrient solution and equivalent P and K of whole 

biochar with or without mycorrhizal inoculum. Seeds were germinated as described in Chapter 7.  

 

8.3.3 Source of mycorrhizae, soil and lime calculation 
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The MycoApply product of mycorrhizae was used as soil inoculum of mycorrhizae. The inoculum 

was the same as described in previous chapters. Soils were same as described in Chapter 7. 

  

The current pH of podsol and ferrosol soils was analyzed by the methods 1:5 water and 1:1 water 

described in Appendix 4. The amount of lime required to increase pH up to 6.5 was selected for the 

experiment and the procedure was the same as described in Chapter 6. The pH of podsol and 

ferrosol soils was 4.6 and 5.2 respectively. 

  

The doses of lime for podsol and ferrosol to raise the pH to 6.5 were 1.89 and 6.2 t ha-1, 

respectively. The acid neutralizing capacity (% CaCO3) of Sugarcane Trash was 0.66%. When a 

rate of 30 t ha-1 of biochar was applied, the amount of lime supplied through Sugarcane Trash was 

0.2 t ha-1. 

  

However, the pH of podsol raised by the fractions of washed biochar and extracted solutions of 30 t 

ha-1 biochar was only 4.7 and 4.8. Similarly, the pH of ferrosol raised by the fractions of washed 

biochar and extracted solutions of 30 t ha-1 biochar was 5.25 and 5.3. Thus, the lime requirement to 

raise the pH after adding biochar fractions was 1.84 and 6.12 t ha-1 for podsol and ferrosol. Lime 

was mixed in the soils two weeks before planting. Then the pots were filled with soils and biochar 

mix and nutrients and water maintained at field capacity until planting to allow sufficient reaction 

between soil and lime. 

       

Nutrient solutions: No nutrients were applied except for ammonium nitrate at a rate of 125 mg pot-1. 

For treatments 6 and 7, i.e. P and K equivalent to biochar, the amounts of P and K added to ferrosol 

and podsol were 37.8 mg and 111.4 mg pot-1. 

  

8.3.4 Determination of field capacity 

Field capacity was determined by the same procedure followed in Chapter 6. 

 

8.3.5 Experimental design 

Pot experiments were conducted in a glasshouse as a randomized complete block design with four 

replications with seven treatments. The treatment details are given in Table 8.1. All pots were filled 

with 1 kg of soil.  Biochar was added at a rate of 30 t ha-1 to both soils.  
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Table 8.1 Treatment compositions for ferrosol and podsol. 

Treatments for ferrosol Treatments for podsol 

Lime  Lime  

Lime + Washed biochar  Lime + Washed biochar  

Lime + Washed biochar + Mycorrhizae Lime + Washed biochar + Mycorrhizae 

Lime + extracted nutrients Lime + extracted nutrients 

Lime + extracted nutrients + mycorrhizae  Lime + extracted nutrients + mycorrhizae  

Lime + P and K equivalent to biochar Lime + P and K equivalent to biochar 

Lime + P and K equivalent to biochar + 

mycorrhizae 

Lime + P and K equivalent to biochar + 

mycorrhizae 

Amount of lime, biochar and P and K are discussed above in lime calculation, biochar and nutrient 

sections of materials and methods. 

 

 

8.3.6 Observations 

Observations were recorded on plant height at harvest (eight weeks after planting), fresh and dry 

weights of shoots, fresh weight of roots, soil EC, soil pH, soil N, P, K and plant N, P, K. Plant 

height was measured from the ground level to the tip of the longest leaf. Fresh above ground parts 

were weighed and kept in a dryer at 65OC for two weeks, after putting them into thin paper 

envelopes in an upright position and leaving the envelopes open to ventilate. Dry weight was taken 

after two weeks in the drying room. Electrical conductivity, soil pH and nutrients were determined 

by the methods given in Appendix 3-9. Mycorrhizal colonization was analyzed by the procedures 

adopted in previous chapters. 

  

8.3.7 Statistical analysis 

ANOVA was undertaken in Minitab 16, version 4.0 (Minitab 2005) and graphs were plotted by 

Microsoft Excel 2010, version 14.0 (Microsoft 2010). The standard error was derived from the 

standard deviation of the mean divided by the number of observations. The grouping of treatments 

was organized by the Tukey’s family error test. 

  

8.4 Results 
Plant height (Figure 8.1), shoot fresh weight (Figure 8.2) and shoot dry weight (Figure 8.3) of onion 

are illustrated below. The overall results showed that there was a greater positive influence of 

ferrosol on these parameters than the podsol. For plant height, application of lime plus mycorrhizae 
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with biochar or nutrients equivalent to biochar was beneficial over lime plus no treatments in 

ferrosol, but in podsol the lime treatment was similar to lime plus washed biochar. Mycorrhizae did 

not cause differences for plant height between treatments with and without mycorrhizae in podsol. 

In ferrosol, the treatments lime plus extracted nutrients plus mycorrhizae and lime plus extracted 

nutrient and no mycorrhizae were significantly different indicating mycorrhizal inoculation was 

beneficial in promoting plant height. Similarly, effect of P and K equivalent to biochar was superior 

to washed biochar in both soils. Among the mycorrhizal treatments, the mycorrhizae applied with 

lime plus P and K equivalent to biochar was superior to mycorrhizae with lime plus extracted 

nutrients and lime plus washed biochar. The treatment mycorrhizae with lime plus extracted 

nutrients produced taller plants than mycorrhizae with lime plus washed biochar.     

 

 
Figure 8.1 Plant height of onion in ferrosol and podsol. Different letters in the same series indicate 

significant differences between the treatments at α=0.05 level of significance. The bars 

on each block represent the standard error (SE) of the mean. L= Lime, L + W = Lime + 

Washed biochar, L + W + M = Lime + washed biochar + Mycorrhizae @ 5 g kg-1, L + 

E = Lime + water extracted nutrients, L + E + M = Lime + water extracted nutrients + 

Mycorrhizae @ 5 g kg-1, L + PK = Lime + P and K equivalent to biochar, L + PK + M = 

Lime + P and K equivalent to biochar + Mycorrhizae @ 5 g kg-1. 

 

There was a trend for increasing shoot fresh weight from treatments L to L + PK + M from left to 

right in Figure 8.2. Ferrosol soil was more effective for producing shoot fresh weight than podsol. 

In both soils, there was no difference between lime, lime plus washed biochar and lime plus washed 

biochar plus mycorrhizae. In podsol, the treatments with or without mycorrhizae within washed 

biochar, extracted nutrients and P and K equivalent to biochar were not different but the differences 
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were significant between washed biochar plus mycorrhizae, extracted nutrients plus mycorrhizae 

and P and K equivalent to biochar plus mycorrhizae. Similar trends were found in ferrosol. The 

highest shoot fresh was observed in L + PK + M followed by L + PK.   

 

 
Figure 8.2 Effect of treatments on shoot fresh weight of onion in ferrosol and podsol. Different 

letters in the same series indicate significant differences between the treatments (N = 4) 

at α=0.05 level of significance. The bars on each block represent the standard error (SE) 

of the mean. L= Lime, L + W = Lime + Washed biochar, L + W + M = Lime + washed 

biochar + Mycorrhizae @ 5 g kg-1, L + E = Lime + water extracted nutrients, L + E + M 

= Lime + water extracted nutrients + Mycorrhizae @ 5 g kg-1, L + PK = Lime + P and 

K equivalent to biochar, L + PK + M = Lime + P and K equivalent to biochar + 

Mycorrhizae @ 5 g kg-1. 

 

Root fresh weight and root length were higher in ferrosol than in the podsol (Table 8.2). All 

amendments with biochar and with or without mycorrhizae had higher root fresh weight and root 

length than absence of these amendments in both soils. There was no difference between the 

treatments with and without mycorrhizae within each pair of treatments but the treatments with 

mycorrhizae were significantly different from lime alone. 
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Figure 8.3 Effect of treatments on shoot dry weight of onion in ferrosol and podsol. Different 

letters in the same series indicate significant differences between the treatments (N = 4) 

at 0.05 level of significance. The bars on each block represent the standard error (SE) of 

the mean. L= Lime, L + W = Lime + Washed biochar, L + W + M = Lime + washed 

biochar + Mycorrhizae @ 5 g kg-1, L + E = Lime + water extracted nutrients, L + E + M 

= Lime + water extracted nutrients + Mycorrhizae @ 5 g kg-1, L + PK = Lime + P and 

K equivalent to biochar, L + PK + M = Lime + P and K equivalent to biochar + 

Mycorrhizae @ 5 g kg-1. 

 

The grouping was overlapped among treatments for soil EC (Table 8.3). Soil pH was similar (6.5-

6.6) in all treatments. The ECs of all biochar, mycorrhizae or P and K added treatments were similar 

but their ECs were significantly higher than for no addition (lime only). Soil N was similar in all 

treatments of both soils (data not shown). Lime plus extracted nutrients had higher soil P and soil K 

content than lime plus washed biochar. Lime plus P and K equivalent biochar had the greatest 

amount of P and K among the treatments. 

  

Plant N was similar in all treatments of both soils (data not shown). Plant P was the highest in lime 

plus P and K equivalent to biochar plus mycorrhizae. Due to the overlapping groupings of 

treatments, no recommendations could be made but the applications of P and K equivalent to 

biochar showed greater positive effect on plant P and K content than the other treatments. 

Mycorrhizae colonized between 20-24% root lengths in all mycorrhizae applied treatments but there 

were no significant differences. 
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Table 8.2 Root fresh weight and root length of onion in ferrosol and podsol. Different letters in the same column indicate significant differences (P < 

0.05) between the treatments (N = 4) α=0.05 level of significance. The ± values indicate the standard error (SE) of the mean. 

Treatments Root fresh weight Root length 

Ferrosol Podsol Ferrosol Podsol 

Lime 3.03 ± 0.09e 2.30 ± 0.20e 178.3 ± 4.0d 153.0 ± 2.7e 

Lime + Washed biochar 3.63 ± 0.06d 3.23 ± 0.10d 219.3 ± 13.5c 195.3 ± 11.9d 

Lime + Washed biochar + Mycorrhizae @ 5 g kg-1 3.98 ± 0.09cd 3.68 ± 0.11cd 246.3 ± 6.3bc 222.0 ± 5.7cd 

Lime + Water extracted nutrients 4.20 ± 0.15bc 3.85 ± 0.13bc 259.0 ± 6.3ab 236.3 ± 7.0bc 

Lime + Water extracted nutrients + Mycorrhizae @ 5 g kg-1   4.50 ± 0.12ab 4.20 ± 0.82abc 273.8 ± 4.3ab 250.3 ± 6.4abc 

Lime + P and K equivalent to biochar 4.65 ± 0.13ab 4.35 ± 0.13ab 279.3 ± 3.8a 259.8 ± 5.4ab 

Lime + P and K equivalent to biochar + Mycorrhizae @ 5 g kg-1 4.88 ± 0.15a 4.55 ± 0.10a 286.2 ± 3.9a 269.0 ± 6.6a 
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Table 8.3 Soil electrical conductivity, P and K content in ferrosol and podsol soil. Different letters in the same column indicate significant differences 

between the treatments (N = 4) at α=0.05 level of significance. The ± values indicate standard error (SE) of the mean. 

Treatments Electrical conductivity (dS m-1) P mg kg-1) K (mg kg-1) 

Ferrosol Podsol Ferrosol Podsol Ferrosol Podsol 

Lime 0.21 ± 0.01b 0.16 ± 0.01d 3.15 ± 0.30c 5.2 ± 0.1b 412.4 ± 5.1c 122.0 ± 0.0d 

Lime + Washed biochar 0.46 ± 0.01a 0.37 ± 0.01c 3.30 ±0.40c 6.0 ± 0.3b 434.5 ± 3.2bc 130.5 ± 0.9c 

Lime + Washed biochar + Mycorrhizae @ 5 g kg-1 0.44 ± 0.01a 0.41 ± 0.01b 4.05 ± 0.30c 6.5 ± 0.3b 440.3 ± 4.3bc 132.5 ± 0.9c 

Lime + Water extracted nutrients 0.48 ± 0.01a 0.45 ± 0.01a 7.45 ± 0.53b 8.5 ± 0.7b 447.3 ± 3.6b 147.0 ± 1.2b 

Lime + Water extracted nutrients + Mycorrhizae @ 5 g kg-1 0.47 ± 0.01a 0.47 ± 0.01a 7.83 ± 0.54b 9.2 ± 0.4b 448.0 ± 3.2b 150.5 ± 2.0b 

Lime + P and K equivalent to biochar 0.48 ± 0.01a 0.47 ± 0.00a 8.73 ± 0.08b 14.6 ± 1.4a 487.28 ± 11.7a 175.5 ± 3.2a 

Lime + P and K equivalent to biochar + Mycorrhizae @ 5 g 

kg-1 

0.47 ± 0.01a 0.48 ± 0.01a 12.90 ± 0.37a 15.9 ± 1.9a 488.27 ± 11.7a 175.0 ± 1.7a 
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Table 8.4 Plant P and K content of onion in ferrosol and podsol. Different letters in the same column indicate significant differences between the 

treatments (N = 4) at α=0.05 level of significance. The ± values indicate the standard error (SE) of the mean. 

Treatments Plant P (%) Plant K (%) 

Ferrosol Podsol Ferrosol Podsol 

Lime 0.20 ± 0.00d 0.11 ± 0.01d 2.50 ± 0.12d 1.98 ± 0.07c 

Lime + Washed biochar 0.22 ± 0.01cd 0.12 ± 0.00cd 2.68 ± 0.04cd 2.58 ± 0.10b 

Lime + Washed biochar + Mycorrhizae @ 5 g kg-1 0.23 ± 0.01bc 0.14 ± 0.00bc 3.14 ± 0.15bc 2.60 ± 0.09b 

Lime + Water extracted nutrients 0.24 ± 0.01bc 0.15 ± 0.01b 3.18 ± 0.15bc 2.84 ± 0.05b 

Lime + Water extracted nutrients + Mycorrhizae @ 5 g kg-1 0.25 ± 0.01abc 0.16 ± 0.01b 3.29 ± 0.14b 2.88 ± 0.04b 

Lime + P and K equivalent to biochar 0.26 ± 0.00ab 0.22 ± 0.01a 4.46 ± 0.11a 4.52 ± 0.13a 

Lime + P and K equivalent to biochar + Mycorrhizae @ 5 g kg-1 0.28 ± 0.01a 0.22 ± 0.01a 4.47 ± 0.10a 4.46 ± 0.16a 
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8.5 Discussion 
The superior performance of ferrosol to podsol for most of the parameters was possibly 

associated with their texture and nutrient content. N and K of the soils before the trial were 

not analysed but results for P content showed a greater value (10 mg kg-1) for ferrosol than 

the podsol.  

 

The beneficial effect of application of biochar with extracted nutrients confirms that the 

majority of nutrients may be available in the ash content. The washed biochar had little effect 

on all parameters indicating that most of the nutrients responsible for plant growth were 

leached. This could also be compared with the treatments of lime plus extracted nutrients plus 

or minus mycorrhizae which produced similar effects as the treatment lime plus P and K 

equivalent to biochar plus or minus mycorrhizae. This indicates that the major part of 

nutrients were in extracted nutrient solution. 

 

Values for plant height, shoot fresh weight and shoot dry weight of the treatment P and K 

equivalent to biochar were expected because the amount was calculated from the whole 

biochar (unwashed). No differences for soil and plant N were obvious because the same 

amount of N was applied to each plot and the N contained in biochar was sequestered. During 

the pyrolysis process, significant proportions of biomass N are lost by volatilization (Chan & 

Xu 2009) and the rest may be converted into more resistant forms that may not be readily  

available to the plant. The N remaining in the biochar is poorly available to plants (Gaskin et 

al. 2010), since a fraction of  it is found inside aromatic C structures and heterocyclic 

compounds (Chan & Xu 2009).  Limiting soil N content by biochar application  in N 

deficient soils could also be due to the high C/N ratio, hence it might reduce crop 

productivity temporarily (Lehmann et al. 2003). The retention and immobilization of N from 

biochar have been explained by several mechanisms, for example, adsorption of NH3 or 

organic-N onto biochar, cation or anion exchange reactions, and enhanced immobilisation of  

N as a consequence of labile C addition in the biochar (Clough et al. 2013). The N contained 

in all biochars used for the experiments as explained throughout the thesis was in the form of 

total N.  
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Mycorrhizal colonization was similar in all treatments and the colonization percentage was 

quite low in both soils. The most possible cause may be that mycorrhizae started to colonize 

but did not develop associations or network in the whole root system. The nutrient content of 

soil was very low so that might not have been enough for sustaining mycorrhizae and plants 

at the same time.  

 

The addition of biochar to soils increased above ground productivity, crop yield, soil 

microbial biomass, rhizobia nodulation, plant K tissue concentration, soil P , soil K , total soil 

N , and total soil carbon (C) compared to control  (Biederman & Harpole 2013). In the 

present study, biochar added treatments produced greater plant and soil P and K content but 

soil and plant N remained similar. The reason behind this may be associated with the effect of 

applied N rather than the N of soil and biochar. 

 

Previous research showed that application of biochar increased mycorrhizal colonization in 

wheat roots where biochar was applied with inoculated mineral fertilizer (Solaiman et al. 

2010). In the present study, mycorrhizal colonization was similar for biochar applied and 

nutrient added plants. Soil P and soil pH ranges were considered adequate for mycorrhizal 

colonization. 

 

8.6 Conclusion 
The effect of ferrosol was greater than podsol on most of the parameters. Application of 

mycorrhizae was beneficial over soil with lime only. Extracted nutrients had beneficial effect 

over washed biochar indicating the importance of the soluble component in ash. Extracted 

nutrients had slightly greater effect than washed biochar, however, they were statistically 

similar in many cases. Lime plus P and K equivalent to biochar plus mycorrhizae had greater 

effect on plant growth nutrient content. The P and K levels were increased when biochar was 

added with or without mycorrhizae.  

 

From the results of all experiments so far, the need for verification of the application rates of 

biochar was expected and a field trial was conducted. The results of the field trial will be 

discussed in the next chapter. 
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Chapter 9. Verification of biochar effects under field conditions 
 

9.1 Abstract 
Field experiment was conducted in a less fertile ferrosolic field to determine the growth of 

shallot and its root colonization by AM fungi in response to biochars. The experiment was 

conducted in a 2 x 3 + 2 factorial arrangement with two types of biochar (Sugarcane Trash 

and Green Waste A) at three application rates (10, 20 and 30 t ha-1) plus two extra treatments 

(control with no amendment and N at a rate of 110 kg ha-1). As a result, the rate of 10 t ha-1 

was considered as the best rate as all rates of biochar had similar and more positive effects on 

most of the parameters than the control. The pH and electrical conductivity increased as the 

biochar rates increased. These results provide information for soil management strategy by 

using biochars as an amendment in onion in less fertile ferrosolic soil in a particular season, 

however, multi-season, multi-soil and multi-crop experiments are important for specific 

recommendations. 

 

9.2 Introduction 
The effects of biochar on plant growth may vary depending upon soil type and fertilizer 

application. For instance, Van Zwieten et al. (2010a) reported that biochars increased wheat 

and radish biomass in ferrosol but reduced it in calcaresol. Asai et al. (2009) showed that 

biochar increased rice grain yields in low P soils. In addition, biochar had little effect on 

wheat yield in the absence of mineral fertilization but with the highest rate of mineral 

fertilization, yield increased by 20–30% more than mineral fertilizer alone (Alburquerque et 

al. 2014).  These results suggest that soil properties, including pH and nutrient levels, 

influence biochar effect on crop response. 

 

Tomato fruit yield increased with application of charcoal compared to without charcoal 

(Yilangai et al. 2014). Biochar also increased vegetable yield by 4.7-25.5% as compared to 

farmers’ practice (Vinh et al. 2014). Biochar positively influenced growth and yield of 

French bean as compared to no biochar (Saxena et al. 2013). A rice-husk biochar tested in 

lettuce-cabbage-lettuce rotation increased final biomass, root biomass, plant height and 

number of leaves in all cropping cycles in comparison to no biochar treatments (Carter et al. 

2013).  On the other hand, biochar did not increase annual yield of winter wheat and summer 

maize but the cumulative yield over four growing seasons significantly increased in a 
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calcareous soil (Liang et al. 2014). Biochar of maple showed no significant effect on root 

elongation of pea (Borsari 2011). Wood chip biochars produced at 2900C and 7000C had no 

effect on growth and yield of either rice or leaf beet (Lai et al. 2013).  

 

Application rates may have varied effects on crop growth. Dry matter of radish significantly 

decreased when biochar was applied at 10 ton ha-1 (Chan et al. 2008a); however, there was no 

significant effect of biochar rates (0, 7 and 15 tons ha-1) on turnip, wheat, rape and faba bean 

yields (Brandstaka et al. 2010).  Biochar at rates of 20 and 40 t ha-1 without N fertilization 

increased maize yield by 15.8% and 7.3% while addition of 300 kg ha-1 N with biochar 

enhanced yield by 8.8% and 12.1%, respectively (Zhang et al. 2012).  

 

An oak biochar derived from a slow pyrolysis process was tested for four years at 0, 5  and 25 

t ha-1 with 100% and 50% of the normal N fertilizer rate on a maize -soybean rotation in an 

alfisol soil; this resulted in an overall positive trend in total above-ground biomass and grain 

yield (Hottle 2013). A higher rate (3 t ha-1) with urea of a poultry-litter biochar derived from 

slow pyrolysis produced better cotton growth than the lower rate (1.5 t ha-1) (Coomer et al. 

2012). 

 

Biochar amendments can increase AMF % root colonization in plant roots (Elmer & 

Pignatello 2011) grown in acidic soils (Ezawa et al. 2002; Matsubara et al. 2002; Yamato et 

al. 2006), while others showed decrease in AMF abundance (Warnock et al. 2010).  
 

In trials described earlier in this thesis, biochar had encouraging effects on plant growth and 

colonization in the controlled environment of the glasshouse. For example, biochar was 

beneficial for growth of lettuce, cabbage, tomato and onion while it was ineffective for 

potato. An application rate of 30 t ha-1 was found to be most effective for plant growth. The 

mycorrhizal colonization of tomato and onion roots was found for up to 100 t ha-1 of biochar 

application. This chapter describes the results of a field trial on the effects of biochar on 

shallots for comparison with the glasshouse studies.    

 

9.3 Materials and methods 

9.3.1 Biochar 

Biochars from two different sources viz. Sugarcane Trash and woody Green Waste (Green 

Waste A) were used for the experiment. The nutritional and other properties of these biochars 
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are given in Appendix 1. These biochars were repeatedly tested in previous experiments as 

described in earlier chapters. Biochar amount was calculated based on the area of land. As the 

application rates were 10, 20 and 30 t ha-1, a 2 m2 area required 2, 4 and 6 kg of each biochar. 

   

9.3.2 Cultivar and source of seedlings 

A popular shallot variety recommended for the Lockyer Valley was obtained from Jackwitz 

Seedlings, Tenthill. The seedlings were grown in plastic trays filled with propagation mix. 

Three week old seedlings were planted directly into the field. 

 

9.3.3 Experimental site and soil 

The experiment was conducted in the research field of the University of Southern 

Queensland, Toowoomba. , the site was situated at around 51 km west from the University of 

Queensland, Gatton Campus. The climate during the study was warm summer. The site was a 

previously grassed, uncultivated fallow with acidic, red ferrosol soil. The baseline soil test 

results showed that the soil pH was 5.2 and the soil contained 0.19% total N, 14.6 mg kg-1 

Colwell P and 347.7 mg kg-1 exchangeable K, respectively. 

 

9.3.4 Land preparation 

Land was prepared by deep ploughing with a tractor and three cultivations with a rotary hoe. 

Weeds were removed from the experimental plot. The biochars and fertilizer were applied 

manually to each plot as calculated and mixed by rotary hoe to a depth of 10 cm. The plots 

were separated by a distance of 50 cm and made into flat beds. 

 

No additional inoculum was applied as it was assumed that sufficient mycorrhizal spores and 

hyphae were prevalent in the soil. 

   

9.3.5 Experimental design 

The experiment was conducted in a 2 x 3 + 2 factorial arrangement with two types of biochar 

at three application rates plus two extra treatments (control with no amendment and N at a 

rate of 110 kg ha-1). Thus there were eight treatments with four replications. Treatment details 

are given in Table 9.1. 
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Four blocks of eight plots in each block with 2 x 1 m plot size were maintained as 

replications. The inter-block and inter-plot spacing was maintained at 50 cm. The row to row 

and plant to plant distance was 25 and 13.3 cm respectively. Thus the plot area was 2 m2. 

 

9.3.6 Transplanting of seedlings 

Seedlings were transplanted on 9th September 2014 by covering the whole root system with 

soil. Seedlings with five tillers were maintained in each hill after establishment. As the plot 

size was 2 m2, there were 15 plants in a row and 60 plants in a plot. After transplanting, 

irrigation was supplied to enhance establishment and later, for plant growth. 

 

9.3.7 Care of the crop   

No disease or insect pests were observed during the experiment. No chemical pesticides were 

applied. Weeds were a major problem during the period but they were uprooted manually. To 

protect the experiment from hares, a wire net was erected 1 m around the perimeter of the site 

(Plate 9.1). For irrigation, two sprinklers were set to ensure irrigation one hour every day for 

a week until the seedlings were established and thereafter two hours every alternate day 

(three days a week).   

 

 
Plate 9.1 Part of experimental area showing wired fences to protect crop from hares and 

sprinkler to irrigate the crop. 
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9.3.8 Harvesting of the plants and roots 

Plants were harvested manually on 14 November 2014. Plants and roots were harvested from 

the two middle rows after discarding all border plants. Thus the harvested net plot area was 

0.87 m2. The total number of harvested plants from the net plot was 26. The shoots were 

harvested by uprooting nine weeks after transplanting. The shoots were cut at ground level 

and put into paper envelopes. The roots were uprooted, washed and stored in 50% ethanol in 

Falcon tubes for mycorrhizal analysis. 

 

9.3.9 Soil sampling 

Four random samples of soil were collected from 10 cm depth from each plot and mixed. The 

composite sample was divided into four quarters. The two opposite quarters were discarded 

and then the process was repeated with the remaining soil accepted for the sample for 

analysis. The samples were kept in plastic bags and air-dried for a week in a glasshouse with 

a temperature range of 30-330C.      

 

Table 9.1 Treatments and application rates for field trial. 

Biochar Application rates Amount per plot 

 No amendment - 

 N @ 110 kg ha-1 64.7 g (Ammonium nitrate) 

 

SCT 

10 t ha-1 2 kg 

20 t ha-1 4 kg 

30 t ha-1 6 kg 

 

GWA 

 

10 t ha-1 2 kg 

20 t ha-1 4 kg 

30 t ha-1 6 kg 

 

9.3.10 Observations 

Observations were recorded on plant height at harvest (eight weeks after planting), fresh and 

dry weights of shoots, fresh weight of roots, soil EC, soil pH as well as soil and plant N, P, K. 

Plant height was measured from the ground level to the tip of the longest leaf. Fresh above 

ground parts were weighed and kept in a dryer at 65oC for two weeks, after putting them into 

thin paper envelopes in an upright position and leaving the envelopes open for ventilation. 

Dry weight was taken after two weeks in the drying room. Electrical conductivity, soil pH 
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and nutrients were determined by the methods given in Appendix 3-9. Mycorrhizal 

colonization was analyzed by the procedures adopted in the materials and methods section of 

Chapter 4. Benefit cost ratio was derived from the total gross income divided by total costs 

for production.  

 

9.3.11 Statistical analysis 

A General Linear Model of biochar, application rate, biochar x application rate was applied 

for the factorial subset in Minitab (Minitab 2005). One way ANOVA was organized by 

Minitab for whole treatment effect, means and standard deviation of the mean. A combined 

ANOVA was also assessed by combining one way ANOVA and factorial subset to draw a 

perfect ANOVA with extra treatments by applying similar methodology from Chapter 5. 

Graphs were plotted in Microsoft Excel 2010, version 14.0 (Microsoft 2010). The standard 

error of the mean was derived from the standard deviation of the mean divided by the number 

of observations (replications). The grouping of treatments was organized by Tukey’s family 

error test in Minitab 16, version 4.0 (Minitab 2005).  

 

9.4 Results 

9.4.1 Effect of biochar types 

Significant differences between biochars were observed for root length, soil pH, soil N and 

plant N, P, and K. Root length (931.8 cm), soil N (Total N, 0.25%), plant N (3.6%) and  P 

(0.29%) content were greater due to the effect of Sugarcane Trash biochar while the K (3.8%) 

was greater due to Green Waste A biochar. Soil pH of Green Waste A biochar treated plots 

was higher (6.2) than that of Sugarcane Trash. These differences in pH and nutrients reflected 

the composition of biochars.   

 

9.4.2 Effect of biochar application rates 

Plant height, shoot fresh and dry weight, root length, soil NPK and plant NPK showed 

significant differences for biochar application rates. Soil pH, EC and N, P, K were higher in 

the soils amended at the higher rates (30 t ha-1) of biochar while plant height, shoot fresh 

weight, shoot dry weight, root length and plant NPK were greater at the lowest rate (10 t ha-

1). 
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9.4.3 Interaction effect 

All interactions were non-significant for all parameters except for soil P. Soil P was the 

greatest due to the interaction of Sugarcane Trash biochar and 30 t ha-1 of application rate 

followed by the interaction of Green Waste A biochar and 30 t ha-1.  The rest of the 

interactions were not different from each other. 

 

9.4.4 Combined effect of factors and extra treatments  

Combined ANOVA (One - way ANOVA for all treatments) for factors and extra treatments 

revealed that the application rates were significantly different for plant height (Figure 9.1), 

shoot fresh weight (Figure 9.2), shoot dry weight (Figure 9.3), soil pH (Figure 9.4), soil EC 

(Figure 9.5), root fresh weight and root length and % of colonized root length (Table 9.2) and 

soil NPK and plant NPK (Table 9.3). 

 

The results showed most of the biochar treatments were similar or overlapped each other for 

the parameters. It was noteworthy that the application of biochar rates had greater positive 

effect than no amendment (control). Application of N at a rate of 110 kg ha-1 had a large 

positive effect on plant height, shoot fresh weight and shoot dry weight and it was at a par 

with biochar rates. Soil pH and EC increased as the biochar levels were raised. Root fresh 

weight and root length and colonized root length were higher in biochar and N added soil 

than in no amendment. When comparing the effect of N and biochar application rates, they 

were similar for plant height, shoot fresh and dry weight, root length and colonized root 

length. N had less effect on soil pH and EC, yet greater effect on root fresh weight. 

 

Soil N, P and K contents were higher in higher application rates of biochar (30 t ha-1). On the 

other hand, plant NPK contents increased as application rates of biochar decreased. Among 

the rates, many were overlapping so that no distinct conclusions could be made. 

 

9.4.5 Benefit cost ratio (BCR) analysis 

Total costs for production of the crop and gross income were recorded in a square meter 

basis. The results showed that all of the treatments were beneficial. The fertilizer and biochar 

treatments were more beneficial that the control. Among the treatments, application of N 

from ammonium nitrate @ 110 kg ha-1 had the highest BCR value followed by Sugarcane 

Trash biochar @ 10 t ha-1. Comparing the two biochars, Sugarcane Trash had greater BCR 

values than Green Waste A. 
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Figure 9.1 Plant height of shallot in response to treatments. Different letters indicate 

significant differences between the means (N = 4) at α=0.05 level of 

significance.The vertical bars represent the standard error of the mean (SE). 

Means were average of 4 replications; randomly sampled 5 recordings were 

averaged in each replication.  N = N; SCT = Sugarcane Trash; GWA = Green 

Waste A.  

 
Figure 9.2 Shoot fresh weight of shallot in response to the application rates of biochar, N and 

control. Different letters indicate significant differences between the means (N = 

4) at α=0.05 level of significance.The vertical bars represent the standard error of 

the mean (SE). Means were average of 4 replications; randomly sampled 5 

recordings were averaged in each replication.  N = N; SCT = Sugarcane Trash; 

GWA = Green Waste A.  
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Figure 9.3 Shoot dry weight of shallot in response to the application rates of biochar, N and 

control. Different letters indicate significant differences between the means (N = 

4) at α=0.05 level of significance.The vertical bars represent the standard error of 

the mean (SE). Means were average of 4 replications; randomly sampled 5 

recordings were averaged in each replication.  N = N; SCT = Sugarcane Trash; 

GWA = Green Waste A.  

 

 

 
Figure 9.4 Soil pH of shallot in response to the application rates of biochar, N and control. 

Different letters indicate significant differences (N = 4) between the means at 

α=0.05 level of significance. The vertical bars represent the standard error of the 

mean (SE). Recordings of three subsamples were averaged in each replication. 

N= N; SCT = Sugarcane Trash; GWA = Green Waste A. 
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Figure 9.5 Soil EC of shallot in response to the application rates of biochar, N and control. 

Different letters indicate significant differences (N = 4) between the means. The 

vertical bars represent the standard error of the mean (SE). Recordings of three 

subsamples were averaged in each replication. N= N; SCT = Sugarcane Trash; 

GWA = Green Waste A. 

 

Table 9.2 Mean values for root fresh weight, root length and colonized root length in 

response to the application rates of biochar, N and control. Different letters of the 

same column indicate significant differences between the means (N = 4) at 

α=0.05 level of significance. The ± values represent the standard error of the 

mean (SE).  

Application rates Root fresh 

weight (g) 

Root length 

(cm) 

Colonized root 

length (cm) 

Control 2.40 ± 0.04c 629.3 ± 23.9d 92.6 ± 6.6b 

N @ 110 kg ha-1 4.53 ± 0.08a 1108.0 ± 18.2a 228.0 ± 18.9ab 

Sugarcane Trash @ 10 t ha-1 3.58 ± 0.02b 1056.5 ± 20.4ab 255.3 ± 17.9a 

Sugarcane Trash @ 20 t ha-1 3.55 ± 0.01b 954.0 ± 10.3ab 219.2 ± 18.9ab 

Sugarcane Trash @ 30 t ha-1 3.30 ± 0.05b 784.9 ± 23.2cd 182.2 ± 15.5ab 

Green Waste A @ 10 t ha-1 3.56 ± 0.08b 1008.8 ± 14.1ab 215.8 ± 17.4ab 

Green Waste A @ 20 t ha-1 3.48 ± 0.01b 902.7 ± 13.4bc 198.8 ± 19.2ab 

Green Waste A @ 30 t ha-1 3.50 ± 0.05b 704.4 ± 9.6d 149.1 ± 12.6ab 
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Table 9.3 Mean values for N, P and K content of soil and plant in response to application rates of biochar, N and control. Different letters of the 

same column indicate significant differences between the means (N = 4) at α=0.05 level of significance. The ± values represent the 

standard error of the mean (SE).  

Application rates Soil content Dry matter content 

N  

(%) 

P 

(mg kg-1) 

K 

(mg kg-1) 

N 

(%) 

K 

(%) 

K 

(%) 

Control 0.17 ± 0.00d 10.1 ± 0.15f 334.2 ± 2.35b 2.93 ± 0.02f 0.22 ± 0.01g 3.32 ± 0.01e 

N @ 110 kg ha-1 0.24 ± 0.00bc 10.9 ± 0.07ef 334.9 ± 1.08b 4.40 ± 0.06a 0.25 ± 0.00f 3.44 ± 0.01e 

Sugarcane Trash @ 10 t ha-1 0.21 ± 0.00cd 13.0 ± 0.31de 366.7 ± 0.88b 3.86 ± 0.03b 0.28 ± 0.00de 3.76 ± 0.01cd 

Sugarcane Trash @ 20 t ha-1 0.23 ± 0.01bc 17.0 ± 0.14bc 394.0 ± 1.28b 3.58 ± 0.00c 0.31 ± 0.00bc 3.98 ± 0.01bc 

Sugarcane Trash @ 30 t ha-1 0.32 ± 0.00a 21.4 ± 0.64a 452.38 ± 3.95ab 3.24 ± 0.01de 0.34 ± 0.00a 4.62 ± 0.07a 

Green Waste A @ 10 t ha-1 0.19 ± 0.00cd 14.7 ± 0.09cd 379.0 ± 1.50b 3.65 ± 0.01bc 0.27 ± 0.00ef 3.58 ± 0.02de 

Gren Waste A @ 20 t ha-1 0.21 ± 0.00bcd 15.7 ± 0.15c 423.3 ± 1.59b 3.39 ± 0.02cd 0.29 ± 0.00cd 3.84 ± 0.01bcd 

Green Waste A @ 30 t ha-1 0.27 ± 0.00b 18.3 ± 0.11b 591.7 ± 4.30a 3.09 ± 0.01ef 0.32 ± 0.00ab 4.07 ± 0.02b 
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A     B    C 

  
D       E 

   
F        G 

Plate 9.2 Effect of treatments on performance of shallot; A. Control plot showing poor growth with 

less tillers, B. N @ 110 kg ha-1 with intensive tillers, C. Sugarcane Trash biochar @ 10 t 

ha-1, D and E. Views of whole experimental area, F. Experimental plots one week after 

transplanting, G. Manual weeding of the plots with a hoe. Colours of images are due to 

the effect of light and shade at the time of taking the photos. 
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Table 9.4 Benefit cost ratio analysis for the treatments. Calculations are presented for a square metre land area. Currencies are in Australian dollar.  

Costs items Treatments 

Control N 

(110 kg ha-1) 

Sugarcane Trash 

(10 t ha-1) 

Sugarcane Trash 

(20 t ha-1) 

Sugarcane Trash 

(30 t ha-1) 

Green Waste A 

(10 t ha-1) 

Green Waste A 

(20 t ha-1) 

Green Waste A 

(30 t ha-1) 

Biochar/fertilizer ($)  0 0.4 0.3 0.6 0.9 0.3 0.6 0.9 

Seedlings ($) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

Labourer ($) 2.7 5.1 5.1 4 2.8 5.1 4 2.8 

Machinery tools ($) 2 2 2 2 2 2 2 2 

Irrigation($) 4 4 4 4 4 4 4 4 

Total cost ($) 11 13.8 13.7 12.9 12 13.7 12.9 12 

Production (kg) 2.57 4.11 4.02 3.62 3.02 3.76 3.28 2.91 

Price $ kg-1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 

Gross Income ($) 11.57 18.50 18.09 16.29 13.59 16.92 14.76 13.10 

Benefit: cost ratio 1.05 1.34 1.32 1.26 1.13 1.24 1.14 1.09 
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9.5 Discussion  
This experiment confirmed some previous issues of this thesis research. For example, the glass 

house experiments showed that application of biochar was beneficial for crop growth and 

colonization of roots by arbuscular mycorrhizal fungi (Chapters 3, 4, and 5). This experiment also 

confirmed that both tested biochars were beneficial for the growth and colonization of shallots. The 

previous chapters showed Sugarcane Trash was comparatively better for some parameters which 

were also observed here. As before, there was little effect of interaction between biochar and 

application rates in this experiment. 

  

The effects of biochars and their application rates were similar for many of the growth parameters, 

soil and plant nutrients perhaps because the growth period was very short (nine weeks) which might 

not be enough to allow decomposition of biochars to increase availability of nutrients. The duration 

of glasshouse experiments was also similar (six to eight weeks) but as nutrients were supplied 

through Hoagland’s nutrient solution, (Appendix 2) and grown in sand, most were leached out. The 

initial nutrient content of sand was zero while higher nutrient content was available in soil so that 

high rates performed similar to the low rate in the field trial. However, all application rates were 

competitive with N applied at a rate of 110 kg ha-1. N applied  (22 g) for this treatment was greater 

than that supplied per plot from biochars at the rate of 10 t ha-1 (12 g) but less  than from 20 and 30 t 

ha-1of both biochars (24 g and 36 g).  

 

There should be three possible reasons behind the similar effects of N application and biochar at a 

rate of 10 t ha-1 on plant parameters. Firstly, there should be a greater amount of leaching of N from 

chemical fertilizer than that from biochar because the field was irrigated for two hours every day for 

the first week. The mobility of nutrients in soil should be greater from chemical fertilizers than from 

biochar as biochar was mixed within the top 10 cm but nitrogenous fertilizer may move below that 

depth due to leaching. Secondly, the contribution of P, K and other nutrients of biochar to plant 

parameters should enhance plant performance; however, the N content in biochar at 10 t ha-1 was 

low. Thirdly, the elevated EC (Figure 9.5) reduced the growth.  

    

Varied responses of crops to biochar were reported by other authors also (Chan et al. 2008a). Van 

Zwieten et al. (2010a) reported two biochars increased crop biomass. However, application of  

biochar at a rate of 10 t ha-1 significantly decreased dry matter content of radish (Chan et al. 2008a). 

No differences were observed between the application rates of biochar (0, 7 and 15 tons ha-1) on 

turnip, wheat, rape and faba bean yields (Brandstaka et al. 2010). Biochar rates of 20 and 40 t ha-1 

without N fertilization increased maize yield by 15.8 and 7.3% (Zhang et al. 2012).  
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A previous experiment conducted in sand medium (this thesis) confirmed that application rate of 30 

t ha-1 was the most beneficial for plant growth (Upadhyay et al. 2014). The recommended rate for 

this specific soil might be even lower. From the present experiment, it was confirmed that 

application of 10, 20 and 30 t ha-1 of biochar had similar effects on most of the parameters. 

Economically, the positive effect of 20 t ha-1 and 30 t ha-1 was not two and three times greater than 

that of 10 t ha-1, so the application of 10 t ha-1 may be the recommendation from this work. In the 

glasshouse experiments (Chapter 3 and 4), biochars were applied in sand medium which was not 

sufficient to prevent leaching of nutrients due to a flush watering. One of the major roles of biochar 

in sand medium was to conserve moisture, so increased rates of biochar conserved more moisture 

and became more effective.  

 

Application of biochar derived from maple tended to be beneficial for root elongation of pea and 

wheat but no significant difference was observed (Borsari 2011), possibly due to little effect of 

biochar in the short-term. The wood chip biochars had no effect on growth and yield of rice and leaf 

beet (Lai et al. 2013) but other biochars had positive impact on growth and yield of French bean 

(Saxena et al. 2013). An oak biochar also had positive effect on  biomass and grain yield at 5 and 25 

t ha-1 (Hottle 2013). A poultry-litter biochar at 3 t ha-1 with urea produced better cotton growth than 

the lower rate (1.5 t ha-1) (Coomer et al. 2012). 

 

In the soil, there was increase in NPK with increased rate of biochar as expected.  For SCT there 

was more N from 30 t ha-1 in soil than the 110 kg N treatment as SCT contains more N. However, 

the plant N % does not reflect this may be because the amount of available N in 110 kg N treatment 

was higher than in biochar, as biochar N is total N and all N may not be available. The P and K 

contents in plants were greater in biochar treated plants than N treated, as there was no additional P 

and K in N treated plants. 

 

Colonization of roots was observed in all treatments but N and biochar treated plants had 

significantly greater colonization than control. This result was similar to previous information that 

biochar amendments could increase colonization in plant roots (Elmer & Pignatello 2011) grown in 

acidic soils (Ezawa et al. 2002; Matsubara et al. 2002; Yamato et al. 2006). In some reports, 

addition of char inhibited colonization probably due to improved availability of P (Warnock et al. 

2007). In the present study, colonization was improved because the soil P level was within 

acceptable limit (<25 mg kg-1, Table 9.3) for mycorrhizal growth. After addition of all levels of 

biochar, the soil pH remained between 6 and 7, which was suitable for availability of most of the 
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nutrients. This could be a cause of similar growth and dry weight in all rates of biochars. The 

similar effect of 10 t ha-1 and the higher rates could be associated with the elevated EC (Figure 9.5) 

that reduced the growth. Another presumption is the addition of more heavy metals by rates of 

biochar higher than 10 t ha-1 may have affected growth; however their actual amounts in the soil 

were unknown. Interestingly, N alone stimulated colonisation equal to that for low rates of biochar 

and resulted in a slight but significant increase in plant P.  

 

Benefit cost ratio showed higher value for N @ 110 kg ha-1. It proved that biochar was less 

profitable than chemical nitrogenous fertilizer for immediate effect. However, the biochar rates had 

greater BCR values than control which indicates possibility of enhancing profitability by using 

biochar as compared to no fertilizer application. The values for sequestered carbon and leached N 

were not done under this single season study but they were considered important for future long-

term research.  

  

9.6 Conclusion 
This experiment compared two types of biochar (Sugarcane Trash and Green Waste A) and their 

application rates (10, 20 and 30 t ha-1) including a control and N at a rate of 110 kg ha-1. The results 

confirmed that biochar application was beneficial for plant growth and colonization. Lower rates of 

biochar were equally beneficial as the higher rates and both biochars were effective for specific 

traits. As a result, the rate of 10 t ha-1 was considered as the best rate as all rates of biochar had 

similar and more positive effects on most of the parameters than the control. However, these results 

were based on a short-term experiment. To observe complete effects, a series of experiments should 

be conducted in different soils for a longer period.   
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Chapter 10. General discussion 
 

Experiments confirmed that there were crop-specific responses to biochar. For example, lettuce was 

more responsive than potato, true potato seedlings and single node cuttings of true potato seedlings.  

Addition of biochar increased pH of the medium in all experiments; this was also confirmed by 

previous researchers (Chan et al. 2008a), however the liming value of different biochars may vary 

(Van Zwieten et al. (2010a).  

 

The beneficial effect on crops like cabbage in the present study was also reported by previous 

researchers (Tayxayngavong 2008; Fujiia et al. 2011).  The significant effect of biochar on leaf 

length at the later stages of growth showed that biochar may influence growth in the long-term, 

because cabbage leaf size and number significantly increased 4-12 weeks after sowing (Olaniyi & 

Ojetayo 2011).  It may take a long period to see the influence of biochar (Graber et al. 2010), even 

years (Jones et al. 2012). Onion and tomato are highly dependent on mycorrhizae (Khasa et al. 

1992), however, colonization was less in fertile soils than in marginal soils (Sharif and Moawad 

2006).  

 

It was argued that biochar amendments could increase AMF % root colonization in plant roots 

(Elmer & Pignatello 2011) grown in acidic soils (Ezawa et al. 2002; Matsubara et al. 2002; Yamato 

et al. 2006), or decrease AMF abundance in some cases (Warnock et al. 2010). It depends on 

availability of P in soil (Warnock et al. 2007) as low P soils in the experiments showed good 

colonization (Chapter 5).  

 

Zn and Cu effects on plant growth and colonization increased up to 50 mg kg-1. As onion has been 

classified as sensitive to zinc deficiency (Chapman 1966), a recommendation of 10 kg ha-1 was 

made (Khan et al. 2007) while in the present study, the Zn rate of 50 mg per pot was equivalent to 

about 11 kg ha-1 as the experimental soil had very low zinc content (0.4 mg kg-1 of soil) (Chapter 5). 

However, Cu is less available for soil pH above 4 (Mathur & Levesque 1983). Mycorrhizal 

colonization increased plant dry weight (Chen et al. 2007), the reason could be that mycorrhizae 

prevented Cu toxicity in plants (Malekzadeh & Ordubadi 2012) and acted  to filter its flow from 

roots to plant tissue (Malekzadeh et al. 2007). 

  

Mycorrhizae restrict salt absorption by plants (Huang et al. 2005) and thus they can accumulate in 

the rhizosphere increasing EC. Zn supply had little effect on tissue P (Zhu et al. 2001) but excess P 
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can induce Zn deficiency (Marschner & Cakmak 1986). Mycorrhizae increase the uptake of Zn and 

Cu, but mycorrhizal activity is suppressed by P fertilization (Lambert et al. 1979). 

  

Mycorrhizal tolerance to heavy metals has been described by Hildebrandt et al. (2007). Mycorrhizal 

development was enhanced by levels of 18 mg zinc kg-1  soil basis while higher rates of 45 and 135 

mg kg-1 Zn resulted in decreased colonization (McIlveen & Cole Jr 1979). In the present study, it 

could not be concluded that the highest rate was inhibitory because some degree of colonization 

was also detected at those rates. 

   

A pot experiment (Chapter 7) confirmed that soil types, biochar types and mycorrhizal rate can 

work independently. The rate of mycorrhizal infection decreased when soil P (bicarbonate-soluble) 

exceeded 140 mg kg-1 (Amijee et al. 1989), 133 mg kg-1 (Abbott and Robson (1977) or 100 mg kg-1 

(Schubert and Hayman (1986). Colonization was greatest when soil P was 50 mg kg-1 (Schubert & 

Hayman 1986). 

 

The experiment (Chapter 8) confirmed that washed biochar and extracted nutrients had similar 

effects on plant growth and colonization in both soils and that most of the available nutrient was 

contained in ash. The effects of biochar on crop, soil and microbes are subject to climate and soil 

variation (Biederman & Harpole 2013). Colonization can be enhanced by mineral fertilizer 

(Solaiman et al. 2010) in less fertile soil. 

 

The field experiment confirmed that both biochars tested (Sugarcane Trash and Green Waste A) 

were beneficial for growth and colonization of onion. The previous chapters showed Sugarcane 

Trash was comparatively better for some parameters as was also observed in this experiment. All 

application rates were competitive with N applied at a rate of 110 kg ha-1. The result was different 

from a previous report in that application of  biochar at a rate of 10 t ha-1 significantly decreased dry 

matter content of radish (Chan et al. 2008a). 

 

Green Waste A biochar rates were beneficial for growth of lettuce (Upadhyay et al. 2014). Biochar 

increased colonization in plant roots (Elmer & Pignatello 2011) grown in acidic soils (Ezawa et al. 

2002; Matsubara et al. 2002; Yamato et al. 2006). In some reports, addition of char inhibited 

colonization probably due to improved availability of P (Warnock et al. 2007). In the present study, 

colonization was improved because soil P level was within acceptable limits (<25 mg kg-1, Table 

9.3) for mycorrhizal growth. 
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10.1 Research issues arisen from the thesis 
There are some research issues that should be considered in future research work. The experiments 

of the present study were short-term (six to nine weeks); however, the effects of biochar and 

mycorrhizae may be greater if trials were conducted for a longer time period. The pot trials of this 

study had limitations for observation of growth and colonization, however, the crop yield after full 

growth and development is equally important. Soils in these experiments were less fertile, therefore 

information was lacking for effects of biochar on more fertile soils. All biochars were amended 

without other organic sources of nutrients such as manure and composts; these should be considered 

in future research. The limitation of this study was that the field trial was conducted for only a 

single season; results would be more useful if the trial could be continued for a longer period, 

perhaps up to three years. There would be benefits in maintaining AM levels for longer periods and 

examining their interactions with biochar which is likely to result in more sustained release of 

nutrients over the extended time.  

 

10.2 Relevance of findings 
The findings of this thesis are relevant to long-term soil fertility management. Soil fertility 

management has been a great challenge to developing countries like Nepal because of continued 

soil degradation due to several natural factors and inappropriate management practices. Natural 

factors are inevitable so they cannot be altered. However, their adverse effects can be reduced by 

applying sustainable management practices. For example, in Nepalese soils, N and P are the most 

limiting factors for crop yields which are lower than for other developing countries. Poor soil 

management practices play a major role in reducing crop yields. Research findings of this thesis 

indicate that the application of biochar is beneficial for crop growth and mycorrhizal colonization. 

Biochar application under field conditions has also proven to be beneficial over no use of biochar. 

As a carbon sequestering material, biochar can also be used to manage carbon in degraded soils of 

those countries. The colonization of mycorrhizae for all rates of zinc and copper were useful, even 

for Zn and Cu contaminated soils under certain conditions. 

 

10.3 General conclusion 
Experiments were conducted to determine effects of biochar on crop growth and mycorrhizal 

colonization. From the results, biochar was beneficial for growth of lettuce and cabbage but not 

effective for potato indicating crop-specific responses to biochar. The rate of 30 t ha-1 was optimum 

for lettuce growth. Biochar effects on growth of onion and tomato as well as mycorrhizal 

colonization of these crops confirmed that 30 t ha-1 for onion and 50 t ha-1 for tomato were 

effective. Sugarcane Trash biochar was comparatively better than Green Waste.  Lower rates (50 
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mg kg-1) of Zn and Cu were best for growth of onion and mycorrhizal colonization. Combination of 

lime, N at a rate of 110 kg ha-1 and P and K equivalent of biochar was the best for plant growth. The 

combination of ferrosol soil, sugarcane trash biochar and mycorrhizal inoculum was more effective 

than other treatments. Lime and extracted nutrients was more effective than lime and washed 

biochar. The field trial confirmed the results of glasshouse experiments that application of biochar 

was beneficial over no application. It was concluded that verification of treatments for longer 

periods in different types of soils and crops would be more effective in making specific 

recommendations. Externally added other major nutrients such as N P and K influenced the 

outcomes more than similar amounts of these nutrients in biochar alone. From the final experiment 

in the field, glasshouse results were verified and observed that the biochars were beneficial with 

greater positive effect on plant growth and colonization than no biochar. A long-term study is 

important for general recommendation in different types of soils. 
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Appendices 

Appendix 1 Biochar properties (Kochanek et al. 2014) 

Properties Unit Sugarcane 

Trash 

Green 

Waste A 

Green 

Waste B 

EC dS m-1 1.4 3.4 2.3 

pH (CaCl2 0.01M) 8 9.4 8.9 

Total Nitrogen % 0.53 0.47 0.61 

Colwell Phosphorus mg kg-1 1100 740 490 

Acid Neutralising capacity % CaCO3  0.66 6 1.4 

Exchangeable Potassium cmol(+) kg-1 8.4 19 15 

Copper (DTPA) mg kg-1 1.1 13 5.9 

Zinc (DTPA) mg kg-1 5.7 44 16 
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Appendix 2 Hoagland recipes for supplementary nutrient solution (Hoagland & Arnon 1950; 

Epstein & Bloom 2005; Mattson & Lieth 2008)  

Macronutrient STOCK A. Added first to the solution: 5 mL L-1 used. 

 Salts 

Mass of each salt (g) per L 

stock 

  atomic mass*moles = mass 

Ca(NO3)2.4H2O 94.4656 

KNO3 40.444 

NH4NO3 24.0156 

 

Macronutrient STOCK B CONTROL. Added third to the solution: 5 mL L-1 used. 

 Salts Mass of each salt (g) per L of stock 

  atomic mass*moles = mass 

KH2PO4 27.2172 

MgSO4.7H2O 24.6492 

K2SO4 17.427 

 

Micronutrient stock solution. Added second to the solution: 1 mL L-1 used. 

 Salts 

Mass of each salt (g) per L in 

stock 

  atomic mass*moles = mass 

KCl 1.864 

H3BO3 0.773 

MnSO4.H2O 0.169 

ZnSO4.7H2O 0.288 

CuSO4.5H2O 0.062 

Na2MoO4.2H2O 0.0597 

NiSO4.6H2O 0.066 
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Iron chelate stock solution. Added last to the solution: 1 mL L-1 used. 

  

Fe is 10.5% of Fe EDTA (100/10.5 = 

9.524) 

  Mass Fe EDTA (g) = 9.524*1.0053 

Fe EDTA 9.574285714 

  

:. We need 9.574 g Fe EDTA per L of 

stock 

 

Half-strength Hoagland solution with 25% P 

Salts 

Mass of each salt (g) per L of 

stock 

 atomic mass*moles = mass 

KH2PO4 6.8043 

MgSO4.7H2O 24.6492 

Ca(NO3)2.4H2O 94.4656 

K2SO4 30.49725 

KNO3 40.444 

NH4NO3 24.0156 
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Appendix 3: Electrical conductivity (EC) of 1:5 soil/water extract (Rayment & Higginson 1992; 

Rayment & Lyons 2011) 

Procedure: Prepare 1:5 w/v soil/water suspension. For example, weigh 20.0 g air-dry soil into a 

suitable bottle or jar and add 100 ml deionised water. Mechanically shake (end-over-end preferred), 

at 250C in a closed system for 1 h to dissolve soluble salts. Allow around 20-30 min minimum for 

the soil to settle. 

Calibrate the conductivity cell and meter in accordance with manufacturer’s instructions, using the 

KCl reference solution at the temperature of the suspensions. 

Dip the conductivity cell into the settled supernatant, moving it up and down slightly without 

disturbing the settled soil. Take the reading with the cell stationary when the system has stabilized 

(see notes 2 and 3). Rinse the EC cell with deionised water between samples and remove excess 

water. Complete EC measurements within 3-4 h of obtaining the aqueous supernatant. Reference 

soil should be included in each batch of unknown samples.  

Report EC (ds m-1) at 250C on an air-dry (400C basis).  
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Appendix 4: pH of 1:5 soil/water suspension (Rayment & Higginson 1992; Rayment & Lyons 

2011)  

Procedure: Prepare a 1:5 soil/water suspension. For example, weigh 20.0 g air-dry soil (<2mm) into 

a suitable bottle or jar and add 100 ml deionised water. Mechanically shake, end-over-end, at 250C 

in a closed system for 1 h. Allow around 20-30 min for the soil to settle and make all measurements 

on the day of extraction, ideally within 4 h.  

Standardize the pH meter according to manufacturer’s instructions using the buffer at pH 6.86 or 

pH 7.0, and either the 4.0 or 9.183 buffer depending on the expected values for the soils. The use of 

three buffers during calibration provides a check on the linearity of electrode response. When soil 

pH values >10.0 are expected, use a glass electrode designed for highly alkaline conditions. 

Stir these buffer solutions with a mechanical stirrer during measurements. Occasionally confirm 

there is adequate leakage of KCl from the calomel electrode, otherwise inaccurate readings may be 

obtained. This is achieved by placing the calomel electrode in 10.0 ml of deionised water for 1 min 

before testing for presence of Cl- with AgNO3. Thoroughly wash electrodes between the 

measurements of buffer solutions and between buffer solutions and soil solutions/extracts.  

When measuring pH of soil suspension, ensure electrodes are well immersed. Record the pH value 

obtained when the meter appears steady while the suspension is being mechanically stirred. 

Replicate determinations should give results within 0.1 pH unit.  

Report pH (1:5 soil/water) on an air-dry basis. 
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Appendix 5: Total Soil N – Dumas high temperature combustion (Method 7A5), (Rayment & 

Higginson 1992; Rayment & Lyons 2011) 

Apparatus: LECOTM CNS-2000 analyser or equivalent, plus essential gases and other accessories. 

Reagents: Ethylenediaminetetraacetic Acid Reference Standard (EDTA): Use dry (1050C for 2 h), 

high-grade EDTA (C10H6N2O8), calibrated against EDTA certified by the instrument 

manufacturer. When fully dry, this contains 9.586% N. 

Procedure: Set up and maintain the high-temperature combustion analyser in accord with the 

Manufacturer’s Operation and Procedures’ Manual. This includes performing door maintenance and 

a combustion-leak check. 

Run three separate ceramic ‘boats’ of EDTA reference standard (9.586% N) to stabilise the 

detectors, noting that irritating, toxic NOx is released when EDTA is heated to its decomposition 

temperature of 2400C. Next combust three empty ceramic ‘boats’ as blanks, using 0.200 g as the 

weight, to set the instrument blank from these results. Follow this by weighing into ceramic ‘boats’ 

analysing three separate replications of EDTA reference standard. Use the two closest results to 

perform a drift correction. Confirm the instrument setup and calibration by analysing at least one 

internal LCS (Laboratory Control Sample) for quality assurance purposes, using a weight between 

0.3 and 0.75 g depending on the expected concentration. 

If the LCS sample/s test within its/their accepted concentration/s, proceed to analyse unknown 

samples. Should the analyser be ‘out of range’, analyse another EDTA reference standard portion of 

known weight. Again perform a drift correction. Follow this with the reanalysis of another portion 

of the LCS sample/s. If the expected result/s is/are still out of specification, the instrument, gas lines 

and detectors should be double checked before proceeding any further. 

When optimum analytical performance specifications are confirmed, prepare a known weight (e.g. 

0.5-0.75 g of finely ground (<0.5 mm) air dry soil) and proceed to analyze all samples. If results are 

‘out-of-range’, adjust sample weights as necessary. Include an LCS, followed by an EDTA 

reference standard portion of known weight to check instrumental drift about every 25 samples. 

Finally include a further LCS and an EDTA reference standard portion of known weight at the end 

of the samples’ ‘run’, then finish with 2 blanks to enable the gas blank to be reset if necessary. 

At the end of the run, go back and check that the LCS values are within their accepted range. If not, 

use the next measured EDTA reference standard value to ‘drift correct’, then recalculate the results. 

In general, recalculate the results half-way back to the last in-range LCS.     
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 Calculation: Total Soil N (%N) = [a x MF] 

Where, a = N concentration in air-dry sample (%N) 

MF = air-dry moisture to oven-dry moisture ratio 

Report TSN (%N) on an oven-dry basis. 
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Appendix 6: Bicarbonate extractable P (Colwell-P) – manual color (Method 9B1) (Rayment & 

Higginson 1992; Rayment & Lyons 2011)  

Reagents 

Extracting solution – 0.5 M Sodium Bicarbonate at pH 8.5: Dissolve 42.0 g sodium bicarbonate 

(NaHCO3) in deionised water, dilute to almost 1.0 L, adjust pH to 8.5 (usually requires 0.8 g 

NaOH), and make volume to 1.0 L. Take care not to exceed pH 8.55 (refer to note 1). This 

extracting solution is best prepared on day of use. If storage is necessary, keep under nitrogen or 

mineral oil or utilise a CO2 trap to prevent entry of this atmospheric contaminant (refer to note 2). 

2.25 M sulphuric acid 

1.0 M sulphuric acid 

Reagent A (Ammonium molybdite – sulphuric acid – Sb solution 

Dissolve 12.0 g of ammonium molybdite (NH4)6Mo7O24.4H2O) in 400 ml of warmed (not above 

500C) distilled (preferred) or deionised water then cool. Add 140 ml sulphuric acid (H2SO4; 18 M) 

slowly and with stirring to another 400 ml distilled or deionised water and cool. To a further 100 ml 

of water dissolve 0.267 g potassium antimony tartarate (KSbO.C4H4O6). Combine by adding with 

stirring the ammonium molybdite solution to the diluted H2SO4. Re-cool, add the potassium 

antimony tartarate solution and make 1.0 L with water. Store in borosilicate glass in a cool place to 

achieve a shelf life of several months. This solution contains 1.2% ammonium molybdate and 0.1 

mg Sb ml-1 in ≈2.5 M H2SO4. 

Mixed colour reagent: For each 100 ml required, dissolve 1.056 g l-ascorbic acid (C6H8O6) in 100 

ml of Reagent A. Prepare only as required as the shelf life does not exceed 24 h. 

Phosphorus primary standard: 1 L contains 50.0 mg of P. Dissolve 0.1098 g potassium dihydrogen 

phosphate (KH2PO4; previously dried at 1300C for 2 h) in deionised water. After making volume to 

500 ml with deionised water, add 2 drops of chloroform (CHCl3) to supress biological activity. 

When stored in a sealed, chemically inert container at ≈40C, this solution should remain stable for at 

least 2-3 months. 

Phosphorus secondary standard: 1 L contains 10.0 mg of P. Take 100 ml P primary standard and 

dilute accurately to 500 ml in a volumetric flask with extracting solution (0.5 M NaHCO3 at pH 

8.5). This solution should be freshly prepared each time working standards are made. 
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Phosphorus working standards: Add 0, 1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0 ml of P 

secondary standard to separate 500 ml volumetric flasks. Dilute to 500 ml with 0.5 M NaHCO3 at 

pH 8.5 extracting solution. These working standards cover the range 0-1 mg P L-1 and for a 1:100 

soil/solution ratio are equivalent to soil concentrations of 0, 2.0, 5.0, 10.0, 20.0, 30.0, 40.0, 60.0, 

80.0, 100.0, mg P kg-1. 

Procedure: Weigh 1.00 g of air-dry soil (<2 mm) into a 250 ml extracting bottle and add 100 ml 

extracting solution (0.5 M NaHCO3 at pH 8.5), stopper and mechanically shake end-over-end for 

16 h at 250C. Centrifuge or filter (Whatman No. 42 – tested P free) soil extracts then pipette 

duplicate 25 ml aliquots into 100 ml volumetric flasks. Add 50 ml deionised water and mix 

thoroughly. Add 2 ml 1M H2SO4, mix and, after effervescence has ceased, add a further 5 ml of 1 

M H2SO4. Mix well and allow to stand overnight to complete the removal of CO2. 

To one set of volumetric flasks add 8 ml mixed colour reagent, then make to 100 ml and mix well. 

To the duplicate flasks (the reagent blanks) add 8 ml of Reagent A, make to 100 ml and mix well. 

Concurrently with the sample, take 25 ml of each P working standard and treat in a similar manner 

to the samples. 

After 30 minutes, measure the absorbance at 882 nm of samples, standards, and soil-reagent blanks 

against deionised water as a reference. The absorbance values remain stable for up to 24 h. If 

necessary, dilute over-range extracts with NaHCO3 extracting solution. Same-day measurement 

following acidification is preferred to limit the possibility of chemical and/or biological change. 

Calculation: Bicarbonate extractable P = [Sample Value – Reagent blank] mg P kg-1.   
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Appendix 7: Exchangeable bases (K+ for the experiments mentioned above) by 1 M ammonium 

chloride at pH 7.0, pre-treatment for soluble salts (Method 15A1 and 15A2) (Rayment & Higginson 

1992; Rayment & Lyons 2011) 

There is pre-treatment with aqueous ethanol and auqueous glycerol to remove soluble salts. This 

pre-treatment is desirable when the soil EC (1:5 soil/water) exceeds ≈ 0.3 dS m-1. 

Reagents 

Extracting solution: 1 M Ammonium Chloride at pH 7.0: Dissolve 535 g ammonium chloride 

(NH4Cl – low in Ca, Mg, Na and K impurities) in deionised water and dilute to 9 L. Adjust to pH 

7.0 by adding ammonium hydroxide (NH4OH). Wash the electrodes of the pH meter thoroughly 

before placing them in the extracting solution; otherwise K+ salts from the calomel electrode may 

cause contamination. 

Make the volume to 10 L with deionised water and store in sealed containers. Plastic containers are 

preferred, however borosilicate glassware may be substituted; soda glass should not be used. 

5 M Ammonium Chloride at pH 7.0: Dissolve 267.5 g NH4Cl (identical to that used for the 

extracting solution) and dilute to 900 ml. Adjust to pH 7.0 as described for the extracting solution 

and make to 1.0 L. 

Wetting agent Brij 35: Shake 30 g of polyoxyethylene 23 lauryl ether (Brij 35) with 20 ml iso-

propyl alcohol [propane-2-ol, (CH3)2-CH-OH] until dissolved; several hours may be required. 

Make to 100 ml with deionised water. 

Lithium chloride for automated Na+ and K+: Dissolve 0.11 g lithium chloride (LiCl), add 1 ml Briz 

35 wetting agent and make to 1 L with deionised water. 

60% aqueous ethanol (w/w): Mix 665 ml of 96% ethanol (C2H5OH; e.g. special grade serina – 

SMF3; S.G. 0.803) and make to 1 L with deionised water. Deionise if EC > 10-3 dS m-1) or if pH is 

not within the range 5.5-7.0. Pass through a column of fresh, mixed bed ion exchanger in the 

H+/OH- form, such as Zero-Karb 225/De Acidite FF or equivalents. Remove dissolved air by 

boiling or by drawing the prepared reagent through a fine jet under vacuum into a Buchner filtration 

flask connected through a trap to a vacuum pump. 

20% aqueous glycerol: Combine 200 ml 87-88% technical glycerol (CH2OH.CHOH.CH2OH; 

wt/ml about 1.23 g) with 800 ml deionised water. Deionised if necessary as described for 60% 

aqueous ethanol. Boil to sterilize and add 0.5g of thymol crystals (C10H14O) as a preservative. 
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Mixed Ca and Mg primary standard: 1 L contains 100 mmolC of Ca and Mg. Use certified 

commercial concentrates or dry calcium carbonate (CaCO3, primary standard grade) by heating at 

1100C to constant weight. Also dry magnesium oxide (MgO, heavy) by heating in an electric muffle 

furnace at 600-7000C for 2 h. Cool and store the chemicals in a desiccator without desiccant.  

Weigh 2.0152 g MgO and 5.0045 g CaCO3 and wash into a 1 L conical flask with about 50 ml 

deionised water. Add 240 ml 1 M HCL and boil until all CO2 is expelled. Cover and allow cooling, 

and then transfer quantitatively to a 1 L volumetric flask. Dilute to volume with CO2-free (boiled) 

deionised water and mix well. Transfer to a clean plastic bottle. Should MgO not assay at 100% 

purity, adjust the weight according to the assay obtained. 

Mixed Na and K primary standard: 1 L contains 50 mmolC of Na and 12.5 mmolC of K. Use 

certified commercial standard concentrates or dry sodium chloride (NaCl) at 1050C for 2 h and 

potassium chloride (KCl) for 2 days at 115-1200C. When dry, cool and store in a desiccator without 

desiccant. Weigh 2.9221 g NaCl and 0.9319 g KCl and dissolve separately with deionised water. 

Transfer quantitatively to 1 L volumetric flask and make to 1 L with deionised water. Store in a 

clean plastic bottle. 

Mixed Ca and Mg secondary method: 1 l contains 10 mmolC of ca and Mg. Take 50 ml of mixed 

Ca and Mg primary standard and dilute to 500 ml in a volumetric flask with CO2-free (boiled) 

deionised water. This solution should be freshly prepared each time working standards are required. 

Mixed Na and k secondary standard: 1 L contains 5 mmolC of Na and 1.25 mmolC of K. Take 50 

ml of mixed Na and K primary standard and dilute 500 ml in a volumetric flask with CO2-free 

deionised water. This solution should be freshly prepared each time working standards are required. 

Mixed working standards for exchangeable bases: Dispense mixed Ca and Mg primary or 

secondary standards as indicated in Table A and mixed Na and K primary standards as indicated in 

Table B below, into 500 ml volumetric flasks. Add 100 ml 5 M NH4Cl to each and dilute to 500 ml 

with CO2-free deionised water. 
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Table A. Examples of dilutions and concentrations for Ca and Mg working standards – 1M NH4Cl 

at pH 7.0.  

ml of mixed primary or 

secondary standard in 

500 ml 

Initial solution 

concentration 

(mmolC Ca and Mg 

L-1) 

Equivalent soil content (cmolC kg-1) of Ca 

and Mg, respectively, for 1:20 soil/extract 

ratio (final) following 

1 + 9 dilution of 

samples and 

standards* 

1 + 49 dilution* of 

samples 

1 + 9 dilution of 

standards 

Mixed Ca and Mg secondary standard (10 mmolC Ca and Mg L-1) 

2.5 0.05 0.1 0.5 

5.0 0.10 0.2 1.0 

7.5 0.15 0.3 1.5 

12.5 0.25 0.5 2.5 

25.0 0.50 1.0 5.0 

50.0 1.00 2.0 10.0 

Mixed Ca and Mg primary standard (100 mmolC Ca and Mg L-1) 

7.5 1.5 3.0 15.0 

10.0 2.0 4.0 20.0 

12.5 2.5 5.0 25.0 

15.0 3.0 6.0 30.0 

20.0 4.0 8.0 40.0 

25.0 5.0 10.0 50.0 

*NH4Cl as working solution for ICPAES 
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Table B. Examples of dilutions and concentrations for Na and K working standards – 1M NH4Cl at 

pH 7.0.   

ml of mixed 

primary or 

secondary 

standard in 500 ml 

Initial solution concentration 

(mmolC L-1) 

Equivalent soil content (cmolC kg-1) 

for 1:20 soil/extract ratio* 

Na K Na K 

Mixed Na and K secondary standard (5 mmolC Na L-1 and 1.25 mmolC  K L-1) 

2.5 0.025 0.006 0.05 0.0125 

7.5 0.075 0.019 0.15 0.038 

12.5 0.125 0.031 0.2 0.063 

25.0 0.25 0.063 0.5 0.125 

50.0 0.50 0.125 1.0 0.25 

Mixed Na and K primary standard (50 mmolC Na L-1 and  12.5 mmolC K L-1) 

7.5 0.75 0.188 1.5 0.375 

10.0 1.00 0.250 2.0 0.500 

12.5 1.25 0.313 2.5 0.625 

15.0 1.50 0.375 3.0 0.75 

20.0 2.0 0.500 4.0 1.00 

25.0 2.5 0.625 5.0 1.25 

 

If necessary, dilute extracts of high concentration with 1 M NH4Cl extracting solution to bring these 

within the optimum range of the instrument, and to maintain the same concentrations of NH4Cl in 

standards and sample extracts. 

Procedure: Weigh 5.00 g air-dry soil (<2mm) into a pre-weighed 50 ml centrifuge tube and add 25 

ml 60% aqueous ethanol. Seal and shake for 30 min. Within 30 min of that action, centrifuge and 

remove the supernatant solution by suction. 

Drain the tube upside down on a piece of absorbent paper to remove excess solvent. Disperse the 

soil mechanically and add a second 25 ml of aqueous ethanol, centrifuge and decant and drain as 

before. Repeat the process a third time using 20% aqueous glycerol in place of aqueous ethanol. 

Weigh the centrifuge tube to determine the approximate volume of entrained aqueous solvents. 

Transfer the pre-treated soil to a 250 ml plastic extracting bottle using 100 ml 1 M NH4Cl at pH 7.0 

extracting solution. Stopper securely and mechanically shake end-over-end at ≈250C for 1 h. 

Centrifuge or filter soil extracts. If filtering, prepare Whatman No. 40 filter papers in 75 mm plastic 
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funnels and place suitable clean, dry, receiving containers in position. Condition the filter paper by 

discarding the first 10-20 ml of filtered extract then collect sufficient extract (30-50 ml) to 

determine all basic cations. If centrifuging, ensure centrifuge tubes are clean and dry. Retain the 

clarified extracts for Ca2+, Mg2+, Na+, K+ analyses. The batch should be sized to allow filtration 

and/or centrifugation to occur within 30 min of completion of mechanical shaking. 

Determination of Ca2+, Mg2+, Na+, K+ by ICPAES (Inductively coupled plasma atomic emission 

spectrometry) 

Set up and operate the ICPAES instrument as advised by the manufacturer. Suitable wavelengths 

are: Ca = 430.25 nm; Mg = 285.21 nm; Na = 588.96 nm; and K = 766.49 nm. Calibrate the 

instrument using an appropriate range of working standard solution, guided by examples in Table A 

and B above. The 1:20 soil/extraction ratio can be factored into the calibration on the ICPAES. A 

reagent blank should also be measured and adjustments made as necessary. 

Calculation and reporting: When 5.0 g of soil are extracted with 100 ml of NH4Cl, increase the 

determined values by the ratio [100 + mass (g) of entrained aqueous solvent]/100 to obtain the 

concentration of exchangeable bases on an air-dry basis. 

Report exchangeable Ca2+, Mg2+, Na+, K+ (cmolC kg-1), expressed on an oven-dry soil basis. Use 

the air dry moisture to oven-dry moisture ratio to make the oven dry conversion. 
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Appendix 8: DTPA-extractable Cu, Zn, Mn and Fe (Method 12A1) (Rayment & Higginson 1992; 

Rayment & Lyons 2011) 

Reagents 

DTPA Extracting Solution: This solution is 0.005 M with respect to DTPA, 0.01 M to CaCl2 and 

0.10 M triethanolamine (TEA). For 1 l of extracting solution, dissolve 1.97 g diethylenetriamine 

penta aceticacid (DTPA), 1.47 g calcium chloride dehydrate (CaCl2.2H2O) and 14.92 g 

triethanolamine [N(CH2CH2OH)3] separately in deionised water and combine. Add ≈6.8 g of 35% 

w/w HCl and dilute to ≈990 ml with deionised water. Check pH and adjust to 7.3±0.05 with either 

dilute HCL or triethanolamine, then make volume to 1.0 L. Store in a Teflon or low density 

polyethylene container not previously used to store any of the four metals under test; the solution 

remains stable for at least three months if kept cool (≈40C) and away from direct sunlight. 

Copper primary standard: 1 ml contains 1 mg of Cu. Clean a piece of Cu foils then accurately weigh 

1.000 g of the cleaned metal and place in a 1 l volumetric flask. Dissolve in 20 ml of 1+1 HNO3 

and dilute to volume with deionised water. 

Zinc primary standard: 1 ml contains 1 mg of Zn. Clean a piece of Zn rods then accurately weigh 

1.000 g of the cleaned metal and place in a 1 l volumetric flask. Dissolve in 20 ml of 1+1 HCl and 

dilute to volume with deionised water. 

Manganese primary standard: 1 ml contains 5 mg of Mn. Weigh 6.8712 g anhydrous manganous 

sulphate (prepared by dehydrating manganese sulphate monohydrate (MnSO4.H2O) at 2000C for 4 

h) into a 500 ml volumetric flask. Dissolve in a mixture of 200 ml water and 1 ml 18 M H2SO4 and 

make to volume with deionised water.  

Iron primary standard: 1 ml contains 5 mg Fe. Weigh 17.5538 g ammonium ferrous sulphate 

[(NH4)2SO4FeSO4.6H2O] and transfer to a 500 ml volumetric flask. Dissolve in deionised water 

containing 1 ml 18 M H2SO4 and make to volume with deionised water. 

Mixed ‘low strength’ secondary standard: Take 10 ml Cu primary standard, 10.0 ml Zn primary 

standard, 20 ml Mn primary standard and 20 ml Fe primary standard and dilute with deionised 

water to 1.0 L. This solution contains 10 mg L-1 of both Cu and Zn and 100 mg L-1 of both Mn and 

Fe. 

Mixed ‘high strength’ secondary standard: Take 40 ml Cu primary standard, 40 ml Zn primary 

standard, 200 ml Mn primary standard and 200 ml Fe primary standard and dilute with deionised 
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water to 1.0 L. This solution contains 40 mg L-1 of both Cu and Zn and 1000 mg L-1 of both Mn and 

Fe. 

Mixed working standards: Take aliquots of freshly prepared low and high strength secondary 

standard solutions as given in Table A and B below. Add 83 ml triple strength DTPA extracting 

solution (45 g triethanolamine, 5.91 g DTPA, 4.41 g CaCl2.2H2O and 20.65 g HCl to 1 L with 

deionised water) and make volume of each working standard to 250 ml with deionised water. Store 

in a black polyethylene bottles or in the dark in standard polyethylene or teflon bottles. Actual 

solution concentrations and equivalent soil contents for a 1:2 soil/extract ratio are given in Tables A 

and B below. 

Procedure:  A reagent blank with no soil should be included with each batch of samples. Weigh 

25.0 g of air-dry soil (<2mm) into a 100 or 250 ml polyethylene bottle. Add 50 ml DTPA extracting 

solution, stopper, and mechanically shake end-over-end continuously for 2 h at 250C. Filter (No. 2 

Whatman paper) or centrifuge the extracts without delay, discarding the first portion, and retain the 

particle-free extracts for analysis. Measure metal concentrations in these filtrates by ICPAES as 

soon as possible to avoid microbial growth and/or chemical changes. 

 Use an appropriate selection of working standards and determine concentrations of each element 

(mg kg-1) from the appropriate calibration curve, after adjusting for any significant reagent blank. It 

is important to follow manufacturer’s recommendation with respect to instrument parameters and 

wavelengths selections (Preferred spectral lines for ICPAES are typically 324.754, 213.856, 

257.610 and 259.940 nm for Cu, Zn, Mn and Fe, respectively. No background corrections are 

necessary when these wavelengths are used over concentrations ranges of 0-10 mg L-1 for Cu and 

Zn and 0-240 mg L-1 for Mn and Fe). 

Report each element (Cu, Zn, Mn, Fe; mg kg-1) on air-dry basis. 
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Table A. Volumes of ‘Low Strength’ secondary standard and consequential concentrations of ‘Low 

Range’ Mixed Working Standards for DTPA-extractable Cu, Zn, Mn and Fe. 

ml of low strength 

secondary standard 

in 250 ml 

Actual solution concentration 

(mg L-1) 

Equivalent soil context (mg kg-1) for 

a 1:2 soil/extract ratio 

Cu and Zn Mn and Fe Cu and Zn Mn and Fe 

2.5 0.1 1 0.2 2 

5.0 0.2 2 0.4 4 

7.5 0.3 3 0.6 6 

10.0 0.4 4 0.8 8 

12.5 0.5 5 1.0 10 

15.0 0.6 6 1.2 12 

20.0 0.8 8 1.6 16 

25.0 1.0 10 2.0 20 

37.5 1.5 15 3.0 30 

50.0 2.0 20 4.0 40 

 

Table B. Volumes of ‘High Strength’ secondary standard and consequential concentrations of ‘High 

Range’ Mixed Working Standards for DTPA-extractable Cu, Zn, Mn and Fe. 

ml of high strength 

secondary standard 

in 250 ml 

Actual solution concentration 

(mg L-1) 

Equivalent soil context (mg kg-1) for 

a 1:2 soil/extract 

Cu and Zn Mn and Fe Cu and Zn Mn and Fe 

2.5 0.4 10 0.8 20 

5.0 0.8 20 1.6 40 

10.0 1.6 40 3.2 80 

15.0 2.4 60 4.8 120 

20.0 3.2 80 6.4 160 

25.0 4.0 100 8.0 200 

30.0 4.8 120 9.6 240 

35.0 5.6 140 11.2 280 

40.0 6.4 160 12.8 320 

45.0 7.2 180 14.4 360 

50.0 8.0 200 16.0 400 

60.0 9.6 240 19.2 480 
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Appendix 9: Procedures for plant nitrogen analysis by acid digestion and ICPAES method (Mills & 

Jones Jr 1996) 

1. Weigh 0.5 g dried (800C) and ground (20- or 40- mesh) plant tissue into a digestion tube. 

Place a glass funnel in the mouth of the digestion tube. 

2. Add 1.5 ml concentrated nitric acid (HNO3). Let it stand overnight. 

3. Place the digestion tube into a port of the digestion block and heat at 1200C for 1 h. Remove 

the digestion tube from the digestion block and let cool. 

4. Add 1.5 ml perchloric acid (HClO4) with precautions. 

5. Place the tube back into the digestion block and heat at 2000C for 1 h, until the digest is 

clear (colourless). 

6. Remove the funnel from the digestion tube and set the temperature of the digestion block at 

1000C. Keep the digestion tube in the block until the fumes of perchloric acid have 

dissipated. 

7. Remove the digestion tube from the digestion block and allow it to cool.  

8. Add pure water to dilute it to 10 ml, or to another appropriate volume. 

9. The digest is ready for elementary assay. The may be further diluted as necessary to achieve 

an element concentration that is within the analysis range of the analyser. 

10. Analyse N by LECO CNS 2000 Carbon-Nitrogen-Sulfur Analyser and other elements 

(important for this thesis) by ICPAES (ICP polychromator). 

 



216 
 

Appendix 10 

Nutrients and lime content (%CaCO3) of biochars (Chapter 6) 

 

Calculation of biochar 

For podsol, recommended dose: 20 t ha-1 

Pot diameter: 16cm 

Pot area = πr2 = 0.020096 m2 

= 40.2 g biochar per pot   

 

For Ferrosol, recommended dose: 30 t ha-1 = 60.3 g biochar per pot   

 

Calculation of lime equivalent to biochars 

For podsol, lime requirement = 1.2 t ha-1 = 2412 mg  

Green Waste A = 40.2g x 0.06 =2412 mg 

Green Waste B = 40.2 g x 0.014=562.8 mg 

Sugarcane Trash = 40.2 g x 0.0066=265.3 mg 

To equalize these three values, Green Waste B needs 2412-562.8=1849.2 mg lime and Sugarcane 

Trash requires 2412-265.3=2146.7 mg lime to be added. 

 

For ferrosol,  

Lime requirement =  6 t ha-1 = 12057.6 mg pot-1 

Green waste A = 60.3 g x 0.06 =3618 mg of lime 

Green waste B = 60.3 g x 0.014=844.2 mg of lime 

Sugrcane Trash = 60.3 g x 0.0066=396 mg of lime 

To equalize these three values, Green Waste A 12057.6-3618=8439.6 mg, Green Waste B 12057.6-

844.2 =11212.8 and Sugarcane Trash 12057.6-396=11661.6 mg lime to be added per pot. 

 

Nitrogen calculation for podsol and ferrosol  

Recommended dose of nitrogen for tomato hybrids = 110 kg N in a hectare  

= (100/35) x 110 = 314.3 kg of Ammonium nitrate per hectare 

= (314300/10000) x 0.020096 = 632 mg Ammonium nitrate per pot. 

 

Phosphorus and Potassium calculation for podsol 

Phosphorus equivalent to Sugarcane Trash biochar  

1 kg biochar contains 1100 mg of P,  
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= (1100/1000) x 40.2 = 44.22 mg of P, 

= (100/20.07) x 44.22 mg = 220.3 mg TSP per pot 

 

Phosphorus calculation equivalent to Green Waste A 

1 kg biochar contains 740 mg of P,  

= (740/1000) x 40.2 = 29.75 mg of P 

= (100/20.07) x 29.75 mg = 148.23 mg TSP per pot 

 

Phosphorus calculation equivalent to Green Waste B 

1 kg biochar contains 490 mg of P,  

= (490/1000) x 40.2 = 19.7 mg of P 

= (100/20.07) x 19.7 mg = 98.16 mg TSP per pot 

 

Potassium calculation equivalent to Sugarcane Trash biochar 

1 kg biochar contains 8.4 cmol(+) which is equal to 8.4 x 390 = 3276 mg of K,  

= (3276/1000) x 40.2 = 131.7 mg of K 

= (100/52.44) x 131.7 mg = 251.1 mg KCl per pot 

 

Potassium calculation equivalent to Green Waste A 

1 kg biochar contains 19 cmol (+) which is equal to 19 x 390 = 7410 mg of K,  

= (7410/1000) x 40.2 = 297.9 mg of K 

= (100/52.44) x 297.9 mg = 568.1 mg KCl per pot 

 

Potassium calculation equivalent to Green Waste B 

1 kg biochar contains 15 cmol (+) which is equal to 15 x 390 = 5850 mg of K,  

= (5850/1000) x 40.2 = 235.17 mg of K 

= (100/52.44) x 235.17 mg = 448.5 mg KCl per pot 

 

Phosphorus and Potassium calculation for ferrosol 

Phosphorus equivalent to Sugarcane Trash biochar  

1 kg biochar contains 1100 mg of P,  

= (1100/1000) x 60.3 = 66.33 mg of P, 

= (100/20.07) x 66.33 mg = 330.5 mg TSP per pot 

 

Phosphorus calculation equivalent to Green Waste A 
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1 kg biochar contains 740 mg of P,  

=  (740/1000) x 60.3 = 44.6 mg of P 

= (100/20.07) x 44.6 mg = 222.2 mg TSP per pot 

 

Phosphorus calculation equivalent to Green Waste B 

1 kg biochar contains 490 mg of P,  

=  (490/1000) x 60.3 = 29.6 mg of P 

= (100/20.07) x 29.6 mg = 147.5 mg TSP per pot 

 

Potassium calculation equivalent to Sugarcane Trash biochar 

1 kg biochar = 8.4 cmol(+) = 8.4 x 390 = 3276 mg of K,  

= (3276/1000) x 60.3 = 197.5 mg of K 

= (100/52.44) x 197.5 mg = 376.6 mg KCl per pot 

 

Potassium calculation equivalent to Green Waste A 

1 kg biochar = 19 cmol (+) = 19 x 390 = 7410 mg of K,  

= (7410/1000) x 60.3 = 446.8 mg of K 

= (100/52.44) x 446.8 mg = 852.0 mg KCl per pot 

  

Potassium calculation equivalent to Green Waste B 

1 kg biochar = 15 cmol (+) = 15 x 390 = 5850 mg of K,  

= (5850/1000) x 60.3 = 352.7 mg of K 

= (100/52.44) x 352.7 mg = 672.6 mg KCl per pot 
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