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Abstract 20 

The amylopectin molecular structures and functional properties of different-sized fractions of 21 

normal and high-amylose maize starches were investigated and compared in this study. The 22 

different-sized fractions of normal starch showed similar amylopectin molecular structures 23 

and functional properties. The small-sized fraction of high-amylose starch had significantly 24 

higher amylopectin long branch-chain and average branch-chain length than its counterpart 25 

medium- and large-sized fractions. The swelling power, gelatinization enthalpy, and 26 

hydrolysis and digestion degrees of high-amylose starch significantly decreased with decrease 27 

of granule size, and were significantly positively correlated with amylopectin short 28 

branch-chain and negatively correlated with amylopectin long branch-chain and average 29 

branch-chain length. The gelatinization peak temperature and resistant starch content 30 

increased with decrease of granule size, and were significantly positively correlated with 31 

amylopectin long branch-chain and average branch-chain length and negatively correlated 32 

with amylopectin short branch-chain. The hierarchical cluster analysis indicated that the 33 

large-sized fraction of high-amylose starch was significantly different from the medium- and 34 

small-sized fractions of high-amylose starch but more relative with normal starch. The above 35 

results could provide important information for the applications of different-sized fractions of 36 

high-amylose maize starch. 37 

Keywords:  Normal maize starch; High-amylose maize starch; Starch granule size; 38 

Amylopectin molecular structure; Functional properties.39 
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1. Introduction 40 

In higher plants, starch consists of two main components, mainly linear amylose and 41 

highly branched amylopectin, and exists as discrete semicrystalline granules with varying 42 

sizes (1‒100 µm), shapes (spherical, lenticular, polyhedral, and irregular), and size 43 

distributions (unimodal and bimodal) (Jane, Kasemsuwan, Leas, Zobel, & Robyt, 1994; Tester, 44 

Karkalas, & Qi, 2004a). Amylose content greatly influences the physicochemical and 45 

functional properties of starch. Starch with high amylose content has a high resistance to 46 

digestion and provides many health benefits for humans (Carciofi et al., 2012; Man et al., 47 

2012; Regina et al., 2006; Slade et al., 2012; Zhu et al., 2012). Therefore, high-amylose 48 

starches are of interest because of their potential health benefits. Many high-amylose cereal 49 

varieties have been developed via mutation or transgenic breeding approaches (Carciofi et al., 50 

2012; Regina et al., 2006; Slade et al., 2012; Zhu et al., 2012). 51 

For starches with a bimodal size distribution such as wheat and barley, the large A-type 52 

starch has higher amylose content, lamellar repeat distance, gelatinization enthalpy and 53 

pasting viscosity, and lower amylopectin short branch-chain, gelatinization temperature, and 54 

swelling power than the small B-type starch (Li et al., 2013; Naguleswaran, Li, Vasanthan, 55 

Bressler, & Hoover, 2012; Salman et al., 2009; Takeda, Takeda, Mizukami, & Hanashiro, 56 

1999; Tang, Ando, Watanabe, Takeda, & Mitsunaga, 2001). The different structural and 57 

functional properties result in the different end uses. For example, the starch with 58 

predominantly small B-type starch can be used as a fat substitute, a paper coating, and a 59 

carrier material in cosmetics, while the starch with a high percentage of large A-type starch 60 

has applications in the manufacture of biodegradable plastic film, carbonless copy paper, and 61 
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brewing beer (Lindeboom, Chang, & Tyler, 2004). For starches with a unimodal size 62 

distribution such as maize and potato, the amylose content and pasting viscosity increase and 63 

the gelatinization temperature and hydrolysis degree decrease with increasing granule size 64 

(Dhital, Shrestha, & Gidley, 2010; Dhital, Shrestha, Hasjim, & Gidley, 2011; Kaur, Singh, 65 

McCarthy, & Singh, 2007). The structural and functional property studies of different size 66 

granules can provide insights into the role that granule size plays in determining functional 67 

properties and uses of starches (Dhital et al., 2011). However, these studies are mainly 68 

focused on waxy and normal crop starches, particularly bimodal starches. Less work has been 69 

done to relate the effect of granule size to structural and functional properties in high-amylose 70 

starches. This might be due to the practical difficulty of separating different size granules 71 

from high-amylose starches. 72 

Cereal endosperm starch granules with high-amylose content always show markedly 73 

different morphology and granule size (Cai, Huang et al., 2014; Cai, Lin et al., 2014; Cai, 74 

Zhao, Huang, Chen, & Wei, 2014; Carciofi et al., 2012; Man et al., 2014; Regina et al., 2006; 75 

Slade et al., 2012). Usually the granule size decreases with increase of amylose content in 76 

high-amylose crops (Cai, Huang et al., 2014; Cai, Lin et al., 2014; Cai, Zhao et al., 2014; Man 77 

et al., 2014). Recently, the different morphology and size starch granules in high-amylose 78 

cereal crops have been reported to have significantly different structure (Cai, Huang et al., 79 

2014; Cai, Lin et al., 2014; Cai, Zhao et al., 2014; Dhital, Butardo, Jobling, & Gidley, 2015; 80 

Man et al., 2014). For example, the elongated granule has higher amylose content and 81 

amylopectin long branch-chain and lower amylopectin short branch-chain and branching 82 

degree than aggregate and individual granule in high-amylose maize (Cai, Lin et al., 2014; 83 
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Cai, Zhao et al., 2014). The amylose content, amylopectin long branch-chain, and short-range 84 

ordered degree significantly increase with decrease of granule size in high-amylose maize 85 

starch, but the amylopectin short branch-chain and branching degree, relative crystallinity, 86 

and lamellar peak intensity markedly decrease with decrease of granule size (Cai, Lin et al., 87 

2014; Cai, Zhao et al., 2014). The interior hollow granule has very high amylose content and 88 

show amorphous structure (Cai, Huang et al., 2014; Man et al., 2014). However, the 89 

functional properties of different morphology and size granules have seldom been reported in 90 

high-amylose starches. 91 

In our previous report, the large-, medium-, and small-sized fractions were separated 92 

from normal and high-amylose maize starches. The structural properties were similar among 93 

the different-sized fractions of normal starch, but markedly different among the 94 

different-sized fractions of high-amylose starch. The amylopectin long branch-chain, amylose 95 

content, and short-range ordered degree significantly increased, but the amylopectin short 96 

branch-chain and branching degree, relative crystallinity, and lamellar scattering peak 97 

intensity decreased with decreasing granule size of high-amylose maize starch. The large-, 98 

medium- and small-sized fractions of high-amylose maize starch were A-, CA- and C-type 99 

crystallinity, respectively, indicating that B-type allomorph increased with decrease of granule 100 

size (Cai, Lin et al., 2014). However, their amylopectin molecular structures are unclear. For 101 

the applications of starch, it is necessary to investigate the functional properties including 102 

swelling power, water solubility, thermal property, hydrolysis property, digestion property, etc. 103 

As a follow-up study of the previous paper (Cai, Lin et al., 2014), we further investigated and 104 

compared the amylopectin molecular structures and some functional properties of 105 
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different-sized fractions of normal and high-amylose maize starches. The hierarchical cluster 106 

analysis of native and different-sized fractions of normal and high-amylose maize starches 107 

had also been constructed based on their amylopectin molecular structures and functional 108 

properties. The objective of this study was to analyze the relationships between amylopectin 109 

molecular structures and functional properties and investigate the hierarchical cluster of native 110 

and different-sized fractions of normal and high-amylose maize starches. 111 

2. Materials and methods 112 

2.1. Plant materials 113 

Normal maize starch (S4126) (NS) and high-amylose maize starch (S4180) (HS) were 114 

purchased from Sigma-Aldrich. The apparent amylose contents determined by the iodine 115 

colorimetric method were about 31% and 56% for normal and high-amylose maize starches, 116 

respectively (Cai, Lin et al., 2014). 117 

2.2. Separation of large-, medium-, and small-sized fractions 118 

The normal and high-amylose maize starches were separated into large-, medium-, and 119 

small-sized fractions using glycerol centrifugation as described by Cai, Lin et al. (2014). 120 

Briefly, 40 mL of starch suspension (2.5%, w/v) in 80% glycerol was centrifuged at 100 g for 121 

5 min. The supernatant was removed to a beaker. The pellet was suspended with 40 mL of 122 

80% glycerol and centrifuged five times to obtain starch precipitate that constituted the 123 

large-sized fraction. The supernatants were pooled and centrifuged at 5000 g for 10 min. The 124 

resulting starch pellet was suspended with 40 mL of 60% glycerol and centrifuged at 100 g for 125 

5 min. The supernatant was removed to a beaker. The pellet was suspended with 40 mL of 126 

60% glycerol and centrifuged five times to obtain starch precipitate that constituted the 127 
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medium-sized fraction. The supernatants were pooled and centrifuged at 5000 g for 10 min. 128 

The resulting starch pellet comprised the small-sized fraction. Finally, the starch fractions 129 

were washed in distilled water and in anhydrous ethanol, and then dried at 40 °C for 2 days, 130 

ground into powders in a mortar with pestle, and passed through a 100-mesh sieve. The large-, 131 

medium-, and small-sized fractions had the volume-weighted mean diameter of 18.4, 14.5 and 132 

9.0 µm for normal maize and 20.5, 14.4 and 8.5 µm for high-amylose maize, the apparent 133 

amylose content of 31.9, 31.2 and 29.7% for normal maize and 33.2, 50.5 and 74.1% for 134 

high-amylose maize, and the yield percentage of 10.7, 79.9 and 9.4% for normal maize and 135 

9.6, 67.7 and 22.7% for high-amylose maize (Cai, Lin et al., 2014). 136 

2.3. Fluorophore-assisted capillary electrophoresis (FACE) analysis 137 

Starch was deproteinized with protease and sodium bisulfite, and debranched with 138 

isoamylase according to the methods of Tran et al. (2011) and Li, Hasjim, Dhital, Godwin, 139 

and Gilbert (2011) with some modifications. Briefly, 6 mg of starch was incubated in 0.5 mL 140 

of protease solution (0.25 M tricine buffer, pH 7.5, 1.25 U protease (Sigma P5147)) at 37 °C 141 

for 30 min using a ThermoMixer with continuous shaking (350 rpm). The sample was 142 

centrifuged at 4000 g for 10 min. The precipitation was suspended in 0.5 mL of 0.45% 143 

sodium bisulfite solution (w/v) at 37 °C for 30 min using a ThermoMixer with continuous 144 

shaking (350 rpm). The sample was again centrifuged. The precipitation was suspended in 1.5 145 

mL of DMSO solution including 0.5% LiBr (w/v) at 80 ℃ for overnight using a ThermoMixer 146 

with continuous shaking (350 rpm). The sample was centrifuged, and the supernatant was 147 

mixed with 4 volumes of absolute ethanol to precipitate the starch. The precipitation was 148 

washed with absolute ethanol, and then was dispersed using 0.9 mL of warm deionized water 149 
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and incubated in boiling water for 30 min. The sample was cooled to room temperature, added 150 

0.1 mL of 0.1M acetate buffer (pH 3.5), 5 µL of 4% sodium azide solution (w/v), and 2.5 µL 151 

of isoamylase (Megazyme E-ISAMY), finally mixed and incubated at 37 °C for 3 h using a 152 

ThermoMixer with continuous shaking (350 rpm). The sample was added 0.1 mL of 0.1 M 153 

NaOH and freezed in liquid nitrogen followed by freeze-drying in freeze-dryer overnight. The 154 

dry starch powder (0.3 mg) was labeled with 3 µL of 8-amino-1,3,6-pyrenetrisulfonic acid 155 

(APTS) labeling dye (0.1 M APTS, 0.5 M sodium cyanoborohydride in 15% acetic acid) at 156 

60 °C for 90 min using a ThermoMixer with continuous shaking (350 rpm). The labeled 157 

sample was diluted with 60 µL of deionized water and centrifuged. The 50 µL of supernatant 158 

was analyzed using a FACE (Beckman Coulter PA800, Fullerton, CA, USA) following the 159 

method of Cuevas, Daygon, Morell, Gilbert, and Fitzgerald (2010). The experiments were 160 

performed in duplicate. 161 

2.4. Swelling power and water solubility determination 162 

The swelling power and water solubility index of starch were determined with a 163 

small-scale test method according to the procedure of Konik-Rose et al. (2001) with some 164 

modifications. Thirty milligram of dry starch was weighed into a pre-weight micro-centrifuge 165 

tube (2 mL). The sample was well mixed with 1.5 mL of double-distilled water and then held 166 

in a water bath at 75, 85, or 95 °C for 30 min with regular gentle inversions (20 times over the 167 

first minute, then twice at 1.5, 2, 3, 4, 5, 7.5, 10, 15, 25 min). The sample was then cooled to 168 

room temperature in cool water. The tube was centrifuged at 8000 g for 20 min, and the 169 

supernatant was removed. The soluble carbohydrate in the supernatant was measured with 170 

anthrone-H2SO4 method. The swelling power was determined by measuring the amount of 171 
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original precipitate from the centrifugation and calculating the amount of water absorbed by 172 

the starch (percent weight increase) after subtraction of the amount of soluble carbohydrate. 173 

The water solubility was obtained by calculating the amount of soluble carbohydrate by the 174 

starch. The experiments were performed in triplicate. 175 

2.5. Differential scanning calorimetry (DSC) analysis 176 

Five milligram of starch was precisely weighed and mixed with 15 µL of 177 

deionized-distilled water. The mixture was sealed in an aluminum pan and equilibrated for 2 h 178 

at room temperature. The sample was then heated from room temperature to 130 °C at a rate 179 

of 10 °C/min using a DSC (200-F3, NETZSCH, Germany). The experiments were carried out 180 

in triplicate. 181 

2.6. Hydrolysis degree determination 182 

Starch was hydrolyzed by HCl, PPA, or AAG using the methods of Gao et al. (2014) and 183 

Li, Vasanthan, Hoover, and Rossnagel (2004) with some modifications. For HCl hydrolysis, 184 

20 mg of starch was suspended in 2 mL of 2.2 M HCl and hydrolysis was conducted in a 185 

ThermoMixer at 35 °C with continuous shaking (1000 rpm) for 4 d. For PPA hydrolysis, 10 186 

mg of starch was suspended in 2 mL of enzyme solution (0.1 M phosphate sodium buffer, pH 187 

6.9, 25 mM NaCl, 5 mM CaCl2, 0.02% NaN3, 50 U PPA (Sigma A3176)) and hydrolysis was 188 

conducted in a ThermoMixer at 37 °C with continuous shaking (1000 rpm) for 12 h. For AAG 189 

hydrolysis, 10 mg of starch was suspended in 2 mL of enzyme solution (0.05 M acetate buffer, 190 

pH 4.5, 5 U AAG (Sigma A7095)) and hydrolysis was conducted in a ThermoMixer at 55 °C 191 

with continuous shaking (1000 rpm) for 12 h. After hydrolysis, starch slurry was quickly 192 

centrifuged (5000 g) at 4 °C for 5 min. The supernatant was used for measurement of the 193 
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soluble carbohydrates to quantify the amount of hydrolyzed starch using the anthrone-H2SO4 194 

method. The hydrolysis degree was calculated as the amount (mg) of starch hydrolyzed per 195 

100 mg of dry starch. The experiments were carried out in triplicate. 196 

2.7. In vitro digestion 197 

In vitro digestion of starch was analyzed following a method of Carciofi et al. (2012) 198 

with some modifications. Ten milligram of starch was incubated in 2 mL of enzyme solution 199 

(20 mM sodium phosphate buffer, pH 6.0, 6.7 mM NaCl, 0.01% NaN3, 2.5 mM CaCl2, 4 U 200 

PPA (Sigma A3176), 4 U AAG (Megazyme E-AMGDF)). The digestion was conducted in a 201 

ThermoMixer at 37 °C with continuous shaking (1000 rpm) for 20 and 120 min. Enzyme 202 

treatment was terminated by adding 240 µL of 0.1 M HCl and 2 mL of 50% ethanol and 203 

centrifuged (14000 g, 5 min). The glucose content in the supernatant was determined by the 204 

D-Glucose (GOPOD Format) assay kit (Megazyme, K-GLUC). Starch nutritional fractions 205 

based on the rate of hydrolysis were rapidly digestible starch (RDS, digested within 20 min), 206 

slowly digestible starch (SDS, digested between 20 and 120 min) and resistant starch (RS, 207 

undigested after 120 min). The experiments were performed in triplicate. 208 

2.8. Statistical analysis 209 

The data reported in all the tables were mean values and standard deviation. Analysis of 210 

variance (ANOVA) using Tukey’s test (p < 0.05) and Pearson’s bivariate correlations were 211 

performed with SPSS 19.0 Statistical Software Program. Dendrograms were obtained by 212 

Minitab V. 16.0 software. 213 

3. Results and discussion 214 

3.1. Amylopectin molecular structures of different-sized fractions of starch 215 
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The chain length distribution of amylopectin as determined by FACE is shown in Fig. 1. 216 

The different-sized fractions of normal maize starch showed the same FACE chromatograms. 217 

But the markedly different FACE chromatograms could be observed in the different-sized 218 

fractions of high-amylose maize starch. Amylopectin branch-chains are usually classified by 219 

the degree of polymerization (DP) into the following types: A chain (DP 6−12), B1 chain (DP 220 

13−24), B2 chain (DP 25−36), and B3+ chains (DP≥37) (Hanashiro, Abe, & Hizukuri, 1996). 221 

The average branch-chain length of amylopectin can be obtained by calculating the ratio of 222 

total glucose (DP 6−100 × their areas) to total areas of DP 6−100. The percentages of A, B1, 223 

B2 and B3+ chains and the average branch-chain length of amylopectin in native and 224 

different-sized fractions of normal and high-amylose maize starches are shown in Table 1. 225 

The chain length distribution and average branch-chain length of amylopectins of the 226 

different-sized fractions of normal maize starch had no difference, and were similar to those 227 

of the large-sized fraction of high-amylose starch. But the A and B1 chains of amylopectin 228 

significantly decreased and the B2 and B3+ chains and average branch-chain length of 229 

amylopectin significantly increased with the decrease of granule size among the 230 

different-sized fractions of high-amylose maize starch (Table 1). The present results were in 231 

agreement with our previous results of gel permeation chromatography that the amylopectin 232 

short branch-chain significantly decreased and amylopectin long branch-chain increased with 233 

the decrease of granule size in high-amylose maize starch, but they were similar among 234 

different-sized fractions of normal maize starch (Cai, Lin et al., 2014). 235 

3.2. Swelling powers and water solubilities of different-sized fractions of starch 236 

Swelling power and water solubility of starch were determined at 75, 85, and 95 °C 237 
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(Table 2). The swelling power and water solubility did not significantly change in 238 

different-sized fractions of normal maize starch at 75 and 85 °C, but significantly increased in 239 

small-sized fraction at 95 °C. For high-amylose maize starch, swelling power and water 240 

solubility markedly decreased with decrease of granule size (Table 2). The swelling power 241 

and solubility provide measures of the magnitude of interaction between starch chains within 242 

the amorphous and crystalline domains. The extent of this interaction is influenced by the 243 

amylose to amylopectin ratio, the characteristics of the amylose and amylopectin in terms of 244 

molecular weight/distribution, branching degree and branch length, and conformation (Kaur 245 

et al., 2007). Swelling power is positively correlated with amylopectin short branch-chains 246 

and negatively with amylopectin long branch-chains (Salman et al., 2009). Amylose restrains 247 

swelling and maintains the integrity of swollen granules, and the lipid-complexed amylose 248 

chains restrict both granular swelling and amylose leaching (Tester & Morrison, 1992). In the 249 

present study, the similar amylose content (Cai, Lin et al., 2014) and amylopectin 250 

branch-chain length distribution (Table 1) in different-sized fractions of normal maize starch 251 

resulted in the similar swelling power and water solubility, and the much higher amylose 252 

content (Cai, Lin et al., 2014) and amylopectin long branch-chains (Table 1) in small-sized 253 

fraction of high-amylose maize starch led to the significantly lower swelling power and water 254 

solubility than its counterpart medium- and large-sized fractions. 255 

3.3. Thermal properties of different-sized fractions of starch 256 

Thermal properties of native and different-sized fractions of normal and high-amylose 257 

maize starches were analyzed using DSC, and the DSC parameters are shown in Table 3. A 258 

similar gelatinization temperature and enthalpy were observed in different-sized fractions of 259 
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normal maize starch. Similar results have also been reported in normal maize and potato 260 

starch (Dhital et al., 2011). However, the gelatinization peak temperature increased and 261 

enthalpy value markedly decreased with decrease of granule size for high-amylose maize 262 

starch. Noda, Takahata, Sato, Ikoma, and Mochida (1996) postulate that the DSC parameters 263 

are influenced by the molecular architecture of the crystalline region, which corresponds to 264 

the distribution of amylopectin chain length distribution. The gelatinization temperature is 265 

positively correlated to the branch-chain length of amylopectin, longer chain length 266 

displaying higher gelatinization temperature (Shi & Seib, 1995). For high-amylose starch, the 267 

B-type crystalline results in higher gelatinization temperature than normal starch (Richardson, 268 

Jeffcoat, & Shi, 2000). The amylose double helices also require a high temperature and 269 

energy input to become disordered, which leads to a high gelatinization temperature (Shi, 270 

Capitani, Trzasko, & Jeffcoat, 1998). In the present study, the different variation in thermal 271 

properties of different-sized fractions of normal and high-amylose maize starches might be 272 

due to differences in the chain length distribution of amylopectin. The longer chains in 273 

small-sized fractions of high-amylose maize starch required a higher temperature to dissociate 274 

completely than that required for shorter double helices in medium- and large-sized fractions. 275 

Gelatinization enthalpy primarily reflects the loss of double helical order and decreases with 276 

amylose content increase (Matveev et al., 2001). In the present study, the lower enthalpy of 277 

the small-sized fraction of high-amylose maize starch suggested a less organized 278 

arrangements or lower stability of the crystals in them than in its counterpart medium- and 279 

larger-sized fractions (Singh & Kaur, 2004). 280 

3.4. Hydrolysis degrees of different-sized fractions of starch 281 
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The applications of starch in food and nonfood industries require the disruption of starch 282 

granules. Acid hydrolysis is widely used to produce thin boiling starches for use in food, 283 

paper, textile, and other industries (Rohwer & Klem, 1984). Enzyme hydrolysis of starch is 284 

involved in many industrial processes, such as malting, fermentation, glucose syrup, and 285 

bioethanol production. The α-amylase is an endoamylase that cleaves the α-1,4-glycosidic 286 

bonds of the amylose or amylopectin chain at internal positions (endo) to yield products 287 

(oligosaccharides with varying lengths and branched oligosaccharides called limit dextrins) 288 

with an α-configuration. The amyloglucosidase is an exoamylase that catalyses the hydrolysis 289 

of both α-1,4 and α-1,6 glycosidic bonds at the branching point to release β-D-glucose 290 

residues of the polymer substrate (Tawil, Viksø-Nielsen, Rolland-Sabaté, Colonna, & Buléon, 291 

2011; van der Maarel, van der Veen, Uitdehaag, Leemhuis, & Dijkhuizen, 2002). Therefore, it 292 

is very important to investigate the hydrolysis properties of acid, α-amylase and 293 

amyloglucosidase for starch applications. In the present study, native and different-sized 294 

fractions of normal and high-amylose maize starches were subjected to 4 days of HCl 295 

hydrolysis and 12 h of PPA and AAG hydrolysis (Table 4). The hydrolysis degree of normal 296 

maize starch slightly increased with decrease of granule size from 56.8 to 59.8% for HCl, 297 

from 86.2 to 87.6% for PPA, and from 72.7 to 77.9% for AAG. By contrast, the hydrolysis 298 

degree of high-amylose maize starch markedly decreased with decrease of granule size from 299 

54.8 to 32.3% for HCl, from 81.8 to 40.0% for PPA, and from 73.8 to 37.5% for AAG. 300 

Susceptibility of starch to HCl, PPA and AAG attack is influenced by factors such as amylose 301 

content, crystalline structure, granule size and relative surface area, granule integrity, and 302 

porosity of granules (Blazek & Gilbert, 2010). The degree of native starch hydrolysis by 303 
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amylase or acid is inversely related to the amylose content (Li et al., 2004). The A-, B- and 304 

C-type starches show different susceptibilities to amylase hydrolysis. Generally, the B- or 305 

C-type starch shows more resistance to enzyme hydrolysis than the A-type starch (Tester, 306 

Karkalas, & Qi, 2004b). In the present study, different-sized fractions of normal maize starch 307 

had similar amylose content (Cai, Lin et al., 2014), amylopectin chain length distribution 308 

(Table 1), and crystalline structure (Cai, Lin et al., 2014), resulting in that they had slight 309 

variation in hydrolysis properties. Though they had different size, the apparent available 310 

surface area (as represented by granule size) was relatively unimportant due to the presence of 311 

surface pores and channels, therefore the difference in rate and extent of amylolysis between 312 

different-sized fractions of normal maize starch was not significant (Dhital et al., 2010, 2011). 313 

For high-amylose maize, the small-sized fraction of starch had significantly higher amylose 314 

content (Cai, Lin et al., 2014) and amylopectin long branch-chain and average banch-chain 315 

length and lower amylopectin short branch-chain than the large-sized fraction (Table 1). The 316 

proportion of B-type crystallinity increased and gelatinization enthalpy decreased with 317 

decrease of granule size in high-amylose maize starch (Table 3) (Cai, Lin et al., 2014). The 318 

above significant differences in molecular and crystalline structure led to the marked variation 319 

in hydrolysis properties of different-sized fractions of high-amylose maize starch. 320 

3.5. In vitro digestion properties of different-sized fractions of starch 321 

The in vitro digestion properties of starches are shown in Table 5. For normal maize, the 322 

starch granules were rapidly digested with decrease of granule size at initial 20 min of 323 

digestion, but after 2 h of digestion, the large-sized fraction was digested more extensively 324 

than the small-sized fraction, resulting in that small-sized fraction had higher RS content than 325 
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large-sized fraction. Similar results were also reported in normal triticale, wheat, and corn 326 

starches (Naguleswaran et al., 2012; Salman et al., 2009). At the initial stages, enzyme 327 

digestion is dependent mainly on contact between the enzyme and the surface of starch 328 

granules and, thus, the surface area of the granules is important in determining the initial 329 

attack on the granules by the enzyme. The larger relative surface area of small-size granules is 330 

consistent with their greater initial digestibility by enzymes compared to the large-size 331 

granules (Kim, Kong, Kim, & Lee, 2008; Salman et al., 2009). In addition, the higher 332 

digestion of small-sized fraction could be attributed to its weak association of double helices 333 

within the crystalline lamellae reflected by lesser gelatinization enthalpy (Table 3) than that of 334 

large-sized fraction (Kim et al., 2008; Naguleswaran, Vasanthan, Hoover, & Bressler, 2013). 335 

Surface pores and internal channels of granules are assumed to increase effective surface area 336 

for fast enzyme diffusion. However, the presence of minor components, such as proteins and 337 

lipids on granule surface and in channels largely block the binding sites of enzyme, thereby 338 

reducing the rate of digestion, especially in large-size granules which have numerous pores 339 

and channels (Naguleswaran et al., 2012; Naguleswaran, Li, Vasanthan, & Bressler, 2011). 340 

With the progress of digestion, the digestion is more rapid in large-size granules possibly due 341 

to the gradual release of protein and lipid from associated glucan molecules. The densely 342 

packed crystalline lamellae and higher concentration of protein and lipid in small-size 343 

granules may greatly reduce digestion rate (Naguleswaran et al., 2011, 2012), resulting in the 344 

higher RS content in small-sized fraction of normal maize starch than large-sized fraction. 345 

For high-amylose maize, the starch granules were slowly digested with decrease of 346 

granule size at both 20 min and 2 h of digestion, resulting in that the RS content markedly 347 
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increased with decrease of granule size. This previous studies suggested that amylolysis of 348 

large- and small-size starch granules is closely related to granule morphology, composition, 349 

and structure at granular micro- and nano-levels, such as shape, size, pores, channels, amylose 350 

content, associated protein and lipid, degree of crystallinity, lamellae size, and ratio of 351 

amylopectin long and short chains (Dhital et al., 2010; Naguleswaran et al., 2011, 2012; 352 

Salman et al., 2009). The B-type crystallinity containing longer double helices derived from 353 

long branch-chains of amylopectin is more resistance to digestion than A-type crystallinity 354 

containing short branch-chains of amylopectin (Dhital et al., 2015). In rice starches with 355 

different particle size, morphology, thermal properties, and crystalline polymorph, the longer 356 

branch length of amylopectin which leads to the formation of more stable B-type double 357 

helical structure compared to its A-type counterpart is the major parameter, with other factors 358 

such as granule size, surface pores and interior channels having secondary role, in 359 

determining the rate of enzymatic hydrolysis of rice starch granules (Dhital et al., 2015). 360 

Though the relative surface area of starch granules increased with decrease of granule size, 361 

the significantly higher B-type crystallinity content, amylose content, lipid content (Cai, Lin 362 

et al., 2014) and amylopectin long branch-chain and average branch-chain length (Table 1) 363 

resulted in markedly lower RDS and SDS contents and higher RS content in small-sized 364 

fraction of high-amylose maize starch than in large-sized fraction. 365 

3.6. Relationships between amylopectin molecular structures and functional properties 366 

of different-sized fractions of starch 367 

Amylopectin molecular structures affect the functional properties of starch. In the present 368 

study, Pearson’s bivariate correlations with amylopectin molecular structures and functional 369 
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properties were shown in Table 6. The swelling power is a measure of the water-holding 370 

capacity of starch after being heated in water, cooled, and centrifuged, while the water 371 

solubility reflects the degree of dissolution during the starch swelling procedure. The 372 

difference in swelling power and water solubility between the starches can be attributed to the 373 

interplay of the following factors: (1) amylose content (Sasaki & Matsuki, 1998), (2) 374 

lipid-complexed amylose chains (Tester & Morrison, 1992), (3) molar proportion of 375 

amylopectin short branch-chains (Shi & Seib, 1992), and (4) extent of interaction between 376 

starch chains within the amorphous and crystalline domains (Hoover & Manuel, 1996). In the 377 

present study, Pearson’s bivariate correlation analysis showed that the swelling power (at 75, 378 

85 and 95 °C ) and water solubility (at 95 °C) were significantly negatively correlative with 379 

amylopectin long branch-chains (DP≥25) and average branch-chain length and positively 380 

correlative with amylopectin short branch-chains (DP 6−24). 381 

For normal starch, the gelatinization temperature decreases with an increase in amylose 382 

content. But for high-amylose starch, the gelatinization temperature increases with an increase 383 

in amylose content (Matveev et al., 2001; Richardson et al., 2000). The high-amylose starch 384 

usually has B- or C-type crystallinity (Cheetham & Tao, 1998). The B-type crystallinity needs 385 

higher gelatinization temperature than A-type crystallinity (Richardson et al., 2000). In 386 

high-amylose starch, the amylose double helices also require high temperature and energy to 387 

disorder and therefore lead to a high gelatinization temperature (Shi et al., 1998). 388 

Gelatinization temperature has been considered as a parameter of crystalline perfection. The 389 

long branch-chains in amylopectin cause an increase in the stability of the double helix and 390 

induce a higher gelatinization temperature (Chung, Liu, Lee, & Wei, 2011). In the present 391 
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study, gelatinization temperature was positively correlated with amylopectin long 392 

branch-chains and average branch-chain length and negatively correlated with amylopectin 393 

short branch-chains, but the gelatinization enthalpy was negatively correlated with 394 

amylopectin long branch-chains and average branch-chain length and positively correlated 395 

with amylopectin short branch-chains. 396 

Starch hydrolysis and digestibility are influenced by amylopectin branch chain length 397 

distribution (Carciofi et al., 2012; Man et al., 2012; Regina et al., 2006; Slade et al., 2012; 398 

Zhang, Ao, & Hamaker, 2008; Zhu et al., 2012). Srichuwong, Isono, Mishima, and Hisamatsu 399 

(2005) show that enzyme hydrolysis of raw starches from different botanical sources is 400 

positively and negatively correlated with the proportion of DP 8−12 and DP 13−26 of 401 

amylopectin, respectively. Chuang et al. (2011) show that RS content is positively correlated 402 

with average branch-chain length and the proportion of DP 13−24 of amylopectin, but 403 

negatively correlated with the proportion of DP 6−12 of amylopectin. The short double 404 

helices formed from amylopectin short branch-chains in the crystalline region cause weak 405 

points in starch crystalline structure, resulting in greater susceptibility to hydrolysis (Jane, 406 

Wong, & McPherson, 1997). Zhang et al. (2008) report a parabolic relationship between SDS 407 

content and the weight ratio of amylopectin short branch-chains (DP<13) to long 408 

branch-chains (DP≥13), indicating that amylopectin with a higher amount of either short or 409 

long branch-chains can produce relatively high amounts of SDS. In the present study, 410 

Pearson’s bivariate correlation analysis showed a significantly negative correlation of HCl 411 

hydrolysis, PPA hydrolysis, AAG hydrolysis, and digestion with amylopectin long 412 

branch-chains and average branch-chain length and a positive correlation with amylopectin 413 
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short branch-chains. 414 

To further determine characteristics associated with amylopectin molecular structure and 415 

functional properties, cluster dendrogram with average linkage correlation was constructed 416 

(Fig. 2). The right branch cluster group consisted of amylopectin long branch-chains, 417 

amylopectin average branch-chain length, peak and conclusion gelatinization temperatures, 418 

gelatinization temperature range, and RS. The peak and conclusion gelatinization 419 

temperatures, resistant starch, and the proportions of amylopectin long branch-chains (DP 420 

25−36) had >95% similarity, suggesting strong correlation among these variables. This set 421 

had >91% similarity with amylopectin average branch-chain length and the proportions of 422 

amylopectin long branch-chains (DP≥37). The left branch cluster group contained 423 

amylopectin short branch-chains, swelling power, water solubility, RDS, SDS, gelatinization 424 

onset temperature and enthalpy, and hydrolysis of HCl, PPA and AAG. The swelling power, 425 

hydrolysis of HCl, PPA and AAG, and water solubility at 95 °C had >97% similarity, 426 

suggesting strong correlation among these variables. This set was influenced by the set of 427 

amylopectin short branch-chains and gelatinization enthalpy (>95% similarity level), and had 428 

93.5% similarity with SDS. This analysis revealed that variation in amylopectin long 429 

branch-chains and average branch-chain length significantly influenced gelatinization 430 

temperature and RS, and amylopectin short branch-chains played substantial roles in starch 431 

swelling power, water solubility, gelatinization enthalpy, hydrolysis of HCl, PPA and AAG, 432 

and digestion. 433 

3.7. Cluster analysis of native and different-sized fractions of normal and high-amylose 434 

maize starch 435 
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In order to compare the relationships between different-sized fractions of normal and 436 

high-amylose maize starches, the hierarchical cluster was analyzed on the basis of similarities 437 

and differences in amylopectin molecular structure and starch functional properties (Fig. 3). 438 

The dendrogram consisted of two major clusters. The two clusters were separated by distance 439 

of 17.35. One cluster contained native and different-sized fractions of normal maize starch 440 

and large-sized fraction of high-amylose maize starch, while another cluster included native 441 

and medium- and small-sized fractions of high-amylose maize starch. This indicated that the 442 

large-sized fraction of high-amylose maize starch was similar to normal maize starch in 443 

overall amylopectin molecular structure and functional properties. Our previous study also 444 

showed that the large-sized fraction of high-amylose maize starch was similar to normal 445 

maize starch in morphological structure, granule size, crystalline structure and relative 446 

crystallinity, lamellar structure, and short- and long-range ordered structure (Cai, Lin et al., 447 

2014). It was apparent from the dendrogram that the two main clusters could even be further 448 

separated into distinct, smaller subclusters that enabled better sorting of the samples 449 

according to amylopectin molecular structures and function properties. The small-sized 450 

fraction of high-amylose starch was separated from native and medium-sized fraction of 451 

high-amylose starch by average distance of 9.04. The large-sized fraction of high-amylose 452 

starch was separated from native and different-sized fractions of normal maize starch by 453 

average distance of 5.27. The results indicated that different-sized fractions of high-amylose 454 

maize starch had markedly different amylopectin molecular structures and functional 455 

properties and those of normal maize starch had similar amylopectin molecular structures and 456 

functional properties, which was in agreement with their structural properties (Cai, Lin et al., 457 
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2014). 458 

4. Conclusion 459 

The different-sized fractions of normal maize starch showed similar amylopectin 460 

molecular structures and functional properties, but those of high-amylose maize starch had 461 

significantly different amylopectin molecular structures and functional properties. The 462 

amylopectin short branch-chain, swelling power, water solubility, gelatinization enthalpy, and 463 

hydrolysis and digestion degrees of high-amylose starch significantly decreased with decrease 464 

of granule size, but amylopectin long branch-chain and average branch-chain length, 465 

gelatinization peak temperature, and RS content increased. The swelling power, gelatinization 466 

enthalpy, and hydrolysis and digestion degrees were positively relative with amylopectin short 467 

branch-chain but negatively relative with amylopectin long branch-chain and average 468 

branch-chain length. The gelatinization temperature and RS content were positively relative 469 

with amylopectin long branch-chain and average branch-chain length, and negatively relative 470 

with amylopectin short branch-chain. The native and different-sized fractions of normal and 471 

high-amylose starches could be classified into two major clusters according to their 472 

amylopectin molecular structures and functional properties by hierarchical cluster analysis. 473 

The large-sized fraction of high-amylose starch was very relative with normal starch. This 474 

study could provide important information for the applications of different-sized fractions of 475 

high-amylose maize starch. 476 
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Tables and figures 

Table 1.  Amylopectin molecular structures of native and different-sized fractions of normal and high-amylose maize starches a 

Fraction DP 6−12 (%) DP 13−24 (%) DP 25−36 (%) DP ≥37 (%) ABL (DP) b 

Normal maize (NM) native 22.4±1.1c 49.2±0.2c 13.6±0.4a 14.9±0.9a 22.8±0.5a 

NM large-sized 22.7±0.3c 49.2±0.6c 13.8±0.1a 14.3±1.0a 22.5±0.5a 

NM medium-sized 21.9±1.5c 48.6±0.0c 13.4±0.6a 16.0±0.9a 23.4±0.6a 

NM small-sized 21.9±0.3c 48.8±0.4c 13.4±0.1a 15.9±0.2a 23.3±0.1a 

High-amylose maize (HM) native 18.5±0.4b 45.3±0.6b 14.4±0.1a 21.8±1.0b 26.9±0.6b 

HM large-sized 21.2±0.4bc 48.7±0.2c 14.1±0.3a 16.1±0.1a 23.4±0.0a 

HM medium-sized 19.9±0.4bc 48.5±0.1c 14.5±0.1a 17.1±0.4a 24.1±0.3a 

HM small-sized 12.4±0.9a 37.4±0.8a 15.6±0.4b 34.6±1.2c 34.7±0.7c 

a Data are means ± standard deviations, n = 2. Values in the same column with different letters are significantly different (p < 0.05). 

b ABL: average branch-chain length of amylopectin. 
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Table 2.  Swelling powers and water solubilities of native and different-sized fractions of normal and high-amylose maize starches a 

Fraction 
Swelling power (g/g)  Water solubility (%) 

75 ºC 85 ºC 95 ºC  75 ºC 85 ºC 95 ºC 

Normal maize (NM) native 11.6±0.1de 13.7±0.1e 17.0±0.1f  4.7±0.1c 8.8±0.1cd 15.5±0.3d 

NM large-sized 11.7±0.0def 13.8±0.2e 15.3±0.1d  5.1±0.1d 9.9±0.3e 14.5±0.3c 

NM medium-sized 11.9±0.1f 13.8±0.1e 15.9±0.1e  3.9±0.1b 8.4±0.2c 14.5±0.1c 

NM small-sized 11.5±0.1d 13.6±0.1e 17.5±0.2g  4.5±0.1c 8.5±0.2c 16.0±0.2d 

High-amylose maize (HM) native 7.6±0.0b 9.4±0.1b 12.3±0.0b  5.5±0.1e 9.1±0.1d 12.0±0.2b 

HM large-sized 11.8±0.2ef 12.6±0.1d 16.1±0.2e  7.8±0.1f 11.6±0.1f 14.2±0.3c 

HM medium-sized 9.5±0.2c 10.0±0.0c 13.8±0.2c  4.0±0.1b 7.3±0.1b 12.2±0.1b 

HM small-sized 5.7±0.0a 6.9±0.0a 8.3±0.0a  3.4±0.1a 6.6±0.0a 10.6±0.2a 

a Data are means ± standard deviations, n = 3. Values in the same column with different letters are significantly different (p < 0.05). 
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Table 3.  Thermal properties of native and different-sized fractions of normal and high-amylose maize starches a 

Fraction To (ºC) b Tp (ºC) b Tc (ºC) b ∆T (ºC) b ∆H (J/g) b 

Normal maize (NM) native 62.6±0.2bc 67.9±0.1a 73.5±0.3a 10.9±0.4a 10.2±0.4cd 

NM large-sized 63.0±0.3cd 67.8±0.2a 73.3±0.3a 10.3±0.1a 10.4±0.8cd 

NM medium-sized 63.4±0.1de 68.2±0.2a 73.7±0.3a 10.3±0.4a 10.8±0.4d 

NM small-sized 61.9±0.3a 68.2±0.2a 74.0±0.2a 12.1±0.3b 9.5±0.7c 

High-amylose maize (HM) native 64.3±0.1f 69.3±0.3bc 74.8±0.0b 10.5±0.1a 7.4±0.5b 

HM large-sized 63.7±0.2ef 69.0±0.2b 74.8±0.4b 11.1±0.5ab 10.2±0.2cd 

HM medium-sized 64.1±0.1f 69.8±0.3c 75.3±0.3bc 11.1±0.2ab 7.6±0.2b 

HM small-sized 62.1±0.5ab 70.9±0.1d 75.9±0.5c 13.8±0.9c 2.6±0.2a 

a Data are means ± standard deviations, n = 3. Values in the same column with different letters are significantly different (p < 0.05). 

b To: onset temperature; Tp: peak temperature; Tc: conclusion temperature; ∆T: gelatinization temperature range (Tc-To); ∆H: gelatinization 

enthalpy. 
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Table 4.  Hydrolysis degrees of native and different-sized fractions of normal and high-amylose maize starches a 

Fraction 
Hydrolysis degree 
by HCl for 4 d (%) 

Hydrolysis degree 
by PPA for 12h (%) 

Hydrolysis degree 
by AAG for 12h (%) 

Normal maize (NM) native 59.5±0.2e 86.8±0.5d 74.9±1.3de 

NM large-sized 56.8±0.5d 86.2±0.1d 72.7±1.1d 

NM medium-sized 58.9±0.7e 87.4±0.4d 77.3±0.3ef 

NM small-sized 59.8±0.4e 87.6±0.2d 77.9±1.1f 

High-amylose maize (HM) native 44.5±0.4b 61.0±0.4b 61.5±0.3c 

HM large-sized 54.8±0.8c 81.8±1.8c 73.8±1.1d 

HM medium-sized 44.7±0.9b 58.8±0.4b 56.8±0.0b 

HM small-sized 32.3±0.4a 40.0±0.7a 37.5±0.2a 

a Data are means ± standard deviations, n = 3. Values in the same column with different letters are significantly different (p < 0.05). 
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Table 5.  Digestion properties of native and different-sized fractions of normal and high-amylose maize starches a 

Fraction RDS (%) b SDS (%) b RS (%) b 

Normal maize (NM) native 14.1±0.4e 40.0±0.0e 45.9±0.4ab 

NM large-sized 10.2±0.5c 45.5±0.1f 44.3±0.3a 

NM medium-sized 11.4±0.1d 40.7±1.2e 47.9±1.3b 

NM small-sized 15.3±0.5f 36.3±0.3d 48.4±0.8b 

High-amylose maize (HM) native 8.5±0.0b 24.6±0.4c 66.9±0.4d 

HM large-sized 9.5±0.2bc 38.7±1.1e 51.8±1.4c 

HM medium-sized 9.1±0.2b 21.1±0.0b 69.9±0.2e 

HM small-sized 6.8±0.2a 17.9±0.5a 75.3±0.7f 

a Data are means ± standard deviations, n = 3. Values in the same column with different letters are significantly different (p < 0.05). 

b RDS: rapidly digestible starch; RS: resistant starch; SDS: slowly digestible starch. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 35 

Table 6.  Correlation coefficients between amylopectin molecular structures and functional properties of native and different-sized fractions of 

normal and high-amylose maize starches a 

 SP75 SP85 SP95 WS75 WS85 WS95 To Tp Tc ∆T ∆H HCl PPA AAG RDS SDS RS 

DP 6-12 0.945**  0.942**  0.952**  0.352 0.585 0.872**  0.150 −0.921**  −0.848**  −0.780* 0.978**  0.946**  0.934**  0.947**  0.710* 0.837**  −0.867**  

DP 13-24 0.906**  0.865**  0.927**  0.376 0.558 0.791* 0.279 −0.825* −0.729* −0.790* 0.943**  0.876**  0.854**  0.891**  0.644 0.722* −0.754* 

DP 25-36 −0.908**  −0.956**  −0.946**  −0.200 −0.460 −0.932**  0.037 0.947**  0.890**  0.667 −0.938**  −0.977**  −0.961**  −0.975**  −0.838**  −0.840**  0.899**  

DP ≥37 −0.921**  −0.890**  −0.932**  −0.376 −0.576 −0.812* −0.248 0.857**  0.769* 0.796* −0.957**  −0.896**  −0.878**  −0.906**  −0.653 −0.763* 0.791* 

ABL −0.921**  −0.890**  −0.934**  −0.382 −0.579 −0.813* −0.250 0.854**  0.764* 0.794* −0.958**  −0.897**  −0.879**  −0.909**  −0.654 −0.761* 0.790* 

a*, significant at p < 0.05; **, significant at p < 0.01. 

ABL: average branch-chain length of amylopectin; DP 6−12, DP 13−24, DP 25−36, and DP≥37: proportion of amylopectin branch-chain (DP 

6−12, DP 13−24, DP 25−36, and DP ≥37); HCl, PPA, and AAG: hydrolysis degree of HCl for 4 d, PPA for 12h, and AAG for 12 h; RDS: rapidly 

digestible starch; RS: resistant starch; SDS: slowly digestible starch; SP75, SP85, and SP95: swelling power at 75, 85, and 95 ºC; To, Tp, Tc: 

onset, peak, and conclusion gelatinization temperature; WS75, WS85, and WS95: water solubility at 75, 85, and 95 ºC; ∆H: gelatinization 

enthalpy; ∆T: gelatinization temperature range. 
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Figure captions 

Fig. 1.  FACE chromatogram of amylopectin from normal (A) and high-amylose (B) maize 

starches. NS, NS-L, NS-M, and NS-S: native and large-, medium-, and small-sized fractions 

of normal maize starch; HS, HS-L, HS-M, and HS-S: native and large-, medium-, and 

small-sized fractions of high-amylose maize starch. 

Fig. 2.  Average linkage dendrogram depicting relationships between amylopectin molecular 

structures and functional properties of native and different-sized fractions of normal and 

high-amylose maize starches. ABL: average branch-chain length of amylopectin; DP 6−12, 

DP 13−24, DP 25−36, and DP≥37: proportion of amylopectin branch-chain (DP 6−12, DP 

13−24, DP 25−36, and DP ≥37); HCl, PPA, and AAG: hydrolysis degree of HCl for 4 d, PPA 

for 12h, and AAG for 12 h; RDS: rapidly digestible starch; RS: resistant starch; SDS: slowly 

digestible starch; SP75, SP85, and SP95: swelling power at 75, 85, and 95 ºC; To, Tp, Tc: 

onset, peak, and conclusion gelatinization temperature; WS75, WS85, and WS95: water 

solubility at 75, 85, and 95 ºC; ∆H: gelatinization enthalpy; ∆T: gelatinization temperature 

range. 

Fig. 3.  Ward linkage dendrogram generated by hierarchical cluster analysis of native and 

different-sized fractions of normal and high-amylose maize starches on basis of their 

amylopectin molecular structures and functional properties. 
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Fig. 1.  FACE chromatogram of amylopectin from normal (A) and high-amylose (B) maize 

starches. NS, NS-L, NS-M, and NS-S: native and large-, medium-, and small-sized fractions 

of normal maize starch; HS, HS-L, HS-M, and HS-S: native and large-, medium-, and 

small-sized fractions of high-amylose maize starch. 
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Fig. 2.  Average linkage dendrogram depicting relationships between amylopectin molecular 

structures and functional properties of native and different-sized fractions of normal and 

high-amylose maize starches. ABL: average branch-chain length of amylopectin; DP 6−12, 

DP 13−24, DP 25−36, and DP≥37: proportion of amylopectin branch-chain (DP 6−12, DP 

13−24, DP 25−36, and DP ≥37); HCl, PPA, and AAG: hydrolysis degree of HCl for 4 d, PPA 

for 12h, and AAG for 12 h; RDS: rapidly digestible starch; RS: resistant starch; SDS: slowly 

digestible starch; SP75, SP85, and SP95: swelling power at 75, 85, and 95 ºC; To, Tp, Tc: 

onset, peak, and conclusion gelatinization temperature; WS75, WS85, and WS95: water 

solubility at 75, 85, and 95 ºC; ∆H: gelatinization enthalpy; ∆T: gelatinization temperature 

range. 
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Fig. 3.  Ward linkage dendrogram generated by hierarchical cluster analysis of native and 

different-sized fractions of normal and high-amylose maize starches on basis of their 

amylopectin molecular structures and functional properties. 
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� Different-sized fractions of normal and high-amylose maize starches were separated. 

� Their amylopectin molecular structures and functional properties were investigated. 

� The relationships between structures and functional properties were analyzed. 

� Cluster dendrogram between structures and functional properties was constructed. 

� Large-sized fraction of high-amylose starch was very relative with normal starch. 


