
The Eilmer3 Code: User Guide and Example Book
2015 Edition

Mechanical Engineering Report 2015/07
Peter A. Jacobs∗ Rowan J. Gollan† Ingo Jahn‡ and Daniel F. Potter§

with contributions¶ from a cast of many, including:

Ghassan Al’Doori, Nikhil Banerji, Justin Beri, Peter Blyton, Daryl Bond, Arianna Bosco,

Djamel Boutamine, Laurie Brown, David Buttsworth, Wilson Chan, Sam Chiu,

Chris Craddock, Brian Cook, Jason Czapla, Kyle Damm, Andrew Dann,

Andrew Denman, Zac Denman, Luke Doherty, Elise Fahy, Antonia Flocco,

Delphine Francois, James Fuata, Nick Gibbons, David Gildfind, Richard Goozeé, Sangdi Gu,

Stefan Hess, Carolyn Jacobs, Chris James, Ian Johnston, Ojas Joshi, Xin Kang,

Rainer Kirchhartz, Sam Lamboo, Steven Lewis, Tom Marty, Matt McGilvray, David Mee,

Carlos de Miranda-Ventura, Luke Montgomery, Jan-Pieter Nap, Brendan O’Flaherty,

Andrew Pastrello, Paul Petrie-Repar, Jorge Sancho Ponce, Jason (Kan) Qin,

Deepak Ramanath, Andrew Rowlands, Michael Scott, Umar Sheikh, Sam Stennett,

Ben Stewart, Joseph Tang, Katsu Tanimizu, Pierpaolo Toniato,

Paul van der Laan, Tjarke van Jindelt, Anand Veeraragavan, Jaidev Vesudevan,

Han Wei, Mike Wendt, Brad (The Beast) Wheatley, Vince Wheatley,

Adriaan Window, Hannes Wojciak, Fabian Zander, Mengmeng Zhao

School of Mechanical and Mining Engineering,
The University of Queensland.

August 1, 2015

∗peterj@mech.uq.edu.au
†r.gollan@uq.edu.au
‡i.jahn@uq.edu.au
§daniel.potter@uqconnect.edu.au
¶These contributions have come in the form of examples, debugging, proof-reading and constructive

comments on the codes and this document, additions to this document and code for special cases.

1

Preface
Eilmer3 is an integrated collection of programs for the simulation of transient, compress-
ible flow in two and three spatial dimensions. It provides a preparation program that can
be used to set up a database of simulation parameters, a block-structured grid defining
the flow domain and an initial flow field. These items are then used as a starting point
for the main simulation program which computes a series of snapshots of the evolving
flow. Eilmer3 is part of the larger collection of compressible flow simulation codes found
at http://cfcfd.mechmining.uq.edu.au/.

This user guide contains a collection of example simulations: scripts, results and
commentary. It may be convenient for new users of the code to identify an example close
to the situation that they wish to model and then adapt the scripts for that example.

2

http://cfcfd.mechmining.uq.edu.au/

Contents

I Introduction 11

1 Compressible flow simulation and the Eilmer3 code 11
1.1 History of the codes . 11
1.2 More information . 12
1.3 Citing the user of Eilmer3 . 12

II User guide 13

2 Building and installing the programs 13

3 Running simulations 13
3.1 Data preparation (with e3prep.py) . 14
3.2 Checking your grid . 15
3.3 Running the simulation (with e3shared.exe) 16
3.4 Running the simulation in parallel (e3mpi.exe) 17
3.5 Running a radiation transport calculation (e3rad.exe) 18
3.6 Restarting a simulation . 18
3.7 Postprocessing (with e3post.py) . 19
3.8 Supervisory GUI . 24

4 Input Script Overview 26

5 Thermochemical model and flow conditions 27
5.1 10 second version: just tell me how to select perfect air 27
5.2 2 minute version: tell me about other simple models 27
5.3 Specifying the gas model with gasmodel.py 29
5.4 10 minute version: the detail of gas model configuration 30
5.5 Selecting a simple model and adjusting it 31
5.6 Specifying chemically reacting flow . 31
5.7 Specifying thermal energy exchange mechanisms 32
5.8 Defining flow conditions . 32
5.9 Using flow conditions from other simulations 34
5.10 Using mole fractions and species dictionaries 35

6 Radiation transport model 36

7 Boundary representation of the gas domain 38
7.1 Geometric elements . 38

7.1.1 Paths . 39
7.1.2 Surfaces . 40
7.1.3 Volumes . 43

7.2 Two-dimensional grids . 44
7.3 Putting a 2D description together . 49
7.4 Three-dimensional grids . 54

3

8 Specifying flow conditions at block boundaries 59
8.1 Setting conditions with setBC (deprecated) 63

9 Special zones and history points 65

10 Simulation control parameters 66

11 Parameters for a 2D sketch of the flow domain 72

III A tutorial example 75

12 Mach 1.5 flow over a 20-degree cone 76

13 The simulation 77
13.1 Input script (.py) . 77
13.2 Running the simulation . 78

14 Results and Postprocessing 80

15 Accessing the field data for specialized postprocessing 85

16 Grid convergence 88

17 Other notes on this first example 88

18 Parametric modelling using Python 90
18.1 Input script (.py) . 90

19 Exploring the gas dynamics 91

20 Building a more robust simulation 96
20.1 Input script (.py) . 96
20.2 Final results . 97

IV Examples for 2D flow 99

21 Oblique shock boundary layer interaction. 100
21.1 Input script (.py) . 101
21.2 Running the simulation . 103
21.3 Results . 103
21.4 Shell scripts . 104
21.5 Postprocessing for shear stress . 107
21.6 Notes . 108

22 Viscous Flow Along a Cylinder 109
22.1 Input script (.py) . 111
22.2 Shell scripts . 112
22.3 Notes . 112

4

23 Hypersonic flow over a concave surface. 113
23.1 Input script (.py) . 113
23.2 Running the simulation . 115
23.3 Results . 115
23.4 Postprocessing to get heat transfer . 118
23.5 Notes . 120

24 Hypersonic flow over a convex ramp. 121
24.1 Input script (.py) . 121
24.2 Running the simulation . 123
24.3 Results . 123
24.4 Postprocessing to get heat transfer . 125
24.5 Notes . 127

25 Hypersonic, nonequilibrium flow over a convex ramp. 129
25.1 Input script (.py) . 129
25.2 Running the simulation . 131
25.3 Results . 131
25.4 Postprocessing to get heat transfer . 133
25.5 Notes . 135

26 Hypersonic flow over a hollow cylinder with flare. 137
26.1 Input script (.py) . 137
26.2 Running the simulation . 139
26.3 Results . 140
26.4 Postprocessing heat transfer and separation-point tracking 143
26.5 Notes . 146

27 Hypersonic flow over a double-cone. 147
27.1 Input script (.py) . 147
27.2 Running the simulation . 149
27.3 Results . 151
27.4 Postprocessing heat transfer and separation-point tracking 154
27.5 Notes . 156

28 Mach 3 flow over a sharp-nosed two-dimensional body 159
28.1 Input script (.py) . 162
28.2 Shell scripts . 163
28.3 Notes . 163

29 Sharp-nosed 2D body – PyFun version 165
29.1 Input script (.py) . 165
29.2 Notes on using Python for the input script 166

30 Hypersonic flow of ideal air over a blunt wedge 167
30.1 Input script (.py) . 170
30.2 Shell scripts . 172
30.3 Notes . 173

5

31 Pressure on a flat-faced cylinder 175
31.1 Input script (.py) . 177
31.2 Shell scripts . 178
31.3 Awk scripts . 179
31.4 Notes . 179

32 Flow through a conical nozzle 181
32.1 Input script (.py) . 184
32.2 Shell scripts . 185
32.3 Notes . 187

33 Flow of equilibrium air over a sphere 189
33.1 Input script (.py) . 191
33.2 Shell scripts . 193
33.3 Notes . 194

34 Classic shock tube problem 195
34.1 Input script (.py) . 197
34.2 Shell scripts . 198
34.3 Solution using finite wave and shock analysis 200
34.4 Extracting shock location and getting average gas speed 202
34.5 Notes . 202

35 Heat transfer to a sphere in equilibrium air 203
35.1 Template input script (.py) . 208
35.2 Coordinating script (.py) . 209
35.3 Shell script for postprocessing . 213
35.4 Notes . 214

36 Dissociating nitrogen flow over a 2D cylinder 215
36.1 Input script (.py) . 217
36.2 Reaction scheme file (.lua) . 218
36.3 Shell scripts . 218
36.4 Notes . 219

37 Flow of detonable mixture over a sphere 221
37.1 Input script (.py) . 223
37.2 Reaction scheme file (.lua) . 227
37.3 Notes . 230

38 MNM implosion problem 231
38.1 Input script (.py) . 233
38.2 Shell scripts . 234
38.3 Notes . 234

39 Periodic Shear Layer 235
39.1 Input script (.py) . 237
39.2 Shell scripts . 238
39.3 Notes . 238

6

40 Mach 1.5 flow over a 20-degree cone – UDF boundaries 239

40.1 Input script (.py) . 242

40.2 Boundary-condition files (.lua) . 244

40.3 Shell scripts . 247

40.4 Notes . 248

41 A section of an ideal compressible-flow vortex 249

41.1 Input script (.py) . 251

41.2 Boundary condition file (.lua) . 251

41.3 Shell scripts . 253

41.4 Notes . 253

42 Method of manufactured solutions – Euler flow 257

42.1 Input script (.py) . 258

42.2 Boundary condition file (.lua) . 258

42.3 Source term file (.lua) . 260

42.4 Shell scripts . 262

42.5 Python reference-function files . 263

42.6 Notes . 264

43 Method of manufactured solutions – Viscous flow 265

43.1 Input script (.py) . 266

43.2 Boundary condition file (.lua) . 268

43.3 Source term file (.lua) . 270

43.4 Shell scripts . 274

43.5 Python reference-function files . 275

43.6 Notes . 276

44 Oblique detonation wave 277

44.1 Input script (.py) . 278

44.2 gas-model file (binary-gas.lua) . 279

44.3 Source term file (.lua) . 281

44.4 Shell scripts . 282

44.5 Python reference function files . 282

44.6 Notes . 286

45 Subsonic compressor blade – sc10 287

45.1 Input script (.py) . 287

45.2 Boundary-condition files (.lua) . 295

45.3 Shell scripts . 297

45.4 Notes . 297

46 Subsonic compressor blade – PyFun version 299

46.1 Input scripts (.py) . 299

46.2 Notes . 306

7

47 Couette Flow 307

47.1 Input script (.py) . 308

47.2 Shell scripts . 309

47.3 Notes . 309

48 Radiating argon shock layer with thermochemical nonequilibrium 311

48.1 Experiment description . 311

48.2 Simulation description . 312

48.2.1 Thermodynamics . 313

48.2.2 Viscous transport . 313

48.2.3 Chemical reactions . 313

48.2.4 Thermal energy exchange . 314

48.2.5 Radiation transport . 314

48.2.6 Radiation spectra . 314

48.3 Results . 314

48.4 Run script (.sh) . 315

48.5 Eilmer3 input scripts (.py) . 317

48.5.1 Part 1 – inviscid flow . 317

48.5.2 Part 2 – viscous flow . 319

48.5.3 Part 3 – viscous flow with radiation coupling 321

48.6 Chemical reaction script (.lua) . 324

48.7 Thermal energy exchange script (.lua) . 325

48.8 Radiation model (for flowfield coupling) script (.py) 325

48.9 Radiation model (for experiment comparison) script (.py) 326

48.10Radiation error checking script (.py) . 326

48.11Notes . 327

49 Microscale combustion 329

49.1 Input script (.py) . 329

49.2 UDF Boundary conditions . 331

49.3 Running the simulation . 334

49.4 Results . 334

V Examples for 3D flow 337

50 Mach 1.5 flow over a 10-degree ramp 338

50.1 Input script (.py) . 340

50.2 Shell script . 341

50.3 Postprocessing program . 341

50.4 Notes . 342

51 Sod shock tube problem in 3D 343

51.1 Input script (.py) . 344

51.2 Shell script . 345

51.3 Notes . 345

8

52 Injection of hydrogen into a nitrogen stream 347
52.1 Input script (.py) . 349
52.2 Shell script . 350
52.3 Notes . 351

53 Flow of nitrogen over a cylinder of finite length 353
53.1 Chemical nonequilibrium and thermal equilibrium 354

53.1.1 Input script (.py) . 356
53.1.2 Reaction scheme file (.lua) . 358
53.1.3 Shell script . 359
53.1.4 Postprocessing program . 359
53.1.5 Notes . 360

53.2 Chemical and thermal nonequilibrium . 360
53.2.1 Input script (.py) . 362
53.2.2 Reaction scheme file (.lua) . 364
53.2.3 Energy exchange scheme file (.lua) 365
53.2.4 Shell script . 367
53.2.5 Postprocessing program . 367
53.2.6 Notes . 368

54 Spherically-blunted cone 369
54.1 Input script (.py) . 370

55 Katsu’s scramjet combustor and nozzle 373
55.1 Input script (.py) . 375

56 Titan aeroshell using imported grids 377
56.1 Input script (.py) . 378

57 Couette Flow: 3D 381
57.1 Input script (.py) . 381
57.2 Shell scripts . 383
57.3 Results . 383
57.4 Notes . 383

58 Taylor Couette Flow 385
58.1 Input script (.py) . 385
58.2 Shell scripts . 387
58.3 Results . 388
58.4 Notes . 389

VI References and Appendices 391

A Instructions for installation and getting started 397

B Surviving the Linux Command Line 405

C Just enough Python to be dangerous 407

9

D Make your own debugging cube 411

E cfpylib modules 413
E.1 Numerical Methods module . 413
E.2 Gas Dynamics module . 413
E.3 Flow (house-keeping) module . 414
E.4 Geometry module . 414
E.5 Utility module . 415
E.6 Billig shock shape correlation . 415

F Gas models: specification by configuration file 417
F.1 User-defined gas model . 417

F.1.1 An example minimal user-defined gas model 422
F.2 Equilibrium gas based on a look-up table 423

F.2.1 Selecting a look-up table for the gas model 423
F.2.2 Building your own look-up table . 424

G Chemical reactions: specification by configuration file 427
G.1 Overview of input file format . 428
G.2 Details of the reaction table . 429
G.3 Extra control of the chemistry scheme . 431

H Thermal energy exchange mechanisms: specification by configuration
file 435
H.1 Overview of the input file format . 435
H.2 Details of the mechanism table . 436

I User-defined functions for run-time customization 445
I.1 Customizing the boundary conditions . 445
I.2 Source terms . 451
I.3 Callable functions at timestep start and timestep end 452
I.4 Helper gas model functions . 455
I.5 Notes on global variables and Lua interpreters 458

J Hints for Solution Visualisation with ParaView 459
J.1 Plotting Streamlines and Streamtubes . 459
J.2 Moving Blocks . 460

K Load balancing MPI simulations 461

L Radiation transport models 465
L.1 Optically thin model . 465
L.2 Tangent slab model . 466
L.3 Modified discrete transfer model . 466
L.4 Photon Monte-Carlo model . 467

Index 469

10

Part I

Introduction

1 Compressible flow simulation and the Eilmer3 code

Eilmer3 code is an integrated collection of programs for the numerical simulation of tran-

sient, compressible gas flows in two and three dimensions. These programs answer the

”What if ... ?” type of question where you will set up a flow situation by defining the

spatial domain in which the gas moves, set an initial gas state throughout this domain,

specify boundary condition constraints to the edges of the domain and then let the gas

flow evolve according to the rules of gas dynamics.

The definition of the flow domain includes a mesh of finite-volume cells, together with

boundary conditions such a solid no-slip walls, inflow surfaces and outflow surfaces. To

help with the set up of this domain, the code collection includes a preparation program

(e3prep.py) that can be used to set up a database of simulation parameters, a block-

structured, body-fitted mesh defining the flow domain and an initial flow-field specifica-

tion. This preparation program includes a mesh generator that can accept a description

of the flow domain in terms of boundary surfaces and then generate the block-structured

mesh of finite-volume cells. The mesh and initial flow state can then used as a starting

point for the main simulation program (e3shared.exe) which computes a series of snap-

shots of the evolving flow. Finally, a rudimentary but versatile postprocessing program

(e3post.py) makes the flow data available for further analysis.

If you wish to integrate CFD analysis in your design process, it is probably easiest

to have in mind a family of domain shapes or inflow conditions, with variations defined

by a small set of parameters. The Eilmer3 codes can then be used to run a number

of simulations, answering the questions ”What would the flow field do if we use these

particular parameters?” This is essentially the process that we have followed when using

the codes for the design of hypersonic nozzles [1] where the nozzle wall shape is adjusted

to produce a uniform flow field toward the nozzle exit plane.

1.1 History of the codes

Eilmer3 is a derivative of the code mbcns2 which, in turn was an experiment in writing

the mb cns code in C++. Once it was determined that there were clear benefits in using

C++, our three-dimensional flow code Elmer was then reworked in C++ as Elmer2.

At the same time, we experimented with using the Python language for the user’s input

script and embedding the Lua language in order to make some of the boundary conditions

programmable. Of course, these codes being experiments in C++, we soon decided that it

11

could all be done much more cleanly and be made much more versatile if we just reworked

some of the basic modules. Thus, the thermochemistry was reworked and the separate

two and three dimensional codes merged into Eilmer3. The name change is to avoid a

naming clash with the Elmer finite-element code from Finland.1

1.2 More information

The following sections provide example input scripts and shell scripts for a number of

simulations. These are intended to be starting points for your own simulations and should

be studied together with the other manuals that can be found in the documentation

section of the Compressible Flow CFD Group web site: http://cfcfd.mechmining.uq.

edu.au/. Study these scripts carefully; some of the interesting bits of the documentation

are embedded within them.

For a description of the methods coded into Eilmer3, see the companion report [2]

which covers the gas-dynamic formulation and the basic thermochemistry components.

1.3 Citing the user of Eilmer3

We hope that by using Eilmer you are able to produce some high quality simulations that

aid your work. When it comes time to report the results of your Eilmer simulations to

others, we ask that you acknowledge our work by citing our paper on the Eilmer code:

Gollan, R.J. and Jacobs, P.A. (2013). About the formulation, verification

and validation of the hypersonic flow solver Eilmer. International Journal for

Numerical Methods in Fluids 73:19-57 (DOI: 10.1002/fld.3790)

Additionally, for those using the k − ω turbulence model, acknowledge our development

work on that by citing:

Chan W.Y.K., Jacobs P.A, and Mee D.J. (2011). Suitability of the k-omega

turbulence model for scramjet flowfield simulations. International Jour-

nal for Numerical Methods in Fluids Vol 70, Issue 4, pages 493-514 (DOI:

10.1002/fld.2699)

1http://www.csc.fi/elmer

12

http://cfcfd.mechmining.uq.edu.au/
http://cfcfd.mechmining.uq.edu.au/
http://www.csc.fi/elmer

Part II

User guide

2 Building and installing the programs

The core solver and its modules are mainly written in C/C++ for speed and the benefits

of compile time checking. The pre- and post-processing programs are mainly Python so

that we get flexibility and convenient customization. There is also a little Tcl/Tk and

Lua.

Our main development environment is Linux but the programs can be deployed on

Linux, flavours of Unix such as MacOS-X and MS-Windows (using Cygwin). The main

requirement is that the C/C++ compilers, the Tcl and Python interpreters be available,

along with their supporting libraries and various extensions. The source code of the

Lua interpreter is included in with Eilmer3. The reStructuredText file eilmer3.rst

(Appendix A) or the corresponding HTML file from the web site2 provides more detail,

including the actual commands needed to build and install the programs.

If you are not accustomed to working with Unix/Linux, have a look at Appendix B

for a brief introduction to working on the command line.

3 Running simulations

Setting up a simulation is mostly an exercise in writing a text-based description of your

flow and its bounding geometry. This input script is presented to the preparation program

as a Python source file, often with the extension “.py”. Once you have prepared your

flow specification as an input script using your favourite text editor, the simulation data

is generated by the Eilmer3 programs in a number of stages:

1 Create the geometry definition, a grid and the initial flow state. For simple to

moderately complex geometries, the built-in geometry tools (described later in this

manual) are adequate. For complex geometries, you may find it convenient to import

block-structured grids, possibly from a specialized gridding tool such as Gridgen or

ICEMCFD.

2 Run the simulation code to produce flow data at subsequent times.

3 Reformat the flow solution data to produce files suitable for a data viewing program

such as Paraview or GNU-Plot.

2The web site http://cfcfd.mechmining.uq.edu.au/ has a nicely formatted set of instructions,
detailed API documents that have been extracted from the source code and a number of examples. It is
regularly expanded and updated.

13

http://cfcfd.mechmining.uq.edu.au/

3.1 Data preparation (with e3prep.py)

Create the geometry definition and a grid with the command

$ e3prep.py --job=job --do-svg

e3prep.pyjob.py

job.grid.b0000.t0000

Input: Program: Output:

job.grid.b0001.t0000
...

job.flow.b0000.t0000
job.flow.b0001.t0000
...

job.wrl
job.svg

job.config
job.control

job.times

./grid/t0000/

./flow/t0000/

./

./

./

The italics word job in the command should be replaced by whatever job name that you

have chosen. That name is then used as a base to derive specific names for each of the files

associated with the simulation. At a minimum, you have an input script called job.py

with the .py extension, indicating that the script is written in Python. The files from the

preparation stage are:

• job.config: A database of configuration parameters in INI format. Parameters

are specified, one per line, as parameter-name = value. A hierarchical structure

is given to the set of parameters via named subsections in the file. Although you

would probably never assemble one of these parameter files from scratch manually,

it is sometimes convenient to alter a value or two and rerun a simulation without

invoking e3prep.py.

• job.control: A small database of parameters to control the time-stepping, the final

time, and the intervals between writing of solutions and history data. The content

of this file is also in INI format and it is parsed at the start of every nth step, where

n is given by the count value in the control count parameter (default: 10). This

way, a user can alter the simulation behaviour (by editing this file) without having

to restart the simulation. To stop a simulation cleanly, set the halt now entry to 1.

Other control parameters are marked with ‡ in Section 10.

• job.times: A mapping of time stamps to actual times at which the simulation data

was written. After the preparation stage, there should be only the zero-time entry.

14

• job.svg or job.wrl: Sometimes it is convenient to see a graphical representation of

the flow domain and boundary conditions. These options produce a SVG or VRML

rendering of the block boundaries and the boundary-condition labels. The --do-svg

will invoke the rendering of two-dimensional blocks to a scalable-vector-graphics file

while --do-vrml will render three-dimensional blocks to a virtual-reality-modeling-

language file. For two-dimensional simulations, the SVG file can be edited in a

program such as Inkscape (http://www.inkscape.org) and the result used as

part of your documentation for a particular simulation.

• job.grid.b0000.t0000, job.grid.b0001.t0000 : The grid of finite-volume cells,

one file for each block that defines part of the flow domain. The grids are written

as plain text files in a relatively simple format. The spatial coordinates for points

within each file are associated with cell vertices of the structured grid.3

• one flow-data file for each block: job.flow.b0000.t0000, job.flow.b0001.t0000,

... containing the initial flow state within each of the finite-volume cells. Look at

the first couple of lines of a flow file to see what data elements are written for each

cell. Variable names appear on the second line and units are SI.

Note that the grid and flow data files are written to subdirectories of the same names.

The grid is written once (at time zero, subdirectory grid/t0000/) and the flow files are

written to a new subdirectory (flow/tnnnn/) at each output time. This is to keep the

main job directory clean and to allow easy copying or moving of individual solution times.

Also, these files are stored in “gzip” format with a “.gz” extension by default.

3.2 Checking your grid

Before running the simulation code, it is worth checking that your grid has turned out

as planned. Many a simulation has failed to start because its grid was flawed. Common

problems include grids that are twisted or have adjoining blocks with edges that do not

match where they are supposed to be joined. To get a set of plot files that can be loaded

into Paraview for examination, use the post-processing program:

$ e3post.py --job=job --tindx=0 --vtk-xml

and then pick up the resulting files for inspection with Paraview. Look ahead to Sec. 3.7

for a more complete discussion of the postprocessing stage.

3Note that, in recent versions of the programs, the grid and flow files are written to subdirectories
within the job directory.

15

http://www.inkscape.org

3.3 Running the simulation (with e3shared.exe)

Run the simulation code to produce flow data at subsequent times.4

$ e3shared.exe --job=job --run

e3shared.exejob.config
job.flow.b0000.t0001

job.grid.b0000.t0000

Input: Program: Output:

job.grid.b0001.t0000
...

job.flow.b0001.t0001
...

--run

job.flow.b0000.t0002
job.flow.b0001.t0002

job.flow.b0000.t0003
job.flow.b0001.t0003

...

...

job.hist.b0000
job.hist.b0001
...

job.times

job.flow.b0000.t0000
job.flow.b0001.t0000
...

job.finish

e3shared.log

job.control

job.times

./

./grid/t0000/

./flow/t0000/
...

./flow/t0001/

./flow/t0002/

./flow/t0003/

./hist/

./

./

The output files are:

• job.flow.bnnnn.tmmmm: The flow data for all cells at the times requested. As

the simulation proceeds, whole-field solutions are written to new files with nnnn

representing the block number and mmmm representing a time stamp. Look up the

job.times file to see what time values belong to each time stamp (or tindx). Just

as for the grid files, each flow solution file is written as a plain text file with a simple

layout, not too different from the Tecplot point-format for a structured-block grid.

In these files, the spatial coordinates of points within the file are associated with

the cell centres.

• job.hist.bnnnn: Data at particular “history locations” and at times requested.

This data is typically used to simulate the signals recorded by pressure and heat-

transfer sensors mounted on model surfaces. When restarting a simulation, the pro-

gram will append to existing history files rather than clobbering them. Note that,

if you are running a simulation from the start multiple times, you will need to man-

ually remove the history files before each run. The command ‘‘rm -r ./hist/’’

4If the simulation finishes too quickly (possibly without taking any steps at all), it may be that the
initial time step size is too large and the calculation is unstable. One symptom of this is that the final
value for dt is reported as being the excessively large value of 1e+6 seconds. Choose a suitably small
value and try again.

16

should do the job.

• job.times: A mapping of time stamps to actual times at which the simulation data

was written. The main simulation appends lines to this file. This file may assist

when automating some of the postprocessing operations.

• job.finish: An INI-format file giving some information about the time-stepping

parameters at the end of the simulation. These may be useful for starting a follow-on

simulation.

For viscous simulations, surface heat flux and cell Reynolds number files are also

written to the subdirectory heat if run with the -q option. See the --heat-flux-list

option in Section 3.7 for a hint at how to extract the data and then have a look in the

data files to see what specific data has been captured.

For reference, here are the hints that are written out when the --help option is given
on the command line:

$ e3shared.exe --help

Usage: e3shared.exe [OPTION...]

-f, --job=<job_name> job_name is typically the same as root_file_name

-r, --run run the main simulation time-stepper

-t, --tindx=<int> start with this set of flow data

-z, --zip-files use gzipped flow and grid files

-a, --no-zip-files use ASCII (not gzipped) flow and grid files

-q, --heat-flux-files write heat-flux files

-s, --surface-files write surface files

-v, --verbosity=<int> set verbosity level for messages

-w, --max-wall-clock=<seconds> maximum wall-clock time in seconds

-m, --mpimap=<mpimap_file> use this specific MPI map of blocks to rank

Help options:

-?, --help Show this help message

--usage Display brief usage message

By default, the starting value for tindx will be zero, gzipped flow and grid files will be

assumed, heat-flux and surface files will not be written, verbosity will be zero (i.e. at a

minimum), and the wall-clock time will not be limited.

3.4 Running the simulation in parallel (e3mpi.exe)

One can build and run the distributed-memory version of the program, e3mpi.exe, on

computers with the MPI (Message Passing Interface) library5 and runtime environment.

The notes in Appendix A show how to build and run the Eilmer3 executable for Open-

MPI.6 To run Eilmer3 across multiple processors on a local machine use the following

command

$ mpirun -np n e3mpi.exe --job=name --run

where n is the number of MPI processes to use. Note that when running the program

5See, for example, http://www.open-mpi.org/.
6These notes are also available in HTML form at the URL http://cfcfd.mechmining.uq.edu.au/.

17

http://www.open-mpi.org/
http://cfcfd.mechmining.uq.edu.au/

with these options, one MPI process is assigned to each block; the number of MPI pro-

cesses must match the number of blocks in the simulation. Each of these MPI processes

is a separate program and you may run more than one per core or physical processor,

however, if you want the shortest calculation time and you had lots of cores, you would

probably run one per core. For simulations with many blocks, it is sometimes possible

to achieve a better balance of computational load by assigning more than one block to a

process. This is can be done with Eilmer3 by building a mapping file of blocks to MPI

processes (using the e3loadbalance.py program), and then running e3mpi.exe with the

--mpimap= option. The details of using Eilmer3 in this way are described in Appendix K.

3.5 Running a radiation transport calculation (e3rad.exe)

The user can build and run the shared-memory version of the radiation transport solver,

e3rad.exe, on computers with the OpenMP API. The notes in Appendix A show how to

build and run the Eilmer3 radiation transport solver executable for OpenMP. Note that

you should first make the e3shared and e3mpi, then “make clean” and, finally, make

e3rad.

You will almost certainly be running e3rad in the context of a partly-run flow solution.

$ e3rad.exe --job=name --tindx=nnnn --run

where nnnn is the index of the flow solution for which e3rad will update the radiation

source term. On output, e3rad will have incremented the tindx value and written a new

set of data from which the flow solver can restart.

3.6 Restarting a simulation

By default, the simulation program picks up the flow solution for tindx equal to 0 but it

can be told to pick up any other tindx snapshot. To pick up a solution and continue, it

is probably best to do a little house-keeping7 checking the state of the simulation at the

end of run, then editing the job.control file and changing the parameters dt, max time

and max steps to suitable values. Do not run e3prep.py again, else it will write all over

the job.times file that you need to retain and your newly edited job.control file. At

this point, you should be ready to run the main simulation program again. Remember to

supply the relevant tindx value on the command line for your restart. For example:

$ e3shared.exe --job=name --tindx=5 --run

Also, with restarts, be careful that you have consistent modelling requirements and

settings. Restarting a laminar simulation as a turbulent simulation with the k − ω

7 To support old simulations that terminated with a 9999 solution frame, you can run the postprocessor
with the command
$ e3post.py --job=name --prepare-restart

This renames the 9999 flow files and tidies up the job.times file to reflect the changes.

18

model would lead to inconsistent data. It may be better to start a new job and use

ExistingSolution objects (see Section 5.9) to pick up the old data. Note that your old

and new soltions need to have consistent data, such as number of chemical species, etc.

ExistingSolution works with the data available in the old solution and is not smart

enough to fill in missing values.

3.7 Postprocessing (with e3post.py)

Postprocessing of the simulation data is the most unstructured of the simulation activi-

ties. We provide a postprocessing program, e3post.py that has the basic capabilities of

picking up the simulation data and writing flow field files in formats suitable for Paraview,

Visit, Tecplot, the venerable Plot3D or gnuplot8.

e3post.exe

job.b0000.t0000.vtu

Input: Program: Output:

job.b0001.t0000.vtu

...

--vtk-xml

......

job.t0000.pvtu

job.grid.b0000.t0000
job.grid.b0001.t0000

job.flow.b0000.t0001
job.flow.b0001.t0001
...

job.flow.b0000.t0002
job.flow.b0001.t0002

job.flow.b0000.t0003
job.flow.b0001.t0003
...

...

job.b0000.t0001.vtu
job.b0001.t0001.vtu
job.t0001.pvtu

job.b0000.t0002.vtu
job.b0001.t0002.vtu
job.t0002.pvtu

./grid/t0000/

./flow/t0001/

./flow/t0002/

./flow/t0003/

./plot/

job.pvd

To reformat the flow solution data into one unstructured grid containing all of the

flow data for the domain and write this data in a format suitable for Paraview or Visit,

use the command:

$ e3post.py --job=job --vtk-xml --tindx=all

The postprocessing program (e3 post.py) started as a fairly simple script that picked

up solution data and reformatted it for plotting, however, it has continued to sprout

features and has become a bit complex to describe. To see its command-line options, just

run it without any options at all. It should then print a usage message which provides

some hints. As of 1st August 2015, this message is:

Begin e3post.py...

Source code revision string: 245f2e1c2af4+ 2320+ default tip

8See the web sites http://www.paraview.org, https://wci.llnl.gov/codes/visit/, http:

//www.tecplot.com, http://people.nas.nasa.gov/~rogers/plot3d/intro.html and http://www.

gnuplot.info

19

http://www.paraview.org
https://wci.llnl.gov/codes/visit/
http://www.tecplot.com
http://www.tecplot.com
http://people.nas.nasa.gov/~rogers/plot3d/intro.html
http://www.gnuplot.info
http://www.gnuplot.info

Usage:

e3post.py [--help] [--job=<jobFileName>] [--tindx=<index|9999|last|all|xxxx>]

[--zip-files|--no-zip-files]

[--moving-grid]

[--omegaz="[omegaz0,omegaz1,...]"]

[--add-pitot-p] [--add-total-p] [--add-mach] [--add-total-enthalpy]

[--add-molef --gmodel-file="gas-model.lua"]

[--add-transport-coeffs --gmodel-file="gas-model.lua"]

[--add-user-computed-vars="user-script.py"]

[--vtk-xml] [--binary-format] [--tecplot] [--plot3d] [--OpenFoam]

[--output-file=<profile-data-file>]

[--slice-list="blk-range,i-range,j-range,k-range;..."]

[--slice-at-point="blk-range,index-pair,x,y,z;..."]

[--slice-along-line="x0,y0,z0,x1,y1,z1,N"]

[--surface-list="blk,surface-name;..."]

[--local-surface-list="blk,surface-name;..."]

[--static-flow-profile="blk,face-name;..."]

[--heat-flux-list="blk-range,surf-range,i-range,j-range,k-range;..."]

[--bc-surface-list="blk-range,surf-range,i-range,j-range,k-range;..."]

[--tangent-slab-list="blk-range,i-range,j-range,k-range;..."]

[--probe="x,y,z;..."]

[--report-norms]

[--per-block-norm-list="jb,var-name,norm-name;..."

[--global-norm-list="var-name,norm-name;..."

[--ref-function=<python-script>]

[--compare-job=<jobFileName> [--compare-tindx=<index>]]

[--prepare-restart] [--prepare-fstc-restart]

[--put-into-folders]

[--verbosity=<int>]

For further information, see the online documentation, the Eilmer3 User Guide

and the source code.

The options can be combined in fairly complex ways; some experimentation on the part

of the user may be required to get the desired effect. These can be divided into a number

of subsets. Data loading options:

• --help just prints the usage message. No other options are relevant.

• --job=<jobFileName> specifies the root name of the solution files

• --tindx=<index|9999|last|all|xxxx> You may pick up one solution time via its

numeric index or you may specify all solution times via the keyword “all”. The

last solution frame written (and identified in the job.times file) can be specified by

20

giving the index as “last” or as “9999”. If the simulation is run and a special

solution frame was written at a particular time step, that solution frame not part

of the standard sequence but accessible as index “xxxx”.

• --zip-files|--no-zip-files The default behaviour is to use gzipped files for the

grid and flow data files, however, earlier version of the code used plain text files that

were not zipped.

• --moving-grid The default behaviour is to use a fixed grid (defined at tindx=0)

for all solution frames. This flag indicates each solution frame has a dedicated grid

that may change from the tindx=0 grid.

• --omegaz Specify the angular velocities of the rotating-frame grids (if they any

non-zero values).

Data addition options:

• --add-pitot-p, --add-total-p, --add-mach and --add-total-enthalpy add the

named variable to the plotting data set, either for the full field (VTK, Tecplot and

Plot3D format) or for sliced data. These flow variables are not in the Eilmer3 native

flow solution file and must be reconstructed by e3post.py.

• --add-molef Add species mole fractions to the data set.

• --gmodel-file="gas-model.lua" To add some of the mole-fractions, the gas model

needs to be available. You can use this option to specify the correct gas model file

if it is not the default name.

Whole-field output options:

• --vtk-xml The XML format for the Visualization Tool Kit (VTK) is readable by

both Paraview and Visit. By default, the XML file will be simple text and probably

quite large.

• --binary-format Write most of the data in the VTK file as appended binary

records. This makes the files nonconforming XML files but it surely reduces the

size of large data files and improves the speed of loading them into Paraview. For

large 3D datasets, this is a good option.

• --tecplot This produces an ASCII file that can be read by Tecplot.

• --plot3d This is also an ASCII format file that many visualization and flow simu-

lation packages read and write. Two grid files are generated. The first, with .grd

extension, is the true grid as used by the simulation with mesh location at the

nodes. The second, with extension .g, has cell-centred values and accompanies the

cell-centred values in the .f file.

21

• --OpenFoam This produces files usable in an OpenFOAM simulation. It may be

convenient to use our grid preparation tools (e3prep with Python script input) to

assemble a suitable set of grids and initial flow states but then run the simula-

tion with the other CFD solver http://www.openfoam.org/ but, being biased, we

wouldn’t really like to talk about that here.

Data slicing and dicing options:

• --output-file=<profile-data-file> specifies the name of a file in which to dump

the requested data. This naming option is relevant to the various slice options and

also to the the surface-list option where it is used as the root name of the generated

VTK files. This will allow you to make a number of sliced data sets for plotting.

• --slice-list="blk-range,i-range,j-range,k-range;..." allows one to extract

subsets of the data. A Python-like slicing notation is used in the specification string

which should be enclosed in quotes, as shown. Several slices (separated by semi-

colons) may be specified in the one string. Each slice specification consists of 4

indices or index ranges separated by commas. An index is a single integer value

and may be negative to indicate counting from the end. A value of -1 indicates the

maximum value. An index range may be a colon-separated pair of integers, a colon

and one limit or just a colon by itself (to indicate the full range). Note that the

range limits are inclusive. So, for example, to extract the EAST strip of cells from

block 0 in a 2D simulation, you would use the string "0,-1,:,0".

• --slice-at-point="blk-range,index-pair,x,y,z;..." allows one to extract a

slice/plane of data through a particular point. The index-pair is one of ij, jk or ki.

The program sets these indices to zero and searches along the remaining index to

find the cell nearest the specified (x,y,z) point. Once found, the slice over the index

pair is selected for output (by adding it to the slice-list). Be aware that, for each

block selected, slice-at-point will always select a slice to output, even if it is not very

close. Again, use quotes to hold the string together as it passed through the shell

interpreter.

• --slice-along-line="x0,y0,z0,x1,y1,z1,N" generates a list of N sampled points

between the specified end points. The sampled data is taken from the nearest cell-

centre for eash sample point. No higher-order interpolation is done.

• --surface-list="blk,surface-name;..." extracts a set of surfaces from the full

flow field and writes them as VTK files. Sometimes we want convenient access to

the bounding surfaces of the blocks. Use NORTH, EAST, SOUTH, WEST, TOP and BOTTOM

as the surface names.

22

http://www.openfoam.org/

• --probe="x,y,z;..." reports the sampled data for the specified points. The se-

lected data is written in gnuplot format.

• --heat-flux-list="blk-range,surf-range,i-range,j-range,k-range;..." 9 ex-

tracts surface heat flux and cell Reynolds number data. The syntax is the same as

the --slice-list option except that the second argument is the boundary in-

dex (NORTH, EAST, SOUTH, WEST, TOP or BOTTOM). For 2D simulations, the block and

boundary indices are sufficient to define the edge, so you can then leave the i-range,

j-range and k-range arguments blank. For 3D simulations you would need to spec-

ify either i, j or k to get a single line of cells. For any range, it is sufficient to give

just a colon to get the full range. For the surface range, the order of the boundary

names comes into play with NORTH=0 and BOTTOM=5.

Data manipulation and summary options:

• --ref-function=<python-script> compares the flow solution with a supplied

Python function. The difference is output.

• --report-norms returns a dictionary of norms for all of the flow variables. The

available norms are L1, L2, and Linf (maximum magnitude).

• --per-block-norm-list="jb,var-name,norm-name;..." returns the specified norms

for particular variables and blocks. Sometimes just a little bit of information is re-

quired.

• --global-norm-list="var-name,norm-name;..." returns the specified norms, com-

puted over the whole flow domain.

• --compare-job=<jobFileName> [--compare-tindx=<index>] compares one flow

data set with another. The difference is output. This option combined with the

computation of norms is a convenient way to check convergence of a simulation.

Other house-keeping options for continuing old simulations:

• --prepare-restart does some house-keeping in the data files so that a simulation

may be restarted cleanly. This is mainly dealing with the old 9999 file and adjusting

the .times file. As of April 2013, the 9999 solution frame is no longer written.

• --put-into-folders puts an old solution (which has its files all sitting in the

current directory) into the current directory structure where the grid, flow and plot

files have their own subdirectories. Again, this relates to a very old arrangement for

the solution files.

9Dan Potter’s heat flux code writes the heat fluxes for a collection of surfaces. This was part of his
PhD work.

23

Note that you must use double-quotes on some specification strings to prevent the com-

mand shell from pulling the string apart (or otherwise changing it) before giving it to

e3post.py. It is also worth noting that, by default, e3post.py does not write anything

to the console while it it running successfully. If you want more commentary while it is

doing its work, supply a nonzero integer to the option --verbosity. A value of 1 should

give you a brief summary of the main activities whereas a value of 2 will prompt many

more messages.

Ad hoc postprocessing is possible by picking up the cell-centre flow data with your own

custom postprocessing program written in Python. Two Python modules (e3 flow.py

and e3 grid.py) are available for picking up individual blocks of data and storing selected

flow properties in numpy arrays. Note that three-dimensional arrays are always used, even

for two-dimensional simulations where the k-index has the single value 0. The examples

that make up the bulk of this manual show some of the things that are possible. Some

specific applications of writing a custom postprocessing script are:

• estimating the angle of the shock in the axisymmetric flow over a cone (Sec. 12)

• the estimation of surface force on the 10o ramp case (Sec. 50) and

• finding the location of the bow shock for the finite cylinder simulation (Sec. 53).

3.8 Supervisory GUI

To ease new-comers into the use of the codes, the e3console.tcl program provides a

graphical view of the simulation process. It provides straight-forward automation of the

simple case of running a simulation from scratch and then reformatting the entire flow-

field data for plotting. Figure 1 shows the state of the GUI just after running the cone20

simulation. The Python input file is shown in the top text frame of the main window, with

the log of the standard output from the simulation shown in the lower text frame. The

tab for the postprocessor is visible in the “Options” window. It indicates that e3post.py

will reformat all the flow data into the XML file format for the VTK plotting library (as

used by Paraview). Also, note the text in the console window which shows the underlying

commands that have been used.

24

Figure 1: Screen shot of the e3console.tcl GUI running on PJ’s workstation.

25

4 Input Script Overview

Currently, e3prep.py is implemented as a Python program that has a library of classes

specialized for constructing geometric regions and specifying flow conditions. Because

your specification script, job.py, becomes a part of that program when it runs, it is

worth the effort to learn just enough Python to be dangerous. The web site https:

//www.python.org is a good starting point for learning about the Python programming

language, however, Appendix C may have enough information to get you started.

After doing some initialization, e3prep.py executes your script file and assembles

the geometry and flow specification data into a form that can be given to the main

simulation code e3shared.exe10. The advantage of this approach is that you have the

full capability of the Python interpreter available to you from within your script. You

can perform calculations so that you can parameterize your geometry, for example, or

you can use Python control structures to make repetitive definitions much more concise.

Additionally, you may use Python comments and print statements to add documentation

to the script file. An input script usually does the following:

1. selects gas model

2. optionally, creates geometric elements to assist in defining the boundary represen-

tation of the gas domain

3. creates blocks within the gas domain and specifies their discretization and, option-

ally, specifies boundary conditions along some block surfaces (in 3D) or edges (in

2D)

4. specifies remaining boundary conditions, if any

5. sets some simulation control parameters

Most examples in this manual do just these things, however, it is possible to do much

more. The example that computes the heat transfer to a sphere (Section 35) uses a top-

level Python script to coordinate a number of simulations with increasingly-refined grids

as a crude multigrid simulation.

10The “shared” tag indicated that we are using the shared-memory version of the code. There is also
a distributed-memory version, e3mpi.exe, based on message passing (MPI) that can be used for running
the main simulation.

26

https://www.python.org
https://www.python.org

To aid with debugging, it is easy to process part of your input script and then temporar-

ily put the interpreter into an interactive mode where you may type python commands

and expressions at the prompt (>>>). To do so, add the following lines at the appropriate

point in your input script.

from code import interact

interact(’Start interactive mode (Ctrl-D to return)’, local=locals())

Now you can interact with the Python environment and the objects that your input script

has defined so far. For example, to find out a bit about defining Block3D objects, type:

>>> help(Block3D)

To get out of the interactive mode and continue processing the input script, type Control-D

at the prompt.

5 Thermochemical model and flow conditions

The thermochemical models are provided by the libgas module. This is primarily a C++

module but it has a SWIG-generated Python interface so that its objects and methods

can be accessed from the user’s input script.

5.1 10 second version: just tell me how to select perfect air

Place the following text (which is a function call) in your script before specifying any

FlowCondition objects:

select gas model(model=’ideal gas’, species=[’air’])

If this is the only gas model that interests you for the present, then proceed to page 32

which discusses the specification of a FlowCondition.

5.2 2 minute version: tell me about other simple models

To select a gas model, the user calls the function select gas model. This function

accepts three keyword arguments: model, species, and fname. In the vast majority of

cases, only the first two keyword arguments will be used. This function must be called

before specifying any FlowCondition objects so that the complete thermodynamic state

can be computed.

27

A second example: to select an ideal mixture of nitrogen and oxygen call:

select gas model(model=’ideal gas’, species=[’N2’, ’O2’])

Note that the only difference between selecting a mixture and a single component gas is

the addition of extra species in the species list and the extra computation that the main

simulation program needs to do.

In general, the model keyword accepts a string describing the gas model behaviour.

The available gas models are:

• ’ideal gas’: a gas with ideal behaviour: modelled as having perfectly elastic

collisions and constant specific heats

• ’thermally perfect gas’: a gas with thermally perfect behaviour: modelled as

having perfectly elastic collisions but with specific heats that are functions of tem-

perature

• ’two temperature gas’: a thermally perfect gas with two independent thermal

modes: one temperature Ttr governs the heavy-particle translation and rotation

modes, and another temperature Tve governs the vibration, electronic and free-

electron translation modes.

• ’real gas Bender’: a gas with real behaviour, such as accurate thermodynamic

property evaluation at high density and pressure near the saturation boundary and

in the critical region. This model is based on the Bender p-v-T relationship.

• ’real gas MBWR’: a gas with real behaviour, such as accurate thermodynamic prop-

erty evaluation at high density and pressure near the saturation boundary and in

the critical region. This model is based on the MBWR p-v-T relationship, which is

more accurate than the Bender p-v-T relationship.

• ’real gas REFPROP’: a gas with real behaviour, such as accurate thermodynamic

property evaluation in all single and two phase regions. This model makes use of

the REFPROP thermodynamic database and is more accurate than the MBWR gas

model.

The species keyword accepts a list of strings; each string denotes a species in the

mixture. The order of this list is important: the order of species in this list corresponds

to the order in which the species mass fractions are specified in other parts of the input.

To get a list of available species, look at the selection of species which are placed in the

$HOME/e3bin/species area during the install, that is, at a command prompt type:

28

> ls $HOME/e3bin/species

The names of these files (excluding the .lua extension) correspond to the names of avail-

able species. The defaults.lua file is not a species name. Rather, this file provides a

set of default values when no other data is available.

5.3 Specifying the gas model with gasmodel.py

Since the gas model module gets all its information about the gas from an external file

(typically called gas-model.lua), it is reasonable to prepare the gas model specification

external to your input script. To assist with this process, the program gasmodel.py is

available. Running this program without specifying any options provided the following

usage message:

$ gasmodel.py

Use this program to construct a simple or composite gas model for use with

the simulation codes Eilmer3 of L1d3.

Usage:

gasmodel.py [--help] [--model=<modelName>] [--species=<speciesList|none>] \

[--lut-file=<LUTFileName>] \

[--output=<luaFile|gas-model.lua>]

Input parameters:

model : name of the gas model, may have embedded spaces.

species : list of species names (space delimited) in a single string.

output : name of the gas-model file to be written.

lut-file: name of the preexisting LUT-gas model file, if relevant.

Examples:

$ gasmodel.py --model=’thermally perfect gas’ --species=’N2 N’ \

--output=’nitrogen.lua’

$ gasmodel.py --model=’ideal gas’ --species=’Ar He’ \

--lut-file=’cea-lut-custom.lua.gz’ \

--output=’LUT-plus-Ar-He.lua’

Notes:

If you want a LUT-plus-composite gas model, set up the LUT table

externally. Invoke this program, specifying the rest of the species

for the composite gas model. The LUT gas species is prepended to

the composite gas species list. You will need both gas model files

in place to use the resulting LUT-plus-composite gas model.

Once you have your gas-model file generated, just give its file name to the select gas model

function call in your input script using the fname keyword argument. This is explained

further in the subsequent section.

29

5.4 10 minute version: the detail of gas model configuration

In the earlier examples, the select gas model function was called using the two keyword

arguments model and species. Behind the scenes, this function calls an auxiliary set of

tools to build a stand-alone text file which is a configuration file for the gas model. This

configuration file is a Lua-style file: it is read directly by the C++ code (with embedded

Lua interpreter) in order to configure the gas model. By default, the created configuration

file is called gas-model.lua. This file will sit in your working directory after a successful

call to select gas model using only the model and species keyword arguments. The

configuration file contains all the necessary details to completely specify the gas. Thus,

this file serves as a record of the gas model input parameters used in your simulation.

You are encouraged to open the file gas-model.lua and take a look. It contains

not only the input parameters for the gas model but also references for the data where

possible. Some amount of effort has been made to design a configuration file that properly

documents the input data. The use of Lua as the configuration language has aided this

effort.

Alternatively, the select gas model function may also be called with fname as a

keyword argument. This argument, fname, accepts a string which names a Lua-style

configuration file for the gas model. Thus, if you have a gas model configuration file from

a previous simulation, you could set the gas model with the call:

select gas model(fname=’gas-model.lua’)

This assumes your configuration file is called gas-model.lua and resides in the same

directory as your main simulation script.

Finally, for certain advanced gas models (such as a gas with multiple vibrational

temperatures), the only means to configure these models is via the preparation of a Lua-

style configuration file by hand. After building a file by hand (that is, in a text editor),

one would use the fname keyword argument in the call to select gas model to set the

gas model. The list of gas models which are set by directly creating a configuration file

includes:

• user-defined gas (by specification of callable Lua functions)

• an equilibrium gas, based on a look-up table

Further discussion of gas models which are set by direct creation and manipulation of a

configuration file is given in Appendix F.

30

5.5 Selecting a simple model and adjusting it

The simple ideal gas model of air as discussed above has γ = 1.4. You can get an air

model with γ = 1.3 by selecting the species as ’air13’ or you can adjust the value

of γ directly for the ideal gas model. This can be done from within the Python in-

put script by calling the function change ideal gas attribute(), and telling it which

species, which attribute and what new value to use. The function actually does a string

substitution within the gas-model.lua file that was generated behind the scenes when

the select gas model() function was called.

For an example of use, see the MNM Implosion problem in Section 38. There, the

value of ratio of specific heats is changed with the lines

gas gamma = 5.0/3.0

select gas model(model=’ideal gas’, species=[’air’])

change ideal gas attribute(’air’, ’gamma’, gas gamma)

You might also like to change the gas constant but, since that is not an actual parameter

in the gas-model.lua file, it needs to be set indirectly, via the molecular mass (in units

of kg/mol).

Rgas = 300.0

MM = R u / Rgas

change ideal gas attribute(’air’, ’M’, MM)

Note that ’M’ is the label for molecular mass in the gas-model.lua file and R u is the

universal gas constant made available by the thermochemistry module to the Python

input script.

5.6 Specifying chemically reacting flow

For chemically reacting flow simulations, the following function call is required:

set reaction scheme(config file, reacting flag=1, T frozen=300.0)

where config file is a string naming the configuration file for the chemical reaction

scheme. This configuration file specifies all of the chemical reactions between the various

species and is built by hand by the user. By default, the reactions are turned on, however,

the user may elect to turn off chemical reaction updates by setting reacting flag=0. At

low temperatures, it is unlikely that the reactions will proceed in any significant way so

you may set value of temperature, T_frozen, below which the reaction updates will be

31

skipped. This is checked on a cell-by-cell basis.

Generally, you should use the ’thermally perfect gas’ mix for all reacting flow

simulations. The enthalpies of formation are implicit in the enthalpy evaluation provided

by the NASA Glen curves, thus providing the proper effect of heat release due to rear-

rangement of chemical bonds. Note that, at low temperatures, the ideal gas behaviour

should be recovered so you shouldn’t need to resort to using the ’ideal gas’ model.

An example of a reacting flow simulation is given in Section 36. The details of building

a chemistry input file are provided in Appendix G.

5.7 Specifying thermal energy exchange mechanisms

For flow simulations where the number of thermal modes is greater than one (such as for

the ‘two temperature gas’ model previously mentioned), energy exchange mechanisms can

be defined that describe the exchange of thermal energy between modes due to particle

collisions. If such energy exchange mechanisms wish to be modelled, the following function

call is required:

set_energy_exchange_scheme(config_file, energy_exchange_flag=1,

T_frozen_energy=300.0)

where config file is a string naming the Lua configuration file for the energy ex-

change scheme. This configuration file specifies all of the energy exchange mechanisms

between the thermal modes due to thermal processes (i.e. particle collisions) and is

built by hand by the user. Thermal energy exchange is, by default, turned on when the

set energy exchange scheme(config file) function call is made, however, you may

restrict the exchanges to the zones where chemical reactions are allowed and you can also

set the temperature below which the exchanges will be skipped on a per-cell, per-timestep

basis.

An example of a flow simulation with thermal energy exchange is given in Section 53.

The details of building a thermal energy exchange input file are provided in Appendix H.

5.8 Defining flow conditions

Because Eilmer3 is a flow simulation code, initial gas flow conditions need to be specified

throughout the domain. Also, depending on your model, free-stream inflow boundary con-

ditions may need to be specified on appropriate boundary surfaces. To define such a flow

condition in your input script for one or both of these purposes, create a FlowCondition

object11 as:

11The FlowCondition class is defined in source file e3 flow.py

32

my flow = FlowCondition(p=1.0e5, u=0.0, v=0.0, w=0.0,

Bx=0.0, By=0.0, Bz=0.0, T=[300.0,],

massf=None, label="", tke=0.0, omega=1.0,

S=0, add to list=1)

• p: pressure in Pa, default value 100 kPa.

• u: x-coordinate velocity in m/s, default value 0.0.

• v: y-coordinate velocity in m/s, default value 0.0.

• w: z-coordinate velocity in m/s, default value 0.0.

• Bx: x-coordinate magnetic field in Tesla, default value 0.0.

• By: y-coordinate magnetic field in Tesla, default value 0.0.

• Bz: z-coordinate magnetic field in Tesla, default value 0.0.

• T: list of temperatures in degrees K, default value [300.0,]. For gas models with

multimodal energies, these are the corresponding temperatures. For a gas model

with only one internal energy mode, you may specify a scalar value for temperature.

• massf: mass fractions of the component species. These may be provided in a number

of ways:

(a) full list of floats. The length of the list of mass fractions must match the

number of species in the previously selected gas model.

(b) single float or integer that gets used as the first element, the rest being set 0.0

(c) dictionary of species names with mass fraction values, the remainder being set

0.0. See the example in Section 5.10.

(d) None provided, results in the first element being 1.0 and the rest 0.0

Note that the mass fractions supplied must sum to 1.0 (within a tolerance of 1.0×
10−6.

• label: (optional) text label for the FlowCondition object.

• tke: turbulent kinetic energy per unit mass in m2/s2 or J/kg, default value 0.0.

• omega: turbulence vorticity in 1/s, default value 1.0.

• mu t: turbulence viscosity in Pa.s, default value 0.0.

33

• k t: turbulence thermal conductivity, default value 0.0. This might be conveniently

computed as Cpµt/Prt.

• S: integer shock indicator value, default value 0. A value of 1 indicates the presence

of a shock through the cell.

• add to list: flag to indicate that this FlowCondition object should be added to the

flowList. Sometimes we don’t want to accumulate objects in this list, for example,

when using many FlowCondition objects in a user-defined flow evaluation function.

default value 1.

Simulations involving nonequilibrium chemistry require an extra input file describing

the participating gas species and their reactions. Preparation of this file is described in

Appendix G.

5.9 Using flow conditions from other simulations

There are occasions where you might like to use flow data from an old simulation as initial

conditions for some or all of your blocks in your new simulation. A typical use case is to

restart a simulation with a finer, or otherwise changed, mesh. For this, you may pick up

the old simulation data using:

old flow = ExistingSolution(rootName, solutionWorkDir, nblock, tindx,

dimensions=2, assume same grid=0, zipFiles=1,

add velocity=Vector(0.0,0.0,0.0))

where the arguments and their possible values are:

• rootName: job name that will be used to build file names

• solutionWorkDir: the directory where we’ll find our existing solution files.

• nblock: number of blocks in the existing solution data set

• tindx: the time index to select 0..9999. Do not specify with leading zeros because

the Python interpreter will assume that you want to count the time index in octal.

• dimensions: number of spatial dimensions for the existing solution

• assume same grid: decide how to locate corresponding cells

34

0 : searches for corresponding cells. This steps through each cell and searches for

closest corresponding cell centre in the old solution and inserts the flow data.

As Rainer found, this can be agonisingly slow for large grids.

1 : omits the search for the corresponding cell. Definitely the option for the

impatient. This assumes the same grid for the old and new solution and inserts

flow data based on the i and j cell references.

• zipFiles: to use gzipped files (1), or not (0)

• add velocity: value to be added to each cell’s velocity, for changing frame of

reference.

The process of writing the data into each cell of the new grid uses a fairly naive search

for the nearest cell in the existing solution. Although it is robust, the search is extremely

slow and the preparation of new grids has been known to take hours of CPU time. If

the new simulation is a continuation of the old simulation, it may be appropriate to set

gdata.t0 to a nonzero value. See Section 10.

5.10 Using mole fractions and species dictionaries

When simulating flows with mixes of gas species, it may be more convenient to specify

the gas mix via mole fractions rather than mass fractions and via a dictionary rather

than a list. With large numbers of species in the gas model, specification of the mix via

dictionary is far easier to read and check than when using a list of numerical values.

There are a number of functions attached to the Gas model object that make the

conversion to a list of mass fractions easy. Here is an extract from Umar’s standing-shock

script showing the creation of a fairly complex gas mix using a dictionary of mole fractions.

select_gas_model(model=’thermally perfect gas’,

species=[’O’, ’N’, ’N2’, ’O2’, ’NO’, ’N_plus’, ’O_plus’, ’N2_plus’,

’O2_plus’, ’NO_plus’, ’e_minus’, ’Ar’, ’Ar_plus’])

set_reaction_scheme("gupta_etal_air_reactions.lua", reacting_flag=1)

gmodel = get_gas_model_ptr()

Pre-shock gas: mass fractions for an ideal air mixture.

mi = {’N2’:0.769, ’O2’:0.231}

Post-shock: mole fractions from a CEA calculation.

X = {’O’:1.6936e-1, ’N’:5.9784e-1, ’N2’:6.9757e-5, ’O2’:4.7543e-8, ’NO’:2.5654e-3,

’N_plus’:9.6331e-2, ’O_plus’:1.7562e-2, ’N2_plus’:7.7688e-6, ’O2_plus’:5.0837e-8,

’NO_plus’:1.4459e-5, ’e_minus’:1.1436e-1, ’Ar’:4.0026e-3, ’Ar_plus’:4.4835e-4}

initial = FlowCondition(p=2700.0, u=0.0, v=0.0, T=300.0, massf=mi)

inflow = FlowCondition(p=4464.0, u=10284.0, v=0.0, T=10140.42,

massf=gmodel.to_massf(X))

35

6 Radiation transport model

The selection of a radiation transport model and the definition of its parameters is done

in a Lua file. The format for the Lua file describing the radiation transport model is

given in Appendix L. A radiation model is brought into an Eilmer3 simulation via the

select radiation model function:

select radiation model(input file=None, update frequency=1, scaling=True)

The input variables are:

input file The name of the Lua file with the radiation transport and spectral model

definitions (defaults to None)

update frequency Number of time steps between re-calculation of the radiation solution

(defaults to 1)

scaling Flag to request scaling of stored radiation solution based on density and tem-

perature for time steps where the radiation solution is not re-calculated due to the

update frequency being greater than 1 (defaults to True)

For example, the following entry in the Eilmer input script requests the radiative

source terms and heat fluxes to be recomputed every 100 time steps with scaling between

recomputed solutions and directs e3prep.py to the file rad-model.lua for the details of

the desired radiation transport and spectral modelling:

select radiation model(input file="rad-model.lua", update frequency=100,

scaling=True)

This setup of the radiation model would be appropriate for simulations that can be run

on a single processor in reasonable time (i.e. e3shared.exe is used to run the simulation

from beginning to end), or with radiation transport models that can be parallelised via

OpenMPI (e.g. optically thin or tangent slab models). For more computationally intensive

simulations, or when using the Monte–Carlo and Discrete Transfer models, it is desirable

36

to use the parallelised flowfield (e3mpi.exe) and radiation (e3rad.exe) solvers to enable

faster run times12. In this situation, the update frequency would be set to zero:

select radiation model(input file="rad-model.lua", update frequency=0,

scaling=True)

and the recalculation of the radiation field coordinated via running e3rad.exe (see

the description of the Rutowski hemisphere simulation in Sec. 48 for an example of this).

12The shuffling between e3mpi.exe and e3rad.exe is required for the Monte–Carlo and Discrete Trans-
fer models as they are not implemented in e3mpi.exe

37

7 Boundary representation of the gas domain

Most of the effort required to set up a simulation goes into defining the “body-fitted”

grid of finite-volume cells that completely fills the flow domain. The top-level geometry

description given to the grid generator is in terms of “patches” for 2D flow and “parametric

volumes” for 3D flow. These are regions of space that may be traversed by a set of

parametric coordinates 0 ≤ r < 1, 0 ≤ s < 1 (in 2D) and with the third parameter

0 ≤ t < 1 in 3D. These patches or volumes can be imported as VTK structured grids or

they can be constructed as a “boundary representation” from lower-dimensional geometric

entities such as paths and points.

7.1 Geometric elements

The most fundamental class of geometric object is the Vector13 which represents a point

in 3D space and has the usual behaviour of a geometric vector. This is in contrast to

the behaviour of the vector collection class in C++ standard library. See, for example,

the postprocessing program in the simple ramp simulation (Section 50.3) which uses both

Vector objects and lists of Vector objects. If you want a point to be rendered with a

label, you can define it as a Node. Examples of use include: a = Vector(x, y, z) and

b = Node(x, y, z, label=’B’). When building models of 2D regions, you can omit the

z-component value and it will default to zero.

It is possible to ’get’ and ’set’ values of attributes within a geometric element. For

example, to create a node, extract the x value of that node, change the y value, or to use

the geometry values for a new node, you could use the following commands.

a = Node(0.5,0.8,label=’Node a’)

x-value = a.x

a.y = 0.6

b = Node(a.x, a.y+0.2,label=’Node b’)

If you look into the file cfcfd3/lib/geometry2/source/geom.hh, you will see that

the Vector3 objects support the usual vector operations of addition, subtraction and the

like. Also, you can clone and transform a point. For example, to create a point and its

mirror image in the (x,z)-plane, you could use

a = Vector(0.5, 0.6)

13 The Vector objects are actually Vector3 objects, as defined in the C++ module libgeom2. Your
Python input script may use either name.

38

b = a.clone().mirror image(Vector(0.0,0.0), Vector(0.0,1.0))

7.1.1 Paths

The next level of dimensionality is the Path class. A path object is a parametric curve in

space, along which points can be specified via the single parameter 0 ≤ t < 1. Path is a

base class and a number of derived types of paths are available. These include:

• Line(a, b): a straight line between points a and b.

• Arc(a, b, c): a circular arc from a to b around centre, c. Be careful that you don’t

try to make an Arc with included angle of 180o or greater. For such a situation,

create two circular arcs and join as a Polyline path.

• Arc3(a, b, c): a circular arc from a through b to c. All three points lie on the arc.

• Arc3seg(a,b,c): a circular arc from a to b on the circular arc defined by points a, b

and c. The point c is not on the path.

• Ellipse(a, b, c): an elliptical line from point a to point b. Point c defines the tip

of the corner, where the two tangents of the ellipse from point a and b meet.

• Helix(a0, a1, xlocal, r0, r1, dθ): a helical path about a specified axis, start and end

radii and angle through which the path extends.

• Helix(p0, p1, a0, a1): a helical path through specified points and about a specified

axis. Internally, it is stored as the helical path described above.

• Bezier([b0, b1, ..., bn]): a Bezier curve from b0 to bn. Sometimes the curve may have

control points distributed such that the grid is not clustered in a good way. To fix

this, it may be useful to specfy the Bezier curve to be parameterized by arc length.

You need to specify all parameters, including the final arc_length_p parameter,

i.e. Bezier([b0, b1, ..., bn], “label”, 0.0, 1.0, 1). The 3rd and 4th parameters here

specify that we want to use the full range of the Bezier curve. The final value of

1 is the arc_length_p parameter. A value of 0 recovers the original parametric

distribution of the Bezier curve.

• Nurbs(CP [.], w[.],degree, U [.]): nonuniform rational B-spline with control points

vector CP [.], weights vector w[.], and knot vector U [.].

• Polyline([p0, p1, ..., pn]): a composite path made up of the segments p0, through

pn. The individual segments are reparameterised, based on arc length, so that

39

the composite curve parameter is 0 ≤ t < 1. Just as for the Bezier path, short

path segments mixed with large path segments may result in a grid that is not

clustered in a good way. It may, therefore, be useful to specfy the Polyline to be

fully parameterized by arc length. You need to specify all parameters, including

the final arc_length_p parameter, i.e. Polyline([p0, p1, ..., pn], “label”, 0.0, 1.0,

1). The 3rd and 4th parameters here specify that we want to use the full range of

the Polyline path.

• Polyline2(*args): a composite path constructed from path elements and/or Vector

points. If there are gaps between the elements and points, they will be filled with

Line segments.

• Spline([b0, b1, ..., bn]): a cubic spline from b0 through b1, to bn. A Spline is actually

a specialized Polyline.

• Spline2(filename): a spline constructed from a file containing x(, y(, z)) coordinates

of the interpolation points, one point per line. If the y or z values are missing, they

are assumed to be zero.

• PathOnSurface(S, fr, fs): a path on the ParametricSurface S(r, s), defined by the

univariate functions r = fr(t) and s = fs(t).

• PolarPath(P , H): A path in 3D space made from another path, P , such that the

neutral plane at height H is wrapped around a cylinder aligned with the x-axis.

• PyFunctionPath(f): a path defined by the user-supplied Python function, f(t).

The user function returns a tuple of three values representing the point in space for

parameter value t.

Geometric objects can be copied with the clone() method and most Path objects (ex-

cept PyFunctionPath) support the transformation methods translate(displacement),

reverse(), mirror image(point, normal) and

rotate about zaxis(radians). Look in the source code files gpath.hh and gpath.cxx

for details. These may be found in the directory cfcfd3/lib/geometry2/source/.

7.1.2 Surfaces

The ParametricSurface class represents two-dimensional objects which can be con-

structed from Path objects. These can be used as the ParametricSurface objects that

are passed to the Block2D constructor (Sec. 7.2) or they can be used to form the bounding

surfaces of a 3D ParametricVolume object (Sec. 7.1.3). Examples of the most commonly

used surface patches are:

40

• CoonsPatch(pS, pN , pW , pE, label="", r0=0.0, r1=1.0, s0=0.0, s1=1.0): a trans-

finite interpolated surface between the four paths. It is expected that the paths join

at the corners of the patch, such that pS(0) = pW (0) = p00, pS(1) = pE(0) = p10,

pN(0) = pW (1) = p01 and pN(1) = pE(1) = p11. See the left part of Figure 2 for the

layout of this surface. Note that, although we are using subscripts aligned with the

BOTTOM and TOP surfaces in this description, the same order is used for the other

surfaces when the local surface parametric directions are aligned with the relevant

index directions. See the debugging cube in Appendix D. Be aware that the order of

the supplied paths for each surface is (SOUTH, NORTH, WEST, EAST), which is

different to the order accepted by the make patch() function that is used to make

two-dimensional grids in the following section. Finally, it is important to be careful

with the orientation of the Path elements that form the patch boundaries. The

NORTH and SOUTH boundaries progress WEST to EAST as shown in Figure 2

(in the following section). The WEST and EAST boundaries progress SOUTH to

NORTH. If the e3prep.py program complains that the corners of your patch are

“open”, that may be a symptom of having one, or more, of your bounding paths

having incorrect orientation. The named arguments following the four paths each

have default values so you will usually not need to think about them, however, it is

occasionally convenient to specify a subsection of the full patch and the parameters

r0, r1, s0, s1 allow a subsection to be defined.

• CoonsPatch(p00, p10, p11, p01, label="", r0=0.0, r1=1.0, s0=0.0, s1=1.0): a

quadrilateral surface defined by it corners. Straight line segments (implicitly) join

the corners. This is convenient for building simple regions that can be tiled with

straight edged patches, since you don’t need to explicitly generate Lines to form

the edges of each patch. Note that the order for specifying the corners is counter-

clockwise, starting with the South-West corner.

• ChannelPatch(pS, pN , ruled=False, pure2D=False, label="", r0=0.0, r1=1.0,

s0=0.0, s1=1.0): an interpolated surface between two paths. By default, cubic

Bezier curves are used to bridge the region between the defining curves, resulting

in a grid that is orthogonal to those curves. Providing a True value for the ruled

parameter results in the bridging curves being straight line segments. If you are

integrating this patch into a larger construction, it may be convenient to obtain

the WEST and EAST bounding curves by calling the Patch’s make_bridging_path

method with arguments of 0.0 and 1.0, respectively. The argument for pure2D

may be set to True to set all z-coordinate values to zero for purely two-dimensional

constructions.

• AOPatch(pS, pN , pW , pE, label="", nx=20, ny=20, r0=0.0, r1=1.0, s0=0.0, s1=1.0):

41

an interpolated surface, bounded by four paths. When constructed, this surface sets

up a background mesh with resolution specified by nx and ny. The construction

method tries to keep the background mesh orthogonal near the edges and also tries

to keep equal cell areas across the surface. The background mesh is retained within

the AOPatch object and, if the AOPatch is later passed to the grid generator, the

final grid is produced by interpolating within this background mesh. The default

background mesh of 20 × 20 seems to work fairly well in simple situations. If the

bounding paths have strong curvature, it may be beneficial to increase the reso-

lution of the background mesh, so that the final interpolated mesh does not cut

across the boundary paths. This is especially important if the final grid lines are

clustered close to the boundaries. Setting a higher resolution of the background

mesh will require more iterations to reach convergence and you may actually see a

warning message that the iteration did not converge. Fortunately, an unconverged

background mesh is usually fine for use, because it starts as CoonsPatch mesh and

each iteration should just improve the metrics of orthogonality and distribution of

cell areas.

• AOPatch(p00, p10, p11, p01, label="", nx=20, ny=20, r0=0.0, r1=1.0, s0=0.0,

s1=1.0): a quadrilateral surface defined by it corners. Straight line segments (im-

plicitly) join the corners. Note that the order for specifying the corners is counter-

clockwise, starting with the South-West corner. The difference with the correspond-

ing CoonsPatch is that the background mesh, here, tries to be orthogonal to the

edges and maintain equal cell areas across the surface.

• make_patch(pN , pE, pS, pW , grid_type=’TFI’, tol=1.0e-6): an interpolated sur-

face, bounded by four paths. It actually returns either a CoonsPatch (TFI, by de-

fault) or an AOPatch object (grid_type=’AO’). The convenience that it provides is

in accepting the same order for the paths (i.e. N,E,S,W) as the other lists that are

used as arguments when constructing a Block2D object. Look ahead to Sec.7.2.

• PyFunctionSurface(f): a surface defined by the user-supplied Python function,

f(r, s). The user function returns a tuple of three values representing the point in

3D space for parameter values r and s. If you are trying to build a 2D simulation,

just return the z-coordinate as zero.

As listed below, there are more surface patch constructors, however, you will need to refer

to their source code for documentation.

• MeshPatch: a surface defined over a structured mesh of quadrilateral facets. This

might be useful for generating new grids from files imported from an external grid

generator.

42

• TrianglePatch: a surface defined over an unstructured mesh of triangular facets.

When the surface is really too complex to describe as a simpler form, this type of

surface can conform (approximately) to just about anything.

• BezierPatch: a surface defined over a tensor product of Bezier curves.

• RevolvedSurface(p): a surface defined by rotating Path p about the x-axis. When

calling the eval(r,s) method for this surface, the first parameter, r, is along the

path and the second parameter, s, is the angle in the (y, z)-plane.

• MappedSurface(Squery, Strue): points on the query surface are projected onto the

true surface. The final surface is a subset of the true surface. Usually the query

surface is something simple like a CoonsPatch that is close to the shape of the

desired grid and the true surface could be constructed as a RevolvedSurface which

is a bit difficult to grid regularly.

• PolarSurface(S, H): A surface in 3D space made from another surface, S, such

that the neutral plane at height H is wrapped around a cylinder aligned with the

x-axis.

• SurfaceThruVolume(V ,fr,fs,ft): a surface through the ParametricVolume V (r, s, t),

defined by the univariate functions r = fr(t), s = fs(t) and t = ft(t).

• NurbsSurface: a surface defined as the tensor product of non-uniform rational

B-splines.

Except for PyFunctionSurface, most of the surface objects can be cloned and trans-

formed with translate, mirror image and rotate about zaxis methods. Again, see

the source code for details.

7.1.3 Volumes

Finally, in its most general form, a ParametricVolume(SN , SE, SS, SW , ST , SB) can be

constructed from a set of six parametric surfaces to form a body-fitted hexahedral volume.

More restricted forms of a volume can be constructed as

• WireFrameVolume(p01, p12, p32, p03, p45, p56, p76, p47, p04, p15, p26, p37): is defined by its

12 edges (paths). Note the implied directions in the subscripts. The subscripts

correspond to the labelled points in Figure 8.

• WireFrameVolume(surf, p): consists of a surface surf extruded along path p. The

extrusion is actually done by forming a set of 6 surfaces by copying the original

surface and then constructing four CoonsPatch surfaces between them.

43

• SimpleBoxVolume(p0, p1, p2, p3, p4, p5, p6, p7): consists of a straight-edged hexahedral

box defined by its 8 corner points (as shown in Figure 8).

• MeshVolume: consists of a ParametricVolume interpolated in an existing mesh.

This mesh may be specified as an array of points or it may be read in from a VTK

file.

There is an alternative approach to defining the ParametricVolume via a user-supplied

Python function as

• PyFunctionVolume(f): a volume defined by the user-supplied Python function,

f(r, s, t). The user function returns a tuple of three values representing the point in

3D space for parameter values r, s and t.

Again, transform methods such as translate and rotate about zaxis may help in

reducing the amount of user input script required to build complex regions out of multiple

ParametricVolume objects.

7.2 Two-dimensional grids

The grid defining the discretized gas domain is block structured. In 2D, each block is

a patch bounded by 4 edges (NORTH, EAST, SOUTH and WEST) such that we are

looking at a plan-view of the flow domain as shown in Fig. 2.

To define a block in your input script for a 2D simulation, create a Block2D object as:

my 2d block = Block2D(psurf=None, grid=None,

import grid file name=None, nni=2, nnj=2,

cf list=[None,]*4, bc list=[SlipWallBC(),]*4,

transient profile faces=[],

fill condition=None, hcell list=[],

xforce list=[0,]*4, label="", active=1)

where the assignment to the name my 2d block allows easy referencing of the block at

later times, say, for adding boundary conditions. The names of the actual arguments given

above match the actual arguments in the e3prep.py program and these represent14:

• psurf: a region of 2D space bounded by 4 edges. Any flat ParametricSurface

object (from Sec. 7.1.2) should work. This region is often constructed from 4 ge-

ometric paths via a call to make patch(north, east, south, west, grid type)

where the default value for grid type is “TFI” i.e. transfinite interpolation or

Coons’ patch. Another possible form of grid is “AO”, the area-orthogonality grid.

14The definitive source is, of course, the Block2D class definition in e3 block.py.

44

SOU
TH

NO
RT
H

EAST

WEST

p00

p10

p11

p01

i

j

x

y

SOU
TH

NO
RT
H

EAST

WEST

p00

p10

p11

p01

x

y

[0]
[0]

[1][0
][0]

[1]

[1][
1]

[0
][2
]

[1][
2]

Figure 2: A two-dimensional patch containing the structured mesh for a Block2D ob-
ject (left) and a collection of sub-blocks defined via a SuperBlock2D or MultiBlock2D
constructor (right). The orientations of the bounding paths are important: WEST and
EAST paths progress from SOUTH to NORTH; SOUTH and NORTH paths progress
from WEST to EAST.

Sometimes, if the blocks are straight-sided quadrilaterals, it will be convenient to

define them just with the corner points. For this case, constructing CoonsPatch

and AOPatch objects directly from the corner points may be convenient. Providing

a constructed ParametricSurface is the usual way of specifying the flow domain,

which will be discretized using nni, nnj, and cf list. Note that all geometric

elements should have zero values for their z-components when doing a 2D flow simu-

lation. Since most constructors will have a default value of zero for the z-component,

this detail can usually be ignored.

• grid: a StructuredGrid object may be supplied (defaults to None).

• import grid file name defaults to None. If a name is supplied, this file is read

to obtain the grid directly. The assumed file format in the legacy (ASCII) VTK

format for a structured grid.

• nni is the number of finite-volume cells in the i-index direction. See the left part of

Figure 2 for the orientation of the index. Note that, when placing one block against

another, the blocks must conform in

– the number of cells along corresponding edges

45

– the clustering of those cells along the edges

– the path defining the corresponding edges.

The minimum number of cells is 2, because of the way that the cell-interface values

are reconstructed from cell-centred data.

• nnj is the number of finite-volume cells in the j-index direction.

• cf list is an optional list of 4 UnivariateFunction objects that specify a (pos-

sibly) nonuniform distribution of cells along each particular edge. For each object,

there is an eval(t) method which returns a transformed (new) value of t. The

options available are:

– LinearFunction(m, c) where tnew = m× told + c.

– LinearFunction2(y0, y1) where tnew = y0× (1− told) + y1× told.

– RobertsClusterFunction(end0, end1, beta) where the end0, end1 inte-

ger flags indicate which end (possibly both) we wish to cluster toward. The

value of beta > 1.0 specifies the strength of the clustering, with the clustering

being stronger for smaller values of beta. For example, a value of 1.3 would

be relatively weak clustering while a value of 1.01 is quite strong clustering.

– HypertanClusterFunction(dL0,dL1) sets the size of the first and last cell

along a given line as a faction of the non-clustered cell size. Setting dL0 = 0.5;

dL1 = 1 results in the first cell having half the width and the last cell having

the same width as the non-clustered cell.

– ValliammaiFunction(dL0, dL1, L, n) See Adriaan’s source code for defini-

tions.

For a graphical representation of the effect of these functions, see Fig. 3. See the files

lib/nm/source/fobject.cxx and lib/nm/source/fobject.hh for details. The

order of appearance of boundaries in the list is NORTH, EAST, SOUTH and WEST.

Note that a full list of 4 items is required. If you don’t want to specify one (or more)

of the items in the list, specify None as that item.

• bc list is an optional list of BoundaryCondition objects, as described in Section 8.

You may omit this list completely, or pass None as any of the items. Omitted

boundary conditions default to a solid, slip-wall condition. These boundary con-

ditions may also be set at a later point in your input script, one at a time, either

by assigning to individual elements of the the block’s cf list attribute or via the

set BC() method call described in the Section 8.1. Sometimes, this turns out to be

handy.

46

• fill condition is the FlowCondition object with which to define the initial flow

state within the volume. See Section 5 for defining a suitable flow condition. You

may alternatively provide a Python function that supplies the flow properties as a

function of position or you may use an ExistingSolution() object.

• hcell list is a list of (i, j)-tuples specifying which cells should be monitored at

simulation time. Data from the specified cells will be written to a “history” file for

the block and may be used at the postprocessing stage to provide flow data as if there

was a sensor located in the cell. See also the HistoryLocation object, described in

Sec. 9, which may be specified separately from the the Block2D construction and is

used to locate a history cell based on a Cartesion coordinate position in the domain

rather than an i, j cell location.

• transient profile faces is an optional (unordered) list of block faces for which

we want transient flow data to be written. The frequency of writing the data is the

same as that for the history cells mentioned above. The particular faces may be

identified by index or by string. For example, to have the flow data for the NORTH

face to be written, we may specify 0, "north" or NORTH as one of the entries in the

list.

• xforce list is an optional list of zeros/ones that indicate if we want the force to

be calculated for each of the four edges and written to the e3shared.log log file.

See the notes in the 20o cone test case (Section 12) for an example of how to extract

this data from the log file.

• label is an optional text label for the block. This label will be embedded in the

block definition and some of the postprocessing programs may use it. For exam-

ple, the e3cgns.py postprocessing program uses labels to group block boundaries

symbolically.

Note that, when lists of items are provided for the four boundaries, the order of the bound-

aries is NORTH, EAST, SOUTH and WEST, for situations where order is significant.

When defining large domains and running simulations of a parallel computer, it may

be convenient to define many Block2D objects with one call. The first of two constructors

for this situation is

my block list = SuperBlock2D(psurf=None, nni=2, nnj=2, nbi=1, nbj=1,

cf list=[None,]*4, bc list=[SlipWallBC(),]*4,

fill condition=None, hcell list=[],

transient profile faces=[], label="sblk")

47

Figure 3: Graphical representation of effect the cluster functions on a one-dimensional
grid.

which generates a single grid over psurf and then subdivides that grid into nbi × nbj

Block2D sub-blocks. References to all of these sub-blocks are returned as a list of lists,

such that a particular sub-block may be obtained as my block list.blks[i][j]. The

second constructor is

my block list = MultiBlock2D(psurf=None, nni=None, nnj=None,

bc list=[SlipWallBC(),]*4,

nb w2e=1, nb s2n=1, nn w2e=None, nn s2n=None,

cluster w2e=None, cluster s2n=None,

fill condition=None, label="blk")

which first subdivides the parametric patch into sub-patches and then generates an indi-

vidual grid over each sub-patch. Here, a set of nb w2e × nb s2n sub-blocks are generated

and, if lists of integers are provided for nn w2e and nn s2n, these will be used as the

numbers of cells along the edges of the sub-blocks. If these lists are not supplied, nni ×
nnj cells will be divided across the sub-blocks. In both of these constructors, the interior

boundaries for the sub-blocks are connected (as AdjacentBC boundary conditions).

When assembling large numbers of blocks for complex geometries, there is a function

identify block connections(block list=None, exclude list=[],

tolerance=1.0e-6)

that performs a brute-force search for all adjacent blocks and sets AdjacentBC boundary

conditions for pairs of edges that have coinciding corners (to within a given tolerance).

48

If you don’t want the search to be over all blocks generated so far, supply a list to the

block list argument. Alternatively, supply a list for blocks that should be excluded.

In some situations, you may want to manually connect particular blocks. You can use

the function

connect blocks 2D(A, faceA, B, faceB, with udf=0, filename=None,

is wall=0, sets conv flux=0, sets visc flux=0,

check corner locations=True,

reorient vector quantities=False,

nA=None, t1A=None, nB=None, t1B=None)

where A and B are references to the individual Block2D objects and faceA and faceB are

their adjoining edges (NORTH, EAST, SOUTH or WEST).

By default, the function checks that the adjoining corners of the blocks do coincide in

space. If they don’t, a warning is issued. Usually, this is what you want, however, there

are times when you really do wish to connect the flow for boundaries that are not actually

coincident in space. For an example, see the periodic shear-layer in Sec. 39, where the ends

of a periodic domain are manually connected. Setting check corner locations=False

turns off the check on corner locations.

To handle connections where the boundaries are not aligned, you may specify

reorient vector quantities=True and supply nominal vectors for each boundary’s unit

normal and first tangent. These nominal vector bases are used to define a rotational

transformation for the vector flow quantities (i.e. velocity and magnetic field) that are

exchanged between the boundaries. Such a transformation is useful for turbomachin-

ery flows, where only a sector of the full flow field is being simulated and an assumed

circumferential periodicity fills in the remaining detail.

Most of the time you can just ignore the default arguments associated with user-defined

functions (i.e. with udf, filename, is wall, sets conv flux, sets visc flux). These

are used to implement slowly-opening diaphragms and the like.

7.3 Putting a 2D description together

As a motivational example, especially for MECH4480 students of CFD, consider the

construction of a grid around a bottle of James Boag’s Premium. Figure 4 shows the final

block arrangement with the bottle lying on its side. You can see the profile of the bottle

in the curves from x=0 to x=0.2 metres. We model only the upper half plane, with the

gas domain being the region around the bottle. Also, we’ll do the modelling in stages,

starting with a single block defining a limited subregion.

49

x

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

y

0

0.05

0.1

A B

C

D

E F

G H

I J K L M

N

CD-b1

DJ-b1

GF-b1DE-b1
DE-b2

DE-b3

[0]

S
LI
P
_W

A
LL

[1]

SLIP_WALL

[2]

SLIP_WALL

SLIP_WALL

[3]

SLIP_WALL

SLIP_WALL

[4]

SLIP_WALL

S
LI
P
_W

A
LL

[5]

SLIP_WALL

Figure 4: Schematic diagram of Ingo’s beer bottle aligned with the x-axis. This PDF
figure was generated from the SVG file with some edits to move the boundary labels to
nicer positions.

Making a simple 2D grid

We start with just block [3] above the main body of the bottle and define just the 4 nodes

E,F,K and L that mark the corners of our region of interest (Figure 5). These are created

as Nodes with labels so that they show up in the generated SVG plot. A simple way to

define the region is to make a patch with the four sides specified as staight-line paths.

The Block2D is initialized with this patch, the number of cells in each direction and the

initial gas state within the region.

the_minimal_grid.py

select_gas_model(model=’ideal gas ’, species=[’air ’])

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

Create the nodes that define key points for our geometry.

E = Node (0.1, 0.03, label="E"); F = Node (0.202 , 0.03, label="F")

K = Node (0.1, 0.1, label="K"); L = Node (0.202 , 0.1, label ="L")

p = make_patch(Line(K,L), Line(F,L), Line(E,F), Line(E,K))

BL_3 = Block2D(p, nni=20, nnj=20, fill_condition=initial , label ="[3]")

Make a nicely -scaled SVG file at the end.

sketch.xaxis (0.1, 0.2, 0.05, -0.010)

sketch.yaxis (0.0, 0.1, 0.05, -0.030)

sketch.window (0.1, 0.0, 0.2, 0.1, 0.05, 0.05, 0.10, 0.10)

Making a multiblock grid

When making a flow domain that is reasonably complicated, it’s probably best to make

a collection of blocks where each block is roughly a quadrilateral, but with the bounding

paths fitted to the curves of the object to be modelled. Figure 6 shows the resulting grid,

50

x
0.1 0.15 0.2

y

0

0.05

0.1

E F

K L

[3]

SLIP_WALL

S
LI
P
_W

A
LL

SLIP_WALL

S
LI
P
_W

A
LL

Figure 5: A single block for a simple subregion from the eventual model of the Ingo’s beer
bottle.

after dividing the full gas-flow region into 6 blocks.

the_plain_bottle.py

select_gas_model(model=’ideal gas ’, species=[’air ’])

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

Create the nodes that define key points for our geometry.

A = Node (-0.07, 0.0, label ="A"); B = Node(-0.05, 0.0, label="B")

C = Node (0.0, 0.0, label="C"); D = Node (0.005 , 0.012, label="D")

E = Node (0.1, 0.03, label="E"); F = Node (0.202 , 0.03, label="F")

G = Node (0.207 , 0.0, label ="G"); H = Node (0.3, 0.0, label ="H")

I = Node (-0.07, 0.1, label ="I"); J = Node(-0.05, 0.1, label="J")

K = Node (0.1, 0.1, label="K"); L = Node (0.202 , 0.1, label ="L")

M = Node (0.3, 0.1, label="M"); N = Node (0.3, 0.03, label="N")

Some interior Bezier control points

CD_b1 = Node (0.0, 0.006 , label="CD-b1")

DJ_b1 = Node (-0.008, 0.075, label ="DJ -b1")

GF_b1 = Node (0.207 , 0.027, label="GF-b1")

DE_b1 = Node (0.0064 , 0.012, label ="DE -b1")

DE_b2 = Node (0.0658 , 0.0164 , label ="DE-b2")

DE_b3 = Node (0.0727 , 0.0173 , label ="DE-b3")

Now , we join our nodes to create lines that will be used to form our blocks.

AB = Line(A, B); BC = Line(B, C); GH = Line(G,H) # lower boundary along x-axis

CD = Bezier ([C, CD_b1 , D]) # top of bottle

DE = Bezier ([D, DE_b1 , DE_b2 , DE_b3 , E]) # neck of bottle

EF = Line(E, F) # side of bottle

GF = Bezier ([G, GF_b1 , F],"GF" ,0.0,1.0,1) # bottom , with arc -length parameterization

Upper boundary of domain

IJ = Line(I, J); JK = Line(J, K); KL = Line(K, L); LM = Line(L, M)

Lines to divide the gas flow domain into blocks.

AI = Line(A, I); BJ = Line(B, J); DJ = Bezier ([D, DJ_b1 , J])

JD = DJ.copy(direction =-1); EK = Line(E, K); FL = Line(F, L);

NM = Line(N, M); HN = Line(H, N); FN = Line(F, N)

Define the blocks , boundary conditions and set the discretisation.

n0 = 10; n1 = 4; n2 = 20; n3 = 20; n4 = 20; n5 = 12; n6 = 8

BL_0 = Block2D(make_patch(IJ , BJ, AB, AI), nni=n1, nnj=n0,

fill_condition=initial , label ="[0]")

BL_1 = Block2D(make_patch(JD , CD, BC, BJ), nni=n2, nnj=n0,

fill_condition=initial , label ="[1]")

BL_2 = Block2D(make_patch(JK , EK, DE, DJ), nni=n3, nnj=n2,

fill_condition=initial , label ="[2]")

BL_3 = Block2D(make_patch(KL , FL, EF, EK), nni=n4, nnj=n2,

51

fill_condition=initial , label ="[3]")

BL_4 = Block2D(make_patch(LM , NM, FN, FL), nni=n5, nnj=n2,

fill_condition=initial , label ="[4]")

BL_5 = Block2D(make_patch(FN , HN, GH, GF), nni=n5, nnj=n6,

fill_condition=initial , label ="[5]")

identify_block_connections ()

Make a nicely -scaled SVG file at the end.

sketch.xaxis(-0.1, 0.3, 0.05, -0.05)

sketch.yaxis (0.0, 0.10, 0.05, -0.01)

sketch.window (-0.1, 0.0, 0.3, 0.4, 0.02, 0.05, 0.20, 0.23)

Figure 6: A multiple-block model of the region around Ingo’s beer bottle.

Each of the blocks is generated independently of the others. It is your responsibility to

ensure that the common defining edges are consistent and that the cell-discretization along

each of these edges is consistent with the corresponding discretization of any adjacent edge

of another block. The first constraint is easy to meet by defining each edge once only

and reusing that path in the definition of different blocks. Sometimes, the orientation

of a pair of blocks and the particular directions of the paths within each block means

that one defining edge needs to be in the opposite sense to the original. In this case the

clone() and reverse() methods may be useful. The script actually uses the equivalent

copy(direction=-1) method call. For an example of this, note the orientation of blocks

1 and 2 in the script and study the patches that are used in their construction. Note

that the line DJ has been copied and reversed and called JD so that it can serve as a

NORTH boundary for block 1. The line DJ is oriented such that it can be used as a WEST

boundary for block 2.

52

Improving the grid with clustering

We can now tweak the grid and improve the distribution and shape of the cells by adjusting

the clustering of the points along each of the block edges. See Figure 7 for the result of

the following script. The partular values used for the strength of the clustering are ad-hoc

and some trial and error has been used to get these particular values.

Again, the distribution of points along each edge of each block is computed indepen-

dently, so it is the responsibility of the user to ensure that the cells along the correspond-

ing edges of adjoining blocks are aligned. This will require the use of matching clustering

functions on these edges.

the_clustered_bottle.py

select_gas_model(model=’ideal gas ’, species=[’air ’])

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

Create the nodes that define key points for our geometry.

A = Node (-0.07, 0.0, label ="A"); B = Node(-0.05, 0.0, label="B")

C = Node (0.0, 0.0, label="C"); D = Node (0.005 , 0.012, label="D")

E = Node (0.1, 0.03, label="E"); F = Node (0.202 , 0.03, label="F")

G = Node (0.207 , 0.0, label ="G"); H = Node (0.3, 0.0, label ="H")

I = Node (-0.07, 0.1, label ="I"); J = Node(-0.05, 0.1, label="J")

K = Node (0.1, 0.1, label="K"); L = Node (0.202 , 0.1, label ="L")

M = Node (0.3, 0.1, label="M"); N = Node (0.3, 0.03, label="N")

Some interior Bezier control points

CD_b1 = Node (0.0, 0.006 , label="CD-b1")

DJ_b1 = Node (-0.008, 0.075, label ="DJ -b1")

GF_b1 = Node (0.207 , 0.027, label="GF-b1")

DE_b1 = Node (0.0064 , 0.012, label ="DE -b1")

DE_b2 = Node (0.0658 , 0.0164 , label ="DE-b2")

DE_b3 = Node (0.0727 , 0.0173 , label ="DE-b3")

Now , we join our nodes to create lines that will be used to form our blocks.

AB = Line(A, B); BC = Line(B, C); GH = Line(G,H) # lower boundary along x-axis

CD = Bezier ([C, CD_b1 , D]) # top of bottle

DE = Bezier ([D, DE_b1 , DE_b2 , DE_b3 , E]) # neck of bottle

EF = Line(E, F) # side of bottle

GF = Bezier ([G, GF_b1 , F],"GF" ,0.0,1.0,1) # bottom , with arc -length parameterization

Upper boundary of domain

IJ = Line(I, J); JK = Line(J, K); KL = Line(K, L); LM = Line(L, M)

Lines to divide the gas flow domain into blocks.

AI = Line(A, I); BJ = Line(B, J); DJ = Bezier ([D, DJ_b1 , J])

JD = DJ.copy(direction =-1); EK = Line(E, K); FL = Line(F, L);

NM = Line(N, M); HN = Line(H, N); FN = Line(F, N)

Define the blocks , boundary conditions and set the discretisation.

n0 = 10; n1 = 4; n2 = 20; n3 = 20; n4 = 20; n5 = 12; n6 = 8

rcfL = RobertsClusterFunction (1, 0, 1.2)

rcfR = RobertsClusterFunction (0, 1, 1.2)

BL_0 = Block2D(make_patch(IJ , BJ, AB, AI), nni=n1, nnj=n0,

fill_condition=initial , label ="[0]")

BL_1 = Block2D(make_patch(JD , CD, BC, BJ), nni=n2, nnj=n0,

cf_list =[RobertsClusterFunction (0, 1, 1.1),None ,rcfR ,None],

fill_condition=initial , label ="[1]")

BL_2 = Block2D(make_patch(JK , EK, DE, DJ), nni=n3, nnj=n2,

cf_list =[rcfR ,None ,None ,RobertsClusterFunction (1, 0, 1.1)] ,

fill_condition=initial , label ="[2]")

BL_3 = Block2D(make_patch(KL , FL, EF, EK), nni=n4, nnj=n2,

fill_condition=initial , label ="[3]")

BL_4 = Block2D(make_patch(LM , NM, FN, FL), nni=n5, nnj=n2,

cf_list =[rcfL ,None ,rcfL ,None],

fill_condition=initial , label ="[4]")

53

BL_5 = Block2D(make_patch(FN , HN, GH, GF), nni=n5, nnj=n6,

cf_list =[rcfL ,None ,rcfL ,None],

fill_condition=initial , label ="[5]")

identify_block_connections ()

Make a nicely -scaled SVG file at the end.

sketch.xaxis(-0.1, 0.3, 0.05, -0.05)

sketch.yaxis (0.0, 0.10, 0.05, -0.01)

sketch.window (-0.1, 0.0, 0.3, 0.4, 0.02, 0.05, 0.20, 0.23)

Further improvement of the grid can be made by introducing a layer of blocks around

the bottle surface, so that the cells near the surface can be made always nearly orthogonal

and much more finely clustered toward the surface. The extra blocks add to the complexity

of the input script but provide some decoupling with respect to cell number along block

edges and allow the fine clustering of cells toward the bottle surface without greatly

increasing the cell refinement in other parts of the gas-flow region. Such a grid would be

suited to simulations of viscous flows.

Figure 7: An improved multiple-block grid around Ingo’s beer bottle.

7.4 Three-dimensional grids

In 3D, life is just that bit more complicated with each block defined by 6 surfaces (NORTH,

EAST, SOUTH, WEST, TOP and BOTTOM) fitted to the actual surfaces of the domain.

Figure 8 shows the “index-space” view with cell indices i,j and k taking values 0 ≤ i < nni,

0 ≤ j < nnj and 0 ≤ k < nnk respectively.15 The corner vertices of the block are num-

bered 1 through 7 as shown. These points are used in the search to determine block

15 The i, j and k indices are related to the r, s and t parameters used within the 3D geometric
functions. In some places, the corner points are identified by their (r, s, t) coordinates. For example, in
the simple-ramp postprocessing script (section 50.3), point 0 would be identified as p000, point 1 as p100,
etc.

54

connectivity if the flow domain is defined as consisting of more than one block. Subdivid-

ing a complex flow domain into simpler subdomains is often done because the mapping

from parametric space to physical space is limited to a simple transfinite interpolation.

To assist in understanding the orientation of the corners, surfaces and indices, you can

build a model block from the development plan in Appendix D. This should bring back

fond memories of kindergarten and primary school, at least it did for us.

BOTTOM

TOP

EASTNORTH

i
j

k

0

1

2

3

4

5

6

7

BOTTOM

TOP

WESTSOUTH

i
j

k

0

1

2

3

4

5

6

7

Figure 8: Two views of the hexahedral block containing the structured mesh. These
figures are ambiguous but each is supposed to show a hollow box with the far surfaces in
each view being labelled. The near surfaces are transparent and unlabelled. To get your
hands on an unambiguous representation, build the debugging cube drawn in Appendix D
.

To define a block in your input script, create a Block3D object as:

my 3d block = Block3D(parametric volume=None, grid=None,

import grid file name=None,

nni=None, nnj=None, nnk=None,

cf list=[None,]*12, bc list=[SlipWallBC(),]*6,

fill condition=None, hcell list=None,

transient profile faces=[], xforce list=[0,]*6,

label="", active=1, omegaz=0.0)

where the assignment to the name my 3d block allows easy referencing of the block at

later times, say, for adding boundary conditions. The names of the actual arguments given

above match the actual arguments in the e3prep.py program and these represent16:

16Again, the definitive source is, of course, the Block3D class definition in e3 block.py.

55

• parametric volume: a region of 3D space bounded by 6 surfaces. This is the usual

way of specifying the flow domain, which will be discretized using nni, nnj, nnk

and cf list. See the following section for a guide to constructing parametric volume

objects.

• grid: a StructuredGrid object may be supplied (defaults to None).

• import grid file name defaults to None. If a name is supplied, this file is read

to obtain the grid directly. The assumed file format in the legacy (ASCII) VTK

format for a structured grid. There is also an external tool (p2e.py) that can be

used to convert Plot3D format files to Eilmer’s native format.

• nni is the number of finite-volume cells in the i-index direction as shown in Figure 8.

This is only used when diecretizing a parametric volume. When importing or

supplying a grid, this data (nni, nnj and nnk) is ignored. Note that, when placing

one block against another, the blocks must conform in

– the number of cells along corresponding edges

– the clustering of those cells along the edges

– the path defining the corresponding edges.

• nnj is the number of finite-volume cells in the j-index direction.

• nnk is the number of finite-volume cells in the k-index direction.

• cf list is a list of Function objects that specify a (possibly) nonuniform distribu-

tion of cells along a particular edge of the parametric volume. The order of the

edges is shown in Table 1. See page 46 for a more complete description of the cluster

functions.

• bc list is an optional list of BoundaryCondition objects for the six bounding sur-

faces (NORTH, EAST, SOUTH, WEST, TOP, BOTTOM). Available boundary conditions

are the same as for Block2D objects and is given in Section 8. Again, omitted con-

ditions or those specified as None default to solid, no-slip walls.

• fill condition is the FlowCondition object with which to define the initial flow

state within the volume. See Section 5 for defining a suitable flow condition. This

may also be a callable function that supplies the flow properties as a function of

position.

• hcell list is a list of (i, j, k)-tuples specifying which cells should be monitored at

simulation time. Data from the specified cells will be written to a “history” file for

the block and may be used at the postprocessing stage to provide flow data as if

there was a sensor located in the cell.

56

Table 1: Directions for the edges of a Block3D object.

edge from point to point comment
0 p0 p1 i-direction, bottom surface
1 p1 p2 j-direction, bottom surface
2 p3 p2 i-direction, bottom surface
3 p0 p3 j-direction, bottom surface
4 p4 p5 i-direction, top surface
5 p5 p6 j-direction, top surface
6 p7 p6 i-direction, top surface
7 p4 p7 j-direction, top surface
8 p0 p4 k-direction
9 p1 p5 k-direction
10 p2 p6 k-direction
11 p3 p7 k-direction

• transient profile faces is an optional (unordered) list of block faces for which

we want transient flow data to be written. The frequency of writing the data is the

same as that for the history cells mentioned above. The particular faces may be

identified by index or by string. For example, to have the flow data for the NORTH

face to be written, we may specify 0, "north" or NORTH as one of the entries in the

list.

• xforce list is an optional list of zeros/ones that indicate if we want the force to

be calculated for each of the six surfaces and written to the e3shared.log log file.

The order of the boundaries is the same as for bc list.

• label is an optional text label for the block. This label will be embedded in the

block definition and some of the postprocessing programs may use it.

• omegaz is the rotational speed of the volume about the z-axis. This parameter is

non-zero only for rotating components of the turbomachine grids.

To manually connect particular Block3D objects, you can use the function

connect blocks 3D(A, B, vtx pairs, with udf=0, filename=None,

is wall=0, sets conv flux=0, sets visc flux=0)

where A and B are references to the individual Block3D objects and vtx pairs is a list

of 4 pairs (tuples) of vertex indices. For example, the list [(3,2),(7,6),(6,7),(2,3)]

specifies a NORTH-to-NORTH connection with orientation 0. The definitions of all allowable

connections is listed near the top of the file e3 block.py. You will see that there are

many more combinations in 3D compared with 2D.

57

As for the 2D grids, there are two composite-block generation functions. The first

takes a volume, grids it and then subdivides the newly generated grid:

my 3d block = SuperBlock3D(parametric volume=None, cf list=[None,]*12,

fill condition=None,

nni=2, nnj=2, nnk=2,

nbi=1, nbj=1, nbk=1,

bc list=[SlipWallBC(),]*6,

hcell list=None,

transient profile faces=[],

omegaz=0.0, label="sblk")

where nbi, nbi and nbk are the number of basic blocks in each of the index directions.

The values for nni, nnj and nnk specify the number of cells for the grid generated over

the whole volume. The second composite block takes a volume, subdivides that volume

and then generates a separate grid within each subvolume:

my 3d block = MultiBlock3D(parametric volume=None,

fill condition=None,

nni=None, nnj=None, nnk=None,

nbi=1, nbj=1, nbk=1,

clusteri=None, clusterj=None, clusterk=None,

bc list=[SlipWallBC(),]*6, label="blk",

hcell list=None, omegaz=0.0)

Here, nni, nnj and nnk may be integer values or lists of integer values. If they are simple

integers, they represent the number of cells over the whole volume. If they are lists of

integers, they specify the number of cells each of the subblocks. The clusteri, clusterj

and clusterk may be lists of cluster functions that get applied to the subblocks in the

respective index directions.

Note the the composite-block objects contain a member blks that refers to the list of

basic blocks that form the composite block. Any further setting of boundary conditions,

and the like, needs to be done to the individual blocks within this list. See the input

script for the finite-cylinder case (on page 356) for an example of this.

When assembling large numbers of blocks for complex geometries, the function

identify block connections(block list=None, exclude list=[],

tolerance=1.0e-6)

also works for 3D blocks. As for 2D blocks, it performs a brute-force search for all adjacent

blocks and sets AdjacentBC boundary conditions for pairs of faces that have coinciding

58

corners (to within a given tolerance). The rotational orientation of the joined faces is also

determined automatically. If you don’t want the search to be over all blocks generated so

far, supply a list to the block list argument. Alternatively, supply a list for blocks that

should be excluded.

Be aware that the identify block connections() function is unaware of the form

of the actual paths or surfaces connecting the corner points. It may be that the corners

coincide but the paths and surfaces do not conform. If you want more control over the pro-

cess of joining blocks, you can manually connect blocks using the connect blocks 3D()

function which makes the logical connection without looking at the geometric locations

of the corners. This situation might arise, for example, when you want to apply periodic

boundary conditions in the cross-stream direction of a flow domain. Then, the boundaries

that you want to connect have corners and faces that really don’t coincide.

8 Specifying flow conditions at block boundaries

The preferred way to set boundary conditions is to assign specific BoundaryCondition

objects to the bc_list within each constructed Block2D or Block3D object. Back in

Sections 7.2 and 7.4, it was shown that the boundary conditions could be specified as

a list of BoundaryCondition objects passed to the constructor of Block2D or Block3D

objects, respectively. You have to provide a list with the correct number of entries, which

is 4 for 2D blocks and 6 for 3D blocks. If you don’t have a particular BoundaryCondition

object for each element of the list, just specify None for the missing entries.

Alternatively, BoundaryCondition objects can be assigned individually to elements of

the bc_list attribute after block construction. For example:

blk_0.bc_list[WEST] = SupInBC(inflow, label="inflow-boundary")

blk_1.bc_list[EAST] = ExtrapolateOutBC(label="outflow-boundary")

Available boundary condition classes include:

• AdjacentBC(other_block=-1, other_face=-1, orientation=0,

reorient_vector_quantities=False,

Rmatrix=[1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0], label=’’)

Usually this boundary condition is applied implicitly, by calling the function

identify_block_connections(), for cases where one block interfaces with another

and the block boundaries are cleanly aligned, however, it can be applied manually

for cases where you want the flow to be plumbed from on block face into another

and the blocks are not geometrically aligned. A non-unity transformation matrix,

Rmatrix, can be provided for cases where the flow vector quantities need to be

reoriented when they are copied from the other boundary to this one.

59

• SupInBC(inflow_condition, label=’’) where we want to specify the inflow con-

dition that gets copied into the ghost cells each time step. The optional label has

an empty default value but may be used to group boundary surfaces symbolically

in the postprocessing stage. Paul Petrie-Repar has made use of these labels in his

CGNS postprocessing program.

• ExtrapolateOutBC(x_order=0, sponge_flag=0, label=’’) where we want a (mostly

supersonic) outflow condition. Flow data is effectively copied (x_order=0) or linearly-

extrapolated (x_order=1) from just inside the boundary to the ghost cells just out-

side the boundary, every time step. In subsonic flow, this can lead to unphysical

bahaviour.

• SlipWallBC(label=’’) where we want a solid wall with no viscous effects. This is

the default boundary condition where no other condition is specified.

• AdiabaticBC(label=’’) where we want viscous effects to impose no-slip at the wall

but where there is no heat transfer. Note that we need to set gdata.viscous_flag = 1

(see Section 10, Viscous effects) to make this boundary condition effective.

• FixedTBC(Twall, label=’’) where we want viscous effects to impose a no-slip ve-

locity condition and a fixed wall temperature. As for the AdiabaticBC, we need to

set gdata.viscous_flag = 1 (see Section 10, Viscous effects) to make this bound-

ary condition effective.

• JumpWallBC(Twall, sigma, label=’’) where we want viscous effects to impose

a partial-slip velocity condition and temperature that approaches a specified wall

temperature, subject to the limitation of rarefied-gas effects. This limitation is spec-

ified via the accommodation coefficient, sigma. As for the FixedTBC, we need to set

gdata.viscous_flag = 1 (see Section 10, Viscous effects) to make this boundary

condition effective.

• SubsonicInBC(stagnation_condition,

mass_flux=0.0, relax_factor=0.05, p0_min=None, p0_max=None,

direction_type=’normal’, direction_vector=[1.0,0.0,0.0],

direction_alpha=0.0, direction_beta=0.0, label=’’)

The flow is assumed subsonic and we specify the stagnation pressure and tem-

perature and a velocity direction at the boundary. When applied at each time

step, the average local pressure across the block boundary is used with the stag-

nation conditions to compute a stream-flow condition. Depending on the value

for direction_type, the computed velocity’s direction can be set ’normal’ to

the local boundary, ’uniform’ in direction and aligned with direction_vector,

’radial’ in through a cylindrical surface using flow angles direction_alpha and

60

direction_beta, or ’axial’ in through a circular surface using the same flow an-

gles. For the case with a nonzero value specified for mass_flux, the current mass

flux (per unit area) across the block face is computed and the nominal stagnation

pressure is incremented such that the mass flux across the boundary relaxes toward

the specified value. The value for relax_factor adjusts the rate of convergence for

this feedback mechanism. If this process drives the stagnation pressure to unreason-

ably small or large values while the flow is settling, you may set the limits p0_min

and p0_max to indicate what is physically realizable for your modelling situation.

Also note, that for multi-temperature simulations, all of the temperatures are set to

the 0th entry in the temperature array. This should usually be a reasonable physical

approximation because this boundary condition is typically used to simulate inflow

from a reservoir, and stagnated flow in a reservoir has ample time to equilibriate

at a common temperature. The implementation of this boundary condition may

not be time accurate, particularly when large waves cross the boundary, however, it

tends to work well in the steady-state limit.

• TransientUniBC(filename, label=’’) where we want to specify the time-history

of the inflow condition. It is most likely used when feeding your flow simulation

with inflow data produced by an earlier L1d3 simulation.

• StaticProfileBC(filename, n_profile=1, label=’’) where we want to apply

a steady-state inflow which may vary in space.

• TransientProfBC(filename, label=’’) where we want to specify the time-history

of the inflow condition that also has a varying profile across the block face. This

boundary condition is most likely used in a simulation that takes it inflow data from

an earlier simulation, which wrote its transient flow data via the transient_profile_faces

option.

• FixedPOutBC(Pout, Tout=300.0, use_Tout=False, x_order=0, label=’’)

is like ExtrapolateOutBC() but with a specified back pressure and, possibly, a

temperature. This can be analogous to a vacuum pump that removes gas at the

boundary to maintain a fixed pressure in the ghost cells.

• UserDefinedBC(filename, is_wall=0, sets_conv_flux=0, sets_visc_flux=0,

label=’’): allows the user to define the ghost-cell flow properties and/or interface

fluxes at run time. This is done via a set of functions defined by the user, and writ-

ten in the Lua programming language. These functions are provided in the file given

by filename. The flag is_wall indicates whether the boundary is to be considered

a wall for the application of turbulence-model fudges and the like (default 0). The

flag sets_conv_flux indicates whether the user is supplying the convective fluxes

61

at the boundary interfaces (default 0), in which case the user-supplied file should

contain a valid convective_flux() function. If not, the internal flux calculator

is used together with the supplied ghost-cell data. This boundary condition is the

Jack of all trades and master of none. It can be used to emulate any of the other

boundary conditions and then build variations, however, it is going to cost quite

a lot in computational time. Similar to the setting of convective fluxes, the flag

sets_visc_flux indicates whether the user is supplying the viscous fluxes at the

boundary interfaces (default 0). In this case, the user-supplied file should contain a

valid viscous_flux() function. If not, the internal viscous derivatives are used to

compute fluxes based on the supplied interface data. See Appendix I for the details

of setting up this boundary condition.

• AdjacentPlusUDFBC(other_block, other_face, orientation, filename,

is_wall=0, sets_conv_flux=0, sets_visc_flux=0,

reorient_vector_quantities=False, Rmatrix=None, label=’’):

is a combination of the AdjacentBC and UserDefinedBC. At each time step, the

flow data is first exchanged, as per the usual AdjacentBC. Then the user-defined

functions are applied. This is one way of getting fancy boundary conditions, such

as slowly-opening diaphragms, into the simulation.

• MovingWallBC(r_omega=None, centre=None, v_trans=None,

Twall_flag=False, Twall=None, label=’’): allows the user to specify a no-slip

wall condition where the wall surface has a non-zero velocity. Note that this is

only for tangential velocity at the wall and, to have any effect, needs to have

viscous_flag = 1. Values for r_omega, centre and v_trans are specified as tu-

ples of 3-components giving the angular-velocity, a point on the axis or rotation and

a superimposed translational velocity. The actual velocity of a point on the wall is

then given by the vector expression ~ω× (~r−~c) + ~vtrans, where ~r is the point on the

wall, ~c is the point on the axis of rotation and ~ω is the angular velocity. This com-

bination allows the setting of planar and cylindrical moving surfaces. Optionally,

the wall temperature may also be set. If not, the condition defaults to an adiabatic

wall.

• MappedCellBC(ghost_cell_trans_fn=lambda x, y, z: (x, y, z),

reorient_vector_quantities=False,

Rmatrix=[1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0],

mapped_cell_list=[], label=""): is something like the AdjacentBC but with an

ad-hoc mapping of destination(ghost)-cell location to source-cell location.

Note that, when creating these objects in the Python input script, the Python language

62

requires the parentheses even for the cases where no arguments, such as Twall, are re-

quired.

8.1 Setting conditions with setBC (deprecated)

This function is deprecated in favour of setting boundary conditions by direct interaction

with the appropriate item in a Block’s bc list as discussed in the previous section. If you

have not already set all appropriate boundary conditions through the bc_list argument

of the block constructor, you may apply boundary conditions to specific faces of a Block2D

or Block3D object by calling its method

set_BC(face_name, type_of_BC,

inflow_condition=None, x_order=0, sponge_flag=None,

Twall=None, Pout=None, Tout=300.0, use_Tout=False,

r_omega=None, centre=None, v_trans=None,

filename=None, n_profile=1,

is_wall=0, sets_conv_flux=0, sets_visc_flux=0,

Twall_flag=False,

reorient_vector_quantities=False,

Rmatrix=[1.0,0.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0],

assume_ideal=0, mdot=None, emissivity=None,

Twall_i=None, Twall_f=None, t_i=None, t_f=None,

mass_flux=0.0, p_init=100.0e3, relax_factor=0.05,

direction_type="normal", direction_vector=[1.0,0.0,0.0],

direction_alpha=0.0, direction_beta=0.0,

ghost_cell_trans_fn=lambda x, y, z: (x, y, z),

I_turb=0.0, u_turb_lam=1.0,

label=’’)

and specifying the face and type of boundary condition. When this function is called,

it creates a suitable boundary condition object (as discussed in the previous section)

and binds it to the appropriate block boundary. There is no difference in the end result

compared with the approach of specifying the boundary conditions when the block is

created.

• face name: one of NORTH, EAST, SOUTH, WEST, TOP, BOTTOM

• type of BC: one of

– ADJACENT: there is another block abutting this face. This boundary condition

is usually set by the block-conection functions.

– SUP IN: supersonic inflow using the inflow condition properties.

63

– EXTRAPOLATE OUT: (assumed) supersonic-outflow where the ghost-cell flow prop-

erties are copies or extrapolations of the adjacent interior cell properties.

– SLIP WALL: an inviscid solid wall where the normal velocity in the ghost cells

is a reflection of the velocity in the interoir cell.

– ADIABATIC: a no-slip wall where the wall temperature is the same as the cell-

centre temperature.

– FIXED T: a no-slip wall where the wall temperature is specified by Twall in

degrees K.

– SUBSONIC IN: subsonic inflow where the stagnation pressure and temperature

is specified and the velocity is taken from the interior cell.

– TRANSIENT UNI: a transient flow condition applied uniformly across the face of

the block.

– STATIC PROF: a time-invariant flow condition that has spatial variation across

the face of the block.

– FIXED P OUT: something like the EXTRAPOLATE OUT condition with the pressure

in the ghost cells set to Pout.

– RRM: rescaled and recycled data for Andrew Denman’s LES simulations.

– USER DEFINED: the user-supplied Lua functions are used to determine ghost-cell

flow properties and or interface fluxes. These functions are provided in the file

given by filename. The flag is wall indicates whether the boundary is to be

considered a wall for the application of turbulence-model fudges and the like

(default 0). The flag sets conv flux indicates whether the user is supplying

the convective fluxes at the boundary interfaces (default 0). If not, the internal

flux calculator is used together with the supplied ghost-cell data. The flag

sets visc flux indicates whether the user is supplying the viscous fluxes at

the boundary interfaces (default 0). If not, the internal viscous derivatives are

used to compute fluxes based on the supplied interface data.

– ADJACENT PLUS UDF:

– MOVING WALL: moving wall boundary condition is a solid boundary with no-

slip but non-zero surface velocity. r_omega is a vector to set rotational speed,

centre is used to set the rotational centre and v_trans is used to configure the

translational velocity of surface. Initially, moving wall is a kind of adiabatic

wall, if you want to set a fixed temperature condition, Twall_flag should be

True temperature to and the temperature specified as Twall.

– MAPPED CELL:

64

You need only specify the other properties that are relevant to the specific boundary

condition.

9 Special zones and history points

Zones of heating or cooling may be defined within the flow domain as rectangular (2D) or

regular hexahedral (3D) patches which are specified by two diagonally-opposite corners

(point0 and point1). For example, we could specify

HeatZone(qdot, point0, point1, label="")

where qdot is the heat addition per unit volume in W/m3. The corners of each zone

are given by the Vector values point0 and point1. In a two-dimensional simulation,

point0 corresponds to p00 in Figure 2 (on page 45) while point1 corresponds to p11, at

the opposite corner of the patch. In three-dimensional simulation, point0 corresponds

to p0 in Figure 8 (on page 55) while point1 corresponds to p6 at the diagonally-opposite

vertex of the hexahedral block.

If the centre of a cell lies within the heat zone, qdot is added to the source term

in the energy equation every time step during the simulation. When using a HeatZone

it is necessary to give at least gdata.heat_time_stop a positive non-zero value and

gdata.heat_time_start and gdata.heat_factor_increment can also be modified as

appropriate. A HeatZone might be used to model the deposition of energy into a small

volume from a high-power laser, for example.

Similarly, zones of reaction are defined with

ReactionZone(point0, point1, label="")

where the finite-rate reactions will be allowed to proceed. Outside of these zones, the

finite-rate chemical update will be suppressed and the species concentrations will be ef-

fectively frozen. If no such zones are specified, reactions are permitted for the entire flow

field.

Also, when running turbulent flow simulations, the turbulence model can also be

restricted to being applied to specific zones using

TurbulenceZone(point0, point1, label="")

The turbulence model (say, the k − ω model) is active throughout the flow but its effect

on the flow field is masked outside of the TurbulenceZones. This is achieved by the code

setting the turbulence viscosity and conductivity to zero for finite-volume cells that fall

outside of all regions defined as a TurbulenceZone. If there a no such defined regions, all

of the flowfield may have nonzero turbulence viscosity.

An effective method to trigger chemical reactions is to use

IgnitionZone(Ti, point0, point1, label="")

65

A temperature, Ti, is set that controls the reaction rate used for chemical reactions, with-

out effecting the gas temperature in the flow field. The rate-controlling temperature is

typically set to an artificially inflated value to promote ignition (e.g. a value at 2000 K is

effective in igniting certain compositions of a methane/air mixture). The rate-controlling

temperature is used to evaluate the chemical reaction rates only within the in the physical

extents of the IgnitionZone. This zone is in effect between gdata.ignition_time_start

(default value is 0) and gdata.ignition_time_stop and then “switching-off” subse-

quently. In this manner, the reaction rates within the zone are artificially inflated, which

is able to ignite reactions in a short time.

As well as being identified by their cell indices when defining a block, history points

can be located by their Cartesian coordinates using:

HistoryLocation(x, y, z=0.0, i offset=0, j offset=0, k offset=0, label="")

where the offset indices allow you to select a cell a known number of cells away from the

Cartesian coordinate location specified by x, y and z.

10 Simulation control parameters

A number of other parameters can be set in order to control the behaviour of the simu-

lation. These parameters are mainly collected into the gdata object17 which is accessible

to the user’s input script. Grouped by theme, the possible attributes include18:

Geometry

• dimensions: number of geometric dimensions (2 or 3). If unspecified, the default

is 2.

• axisymmetric flag: 1=2D-axisymmetric geometry with x-axis being the axis of

symmetry, 0=2D-planar geometry, default value 0.

Time stepping

• sequence blocks: 0=normal time iteration on all blocks, 1=integrate one block at

a time, default value 0.

• dt‡: the initial time step (in seconds) that will be used for the first few steps of

the simulation process. Be careful to set a value small enough for the time-stepping

to be stable. Since the time stepping is synchronous across all parts of the flow

17The gdata object is an instance of the GlobalData class defined in e3prep.py. Most of the attributes
are discussed here, however, see the source code for that class for a full list of attributes.

18Attributes that are stored in the control file are denoted by a ‡ symbol. The rest go into the config
file.

66

domain, this time step size should be smaller than half of the smallest time for a

signal (pressure wave) to cross any cell in the flow domain. If you are sure that

your geometric and boundary descriptions but your simulation fails for no clear

reason, try setting the initial time step to a very small value. For some simulations

of viscous hypersonic flow on fine grids, it is not unusual to require time steps to be

as small as a nanosecond.

• dt max‡: Maximum allowable time step (in seconds), default value 1.0e-3. Some-

times, especially when strong source terms are at play, the CFL-based time-step

determination does not suitably limit the size of the allowable time step. This

parameter allows the user to limit the maximum time step directly.

• dt chem: suggested time-step for finite-rate chemistry update; default value of -1.0

indicates that we want the code to work it out.

• dt therm: default value -1.0.

• gasdynamic_update_scheme‡: one of: ’euler’, ’pc’, ’predictor-corrector’,

’midpoint’, ’classic-rk3’, ’tvd-rk3’, ’denman-rk3’.

Default value is ’predictor-corrector’.

Note that ’pc’ is equivalent to ’predictor-corrector’. If you want time-accurate

solutions, use a two- or three-stage stepping scheme, otherwise, Euler stepping has

less computational expense but you may get less accuracy and the code will not be

as robust for the same CFL value. For example the shock front in the Sod shock

tube example is quite noisy for Euler stepping at CFL=0.85 but is quite neat with

any of the two- or three-stage stepping schemes at the same value of CFL. The

midpoint and predictor-corrector schemes produce a tidy shock up to CFL = 1.0

and the rk3 schemes still look tidy up to CFL = 1.2.

• fixed time step‡: 1=do not change time step from that specified, 0=allow time

step size to be determined from cell conditions and cfl number, default value 0.

• cfl‡: ratio of the smallest signal time to the actual time step, default value 0.5.

• viscous signal factor‡: 1.0=full viscous effect for the signal calculation within

the time-step calculation. It has been suggested that the full viscous effect may not

be needed to ensure stable calculations for highly-resolved viscous calculations. A

value of 0.0 will completely suppress the viscous contribution to the signal speed

calculation but you may end up with unstable stepping. It’s a matter of “try a value

and see” if you get a larger time-step while retaining a stable simulation.

• stringent cfl‡: 1=use the smallest cross-cell distance in the CFL check, 0=use

different cell widths in each index direction, default is 0.

67

• dt reduction factor‡: if the CFL condition is violated, scale the time-step size

down by this factor, default value 0.2.

• cfl count: number of time steps between checks of the CFL condition, default

value 10. This check is expensive so we don’t want to do it too frequently but, then,

we have to be careful that the time step does not become unstable.

• max time‡: the simulation will be terminated on reaching this value of time, default

value 1.0× 10−3.

• t0: starting time for simulation, may be useful to change when restarting from

another job, default value 0.0.

• max step‡: the simulation will be terminated on reaching this number of time steps,

default value 10.

• dt plot‡: the whole flow solution will be written to disk when this amount of

simulation time has elapsed, default value 1.0× 10−3s.

• dt history‡: the history-point data will be written to disk when this amount of

time has elapsed, default value 1.0× 10−3s.

Spatial reconstruction/interpolation

• x order‡: 1=no reconstruction of intra-cell flow properties before applying the flux

calculator, 2=high-order reconstruction applied, default value 2.

• apply limiter flag: 1=apply reconstruction limiter, default value 1.

• extrema clipping flag: 1=do extrema clipping at end of 1D scalar reconstruction,

default value 1. A value of 0 suppresses clipping.

• interpolation type: string to choose the set of interpolation variables to use in

the interpolation, options are "rhoe", "rhop", "rhoT", "pT", default value "rhoe".

Flux calculator

• flux calc: selects the flavour of the flux calculator, default value "adaptive".

Options are:

– "riemann": An exact flux calculator that iteratively solves the Riemann sub-

problem and then constructs the fluxes from the hypothetical interface state.

It’s expensive and doesn’t behave any better than the much cheaper AUSMDV

scheme but it does have very little diffusion. The lack of diffusion can cause

problems [3] and it is not recommended for use.

68

– "ausm": A cheap, effective, but sometimes noisy scheme from Ref. [4].

– "efm": A cheap and very diffusive scheme by Pullin and Macrossan [5, 6]. For

most hypersonic flows, it is too diffusive to be used for the whole flow field but

it does work very nicely in conjunction with AUSMDV, especially for example,

in the shock layer of a blunt-body flow.

– "ausmdv" A good all-round scheme low-diffusion for supersonic flows.[7].

– "adaptive" A blend [3] of the low-dissipation AUSMDV scheme for the regions

away from shocks with the much more diffusive EFM used for cell interfaces

near shocks. It seems to work quite reliably for hypersonic flows that are

a mix of very strong shocks with mixed regions of subsomic and supersonic

flow. The blend is controlled by the parameters compression_tolerance and

shear_tolerance that are described below.

– "ausm_plus_up": Implemented from Ref. [8]. It should be accurate and robust

for all speed regimes. It is the flux calculator of choice for very low Mach

number flows, where the fluid behaviour approaches the incompressible limit.

For best results, you should set the value of M_inf.

– "hlle" The MHD version of the HLLE scheme.

The ADAPTIVE scheme is a good all-round scheme that uses AUSMDV away from

shocks and EFM near shocks.

• compression tolerance: value of relative velocity change (normalised by local

sound-speed) across a cell-interface that triggers the shock-point detector. A neg-

ative value indicates a compression. When the ADAPTIVE flux calculator is used

and the shock detector is triggered, the EFM flux calculation will be used in place

of the default AUSMDV calculation. A value of -0.05 seems OK for the sod and

cone20 inviscid flow simulations, however, a higher value is needed for cases with

viscous boundary layers, where it is important to not have too much dissipation in

the boundary layer region. The default value is -0.30.

• shear tolerance: value of the relative tangential-velocity change (normalised by

local sound speed) across a cell-interface that suppresses the use of EFM even if

the shock detector indicates that EFM should be used for the ADAPTIVE flux

calculator. The default value is experimentally set at 0.20 to get smooth shocks in

the stagnation region of bluff bodies. A smaller value (say, 0.05) may be needed to

get strongly expanding flows to behave when regions of shear are also present.

• M_inf: representative Mach number for the free stream. Used by the AUSM_PLUS_UP

flux calculator. The default value is 0.01.

69

Viscous effects

• viscous flag: 1=viscous terms are active, 0=inviscid simulation, default value 0.

• separate update for viscous flag‡: 1=the update for the viscous transport terms

are done separately to the convective terms, 0=the viscous-term updates are inite-

grated with the explicit update of the convective terms, default value 0.

• viscous delay: the time (in seconds) to wait before applying the viscous terms.

This might come in handy when trying to start blunt-body simulations.

• viscous factor increment: per-time-step increment of the viscous effects, once

t> viscous delay, default value 0.01.

• diffusion flag: 1=compute multicomponent diffusion of species, default value 0.

• diffusion model: string, default value ”None”.

• turbulence model: string specifying which model to use, ”none”, ”k omega”, ”bald-

win lomax”, default ”none”.

• turbulence prandtl number: default value 0.89

• turbulence schmidt number: default value 0.75

• max mu t factor: turbulent viscosity is limited to laminar viscosity multiplied by

this factor, default value 300.0.

• transient mu t factor: default value 1.0.

Thermo-chemistry

• reacting flag: flag to indicate that the finite-rate chemical reactions are active. It

has a default value of 0, however, it gets set to 1 if the call to set reaction scheme()

is made. This is the usual way of setting it.

• reaction update: File name for reaction scheme configuration. (More conveniently

set by calling set reaction scheme().)

• reaction time start: time after which finite-rate reactions are allowed to start,

default value 0.0.

• T frozen: temperature (in degrees K) below which reactions are frozen. The default

value is 300.0 since most reaction schemes seem to be valid for temperatures above

this, however, you may have good reasons to set it higher or lower. (May also be

set in the call to set reaction scheme().)

70

• T frozen energy: temperature (in degrees K) below which the energy exchange is

skipped. The default value is 300.0, however, you may have good reasons to set it

higher or lower. (May also be set in the call to set energy exchange scheme().)

Miscellaneous

• title: a title string that may appear in a number of places. For example, in plots

made during the postprocessing stage.

• max invalid cells: the maximum number of bad cells that will be tolerated on

decoding conserved quantities. If this number is exceeded, the simulation will stop.

default value 10.

• udf source vector flag: 1=apply user-defined source terms as supplied in a Lua

file, default value 0.

• udf file: name of the Lua file for the user-defined source terms, default value ””.

• print count‡: number of time steps between printing status information to the

console, default value 20.

• control count‡: number of time steps between re-parsing the .control file. If the

.control has been edited, then the new values are used after re-parsing, default

value 20.

• heat time start: default value 0.0, in seconds. For a description of HeatZones, see

Section 9.

• heat time stop: a non-zero value indicates that we wish to add heat through the

HeatZones, default value 0.0, in seconds.

• heat factor increment: the fraction of full heat load that will be added with each

step after t=heat time start, default value 0.01.

• mhd flag: 1=make MHD physics active. default value 0.

• electric field work flag: 1=make ~u · ∇pe source term in the electron energy

equation active. default value 0.

71

11 Parameters for a 2D sketch of the flow domain

The sketch object holds parameters that set the view and scale of the SVG (scalable

vector graphic) rendering of the two-dimensional flow domain. The method

sketch.window(xmin=0.0, ymin=0.0, xmax=1.0, ymax=1.0,

page xmin=0.05, page ymin=0.05, page xmax=0.17, page ymax=0.17)

sets the mapping from the lower-left point (xmin,ymin) to upper-right point (xmax,ymax)

in the simulation space to the corresponding points on a display page, as shown in Figure 9.

Figure 9: Parameters defining the sketch window placed on a display page. Parameters
shown in red are coordinate values in the simulation domain, while those shown in black
are coordinate values on the displayed page. All values are in metres.

72

Axes may also be drawn with:

sketch.xaxis(x0, x1, xtic, y offset)

sketch.yaxis(y0, y1, ytic, x offset)

where small negative values may be given for the offset values, in order to move the axes

clear of the main sketch elements. Note that these axis parameters are specified in the

coordinate system of the simulation space and that all values are in metres. Figure 10

shows the axes as they are placed in the 20-degree cone example on page 77.

Figure 10: Parameters specifying the arrangement of the axes for the SVG sketch.

73

74

Part III

A tutorial example

The first example, of ideal, inviscid flow over a cone (Sec. 12), is a simple flow situation

but the description provided here goes into fair detail on setting up the simulation and

then on extracting interesting flow quantities to help in the interpretation of the results.

It is recommended reading for all beginning users. Once you have run and mastered this

particular example, pick whichever example most closely matches your flow of interest

and have a go at building your own simulation.

Later examples also use more of Python’s capabilities. The input script for the heat-

transfer to a sphere (Sec, 35), for example, being written as a template script and a

top-level coordinating script that runs the simulation a number of times with better grid

resolution.

75

12 Mach 1.5 flow over a 20-degree cone

Let’s start with a simple-to-imagine flow of ideal air over a sharp-nose of a supersonic

projectile. Figure 11 is a reproduction of Fig. 3 from Maccoll’s 1937 paper [9] and shows

a shadowgraph image of a two-pounder projectile, in flight at Mach 1.576. We’ll restrict

our simulation to just the gas flow coming onto and moving up the conical surface of the

projectile and work in a frame of reference attached to the projectile. Further, we will

assume that all of the interesting features of the three-dimensional flow can be charac-

terized in a two-dimensional plane. The red lines mark out the region of our gas flow

simulation, assuming axial symmetry about the centreline of the projectile.

on May 30, 2014rspa.royalsocietypublishing.orgDownloaded from

Figure 11: A two-pound projectile in flight. A conical shock is attached to the sharp nose
of the projectile. This photograph was published by Maccoll in 1937. The red lines have
been added to demark the region of gas flow for which we will set up our simulation.

The resulting flow, in the steady-state limit, should have a single shock that is straight

in this 2D meridional plane (but conical in the original 3D space). The angle of this

shock can be checked against Taylor and Maccoll’s gas-dynamic theory and, since the

simulation demands few computational resources (in both memory and run time), it is

useful for checking that the simulation and plotting programs have been built and installed

correctly.

76

13 The simulation

To build our simulation, we abstract the boxed region from Figure 11 and consider the

axisymmetric flow of an ideal, inviscid gas over a sharp-nosed cone with 20 degree half-

angle. The constraint of axisymmetry implies zero angle of incidence for the original 3D

flow.

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

A B

C

DEF

BLOCK-0

SLIP_WALL

SLIP_WALL

S
U
P
_
IN

BLOCK-1

SLIP_WALL

E
X
T
R
A
P
O
L
A
T
E
_
O
U
T

SLI
P_W

ALL

Figure 12: Schematic diagram of the geometry for a cone with 20 degree half-angle. This
PDF figure was generated from the SVG file with some edits to move the boundary labels
to nicer positions.

Despite Figure 11 being a good motivator for this simulation, the free-stream condi-

tions of p∞ = 95.84 kPa, T∞ = 1103 K and u∞ = 1000 m/s are actually related to the

shock-over-ramp test problem in the original ICASE Report [10] and are set to give a Mach

number of 1.5. It is left as an exercise for the reader to run a simulation at Maccoll’s

value of Mach number and check that the simulation closely matches the shadowgraph

image.

13.1 Input script (.py)

cone20.py

Simple job -specification file for e3prep.py

PJ, 08-Feb -2005

15-Sep -2008 -- simplified version for Eilmer3

77

29-May -2014 -- discard old way of setting BCs

job_title = "Mach 1.5 flow over a 20 degree cone."

print job_title

We can set individual attributes of the global data object.

gdata.dimensions = 2

gdata.title = job_title

gdata.axisymmetric_flag = 1

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Define flow conditions

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

inflow = FlowCondition(p=95.84e3, u=1000.0 , v=0.0, T=1103.0)

Set up two quadrilaterals in the (x,y)-plane by first defining

the corner nodes , then the lines between those corners.

a = Node (0.0, 0.0, label="A")

b = Node (0.2, 0.0, label="B")

c = Node (1.0, 0.29118 , label="C")

d = Node (1.0, 1.0, label="D")

e = Node (0.2, 1.0, label="E")

f = Node (0.0, 1.0, label="F")

ab = Line(a, b); bc = Line(b, c) # lower boundary including cone surface

fe = Line(f, e); ed = Line(e, d) # upper boundary

af = Line(a, f); be = Line(b, e); cd = Line(c, d) # vertical lines

Define the blocks , with particular discretisation.

nx0 = 10; nx1 = 30; ny = 40

blk_0 = Block2D(make_patch(fe, be , ab , af), nni=nx0 , nnj=ny,

fill_condition=initial , label="BLOCK -0")

blk_1 = Block2D(make_patch(ed, cd , bc , be, "AO"), nni=nx1 , nnj=ny,

fill_condition=initial , label="BLOCK -1",

hcell_list =[(9 ,0)], xforce_list =[0,0,1,0])

Set boundary conditions.

identify_block_connections ()

blk_0.bc_list[WEST] = SupInBC(inflow , label="inflow -boundary ")

blk_1.bc_list[EAST] = ExtrapolateOutBC(label="outflow -boundary ")

Do a little more setting of global data.

gdata.max_time = 5.0e-3 # seconds

gdata.max_step = 3000

gdata.dt = 1.0e-6

gdata.dt_plot = 1.5e-3

gdata.dt_history = 10.0e-5

sketch.xaxis (0.0, 1.0, 0.2, -0.05)

sketch.yaxis (0.0, 1.0, 0.2, -0.04)

sketch.window (0.0, 0.0, 1.0, 1.0, 0.05, 0.05, 0.17, 0.17)

13.2 Running the simulation

Assuming that you have the program executable files built and accessible on your system’s

search PATH, as described in Appendix A, try the following commands:

$ cd ∼/cfcfd3/examples/eilmer3/2D/cone20-simple/
$./cone20 run.sh

and, within a minute or so, you should end up with a number of files with various solution

78

data plotted. The grid and initial solution are created and the time-evolution of the flow

field is computed for 5 ms (with 862 time steps being required). The commands invoke

the shell script shown below. This script, less the commands to generate the plot, could

be used as a template for your own simulation shell scripts.

#! /bin/sh

cone20_run.sh

exercise the Navier -Stokes solver for the cone20 test case.

It is assumed that the path is set correctly.

Prepare the simulation input files (parameter , grid and initial flow data).

The SVG file provides us with a graphical check on the geometry

e3prep.py --job=cone20 --do-svg

if ["$?" -ne "0"] ; then

echo "e3prep.py ended abnormally ."

exit

fi

Integrate the solution in time ,

recording the axial force on the cone surface.

time e3shared.exe -f cone20 --run --verbose

if ["$?" -ne "0"] ; then

echo "e3shared.exe ended abnormally ."

exit

fi

Extract the solution data and reformat.

If no time is specified , the final solution found is output.

e3post.py --job=cone20 --vtk -xml

Extract the average coefficient of pressure from the axial force

records that were written to the simulation log file.

awk -f cp.awk e3shared.log > cone20_cp.dat

Plot the average coefficient of pressure on the cone surface.

We assume that the high -resolution data file is also available.

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cone20_cp.ps"

set style line 1 linetype 1 linewidth 3.0

set title "20 degree cone in Mach 1.5 flow"

set xlabel "time , ms"

set ylabel "average C_p"

set xtic 1.0

set ytic 0.1

set yrange [0:0.5]

set key bottom right

set arrow from 5.2 ,0.387 to 5.8 ,0.387 nohead linestyle 1

set label "Value from\nNACA 1135\ nChart 6" at 5.0 ,0.3 right

set arrow from 5.0 ,0.3 to 5.5 ,0.387 head

plot "cone20_cp.dat" using 1:2 title "10 x40+30x40", \

"cone20_cp_hi -res.dat" using 1:2 title "20 x80+60x80" with lines

EOF

echo "At this point , we should have a solution that can be viewed with Paraview ."

Note that long-format command-line options start with two dashes. These double dashes

are a little hard to distinguish in the shell scripts.

79

14 Results and Postprocessing

Figure 13 shows the flow field 5 milliseconds after flow start. This has been long enough for

the flow to reach a steady state, with the shock being essentially straight. The plots have

been produced with Paraview, picking up the plot/cone20.pvd file. The time stamp

in the lower left corner has been added as an Annotate Time Filter, selected from the

main Filters menu. Also, the pressure field has been plotted as a coloured surface,

while the temperature field has been plotted as a surface with edges to clearly show

the computational grid. The distortion of the grid in the right-hand block is a result of

the area-orthogonality (AO) grid generator making the compromises required to achieve

a reasonably-orthogonal mesh at the edges of the block. The default transfinite grid

generator would have produced a mesh that appears less distorted overall but would have

individual cells that are more sheared for this particular block. For the rectangular block

on the left, both generators would produce the same mesh.

Figure 13: Pressure and temperature fields for a low-resolution simulation of flow over a
cone with 20 degree half-angle. The temperature field plot also included the mesh.

The shock displayed in the pressure field shows features that are characteristic of a

flow solution produced by a “shock-capturing” code such as Eilmer3. With the coarse

grid, the shock has a stair-case appearance. This is accentuated by the plotting program

which was set to display the cell-average value as a uniform colour within each cell.19 Also,

when following a line that crosses the shock, a small number of cells to be counted before

the full pressure jump has been reached. In an ideal, inviscid simulation, the shock should

be a zero-thickness transition. This can be approached by increasing the mesh resolution,

as seen in Figure 14. The high-resolution solution is looking clean but the computational

cost, in terms of calculation time, has gone up from a few seconds to nearly 2 hours.

Since Eilmer3 is a simulation program, it starts with some initial (but possibly variable)

19 If you want a smoother appearance, you can use the Paraview filter Cell Data to Point Data.

80

Figure 14: Pressure and temperature fields for a mesh with 8 times more resolution in
each direction.

flow state across the whole simulation domain and then, subject to the applied boundary

conditions, integrates the conservation equations forward in a time-accurate manner. In

this case of a constant free stream flow coming onto a sharp cone, the flow field evolves

toward a steady state. Figure 15 shows the pressure field at a number of times through

the simulation. The time increment, in seconds, between the frames was specified in the

input script as gdata.dt_plot = 1.5e-3.

Although not obvious in the figure, a lot of detailed flow structure has passed through

the flow domain even before the 1.5 milliseconds frame. From then until the final time of

5.0 milliseconds, not a lot seems to be happening. It would be tempting to terminate the

simulation at 3.0 milliseconds, however, depending on how accurately you need to report

flow quantities, you may need to run much longer to achieve a sufficiently steady flow.

A key flow parameter of interest might be the drag on the cone and we can get

Eilmer3 to occasionally write out the integrated forces on the cone surface with the

xforce_list = [0,0,1,0] argument used when constructing the second block. This

causes Eilmer3 to write the integrated forces to the log file at the same frequency as

history files are written. We then use an Awk program (cp.awk) to filter the log file,

extracting lines that have the x-force data of interest. New users might like to use an

equivalent program written in Python, however, the Awk language is very convenient for

writing filter programs.

cp.awk

Extract the simulation times and axial force values from the log file.

The relevant lines in mb_cns.log start with the string "XFORCE"

and are of the form:

XFORCE: t n jb ibndy fx_p fx_v [jb ibndy fx_p fx_v [jb ...]]

Present the axial force as an average coefficient of pressure to

compare with that obtained from NACA 1135.

BEGIN {

p_inf = 95.84 e3; # Pa

81

Figure 15: Evolution of the pressure field, times as indicated.

82

T_inf = 1103.0; # K

u_inf = 1000.0; # m/s

R = 287; # J/kg.K

r_base = 0.29118; # m

rho_inf = p_inf / (R * T_inf); # kg/m**3

q_inf = 0.5 * rho_inf * u_inf * u_inf; # Pa

A = 3.14159 * r_base * r_base; # m**2

print "# time (ms) Cp";

print "# rho_inf= ", rho_inf , " q_inf= ", q_inf , " A= ", A

}

/XFORCE/ {

Select just the simulation time and the force on the cone surface.

t = $3; # in seconds

f = $9; # pressure force in Newtons

The coefficient of pressure is based on the difference

between the cone surface pressure and the free -stream pressure.

Cp = (f / A - p_inf) / q_inf;

print t*1000.0 , Cp;

}

Before plotting the drag force history, it is convenient to normalize it into a history of

drag coefficient. From Chart 5 in Ref. [11], the expected steady-state shock wave angle is

49o and, from Chart 6, the pressure coefficient is

pcone−surface − p∞
q∞

≈ 0.387

and the dynamic pressure for the specified free stream is q∞ = 1
2
ρ∞u

2
∞ ≈ 151.38 kPa.

Figure 16 shows the pressure coefficient estimated as

Cp =
fx − p∞A
q∞A

from the simulated axial force, fx, written into the simulation log file and frontal area

of the cone, A. Note the sudden rise as the shock structure driven by the free-stream

flow arrives at the cone surface. There is a more gradual rise after this initial jump as

the conical flow region fills out and becomes steady. You can now see the motivation for

choosing 5.0 milliseconds as the end time for the simulation.

83

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6

a
v
e

ra
g

e
 C

p

time, ms

20 degree cone in Mach 1.5 flow

Value from
NACA 1135

Chart 6

10x40+30x40
20x80+60x80

Figure 16: Evolution of the axial (drag) force for flow over a cone with 20 degree half-angle
for two mesh resolutions.

84

15 Accessing the field data for specialized postpro-

cessing

Beyond the usual slice-and-dice type of postprocessing that is provided by e3post.py, it

may be useful to do specialized calculations on the flow data. In this flow, the shock is

expected to be straight and we can compute that it should have an angle of β = 48.96o,

with respect to the free-stream direction, using one of the gas-dynamic functions20 from

cfpylib

from cfpylib.gasdyn.ideal_gas_flow import beta_cone

from math import degrees, radians

beta = beta_cone(V1=1000.0, p1=95.84e3, T1=1103.0, theta=radians(20.0))

print "beta=", degrees(beta), "degrees"

The estimate shock angle.py script uses the Python code libraries that the e3post.py

is built upon to pick up the data, locate the shock position along each strip of cells in the

x-direction, and then fit a straight line to the collected points. Note that the points from

the top right of the flow solution are omitted from the straight-line fit because the top

boundary has interfered with the flow. The shock points and the fitted line are shown in

Fig.17

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x, m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y,
 m

Shock position

Eilmer3
fitted line
cone surface

Figure 17: Shock shape for Mach 1.5 flow over the 20-degree cone.

20For an overview the functions in cfpylib, see Appendix E then, for more information on each specific
function, look at the web site http://cfcfd.mechmining.uq.edu.au/ under the heading Libraries.

85

The script below uses the data reading and storage capability provided by the class

StructuredGridFlow, which is imported from e3 flow.py. Given a file containing the

flow data for a block of cells, this class has a read method that picks up the data. The

flow and position data is stored in a dictionary, with one multidimensional numpy array

for each variable. Access to the pressure in cell i,j,k of block ib,jb is achieved by

putting these indices together as blockData[ib][jb].data[’p’][i,j,k]. The core of

the data handling is in the function locate shock front() in the middle of the script.

#!/ usr/bin/env python

estimate_shock_angle.py

PJ, 11-Jan -2011

17-Apr -2013 change accommodate no 9999 file at end

import sys , os , gzip

sys.path.append(os.path.expandvars (" $HOME/e3bin "))

import math

import numpy

from getopt import getopt

from e3_flow import StructuredGridFlow

#---

def locate_shock_along_strip(x, y, p):

"""

Shock location is identified as a pressure rise along a strip of points.

Input:

x: sequence of float values , x-coordinate of each point

y: sequence of float values , y-coordinate

p: sequence of float values , static pressure in Pa

Returns:

x and y coordinates of a point on the shock.

This function taken from the example 2D/sphere -heat -transfer.

"""

n = len(x)

p_max = max(p)

p_trigger = p[0] + 0.3 * (p_max - p[0])

x_old = x[0]; y_old = y[0]; p_old = p[0]

for i in range(1,n):

x_new = x[i]; y_new = y[i]; p_new = p[i]

if p_new > p_trigger: break

x_old = x_new; y_old = y_new; p_old = p_new

frac = (p_trigger - p_old) / (p_new - p_old)

x_loc = x_old * (1.0 - frac) + x_new * frac

y_loc = y_old * (1.0 - frac) + y_new * frac

return x_loc , y_loc

def locate_shock_front(jobName , tindx , nbi , nbj):

"""

Reads flow blocks and returns the coordinates of the shock front.

Input:

jobName: string name used to construct file names

tindx: integer index of the target solution

nbi: number of blocks in the i-index direction

nbj: number of blocks in the j-index direction

It is assumed that the shock front will be located by scanning

along the i-index direction , with j being constant for each search.

This function taken from the example 2D/sphere -heat -transfer

and is a bit more general than needed for the cone20 case.

"""

blockData = []

for ib in range(nbi):

blockData.append ([])

86

for jb in range(nbj):

blkindx = ib*nbj + jb

fileName = ’flow/t%04d/%s.flow.b%04d.t%04d.gz’ % \

(tindx , jobName , blkindx , tindx)

fp = gzip.open(fileName , "r")

blockData[ib]. append(StructuredGridFlow ())

blockData[ib][-1]. read(fp)

fp.close ()

x_shock = []; y_shock = []

for jb in range(nbj):

nj = blockData [0][jb].nj

for j in range(nj):

x = []; y = []; p = [];

for ib in range(nbi):

ni = blockData[ib][jb].ni

k = 0 # 2D only

for i in range(ni):

x.append(blockData[ib][jb].data[’pos.x’][i,j,k])

y.append(blockData[ib][jb].data[’pos.y’][i,j,k])

p.append(blockData[ib][jb].data[’p’][i,j,k])

xshock , yshock = locate_shock_along_strip(x, y, p)

x_shock.append(xshock)

y_shock.append(yshock)

return x_shock , y_shock

#--

print "Begin estimate_shock_angle.py"

xs_all , ys_all = locate_shock_front (" cone20", 4, nbi=2, nbj=1)

print "xs_all=", xs_all , "ys=", ys_all

The shock interacts with the NORTH boundary and so bends after x=0.9m.

xs = [x for x in xs_all if x < 0.9]

ys = ys_all [0: len(xs)] # trim y-coordinate list to match

print "xs=", xs , "ys=", ys

print "len(xs)=", len(xs), "len(ys)=", len(ys)

Fit a straight -line to the computed shock points.

m, b = numpy.polyfit(xs , ys , 1)

print "m=", m, "b=", b

y2 = [m*x+b for x in xs]

shock_angle = math.atan(m)

print "shock_angle_rad =", shock_angle

print "shock_angle_deg =", shock_angle *180/ math.pi

Generate some points on the cone surface.

tan20 = math.tan (20.0* math.pi /180.0)

ycone = [tan20*(x-0.2) for x in xs]

Average deviation of CFD shock points from fitted line.

d = 0

for i in range(len(xs)):

d += abs(y2[i] - ys[i])

d /= len(xs)

print "average_deviation_metres =", d

Optionally do the plot.

if len(sys.argv) > 1 and sys.argv[-1] == "--do-plot":

import pylab

pylab.plot(xs, ys , ’o’, label=’Eilmer3 ’)

pylab.hold(True)

pylab.plot(xs, y2 , label=’fitted line ’)

pylab.plot(xs, ycone , label=’cone surface ’)

pylab.title(’Shock position ’)

pylab.xlabel(’x, m’)

pylab.ylabel(’y, m’)

pylab.legend(loc=’upper left ’)

pylab.show()

print "Done."

87

0 1 2 3
49

49.2

49.4

49.6

∆x, cm

β
,

d
eg

re
es

0 1 2 3
0

0.2

0.4

0.6

∆x, cm

(β
−
β
r
ef

)/
β
r
ef

Figure 18: Convergence of the shock angle and its relative error with mesh refinement.
βref = 48.96o.

16 Grid convergence

Determining a single value for some parameter is only part of the complete job. Usually,

you must provide some guide as to the reliability of that value and this is often done

with a grid convergence study. For our estimate of shock wave angle, we could follow the

initial simulation run with a number of runs on successively finer meshes and check that

the estimated values converge in the limit of cell size going to zero.

Since this example is not very demanding for a low-resolution grid, it is easy to double

the grid resolution a couple of times over and get data over a good range of cell sizes.

Figure 18 shows the raw shock angle estimates converging nicely to a value of 49o. In

general, this is usually the end point for our analysis. Since we have a reference value

computed via the Taylor-Maccoll theory, we can also look at the convergence to the true

value and, given sufficient computational resource, it looks at though we can get as close

as we wish.

17 Other notes on this first example

• Run time for the simple cone20 simulation is approximately 17 seconds for 862 steps

on a computer with an AMD Phenom II X4 840, 800 MHz processor. Of course,

the shared-memory code does not make use of the other 4 processor cores, however,

there is an MPI version of the code that can.

• This cone20.py file really has full access to the Python interpreter on your system.

Later examples will show how to use Python to write data files from within the

input script. Be careful.

• Python is a dynamic language. It is easy to bind names to new objects within your

script. Be careful that you do not rebind essential names that will be later used by

88

the e3prep.py program. Where this might happen in a non-obvious way is in the

importing of foreign modules (to do something interesting in your script) with the

command “from module-name import *”.

• The script cone20 run mpi.sh is available for running the simulation with the par-

allel version of the code on a machine with OpenMPI installed. This script is essen-

tially the same as shown for the shared-memory simulation with the MPI simulation

being started with the commands:

mpirun -np 2 e3mpi.exe -f cone20 --run

The only other modification required is to look for the surface-force data in the log

file e3mpi.0001.log rather than e3shared.log.

89

18 Parametric modelling using Python

Let’s rework the simulation to explore the gas-dynamics a little more and also make

use of the parametric capabilities of the Python input script. We’ll first parameterize

the descriptions of the flow and the geometric description of the flow domain by replacing

some of the literal numeric values of the original script with variables and simple algebraic

expressions.

Specifically, let’s introduce a variable, M , for the Mach number of the in-flow stream

and then compute the velocity from that value and the estimated sound-speed of that

in-coming stream. This gives us a convenient way of specifying a sample Mach number so

we can explore the response of the simulated flow field to a range of inflow Mach numbers.

We’ll also describe the cone by its half-angle and axial length. From these items, we can

compute the base radius. For the remaining key items defining the flow domain, we need

to know where the apex of the cone is placed with respect to the inflow boundary and we

need to say how far away the top-edge of the flow domain is from the axis. Finally, to

make the grid generation a little more convenient as we change the boundaries of the flow

domain, we’ll define a cell size as length dx, and determine numbers of cells within each

block as an overall length-scale of each dimension of the block divided by this cell size.

18.1 Input script (.py)

conep.py

Simple job -specification making use of parametric capabilities.

PJ, 25-Jul -2015 -- adapted from the classic cone20

We can set individual attributes of the global data object.

gdata.dimensions = 2

gdata.axisymmetric_flag = 1

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Define flow conditions

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

Tinf = 1103.0

a = sqrt (1.4*287.1* Tinf) # sound speed in free stream

M = 1.5

ux = M * a

print "ux=", ux

inflow = FlowCondition(p=95.84e3, u=ux , v=0.0, T=Tinf)

Define cone/flow -domain geometry

theta = 20 # cone half -angle , degrees

L = 0.8 # axial length of cone , metres

rbase = L * math.tan(math.radians(theta))

x0 = 0.2 # upstream distance to cone tip

H = 1.0 # height of flow domain , metres

gdata.title = "Mach %.1f flow over a %.1f-degree cone." % (M, theta)

print gdata.title

Set up two quadrilaterals in the (x,y)-plane by first defining

the corner nodes , then the lines between those corners.

a = Node (0.0, 0.0, label="A")

90

b = Node(x0, 0.0, label="B")

c = Node(x0+L, rbase , label ="C")

d = Node(x0+L, H, label="D")

e = Node(x0, H, label="E")

f = Node (0.0, H, label ="F")

ab = Line(a, b); bc = Line(b, c) # lower boundary including cone surface

fe = Line(f, e); ed = Line(e, d) # upper boundary

af = Line(a, f); be = Line(b, e); cd = Line(c, d) # vertical lines

Define the blocks , with particular discretisation.

dx = 1.0/40

nx0 = int(x0/dx); nx1 = int(L/dx); ny = int(H/dx)

blk_0 = Block2D(make_patch(fe, be , ab , af), nni=nx0 , nnj=ny,

fill_condition=initial , label="BLOCK -0")

blk_1 = Block2D(make_patch(ed, cd , bc , be , "AO"), nni=nx1 , nnj=ny,

fill_condition=initial , label="BLOCK -1",

hcell_list =[(9 ,0)] , xforce_list =[0,0,1,0])

Set boundary conditions.

identify_block_connections ()

blk_0.bc_list[WEST] = SupInBC(inflow , label="inflow -boundary ")

blk_1.bc_list[EAST] = ExtrapolateOutBC(label="outflow -boundary ")

Do a little more setting of global data.

gdata.max_time = 5.0e-3 # seconds

gdata.max_step = 3000

gdata.dt = 1.0e-6

gdata.dt_plot = 1.5e-3

gdata.dt_history = 10.0e-5

sketch.xaxis (0.0, 1.0, 0.2, -0.05)

sketch.yaxis (0.0, 1.0, 0.2, -0.04)

sketch.window (0.0, 0.0, 1.0, 1.0, 0.05, 0.05, 0.17, 0.17)

19 Exploring the gas dynamics

Except for a small difference in the number of cells in the x-direction of each block,

Figure 19 shows the same flow field 5 milliseconds after flow start as Figure 13. It has the

same straight, attached shock and same range of pressures displayed.

Looking up the conical shock charts in NACA-1135 [11], we can see that a 32 degree

cone falls outside the shock-polar for a free-stream Mach number of 1.5 and so should have

a detached shock. Let’s try that by changing the value of theta from 20 to 32. That’s

all that needs to be done before re-running the prepration program and main simulation

program, with the calculations to get the appropriate velocity already encoded within the

user input script. Figure 20 shows the resulting pressure field at 5 ms.

The result is not quite as expected because the flow has choked between the conical

surface and the upper edge of the domain, with its default SlipWallBC boundary condi-

tion, that acts as a smooth inside wall of a slippery pipe. The obvious fix to attempt is

to increase the height of the flow domain by setting H to a larger value. Figure 21 shows

the resulting pressure field at 5 ms for an inflow Mach number of 1.5, which should have a

detached shock, and for a free-stream Mach number of 1.6, which should have an attached

shock, according to the inviscid flow theory.

91

Figure 19: Pressure field for the low-resolution simulation of Mach 1.5 flow over a cone
with 20 degree half-angle.

Figure 20: Pressure field for the low-resolution simulation at 5 ms of Mach 1.5 flow over
a cone with 32 degree half-angle.

92

(a) Mach 1.5 inflow

(b) Mach 1.6 inflow

Figure 21: Pressure field for the low-resolution simulation at 5 ms of flow over a cone with
32 degree half-angle in a larger flow domain, H = 1.6.

93

Now, the results are looking better, with the shocks looking quite orderly in each

simulation. The Mach 1.6 flow has a straighter shock and a cleaner start at the tip of

the cone, such that it looks attached in this fairly low resolution simulation. At this

point, we could be tempted to declare victory and head to the Red Room to study the

generation of high quality multi-block grids as shown in Figure 7. However, we want to be

good students of CFD and shall confirm that the flows really have reached steady state

by running the simulations for a longer time. Besides, the simulations are being done in

less than a minute each so how much extra effort can it be?

Approximately 5 minutes later, you see the results shown in Figure 22 and you wish

that you had left for the Red Room some time earlier. The Mach 1.6 shock looks good

and a little straighter, as it should, but the Mach 1.5 case is not showing the desired

result. Why, with such a small difference in inflow specification should there be such a

big difference? And, why does that difference seem to come from downstream?

(a) Mach 1.5 inflow

(b) Mach 1.6 inflow

Figure 22: Pressure field for the low-resolution simulation at 15 ms of flow over a cone
with 32 degree half-angle in a larger flow domain, H = 1.6.

94

If you ask a tutor at this point, you are likely to be asked: “What does the Mach

number look like, especially at the outflow boundary?” In preparation, you use the

--add-mach option to your e3post.py command and produce the plots shown in Fig-

ure 23. The Mach number approaching the exit plane for the Mach 1.6 inflow is transonic

but the Mach numbers for the Mach 1.5 inflow are very low for the near-normal shock

processed flow but, even for the little bit of flow processed by the oblique shock, they are

looking to be well below sonic conditions. The simple ExtrapolateOutBC applied to the

outflow boundary does not handle subsonic flow across it very well at all, and results in

the whole simulation not being a good representation of the physical situation. The fix is

to alter the flow domain, so that the outflow is mostly supersonic.

(a) Mach 1.5 inflow, The full rnage of M local is shown.

(b) Mach 1.6 inflow. Note that a partial range of M local is
displayed so as to show the transonic region more clearly.

Figure 23: Mach number field for the low-resolution simulation at 15 ms of flow over a
cone with 32 degree half-angle in a larger flow domain, H = 1.6.

95

20 Building a more robust simulation

The fix is very much as you should do in a physical experiment. If a boundary effect

is messing with your flow, move that boundary away. Fortunately, this is (usually) easy

to do in a numerical simulation. Here, we will add another block to the downstream

edge of the original domain and effectively move the outflow further downstream. This

extra block (blk_2 in the following input script) allows the flow to regain supersonic flow

conditions before crossing the outflow boundary.

20.1 Input script (.py)

conepe.py

Simple job -specification making use of parametric capabilities.

PJ, 25-Jul -2015 -- adapted from the classic cone20 , extended

We can set individual attributes of the global data object.

gdata.dimensions = 2

gdata.axisymmetric_flag = 1

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Define flow conditions

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

Tinf = 1103.0

a = sqrt (1.4*287.1* Tinf) # sound speed in free stream

M = 1.5

ux = M * a

print "ux=", ux

inflow = FlowCondition(p=95.84e3, u=ux , v=0.0, T=Tinf)

Define cone/flow -domain geometry

theta = 32 # cone half -angle , degrees

L = 0.8 # axial length of cone , metres

rbase = L * math.tan(math.radians(theta))

x0 = 0.2 # upstream distance to cone tip

H = 3.0 # height of flow domain , metres

gdata.title = "Mach %.1f flow over a %.1f-degree cone." % (M, theta)

print gdata.title

Set up two quadrilaterals in the (x,y)-plane by first defining

the corner nodes , then the lines between those corners.

a = Node (0.0, 0.0, label="A")

b = Node(x0, 0.0, label ="B")

c = Node(x0+L, rbase , label ="C")

d = Node(x0+L, H, label ="D")

e = Node(x0, H, label="E")

f = Node (0.0, H, label ="F")

ab = Line(a, b); bc = Line(b, c) # lower boundary including cone surface

fe = Line(f, e); ed = Line(e, d) # upper boundary

af = Line(a, f); be = Line(b, e); cd = Line(c, d) # vertical lines

Define the blocks , with particular discretisation.

dx = 1.0/40

nx0 = int(x0/dx); nx1 = int(L/dx); ny = int(H/dx)

blk_0 = Block2D(make_patch(fe, be , ab , af), nni=nx0 , nnj=ny,

fill_condition=initial , label="BLOCK -0")

blk_1 = Block2D(make_patch(ed, cd , bc , be, "AO"), nni=nx1 , nnj=ny,

fill_condition=initial , label="BLOCK -1",

hcell_list =[(9 ,0)], xforce_list =[0,0,1,0])

Extend the flow domain

xend = x0+2*L

96

blk_2 = Block2D(CoonsPatch(c,Vector(xend ,rbase /2), Vector(xend ,H),d),

nni=nx1 , nnj=ny,

fill_condition=initial , label="BLOCK -2")

Set boundary conditions.

identify_block_connections ()

blk_0.bc_list[WEST] = SupInBC(inflow , label="inflow -boundary ")

blk_2.bc_list[EAST] = ExtrapolateOutBC(label="outflow -boundary ")

Do a little more setting of global data.

gdata.max_time = 30.0e-3 # seconds

gdata.max_step = 15000

gdata.dt = 1.0e-6

gdata.dt_plot = 1.5e-3

gdata.dt_history = 10.0e-5

sketch.xaxis (0.0, 2.0, 0.5, -0.05)

sketch.yaxis (0.0, 2.0, 0.5, -0.04)

sketch.window (0.0, 0.0, 1.0, 1.0, 0.05, 0.05, 0.17, 0.17)

20.2 Final results

For a domain height H = 2, Figure 24 shows the Mach number field at the simulation

time of 30 milliseconds. This is double the time shown in the short-domain simulations,

where the flow was clearly choked. The slightly detached shock from the cone tip is much

cleaner but the upper boundary is still showing a strong effect with a near-normal shock

processing the upper part of the inflow. The slightly-subsonic values of mach number

immediately behind the detached shock are clearly shown in light blue.

Figure 24: Mach field for the low-resolution simulation at 30 ms of Mach 1.5 flow over a
cone with 32 degree half-angle. Flow domain height H = 2.

Since we’ve made all this effort at getting the downstream boundary condition behav-

ing well, we should take advantage of the parametric modelling once more and finish the

job by raising the flow domain height simply by setting H = 3 and running the simulation

97

again. This time, the flow field in Figure 25 appears to be clean and mostly free from ob-

vious boundary induced problems. The ExtrapolateOutBC boundary has mostly a clear

supersonic flow crossing it and can probably be trusted to behave well. This would be

the correct time to declare victory, however, the tutor now points out that the expansion

radiating from the corner at the end of the conical surface is probably affecting the whole

of the subsonic region behind the curved shock.

Figure 25: Mach field for the low-resolution simulation at 30 ms of Mach 1.5 flow over a
cone with 32 degree half-angle. Flow domain height H = 3.

98

Part IV

Examples for 2D flow

These examples are graded from simple geometry specification and gas model specifica-

tion to more complex. Initially, simple box regions and single-species ideal gas models

are used, followed by examples with curved boundaries, equilibrium gas models and, also,

multi-species thermally-perfect gases with finite-rate chemical kinetics. The Rutowski

simulation (Sec.48) is probably the most sophisticated example with respect to phemono-

logical models. It exercises just about every capability the code has, including radiation

energy exchange and thermal nonequilibrium, in a simulation of a radiating flow of argon

over a sphere.

99

21 Oblique shock boundary layer interaction.

With some confidence that the code is working correctly and a knowledge of the manual

postprocessing arrangements shown in the previous example, you are ready to try to

simulate a flow that has is a bit more “realistic”.

This is an example that introduces viscous effects but retains a very simple geometric

arrangement for the flow boundaries. It is simple to model but immediately shows the

computational demands that result from requesting an increase in “flow fidelity”. Consider

the Mach 2 flow of ideal air over a flat plate, as shown below in Figure 26. This flow image

was taken as part of an experimental campaign [12] in a continuous flow wind tunnel at

MIT. The flow is from left to right in the image and the plate with the boundary layer

of interest in the lower boundary and there is a viscous-interaction shock propagating

from the sharp edge of the plate (bottom left of the image) and across the flow. There

is another plate at a small angle of attack forming the upper surface of the test region.

The leading-edge of this shock-generator plate is out of view but the generated shock is

seen entering the field of view at the top-left of the image and reflection from the bottom

plate at approximately 49 mm from the leading edge. The shock reflection results in an

overall pressure ratio of 1.4 across the interaction region. The boundary layer on the

plate can be seen thickening to the point of intersection with the reflected shock and then

thinning again past the interaction point. The case for a pressure ratio of 1.4 was chosen

for simulation because, as noted in the original report [12], shear-stress data indicated

that the boundary layer remained laminar after the interaction.

Figure 26: Schlieren image of the Mach 2 flow over a flat plate taken from Fig.6b in
Reference [12].

Although the behaviour of laminar compressible-flow boundary layers on flat plates

are well predicted via simple theories, the addition of an impinging shock significantly

more difficult to analyse manually. The flow complexity significantly while the defining

flow geometry remains very simple.

100

21.1 Input script (.py)

Figure 27 shows the region, as modelled for simulation. The flat plate is truncated at

the length seen in the experimental flow image even though the actual plate extended

for 8 inches in the experiment. Also the shock generator plate is modelled as an ide-

alized, inviscid wall, even though the real shock generator would have had a bound-

ary layer and associated viscous interaction at its leading edge. It has been conve-

nient to apply a slip-wall boundary condition at the shock generator surface so that

the calculation to estimate the deflection angle for the specified pressure rise across

the reflected shock uses just the usual oblique-shock relations for an ideal gas. Us-

ing the cfpylib ideal-flow functions in the following script and a minute of trial and

error fiddling, the shock generator deflection angle can be estimated as being 3.09o.

double_oblique_shock.py

"""

Estimate pressure rise across a reflected oblique shock.

PJ, 01-May -2013

"""

print "Begin ..."

from cfpylib.gasdyn.ideal_gas_flow import *

import math

M1 = 2.0

p1 = 1.0

g = 1.4

print "First shock: ",

delta1 = 3.09 * math.pi /180.0

beta1 = beta_obl(M1,delta1 ,g)

p2 = p2_p1_obl(M1 ,beta1 ,g)

M2 = M2_obl(M1,beta1 ,delta1 ,g)

print "beta1=", beta1 , "p2=", p2 , "M2=", M2

print "Reflected shock:",

delta2 = delta1

beta2 = beta_obl(M2,delta2 ,g)

p3 = p2 * p2_p1_obl(M2,beta2 ,g)

M3 = M2_obl(M2,beta2 ,delta2 ,g)

print "beta2=", beta2 , "p3=", p3 , "M3=", M3

print "Done."

In the input script, geometric dimensions of the flow region and plate are simply scaled

from the flow image and the shock location identified in the associated pressure and skin-

friction plot. The flow region is modelled as a box with straight-line boundary segments

and, although the geometry is particularly simple, we use a three SuperBlock2D objects

to split the region into 20 individual blocks. This is done so that these blocks may be

assigned to several processors of a multicore machine and we don’t have to wait quite so

long for our simulation to run.

Using data in the original report [12], the free-stream conditions for Fig.6b with

Rex−shock = 2.96 × 105, can be estimated to be p∞ = 6.205 kPa, T∞ = 164.4 K and

u∞ = 514 m/s for ideal air with Rgas=287 J/kg·K and γ=1.4.

101

ADIABATIC

x

-0.02 0 0.02 0.04 0.06 0.08 0.1

y

0

0.02

0.04

in-0-0

SLIP_WALL

S
U
P
_I
N

in-0-1

SLIP_WALL

S
U
P
_I
N

p1-0-0

p1-0-1

p1-1-0

ADIABATIC

p1-1-1

p1-2-0

p1-2-1

p1-3-0

p1-3-1

SLIP_WALL

p1-4-0

p1-4-1

p1-5-0

p1-5-1

p1-6-0

ADIABATIC

p1-6-1

p2-0-0

p2-0-1

p2-1-0

FI
X
E
D
_P
_O
U
T

p2-1-1

SLIP_W
ALL

FI
X
E
D
_P
_O
U
T

Figure 27: Schematic view of the simulated flow region for the shock-wave interaction
with a laminar boundary layer.

swlbli.py

PJ, 01-May -2013

Model of Hakkinen et al ’s 1959 experiment.

gdata.title = "Shock -wave laminar -boundary -layer interaction ."

print gdata.title

Conditions to match those of Figure 6: pf/p0=1.4, Re_shock =2.96e5

p_inf = 6205.0 # Pa

u_inf = 514.0 # m/s

T_inf = 164.4 # degree K

Accept defaults giving perfect air (R=287 J/kg.K, gamma =1.4)

select_gas_model(model=’ideal gas ’, species=[’air ’])

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf)

mm = 1.0e-3 # metres per mm

L1 = 10.0* mm; L2 = 90.0* mm; L3 = 67*mm

H1 = 37.36* mm

alpha = 3.09* math.pi /180.0 # angle of inviscid shock generator

tan_alpha = math.tan(alpha)

a0 = Vector(-L1, 0.0); a1 = a0+Vector (0.0,H1) # leading edge of shock generator

b0 = Vector (0.0, 0.0); b1 = b0+Vector (0.0,H1 -L1*tan_alpha) # start plate

c0 = Vector(L3, 0.0); c1 = c0+Vector (0.0,H1 -(L1+L3)* tan_alpha) # end shock generator

d0 = Vector(L2, 0.0); d1 = d0+Vector (0.0,H1) # end plate

The following lists are in order [N, E, S, W]

rcf = RobertsClusterFunction (1 ,1 ,1.1)

ni0 = 20; nj0 = 80 # We’ll scale discretization off these values

factor = 4

ni0 *= factor; nj0 *= factor

inlet = SuperBlock2D(CoonsPatch(a0,b0,b1 ,a1),

nni=ni0 , nnj=nj0 , nbi=1, nbj=2,

bc_list =[SlipWallBC (),None ,SlipWallBC (),SupInBC(inflow)],

cf_list =[None ,rcf ,None ,rcf],

fill_condition=inflow , label="in")

plate1 = SuperBlock2D(CoonsPatch(b0,c0 ,c1,b1),

nni=ni0*7, nnj=nj0 , nbi=7, nbj=2,

bc_list =[SlipWallBC (),None ,AdiabaticBC (),None],

cf_list =[None ,rcf ,None ,rcf],

fill_condition=inflow , label="p1")

plate2 = SuperBlock2D(CoonsPatch(c0,d0 ,d1,c1),

nni=ni0*2, nnj=nj0 , nbi=2, nbj=2,

bc_list =[SlipWallBC (), FixedPOutBC (6205.0) , AdiabaticBC (),None],

cf_list =[None ,rcf ,None ,rcf],

102

fill_condition=inflow , label="p2")

identify_block_connections ()

Do a little more setting of global data.

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 1.0

gdata.max_time = 5.0*L2/u_inf # in flow lengths

gdata.max_step = 200000

gdata.dt = 1.0e-8

gdata.dt_plot = gdata.max_time /10

sketch.xaxis (-0.020, 0.100, 0.020, -0.010)

sketch.yaxis (0.000 , 0.040, 0.020, -0.004)

sketch.window (-0.02, 0.0, 0.10, 0.12, 0.05, 0.05, 0.25, 0.25)

21.2 Running the simulation

To get the simulation started, try the following commands:

$ cd ∼/cfcfd3/examples/eilmer3/2D/hakkinen-SWLBLI/
$./prep.sh

$./run.sh

$ tail -f run.transcript

You should see the usual console output of a simulation proceeding to take time steps and

reporting it’s progress toward reaching a final time. If you are working on a 4-core machine,

go and have dinner and return in about 5 hours to check the state of the simulation. The

grid and initial solution are created with the prep script and the time-evolution of the flow

field is then computed for about 876µs (with 11186 time steps being required). At the

end of this pass of the simulation, it turns out that the separation region is still slightly

evolving as indicated by small movements of the waves propagating from that region.

We restart the calculation and run it to twice the original value of max_time. This

is achieved by manually editing the swlbli.control file as described in Section 3.6 and

setting max_time = 1.750972e-03 and dt = 8.000000e-08 then running the command:

$./run-2.sh

The commands invoke the shell scripts displayed in subsection 21.4.

21.3 Results

Figure 28 shows some of the flow field data at t=1.75 ms after flow start. The magnitude

of the gradients of density (Fig. 28c) are also shown as an approximation to the schlieren

103

image of Figure 26. The image of the pressure clearly shows the waves propagating from

the leading-edge viscous interaction and their reflection from the shock generator. As

expected, the boundary layer is not directly evident in the pressure field but shows up

clearly in the temperature field. The more gradual compression, as the boundary layer

approaches the incident shock, is evident as a much as a much broader band in the pressure

field. This is followed by an expansion and then a recompression. All of these waves are

most clearly shown in the gradient of density field. The shock, expansion and recomression

shock from the leading-edge viscous interaction are displayed more distinctly and the

convergence of the gradual compressions becomes clear. The structure of expansion fans

also appears more clearly in this gradient field than in the pressure or temperature fields.

The real proof of success is in comparison with the experimental data. Figure 29 shows

the pressure and shear-stress along the plate. The simulation has done a reasonable job

of estimating the pressure distribution right through the separation zone. Features that

look a little wrong include the viscous interaction region at x=0, which is a bit extended

because of lack of resolution at the start of the boundary layer, however, doubling the grid

resolution (factor=8) tightens up solution in this region. Also, there is an artificial drop

in pressure at the right end of the simulation domain where the boundary layer exits the

flow domain but this is of no concern because the flat plate used in the experiment was

more than twice the length of this simulated version. This behaviour is grid independent.

The simulation has done a reasonable job on the shear stress, which has been computed

from the field data using the script in Section 21.5. This quantity is difficult to compute

and difficult to measure so it is reassuring that both sets of data line up nicely with

the Blasius value in the boundary layer leading into the interaction region. After the

interaction region, the computed values recover to the Blasius level just before rising

toward the end of the flow domain. This is, again, the interaction with the outflow

boundary condition and would be removed from view if the full length of the plate was

simulated. The only discernible difference with increasing grid resolution (from factor=4

to factor=8) is that the early development of the boundary layer moves a little closer to

the Blasius behaviour.

21.4 Shell scripts

#! /bin/bash

prep.sh

e3prep.py --job=swlbli --do-svg

e3loadbalance.py --job=swlbli -n 4

e3post.py --job=swlbli --tindx =0 --vtk -xml

echo "At this point , we should have a grid."

echo "Use run.sh next"

104

(a) Pressure field.

(b) Temperature field.

(c) Gradient of density field.

Figure 28: Computed flow field at t=1.75 ms.

105

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90

p
,

k
P

a

x, mm

Static pressure along the plate pf/p0=1.4

Eilmer3
Hakkinen Fig.6b

(a) Pressure (factor=4).

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0 10 20 30 40 50 60 70 80 90

C
f

x, mm

Shear-stress coefficient along the plate pf/p0=1.4

Eilmer3
Blasius

Hakkinen Fig.6b

(b) Shear stress (factor=4).

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90

p
,

k
P

a

x, mm

Static pressure along the plate pf/p0=1.4

Eilmer3
Hakkinen Fig.6b

(c) Pressure (factor=8).

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0 10 20 30 40 50 60 70 80 90

C
f

x, mm

Shear-stress coefficient along the plate pf/p0=1.4

Eilmer3
Blasius

Hakkinen Fig.6b

(d) Shear stress (factor=8).

Figure 29: Distribution of pressure and shear along the plate at t=1.75 ms.

106

#! /bin/bash

run.sh

module load openmpi -x86_64

date

mpirun -np 4 e3mpi.exe --job=swlbli --mpimap=swlbli.mpimap --run > run.transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

#! /bin/bash

run -2.sh

restart the calculation where run.sh left it

module load openmpi -x86_64

date

mpirun -np 4 e3mpi.exe --job=swlbli --mpimap=swlbli.mpimap --run --tindx =10 > run -2. transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

#! /bin/bash

post.sh

e3post.py --job=swlbli --tindx=all --vtk -xml --add -mach

echo "At this point , we should have data to view"

#! /bin/bash

plot.sh

e3post.py --job=swlbli --tindx=last --add -mach --output -file=bl.data \

--slice -list ="2,:,0,0;4,:,0,0;6,:,0,0;8,:,0,0;10,:,0,0;12,:,0,0;14,:,0,0;16,:,0,0;18,:,0,0"

gnuplot pressure.gnuplot

gnuplot shear.gnuplot

echo "At this point , we should have pictures to view"

21.5 Postprocessing for shear stress

The script below uses the functions imported from e3 flow.py at a slightly higher level

than in the cone20 example. It extracts the data for the cell nearest to the flat plate and

uses that data to compute the expected shear stress on the plate.

#! /usr/bin/env python

compute_shear.py

#

Pick up the simulation data at the last simulated time

and compute an estimate of the shear -stress coefficient.

#

PJ, 08-May -2013

107

import sys , os

from math import sqrt

from e3_flow import read_all_blocks

job = "swlbli"

nb = 20

pick_list = [2, 4, 6, 8, 10, 12, 14, 16, 18] # blocks against plate

rho_inf = 0.1315 # kg/m**3

u_inf = 514.0 # m/s

T_inf = 164.4 # K

from cfpylib.gasdyn import sutherland

mu_inf = sutherland.mu(T_inf , ’Air ’)

print "Determine the latest time."

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

tindx = int(lines [-1]. strip (). split ()[0]) # first number of the last line

print "tindx=", tindx

print "Begin: Pick up data."

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

print "Compute shear stress for cell -centres along plate surface"

outfile = open(" shear.data", "w")

outfile.write ("# x(m) tau_w(Pa) Cf y_plus\n")

for ib in pick_list:

j = 0 # plate is along the South boundary

k = 0 # of a 2D grid

print "# start of block"

for i in range(flow[ib].ni):

Cell closest to surface

x = flow[ib].data[’pos.x’][i,j,k];

y = flow[ib].data[’pos.y’][i,j,k]

rho = flow[ib].data[’rho ’][i,j,k];

u1 = flow[ib].data[’vel.x’][i,j,k]

mu = flow[ib].data[’mu ’][i,j,k]

dudy = (u1 - 0.0) / y # Assuming that the wall is straight down at y=0

tau_w = mu * dudy # wall shear stress

Cf = tau_w / (0.5* rho_inf*u_inf*u_inf)

u_tau = sqrt(abs(tau_w) / rho) # friction velocity

y_plus = u_tau * y * rho / mu

Rex = rho_inf * u_inf * x / mu_inf

Cf_blasius = 0.664 / sqrt(Rex)

outfile.write ("%f %f %f %f %f\n" % (x, tau_w , Cf , Cf_blasius , y_plus))

print "x=", x, "tau_w=", tau_w , "Cf=", Cf, "y_plus=", y_plus

outfile.close ()

print "Done"

21.6 Notes

• The influence of the flat plate boundary layer on the pressure in the region near the

plate is small but measureable. With a free-stream pressure of 6.205 kPa specified

at the inflow plane, we see 6.28 kPa in the pressure data leading into the shock-

interaction region. For the free-stream conditions used, the displacement thick-

ness of a simple flat-plate boundary layer would be expected to be approximately

0.112 mm at 25 mm from the leading edge of the plate. If this displacement effect

could be modelled as a straight wedge deflecting the inviscid free-stream, the corre-

sponding oblique shock would have a static pressure ratio of 1.0146. This gives an

expected pressure of 6.295 kPa in the boundary-layer external flow leading into the

shock interaction, quite close to the simulation value.

108

22 Viscous Flow Along a Cylinder

This case (2D/axi-cylinder/ computes the flow for a supersonic laminar boundary layer

growing along a hollow cylinder. It was used in the original report[10] to verify the

implementation of the viscous and axisymmetric terms in the code.

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

blk-0

SU
P_
IN

E
X
T
R
A
P
O
L
A
T
E
_O

U
T

FIXED_T

S
U
P
_I
N

Figure 30: Flow domain for viscous flow along a cylinder.

The flow geometry consists of a hollow cylinder, 1.0m long with radius 0.005m, aligned

with the x-axis. The flow domain shown in Figure 30 is defined by a quadrilateral with

corners (1.0, 0.005), (1.0, 0.7), (0.0, 0.06), (0.0, 0.005). This region is shaped to capture

the weak leading-edge-interaction shock while concentrating cells near the cylinder surface

for the early part of the boundary layer development. The grid consists of 50 × 50 cells

which are clustered toward the leading edge of the cylinder and (even more strongly in

the y-direction) toward the cylinder surface.

The free stream is a uniform supersonic flow of air, modelled as a perfect gas with

conditions

ρ = 0.00404 kg/m3, ux = 597.3 m/s, uy = 0, e = CvT = 1.592× 105 J/kg,

T = 222 K, p = 257 Pa, M = 2.

109

This free stream condition is applied to the West and North boundaries, the East boundary

is a supersonic outflow boundary and the South boundary (along the cylinder surface) is

a no-slip boundary with temperature fixed at T = 222 K. The Reynolds number at the

end of the plate is 1.65× 105.

Initially, the flow throughout the block is set at the same conditions as the free stream

and the governing equations are integrated in time. Figure 31 shows the pressure and

temperature fields after a period of 8 ms. The weak leading-edge interaction shock is most

clearly seen in the pressure field and the boundary layer on the cylinder surface is evident

in the temperature field.

Figure 31: Pressure and temperature fields for viscous flow along a cylinder.

Figure 32 shows the x-velocity and temperature profiles through the boundary layer

at x=0.916 m, 48 cells from the leading edge of the cylinder. The simulation data from

Eilmer3 are compared with data produced by David Pruett’s spectral boundary layer

code.

This case requires a fairly large computational effort of about 4 hours to reach a

simulation time of 8 ms.

110

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700

y-
R

, m
m

ux, m/s

cyl50: Profile at x=0.917m

50x50 grid
spectral

 0

 5

 10

 15

 20

 25

 200 210 220 230 240 250 260 270

y-
R

, m
m

Temperature, K

cyl50: Profile at x=0.917m

50x50 grid
spectral

Figure 32: Velocity and temperature profiles at x = 0.916 m for viscous flow along a
cylinder.

22.1 Input script (.py)

\file cyl50.py

\author PJ

\version 14-Aug -2006 updated from Tcl script

\version 18-Jan -2010 updated for Eilmer3

\version 14-Apr -2013 use MPI with 4 procs to speed things up.

gdata.title = "Mach 2 flow along the axis of a 5mm cylinder ."

print gdata.title

gdata.axisymmetric_flag = 1

Accept defaults giving perfect air (R=287 J/kg.K, gamma =1.4)

select_gas_model(model=’ideal gas ’, species=[’air ’])

inflow = FlowCondition(p=257.3 , u=597.3 , v=0.0, T=222.0)

Set up a quadrilateral in the (x,y)-plane.

y c

^ / |

| / |

d |

a-----b

0------------> x

a = Node (0.0 ,0.005); b = Node (1.0 ,0.005); c = Node (1.0 ,0.7); d = Node (0.0 ,0.06)

south = Line(a,b); north = Line(d,c); west = Line(a,d); east = Line(b,c)

The following lists are in order [N, E, S, W]

bndry_list = [SupInBC(inflow), ExtrapolateOutBC (), FixedTBC (222.0) , SupInBC(inflow)]

rcfns = RobertsClusterFunction (1,0,1.1)

rcfew = RobertsClusterFunction (1 ,0 ,1.01)

Assemble the block from the geometry , discretization and boundary data.

blk = SuperBlock2D(psurf=make_patch(north , east , south , west , grid_type ="AO"),

nni=50, nnj=50, nbi=2, nbj=2,

bc_list=bndry_list , cf_list =[rcfns , rcfew , rcfns , rcfew],

fill_condition=inflow)

Do a little more setting of global data.

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 1.2

gdata.max_time = 8.0e-3 # seconds

gdata.max_step = 230000

gdata.dt = 3.0e-8

gdata.dt_plot = 4.0e-3

111

sketch.xaxis (0.0, 1.0, 0.2, -0.05)

sketch.yaxis (0.0, 1.0, 0.2, -0.04)

sketch.window (0.0, 0.0, 1.0, 1.0, 0.05, 0.05, 0.17, 0.17)

22.2 Shell scripts

#! /bin/sh

cyl50_run.sh

e3prep.py --job=cyl50 --do-svg

time mpirun -np 4 e3mpi.exe --job=cyl50 --run

echo "At this point , we should have a new solution"

echo "Run cyl50_post.sh next"

cyl50_plot.sh

Plot the profiles of temperature and velocity toward the end of the plate.

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cyl50_profile_T.eps"

set style line 1 linetype 1 linewidth 3.0

set title "cyl50: Profile at x=0.917m"

set ylabel "y-R, mm"

set key top right

set xlabel "Temperature , K"

set yrange [0:25]

set xrange [200:270]

set style line 1 linetype 1 linewidth 4.0

plot "profile.data" using (\$20):(\$2 -0.005)*1000 title "50 x50 grid" with points pt 4, \

"cyl50_dimensional.dat" using (\$2):(\$1 -0.005)*1000.0 title "spectral" with lines ls 1

EOF

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cyl50_profile_ux.eps"

set style line 1 linetype 1 linewidth 1.0

set title "cyl50: Profile at x=0.917m"

set ylabel "y-R, mm"

set xlabel "ux, m/s"

set key top left

set yrange [0:25]

set xrange [0:700]

set style line 1 linetype 1 linewidth 4.0

plot "profile.data" using (\$6):(\$2 -0.005)*1000 title "50 x50 grid" with points pt 4, \

"cyl50_dimensional.dat" using (\$3):(\$1 -0.005)*1000.0 title "spectral" with lines ls 1

EOF

22.3 Notes

• None

112

23 Hypersonic flow over a concave surface.

This is one of the two hypersonic flows studied by Mohammadian [13] in the Imperial

College gun tunnel, more than 4 decades ago. The gun tunnel was operated with a total

pressure of 1600 psia (11.03 MPa) and a total temperature of 1300 K with a Mach 12.25

contoured nozzle.

Since we don’t have full information on the tunnel and its operating condition, we

have to make a few assumptions. First, we assume that the nozzle produced a parallel

and uniform flow of ideal air with free stream conditions p = 63.43 Pa, T=41.92 K and

u = 1.59 km/s. Using Sutherland’s expression for the viscosity of air, we estimate the

viscosity of the free stream to be µ = 2.593× 10−6 Pa.s. Taking a length scale L = 1 inch,

we compute a Reynolds number ReL = 0.86× 105, which is the same as that reported in

the original paper [13].

23.1 Input script (.py)

Figure 33 shows the flow region, as modelled for simulation. The region is very simple but

we have divided it into 22 blocks so that the computational load can be shared across a

number of CPU cores.

x
0 0.05 0.1 0.15 0.2

y

0

0.05

0.1

0.15

0.2

0-0S
U
P
_I
N

0-1

1-0

1-1
2-0

2-1

3-0

3-1

4-0

4-1

SUP
_IN

5-0

5-1

6-0

6-1

7-0

FIXE
D_T

7-1
8-0

8-1 9-0

9-1

t-0-0
FI
X
E
D
_P
_O

U
T

FIXED_T

t-0-1

SUP_IN

Figure 33: Schematic view of the simulated flow region for the hypersonic flow over
Mohammadian’s concave ramp.

The concave ramp is defined by

y =
1

150
x3

where x is in inches and the surface angle is less than 28o. Beyond that point, the

ramp surface is assumed straight until the corner at x = 6.4 inches. The ramp surface

temperature was assumed to be a constant 296 K.

113

cubic -ramp.py

PJ, 10-Aug -2013

Model of Mohammadian ’s concave surface experiment.

gdata.title = "Mohammadian cubic ramp."

print gdata.title

Conditions to match those reported in JFM paper.

p_inf = 66.43 # Pa

u_inf = 1589.8 # m/s

T_inf = 41.92 # degree K

select_gas_model(model=’ideal gas ’, species=[’air ’])

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf)

initial = FlowCondition(p=p_inf/5, u=0, T=T_inf)

T_wall = 296.0 # degree K --assumed cold -wall temperature

def ramp(t):

"""

Parametric definition of ramp profile in xy -plane.

"""

m_per_inch = 25.4e-3 # metres per inch

alpha = 28.0* math.pi /180.0 # angle of final straight section

tan_alpha = math.tan(alpha)

x_join_inch = math.sqrt (50.0* tan_alpha)

y_join_inch = x_join_inch **3 / 150.0

x_inch = 6.4 * t

if x_inch < x_join_inch:

y_inch = x_inch **3 / 150.0

else:

y_inch = y_join_inch + (x_inch - x_join_inch) * tan_alpha

return (x_inch*m_per_inch , y_inch*m_per_inch , 0.0)

mm = 1.0e-3 # metres per mm

x,y,z = ramp (0.0); a0 = Vector(x,y,z); a1 = a0+Vector (0.0 ,5*mm) # leading edge

x,y,z = ramp (1.0); b0 = Vector(x,y,z); b1 = b0+Vector (-5*mm ,20*mm) # downstream end

c0 = b0+Vector (10*mm ,0.0); c1 = Vector(c0.x,b1.y) # end of model

rcfx = RobertsClusterFunction (1,0,1.2)

rcfy = RobertsClusterFunction (1,0,1.1)

ni0 = 200; nj0 = 40 # We ’ll scale discretization off these values

factor = 2.0

ni0 = int(ni0*factor); nj0 = int(nj0*factor)

wedge = SuperBlock2D(make_patch(Line(a1 ,b1),Line(b0,b1),

PyFunctionPath(ramp),Line(a0,a1)),

nni=ni0 , nnj=nj0 , nbi=10, nbj=2,

bc_list =[SupInBC(inflow),None ,

FixedTBC(T_wall),SupInBC(inflow)],

cf_list =[rcfx ,rcfy ,rcfx ,rcfy],

fill_condition=inflow , label="wedge")

tail = SuperBlock2D(CoonsPatch(b0 ,c0,c1,b1),

nni=int(ni0/10), nnj=nj0 , nbi=1, nbj=2,

bc_list =[SupInBC(inflow),FixedPOutBC(p_inf/5),

FixedTBC(T_wall),None],

cf_list =[None ,rcfy ,None ,rcfy],

fill_condition=initial , label="tail")

identify_block_connections ()

Do a little more setting of global data.

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 1.0

gdata.max_time = 1.0e-3 # long enough for several flow lengths

gdata.max_step = 2000000

gdata.dt = 1.0e-9

gdata.dt_plot = 0.1e-3

sketch.xaxis (0.0, 0.20, 0.05, -0.010)

sketch.yaxis (0.0, 0.20, 0.05, -0.010)

sketch.window (0.0, 0.0, 0.20, 0.20, 0.05, 0.05, 0.25, 0.25)

114

23.2 Running the simulation

In terms of required computer time, this simulation is fairly demanding, taking more than

12 hours on a 4-core workstation. The job scipts submitted to the batch system are shown

below. Note that the preparation script sets up the mapping of the full set of 22 blocks

to fit onto 4 MPI tasks.

#! /bin/bash

prep.sh

e3prep.py --job=cubic -ramp --do-svg

e3loadbalance.py --job=cubic -ramp -n 4

e3post.py --job=cubic -ramp --tindx =0 --vtk -xml

echo "At this point , we should have a grid."

echo "Use run.sh next"

#! /bin/bash

run.sh

module load openmpi -x86_64

date

mpirun -np 4 e3mpi.exe --job=cubic -ramp --mpimap=cubic -ramp.mpimap --run > run.transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

23.3 Results

Figure 34 shows some of the flow field data at t=1 ms after flow start. This is sufficient

time for the flow to reach steady state.

The logarithmic pressure field shows the leading-edge interaction shock propagating

into the free-stream flow but then intersecting the ramp about two-thirds of the way along

its length. The gradually increasing pressure can also be seen in the near-surface region,

leading up to this intersection.

The temperature field shows more clearly the boundary layer that grows along the

concave surface. It also shows the compression of the boundary-layer flow as the surface

curves up. The oblique shock propagating up over the top of the ramp is a combination

of the reflected lead-edge interaction shock and the coalesced compression waves from the

curved ramp.

115

(a) Pressure field.

(b) Temperature field.

(c) Mach number.

Figure 34: Computed flow field at t=1 ms.

116

Although the computed flow field looks plausible, the real proof of success of the

simulation is in comparison with the experimental data. Figure 35 shows the pressure

and heat-transfer along the surface of the ramp. The simulation has done a good job of

estimating the pressure distribution for the early part of the ramp, and does a fair job

all the way up to the sharp corner at the top of the ramp, although there appears to be

a mismatch in the location of this corner (indicated by the sharp drop in pressure at the

right end of each data set).

The simulation has also done a good job on the heat transfer estimate, which has

been computed from the field data using the script in Section 23.4. Mohammadian has

not provided dimensional data in the original paper so we have normalized the simulation

data is the same way as can be best guessed (with the assistance of Andrew Knisely,

University of Illinois). First, we compute local heat transfer from the normal gradient of

temperature at the ramp surface, followed by Stanton number as

St =
q

ρUCp(T0 − Tw)

and then plot the combination St.Re
1
2
x , to remove the singularity in heat transfer at

the leading edge of the ramp. Agreement for the early part of the plate to 110 mm

is excellent, so we can have some confidence in the codes ability to model hypersonic

viscous interactions, however, what happens beyond that point is not captured by this

purely two-dimensional simulation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120 140 160 180

p
,

P
a

x, mm

Cubic ramp, pressure along surface

Eilmer3
Mohammadian (1972)

(a) Pressure.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

S
t.

R
e

^(
1

/2
)

x, mm

Cubic ramp, heat-flux along surface

Eilmer3
Mohammadian (1972)

(b) Heat transfer.

Figure 35: Distribution of pressure and heat transfer along the concave ramp. Simulation
data is recorded at t=1 ms into the simulation. Experimental data is from Ref. [13].

The boundary-layer thickness, as identified by the outer edge of the maximum density

gradient seen in a schlieren image was also provided by Mohammadian. Figure 36 shows

the density gradient field of the simulated flow and, from this image, corresponding points

117

were measured manually (with the assistance of the g3data program). These boundary-

layer thickness data are shown in Figure 37, together with the experimental values from

Ref.[13]. Although there is some scatter in the simulation-derived data, comparison is

good.

Figure 36: Computed density gradient field.

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

d
e

lt
a

*,
 m

m

x, mm

Cubic ramp, edge of boundary layer

Eilmer3
Mohammadian (1972)

Figure 37: Estimates of the boundary-layer displacement thickness along the ramp.

23.4 Postprocessing to get heat transfer

The scripts below use the functions imported from e3_flow.py at a slightly higher level

than in the cone20 example. The first extracts the data for the cell nearest to the ramp

118

surface and uses that data to compute the expected shear stress and heat transfer at the

surface.

#! /usr/bin/env python

surface_properties.py

#

Pick up the simulation data at the last simulated time

compute an estimate of the shear -stress coefficient and

output both shear and pressure along the cubic surface.

#

PJ, 11-Aug -2013

14-Aug -2013 heat transfer normalised as St.sqrt(Re_x)

import sys , os

job = "cubic -ramp"

print "Determine the latest time."

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

tindx = int(lines [-1]. strip (). split ()[0]) # first number of the last line

print "tindx=", tindx

print "Begin: Pick up data for tindx=", tindx

from libprep3 import Vector , cross , dot , vabs

from e3_flow import read_all_blocks

from math import sqrt

#

nb = 22

pick_list = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] # blocks against cubic surface

rho_inf = 5.521e-3 # kg/m**3

p_inf = 66.43 # Pa

u_inf = 1589.8 # m/s

T_inf = 41.92 # K

T_wall = 296.0 # K

T_0 = 1300.0 # K

specific_heat = 1004.5 # J/kg.K

from cfpylib.gasdyn import sutherland

mu_inf = sutherland.mu(T_inf , ’Air ’)

mm = 0.001 # metres

#

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

print "Compute shear stress for cell -centres along the surface"

outfile = open(" surface.data", "w")

outfile.write ("# x(m) tau_w(Pa) Cf Cf_blasius y_plus p(Pa) Cp q(W/m**2) St.Re ^0.5\n")

for ib in pick_list:

j = 0 # surface is along the South boundary

k = 0 # of a 2D grid

print "# start of block"

for i in range(flow[ib].ni):

Cell closest to surface

x = flow[ib].data[’pos.x’][i,j,k]

y = flow[ib].data[’pos.y’][i,j,k]

ctr = Vector(x, y)

Get vertices on surface , for this cell.

x = grid[ib].x[i,j,k]

y = grid[ib].y[i,j,k]

vtx0 = Vector(x, y)

x = grid[ib].x[i+1,j,k]

y = grid[ib].y[i+1,j,k]

vtx1 = Vector(x, y)

t1 = (vtx1 -vtx0)

t1.norm() # tangent vector for surface

midpoint = 0.5*(vtx0+vtx1) # on surface

normal = cross(Vector (0,0,1),t1)

normal.norm()

Surface to cell -centre distance.

dy = dot(normal , ctr -midpoint)

Cell -centre flow data.

rho = flow[ib].data[’rho ’][i,j,k]

ux = flow[ib].data[’vel.x’][i,j,k]

uy = flow[ib].data[’vel.y’][i,j,k]

v = Vector(ux, uy)

119

vt = dot(v,t1) # velocity component tangent to surface

mu = flow[ib].data[’mu ’][i,j,k]

kgas = flow[ib].data[’k[0]’][i,j,k]

p = flow[ib].data[’p’][i,j,k]

Cp = (p-p_inf)/(0.5* rho_inf*u_inf*u_inf)

T = flow[ib].data[’T[0]’][i,j,k]

Shear stress

dudy = (vt - 0.0) / dy # no-slip wall

tau_w = mu * dudy # wall shear stress

Cf = tau_w / (0.5* rho_inf*u_inf*u_inf)

u_tau = sqrt(abs(tau_w) / rho) # friction velocity

y_plus = u_tau * dy * rho / mu

Rex = rho_inf * u_inf * midpoint.x / mu_inf

Cf_blasius = 0.664 / sqrt(Rex)

Heat flux

dTdy = (T - T_wall) / dy # conductive heat flux at the wall

q = kgas * dTdy

St = q / (rho_inf*u_inf*specific_heat *(T_0 -T_wall)) # Stanton number

#

outfile.write ("%f %f %f %f %f %f %f %f %f\n" %

(midpoint.x, tau_w , Cf, Cf_blasius ,

y_plus , p, Cp , q, St*sqrt(Rex)))

print "x=", midpoint.x, "tau_w=", tau_w , "Cf=", Cf, "y_plus=", y_plus , \

"p=", p, "Cp=", Cp , "q=", q, "St.Rex ^0.5=" , St*sqrt(Rex)

outfile.close ()

print "Done"

23.5 Notes

• Plotting was done with the following GNUPlot scripts.

surface -pressure.gnuplot

set term postscript eps 20

set output ’surface -pressure.eps ’

set title ’Cubic ramp , pressure along surface ’

set ylabel ’p, Pa’

set xlabel ’x, mm’

set key top left

plot ’./surface.data ’ using ($1 *1000):($6) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./notes/mohammadian -figure -9-p_p_inf.data ’ \

using ($1 *25.4):($2 *66.43) \

title ’Mohammadian (1972) ’ with points pt 4

surface -heat -transfer.gnuplot

set term postscript eps 20

set output ’surface -heat -transfer.eps ’

set title ’Cubic ramp , heat -flux along surface ’

set ylabel ’St.Re^(1/2) ’

set xlabel ’x, mm’

set yrange [0:15]

set key top left

plot ’./surface.data ’ using ($1 *1000):($9) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./notes/mohammadian -figure -10- stanton.data ’ \

using ($1 *25.4):($2) \

title ’Mohammadian (1972) ’ with points pt 4

120

24 Hypersonic flow over a convex ramp.

This is the second of the two hypersonic flows studied by Mohammadian [13] in the Impe-

rial College gun tunnel. We use the same free-stream conditions as in Sec. 23 along with

the slightly more difficult-to-describe convex ramp geometry. The favourable pressure

gradient should make this an easier test flow to simulate.

24.1 Input script (.py)

Figure 38 shows the flow region, as modelled for simulation. The region is very simple

but, this time, we have divided it into 28 blocks so that the computational load can be

shared across a number of CPU cores.

x
0 0.05 0.1 0.15 0.2

y

0

0.05

0.1

0.15

0.2

0-0
0-1

S
U
P
_I
N

1-0

1-1
2-0

2-1
3-0

3-1
4-0

4-1 5-0
5-1 6-0

FIXE
D_T

6-1

SUP
_IN

7-0

7-1

8-0

8-1

9-0

9-1

t-0-0

t-0-1

SUP_IN

t-1-0

FIXED_T

t-1-1

t-2-0

t-2-1

t-3-0

t-3-1

FI
X
E
D
_P
_O

U
T

Figure 38: Schematic view of the simulated flow region for the hypersonic flow over
Mohammadian’s convex ramp.

The convex ramp is initially straight at 18o, until x = 3 inches, followed by a faired

section defined by

g = 0.0026 s4 − 0.0211 s3

where s and g are the local coordinates, in inches, rotated 18o to the x, y coordinates.

Following the faired section, there is a final straight section, continuing on at the same

slope as the faired section at that joining point. The second derivative of the fairing is

zero at both jouning points and this occurs at s = 0 and s = 4.058. The angle of this

final straight section is computed as −1.90o in the x, y-plane, that is, slightly away from

the free-stream flow direction. Again, the ramp surface temperature was assumed to be

a constant 296 K.

121

convex -ramp.py

PJ, 15-Aug -2013

Model of Mohammadian ’s convex -ramp experiment.

Revised 26-Aug -2013 to take his polynomial at face value.

gdata.title = "Mohammadian convex ramp."

print gdata.title

Conditions to match those reported in JFM paper.

p_inf = 66.43 # Pa

u_inf = 1589.8 # m/s

T_inf = 41.92 # degree K

select_gas_model(model=’ideal gas ’, species=[’air ’])

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf)

initial = FlowCondition(p=p_inf/5, u=0, T=T_inf)

T_wall = 296.0 # degree K --assumed cold -wall temperature

Mohammadian used the inch as his length scale.

m_per_inch = 0.0254

mm = 1.0e-3 # metres per mm

def ramp(t):

"""

Parametric definition of ramp profile in xy -plane.

Here , we join the initial straight 18-degree ramp to the polynomial.

"""

alpha = 18.0* math.pi /180.0 # angle of initial straight section

sin18 = math.sin(alpha)

cos18 = math.cos(alpha)

tan18 = math.tan(alpha)

x_join_inch = 3.0

y_join_inch = x_join_inch * tan18

L1 = x_join_inch/cos18 # length of initial straight section

L2 = 4.14677 # length of fairing (computed via maxima)

t2 = (L1+L2) * t

if t2 < L1:

x_inch = t2 * cos18

y_inch = t2 * sin18

else:

s = (t2 - L1)/L2 * 4.0577

g = 0.0026 * s**4 - 0.0211 * s**3

x_inch = x_join_inch + s * cos18 - g * sin18

y_inch = y_join_inch + s * sin18 + g * cos18

return (x_inch*m_per_inch , y_inch*m_per_inch , 0.0)

leading edge of ramp

x,y,z = ramp (0.0); a0 = Vector(x,y,z); a1 = a0+Vector (0.0 ,5*mm)

downstream end of transition curve

x,y,z = ramp (1.0); b0 = Vector(x,y,z); b1 = b0+Vector (-10.0*mm ,40*mm)

For the final straight section , angle continues at final angle of transition.

x_length = 10* m_per_inch - b0.x

beta = -1.90* math.pi /180.0

end of model

c0 = Vector(b0.x+x_length ,b0.y+x_length*math.tan(beta))

c1 = Vector(c0.x,b1.y)

rcfx = RobertsClusterFunction (1,0,1.2)

rcfy = RobertsClusterFunction (1,0,1.1)

ni0 = 200; nj0 = 40 # We ’ll scale discretization off these values

factor = 2.0

ni0 = int(ni0*factor); nj0 = int(nj0*factor)

wedge = SuperBlock2D(make_patch(Line(a1 ,b1),Line(b0,b1),

PyFunctionPath(ramp),Line(a0,a1)),

nni=ni0 , nnj=nj0 , nbi=10, nbj=2,

bc_list =[SupInBC(inflow),None ,

FixedTBC(T_wall),SupInBC(inflow)],

cf_list =[rcfx ,rcfy ,rcfx ,rcfy],

fill_condition=inflow , label="wedge")

tail = SuperBlock2D(CoonsPatch(b0 ,c0,c1,b1),

nni=int(ni0/4), nnj=nj0 , nbi=4, nbj=2,

bc_list =[SupInBC(inflow),FixedPOutBC(p_inf/5),

FixedTBC(T_wall),None],

122

cf_list =[None ,rcfy ,None ,rcfy],

fill_condition=initial , label="tail")

identify_block_connections ()

Do a little more setting of global data.

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 1.0

gdata.max_time = 1.0e-3 # long enough for several flow lengths

gdata.max_step = 2000000

gdata.dt = 1.0e-9

gdata.dt_plot = 0.1e-3

sketch.xaxis (0.0, 0.20, 0.05, -0.010)

sketch.yaxis (0.0, 0.20, 0.05, -0.010)

sketch.window (0.0, 0.0, 0.20, 0.20, 0.05, 0.05, 0.25, 0.25)

24.2 Running the simulation

In terms of required computer time, this simulation is fairly demanding, taking more than

12 hours on a 4-core workstation. The job scipts submitted to the batch system are shown

below. Note that the preparation script sets up the mapping of the full set of 28 blocks

to fit onto 4 MPI tasks.

#! /bin/bash

prep.sh

e3prep.py --job=convex -ramp --do-svg

e3loadbalance.py --job=convex -ramp -n 4

e3post.py --job=convex -ramp --tindx =0 --vtk -xml

echo "At this point , we should have a grid."

echo "Use run.sh next"

#! /bin/bash

run.sh

module load openmpi -x86_64

date

mpirun -np 4 e3mpi.exe --job=convex -ramp --mpimap=convex -ramp.mpimap --run > run.transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

24.3 Results

Figure 39 shows some of the flow field data at t=1 ms after flow start. This is sufficient

time for the flow to reach steady state.

The pressure field shows a nice, straight shock propagating into the free-stream, with

an almost constant pressure region between the shock and the straight ramp surface. The

123

(a) Pressure field.

(b) Temperature field.

(c) Mach number.

Figure 39: Computed flow field at t=1 ms.

124

faired section produces a smoothly decreasing pressure and, true to boundary layer theory,

the pressure gradient through the boundary layer to the ramp surface is essentially zero.

The temperature field, however, shows clearly the boundary layer that grows along the

ramp surface.

Although the computed flow field looks plausible, the real proof of success of the

simulation is in comparison with the experimental data. Figure 40 shows the pressure

and heat-transfer along the surface of the ramp. The simulation has done a good job of

estimating the pressure distribution over the full ramp, with a mismatch in magnitude

only after passing over the faired section to reach the very low pressure conditions. The

simulation has also done a reasonable job on the heat transfer estimate, which has been

computed from the field data using the script in Section 24.4. For this case Mohammadian

has provided dimensional data in the original paper so we have plotted that directly, after

converting to SI units. Agreement is good in form but only fair in magnitude. This will

be further exploted in the following example, where a thermal-nonequilibrium model for

air is tried.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

p
,

P
a

x, mm

Cubic ramp, pressure along surface

Eilmer3
Mohammadian (1972)

(a) Pressure.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

q
,

k
W

/m
**

2

x, mm

Cubic ramp, heat-flux along surface

Eilmer3
Mohammadian (1972)

(b) Heat transfer.

Figure 40: Distribution of pressure and heat transfer along the concave ramp. Simulation
data is recorded at t=1 ms into the simulation. Experimental data is from Ref. [13].

24.4 Postprocessing to get heat transfer

The scripts below use the functions imported from e3_flow.py at a slightly higher level

than in the cone20 example. The first extracts the data for the cell nearest to the ramp

surface and uses that data to compute the expected shear stress and heat transfer at the

surface.

#! /usr/bin/env python

surface_properties.py

125

#

Pick up the simulation data at the last simulated time

compute an estimate of the shear -stress coefficient and

output both shear and pressure along the convex surface.

#

PJ, 11-Aug -2013

14-Aug -2013 heat transfer normalised as St.sqrt(Re_x)

import sys , os

job = "convex -ramp"

print "Determine the latest time."

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

tindx = int(lines [-1]. strip (). split ()[0]) # first number of the last line

print "tindx=", tindx

print "Begin: Pick up data for tindx=", tindx

from libprep3 import Vector , cross , dot , vabs

from e3_flow import read_all_blocks

from math import sqrt

#

nb = 28

pick_list = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26] # blocks against surface

rho_inf = 5.521e-3 # kg/m**3

p_inf = 66.43 # Pa

u_inf = 1589.8 # m/s

T_inf = 41.92 # K

T_wall = 296.0 # K

T_0 = 1300.0 # K

specific_heat = 1004.5 # J/kg.K

from cfpylib.gasdyn import sutherland

mu_inf = sutherland.mu(T_inf , ’Air ’)

mm = 0.001 # metres

#

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

print "Compute shear stress for cell -centres along the surface"

outfile = open(" surface.data", "w")

outfile.write ("# x(m) tau_w(Pa) Cf Cf_blasius y_plus p(Pa) Cp q(W/m**2) St.Re^0.5\n")

for ib in pick_list:

j = 0 # surface is along the South boundary

k = 0 # of a 2D grid

print "# start of block"

for i in range(flow[ib].ni):

Cell closest to surface

x = flow[ib].data[’pos.x’][i,j,k]

y = flow[ib].data[’pos.y’][i,j,k]

ctr = Vector(x, y)

Get vertices on surface , for this cell.

x = grid[ib].x[i,j,k]

y = grid[ib].y[i,j,k]

vtx0 = Vector(x, y)

x = grid[ib].x[i+1,j,k]

y = grid[ib].y[i+1,j,k]

vtx1 = Vector(x, y)

t1 = (vtx1 -vtx0)

t1.norm() # tangent vector for surface

midpoint = 0.5*(vtx0+vtx1) # on surface

normal = cross(Vector (0,0,1),t1)

normal.norm()

Surface to cell -centre distance.

dy = dot(normal , ctr -midpoint)

Cell -centre flow data.

rho = flow[ib].data[’rho ’][i,j,k]

ux = flow[ib].data[’vel.x’][i,j,k]

uy = flow[ib].data[’vel.y’][i,j,k]

v = Vector(ux, uy)

vt = dot(v,t1) # velocity component tangent to surface

mu = flow[ib].data[’mu ’][i,j,k]

kgas = flow[ib].data[’k[0]’][i,j,k]

p = flow[ib].data[’p’][i,j,k]

Cp = (p-p_inf)/(0.5* rho_inf*u_inf*u_inf)

T = flow[ib].data[’T[0]’][i,j,k]

Shear stress

dudy = (vt - 0.0) / dy # no-slip wall

126

tau_w = mu * dudy # wall shear stress

Cf = tau_w / (0.5* rho_inf*u_inf*u_inf)

u_tau = sqrt(abs(tau_w) / rho) # friction velocity

y_plus = u_tau * dy * rho / mu

Rex = rho_inf * u_inf * midpoint.x / mu_inf

Cf_blasius = 0.664 / sqrt(Rex)

Heat flux

dTdy = (T - T_wall) / dy # conductive heat flux at the wall

q = kgas * dTdy

St = q / (rho_inf*u_inf*specific_heat *(T_0 -T_wall)) # Stanton number

#

outfile.write ("%f %f %f %f %f %f %f %f %f\n" %

(midpoint.x, tau_w , Cf, Cf_blasius ,

y_plus , p, Cp, q, St*sqrt(Rex)))

print "x=", midpoint.x, "tau_w=", tau_w , "Cf=", Cf, "y_plus=", y_plus , \

"p=", p, "Cp=", Cp , "q=", q, "St.Rex ^0.5=" , St*sqrt(Rex)

outfile.close ()

print "Done"

24.5 Notes

• Plotting was done with the following GNUPlot scripts.

surface -pressure.gnuplot

set term postscript eps 20

set output ’surface -pressure.eps ’

set title ’Cubic ramp , pressure along surface ’

set ylabel ’p, Pa’

set xlabel ’x, mm’

set key top left

plot ’./surface.data ’ using ($1 *1000):($6) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./notes/mohammadian -figure -12- p_p_inf.data ’ \

using ($1 *25.4):($2 *66.43) \

title ’Mohammadian (1972) ’ with points pt 4

surface -heat -transfer.gnuplot

set term postscript eps 20

set output ’surface -heat -transfer.eps ’

set title ’Cubic ramp , heat -flux along surface ’

set ylabel ’q, kW/m**2’

set xlabel ’x, mm’

set yrange [0:150]

set key top left

plot ’./surface.data ’ using ($1 *1000):($8 /1000) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./notes/mohammadian -figure -13-heat -flux.data ’ \

using ($1 *25.4):($2 *11.4) \

title ’Mohammadian (1972) ’ with points pt 4

127

128

25 Hypersonic, nonequilibrium flow over a convex

ramp.

This is a variation on the convex-ramp hypersonic flow studied by Mohammadian [13]

in the Imperial College gun tunnel, bringing in a thermal-nonequilibrium model for the

air. We use the same static free-stream conditions as in Sec. 23 but now assume that

the vibrational temperature of the molecules is frozen at a temperature not far below the

stagnation temperature. The hope is that the extra vibrational energy will be lead to an

extra bit of heat flux at the ramp surface.

25.1 Input script (.py)

The user input script now needs to specify the gas model as a mixture of N2 and O2

molecules and their vibrational temperatures, when specifying the flow conditions. Also,

it needs to specify the thermal nonequilibrium energy exchange scheme (N2-O2-TV.lua).

convex -ramp.py

PJ, Dan and Rowan , 15-Aug -2013

Model of Mohammadian ’s convex -ramp experiment with thermal nonequilibrium.

Revised 26-Aug -2013 to take his polynomial at face value.

gdata.title = "Mohammadian convex ramp , 2T thermo ."

print gdata.title

Gas -model

species = select_gas_model(model=’two temperature gas ’, species=[’N2’,’O2 ’])

gm = get_gas_model_ptr ()

nsp = gm.get_number_of_species ()

ntm = gm.get_number_of_modes ()

Energy exchange model (only if there are nonequilibrium temperatures)

if ntm > 1:

set_energy_exchange_update ("N2-O2 -TV.lua")

Conditions to match those reported in JFM paper with a guess for Tvib.

p_inf = 66.43 # Pa

u_inf = 1589.8 # m/s

Temperatures

T_inf = [0.0] * ntm

T_inf [0] = 41.92 # gas static temperature: degree K

Tv_inf = 1000.0 # NOTE: freestream vibrational temperature closer to stagnation T

for itm in range(1,ntm):

T_inf[itm] = Tv_inf # nonequilibrium temperature: degree K

Mass -fractions

massf_inf = [0.0] * nsp

massf_inf[species.index("N2")] = 0.767 # standard air

massf_inf[species.index("O2")] = 0.233 # standard air

#

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf , massf=massf_inf)

initial = FlowCondition(p=p_inf/5, u=0, T=T_inf , massf=massf_inf)

#

T_wall = 296.0 # degree K --assumed cold -wall temperature

Mohammadian used the inch as his length scale.

m_per_inch = 0.0254

mm = 1.0e-3 # metres per mm

def ramp(t):

"""

Parametric definition of ramp profile in xy -plane.

129

Here , we join the initial straight 18-degree ramp to the polynomial.

"""

alpha = 18.0* math.pi /180.0 # angle of initial straight section

sin18 = math.sin(alpha)

cos18 = math.cos(alpha)

tan18 = math.tan(alpha)

x_join_inch = 3.0

y_join_inch = x_join_inch * tan18

L1 = x_join_inch/cos18 # length of initial straight section

L2 = 4.14677 # length of fairing (computed via maxima)

t2 = (L1+L2) * t

if t2 < L1:

x_inch = t2 * cos18

y_inch = t2 * sin18

else:

s = (t2 - L1)/L2 * 4.0577

g = 0.0026 * s**4 - 0.0211 * s**3

x_inch = x_join_inch + s * cos18 - g * sin18

y_inch = y_join_inch + s * sin18 + g * cos18

return (x_inch*m_per_inch , y_inch*m_per_inch , 0.0)

leading edge of ramp

x,y,z = ramp (0.0); a0 = Vector(x,y,z); a1 = a0+Vector (0.0 ,5*mm)

downstream end of transition curve

x,y,z = ramp (1.0); b0 = Vector(x,y,z); b1 = b0+Vector (-10.0*mm ,40*mm)

For the final straight section , angle continues at final angle of transition.

x_length = 10* m_per_inch - b0.x

beta = -1.90* math.pi /180.0

end of model

c0 = Vector(b0.x+x_length ,b0.y+x_length*math.tan(beta))

c1 = Vector(c0.x,b1.y)

rcfx = RobertsClusterFunction (1,0,1.2)

rcfy = RobertsClusterFunction (1,0,1.1)

ni0 = 200; nj0 = 40 # We ’ll scale discretization off these values

factor = 2.0

ni0 = int(ni0*factor); nj0 = int(nj0*factor)

wedge = SuperBlock2D(make_patch(Line(a1 ,b1),Line(b0,b1),

PyFunctionPath(ramp),Line(a0,a1)),

nni=ni0 , nnj=nj0 , nbi=10, nbj=2,

bc_list =[SupInBC(inflow),None ,

FixedTBC(T_wall),SupInBC(inflow)],

cf_list =[rcfx ,rcfy ,rcfx ,rcfy],

fill_condition=inflow , label="wedge")

tail = SuperBlock2D(CoonsPatch(b0 ,c0,c1,b1),

nni=int(ni0/4), nnj=nj0 , nbi=4, nbj=2,

bc_list =[SupInBC(inflow),FixedPOutBC(p_inf/5),

FixedTBC(T_wall),None],

cf_list =[None ,rcfy ,None ,rcfy],

fill_condition=initial , label="tail")

identify_block_connections ()

Do a little more setting of global data.

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 1.0

gdata.max_time = 1.0e-3 # long enough for several flow lengths

gdata.max_step = 2000000

gdata.dt = 1.0e-9

gdata.dt_plot = 0.1e-3

sketch.xaxis (0.0, 0.20, 0.05, -0.010)

sketch.yaxis (0.0, 0.20, 0.05, -0.010)

sketch.window (0.0, 0.0, 0.20, 0.20, 0.05, 0.05, 0.25, 0.25)

scheme_t = {

update = "energy exchange ODE",

130

temperature_limits = {

lower = 20.0,

upper = 100000.0

},

error_tolerance = 0.000001

}

ode_t = {

step_routine = ’rkf ’,

max_step_attempts = 4,

max_increase_factor = 1.15,

max_decrease_factor = 0.01,

decrease_factor = 0.333

}

mechanism{

’N2 ~~ (N2 , O2) : V-T’,

rt={’Millikan -White ’ }

}

mechanism{

’O2 ~~ (N2 , O2) : V-T’,

rt={’Millikan -White ’ }

}

25.2 Running the simulation

In terms of required computer time, this simulation is significantly more demanding than

the ideal-air simulation, taking more than 30 hours on a 4-core workstation (up from 12

hours). The job scipts are essentially the same as for the ideal-air case.

25.3 Results

Figure 41 shows some of the flow field data at t=1 ms after flow start. This is sufficient

time for the flow to reach steady state.

Again, the pressure field shows a nice, straight shock propagating into the free-stream,

with an almost constant pressure region between the shock and the straight ramp surface.

The static temperature field, again, shows clearly the boundary layer that grows along

the ramp surface. The first vibrational temperature shows a relaxation toward the static

temperature as the gas approaches the ramp surface.

Although the computed flow field looks plausible, again, the real proof of success of the

simulation is in comparison with the experimental data. Figure 42 shows the pressure and

heat-transfer along the surface of the ramp. The simulation has done essentially the same

good job of estimating the pressure distribution over the full ramp, with a mismatch

in magnitude only after passing over the faired section to reach the very low pressure

conditions. This pressure distribution is indistinguishable from the distribution for the

ideal air simulation. The simulation has again done a reasonable job on the heat transfer

estimate, with a small improvement over that computed in the ideal air simulation. That

131

(a) Pressure field.

(b) Static temperature field.

(c) Vibrational temperature field.

Figure 41: Computed flow field at t=1 ms.

132

agreement is good in form but only fair in magnitude is now emphasised by scaling the

Eilmer3 result by 1.2 and seeing that it falls very nicely onto the experimental data.

What is the correct answer remains unclear since the original Cheng and modified Cheng

theories, as used by Mohammadian fall closer to the unscaled Eilmer3 result. Sigh...

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

p
,

P
a

x, mm

Cubic ramp, pressure along surface

Eilmer3
Mohammadian (1972)

(a) Pressure.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300
q

,
k
W

/m
**

2

x, mm

Cubic ramp, heat-flux along surface

Eilmer3
Eilmer3*1.2

Mohammadian (1972) expt
original Cheng theory

modified Cheng theory

(b) Heat transfer.

Figure 42: Distribution of pressure and heat transfer along the concave ramp. Simulation
data is recorded at t=1 ms into the simulation. Experimental data is from Ref. [13].

25.4 Postprocessing to get heat transfer

The scripts below use the functions imported from e3_flow.py at a slightly higher level

than in the cone20 example. The first extracts the data for the cell nearest to the ramp

surface and uses that data to compute the expected shear stress and heat transfer at the

surface.

#! /usr/bin/env python

surface_properties.py

#

Pick up the simulation data at the last simulated time

compute an estimate of the shear -stress coefficient and

output both shear and pressure along the convex surface.

#

PJ, 11-Aug -2013

14-Aug -2013 heat transfer normalised as St.sqrt(Re_x)

import sys , os

job = "convex -ramp"

print "Determine the latest time."

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

tindx = int(lines [-1]. strip (). split ()[0]) # first number of the last line

print "tindx=", tindx

print "Begin: Pick up data for tindx=", tindx

from libprep3 import Vector , cross , dot , vabs

from e3_flow import read_all_blocks

from math import sqrt

#

nb = 28

pick_list = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26] # blocks against surface

133

rho_inf = 5.521e-3 # kg/m**3

p_inf = 66.43 # Pa

u_inf = 1589.8 # m/s

T_inf = 41.92 # K

T_wall = 296.0 # K

T_0 = 1300.0 # K

specific_heat = 1004.5 # J/kg.K

from cfpylib.gasdyn import sutherland

mu_inf = sutherland.mu(T_inf , ’Air ’)

mm = 0.001 # metres

#

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

print "Compute shear stress for cell -centres along the surface"

outfile = open(" surface.data", "w")

outfile.write ("# x(m) tau_w(Pa) Cf Cf_blasius y_plus p(Pa) Cp q(W/m**2) St.Re^0.5\n")

for ib in pick_list:

j = 0 # surface is along the South boundary

k = 0 # of a 2D grid

print "# start of block"

for i in range(flow[ib].ni):

Cell closest to surface

x = flow[ib].data[’pos.x’][i,j,k]

y = flow[ib].data[’pos.y’][i,j,k]

ctr = Vector(x, y)

Get vertices on surface , for this cell.

x = grid[ib].x[i,j,k]

y = grid[ib].y[i,j,k]

vtx0 = Vector(x, y)

x = grid[ib].x[i+1,j,k]

y = grid[ib].y[i+1,j,k]

vtx1 = Vector(x, y)

t1 = (vtx1 -vtx0)

t1.norm() # tangent vector for surface

midpoint = 0.5*(vtx0+vtx1) # on surface

normal = cross(Vector (0,0,1),t1)

normal.norm()

Surface to cell -centre distance.

dy = dot(normal , ctr -midpoint)

Cell -centre flow data.

rho = flow[ib].data[’rho ’][i,j,k]

ux = flow[ib].data[’vel.x’][i,j,k]

uy = flow[ib].data[’vel.y’][i,j,k]

v = Vector(ux, uy)

vt = dot(v,t1) # velocity component tangent to surface

mu = flow[ib].data[’mu ’][i,j,k]

kgas = flow[ib].data[’k[0]’][i,j,k]

p = flow[ib].data[’p’][i,j,k]

Cp = (p-p_inf)/(0.5* rho_inf*u_inf*u_inf)

T = flow[ib].data[’T[0]’][i,j,k]

Shear stress

dudy = (vt - 0.0) / dy # no-slip wall

tau_w = mu * dudy # wall shear stress

Cf = tau_w / (0.5* rho_inf*u_inf*u_inf)

u_tau = sqrt(abs(tau_w) / rho) # friction velocity

y_plus = u_tau * dy * rho / mu

Rex = rho_inf * u_inf * midpoint.x / mu_inf

Cf_blasius = 0.664 / sqrt(Rex)

Heat flux

dTdy = (T - T_wall) / dy # conductive heat flux at the wall

q = kgas * dTdy

St = q / (rho_inf*u_inf*specific_heat *(T_0 -T_wall)) # Stanton number

#

outfile.write ("%f %f %f %f %f %f %f %f %f\n" %

(midpoint.x, tau_w , Cf, Cf_blasius ,

y_plus , p, Cp , q, St*sqrt(Rex)))

print "x=", midpoint.x, "tau_w=", tau_w , "Cf=", Cf, "y_plus=", y_plus , \

"p=", p, "Cp=", Cp , "q=", q, "St.Rex ^0.5=" , St*sqrt(Rex)

outfile.close ()

print "Done"

134

25.5 Notes

• Plotting was done with the following GNUPlot scripts.

surface -pressure.gnuplot

set term postscript eps 20

set output ’surface -pressure.eps ’

set title ’Cubic ramp , pressure along surface ’

set ylabel ’p, Pa’

set xlabel ’x, mm’

set key top left

plot ’./surface.data ’ using ($1 *1000):($6) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./notes/mohammadian -figure -12- p_p_inf.data ’ \

using ($1 *25.4):($2 *66.43) \

title ’Mohammadian (1972) ’ with points pt 4

surface -heat -transfer.gnuplot

set term postscript eps 20

set output ’surface -heat -transfer.eps ’

set title ’Cubic ramp , heat -flux along surface ’

set ylabel ’q, kW/m**2’

set xlabel ’x, mm’

set yrange [0:150]

set key top left

plot ’./my -surface.data ’ using ($10 *1000):($2 /1000) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./my -surface.data ’ using ($10 *1000):($2 /1000*1.2) with lines \

lw 3.0 lt 2 title ’Eilmer3 *1.2’, \

’./notes/mohammadian -figure -13-heat -flux.data ’ \

using ($1 *25.4):($2 *11.4) \

title ’Mohammadian (1972) expt ’ with points pt 4, \

’./notes/mohammadian -figure -13-original -cheng -theory.data ’ \

using ($1 *25.4):($2 *11.4) \

title ’original Cheng theory ’ with lines lw 1.5 lt 3, \

’./notes/mohammadian -figure -13-modified -cheng -theory.data ’ \

using ($1 *25.4):($2 *11.4) \

title ’modified Cheng theory ’ with lines lw 1.5 lt 4

135

136

26 Hypersonic flow over a hollow cylinder with flare.

This is one of the hypersonic test flows provided by the Calspan-University of Buffalo

Research Center (CUBRC). As for the previous flows, it is an example that retains a

very simple geometric arrangement for the flow boundaries but inclusion of the viscous

effects leads to a very challenging flow. The experimental facility provides a Mach 10.3

flow of nitrogen along the cylinder with flare shown below in Figure 43. This model was

used as part of an experimental campaign [14, 15] in the LENS shock tunnel at CUBRC.

The very high Mach number free stream produces a fairly strong leading-edge interaction

region at the sharp leading edge of the cylinder and a boundary layer develops along the

cylinder surface. The flare deflects the flow, inducing a strong shock, but the viscous

effects lead to a separation bubble forming in the boundary layer on the cylinder surface.

The leading edge of the separation bubble also deflects the flow and forms another shock

that merges with the leading-edge interaction shock. This combined shock happens to

impinge on the flare surface and interact strongly with the boundary layer on the flare and

the downstream end of the separation bubble. These features interact strongly but the

overall flow eventually settles to a steady state and the boundary layer remains laminar.

(a) Physical model. (b) Geometric definition from [16]. Dimensions in inches
and mm.

Figure 43: Hollow cylinder with extended flare used in the CUBRC experiments.

26.1 Input script (.py)

In setting up this exercise, we follow the details provided by MacLean [16] and concentrate

on the CUBRC Run 14 experiment. We assume an ideal nitrogen free stream, with con-

ditions p = 31.88 Pa, ρ=0.881 g/m3, u = 2.304 km/s and a static temperature T=120.4 K.

The actual nitrogen flow in the shock tunnel nozzle was far from ideal and had an esti-

mated vibrational temperature of 2467 K. However, for the simulation reported here, this

137

vibrational energy is assumed frozen and thus ignored. The model surface temperature

was a constant 295.2 K.

cyl -flare.py

PJ, 11-May -2013 , 29-May -2013

Model of the CUBRC hollow cylinder with extended -flare experiment.

gdata.title = "Hollow cylinder with extended flare ."

print gdata.title

gdata.axisymmetric_flag = 1

Conditions to match those reported for CUBRC Run 14

p_inf = 31.88 # Pa

u_inf = 2304.0 # m/s

T_inf = 120.4 # degree K

T_vib = 2467.0 # degrees K (but we will ignore for ideal -gas)

select_gas_model(model=’ideal gas ’, species=[’N2 ’])

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf)

initial = FlowCondition(p=p_inf/5, u=0, T=T_inf)

T_wall = 295.2 # degree K

mm = 1.0e-3 # metres per mm

L1 = 101.7* mm # cylinder length

L2 = 220.0* mm # distance to end of flare

R1 = 32.5* mm

alpha = 30.0* math.pi /180.0 # angle of flare

tan_alpha = math.tan(alpha)

a0 = Vector (0.0, R1); a1 = a0+Vector (0.0 ,5*mm) # leading edge of cylinder

b0 = Vector(L1, R1); b1 = b0+Vector (-5*mm ,20*mm) # start flare

c0 = Vector(L2, R1+tan_alpha *(L2-L1)); c1 = c0+Vector (0.0 ,25*mm) # end flare

rcfx = RobertsClusterFunction (1,0,1.2)

rcfy = RobertsClusterFunction (1,0,1.1)

ni0 = 200; nj0 = 80 # We ’ll scale discretization off these values

factor = 1

ni0 *= factor; nj0 *= factor

cyl = SuperBlock2D(CoonsPatch(a0 ,b0,b1,a1),

nni=ni0 , nnj=nj0 , nbi=6, nbj=2,

bc_list =[SupInBC(inflow),None ,

FixedTBC(T_wall),SupInBC(inflow)],

cf_list =[rcfx ,rcfy ,rcfx ,rcfy],

fill_condition=inflow , label="cyl")

flare = SuperBlock2D(CoonsPatch(b0,c0,c1 ,b1),

nni=ni0 , nnj=nj0 , nbi=6, nbj=2,

bc_list =[SupInBC(inflow),FixedPOutBC(p_inf/5),

FixedTBC(T_wall),None],

cf_list =[None ,rcfy ,None ,rcfy],

fill_condition=initial , label="fl")

identify_block_connections ()

Do a little more setting of global data.

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 1.0

The settling of the separation bubble will probably dominate.

gdata.max_time = 2.5e-3 # long enough , looking at earlier simulations

gdata.max_step = 2000000

gdata.dt = 1.0e-9

gdata.dt_plot = 0.25e-3

sketch.xaxis (0.0, 0.250 , 0.05, -0.010)

sketch.yaxis (0.0, 0.250 , 0.05, -0.010)

sketch.window (0.0, 0.0, 0.250, 0.250, 0.05, 0.05, 0.25, 0.25)

138

26.2 Running the simulation

Figure 44 shows the flow region, as modelled for simulation. The region is very simple but

we have divided it into 24 blocks so that the computational load can be shared across a

number of CPU cores.

x
0 0.05 0.1 0.15 0.2 0.25

y

0

0.05

0.1

0.15

0.2

0.25

cyl-0-0S
U
P
_I
N cyl-0-1

cyl-1-0

cyl-1-1

cyl-2-0

cyl-2-1

cyl-3-0

cyl-3-1

cyl-4-0

cyl-4-1

SUP_IN

cyl-5-0

FIXED_T

cyl-5-1

fl-0-0

fl-0-1
fl-1-0

fl-1-1

SU
P_I

N

fl-2-0

FIX
ED

_T

fl-2-1
fl-3-0

fl-3-1
fl-4-0

fl-4-1

fl-5-0

FI
X
E
D
_P
_O

U
T

fl-5-1

Figure 44: Schematic view of the simulated flow region for the hypersonic flow over a
cylinder with flare.

In terms of required computer time, this simulation is a demanding. Unless you are

extremely patient, you are advised to run it on a cluster computer, as was done for the

results shown here. The job scipts submitted to the batch system are shown below.

The preparation of the grids and initial flow-state files was done on a local workstation,

these files transferred to the cluster computer file system and then the simulation was

done in two stages, 0–2.5 ms and 2.5 ms–5 ms. In between the simulation stages, the

cyl-flare.control file was edited by hand to extend the maximum time from 2.5 ms

to 5.0 ms. Note that the 24 blocks have been grouped, via the mpimap file (that was

generated by the e3loadbalance program), to 12 MPI tasks. Each of the simulation stages

required a little less than a day on 12 cores of a Dell cluster with 2.2 GHz Xeon processors.

The particular cluster was called “arcus” and was located at the Oxford e-Research Centre.

#! /bin/bash

prep.sh

e3prep.py --job=cyl -flare --do-svg

e3loadbalance.py --job=cyl -flare -n 12

e3post.py --job=cyl -flare --tindx=0 --vtk -xml

139

echo "At this point , we should have a grid."

echo "Use run.sh next"

#! /bin/bash

run -arcus.sh

#PBS -l select =1: mpiprocs =12

#PBS -l walltime =51:00:00

#PBS -N cyl -flare

#PBS -m bea

#PBS -M peter.jacobs@eng.ox.ac.uk

#PBS -V

cd $PBS_O_WORKDIR

date

mpirun -np 12 -machinefile $PBS_NODEFILE $DATA/e3bin/e3mpi.exe \

--job=cyl -flare --mpimap=cyl -flare.mpimap --run \

--max -wall -clock =180000 > run -arcus.transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

#! /bin/bash

run -arcus.sh

#PBS -l select =1: mpiprocs =12

#PBS -l walltime =31:00:00

#PBS -N cyl -flare

#PBS -m bea

#PBS -M peter.jacobs@eng.ox.ac.uk

#PBS -V

cd $PBS_O_WORKDIR

date

mpirun -np 12 -machinefile $PBS_NODEFILE $DATA/e3bin/e3mpi.exe \

--job=cyl -flare --mpimap=cyl -flare.mpimap --run \

--tindx =10 --max -wall -clock =108000 > run -arcus -2. transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

26.3 Results

Figure 45 shows some of the flow field data at t=5 ms after flow start. The leading-

edge interaction shock and the shock caused by the boundary-layer separation are both

clearly defined. The leading-edge interaction shock starts strong but weakens with the

immediately following expansion fan. The shock from the start of the separation region

only becomes clear a small distance above the surface, near the outer edge of the boundary

layer. The two shocks merge, shortly before impinging on the flare surface. By the time

shown, the flow has settled to a steady-state configuration, as confirmed by the history

of the separation point location on the cylinder surface, plotted in Figure 46.

140

(a) Pressure field.

(b) Temperature field.

(c) Mach number.

Figure 45: Computed flow field at t=5 ms.

141

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x
z
e

ro
,

m
m

t, ms

Cylinder with extended flare, separation location

Eilmer3
59.85+46.56*exp(-t/0.563)

Figure 46: History of the separation location along the cylinder surface.

142

The real proof of success is in comparison with the experimental data. Figure 47

shows the pressure and heat-transfer along the surface of the cylinder and the flare. The

simulation has done a good job of estimating the pressure distribution right through the

separation zone and the shock-interaction zone on the flare. There is a sudden drop in

pressure (and a corresponding rise in heat transfer) at the right end of the simulation

domain where the boundary layer thins. This is expected because the expansion off the

trailing edge of the flare would propagate upstream a little, through the subsonic part of

the boundary layer.

The simulation has also done a good job on the heat transfer estimate, which has been

computed from the field data using the script in Section 26.4. This quantity required lots

of resolution to compute accurately and difficult to measure so it is reassuring that both

sets of data line up nicely in the boundary layer leading into the sepration region, through

the separation, and also after the interaction region on the flare surface. The separation

bubble appears to be well captured in position and extent.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250

p
,

P
a

x, mm

Cylinder with extended flare, pressure along surface

Eilmer3
CUBRC Run 14

(a) Pressure.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

q
,

k
W

/m
**

2

x, mm

Cylinder with extended flare, heat-flux along surface

Eilmer3 k*dT/dy
CUBRC Run 14

(b) Heat transfer.

Figure 47: Distribution of pressure and heat transfer along the cylinder and flare. Simu-
lation data is recorded at t=5 ms into the simulation. Experimental data is for Run 14 of
the CUBRC experiment [14].

26.4 Postprocessing heat transfer and separation-point tracking

The scripts below use the functions imported from e3 flow.py at a slightly higher level

than in the cone20 example. The first extracts the data for the cell nearest to the cylin-

der and flare surface and uses that data to compute the expected shear stress and heat

transfer at the surface. The second looks at the x-component of the velocity of the first

cell above the cylinder surface to identify the location of the start of the separation re-

gion for all frames of the solution. After writing the location data to a file, it uses the

143

SciPy optimization module to fit a simple function to that data, in order to estimate the

asymptotic position of the separation point for large times.

#! /usr/bin/env python

surface_properties.py

#

Pick up the simulation data at the last simulated time

compute an estimate of the shear -stress coefficient and

output both shear and pressure along the cylinder and flare.

#

PJ, 06-June -2013

import sys , os

job = "cyl -flare"

print "Determine the latest time."

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

tindx = int(lines [-1]. strip (). split ()[0]) # first number of the last line

print "tindx=", tindx

print "Begin: Pick up data for tindx=", tindx

from libprep3 import Vector , cross , dot , vabs

from e3_flow import read_all_blocks

from math import sqrt

#

nb = 24

pick_list = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22] # blocks against surface

rho_inf = 8.81e-4 # kg/m**3

p_inf = 31.88 # Pa

u_inf = 2304.0 # m/s

T_inf = 120.4 # K

T_wall = 295.2 # K

from cfpylib.gasdyn import sutherland

mu_inf = sutherland.mu(T_inf , ’N2 ’)

mm = 0.001 # metres

R = 32.5*mm

xcorner = 101.7* mm

corner = Vector(xcorner ,R)

#

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

print "Compute shear stress for cell -centres along the surface"

outfile = open(" surface.data", "w")

outfile.write ("# x(m) s(m) tau_w(Pa) Cf Cf_blasius y_plus p(Pa) Cp q(W/m**2) Ch\n")

for ib in pick_list:

j = 0 # surface is along the South boundary

k = 0 # of a 2D grid

print "# start of block"

for i in range(flow[ib].ni):

Cell closest to surface

x = flow[ib].data[’pos.x’][i,j,k]

y = flow[ib].data[’pos.y’][i,j,k]

ctr = Vector(x, y)

Get vertices on surface , for this cell.

x = grid[ib].x[i,j,k]

y = grid[ib].y[i,j,k]

vtx0 = Vector(x, y)

x = grid[ib].x[i+1,j,k]

y = grid[ib].y[i+1,j,k]

vtx1 = Vector(x, y)

t1 = (vtx1 -vtx0)

t1.norm() # tangent vector for surface

midpoint = 0.5*(vtx0+vtx1) # on surface

normal = cross(Vector (0,0,1),t1)

normal.norm()

Surface to cell -centre distance.

dy = dot(normal , ctr -midpoint)

Distance along surface

if midpoint.x <= xcorner:

Along the cylinder surface.

s = midpoint.x

else:

144

Up the flare surface.

s = vabs(midpoint -corner) + xcorner

Cell -centre flow data.

rho = flow[ib].data[’rho ’][i,j,k]

ux = flow[ib].data[’vel.x’][i,j,k]

uy = flow[ib].data[’vel.y’][i,j,k]

v = Vector(ux, uy)

vt = dot(v,t1) # velocity component tangent to surface

mu = flow[ib].data[’mu ’][i,j,k]

kgas = flow[ib].data[’k[0]’][i,j,k]

p = flow[ib].data[’p’][i,j,k]

Cp = (p-p_inf)/(0.5* rho_inf*u_inf*u_inf)

T = flow[ib].data[’T[0]’][i,j,k]

Shear stress

dudy = (vt - 0.0) / dy # no-slip wall

tau_w = mu * dudy # wall shear stress

Cf = tau_w / (0.5* rho_inf*u_inf*u_inf)

u_tau = sqrt(abs(tau_w) / rho) # friction velocity

y_plus = u_tau * dy * rho / mu

Rex = rho_inf * u_inf * s / mu_inf

Cf_blasius = 0.664 / sqrt(Rex)

Heat flux

dTdy = (T - T_wall) / dy # conductive heat flux at the wall

q = kgas * dTdy

Ch = q / (0.5* rho_inf*u_inf*u_inf*u_inf)

#

outfile.write ("%f %f %f %f %f %f %f %f %f %f\n" %

(midpoint.x, s, tau_w , Cf, Cf_blasius ,

y_plus , p, Cp , q, Ch))

print "s=", s, "tau_w=", tau_w , "Cf=", Cf, "y_plus=", y_plus , \

"p=", p, "Cp=", Cp , "q=", q, "Ch=", Ch

outfile.close ()

print "Done"

#! /usr/bin/env python

separation_point.py

#

Pick up the simulation data at all time frames.

Search for the zero -crossing of ux to identify the separation point

on the cylinder surface.

#

PJ, 07-June -2013

print "Begin ..."

import sys , os

from e3_flow import read_all_blocks

#

nb = 24

pick_list = [0, 2, 4, 6, 8, 10] # blocks against cylinder only

job = "cyl -flare"

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

times = []; xzero = []

for item in lines:

items = item.strip (). split()

if items [0] == ’#’: continue

tindx = int(items [0])

if tindx == 0: continue

t = float(items [1])

print "Begin: Pick up data for tindx=", tindx , "t=", t

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

x = []; y = []; ux = []

for ib in pick_list:

j = 0 # surface is along the South boundary

k = 0 # of a 2D grid

for i in range(flow[ib].ni):

Cell closest to surface

x.append(flow[ib].data[’pos.x’][i,j,k])

ux.append(flow[ib].data[’vel.x’][i,j,k])

Find the zero -crossing interval ,

assuming that we start with positive velocity.

145

For no zero -crossing we run to the end.

i = 0

while ux[i] >= 0.0 and i < len(ux)-1: i += 1

Linearly interpolate the zero -crossing point.

frac = ux[i -1]/(ux[i-1]-ux[i])

xzero.append ((1.0 - frac)*x[i-1] + frac*x[i])

times.append(t)

print "t=", t, "xzero=", xzero[-1]

outfile = open(" separation -location.data", "w")

outfile.write ("# t(s) x(m)\n")

for i in range(len(xzero)):

outfile.write ("%f %f\n" % (times[i], xzero[i]))

outfile.close ()

outfile = open(" separation -velocity.data", "w")

outfile.write ("# t(s) -dx/dt(m/s)\n")

for i in range(1,len(xzero)):

outfile.write ("%f %f\n" % (times[i], -(xzero[i]-xzero[i -1])/(times[i]-times[i -1])))

outfile.close ()

print "Fit an asymptotic function to the location data."

import numpy

x = numpy.array(xzero) * 1000.0 # to get units of mm

t = numpy.array(times) * 1000.0 # to get units of ms

def f(t, xf, dx , tau):

return xf + dx * numpy.exp(-t/tau)

from scipy.optimize import curve_fit

popt , pcov = curve_fit(f, t, x, [60.0, 30.0, 0.8])

print "Fitted parameters :"

print "xf=", popt[0], "mm"

print "dx=", popt[1], "mm"

print "tau=", popt[2], "ms"

print "pcov=", pcov

print "Done"

26.5 Notes

• The experimental data has come from a spreadsheet, kindly provided by Dr Matthew

MacLean of CUBRC. Plotting was done with the following GNUPlot scripts.
surface -pressure.gnuplot

set term postscript eps 20

set output ’surface -pressure.eps ’

set title ’Cylinder with extended flare , pressure along surface ’

set ylabel ’p, Pa’

set xlabel ’x, mm’

set key top left

plot ’./surface.data ’ using ($1 *1000):($7) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./notes/cylinder -extended -flare -pressure.data ’ \

using ($2 *101.7):($10 *6894.8) \

title ’CUBRC Run 14’ with points pt 4

surface -heat -transfer.gnuplot

set term postscript eps 20

set output ’surface -heat -transfer.eps ’

set title ’Cylinder with extended flare , heat -flux along surface ’

set ylabel ’q, kW/m**2’

set xlabel ’x, mm’

set yrange [0:300]

set key top left

plot ’./surface.data ’ using ($1 *1000):($9 /1000) with lines \

lw 3.0 title ’Eilmer3 k*dT/dy ’, \

’./notes/cylinder -extended -flare -heat -transfer.data ’ \

using ($2 *101.7):($10 *11.377) \

title ’CUBRC Run 14’ with points pt 4

146

27 Hypersonic flow over a double-cone.

This is another of the hypersonic test flows provided by the Calspan-University of Buffalo

Research Center (CUBRC) as part of an experimental campaign [14, 15]. The experi-

mental facility provides a Mach 12.49 flow of nitrogen onto the double cone shown below

in Figure 48. As for the hollow-cylinder with flare case in Section 26, it is an example

that retains a very simple geometric arrangement for the flow boundaries, however, the

stronger shock interaction with the steeper cone surface produces a more complex flow

in this case. Despite this complexity, the overall flow eventually settles to a steady state

and we again assume that the boundary layer remains laminar.

(a) Physical model. (b) Geometric definition from [16]. Dimensions in inches and
mm.

Figure 48: Double-cone with sharp nose used in the CUBRC experiments.

27.1 Input script (.py)

In setting up this exercise, we follow the details provided by MacLean [16] and concentrate

on the CUBRC Run 35 experiment. We assume an ideal nitrogen free stream, with condi-

tions p = 18.55 Pa, ρ=0.6081 g/m3, u = 2.576 km/s and a static temperature T=102.2 K.

The actual nitrogen flow in the shock tunnel nozzle was far from ideal and had an esti-

mated vibrational temperature of 2711 K. However, for the simulation reported here, this

vibrational energy is assumed frozen and thus ignored. The model surface temperature

was a constant 295.8 K.

dbl -cone.py

PJ, 12-June -2013

Model of the CUBRC double -cone with sharp nose.

147

gdata.title = "Double -cone , sharp nose."

print gdata.title

gdata.axisymmetric_flag = 1

Conditions to match those reported for CUBRC Run 35

p_inf = 18.55 # Pa

u_inf = 2576.0 # m/s

T_inf = 102.2 # degree K

T_vib = 2711.0 # degrees K (but we will ignore for ideal -gas)

select_gas_model(model=’ideal gas ’, species=[’N2 ’])

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf)

initial = FlowCondition(p=p_inf/5, u=0, T=T_inf)

T_wall = 295.8 # degree K

mm = 1.0e-3 # metres per mm

a0 = Vector (0.0, 0.0)

a1 = Vector (0.0 ,5*mm) # leading edge of domain

b0 = Vector (92.08*mm ,42.94* mm) # junction between cones

b1 = Vector (76*mm ,61*mm) # out in the free stream

c0 = Vector (153.69*mm ,130.925* mm) # downstream -edge of second cone

c1 = Vector (124*mm ,181* mm) # out in the free stream

d0 = Vector (193.68*mm ,130.925* mm) # down -stream edge of domain

d1 = Vector (193.68*mm ,181*mm)

rcfx = RobertsClusterFunction (1,0,1.2)

rcfy = RobertsClusterFunction (1,0,1.1)

ni0 = 120; nj0 = 40 # We ’ll scale discretization off these values

factor = 2

ni0 *= factor; nj0 *= factor

cone1 = SuperBlock2D(CoonsPatch(a0,b0,b1 ,a1),

nni=ni0 , nnj=nj0 , nbi=6, nbj=2,

bc_list =[SupInBC(inflow),None ,

FixedTBC(T_wall),SupInBC(inflow)],

cf_list =[rcfx ,rcfy ,rcfx ,rcfy],

fill_condition=inflow , label="cone1")

cone2 = SuperBlock2D(CoonsPatch(b0,c0,c1 ,b1),

nni=ni0 , nnj=nj0 , nbi=6, nbj=2,

bc_list =[SupInBC(inflow),None ,

FixedTBC(T_wall),None],

cf_list =[None ,rcfy ,None ,rcfy],

fill_condition=initial , label="cone2 ")

cone3 = SuperBlock2D(CoonsPatch(c0,d0,d1 ,c1),

nni=int(ni0/2), nnj=nj0 , nbi=2, nbj=2,

bc_list =[SupInBC(inflow),FixedPOutBC(p_inf/5),

FixedTBC(T_wall),None],

cf_list =[None ,rcfy ,None ,rcfy],

fill_condition=initial , label="out")

identify_block_connections ()

Do a little more setting of global data.

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 1.0

The settling of the separation bubble will probably dominate.

gdata.max_time = 5.0e-3 # long enough , maybe

gdata.max_step = 4000000

gdata.dt = 1.0e-9

gdata.dt_plot = 0.25e-3

sketch.xaxis (0.0, 0.250 , 0.05, -0.010)

sketch.yaxis (0.0, 0.250 , 0.05, -0.010)

sketch.window (0.0, 0.0, 0.250, 0.250, 0.05, 0.05, 0.25, 0.25)

148

27.2 Running the simulation

Figure 49 shows the flow region, as modelled for simulation. The region is very simple but

we have divided it into 28 blocks so that the computational load can be shared across a

number of CPU cores.

x
0 0.05 0.1 0.15 0.2 0.25

y

0

0.05

0.1

0.15

0.2

0.25

cone1-0-0

cone1-0-1

SUP_IN

cone1-1-0

cone1-1-1
cone1-2-0

cone1-2-1

cone1-3-0

cone1-3-1

cone1-4-0
FIX

ED
_T

cone1-4-1

SU
P_
IN

cone1-5-0

cone1-5-1
cone2-0-0

cone2-0-1
cone2-1-0

cone2-1-1

cone2-2-0

cone2-2-1

S
U
P_
IN

cone2-3-0
FI
XE
D
_T

cone2-3-1

cone2-4-0

cone2-4-1

cone2-5-0

cone2-5-1

out-0-0

FIXED_T

out-0-1

out-1-0

out-1-1

SUP_IN

FI
X
E
D
_P
_O

U
T

Figure 49: Schematic view of the simulated flow region for the hypersonic flow over a
double-cone with sharp nose.

In terms of required computer time, this simulation is more demanding than the

cylinder-flare example. The job scipts submitted to the batch system are shown below.

The preparation of the grids and initial flow-state files was done on a local workstation,

these files transferred to the cluster computer file system (“arcus”, located at the Oxford

e-Research Centre) and then the simulation was done in two stages, 0–1.75 ms and 1.75 ms–

3 ms. Note that the 28 blocks have been grouped, via the mpimap file (that was generated

by the e3loadbalance program), to 14 MPI tasks. The first simulation stage required just

over two days on 14 cores of the arcus cluster, with the max-wall-clock option being

used to terminate the simulation cleanly after 50 hours has elapsed. Before restarting

the simulation, the .control file was edited to set max_time to 3 ms. The second-stage

run script (run-arcus-2.sh) then restarted the simulation from solution frame 7 (i.e.

149

1.75 ms).

#! /bin/bash

prep.sh

e3prep.py --job=dbl -cone --do-svg

e3loadbalance.py --job=dbl -cone -n 14

e3post.py --job=dbl -cone --tindx=0 --vtk -xml

echo "At this point , we should have a grid."

echo "Use run.sh next"

#! /bin/bash

run -arcus.sh

#PBS -l select =1: mpiprocs =14

#PBS -l walltime =51:00:00

#PBS -N dbl -cone

#PBS -m bea

#PBS -M peter.jacobs@eng.ox.ac.uk

#PBS -V

cd $PBS_O_WORKDIR

date

mpirun -np 14 -machinefile $PBS_NODEFILE $DATA/e3bin/e3mpi.exe \

--job=dbl -cone --mpimap=dbl -cone.mpimap --run \

--max -wall -clock =180000 > run -arcus.transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

#! /bin/bash

run -arcus -2.sh

#PBS -l select =1: mpiprocs =14

#PBS -l walltime =51:00:00

#PBS -N dbl -cone

#PBS -m bea

#PBS -M peter.jacobs@eng.ox.ac.uk

#PBS -V

cd $PBS_O_WORKDIR

date

mpirun -np 14 -machinefile $PBS_NODEFILE $DATA/e3bin/e3mpi.exe \

--job=dbl -cone --mpimap=dbl -cone.mpimap --tindx =7 --run \

--max -wall -clock =180000 > run -arcus -3. transcript

date

echo "At this point , we should have a flow solution"

echo "Use post.sh next"

150

27.3 Results

Figure 50 shows some of the flow field data at t=3 ms after flow start. In the pressure

field, the attached shock from the sharp tip of the cone and the shock caused by the

boundary-layer separation are both clearly defined and can be seen to merge about three-

quarters of the way along the first cone. This combined shock interacts strongly with

the flow up the second cone surface and a Mach stem is formed on top af a supersonic

jet running up along the cone surface. The Mach number field, rescaled to highlight the

subsonic regions (Figure 50d), shows clearly the separation region in the junction between

the conical surfaces, the large subsonic region behind the detached shock over the 55o

cone, and the supersonic jet up the surface of that cone.

(a) Pressure field. (b) Mach number.

(c) Temperature field. (d) Mach number rescaled.

Figure 50: Computed flow field at t=3 ms.

The details of the separation, Mach stem and subsequent jet stream are quite complex

and some features, such as shear layers and the shocks within the supersonic jet, are more

clearly shown by visualizing the gradient of density, as shown in Figure 51a. This flow

has been more carefully studied in Ref.[17] so read that paper if you want to learn more

about the physics of this flow. Here, we are interested only in demonstration how to set

up a the simulation with Eilmer and that the code does indeed produce correct results.

By the 3 ms time shown in Figures 50 and 51, the flow has settled to a steady-state

configuration, as confirmed by the history of the separation point location on the first

151

(a) Gradient of density field.

Figure 51: Computed flow field at t=3 ms.

conical surface. The data, plotted in Figure 52, shows a close approach to the asymptotic

value of 62.1 mm by a time of 3 ms. The separation point was detected simply as a reversal

of the x-velocity, as seen in the first postprocessing script in Section 27.4.

 62

 64

 66

 68

 70

 72

 74

 0 0.5 1 1.5 2 2.5 3

x
z
e

ro
,

m
m

t, ms

Double-cone sharp-nose, separation location

Eilmer3
62.1+9.88*exp(-t/0.706)

Figure 52: History of the separation location along the first conical surface.

As another validation case, the real proof of success is in comparison with the exper-

imental data. Figure 53 shows the pressure and heat-transfer along the surface of both

cones. The plot uses the model axial-coordinate rather than distance along the surface

to match the presentation by MacLean [16] and the spreadsheet record of data from the

experiments [14, 15]. The simulation has done a good job of estimating the pressure dis-

tribution right through the separation zone and the shock-interaction zone on the second

cone’s surface. The separation bubble appears to be well captured in position and extent.

152

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

p
,

P
a

x, mm

Double-cone sharp-nose, pressure along surface

Eilmer3
CUBRC Run 35

(a) Pressure.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160 180 200

q
,

k
W

/m
**

2

x, mm

Double-cone sharp-nose, heat-flux along surface

Eilmer3 k*dT/dy
CUBRC Run 35 x-affine

(b) Heat transfer.

Figure 53: Distribution of pressure and heat transfer along the double cone with sharp
nose. Simulation data is recorded at t=3 ms into the simulation. Experimental data is
for Run 35 of the CUBRC experiment [14].

The simulation has also done a good job on the heat transfer estimate, which has been

computed from the field data using the second script in Section 27.4. It is reassuring that

the simulation has accruately captured the heat transfer in the boundary layer leading

into the sepration region, through the separation, and also after the interaction region on

the flare surface.

153

27.4 Postprocessing heat transfer and separation-point tracking

The scripts below use the functions imported from e3 flow.py at a slightly higher level

than in the cone20 example. The first looks at the x-component of the velocity of the

first cell above the conical surface to identify the location of the start of the separation

region for all frames of the solution. After writing the location data to a file, it uses the

SciPy optimization module to fit a simple function to that data, in order to estimate the

asymptotic position of the separation point for large times. The second extracts the data

for the cell nearest to the cone surface and uses that data to compute the expected shear

stress and heat transfer at the surface.

#! /usr/bin/env python

dbl_cone_separation_point.py

#

Pick up the simulation data at all time frames.

Search for the zero -crossing of ux to identify the separation point

on the cone surface.

#

PJ, 25-June -2013, adapted from cylinder -flare case.

print "Begin ..."

import sys , os

from e3_flow import read_all_blocks

#

nb = 28

pick_list = [0, 2, 4, 6, 8, 10] # blocks against cylinder only

job = "dbl -cone"

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

times = []; xzero = []

for item in lines:

items = item.strip (). split ()

if items [0] == ’#’: continue

tindx = int(items [0])

if tindx == 0: continue

t = float(items [1])

print "Begin: Pick up data for tindx=", tindx , "t=", t

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

x = []; y = []; ux = []

for ib in pick_list:

j = 0 # surface is along the South boundary

k = 0 # of a 2D grid

for i in range(flow[ib].ni):

Cell closest to surface

x.append(flow[ib].data[’pos.x’][i,j,k])

ux.append(flow[ib].data[’vel.x’][i,j,k])

Find the zero -crossing interval ,

assuming that we start with positive velocity.

For no zero -crossing we run to the end.

i = 0

while ux[i] >= 0.0 and i < len(ux)-1: i += 1

Linearly interpolate the zero -crossing point.

frac = ux[i -1]/(ux[i-1]-ux[i])

xzero.append ((1.0 - frac)*x[i-1] + frac*x[i])

times.append(t)

print "t=", t, "xzero=", xzero[-1]

outfile = open(" separation -location.data", "w")

outfile.write ("# t(s) x(m)\n")

for i in range(len(xzero)):

outfile.write ("%f %f\n" % (times[i], xzero[i]))

outfile.close ()

outfile = open(" separation -velocity.data", "w")

outfile.write ("# t(s) -dx/dt(m/s)\n")

for i in range(1,len(xzero)):

154

outfile.write ("%f %f\n" % (times[i], -(xzero[i]-xzero[i -1])/(times[i]-times[i -1])))

outfile.close ()

print "Fit an asymptotic function to the location data."

import numpy

x = numpy.array(xzero) * 1000.0 # to get units of mm

t = numpy.array(times) * 1000.0 # to get units of ms

Drop the first couple of points from the fit.

x = x[2:]; t = t[2:]

def f(t, xf, dx , tau):

return xf + dx * numpy.exp(-t/tau)

from scipy.optimize import curve_fit

popt , pcov = curve_fit(f, t, x, [60.0 , 20.0, 0.4])

print "Fitted parameters :"

print "xf=", popt[0], "mm"

print "dx=", popt[1], "mm"

print "tau=", popt[2], "ms"

print "pcov=", pcov

print "Done"

#! /usr/bin/env python

dbl_cone_surface_properties.py

#

Pick up the simulation data at the last simulated time

compute an estimate of the shear -stress coefficient and

output both shear and pressure along the cone surfaces.

#

PJ, 25-June -2013, adapted from cylinder -flare example

import sys , os

job = "dbl -cone"

print "Determine the latest time."

fp = open(job+". times", "r"); lines = fp.readlines (); fp.close()

tindx = int(lines [-1]. strip (). split ()[0]) # first number of the last line

print "tindx=", tindx

print "Begin: Pick up data for tindx=", tindx

from libprep3 import Vector , cross , dot , vabs

from e3_flow import read_all_blocks

from math import sqrt

#

nb = 28

pick_list = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26] # surface

rho_inf = 6.081e-4 # kg/m**3

p_inf = 18.55 # Pa

u_inf = 2576.0 # m/s

T_inf = 102.2 # K

T_wall = 295.8 # K

from cfpylib.gasdyn import sutherland

mu_inf = sutherland.mu(T_inf , ’N2 ’)

mm = 0.001 # metres

corner1 = Vector (92.08 ,42.94)* mm

corner2 = Vector (153.69 ,130.925)* mm

#

grid , flow , dim = read_all_blocks(job , nb , tindx , zipFiles=True)

print "Compute properties for cell -centres along the surface"

outfile = open(" surface.data", "w")

outfile.write ("# x(m) s(m) tau_w(Pa) Cf Cf_blasius y_plus p(Pa) Cp q(W/m**2) Ch\n")

for ib in pick_list:

j = 0 # surface is along the South boundary

k = 0 # of a 2D grid

print "# start of block"

for i in range(flow[ib].ni):

Cell closest to surface

x = flow[ib].data[’pos.x’][i,j,k]

y = flow[ib].data[’pos.y’][i,j,k]

ctr = Vector(x, y)

Get vertices on surface , for this cell.

x = grid[ib].x[i,j,k]

155

y = grid[ib].y[i,j,k]

vtx0 = Vector(x, y)

x = grid[ib].x[i+1,j,k]

y = grid[ib].y[i+1,j,k]

vtx1 = Vector(x, y)

t1 = (vtx1 -vtx0)

t1.norm() # tangent vector for surface

midpoint = 0.5*(vtx0+vtx1) # on surface

normal = cross(Vector (0,0,1),t1)

normal.norm()

Surface to cell -centre distance.

dy = dot(normal , ctr -midpoint)

Distance along surface

if midpoint.x <= corner1.x:

Along the first -cone.

s = vabs(midpoint)

elif midpoint.x <= corner2.x:

Up the second cone.

s = vabs(midpoint -corner1) + vabs(corner1)

else:

Along the top surface.

s = vabs(midpoint -corner2) + vabs(corner1) + vabs(corner2 -corner1)

Cell -centre flow data.

rho = flow[ib].data[’rho ’][i,j,k]

ux = flow[ib].data[’vel.x’][i,j,k]

uy = flow[ib].data[’vel.y’][i,j,k]

v = Vector(ux, uy)

vt = dot(v,t1) # velocity component tangent to surface

mu = flow[ib].data[’mu ’][i,j,k]

kgas = flow[ib].data[’k[0]’][i,j,k]

p = flow[ib].data[’p’][i,j,k]

Cp = (p-p_inf)/(0.5* rho_inf*u_inf*u_inf)

T = flow[ib].data[’T[0]’][i,j,k]

Shear stress

dudy = (vt - 0.0) / dy # no-slip wall

tau_w = mu * dudy # wall shear stress

Cf = tau_w / (0.5* rho_inf*u_inf*u_inf)

u_tau = sqrt(abs(tau_w) / rho) # friction velocity

y_plus = u_tau * dy * rho / mu

Rex = rho_inf * u_inf * s / mu_inf

Cf_blasius = 0.664 / sqrt(Rex)

Heat flux

dTdy = (T - T_wall) / dy # conductive heat flux at the wall

q = kgas * dTdy

Ch = q / (0.5* rho_inf*u_inf*u_inf*u_inf)

#

outfile.write ("%f %f %f %f %f %f %f %f %f %f\n" %

(midpoint.x, s, tau_w , Cf, Cf_blasius ,

y_plus , p, Cp , q, Ch))

print "s=", s, "tau_w=", tau_w , "Cf=", Cf, "y_plus=", y_plus , \

"p=", p, "Cp=", Cp , "q=", q, "Ch=", Ch

outfile.close ()

print "Done"

27.5 Notes

• The experimental data has come from a spreadsheet, kindly provided by Dr Matthew

MacLean of CUBRC. Plotting of the pressure was done using dimensional quantities

directly with the following GNUPlot script.
surface -pressure.gnuplot

set term postscript eps 20

set output ’surface -pressure.eps ’

set title ’Double -cone sharp -nose , pressure along surface ’

set ylabel ’p, Pa’

set xlabel ’x, mm’

set key top left

156

plot ’./surface.data ’ using ($1 *1000):($7) with lines \

lw 3.0 title ’Eilmer3 ’, \

’./notes/indented -cone -pressure.data ’ \

using ($2 *92.075):($9 *6894.8) \

title ’CUBRC Run 35’ with points pt 4

• The experimental heat transfer data seemed to have incorrect x-positions for the

transducers. x-position data from the spreadsheet was adjusted to correctly locate

the transducer just before the separation point and the transducer toward the end of

the second-cone surface as seen in the photograph of the physical model (Figure 48).

affine.py

Scale the x-position of the CUBRC heat -transfer data

using x_mm = alpha * x/L + beta

to match a two key points of the computational result.

1. separation point x/L=0.338 x=60mm

2. second -last transducer x/L=1.610 x=155mm

Note that this transformation is not necessary for the pressure data.

PJ, 25-June -2013

from numpy import array , linalg

a = array ([[0.338 , 1.0] ,[1.610 , 1.0]])

b = array ([60.0 ,155.0])

e = linalg.solve(a,b)

alpha , beta = e

print "alpha=", alpha , "beta=", beta

• All other heat-transfer transducer locations were then positioned relative to these

points.

surface -heat -transfer.gnuplot

set term postscript eps 20

set output ’surface -heat -transfer.eps ’

set title ’Double -cone sharp -nose , heat -flux along surface ’

set ylabel ’q, kW/m**2’

set xlabel ’x, mm’

set yrange [0:1500]

set key top right

plot ’./surface.data ’ using ($1 *1000):($9 /1000) with lines \

lw 3.0 title ’Eilmer3 k*dT/dy ’, \

’./notes/indented -cone -heat -transfer.data ’ \

using ($2 *74.69+34.76):($9 *11.377) \

title ’CUBRC Run 35 x-affine ’ with points pt 4

157

158

28 Mach 3 flow over a sharp-nosed two-dimensional

body

The specifications for this example come from section 5.2 in JD Anderson’s Hypersonics

book [18]. It shows the use of a spline curve as well as being a source of test data for the

Method-of-Characteristics for rotational flow. Data for the spline points was computed

from
y

ye
= −0.008333 + 0.609425

(
x

ye

)
− 0.092593

(
x

ye

)2

where ye = 1.0.

Figure 54: Schematic diagram of the geometry for the sharp body.

The surface pressure (shown in Fig. 56) has been extracted from the solution file by

e3post.py by selecting the south-most line of cells of block 1. The pressure field (Fig. 57)

shows the curved shock clearly.

159

Figure 55: Mesh, coloured by pressure, for the sharp body exercise.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10

P
re

ss
ur

e,
 k

P
a

x, m

Sharp 2D Body in Mach 3 Freestream

"sharp_surface.dat" using 1:($9/1000)

Figure 56: Pressure data along the body surface.

160

Figure 57: The pressure field for flow over a sharp body. The data has been transformed
from cells to points in Paraview. Note that the shock reflects from the upper boundary,
which has a SLIP WALL boundary condition by default.

161

28.1 Input script (.py)

sharp.py

PJ, 14-Dec -2006

16-Sep -2008 ported to Eilmer3

job_title = "Mach 3.0 flow over a curved 2D-planar body."

print job_title

gdata.title = job_title

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Define flow conditions

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

inflow = FlowCondition(p=95.84e3, u=2000.0 , v=0.0, T=1103.0)

Geometry

def shape(x):

return -0.008333 + 0.609425*x - 0.092593*x*x

a = Node(-1.0, 0.0, label="A")

b = Node(0.0, 0.0, label ="B")

x_list = [0.5, 1.5, 2.5, 3.291]

b_list = [b,] # to accumulate points in the spline

for x in x_list:

b_list.append(Node(x, shape(x)))

c = Node (10.0 , b_list [-1].y, label="C") # extend at same y-value

d = Node (10.0 , 7.0, label="D")

e = Node(0.0, 7.0, label ="E")

f = Node(-1.0, 7.0, label="F")

north0 = Line(f, e)

e0w1 = Line(b, e)

south0 = Line(a, b)

west0 = Line(a, f)

south1 = Polyline ([Spline(b_list), Line(b_list[-1], c)])

north1 = Line(e, d)

east1 = Line(c, d)

Define the blocks , boundary conditions and set the discretisation.

ny = 60

clustery = RobertsClusterFunction (1, 0, 1.3)

clusterx = RobertsClusterFunction (1, 0, 1.2)

blk_0 = Block2D(make_patch(north0 , e0w1 , south0 , west0),

nni=16, nnj=ny ,

cf_list =[None ,clustery ,None ,clustery],

fill_condition=initial)

blk_1 = Block2D(make_patch(north1 , east1 , south1 , e0w1),

nni=80, nnj=ny ,

cf_list =[clusterx ,None ,clusterx ,clustery],

fill_condition=initial)

identify_block_connections ()

blk_0.bc_list[WEST]= SupInBC(inflow)

blk_1.bc_list[EAST]= ExtrapolateOutBC ()

Do a little more setting of global data.

gdata.flux_calc = ADAPTIVE

gdata.max_time = 15.0e-3 # seconds

gdata.max_step = 2500

gdata.dt = 1.0e-6

sketch.xaxis (0.0 ,10.0 , 2.0, -0.6)

sketch.yaxis (0.0, 8.0, 2.0, -1.6)

sketch.window (0.0, 0.0, 10.0, 10.0, 0.05, 0.05, 0.17, 0.17)

162

28.2 Shell scripts

#! /bin/sh

sharp_prep.sh

A sharp axisymmetric body as described in Andersons Hypersonics text.

e3prep.py --job=sharp --do-svg

Extract the initial solution data and reformat so that we can plot the grid.

e3post.py --job=sharp --tindx =0 --vtk -xml

echo At this point , we should be ready to start the simulation.

#! /bin/sh

sharp_run.sh

Exercise the Navier -Stokes solver for a sharp 2D body.

Integrate the solution in time.

time e3shared.exe --job=sharp --run

echo At this point , we should have a final solution in sharp.b0000.t0015

#! /bin/sh

sharp_post.sh

Sharp 2D body , extract data and plot it.

Extract the solution data over whole flow domain and reformat.

e3post.py --job=sharp --tindx =15 --vtk -xml

Extract surface pressure and plot.

e3post.py --job=sharp --output -file=sharp_surface.dat --tindx =15 \

--slice -list ="1,:,0,0"

gnuplot <<EOF

set term postscript eps 20

set output "sharp_surface_p.eps"

set title "Sharp 2D Body in Mach 3 Freestream"

set xlabel "x, m"

set ylabel "Pressure , kPa"

set xrange [0.0:10.0]

set yrange [0.0:800]

plot "sharp_surface.dat" using 1:(\$9 /1000) with lines

EOF

echo At this point , we should have a plotted data.

28.3 Notes

• For mbcns2, this simulation reached a final time of 15 ms in 1801 steps and, on a

Pentium-M 1.73 Ghz system, taking 2 min, 48 s of CPU time.

• For Eilmer3, this simulation required 5 min, 22 sec on a single core of a Pentium

1.6 GHz processor. It reached the same time of 15 ms in 1838 steps. As of September

2008, we clearly have some optimisation to do.

163

164

29 Sharp-nosed 2D body – PyFun version

This is the same flow specifications as for the previous example but we directly use the

functional form of the sharp body as supplied by Ref. [18].

y

ye
= −0.008333 + 0.609425

(
x

ye

)
− 0.092593

(
x

ye

)2

where ye = 1.0. In the input script, the path is defined as a PyFunctionPath object that

receives a function xypath. The function xypath accepts a parameter value 0.0 ≤ t ≤ 1.0

and returns a corresponding point along the path as the Python tuple (x(t), y(t), z(t)).

Note that it is not a Vector object as most of the other geometry objects expect.

29.1 Input script (.py)

sharp -pyfun/sharp.py

PJ, 14-Dec -2006

16-Sep -2008 ported to Elmer3

29-Apr -2009 PyPath used instead of spline.

#

gdata.title = "Mach 3.0 flow over a curved 2D-planar body."

print gdata.title

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Define flow conditions.

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

inflow = FlowCondition(p=95.84e3, u=2000.0 , v=0.0, T=1103.0)

One can get access to the details of the FlowCondition.

print "inflow M=", inflow.flow.u / inflow.flow.gas.a

Geometry of flow domain.

def y(x):

"(x,y)-space path for x>=0"

if x <= 3.291:

return -0.008333 + 0.609425*x - 0.092593*x*x

else:

return 1.0

def xypath(t):

"Parametric path with 0<=t<=1."

global y

x = 10.0 * t

yval = y(x)

if yval < 0.0:

yval = 0.0

return (x, yval , 0.0)

a = Node(-1.0, 0.0, label="A")

b = Node(0.0, 0.0, label ="B")

c = Node (10.0, 1.0, label="C")

d = Node (10.0, 7.0, label="D")

e = Node(0.0, 7.0, label ="E")

f = Node(-1.0, 7.0, label="F")

north0 = Line(f, e)

e0w1 = Line(b, e)

south0 = Line(a, b)

west0 = Line(a, f)

south1 = PyFunctionPath(xypath)

north1 = Line(e, d)

165

east1 = Line(c, d)

Define the blocks , grid resolution and boundary conditions.

ny = 60

clustery = RobertsClusterFunction (1, 0, 1.3)

clusterx = RobertsClusterFunction (1, 0, 1.2)

blk_0 = Block2D(make_patch(north0 , e0w1 , south0 , west0),

nni=16, nnj=ny ,

cf_list =[None ,clustery ,None ,clustery],

fill_condition=initial)

blk_1 = Block2D(make_patch(north1 , east1 , south1 , e0w1),

nni=80, nnj=ny ,

cf_list =[clusterx ,None ,clusterx ,clustery],

fill_condition=initial)

identify_block_connections ()

blk_0.bc_list[WEST]= SupInBC(inflow)

blk_1.bc_list[EAST]= ExtrapolateOutBC ()

Do a little more setting of global data.

gdata.flux_calc = ADAPTIVE

gdata.max_time = 15.0e-3 # seconds

gdata.max_step = 2500

gdata.dt = 1.0e-6

sketch.xaxis (0.0 ,10.0 , 2.0, -0.6)

sketch.yaxis (0.0, 8.0, 2.0, -1.6)

sketch.window (0.0, 0.0, 10.0, 10.0, 0.05, 0.05, 0.17, 0.17)

29.2 Notes on using Python for the input script

• The script runs in the context set up by the e3prep.py program. This means that

data elements such as gdata are available for manipulation by the user’s script.

• Comments can be used in the script as a form of documentation on the simulation.

• We can get intermediate results printed as the script is processed. This is useful for

debugging and for documentation of the situation.

• It is often convenient to set up small functions that get passed as arguments to other

functions. For example, the function y (brought over from the previous simulation)

is passed into xypath which is, in turn, passed in to PyFunctionPath to construct

a Path element.

166

30 Hypersonic flow of ideal air over a blunt wedge

This example is a partial solution to the CFD exercise for the MECH4470 class in 2004.

Because the original specification was given in nondimensional form, an arbitrary 10 mm

nose radius has been selected for the inviscid simulation. This is also a reasonable size

for a possible wind tunnel experiment. The free-stream condition was specified as having

a Mach number of 5 and the gas was specified as ideal air. Choosing particular values

of p∞ = 100 kPa, T∞ = 100 K, lead to a free-stream velocity of u∞ = 1002 m/s and a

dynamic pressure of q∞ = 1.75 MPa.

x
-0.02 0 0.02 0.04 0.06 0.08

y

0

0.02

0.04

0.06

0.08

0.1

ab

c

d

e

f

e1

f1

g

blk-0

SLIP_WALL

SU
P_
IN

blk-1

SU
P_
IN

E
X
T
R
A
P
O
LA
T
E
_O
U
T

SLIP_W
ALL

Figure 58: Schematic diagram of the geometry for the blunted 10 degree wedge.

The simulation is started with low-pressure conditions throughout the flow domain

and free-stream conditions applied to the inflow boundary (the west boundary of blk-0

and the north boundary of blk-1). The flow data is allowed to evolve until tfinal = 399µs,

which corresponds to a particle of the free-stream travelling 40 nose radii. The axial force

(shown in Fig.60) is seen to settle to a value of 28590 N in that time. This corresponds

to a drag coefficient of 0.674.

The surface pressure (shown normalised in Fig. 61) has been extracted from the solu-

tion file by e3post.py by selecting the east-most line of cells of the first block and the

south-most line of cells of the second block. The selected data is filtered by an Awk script

to produce the normalised data (and the Newtonian reference data) as plotted.

167

Figure 59: Mesh for the blunt wedge exercise.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300 350 400

x-
fo

rc
e,

 N

t, microseconds

Blunted wedge: x-force history

total
cylinder
wedge

Figure 60: History of the axial forces for the blunt-wedge exercise.

168

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8 9 10

P
re

ss
ur

e
C

oe
ffi

ci
en

t,
(p

 -
 p

∞
)/

q ∞

s/Rn

Blunted wedge: surface pressure coefficient.

CFD at t=399us
Modified Newtonian

Figure 61: Surface pressure coefficient data for the blunt-wedge exercise.

Figure 62: Mach number data for the blunt-wedge exercise.

169

30.1 Input script (.py)

bw.py

MECH4470/CFD Exercise: Hypersonic flow over a blunt wedge.

PJ, 07-Dec -2006

31-Jan -2010 ported to Eilmer3

from math import sqrt , sin , cos , tan , pi

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Free stream

g_gas = 1.4 # Ideal Air

R_gas = 287.0

M_inf = 5.0 # Specified Mach number

p_inf = 100.0 e3 # Select a static pressure

T_inf = 100.0 # and a temperature

a_inf = sqrt(T_inf * R_gas * g_gas) # determine sound speed

u_inf = M_inf * a_inf # and velocity

Also , handy to know dynamic pressure for nondimensionalization

of the pressures and drag forces.

q_inf = 0.5 * g_gas * p_inf * M_inf * M_inf

print "Free -stream velocity , u_inf=", u_inf

print " static pressure , p_inf=", p_inf

print " dynamic pressure , q_inf=", q_inf

free_stream = FlowCondition(p=p_inf , u=u_inf , v=0.0, T=T_inf)

For transient simulation , we start with a low pressure.

initial = FlowCondition(p=1000.0 , u=0.0, v=0.0, T=100.0)

Geometry

Rn = 10.0e-3 # radius of cylindrical nose

xEnd = 8.0 * Rn # downstream extent of wedge

alpha = 10.0 / 180.0 * pi # angle of wedge wrt free stream

delta = 10.0e-3 # offset for inflow boundary

First , specify surface of cylinder and wedge

a = Node (0.0, 0.0, label=’a’) # Centre of curvature for nose

b = Node(-Rn, 0.0, label=’b’)

c = Node(-Rn*sin(alpha), Rn*cos(alpha), label=’c’)

bc = Arc(b, c, a)

Down -stream end of wedge

d = Node(xEnd , c.y+(xEnd -c.x)*tan(alpha), label=’d’)

print "height at end of plate yd=", d.y

cd =Line(c, d)

Outer -edge of flow domain has to contain the shock layer

Allow sufficient for shock stand -off at the stagnation line.

R2 = Rn + delta

e = Node(-R2, 0.0, label=’e’)

The shock angle for a 10 degree ramp with sharp leading edge

is 20 degrees (read from NACA 1135, chart 2),

however , the blunt nose displaces the shock a long way out

so we allow some more space.

We need to set the boundary high enough to avoid the shock

R3 = Rn + 2.0 * delta

f = Node(-R3*sin(alpha), R3*cos(alpha), label=’f’)

Now , put in intermediate control points so that we can use

cubic Bezier curve for the inflow boundary around the nose

and a straight line downstream of point f.

e1 = Node(e.x, delta , label=’e1 ’)

alpha2 = 40.0 / 180.0 * pi

f1 = Node(f.x-delta*cos(alpha2), f.y-delta*sin(alpha2), label=’f1 ’)

ef = Bezier ([e, e1, f1, f])

g = Node(xEnd , f.y+(xEnd -f.x)*tan(alpha2), label=’g’)

fg = Line(f,g)

Define straight -line segments between surface and outer boundary.

eb = Line(e, b); fc = Line(f, c); dg = Line(d, g)

170

Define the blocks using the path segments.

Note that the EAST face of region0 wraps around the nose and

that the NORTH face of region0 is adjacent to the WEST face

of region1.

region0 = make_patch(fc , bc, eb, ef)

cf = fc.copy (); cf.reverse () # common boundary but opposite sense

region1 = make_patch(fg , dg, cd, cf)

cluster0 = RobertsClusterFunction (0, 1, 1.2)

cluster1 = RobertsClusterFunction (1, 0, 1.2)

nni0 = 40

nnj0 = 40

nni1 = 100

blk_0 = Block2D(region0 , nni=nni0 , nnj=nnj0 ,

cf_list =[cluster0 ,None ,cluster0 ,None],

fill_condition=initial ,

xforce_list =[0,1,0,0])

blk_1 = Block2D(region1 , nni=nni1 , nnj=nnj0 ,

cf_list =[None ,cluster1 ,None ,cluster1],

fill_condition=initial ,

xforce_list =[0,0,1,0])

identify_block_connections ()

blk_0.bc_list[WEST] = SupInBC(free_stream)

blk_1.bc_list[NORTH] = SupInBC(free_stream)

blk_1.bc_list[EAST] = ExtrapolateOutBC ()

We can set individual attributes of the global data object.

job_title = "Blunt Wedge Rn=" + str(Rn)

job_title += (" q_inf =%12.3e" % q_inf) + (" d.y=%10.5f" % d.y)

print job_title

gdata.title = job_title

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = 40.0 * Rn / u_inf

print "Final time=", gdata.max_time

gdata.max_step = 5000

gdata.dt = 1.0e-8

gdata.dt_plot = gdata.max_time

gdata.dt_history = gdata.max_time / 100.0

HistoryLocation(b.x-0.001 , b.y) # just in front of the stagnation point

sketch.xaxis (-0.020, 0.080, 0.020, -0.004)

sketch.yaxis (0.0, 0.100 , 0.020, -0.004)

sketch.window (-0.02, 0.0, 0.08, 0.10, 0.05, 0.05, 0.17, 0.17)

171

30.2 Shell scripts

bw_prep.sh

#

e3prep.py --job=bw --do -svg

bw_run.sh

#

time e3shared.exe --job=bw --run

mv e3shared.log bw.e3shared.log

echo "Done"

bw_post.sh

e3post.py --job=bw --tindx =9999 --vtk -xml --add -mach

Plot the surface pressure on the wedge

We want the EAST edge of block 1 and the SOUTH edge of block 1

e3post.py --job=bw --tindx =9999 --output -file=bw_surface.data \

--slice -list="0,-1,:,0;1,:,0,0"

awk -f surface_pressure.awk bw_surface.data > bw_surface_p_coeff.data

gnuplot <<EOF

set term postscript eps enhanced 20

set output "bw_surface_pressure.eps"

set title "Blunted wedge: surface pressure coefficient ."

set xlabel "s/R_n"

set ylabel "Pressure Coefficient , (p - p_{/ Symbol \245})/ q_{/ Symbol \245}"

set yrange [0.0:2.0]

plot "bw_surface_p_coeff.data" using 1:2 title "CFD at t=399us" with lines , \

"bw_surface_p_coeff.data" using 1:3 title "Modified Newtonian" with lines

EOF

Plot the axial force coefficient.

awk -f xforce.awk bw.e3shared.log > bw_xforce.data

gnuplot <<EOF

set term postscript eps 20

set output "bw_xforce.eps"

set title "Blunted wedge: x-force history"

set xlabel "t, microseconds"

set ylabel "x-force , N"

set yrange [0:35000]

set key top left

plot "bw_xforce.data" using 1:2 title "total" with lines , \

"bw_xforce.data" using 1:3 title "cylinder" with lines , \

"bw_xforce.data" using 1:4 title "wedge" with lines

EOF

172

30.3 Notes

• This simulation reaches a final time of 399µs. For mbcns2 on an Intel Pentium-M

1.73 Ghz system, this took 6 min, 39 s of CPU time for 3722 steps. However, for

Eilmer3 on an Intel E2140 1.6Ghz system it now takes 15 m, 23 s for 3759 steps.

• Selection of the e3shared.log file showing some x-force data as written during the
simulation. Pressure and viscous forces are written separately. Note that the lines
are written with several items separated by spaces and the format is mostly self-
documenting. The only extra bit of information is that BNDY values are 0, 1, 2
and 3 for boundaries NORTH, EAST, SOUTH and WEST, respectively.

Step= 420 t= 2.747e-05 dt= 9.100e-08 WC=102.0 WCtFT=991.8 WCtMS=1112.3

CFL_min = 1.862345e-03, CFL_max = 4.958796e-01, dt_allow = 9.100331e-08

Smallest CFL_max so far = 3.381457e-02 at t = 1.000000e-07

dt[0]=9.100331e-08 dt[1]=1.500771e-07

There are 2 active blocks.

RESIDUAL mass block 0 max: 4.899825e-02 at (-0.00280173,0.0146712,0)

RESIDUAL energy block 0 max: 5.025321e-02 at (-0.00280173,0.0146712,0)

RESIDUAL mass block 1 max: 1.656031e-01 at (0.0254165,0.0185377,0)

RESIDUAL energy block 1 max: 4.834703e-01 at (0.0262722,0.0181336,0)

RESIDUAL mass global max: 1.656031e-01 step 420 time 2.74667e-05

RESIDUAL energy global max: 4.834703e-01 step 420 time 2.74667e-05

XFORCE: TIME 2.801336e-05 BLOCK 0 BNDY 1 FX_P 2.415181e+04 FX_V 2.204480e+00

XFORCE: TIME 2.801336e-05 BLOCK 1 BNDY 2 FX_P 9.973561e+02 FX_V 9.133770e+00

• Awk filter for extracting the x-force data from the simulation log file. Note that
there are two pattern-action rules, one for each block.

xforce.awk

Extract the simulation times and axial force values from the log file.

#

BEGIN {

print "# time (microseconds) x-force -total only -cylinder only -wedge";

}

/XFORCE/ && $5 == 0 {

Select just the simulation time and the pressure forces for block 0.

t = $3; # in seconds

fx_p_0 = $9; # force on cylinder in Newtons

Don ’t do anything until we pick up the wedge data (block 1).

}

/XFORCE/ && $5 == 1 {

Select just the simulation time and the pressure forces for block 1.

t = $3; # in seconds

fx_p_1 = $9; # wedge surface in Newtons

print t*1.0e6 , fx_p_0 + fx_p_1 , fx_p_0 , fx_p_1;

}

• Awk filter for normalising the surface pressure data.

surface_pressure.awk

Normalise the surface pressure with free -stream dynamic pressure and

compute the distance around from the stagnation point.

BEGIN {

q_inf = 1.750 e6; # free -stream dynamic pressure , Pa

p_inf = 100.0 e3; # free -stream static pressure , Pa

Rn = 10.0e-3; # nose radius

xold = -Rn; # location of the stagnation point

yold = 0.0;

173

s = 0.0; # distance around from stagnation point

count = 0;

pi = 3.1415927;

wedge_angle = 10.0/180.0 * pi;

print "# s/Rn Cp(CFD) Cp(Newton) x(m) y(m)";

}

$1 != "#" {

count += 1;

x = $1; # cell -centre position

y = $2;

p = $9; # cell -centre pressure

if (count == 1) p_pitot = p; # Close enough to the stagnation point.

dx = x - xold;

dy = y - yold;

s += sqrt(dx * dx + dy * dy);

Estimate Cp using Modified Newtonian Model.

theta = 0.5 * pi - (s/Rn); # local angle of surface

if (theta < wedge_angle) theta = wedge_angle;

Cp_MN = (p_pitot - p_inf) / q_inf * sin(theta) * sin(theta);

print s/Rn, (p - p_inf)/q_inf , Cp_MN , x, y;

xold = x;

yold = y;

}

174

31 Pressure on a flat-faced cylinder

This example models the bar gauge type of pressure sensor as used in the expansion-tube

facilities. It also shows the application of a multiple-block grid to describe the flow domain

(Figure 63) around a flat-faced cylinder whose axis is aligned with the free-stream flow

direction. The free-stream Mach number is 4.76 to match one of the higher Mach number

conditions reported in Ref.[19].

x
-0.01 0 0.01 0.02 0.03

y

0

0.01

0.02

0.03

A

B

C

D

E

F

G

H

Front

S
L
IP

_W
A
L
L

SLIP_WALL

S
U
P
_I

N

Outer

SLIP_WALL

S
U
P
_I

N After

SLIP_WALL

E
X
T
R
A
P
O

L
A
T
E
_O

U
T

SLIP_WALL

Figure 63: Schematic diagram of the full flow domain around the flat-faced cylinder.

The simulation is started with low pressure stationary gas throughout the domain and

the inflow conditions are applied to the west boundaries of blocks “Front” and “Outer”.

After allowing 50µs for the flow to reach steady state, the pressure distribution throughout

the domain is shown in Fig. 64. The stand-off distance was determined by searching for the

pressure jump along the row of cells adjacent to the centreline. See the locate shock.awk

script below. If the trigger for the pressure jump is 200 kPa, the stand-off distance is

2.815 mm but, if we use a level of 1.5 MPa, the estimated stand-off distance is 2.756 mm.

The difference is about 70% of one cell width.

Figure 65 shows the distribution of pressure across the face of the cylinder. The

simulation data agrees closely with Kendall’s measurements except in the region the

sharp corner where there is inadequate resolution and an absence of viscous effects in the

simulation.

175

Figure 64: Pressure and Mach number within the flow domain at 50µs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

p/
p-

ce
nt

re

r/r-max

Normalized surface pressure over cylinder face, M=4.76.

simulation
experiment

Figure 65: Normalised pressure across the face of the cylinder compared with experimental
measurements [19].

176

31.1 Input script (.py)

bar.py

PJ

14-Dec -2006

03-Feb -2010 ported to Eilmer3 examples

gdata.title = "Bar gauge M=4.76 in air."

print gdata.title

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Define flow conditions: low pressure ambient with M=4.76 inflow

initial = FlowCondition(p=30.0 , u=0.0, v=0.0, T=300.0)

inflow = FlowCondition(p=100.0e3, u=1653.0 , v=0.0, T=300.0)

Geometry

R = 5.0e-3 # radius of bar in metres

a = Node(-2*R, 0.0, label="A")

b = Node(-2*R, R, label="B")

c = Node(-2*R, 6*R, label="C")

d = Node(0.0, 0.0, label ="D")

e = Node(0.0, R, label="E")

f = Node(0.0, 6*R, label ="F")

g = Node(6*R, R, label="G")

h = Node(6*R, 6*R, label ="H")

ad=Line(a,d); be=Line(b,e); cf=Line(c,f); eg=Line(e,g); fh=Line(f,h)

ab=Line(a,b); bc=Line(b,c); de=Line(d,e); ef=Line(e,f); gh=Line(g,h)

Define the blocks , boundary conditions and set the discretisation.

nx0 = 120; nx2 = 120; ny0 = 40; ny1=80

cfy = RobertsClusterFunction (1, 0, 1.2)

cfx = RobertsClusterFunction (1, 0, 1.1)

blk_0 = Block2D(make_patch(be, de , ad , ab), nni=nx0 , nnj=ny0 ,

fill_condition=initial , label="Front",

hcell_list =[(nx0 ,1),(nx0 ,5),(nx0 ,10)],

xforce_list =[0,1,0,0])

blk_1 = Block2D(make_patch(cf, ef , be , bc), nni=nx0 , nnj=ny1 ,

cf_list =[None ,cfy ,None ,cfy],

fill_condition=initial , label="Outer ")

blk_2 = Block2D(make_patch(fh, gh , eg , ef), nni=nx2 , nnj=ny1 ,

cf_list =[cfx ,cfy ,cfx ,cfy],

fill_condition=initial , label="After ")

identify_block_connections ()

blk_0.bc_list[WEST] = SupInBC(inflow)

blk_1.bc_list[WEST] = SupInBC(inflow)

blk_2.bc_list[EAST] = ExtrapolateOutBC ()

We can set individual attributes of the global data object.

gdata.axisymmetric_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = 50.0e-6 # seconds

gdata.max_step = 15000

gdata.dt = 2.0e-8

gdata.dt_plot = 5.0e-6

gdata.dt_history = 0.5e-6

sketch.xaxis (-0.010, 0.030, 0.010, -0.002)

sketch.yaxis(0.000 , 0.030 , 0.010, -0.002)

sketch.window (-0.010, 0.0, 0.030, 0.040 , 0.05, 0.05, 0.17, 0.17)

177

31.2 Shell scripts

#!/ bin/bash

e3prep.py --job=bar --do -svg

#!/ bin/bash

run_sumulation.sh

catch both stdout and stderr

nohup time e3shared.exe --job=bar --run &> LOGFILE &

#!/ bin/bash

post_simulation.sh

Extract the stagnation line data from the steady flow field.

e3post.py --job=bar --output -file=stag_line.data --tindx =9999 \

--slice -list ="0,:,1,0"

awk -f locate_shock.awk stag_line.data > result.txt

Create a VTK plot file of the steady flow field.

e3post.py --job=bar --tindx=all --vtk -xml --add -mach --add -pitot -p

Extract the flow data across the face of the bar gauge.

e3post.py --job=bar --output -file=raw_profile.data --tindx =9999 \

--slice -list="0,-1,:,0"

awk -f normalize.awk raw_profile.data > norm_profile.data

gnuplot <<EOF

set output "bar_norm_p.eps"

set term postscript eps 20

set xrange [0:1.1]

set yrange [0:1.2]

set title "Normalized surface pressure over cylinder face , M=4.76."

set xlabel "r/r-max"

set ylabel "p/p-centre"

set key bottom left

plot "norm_profile.data" using 1:2 title "simulation" with lines , \

"kendall_profile.data" using 1:2 title "experiment" with points pt 4

EOF

178

31.3 Awk scripts

normalize.awk

Normalize the surface pressure over the centreline static pressure.

BEGIN {

p_centre = -1.0;

}

$1 != "#" {

p = $9;

r = $2;

if (p_centre < 0.0) p_centre = p;

print r/0.005 , p/p_centre;

}

locate_shock.awk

BEGIN {

p_old = 0.0;

x_old = -2.0; # dummy position

y_old = -2.0;

p_trigger = 1.5e6; # something midway between free stream and stagnation

shock_found = 0;

}

$1 != "#" { # for any non -comment line , do something

p_new = $9;

x_new = $1;

y_new = $2;

print "p_new=", p_new , "x_new", x_new , "y_new", y_new

if (p_new > p_trigger && shock_found == 0) {

shock_found = 1;

frac = (p_new - p_trigger) / (p_new - p_old);

x = x_old + frac * (x_new - x_old);

y = y_old + frac * (y_new - y_old);

print "shock -location= ", x, y

}

p_old = p_new;

x_old = x_new;

y_old = y_new;

}

END {

if (shock_found == 0) {

print "shock not located ";

}

print "done."

}

31.4 Notes

• The mbcns2 version of this simulation reaches a final time of 50µs in 2932 steps

and, on a Pentium-M 1.73 Ghz system, this takes 19 min, 27 s of CPU time. This is

equivalent to 17.8µs per cell per predictor-corrector time step.

• The Eilmer3 simulation takes 2929 steps and 19 min, 6 s on an Intel Core 2 Duo

E8400 at 3GHz. We have some optimization to do...

179

180

32 Flow through a conical nozzle

Good quality experimental data for wall pressure distribution in a conical nozzle with

a circular-arc throat profile and a 15o divergent section is available in Ref. [20]. In the

original experiment, the flow of air through the facility was allowed to reach steady state

and static pressures were measured at a large number of points along the nozzle wall.

Figure 66 shows the outline of the simulated flow domain which is set up to approx-

imate the largest subsonic area ratio used in the experiment. A short subsonic section

upstream of the throat is included, along with the conical supersonic expansion where the

pressure measurements were made. Note that the geometric calculation of the tangent

arcs is done within the input script. This makes use of Python, beyond just being an

input format, and allows the specification to be fully parametric. Although the paramet-

ric description makes the initial setup of the script a bit more complex than absolutely

necessary, it does make the running of the simulation for other radii of curvature very

simple.

x
-0.1 -0.05 0 0.05

y

0

0.02

0.04

centre_A

centre_B

subsonic-region

SLIP_WALL

SLIP_WALL

S
U
B
S
O
N
IC
_I
N

supersonic-region

SLIP_
WALL

E
X
T
R
A
P
O
LA
T
E
_O
U
T

SLIP_WALL

Figure 66: Schematic diagram of the full flow domain for the duct and conical nozzle.

Figure 67 shows the mesh, coloured by Mach number (once the flow has reached steady

state). Assuming that flow in the subsonic and transonic regions of the nozzle is steady,

the expected Mach number is M3 = 0.13812 for an area ratio of A3/A∗ = 4.2381. This is

seen to be consistent with the Mach number colouring in the figure and is a good test of

the SubsonicInBC that is applied at the upstream boundary.

Figure 68 shows the pressure distribution throughout the flow domain at t = 4.0 ms,

once the flow has settled. Note that the inflow boundary has the flow stagnation properties

specified as its flow condition but that this condition does not appear in any part of the

simulation domain.

181

Figure 67: Mesh generated for the axisymmetric nozzle simulation, coloured with Mach
number.

Figure 68: Pressure contours within the flow domain at 4.0 ms.

182

The flow in the nozzle is largely transient as the stagnation conditions drive gas into

the domain but the overall flow becomes steady, as indicated by the histories shown in

Fig. 69. Because there is little damping to the gas dynamics, small scale oscillations

evident in the pressure history take some to damp out as weak waves bounce around in

the subsonic region long after the bulk flow has approached steady state. Figure 70 shows

that the simulation matches the experimental data closely.

(a) (b)

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4

M

time, ms

Mach number history at the nozzle exit

’nozzle-exit.data’ using 1:2

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

p
,

k
P

a

time, ms

Static pressure history at the nozzle exit

’nozzle-exit.data’ using 1:3

Figure 69: Development of the flow at a “history point” near the centre of the exit plane:
(a) Mach number; (b) static pressure.

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3 -2 -1 0 1 2 3

p
/p

t

distance from throat (inches)

Pressure along the nozzle wall

simulation
experiment

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-1 -0.5 0 0.5 1 1.5 2 2.5 3

p
/p

t

distance from throat (inches)

Pressure along the nozzle wall

simulation
experiment

Figure 70: Normalised pressure distribution along the nozzle wall: (a) full length of flow
domain; (b) just the supersonic part of the nozzle.

183

32.1 Input script (.py)

back.py

Conical nozzle from Back , Massier and Gier (1965)

gdata.title = "Flow through a conical nozzle ."

print gdata.title

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

The stagnation gas represents a reservoir condition.

stagnation_gas = FlowCondition(p=500.0e3, T=300.0)

low_pressure_gas = FlowCondition(p=30.0 , T=300.0)

Define geometry.

The original paper specifies sizes in inches , Eilmer3 works in metres.

inch = 0.0254 # metres

L_subsonic = 3.0 * inch

L_nozzle = 3.0 * inch

R_tube = 1.5955 * inch

R_throat = 0.775 * inch

R_curve = 1.55 * inch # radius of curvature of throat profile

theta = 15.0 * math.pi / 180.0 # radians

Compute the centres of curvature for the contraction profile.

height = R_throat + R_curve

hypot = R_tube + R_curve

base = math.sqrt(hypot*hypot - height*height)

centre_A = Node (0.0, height , label=" centre_A ")

centre_B = Node(-base , 0.0, label =" centre_B ")

fraction = R_tube/hypot

intersect_point = centre_B + Vector(fraction*base , fraction*height)

The following Nodes will be rendered in the SVG file.

z0 = Node(-L_subsonic , 0.0) # assemble from coordinates

p0 = Node(-L_subsonic , R_tube)

z1 = Node(centre_B) # initialize from a previously defined Node

p1 = Node(centre_B + Vector (0.0, R_tube)) # vector sum

p2 = Node(intersect_point)

z2 = Node(p2.x, 0.0) # on the axis , below p2

z3 = Node (0.0, 0.0)

p3 = Node (0.0, R_throat)

Compute the details of the conical nozzle

p4 = Node(R_curve*math.sin(theta), height - R_curve*math.cos(theta))

z4 = Node(p4.x, 0.0)

L_cone = L_nozzle - p4.x

p5 = Node(p4 + Vector(L_cone , L_cone*math.tan(theta)))

z5 = Node(p5.x, 0.0)

north0 = Polyline ([Line(p0,p1),Arc(p1 ,p2,centre_B),Arc(p2,p3 ,centre_A)])

east0west1 = Line(z3, p3)

south0 = Line(z0, z3)

west0 = Line(z0, p0)

north1 = Polyline ([Arc(p3,p4 ,centre_A), Line(p4,p5)])

east1 = Line(z5, p5)

south1 = Line(z3, z5)

Define the blocks , boundary conditions and set the discretisation.

nx0 = 50; nx1 = 60; ny = 30

subsonic_region = Block2D(make_patch(north0 , east0west1 , south0 , west0),

nni=nx0 , nnj=ny,

fill_condition=stagnation_gas ,

label="subsonic -region ")

supersonic_region = Block2D(make_patch(north1 , east1 , south1 , east0west1),

nni=nx1 , nnj=ny,

fill_condition=low_pressure_gas ,

label="supersonic -region ")

identify_block_connections ()

subsonic_region.bc_list[WEST] = SubsonicInBC(stagnation_gas)

supersonic_region.bc_list[EAST] = ExtrapolateOutBC ()

184

Flow -history to be recorded at the following points.

HistoryLocation (0.001 , 0.002, label="nozzle -throat ")

HistoryLocation(L_nozzle -0.001 , 0.002, label="nozzle -exit")

Do a little more setting of global data.

gdata.axisymmetric_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = 4.0e-3 # seconds

gdata.max_step = 50000

gdata.dt = 1.0e-7

gdata.dt_plot = 0.2e-3

gdata.dt_history = 10.0e-6

sketch.xaxis (-0.10, 0.08, 0.05, -0.01)

sketch.yaxis(0.0, 0.05, 0.02, -0.015)

sketch.window (-0.10, 0.0, 0.10, 0.05, 0.05, 0.05, 0.25, 0.10)

32.2 Shell scripts

#!/ bin/sh

back_run.sh

Exercise the Navier -Stokes solver for the conical nozzle

as used by Back , Massier and Gier (1965) AIAA J. 3(9):1606 -1614.

e3prep.py --job=back --do-svg

mpirun -np 2 e3mpi.exe --job=back --run

e3post.py --job=back --tindx=all --vtk -xml --add -mach

back_profile.sh

Extract the flow data along the nozzle wall ,

scale it so that it can be lotted with the experimental data

and plot it using gnuplot.

e3post.py --job=back --output -file=raw_profile.data --tindx =9999 \

--slice -list=":,:,-1,0"

awk -f normalize.awk raw_profile.data > norm_profile.data

gnuplot <<EOF

set term postscript eps 20

set output ’back_profile_whole.eps ’

set title ’Pressure along the nozzle wall ’

set xlabel ’distance from throat (inches)’

set ylabel ’p/pt’

set yrange [0:1.2]

plot ’norm_profile.data ’ using 1:2 title "simulation" with lines , \

’back -exp.data ’ using 1:2 title "experiment" with points

EOF

gnuplot <<EOF

set term postscript eps 20

set output ’back_profile_supersonic.eps ’

set title ’Pressure along the nozzle wall ’

set xlabel ’distance from throat (inches)’

set ylabel ’p/pt’

set xrange [-1.0:3.0]

set yrange [0:0.6]

plot ’norm_profile.data ’ using 1:2 title "simulation" with lines , \

’back -exp.data ’ using 1:2 title "experiment" with points

EOF

185

back_history.sh

Extract the flow history data at the nozzle exit plane.

This is then plotted using gnuplot and an assessment

can be made as to whether the flow has reached steady state.

awk -f extract -history.awk < hist/back.hist.b0001 > nozzle -exit.data

gnuplot <<EOF

set term postscript eps 20

set output ’back_history_M.eps ’

set title ’Mach number history at the nozzle exit ’

set xrange [0.0:4.0]

set xlabel ’time , ms ’

set ylabel ’M’

plot ’nozzle -exit.data ’ using 1:2 with lines

EOF

gnuplot <<EOF

set term postscript eps 20

set output ’back_history_p.eps ’

set title ’Static pressure history at the nozzle exit ’

set key bottom right

set xrange [0.0:4.0]

set xlabel ’time , ms ’

set ylabel ’p, kPa ’

plot ’nozzle -exit.data ’ using 1:3 with lines

EOF

186

32.3 Notes

• The simulation reaches a final time of 4 ms in 5410 steps and, on an AMD Phenom

II X4 840 system, this takes 128 seconds run time.

• The pressure is normalised with respect to the stagnation pressure using the follow-

ing AWK script.

normalize.awk

Normalize the surface pressure over the length of the nozzle.

BEGIN {

p0 = 500.0 e3

print "# Normalized surface pressure for the Back nozzle (simulation)"

print "# x(inches) p/pt"

}

$1 != "#" { # For non -comment lines in the data file do...

p = $9

r = $2

x = $1

print x/0.0254 , p/p0

}

• The history data for all of the history cells in a particular block are written to the

one file. A particular cell can be extracted as shown by the following AWK script.

extract -history.awk

BEGIN {

print "# t(ms) Mach p(kPa)";

}

$2==59 && $3==1 {

t = $1;

u = $10;

v = $11;

a = $14;

p = $13;

print t*1000.0 , sqrt(u*u+v*v)/a, p/1000.0;

}

187

188

33 Flow of equilibrium air over a sphere

This example is a good starting-point for the modelling of hypersonic flow over blunt

bodies. It shows the use of arcs and the use of a look-up table as the equation of state for

a gas in chemical equilibrium but it remains geometrically simple by using a single-block

grid. Also, the .py file makes use of the Python language to parameterize the simulation’s

specification.

x
-0.06 -0.04 -0.02 0 0.02 0.04

y

0

0.02

0.04

0.06

0.08

0.1

ab

c

d

e

f

g

h

i

j

k

BLOCK-0

E
X
T
R
A
P
O
LA
T
E
_O

U
T

FIX
ED

_T

SLIP_WALL

SU
P_
IN

Figure 71: Schematic diagram of the geometry for a sphere wrapped by a single-block
grid.

The free-stream condition (p∞ = 20 kPa, T∞ = 296 K, u∞ = 4.68 km/s) corresponds

to Case 3 in Ref. [21] with M∞ = 13.6. According to Sawada & Dendou [21], the air is

close to being in chemical equilibrium and there is a very thin boundary layer. The re-

sults show that the inviscid simulation does indeed capture some of the high-temperature

chemistry influence. Ideal stagnation temperature would be 11204 K whereas the simu-

lated temperature along the stagnation line rises to only 6081 K. Secondly, the stand-off

distance for an ideal gas is expected to be approximately 4.63 mm. In Fig. 73 the simu-

lated shock stand-off distance is 2.66 mm near the stagnation point. This is within 3% of

the experimental value obtained by D. Reda in Sandia’s Ballistics Range (see [21]).

189

Figure 72: Mesh for flow over a sphere.

Figure 73: Temperature field and shock-detector (S) for equilibrium-air flow over a sphere.

190

33.1 Input script (.py)

file: ss3.py

#

Sphere in equilibrium air modelling Case 3 from

K. Sawada & E. Dendou (2001)

Validation of hypersonic chemical equilibrium flow calculations

using ballistic -range data.

Shock Waves (2001) Vol. 11, pp 43--51

#

Experimental shock stand -off distance is 2.59mm

Sawada & Dendou CFD value: 2.56mm

#

This script derived from rbody , 22-Jan -2004.

and the Python version: ss3.py, 04-Apr -2005, 10-Aug -2006, 27-Nov -2006

PJ

#

The grid is a bit wasteful because the shock lies close to

the body for equilibrium air , however , this grid layout

(as used in rbody) allows us to play with perfect -gas models

without hitting the inflow boundary with the shock.

#

Updated: 12-Nov -2008 by RJG for use in Elmer3

The following JOB name is used to build file names at the end.

JOB = "ss3"

Radius of body

R = 31.8e-3 # m

T_body = 296.0 # surface T, not relevant for inviscid flow

body_type = "sphere" # choose between "cylinder" and "sphere"

Free -stream flow definition

p_inf = 20.0e3 # Pa

T_inf = 296.0 # degrees K

u_inf = 4.68e3 # flow speed , m/s

For equilibrium chemistry , use the look -up-table (which has

been previously created).

print "About to select gas model ."

select_gas_model(fname=’cea -lut -air.lua.gz ’)

print "Gas model selection: done."

Define flow conditions

inflow = FlowCondition(p=p_inf , u=u_inf , v=0.0, T=T_inf)

initial = FlowCondition(p=0.3* p_inf , u=0.0, v=0.0, T=T_inf)

Job -control information

do_viscous = 0 # flag for viscous/inviscid calc

nn = 60 # grid resolution , both ix and iy

t_final = 10.0 * R / u_inf # allow time to settle at nose

t_plot = t_final / 1.0 # plot only once

TitleText = "Blunt Body " + JOB + ": R=" + str(R) + ", gas=’equilibrium air ’" + \

", p=" + str(p_inf) + ", v=" + str(u_inf) + ", T=" + str(T_inf) + \

", viscous =" + str(do_viscous)

gdata.title = TitleText

gdata.case_id = 0

if do_viscous:

gdata.viscous_flag = 1

gdata.viscous_delay = t_plot

if body_type == "sphere ":

gdata.axisymmetric_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = t_final

gdata.max_step = 400000

gdata.dt = 1.0e-8

gdata.cfl = 0.40

gdata.dt_plot = t_plot

gdata.dt_history = 1.0e-6

191

Begin geometry details ...

Note that mbcns_prep.py has already imported the math module.

deg2rad = math.pi / 180.0

alpha1 = 135.0 * deg2rad

alpha2 = 50.8 * deg2rad

The node coordinates are scaled with the body radius.

The labels are not required but make the MetaPost plot

look a little like the plot produced by scriptit.tcl.

a = Node (0.0, 0.0, label="a")

b = Node (-1.0 * R, 0.0, label ="b")

c = Node(math.cos(alpha1) * R, math.sin(alpha1) * R, label ="c")

d = Node (0.0, R, label ="d")

e = Node(math.cos(alpha2) * R, math.sin(alpha2) * R, label ="e")

f = Node (1.4 * R, 1.5 * R, label="f")

g = Node (1.5 * R, 2.5 * R, label="g")

h = Node (1.5 * R, 3.5 * R, label="h")

i = Node (-1.5 * R, 0.0, label ="i")

j = Node (-1.5 * R, 1.5 * R, label="j")

k = Node (-1.0 * R, 2.8 * R, label="k")

east0 = Polyline ([Arc(b, c, a), Arc(c, d, a), Arc(d, e, a)])

north0 = Bezier ([e, f, g, h,]); north0.reverse ()

south0 = Line(i, b)

west0 = Bezier ([i, j, k, h,])

print "ss3: block to be defined ."

cluster_functions = [RobertsClusterFunction (0, 1, 1.2),

RobertsClusterFunction (1, 0, 1.1),

RobertsClusterFunction (0, 1, 1.2),

RobertsClusterFunction (1, 0, 1.1)]

boundary_conditions = [ExtrapolateOutBC (), FixedTBC(T_body),

SlipWallBC (), SupInBC(inflow)]

blk_0 = Block2D(psurf=make_patch(north0 , east0 , south0 , west0),

fill_condition=initial ,

nni=nn , nnj=nn ,

cf_list=cluster_functions ,

bc_list=boundary_conditions ,

label="BLOCK -0", hcell_list =[(nn ,1)])

Some hints to scale and place the sketch.

If you change the radius , you ’ll probably have to adjust the axes.

sketch.xaxis(-0.060, 0.050, 0.020 , -0.010)

sketch.yaxis(0.0, 0.110 , 0.020 , 0.0)

sketch.window (-1.5*R, 0.0, 1.5*R, 3.0*R, 0.05, 0.05, 0.15, 0.15)

192

33.2 Shell scripts

The ss3 setup lut.sh script assumes a “standard” location for the e3bin directories in

order to find the files for the look-up-table gas model. The first form of the look-up-

table has been generated as a regular array of sample points over ranges of density and

temperature. When reformatting the table to have a regular array of data points over

density and internal-energy, there is an option --extrapolate to instruct the program to

extrapolate when necessary. When this option is not given, the final table covers smaller

ranges of density and internal-energy that fall completely within the original sampled

data.

#! /bin/sh

file: ss3_setup_lut.sh

build -cea -lut.py --gas=air

echo "We should now have a Look -Up-Table for air"

ss3_run_py.sh

Shell script to set up and run Sawada & Dendou ’s sphere case 3.

For a clean start

e3prep.py --job=ss3.py --do-svg

The main event

time e3shared.exe --job=ss3 --run

ss3_post.sh

By default , e3post.py grabs the solution at final time.

e3post.py --job=ss3 --vtk -xml

e3post.py --job=ss3 --slice -list ="0,:,0,:" --output -file=ss3_stag_line.data

awk -f locate_shock.awk ss3_stag_line.data > ss3.result

193

33.3 Notes

• Going back a couple of years, the mbcns2 simulation finished at a final time of

67.95µs in 4548 steps and, on a Pentium-M 1.73 Ghz system, this took 5 min, 6 s of

CPU time. Eilmer3 is a bit slower, requiring 8 min, 38 s of CPU time on a Pentium

E2140 (1.6 GHz) for 4556 steps.

• Awk script for extracting the shock location from the stagnation-line flow data.

locate_shock.awk

BEGIN {

p_old = 0.0;

x_old = -2.0; # dummy position

y_old = -2.0;

p_trigger = 2.0e6; # something midway between free stream and stagnation

shock_found = 0;

}

$1 != "#" { # for any non -comment line , do something

p_new = $9;

x_new = $1;

y_new = $2;

print "p_new=", p_new , "x_new", x_new , "y_new", y_new

if (p_new > p_trigger && shock_found == 0) {

shock_found = 1;

frac = (p_new - p_trigger) / (p_new - p_old);

x = x_old + frac * (x_new - x_old);

y = y_old + frac * (y_new - y_old);

print "shock -location= ", x, y

}

p_old = p_new;

x_old = x_new;

y_old = y_new;

}

END {

if (shock_found == 0) {

print "shock not located ";

}

print "done."

}

194

34 Classic shock tube problem

This example is a variation of the “Sod” shock tube problem that is a classic test case for

transient flow simulation codes. It models a 1 metre long tube with hot, high-pressure

helium in the left half (driver) and low-pressure air in the right half (driven) part of

the tube. The conditions are such that high-temperature thermochemical effects are

significant in the shock-compressed air that is driven to the right from t = 0.

x
0 0.5 1

y

0

0.1

a

bc

d e

f

driver

SLIP_WALL

SLIP_WALL

S
LI
P
_W

A
LL

driven

SLIP_WALL

S
LI
P
_W

A
LL

SLIP_WALL

Figure 74: Flow region, as modelled, for the classic shock tube.

Run the case with the following commands:

$ cd ∼/cfcfd3/examples/eilmer3/2D/classic-shock-tube/
$./prep simulation.sh

$./run simulation.sh

$./post simulation.sh

The simulation is run for 100µs and the data is extracted for plotting against the

expected solution, as shown in Figure 75. This reference solution is obtained using finite-

wave and shock analysis assuming chemical equilibrium in the driven air. The details of

the calculation are found in Python script in Section 34.3.

Convergence of the estimated shock speed (determined by locating the pressure jump

with the locate shock.py postprocessing script) is shown in Figure 76. This custom

postprocessing script also computes an average of the expended driver gas speed.

195

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

P
re

s
s
u

re
,

M
P

a

x, m

High-performance shock tube at t = 100us

Eilmer3
analytic soln

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

D
e

n
s
it
y
,

k
g

/m
3

x, m

High-performance shock tube at t = 100us

Eilmer3
analytic soln

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.2 0.4 0.6 0.8 1

V
e

lo
c
it
y
,

m
/s

x, m

High-performance shock tube at t = 100us

Eilmer3
analytic soln

 0

 1000

 2000

 3000

 4000

 5000

 0 0.2 0.4 0.6 0.8 1

T
e

m
p

e
ra

tu
re

,
d

e
g

re
e

s
 K

x, m

High-performance shock tube at t = 100us

Eilmer3
analytic soln

Figure 75: Flow properties along the duct for the Sod shock tube problem for nni=400.

 0.0001

 0.001

 0.01

 0.1

 0.0001 0.001 0.01 0.1

re
la

ti
v
e
 e

rr
o
r

in
 U

1/nni

Classic shock tube: shock and gas speed with cell resolution.

U_s
n=0.822

U_g
n=0.733

Figure 76: Convergence of estimated shock speed and gas speed.

196

34.1 Input script (.py)

In the problem setup, below, note the combination of the look-up gas model with the

composite gas model. The helium driver gas is the only species in the composite gas and

the look-up table gas models all of the chemically-reacting species within the air test gas.

The look-up table gas ends up being prepended to the list of species for the simulation.

High -performance shock tube with helium driving air

in a constant -diameter tube. The temperatures in the air

are high enough to induce strong thermochemical effects.

#

Adapted from examples/mbcns2/sod2/, examples/eilmer3 /2D/sod/He-air/.

Authors: PAJ and RJG

Date: 24-Mar -2012

gdata.title = "High -performance shock tube with helium driving air."

Combine a LUT air model with a composite gas of pure helium.

create_gas_file(model ="ideal gas", species=[’He ’,],

fname="LUT -plus -He.lua", lut_file ="cea -lut -air.lua.gz")

species_list = select_gas_model(fname="LUT -plus -He.lua")

print "species_list =", species_list

helium = FlowCondition(p=30.0e6, T=3000 , massf={’He ’:1.0})

air = FlowCondition(p=30.0e3, T=300.0 , massf={’LUT ’:1.0})

a = Node (0.5, 0.0, label="a"); b = Node (0.5, 0.1, label="b")

c = Node (0.0, 0.1, label="c"); d = Node (0.0, 0.0, label ="d")

e = Node (1.0, 0.0, label="e"); f = Node (1.0, 0.1, label="f")

south0 = Line(d, a); south1 = Line(a, e) # lower boundary along x-axis

north0 = Line(c, b); north1 = Line(b, f) # upper boundary

left -end , diaphragm , right -end

west0 = Line(d, c); east0west1 = Line(a, b); east1 = Line(e, f)

Define the blocks , boundary conditions and set the discretisation.

blk_0 = Block2D(make_patch(north0 , east0west1 , south0 , west0),

nni=400, nnj=2,

fill_condition=helium , label=" driver ")

blk_1 = Block2D(make_patch(north1 , east1 , south1 , east0west1),

nni=400, nnj=2,

fill_condition=air , label=" driven ")

identify_block_connections ()

Some simulation parameters

gdata.flux_calc = ADAPTIVE

gdata.max_time = 100.0e-6

gdata.max_step = 8000

gdata.dt = 1.0e-9

sketch.xaxis (0.0, 1.0, 0.5, -0.05)

sketch.yaxis (0.0, 0.1, 0.1, -0.05)

sketch.window (0.0, 0.0, 1.0, 0.1, 0.02, 0.02, 0.17, 0.035)

197

34.2 Shell scripts

#/bin/bash

if [-f ./cea -lut -air.lua.gz]

then

echo "Found LUT file already in place ."

else

echo "Generate LUT file for air."

build -cea -lut.py --gas=air

fi

e3prep.py --job=cst --do -svg

#/bin/bash

mpirun -np 2 e3mpi.exe --job=cst --run

#!/ bin/bash

Extract the profile along the shock tube.

slice -list=block -range ,i-range ,j-range ,k-range

all blocks - :

all i’s - :

constant j - 0

constant k - 0 (not relevant in 2D anyway)

e3post.py --job=cst --slice -list =":,:,0,0" --output -file=profile.data

Plot the data along the x-axis.

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cst -p.eps"

set title "High -performance shock tube at t = 100us"

set xlabel "x, m"

set ylabel "Pressure , MPa"

set xrange [0:1]

set yrange [0:32.0]

plot "profile.data" using 1:(\$9/1.0e6) t ’Eilmer3 ’ with points pt 6, \

"exact.data" using 1:(\$3/1.0e6) t ’analytic soln ’ with lines lt 1 lw 3

EOF

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cst -rho.eps"

set title "High -performance shock tube at t = 100us"

set xlabel "x, m"

set ylabel "Density , kg/m^3"

set xrange [0:1]

set yrange [0:5]

set key left bottom

plot "profile.data" using 1:5 t ’Eilmer3 ’ with points pt 6, \

"exact.data" using 1:2 t ’analytic soln ’ with lines lt 1 lw 3

EOF

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cst -u.eps"

set title "High -performance shock tube at t = 100us"

set xlabel "x, m"

set ylabel "Velocity , m/s"

set xrange [0:1]

set yrange [0:3500]

set key left top

plot "profile.data" using 1:6 t ’Eilmer3 ’ with points pt 6, \

198

"exact.data" using 1:5 t ’analytic soln ’ with lines lt 1 lw 3

EOF

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cst -T.eps"

set title "High -performance shock tube at t = 100us"

set xlabel "x, m"

set ylabel "Temperature , degrees K"

set xrange [0:1]

set yrange [0:5000]

set key left bottom

plot "profile.data" using 1:22 t ’Eilmer3 ’ with points pt 6, \

"exact.data" using 1:4 t ’analytic soln ’ with lines lt 1 lw 3

EOF

#! /bin/bash

plot_errors.sh

gnuplot <<EOF

set term postscript eps 20

set output "cst -errors.eps"

set title "Classic shock tube: shock and gas speed with cell resolution ."

set xlabel "1/ nni"

set ylabel "relative error in U"

set logscale xy

set key right bottom

e(x) = e0 * (nni*x)**n

plot "speeds.data" using (1.0/\ $1):(\$2 /3603.687 -1.0) title "U_s" with points pt 2 ps 1.5, \

nni = 400, e0 = 0.00960 , n = 0.822 , e(x) title "n=0.822" lw 2, \

"speeds.data" using (1.0/\ $1):(1.0 -\$3 /3194.170) title "U_g" with points pt 4 ps 1.5, \

nni = 400, e0 = 0.00136 , n = 0.733 , e(x) title "n=0.733" lw 2

EOF

199

34.3 Solution using finite wave and shock analysis

The NASA CEA program can be used by a library module to provide convenient esti-

mates of the thermochemical state of gas mixtures at equilibrium. The following script

shows how to use that library to compute the flow for the classic shock tube where the

temperatures in the driven air test gas are large enough to allow significant thermochemi-

cal effects. Beyond gas state estimation, the library provides analysis functions for simple

flow processes such as shock and finite, isentropic waves.

#!/ usr/bin/env python

"""

classic_shock_tube.py

Moderately high -performance shock tube with helium driving air.

Done as an example of using gas_flow functions but can be

compared the Eilmer3 sod shock tube example.

PJ, 22-Mar -2012

"""

import sys , os

sys.path.append(os.path.expandvars (" $HOME/e3bin "))

from cfpylib.gasdyn.cea2_gas import Gas

from cfpylib.gasdyn.gas_flow import normal_shock , finite_wave_dp , normal_shock_p2p1

from cfpylib.nm.zero_solvers import secant

def main ():

print "Helium driver gas"

state4 = Gas({’He ’:1.0})

state4.set_pT (30.0e6, 3000.0)

print "state4 :"

state4.write_state(sys.stdout)

#

print "Air driven gas"

state1 = Gas({’Air ’:1.0})

state1.set_pT (30.0e3, 300.0)

print "state1 :"

state1.write_state(sys.stdout)

#

print "\nNow do the classic shock tube solution ..."

For the unsteady expansion of the driver gas , regulation of the amount

of expansion is determined by the shock -processed test gas.

Across the contact surface between these gases , the pressure and velocity

have to match so we set up some trials of various pressures and check

that velocities match.

def error_in_velocity(p3p4 , state4=state4 , state1=state1):

"Compute the velocity mismatch for a given pressure ratio across the expansion ."

Across the expansion , we get a test -gas velocity , V3g.

p3 = p3p4*state4.p

V3g , state3 = finite_wave_dp(’cplus ’, 0.0, state4 , p3)

Across the contact surface.

p2 = p3

print "current guess for p3 and p2=", p2

V1s , V2, V2g , state2 = normal_shock_p2p1(state1 , p2/state1.p)

return (V3g - V2g)/V3g

p3p4 = secant(error_in_velocity , 0.1, 0.11, tol =1.0e-3)

print "From secant solve: p3/p4=", p3p4

print "Expanded driver gas:"

p3 = p3p4*state4.p

V3g , state3 = finite_wave_dp(’cplus ’, 0.0, state4 , p3)

print "V3g=", V3g

print "state3 :"

state3.write_state(sys.stdout)

print "Shock -processed test gas:"

V1s , V2, V2g , state2 = normal_shock_p2p1(state1 , p3/state1.p)

200

print "V1s=", V1s , "V2g=", V2g

print "state2 :"

state2.write_state(sys.stdout)

assert abs(V2g - V3g)/V3g < 1.0e-3

#

Make a record for plotting against the Eilmer3 simulation data.

We reconstruct the expected data along a tube 0.0 <= x <= 1.0

at t=100us, where the diaphragm is at x=0.5.

x_centre = 0.5 # metres

t = 100.0e-6 # seconds

fp = open(’exact.data ’, ’w’)

fp.write(’# 1:x(m) 2:rho(kg/m**3) 3:p(Pa) 4:T(K) 5:V(m/s)\n’)

print ’Left end ’

x = 0.0

fp.write(’%g %g %g %g %g\n’ % (x, state4.rho , state4.p, state4.T, 0.0))

print ’Upstream head of the unsteady expansion.’

x = x_centre - state4.a * t

fp.write(’%g %g %g %g %g\n’ % (x, state4.rho , state4.p, state4.T, 0.0))

print ’The unsteady expansion in n steps.’

n = 100

dp = (state3.p - state4.p) / n

state = state4.clone()

V = 0.0

p = state4.p

for i in range(n):

rhoa = state.rho * state.a

dV = -dp / rhoa

V += dV

p += dp

state.set_ps(p, state4.s)

x = x_centre + t * (V - state.a)

fp.write(’%g %g %g %g %g\n’ % (x, state.rho , state.p, state.T, V))

print ’Downstream tail of expansion.’

x = x_centre + t * (V3g - state3.a)

fp.write(’%g %g %g %g %g\n’ % (x, state3.rho , state3.p, state3.T, V3g))

print ’Contact surface.’

x = x_centre + t * V3g

fp.write(’%g %g %g %g %g\n’ % (x, state3.rho , state3.p, state3.T, V3g))

x = x_centre + t * V2g # should not have moved

fp.write(’%g %g %g %g %g\n’ % (x, state2.rho , state2.p, state2.T, V2g))

print ’Shock front ’

x = x_centre + t * V1s # should not have moved

fp.write(’%g %g %g %g %g\n’ % (x, state2.rho , state2.p, state2.T, V2g))

fp.write(’%g %g %g %g %g\n’ % (x, state1.rho , state1.p, state1.T, 0.0))

print ’Right end ’

x = 1.0

fp.write(’%g %g %g %g %g\n’ % (x, state1.rho , state1.p, state1.T, 0.0))

fp.close ()

return

if __name__ == ’__main__ ’:

main()

print "Done."

201

34.4 Extracting shock location and getting average gas speed

The following script is and example of how to pick up a full block of data with the post-

processing library functions and then look within that flow data for particular features.

#! /usr/bin/env python

"""

locate_shock.py -- Locate the shock by its pressure jump.

PJ, 12-Apr -2012

"""

print "Begin ..."

import sys , os , gzip

sys.path.append(os.path.expandvars (" $HOME/e3bin "))

from e3_flow import StructuredGridFlow

Block 1 contains the shock and the fully -expanded driver gas.

fileName = ’flow/t9999/cst.flow.b0001.t9999.gz’

fp = gzip.open(fileName , "r")

blockData = StructuredGridFlow ()

blockData.read(fp)

fp.close ()

We expect the shock to have progressed some way along the i-index.

Start the search from the right and move left.

k = 0; j = 0; i = blockData.ni -1

p_trigger = 2.0e6 # Pa

x_old = blockData.data[’pos.x’][i,j,k]

p_old = blockData.data[’p’][i,j,k]

while i >= 0:

i -= 1

x = blockData.data[’pos.x’][i,j,k]

p = blockData.data[’p’][i,j,k]

if p > p_trigger: break

x_old , p_old = x, p

frac = (p_trigger - p_old) / (p - p_old)

x_loc = x_old * (1.0 - frac) + x * frac

t_final = 100.0e-6 # seconds

print "shock at x=", x_loc , "m, speed=", (x_loc - 0.5)/ t_final , "m/s"

Also compute average gas speed of the expanded driver gas

over a representative region.

u_sum = 0; n = 0;

for i in range(blockData.ni):

x = blockData.data[’pos.x’][i,j,k]

u = blockData.data[’vel.x’][i,j,k]

if x >= 0.7 and x <= 0.8:

u_sum += u; n += 1

u_sum /= n

print "average u_g=", u_sum , "m/s"

print "Done."

34.5 Notes

• The simulation with nni = 400 takes about 13 seconds on a recent (2011) machine

with an AMD Phenom 9650 quad-core processor.

202

35 Heat transfer to a sphere in equilibrium air

This example continues the modelling of hypersonic flow over blunt bodies and looks at the

heat transfer to a spherical probe [22] in high temperature equilibrium air. It takes use of

the Python language further by automating the process of running a simulation, adjusting

the grid and then running a subsequent simulation on the the adjusted grid. The specific

input file for each stage of the overall simulation is constructed from a template in which

a few parameters are left unspecified. Most of the effort has gone into the coordinating

script which has functions for running stages of the simulation as subprocesses and also

has functions which fit a Bezier curve to the shock located in the flow field.

x
-0.015 -0.01 -0.005 0 0.005

y

0

0.005

0.01

0.015

0.02

a
b

c

d[0]

d[1]

d[2]

d[3]

blk-0-0

SLIP_WALL

S
U
P
_I
N

blk-0-1

E
X
T
R
A
P
O
LA

T
E
_O

U
TSU

P_
IN

blk-1-0

blk-1-1

FI
XE
D_
T

Figure 77: Schematic diagram of the geometry for a sphere wrapped by a SuperBlock2D
grid.

The original experiments used a probe with a spherical nose, located in a small shock

tube. The free-stream flow was initiated with the arrival of a strong shock and the

useful test period in the experiments was terminated with the arrival of driver gas. From

Figure 12 in Rose and Detra’s paper [22], we choose the point corresponding to p1 = 1 cm

Hg (1.33 kPa) and Ms=8 which has a stagnation-point heat transfer of 30± 2.0 MW/m2.

To keep the grid resolution requirements small, we will start with an initial test gas

pressure p1 = 6.7 Pa much lower than that used in the original experiments. Assuming

that the chemistry doesn’t change too much with the change in pressure, we can scale the

203

stagnation-point heat transfer as q̇s−sim =
(
p1−sim
p1−expt

)0.5

q̇s−expt to get an expected value of

2.212± 0.14 MW/m2 for our low-pressure simulation.

For a Ms = 8 incident shock in air at 296 K, the post-shock, free-stream conditions are

p∞ = 535.6 kPa, T∞ = 2573.5 K, and u∞ = 2436.5 m/s. This assumes fully-equilibrium

chemistry for the gas. The snap-shots of results for the staged simulation are shown in

Figures 78 through 82 which show the temperature field at the end of each stage and the

mesh used for that stage.

Figure 78: Temperature field and mesh for stage 0. The control points for the Bezier curve
have been set so as to accommodate a shock in ideal (nonreacting) air and the clustering
is fairly strong so that the boundary layer on the sphere surface may be resolved. The
wall-clock time required to run this simulation 10 body lengths (27µs) is 23 seconds on 4
processors of geyser. 10103 time steps were made and the size of the time step at the
end of the simulation is 2.479 ns. At the end of the simulation, the estimated value of
stagnation-point heat transfer is q̇s = 2.156 MW/m2 and the cell Reynolds number at the
stagnation point is Rewall = ρwallawall∆x

µwall
= 3.85. Here ∆x is the width of the cell out from

the wall.

Figure 83 shows the distribution of heat transfer around the nose compared with the

experimental data reported Kemp, Rose and Detra [23]. In the simulation data, there are

small disturbances at the corners of blocks (at approximately 20 degrees and then again

approaching 90 degrees) but they are quite small.

204

Figure 79: Temperature field and mesh for stage 1. The Bezier points have been adapted
to the shock from stage 0 but the number of cells in each direction remains at 20×20, as
for stage 0. With the finer cells, the size of the time step decreased and this stage required
55 seconds of wall-clock time to extend the simulation a further 10 body lengths in 23125
time steps. q̇s = 2.260 MW/m2 and Rewall = 2.94

Figure 80: Temperature field and mesh for stage 2. The Bezier points have not been
adapted further for this stage but the number of cells has been increased to 30×30.
The size of the time step decreased further and this stage required 130 seconds of wall-
clock time to extend the simulation only 5 body lengths (13.5µs) in 24293 time steps.
q̇s = 2.257 MW/m2 and Rewall = 2.39

205

Figure 81: Temperature field and mesh for stage 3. The Bezier points have been adapted
to the shock from stage 2 and the cells have been increased to 40×40. The size of the
time step is now 0.319 ns and this stage required 469 seconds of wall-clock time to extend
the simulation only 5 body lengths (13.5µs) in 42660 time steps. q̇s = 2.260 MW/m2 and
Rewall = 1.99
.

Figure 82: Temperature field and mesh for stage 4. The Bezier points have not been
further adapted but the number of cells has been increased to 80×80 to test the sensitivity
of the heat transfer estimate. The size of the time step is now 0.086 ns and this stage
required 8950 seconds of wall-clock time to extend the simulation a further 5 body lengths
(13.5µs) in 157420 time steps. q̇s = 2.217 MW/m2 and Rewall = 1.25
.

206

 0.1

 1

 0 10 20 30 40 50 60 70 80 90

q/
q s

angle from stagnation point, degrees

Normalised heat transfer to R6.6mm sphere with Ms=8

Eilmer3 simulation
Kemp-Rose-Detra theory

Kemp-Rose-Detra experiment

Figure 83: Temperature around the sphere for stage 4. The experimental data is from
Kemp, Rose and Detra [23].
.

207

35.1 Template input script (.py)

file: sphere.input.template

#

Sphere in equilibrium air modelling the Kemp Rose and Detra experiment.

This input file template is specialized for each stage of the simulation.

The $$name items seen below will be substituted with specific values.

#

PJ, 22-Feb -2010

jobName = ’$jobName ’; stage = $stage; np = $np

For equilibrium chemistry , use the look -up-table.

select_gas_model(fname=’cea -lut -air -ions.lua.gz ’)

inflow = FlowCondition(p=$p_inf , u=$u_inf , T=$T_inf)

initial = FlowCondition(p=$p_init , T=$T_inf)

Job -control information

t_final = $body_lengths * $R / $u_inf # allow time to settle at nose

t_plot = t_final / 5.0 # plot several times

gdata.title = "Spherical Blunt Body: R=" + str($R) + \

", p=" + str($p_inf) + ", v=" + str($u_inf) + \

", T=" + str($T_inf) + ", viscous =" + str($viscous_flag)

gdata.viscous_flag = $viscous_flag

gdata.viscous_delay = $viscous_delay

gdata.viscous_factor_increment = 0.02

gdata.axisymmetric_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = t_final

gdata.max_step = 800000

gdata.dt = 1.0e-10

gdata.cfl = 0.30

gdata.dt_plot = t_plot

gdata.dt_history = 1.0e-6

Begin geometry details for a single region around a spherical nose.

The node coordinates are scaled with the body radius.

a = Node (0.0, 0.0, label="a")

b = Node (-1.0*$R, 0.0, label="b")

c = Node (0.0, $R, label ="c")

The inflow boundary is a Bezier curve.

d = []; x_d = $x_d; y_d = $y_d

for i in range(len(x_d)):

d.append(Node(x_d[i], y_d[i], label ="d[%d]"%i))

order of boundaries: N, E, S, W

flow_domain0 = make_patch(Line(d[-1],c), Arc(b,c,a), Line(d[0],b), Bezier(d))

cluster_functions0 = [RobertsClusterFunction (0, 1, 1.02), RobertsClusterFunction (1, 0, 1.06) ,

RobertsClusterFunction (0, 1, 1.02) , RobertsClusterFunction (1, 0, 1.05)]

boundary_conditions0 = [ExtrapolateOutBC (), FixedTBC($T_body),

SlipWallBC (), SupInBC(inflow)]

if stage == 0:

We start from scratch.

fill_condition0 = initial

else:

We start with the previous solution.

rootName = jobName + str(stage -1)

fill_condition0 = ExistingSolution(rootName , ’.’, np , 5)

blk = SuperBlock2D(psurf=flow_domain0 , fill_condition=fill_condition0 ,

nni=$ni , nnj=$nj , nbi=$nbi , nbj=$nbj ,

cf_list=cluster_functions0 , bc_list=boundary_conditions0 ,

label="blk")

sketch.xaxis (-15.0e-3, 5.0e-3, 5.0e-3, -0.002)

sketch.yaxis (0.0, 20.0e-3, 5.0e-3, 0.0)

sketch.window (-1.5*$R , 0.0, 1.5*$R, 3.0*$R, 0.05, 0.05, 0.15, 0.15)

208

35.2 Coordinating script (.py)

#!/ usr/bin/env python

run_adaptive_simulation.py

#

Top -level script to coordinate the running of the

solution -adaptive simulation in stages.

This approximates a form of solution adaptivity in that

the grid is adjusted to the shock occasionally.

The grid is also refined with the stages.

#

PJ, 22-Feb -2010

import shlex , subprocess , string

from subprocess import PIPE

import sys , os , gzip

sys.path.append(os.path.expandvars (" $HOME/e3bin "))

from e3_flow import StructuredGridFlow

#---

def prepare_input_script(substituteDict , jobName , stage):

"""

Prepare the actual input file from a template.

"""

stageName = jobName + str(stage)

templateFileName = jobName + ".input.template"

scriptFileName = stageName + ".py"

fp = open(templateFileName , ’r’)

text = fp.read()

fp.close ()

template = string.Template(text)

text = template.substitute(substituteDict)

fp = open(scriptFileName , ’w’)

fp.write(text)

fp.close ()

return

def run_command(cmdText):

"""

Run the command as a subprocess.

"""

print "About to run cmd:", cmdText

args = shlex.split(cmdText)

p = subprocess.Popen(args)

stdoutData , stderrData = p.communicate ()

wait until the subprocess is finished

return

def run_stage(paramDict , jobName , stage):

"""

Set up and run one stage of the simulation as a normal job.

"""

prepare_input_script(paramDict , jobName , stage)

stageName = jobName+str(stage)

run_command ("/ home/peterj/e3bin/e3prep.py --job=%s --do-svg" % (stageName ,))

run_command (" mpirun -np %d /home/peterj/e3bin/e3mpi.exe --job=%s -q --run"

% (np, stageName ,))

return

#---

def locate_shock_along_strip(x, y, p):

"""

Shock location is identified as a pressure rise

along a strip of points.

"""

n = len(x)

p_max = max(p)

p_trigger = p[0] + 0.3 * (p_max - p[0])

x_old = x[0]; y_old = y[0]; p_old = p[0]

for i in range(1,n):

209

x_new = x[i]; y_new = y[i]; p_new = p[i]

if p_new > p_trigger: break

x_old = x_new; y_old = y_new; p_old = p_new

frac = (p_trigger - p_old) / (p_new - p_old)

x_loc = x_old * (1.0 - frac) + x_new * frac

y_loc = y_old * (1.0 - frac) + y_new * frac

return x_loc , y_loc

def locate_shock_front(stageName , nbi , nbj):

"""

Reads all flow blocks and returns the coordinates

of the shock front in lists of coordinates.

"""

blockData = []

for ib in range(nbi):

blockData.append ([])

for jb in range(nbj):

blkindx = ib*nbj + jb

fileName = ’flow/t0005 /%s.flow.b%04d.t0005.gz’ \

% (stageName , blkindx)

fp = gzip.open(fileName , "r")

blockData[ib]. append(StructuredGridFlow ())

blockData[ib][-1]. read(fp)

fp.close ()

x_shock = []; y_shock = []

for jb in range(nbj):

nj = blockData [0][jb].nj

for j in range(nj):

x = []; y = []; p = [];

for ib in range(nbi):

ni = blockData[ib][jb].ni

k = 0 # 2D only

for i in range(ni):

x.append(blockData[ib][jb].data[’pos.x’][i,j,k])

y.append(blockData[ib][jb].data[’pos.y’][i,j,k])

p.append(blockData[ib][jb].data[’p’][i,j,k])

xshock , yshock = locate_shock_along_strip(x, y, p)

x_shock.append(xshock)

y_shock.append(yshock)

return x_shock , y_shock

#---

def define_bezier_points(alpha , x_s , y_s):

"""

It is assumed that the centre of the circular body is at (0,0)

and that we have a third -order Bezier curve that goes through

the start and finish of the shock.

"""

import math

x0 = x_s [0]; y0 = 0.0 # the first point coincides with the shock

x3 = 0.0; y3 = y_s[-1] # locate final point also on shock

x1 = x0; y1 = 0.5 * y3

L = 0.4 * y3

x2 = x3 - L * math.cos(alpha)

y2 = y3 - L * math.sin(alpha)

return [x0, x1 , x2 , x3], [y0, y1 , y2 , y3]

def fit_bezier(x_s , y_s):

"""

Fits a Bezier curve to the shock coordinates

and returns lists of coordinates.

"""

from cfpylib.nm.line_search import minimize

import math

#

def objective(alpha , x_s=x_s , y_s=y_s):

"""

Objective function for the optimizer.

"""

from libprep3 import Bezier , Vector

bx, by = define_bezier_points(alpha , x_s , y_s)

bpath = Bezier ([Vector(bx[0],by[0]), Vector(bx[1],by[1]),

Vector(bx[2],by[2]), Vector(bx[3],by [3])])

210

nbez = 1000

pbez = []

for i in range(nbez):

t = 1.0/ nbez * i

pbez.append(bpath.eval(t))

n = len(x_s)

sum_sq_err = 0.0

for j in range(n):

min_dist = (x_s[j]-pbez [0].x)**2 + (y_s[j]-pbez [0].y)**2

for i in range(1,nbez):

dist = (x_s[j]-pbez[i].x)**2 + (y_s[j]-pbez[i].y)**2

if dist < min_dist: min_dist = dist

sum_sq_err += min_dist

print "alpha=", alpha , "sum_sq_err =", sum_sq_err

return sum_sq_err

#

alphaL , alphaR = minimize(objective , 0.0, math.pi/4)

best_alpha = 0.5*(alphaL+alphaR)

return define_bezier_points(best_alpha , x_s , y_s)

#---

main ...

jobName = ’sphere ’

R = 6.6e-3 # nose radius of sphere

T_body = 296.0 # surface T

Free -stream flow definition ,

We have initially static gas , processed by a Mach 8 shock.

Inflow conditions are thus post -shock conditions.

p_init = 6.7 # Pa

p_inf = 535.6 # Pa

T_inf = 2573.5 # degrees K

u_inf = 2436.5 # flow speed , m/s

Initial simulation using guessed inflow boundary position.

stage = 0

x_d = [-1.5*R, -1.5*R, -1.0*R, 0.0]

y_d = [0.0, 1.0*R, 2.0*R, 3.0*R]

factor = 2; ni_basic = 10; nj_basic = 10

nbi = 2; nbj = 2

np = nbi * nbj # number of processes for MPI simulation

paramDict = {’jobName ’: jobName , ’stage ’:stage ,

’R’:R, ’x_d ’:x_d , ’y_d ’:y_d ,

’T_body ’:T_body , ’p_init ’:p_init ,

’p_inf ’:p_inf , ’T_inf ’:T_inf , ’u_inf ’:u_inf ,

’ni ’: factor*ni_basic , ’nj ’: factor*nj_basic ,

’nbi ’:nbi , ’nbj ’:nbj , ’np ’:np,

’viscous_flag ’:1, ’viscous_delay ’:10.0e-6,

’body_lengths ’:10} # 20 body_lengths normally

run_stage(paramDict , jobName , stage)

Restart from stage 0 flow data ,

bringing grid in closer to the shock.

stage = 1

paramDict[’stage ’] = stage

x_shock , y_shock = locate_shock_front(jobName+str(stage -1), nbi , nbj)

x_d , y_d = fit_bezier(x_shock , y_shock)

Scale out so that we are sure to capture the shock.

paramDict[’x_d ’] = [1.05*x for x in x_d]

paramDict[’y_d ’] = [1.1*y for y in y_d]

paramDict[’viscous_delay ’] = 0.0

run_stage(paramDict , jobName , stage)

Restart from stage 1 flow data , refining grid

stage = 2

paramDict[’stage ’] = stage

factor = 3

paramDict[’ni ’] = factor*ni_basic

paramDict[’nj ’] = factor*nj_basic

paramDict[’body_lengths ’] = 5.0

run_stage(paramDict , jobName , stage)

211

Restart from stage 2 flow data ,

adjusting the inflow boundary and refining grid

stage = 3

paramDict[’stage ’] = stage

x_shock , y_shock = locate_shock_front(jobName+str(stage -1), nbi , nbj)

x_d , y_d = fit_bezier(x_shock , y_shock)

Scale out so that we are sure to capture the shock.

paramDict[’x_d ’] = [1.05*x for x in x_d]

paramDict[’y_d ’] = [1.1*y for y in y_d]

factor = 4

paramDict[’ni ’] = factor*ni_basic

paramDict[’nj ’] = factor*nj_basic

paramDict[’body_lengths ’] = 5.0

run_stage(paramDict , jobName , stage)

Restart from stage 3 flow data , refining the grid only.

stage = 4

paramDict[’stage ’] = stage

factor = 8

paramDict[’ni ’] = factor*ni_basic

paramDict[’nj ’] = factor*nj_basic

paramDict[’body_lengths ’] = 5.0

run_stage(paramDict , jobName , stage)

print "Done at top -level."

212

35.3 Shell script for postprocessing

#!/ bin/bash

plot_heat_transfer.sh

Get the heat -flux data around the surface of the sphere.

These come from blk -1-0 (block 2) and blk -1-1 (block 3)

stages ="0 1 2 3 4"

for STAGE in ${stages}

do

echo "Stage $STAGE :"

e3post.py --job=sphere${STAGE} --tindx=5 --heat -flux -list ="2:3,1,-1,:,0" \

--output -file=sphere_heat_transfer_${STAGE }.dat

done

Scale current physical simulation to compare with theory and experiment.

awk ’$1 != "#" {print $1 /0.0066*180.0/3.14159 , $2 /2.217 e6}’ \

sphere_heat_transfer_4.dat > sphere_normalised_heat_transfer.dat

gnuplot <<EOF

set term postscript eps enhanced 20

set output "sphere_norm_heat_transfer.eps"

set style line 1 linetype 1 linewidth 3.0

set xlabel "angle from stagnation point , degrees"

set ylabel "q/q_s"

set logscale y

set yrange [0.1:2.0]

set yrange [0.1:1.2]

set title "Normalised heat transfer to R6.6mm sphere with Ms=8"

set key top right

set key bottom left

plot "sphere_normalised_heat_transfer.dat" using 1:2 \

title "Eilmer3 simulation" with lines ls 1, \

"kemp_theory.dat" using 1:2 title "Kemp -Rose -Detra theory" \

with linespoints , \

"kemp_experiment.dat" using 1:2 title "Kemp -Rose -Detra experiment" \

with points

EOF

213

35.4 Notes

• The look-up table for the equilibrium air equation of state is set up as for the Sawada

sphere example.

214

36 Dissociating nitrogen flow over a 2D cylinder

High speed flow of nitrogen over a 2D cylinder is a signature experiment for shock tunnel

and expansion tube facilities. This example shows the construction of a simple flow

domain around a circular cylinder and the set up of a finite-rate reacting model for

dissociating nitrogen. The data for comparison has come from our colleagues ar DLR-

Göttingen.

x
-0.02 0 0.02 0.04 0.06 0.08 0.1

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ab

c

d

e

f

g

h

i

j

k

blk-0

EXTRA
PO
LATE_O

U
T

SLI
P_W

ALL

SLIP_WALL

S
U
P_
IN

Figure 84: Schematic diagram of the geometry for the bluff body.

215

Figure 85: Mesh, coloured by pressure, for the n90 bluff body exercise.

 0

 5000

 10000

 15000

 20000

-0.02 -0.015 -0.01 -0.005 0

te
m

pe
ra

tu
re

, K

x, m

Stagnation line to 90mm Cylinder in M10 nitrogen flow

CEVCATS-N Reference
Nonequilibrium

Figure 86: Temperature data along the stagnation streamline.

216

Figure 87: Temperature and mass fraction of nitrogen atoms for the n90 bluff body
exercise.

36.1 Input script (.py)

n90.py

Updated version of n90.sit (an mb_cns example)

#

R.J.Gollan

Updated on 12-Mar -2008

PJ - Elmer3 port , July 2008

RJG - updated for new kinetics library , Nov 2008

PJ - different ways to set mass fractions , July 2009

gdata.title = "Cylinder in Mach 10 nitrogen flow"

Gas model selection

species_list = select_gas_model(model=’thermally perfect gas ’,

species=[’N2 ’, ’N’])

print "species_list =", species_list

set_reaction_scheme ("nitrogen -2sp -2r.lua",reacting_flag =1)

Flow conditions

mf = [1.0, 0.0]

mf = 1.0

mf = 1

mf = {’N2 ’:1.0}

inflow = FlowCondition(p=500.0 , u=5000.0 , v=0.0, T=700.0 , massf=mf)

initial = FlowCondition(p=5.0, u=0.0, v=0.0, T=300.0 , massf=mf)

print "inflow=", inflow

print "initial=", initial

Geometry

a = Node(0.045 , 0.0, label ="a")

b = Node(0.0, 0.0, label="b")

c = Node(0.013181 , 0.031820 , label="c")

d = Node(0.045 , 0.045, label="d")

e = Node(0.0675 , 0.038972 , label="e")

f = Node (-0.020, 0.0, label="f")

g = Node (-0.020, 0.050625 , label="g")

h = Node (-0.016875 , 0.106875 , label="h")

i = Node(0.045 , 0.135, label="i")

j = Node(0.07875 , 0.095625 , label ="j")

k = Node(0.084375 , 0.0675 , label="k")

bc = Arc(b, c, a, "ab")

cd = Arc(c, d, a, "cd")

217

de = Arc(d, e, a, "de")

east = Polyline ([bc , cd, de], "east")

west = Bezier ([f, g, h, i], "west")

south = Line(f, b, "south")

north = Bezier ([i, j, k, e], "north ")

Block setup

NNR = 60

NNT = 40

blk = Block2D(make_patch(north , east , south , west),

nni=NNR , nnj=NNT ,

fill_condition=initial)

blk.set_BC(WEST , SUP_IN , inflow)

blk.set_BC(NORTH , EXTRAPOLATE_OUT)

Simulation parameters

gdata.flux_calc = ADAPTIVE

gdata.max_time = 100.0e-6

gdata.max_step = 40000

gdata.dt = 1.0e-8

gdata.cfl = 0.5

gdata.dt_plot = 20.0e-6

sketch.xaxis (-0.02, 0.10, 0.02, -0.005)

sketch.yaxis (0.0, 0.14, 0.02, -0.005)

sketch.window (-0.02, 0.0, 0.10, 0.12, 0.05, 0.05, 0.17, 0.17)

36.2 Reaction scheme file (.lua)

-- nitrogen -2sp -2r.lua

--

-- This chemical kinetic system provides

-- a simple nitrogen dissociation mechanism.

--

-- Author: Rowan J. Gollan

-- Date: 13-Mar -2009 (Friday the 13th)

-- Place: NIA , Hampton , Virginia , USA

--

-- History:

-- 24-Mar -2009 - reduced file to minimum input

reaction{

’N2 + N2 <=> N + N + N2 ’,

fr={’Arrhenius ’, A=7.0e21 , n=-1.6, T_a =113200.0} ,

br={’Arrhenius ’, A=1.09e16 , n=-0.5, T_a =0.0}

}

reaction{

’N2 + N <=> N + N + N’,

fr={’Arrhenius ’, A=3.0e22 , n=-1.6, T_a =113200.0} ,

br={’Arrhenius ’, A=2.32e21 , n=-1.5, T_a =0.0}

}

36.3 Shell scripts

#!/ bin/bash

e3prep.py --job=n90 --do -svg

218

#!/ bin/bash

time e3shared.exe --job=n90 --run

#!/ bin/bash

post_simulation.sh

Extract the stagnation line data from the steady flow field.

e3post.py --job=n90 --output -file=n90_100_iy1.data --tindx=5 \

--slice -list ="0,:,1,0"

gnuplot plot_comparison.gnu

Create a VTK plot file of the steady flow field.

e3post.py --job=n90 --tindx=5 --vtk -xml

set term postscript eps 20

set output "n90_compare_T_stag_line.eps"

set title "Stagnation line to 90mm Cylinder in M10 nitrogen flow"

set xlabel "x, m"

set ylabel "temperature , K"

set xrange [-0.020:0.0]

set xtics 0.005

set yrange [0:20000]

set ytics 5000.0

set key left top

plot "stag_sebo.dat" using 1:7 title "CEVCATS -N Reference" with lines , \

"n90_100_iy1.data" using 1:22 title "Nonequilibrium"

36.4 Notes

• For Eilmer3, this simulation required 9 min, 21 sec on a single core of a Pentium

1.6 GHz processor to reach a final time of 100µs in 3406 steps.

219

220

37 Flow of detonable mixture over a sphere

Interesting things can happen when the chemical-reaction time scales are of the same

order as the flow time scales. This example simulates the flow of a stoichiometric mixture

of hydrogen and air over the spherical nose of a projectile as used by Lehr in some ballistic

range experiments [24]. For a range of Mach numbers, the combustion of the hydrogen

is unsteady so it provides an interesting test of the interaction of the gas dynamics and

chemical kinetics modules of the code. Figure 88 shows the periodic structure caused by

the unsteady combustion of the gas mixture over the projectile.

Figure 88: Shadowgraph of the unsteady flow of reacting hydrogen and air over a ballistic-
range projectile at a Mach number of 4.79. This particular image has been scanned from
Greg Wilson’s PhD thesis [25].

The free-stream condition is p∞ = 320 mm Hg, T∞ = 292 K, u∞ = 1.931 km/s, cor-

responding to a Mach number of 4.79 in a stoichiometric mixture of hydrogen and air

(nitrogen + oxygen only). The small calculation to get actual mass fraction of each

species is done as part of the user input script. For this flight condition, Lehr observed a

frequency of oscillation of 0.72 MHz.

Because this example is just a demonstration of the code capability and not a validation

and because the case takes a day or two to run on 4 processors of geyser, we settle for

the use of a reduced chemical reaction scheme in which nitrogen is assumed to be a non-

reacting diluent gas. This is done near the top of the the reaction scheme file 37.2 by

selecting INERT N2 as the model.

If we start very reasonably, with a low-resolution grid and do the calculation fairly in

short order, we get something like the left image in Figure 90. The solution is all very

steady, well behaved, and quite wrong. The reaction front has merged into the shock and

221

x
-0.015 -0.01 -0.005 0 0.005

y

0

0.005

0.01

0.015

0.02

ab

c

b
lk
-0
-0

SLIP_WALL

S
U
P
_I
N

blk
-0
-1

E
X
T
R
A
P
O
LA
T
E
_O

U
T

SU
P_
IN

bl
k-
1-
0

blk
-1-

1

SL
IP
_W
AL
L

Figure 89: Schematic diagram of the geometry for a sphere wrapped by a SuperBlock2D
grid. Although 2 × 2 blocks are shown here, we are typically impatient and use 4 × 6
blocks as shown in the input scripts.

222

the whole shock layer has inflated to a stand-off distance significantly larger than that

observed in the experiment. Just increasing the grid resolution (by a factor of 10 in each

direction) provided a solution as shown in the right side of Figure 90. Here, the reaction

front is clearly separated from the incident shock, and it is not smooth. Although it is not

clear from this particular image, there is a periodic large scale disturbance to the reaction

front, and a slightly smaller disturbance to the shock front.

Figure 90: Temperature field at t=190µs for 20×30 cells (left) and 200×300 cells (right).

Figure 91 shows the density field for a few frames of the second-stage simulation

(lehr1.py) over roughly one period of the large-scale oscillation. Although the periodic

nature of the flow is captured, the detailed behaviour of the reaction front is quite sensitive

to grid resolution and the details of the reaction mechanism. The frequency of the large

scale oscillation in this simulation is a long way short of the 0.72 MHz observed by Lehr.

It is left as an exercise for the reader to try the more complete reaction schemes to see if

the frequency of the flow oscillation can be better approximated.

37.1 Input script (.py)

file: lehr.py

#

Spherical nose of Lehr ’s projectile in detonable gas.

#

PJ, 27-Feb -2010

Adapted bits from sphere -heat -transfer and Rowan ’s mbcsn2/lehr_sphere.

gdata.title = "Lehr experiment M=4.79"

R = 7.5e-3 # Nose radius , metres

p_inf = 320.0/760.0*101325.0 # Pascals

u_inf = 1931 # m/s

T_inf = 292 # degrees K

p_init = p_inf / 5

223

Figure 91: Density field at t=11, 14, 17, 20µs in the lehr1 second-stage simulation.

select_gas_model(model=’thermally perfect gas ’,

species=[’O2 ’,’N2’,’H2’,’O’,’H’,’H2O ’,’OH’,’HO2 ’])

species index 0 1 2 3 4 5 6 7

set_reaction_scheme (" Evans_Schexnayder.lua",reacting_flag =1)

Calculation: convert mole fractions to mass fractions.

MW_O2 = 3.19988000e-02 # kg/mole

MW_N2 = 2.80134800e-02

MW_H2 = 2.01588000e-03

moles for a stoichiometric mix

m_O2 = 1.0; m_N2 = 3.76; m_H2 = 2.0

mole fractions

mole_tot = m_O2 + m_N2 + m_H2

X_O2 = m_O2 / mole_tot

X_N2 = m_N2 / mole_tot

X_H2 = m_H2 / mole_tot

MW_mix = X_O2 * MW_O2 + X_N2 * MW_N2 + X_H2 * MW_H2

mass fractions

mf = {’O2 ’:X_O2*(MW_O2/MW_mix),

’N2 ’:X_N2*(MW_N2/MW_mix),

’H2 ’:X_H2*(MW_H2/MW_mix)}

print "mass fractions=", mf

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf , massf=mf)

initial = FlowCondition(p=p_init , T=T_inf , massf=mf)

Job -control information

t_final = 50 * R / u_inf # allow time to establish

ni = 200; nj = 300

gdata.axisymmetric_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = t_final

gdata.max_step = 800000

gdata.dt = 1.0e-10

gdata.cfl = 0.40

gdata.dt_plot = 10.0e-6

gdata.dt_history = 0.1e-6 # want to capture MHz frequency

Begin geometry details for a single region around a spherical nose.

The node coordinates are scaled with the body radius.

a = Node (0.0, 0.0, label="a")

b = Node (-1.0*R, 0.0, label ="b")

c = Node (0.0, R, label ="c")

The inflow boundary is a Bezier curve.

d = [Node (-1.5*R,0), Node (-1.5*R,R), Node(-R,2*R), Node (0,3*R)]

224

order of boundaries: N, E, S, W

flow_domain0 = make_patch(Line(d[-1],c), Arc(b,c,a), Line(d[0],b), Bezier(d))

boundary_conditions0 = [ExtrapolateOutBC (), SlipWallBC (),

SlipWallBC (), SupInBC(inflow)]

blk = SuperBlock2D(psurf=flow_domain0 , fill_condition=initial ,

nni=ni , nnj=nj , nbi=4, nbj=6,

bc_list=boundary_conditions0 ,

label="blk")

HistoryLocation(-R ,0.0)

HistoryLocation(-R ,0.001)

sketch.xaxis (-15.0e-3, 5.0e-3, 5.0e-3, -0.002)

sketch.yaxis (0.0, 20.0e-3, 5.0e-3, 0.0)

sketch.window (-1.5*R, 0.0, 1.5*R, 3.0*R, 0.05, 0.05, 0.15, 0.15)

The second input script continues the simulation on a grid where the inflow boundary

has been moved in toward the bow shock. This makes better use of the computational

resources as more cells are now within the shock layer.

file: lehr1.py

#

Spherical nose of Lehr ’s projectile in detonable gas -- continued.

#

PJ, 27-Feb -2010

Adapted bits from sphere -heat -transfer and Rowan ’s mbcsn2/lehr_sphere.

This is the continuation of the simulation on a better fitted grid.

gdata.title = "Lehr experiment M=4.79"

R = 7.5e-3 # Nose radius , metres

p_inf = 320.0/760.0*101325.0 # Pascals

u_inf = 1931 # m/s

T_inf = 292 # degrees K

p_init = p_inf / 5

select_gas_model(model=’thermally perfect gas ’,

species=[’O2 ’,’N2 ’,’H2’,’O’,’H’,’H2O ’,’OH’,’HO2 ’])

species index 0 1 2 3 4 5 6 7

set_reaction_scheme (" Evans_Schexnayder.lua",reacting_flag =1)

Calculation: convert mole fractions to mass fractions.

MW_O2 = 3.19988000e-02 # kg/mole

MW_N2 = 2.80134800e-02

MW_H2 = 2.01588000e-03

moles for a stoichiometric mix

m_O2 = 1.0; m_N2 = 3.76; m_H2 = 2.0

mole fractions

mole_tot = m_O2 + m_N2 + m_H2

X_O2 = m_O2 / mole_tot

X_N2 = m_N2 / mole_tot

X_H2 = m_H2 / mole_tot

MW_mix = X_O2 * MW_O2 + X_N2 * MW_N2 + X_H2 * MW_H2

mass fractions

mf = {’O2 ’:X_O2*(MW_O2/MW_mix),

’N2 ’:X_N2*(MW_N2/MW_mix),

’H2 ’:X_H2*(MW_H2/MW_mix)}

print "mass fractions=", mf

inflow = FlowCondition(p=p_inf , u=u_inf , T=T_inf , massf=mf)

initial = ExistingSolution(’lehr ’, ’.’, 24, 9999)

Job -control information

t_final = 50.0e-6

ni = 200; nj = 300

gdata.axisymmetric_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = t_final

225

gdata.max_step = 800000

gdata.dt = 1.0e-9

gdata.cfl = 0.40

gdata.dt_plot = 1.0e-6

gdata.dt_history = 0.01e-6 # want to capture MHz frequency

Begin geometry details for a single region around a spherical nose.

The node coordinates are scaled with the body radius.

a = Node (0.0, 0.0, label="a")

b = Node (-1.0*R, 0.0, label ="b")

c = Node (0.0, R, label ="c")

The inflow boundary is a Bezier curve.

d = [Node (-1.3*R,0), Node (-1.3*R,0.7*R), Node (-0.87*R,1.4*R), Node (0 ,2.1*R)]

order of boundaries: N, E, S, W

flow_domain0 = make_patch(Line(d[-1],c), Arc(b,c,a), Line(d[0],b), Bezier(d))

boundary_conditions0 = [ExtrapolateOutBC (), SlipWallBC (),

SlipWallBC (), SupInBC(inflow)]

blk = SuperBlock2D(psurf=flow_domain0 , fill_condition=initial ,

nni=ni , nnj=nj , nbi=4, nbj=6,

bc_list=boundary_conditions0 ,

label="blk")

HistoryLocation(-R,0.0)

HistoryLocation(-R ,0.001)

sketch.xaxis (-15.0e-3, 5.0e-3, 5.0e-3, -0.002)

sketch.yaxis (0.0, 20.0e-3, 5.0e-3, 0.0)

sketch.window (-1.5*R, 0.0, 1.5*R, 3.0*R, 0.05, 0.05, 0.15, 0.15)

226

37.2 Reaction scheme file (.lua)

-- Author: Rowan J. Gollan

-- Date: 02-Feb -2010

-- Place: Poquoson , Virginia , USA

--

-- Adapted from Python file: evans_scheznayder.py

--

-- This file provides four chemical kinetic descriptions

-- of hydrogen combustion. You can select between the various

-- options below by setting the ’model ’ variable below to one of

-- the strings listed below.

--

-- REDUCED : a 7-species , 8-reactions description of hydrogen

-- combustion in pure oxygen

-- PURE_O2 : a 7-species , 16-reactions description of hydrogen

-- combustion in pure oxygen

-- IN_AIR : a 12-species , 25-reactions description of hydrogen

-- combustion in air (N2 and O2)

-- INERT_N2 : an 8-species , 16- reactions description of hydrogen

-- combustion in air with inert N2 (acting as diluent only).

--

-- The numbering of reactions in this file corresponds to

-- Table 1 in Evans and Schexnayder (1980).

--

-- Reference:

-- Evans , J.S. and Shexnayder Jr, C.J. (1980)

-- Influence of Chemical Kinetics and Unmixedness

-- on Burning in Supersonic Hydrogen Flames

-- AIAA Journal 18:2 pp 188--193

--

-- History:

-- 07-Mar -2006 -- first prepared

--

options = {

REDUCED=true ,

PURE_O2=true ,

IN_AIR=true ,

INERT_N2=true

}

-- User selects model here

model = ’INERT_N2 ’

-- Check that selection is valid

if options[model] == nil then

print("User selected model: ", model)

print("is not valid .")

print("Valid models are :")

for m,_ in pairs(options) do

print(m)

end

end

reaction{

’HNO2 + M <=> NO + OH + M’,

fr={’Arrhenius ’, A=5.0e17 , n=-1.0, T_a =25000.0} ,

br={’Arrhenius ’, A=8.0e15 , n=0.0, T_a = -1000.0} ,

label=’r1’

}

reaction{

’NO2 + M <=> NO + O + M’,

fr={’Arrhenius ’, A=1.1e16 , n=0.0, T_a =32712.0} ,

br={’Arrhenius ’, A=1.1e15 , n=0.0, T_a =-941.0},

label=’r2’

}

reaction{

227

’H2 + M <=> H + H + M’,

fr={’Arrhenius ’, A=5.5e18 , n=-1.0, T_a =51987.0} ,

br={’Arrhenius ’, A=1.8e18 , n=-1.0, T_a=0.0},

label=’r3 ’

}

reaction{

’O2 + M <=> O + O + M’,

fr={’Arrhenius ’, A=7.2e18 , n=-1.0, T_a =59340.0} ,

br={’Arrhenius ’, A=4.0e17 , n=-1.0, T_a=0.0},

label=’r4 ’

}

reaction{

’H2O + M <=> OH + H + M’,

fr={’Arrhenius ’, A=5.2e21 , n=-1.5, T_a =59386.0} ,

br={’Arrhenius ’, A=4.4e20 , n=-1.5, T_a=0.0},

label=’r5 ’

}

reaction{

’OH + M <=> O + H + M’,

fr={’Arrhenius ’, A=8.5e18 , n=-1.0, T_a =50830.0} ,

br={’Arrhenius ’, A=7.1e18 , n=-1.0, T_a=0.0},

label=’r6 ’

}

reaction{

’HO2 + M <=> H + O2 + M’,

fr={’Arrhenius ’, A=1.7e16 , n=0.0, T_a =23100.0} ,

br={’Arrhenius ’, A=1.1e16 , n=0.0, T_a =-440.0},

label=’r7 ’

}

reaction{

’H2O + O <=> OH + OH’,

fr={’Arrhenius ’, A=5.8e13 , n=0.0, T_a =9059.0} ,

br={’Arrhenius ’, A=5.3e12 , n=0.0, T_a =503.0} ,

label=’r8 ’

}

reaction{

’H2O + H <=> OH + H2’,

fr={’Arrhenius ’, A=8.4e13 , n=0.0, T_a =10116.0} ,

br={’Arrhenius ’, A=2.0e13 , n=0.0, T_a =2600.0} ,

label=’r9 ’

}

reaction{

’O2 + H <=> OH + O’,

fr={’Arrhenius ’, A=2.2e14 , n=0.0, T_a =8455.0} ,

br={’Arrhenius ’, A=1.5e13 , n=0.0, T_a =0.0} ,

label=’r10 ’

}

reaction{

’H2 + O <=> OH + H’,

fr={’Arrhenius ’, A=7.5e13 , n=0.0, T_a =5586.0} ,

br={’Arrhenius ’, A=3.0e13 , n=0.0, T_a =4429.0} ,

label=’r11 ’

}

reaction{

’H2 + O2 <=> OH + OH’,

fr={’Arrhenius ’, A=1.7e13 , n=0.0, T_a =24232.0} ,

br={’Arrhenius ’, A=5.7e11 , n=0.0, T_a =14922.0} ,

label=’r12 ’

}

reaction{

’H2 + O2 <=> H + HO2 ’,

fr={’Arrhenius ’, A=1.9e13 , n=0.0, T_a =24100.0} ,

br={’Arrhenius ’, A=1.3e13 , n=0.0, T_a =0.0} ,

228

label=’r13 ’

}

reaction{

’OH + OH <=> H + HO2 ’,

fr={’Arrhenius ’, A=1.7e11 , n=0.5, T_a =21137.0} ,

br={’Arrhenius ’, A=6.0e13 , n=0.0, T_a =0.0} ,

label=’r14 ’

}

reaction{

’H2O + O <=> H + HO2 ’,

fr={’Arrhenius ’, A=5.8e11 , n=0.5, T_a =28686.0} ,

br={’Arrhenius ’, A=3.0e13 , n=0.0, T_a =0.0} ,

label=’r15 ’

}

reaction{

’OH + O2 <=> O + HO2 ’,

fr={’Arrhenius ’, A=3.7e11 , n=0.64, T_a =27840.0} ,

br={’Arrhenius ’, A=1.0e13 , n=0.0, T_a =0.0} ,

label=’r16 ’

}

reaction{

’H2O + O2 <=> OH + HO2 ’,

fr={’Arrhenius ’, A=2.0e11 , n=0.5, T_a =36296.0} ,

br={’Arrhenius ’, A=1.2e13 , n=0.0, T_a =0.0} ,

label=’r17 ’

}

reaction{

’H2O + OH <=> H2 + HO2 ’,

fr={’Arrhenius ’, A=1.2e12 , n=0.21, T_a =39815.0} ,

br={’Arrhenius ’, A=1.7e13 , n=0.0, T_a =12582.0} ,

label=’r18 ’

}

reaction{

’O + N2 <=> N + NO’,

fr={’Arrhenius ’, A=5.0e13 , n=0.0, T_a =37940.0} ,

br={’Arrhenius ’, A=1.1e13 , n=0.0, T_a =0.0} ,

label=’r19 ’

}

reaction{

’H + NO <=> N + OH’,

fr={’Arrhenius ’, A=1.7e14 , n=0.0, T_a =24500.0} ,

br={’Arrhenius ’, A=4.5e13 , n=0.0, T_a =0.0} ,

label=’r20 ’

}

reaction{

’O + NO <=> N + O2’,

fr={’Arrhenius ’, A=2.4e11 , n=0.5, T_a =19200.0} ,

br={’Arrhenius ’, A=1.0e12 , n=0.5, T_a =3120.0} ,

label=’r21 ’

}

reaction{

’NO + OH <=> H + NO2 ’,

fr={’Arrhenius ’, A=2.0e11 , n=0.5, T_a =15500.0} ,

br={’Arrhenius ’, A=3.5e14 , n=0.0, T_a =740.0} ,

label=’r22 ’

}

reaction{

’NO + O2 <=> O + NO2 ’,

fr={’Arrhenius ’, A=1.0e12 , n=0.0, T_a =22800.0} ,

br={’Arrhenius ’, A=1.0e13 , n=0.0, T_a =302.0} ,

label=’r23 ’

}

229

reaction{

’NO2 + H2 <=> H + HNO2 ’,

fr={’Arrhenius ’, A=2.4e13 , n=0.0, T_a =14500.0} ,

br={’Arrhenius ’, A=5.0e11 , n=0.5, T_a =1500.0} ,

label=’r24 ’

}

reaction{

’NO2 + OH <=> NO + HO2 ’,

fr={’Arrhenius ’, A=1.0e11 , n=0.5, T_a =6000.0} ,

br={’Arrhenius ’, A=3.0e12 , n=0.5, T_a =1200.0} ,

label=’r25 ’

}

reactions_list = {}

if model == ’REDUCED ’ then

reactions_list = {’r3’, ’r4 ’, ’r5’, ’r6 ’, ’r8’, ’r9’, ’r10 ’, ’r11 ’}

end

if model == ’PURE_O2 ’ or model == ’INERT_N2 ’ then

reactions_list = {’r3’, ’r4 ’, ’r5’, ’r6 ’, ’r7’, ’r8’, ’r9 ’, ’r10 ’,

’r11 ’, ’r12 ’, ’r13 ’, ’r14 ’, ’r15 ’, ’r16 ’, ’r17 ’, ’r18 ’}

end

if model ~= ’IN_AIR ’ then

-- For all other models we select only a subset.

select_reactions_by_label(reactions_list)

end

37.3 Notes

• None

230

38 MNM implosion problem

This example shows the use of the Python functions to set up a very simple flow geometry

with a reasonably complex initial flow state and then to test the symmetry of the computed

flow solution. This test was suggested by Dr. Michael Macrossan. The flow field should

be axisymmetric but it is computed on a square grid, so any grid-aligned flux calculation

problems should be highlighted. Run the case with the following commands:

$ cd ∼/cfcfd3/examples/eilmer3/2D/implosion/
$./imp run.sh

and, within a couple of minutes, you should end up with a number of files with various

solution data plotted. Figure 92 shows the initial density field in a quiescent gas. This field

is approximately axisymmetric and is initialized by computing an estimate for fraction of

each cell inside the nominal radius of 1.0 and then weighting the density value by that

fraction. The code for this calculation dominates the input script in Section 38.1

Figure 92: Initial density field for the implosion problem.

Figure 93 shows the density field at the end of time-stepping, when t = 0.296 L
a

where

a is the initial sound speed of the gas and L is a nominal length scale. At this time the

shock has propagated into the origin, reflected and passed back out through the contact

surface. Symmetry of the solution is not perfect but it is pretty good. Figure 94 shows

the density profiles for a number of radial slices.

231

Figure 93: Final density field for the implosion problem.

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 d
en

si
ty

r/L

MNM Implosion Problem

x-axis
45 degrees
30 degrees

Figure 94: Density profiles at the final time for the implosion problem.

232

38.1 Input script (.py)

\file imp.py

\author PJ , 19-Mar -2009

job_title = "MNM Implosion Problem ."

print job_title

gdata.dimensions = 2

Use a fudged air model

gas_gamma = 5.0/3.0

select_gas_model(model=’ideal gas ’, species=[’air ’])

change_ideal_gas_attribute(’air ’, ’gamma ’, gas_gamma)

L = 1.0

radius = L/2

pL = 100.0 e3 # low pressure is 1 atm

pH = 10.0* pL # high pressure

def my_domain(r, s, t=0.0):

"""

The overall domain is a square of side L.

User -defined function for the parametric volume maps from

parametric space to physical space.

Note that a (Python) tuple of coordinates is returned.

"""

global L

return (L*r, L*s, 0.0)

N = 100 # MNM ’s guess

dL = L/N # cell width

def my_gas(x, y, z):

"""

There is a circular region of low -pressure gas embedded in

a larger , square region of high -pressure gas.

Only one quarter of the full problem is simulated.

User -defined function for the initial gas state

works in physical space.

Note that this function returns a dictionary

of flow properties.

"""

global dL, radius , pL, pH

r2 = radius*radius

x0 = x - 0.5*dL; x1 = x0 + dL

y0 = y - 0.5*dL; y1 = y0 + dL

r00 = x0*x0 + y0*y0

r10 = x1*x1 + y0*y0

r11 = x1*x1 + y1*y1

r01 = x0*x0 + y1*y1

if r00 < r2 and r10 < r2 and r11 < r2 and r01 < r2:

Fill the lower -left corner with low -pressure gas.

p = pL

elif r00 >= r2 and r10 >= r2 and r11 >= r2 and r01 >= r2:

and the outer -part of the field with high -pressure gas.

p = pH

else:

The cell is cut by the circular boundary.

Subdivide the cell to work out how much is inside radius.

fcount = 0

ddL = dL/10

for i in range (10):

xx = x0 + (i+0.5)* ddL

for j in range (10):

yy = y0 + (j+0.5)* ddL

if xx*xx + yy*yy < r2:

fcount += 1

f = float(fcount)/100.0

233

p = f*pL + (1.0-f)*pH

We use the FlowCondition object to conveniently set all of

the relevant properties.

return FlowCondition(p=p, u=0.0, v=0.0, T=300.0 , add_to_list =0). to_dict ()

Define a single block for the domain.

Block2D(PyFunctionSurface(my_domain), nni=N, nnj=N, fill_condition=my_gas)

We can set individual attributes of the global data object.

These are often used to control the simulation process.

gdata.title = job_title

gdata.flux_calc = AUSMDV

sound_speed = sqrt(gas_gamma *287.1*300.0)

print "sound_speed =", sound_speed

gdata.max_time = 0.296*L/sound_speed # to match Fig.2 of Macrossan et al.

gdata.max_step = 600

gdata.dt = dL/5.0/ sound_speed # probably safe

gdata.dt_plot = gdata.max_time /4 # want some intermediate plots

print "low density is", pL /(287.1*300.0) , "kg/m**3"

38.2 Shell scripts

#!/ bin/sh

imp_run.sh

e3prep.py --job=imp

e3shared.exe --job=imp --run

e3post.py --job=imp --vtk -xml --tindx=all --add -mach

e3post.py --job=imp --tindx =9999 --add -mach --output -file=xaxis_profile.data \

--slice -along -line ="0.0 ,0.0 ,0.0 ,1.0 ,0.0 ,0.0 ,99"

e3post.py --job=imp --tindx =9999 --add -mach --output -file=diagonal_profile.data \

--slice -along -line ="0.0 ,0.0 ,0.0 ,1.0 ,1.0 ,0.0 ,100"

e3post.py --job=imp --tindx =9999 --add -mach --output -file=degree30_profile.data \

--slice -along -line ="0.0 ,0.0 ,0.0 ,0.8660 ,0.50 ,0.0 ,100"

gnuplot <<EOF

set term postscript eps 20

set output "density -vs -radius.eps"

set title "MNM Implosion Problem"

set xlabel "r/L"

set ylabel "Normalised density"

set xrange [0.0:1.0]

set yrange [0.0:12.0]

plot "xaxis_profile.data" using (sqrt(\$1*\$1+\$2*\$2+\$3*\$3)/1.0):(\ $5 /1.161) \

title "x-axis" with lines , \

"diagonal_profile.data" using (sqrt(\$1*\$1+\$2*\$2+\$3*\$3)/1.0):(\ $5 /1.161) \

title "45 degrees" with lines , \

"degree30_profile.data" using (sqrt(\$1*\$1+\$2*\$2+\$3*\$3)/1.0):(\ $5 /1.161) \

title "30 degrees" with lines

EOF

38.3 Notes

• This example shows how to change an attribute of the ideal gas model, specifically,

the ratio of specific heats. Look for the call to the function change ideal gas attribute

in the input script.

• It also shows off the --slice-along-line option for the postprocessor e3post.py.

234

39 Periodic Shear Layer

This example shows the use of the Python functions to set up a simple shear flow with a

linear variation of velocity through the finite-width shear layer. There is also a variation

of species mass fractions of helium and air between the counterflowing streams. The basic

flow is intended to be somewhat representative of the fuel-air mixing layers encountered

in shock-tunnel tests of scramjets, however, the model flow here is made periodic in the

x-direction by connecting the block faces as shown in Fig. 95.

co
nn

ec
t to

 bl
k-0

-1
 W

ES
T

co
nn

ec
t to

 bl
k-1

-1
 E

AS
T

co
nn

ec
t to

 bl
k-0

-0
 W

ES
T

co
nn

ec
t to

 bl
k-1

-0
 E

AS
T

x
-0.1 -0.05 0 0.05 0.1

y

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

blk-0-0

SLIP_WALL

blk-0-1

SLIP_WALL

blk-1-0

SLIP_WALL

blk-1-1

SLIP_WALL

Figure 95: Computational domain for the periodic shear layer.

Figure 96 shows the mass fraction of helium at several time instants through the evo-

lution of the shear layer. The layer has started with almost parallel flow, with a relatively

small velocity perturbation, as defined in the function initial gas() in the input script

(see Sec. 39.1).

235

Figure 96: Mass fraction for helium across the periodic shear layer at times 0, 5.1 ms,
10.2 ms and 15 ms.

Figure 97 shows the evolution of the vorticity field. Vorticity is not part of the flow

data files but can be computed within Paraview by applying the following filters to the

cell data:

• Gradient of Unstructured DataSet selecting vel.x as the scalar and du as the

result array name.

• Gradient of Unstructured DataSet selecting vel.y as the scalar and dv as the

result array name.

• Calculator with Cell Data as the attribute mode, dv X - du Y as the expression

to compute, and vorticity as the result array name.

Note that there is a small defect in the vorticity values at the block boundaries. This is

an artifact of the Paraview calculation and not of the original simulation flow field.

Figure 97: Vorticity field for the periodic shear layer at times 0, 5.1 ms, 10.2 ms and 15 ms.

236

39.1 Input script (.py)

psl.py

gdata.title = "Periodic shear layer"

select_gas_model(model=’ideal gas ’, species=[’He’, ’air ’])

gdata.diffusion_model = "FicksFirstLaw"

gdata.diffusion_flag = 1

H = 0.010 # layer thickness in metres

L = 0.100 # wavelength in metres

def initial_gas(x, y, z):

"""

Top and bottom layer of different gases with a basic velocity shear

across the interface , plus a streamwise -periodic perturbation

that decays away from the interface.

"""

global H, L

from math import sin , exp , pi

p = 100.0e3

T = 300.0

U0 = 1000.0

#

The top and bottom streams.

if y < 0.0:

massf = {’He ’:0.1, ’air ’:0.9}

else:

massf = {’air ’:1.0}

#

The basic velocity shear.

if y < -H:

u = -U0

elif y < H:

u = y/H * U0

else:

u = U0

#

Add perturbation

V0 = 50.0

v = V0 * sin(x/L*pi) * exp(-abs(y)/H)

flow = FlowCondition(p=p, T=T, u=u, v=v, massf=massf , add_to_list =0)

return flow.to_dict ()

#

Geometry

ymin = -15.0 * H

ymax = 15.0 * H

xmin = -L

xmax = L

a0 = Node(xmin , ymin); a1 = Node(xmin , ymax)

b0 = Node(xmax , ymin); b1 = Node(xmax , ymax)

domain = make_patch(Line(a1,b1), Line(b0 ,b1), Line(a0 ,b0), Line(a0 ,a1))

nnx = 150; nny = 300

nbi = 2; nbj = 2

superblk = SuperBlock2D(psurf=domain , nni=nnx , nnj=nny ,

bc_list =[SlipWallBC (),]*4,

fill_condition=initial_gas ,

nbi=nbi , nbj=nbj , label ="blk")

Make the domain periodic in the x-direction.

for j in range(nbj):

connect_blocks_2D(superblk.blks [-1][j], EAST ,

superblk.blks [0][j], WEST ,

check_corner_locations=False)

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

237

gdata.max_time = 15.0e-3 # seconds

gdata.max_step = 150000

gdata.dt = 1.0e-9

gdata.dt_plot = gdata.max_time / 50.0

sketch.xaxis(-0.1, 0.1, 0.05, -0.03)

sketch.yaxis (-0.15, 0.15, 0.05, -0.03)

sketch.window (-0.15, -0.15, 0.15, 0.15, 0.05, 0.05, 0.17, 0.17)

39.2 Shell scripts

#!/ bin/sh

prep_simulation.sh

e3prep.py --job=psl --do -svg

#!/ bin/bash

run_sumulation.sh

#$ -S /bin/bash

#$ -N PeriodicShear

#$ -pe orte 4

#$ -cwd

#$ -V

job=psl

np=4

echo "Start time: "; date

mpirun -np $np e3mpi.exe --job=$job --run

e3shared.exe --job=$job --run

echo "Finish time: "; date

39.3 Notes

• This simulation take 33707 steps and 28945 seconds on 4 cores of geyser (AMD

processors).

238

40 Mach 1.5 flow over a 20-degree cone – UDF bound-

aries

This is a small (in both memory and run time) example that shows the implementation

of user-defined boundary conditions. It is otherwise equivalent to the case in Section 12.

Use the following commands:

$ cd ∼/cfcfd3/examples/eilmer3/2D/cone20-udf
$./cone20 run.sh

and, within a minute or so, you should end up with a number of files with various solution

data plotted. The grid and initial solution are created and the time-evolution of the flow

field is computed for 5 ms (with 1105 time steps being required). The commands invoke

the shell scripts displayed in subsection 40.3.

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

A B

C

DEF

BLOCK-0

SLIP_WALL

USER_DEFINED

U
S
E
R
_D

E
F
IN
E
D

BLOCK-1

SLIP_WALL

U
S
E
R
_D

E
F
IN
E
D

USE
R_D

EFIN
ED

Figure 98: Schematic diagram of the geometry for a cone with 20 degree half-angle and
user-defined boundaries.

The free-stream conditions (p∞ = 95.84 kPa, T∞ = 1103 K and u∞ = 1000 m/s) are

related to the shock-over-ramp test problem in the original ICASE Report [10] and are

set to give a Mach number of 1.5. From Chart 5 in Ref. [11], the expected steady-state

239

shock wave angle is 49o and, from Chart 6, the pressure coefficent is

pcone−surface − p∞
q∞

≈ 0.387

and the dynamic pressure for the specified free stream is q∞ = 1
2
ρ∞u

2
∞ ≈ 151.38 kPa.

Figure 101 shows the pressure coefficient estimated as

Cp =
fx − p∞A
q∞A

from the simulated axial force, fx, written into the simulation log file and frontal area of

the cone, A.

Figure 99: Pressure data for flow over a cone with 20 degree half-angle. The shock profile
is not yet straight and the pressure field near the cone surface is not conically symmetric,
although it would become more so if we continued the simulation.

240

Figure 100: Shock-sensor data for flow over a cone with 20 degree half-angle. For the
adaptive flux calculator, this sensor indicates the regions of the flow where the more
dissipative scheme should be used.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6

av
er

ag
e

C
p

time, ms

20 degree cone in Mach 1.5 flow

Value from
NACA 1135

Chart 6

10x40+30x40
20x80+60x80

Figure 101: Evolution of the axial (drag) force for flow over a cone with 20 degree half-
angle for two mesh resolutions.

241

40.1 Input script (.py)

\file cone20.py

\brief Test job -specification file for e3prep.py

\author PJ , 08-Feb -2005

##

15-Jan -2008 -- demonstrate user -defined boundary conditions

24-Apr -2012 -- update source terms and supersonic -in Lua files

job_title = "Mach 1.5 flow over a 20 degree cone."

print job_title

gdata.title = job_title

gdata.axisymmetric_flag = 1

gdata.stringent_cfl = 1 # to match the old mb_cns behaviour

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

Define flow conditions

initial = FlowCondition(p=5955.0 , u=0.0, v=0.0, T=304.0)

inflow = FlowCondition(p=95.84e3, u=1000.0 , v=0.0, T=1103.0)

Set up two quadrilaterals in the (x,y)-plane be first defining

the corner nodes , then the lines between those corners and then

the boundary elements for the blocks.

The labelling is not significant; it is just to make the MetaPost

picture look the same as that produced by the Tcl scriptit program.

a = Node (0.0, 0.0, label="A")

b = Node (0.2, 0.0, label="B")

c = Node (1.0, 0.29118 , label="C")

d = Node (1.0, 1.0, label="D")

e = Node (0.2, 1.0, label="E")

f = Node (0.0, 1.0, label="F")

ab = Line(a, b); bc = Line(b, c) # lower boundary including cone surface

fe = Line(f, e); ed = Line(e, d) # upper boundary

af = Line(a, f); be = Line(b, e); cd = Line(c, d) # vertical lines

Define the blocks , boundary conditions and set the discretisation.

nx0 = 10; nx1 = 30; ny = 40

help()

help(make_patch)

help(Block2D)

blk_0 = Block2D(make_patch(fe, be , ab , af), nni=nx0 , nnj=ny,

fill_condition=initial , label="BLOCK -1")

blk_1 = Block2D(make_patch(ed, cd , bc , be, "AO"), nni=nx1 , nnj=ny,

fill_condition=initial , label="BLOCK -1",

hcell_list =[(9 ,0)], xforce_list =[0,0,1,0])

identify_block_connections ()

blk_0.set_BC(WEST , USER_DEFINED , filename ="udf -supersonic -in.lua", sets_conv_flux =1)

blk_0.set_BC(SOUTH , USER_DEFINED , filename ="udf -slip -wall.lua", is_wall =1)

blk_1.set_BC(EAST , USER_DEFINED , filename ="udf -extrapolate -out.lua")

blk_1.set_BC(SOUTH , USER_DEFINED , filename ="udf -slip -wall.lua", is_wall =1)

Do a little more setting of global data.

gdata.udf_file = "udf -process.lua"

gdata.udf_source_vector_flag = 0 # 0= standard case; 1=energy -addition test

gdata.compression_tolerance = -0.05 # the old default value

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = 5.0e-3 # seconds

gdata.max_step = 3000

gdata.dt = 1.0e-6

gdata.dt_plot = 1.5e-3

gdata.dt_history = 10.0e-5

HistoryLocation (1.0, 2.0, i_offset=-2, j_offset=1, label="here")

sketch.xaxis (0.0, 1.0, 0.2, -0.05)

sketch.yaxis (0.0, 1.0, 0.2, -0.04)

sketch.window (0.0, 0.0, 1.0, 1.0, 0.05, 0.05, 0.17, 0.17)

242

243

40.2 Boundary-condition files (.lua)

-- udf -supersonic -in.lua

-- Lua script for the user -defined functions

-- called by the UserDefinedGhostCell BC.

--

-- This particular example is defining the constant supersonic inflow

-- for the cone20 test case.

function ghost_cell(args)

-- Function that returns the flow states for a ghost cells.

-- For use in the inviscid flux calculations.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

-- but we don ’t happen to us any of them.

--

-- Set constant conditions across the whole boundary.

-- print("Hello from function ghost_cell .")

ghost = {}

ghost.p = 95.84e3 -- pressure , Pa

ghost.T = {} -- temperatures , K (as a table)

ghost.T[0] = 1103.0

ghost.u = 1000.0 -- x-velocity , m/s

ghost.v = 0.0 -- y-velocity , m/s

ghost.w = 0.0

ghost.massf = {} -- mass fractions to be provided as a table

ghost.massf [0] = 1.0 -- mass fractions are indexed from 0 to nsp -1

return ghost , ghost

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

-- but we don ’t happen to us any of them.

-- print("Hello from function interface .")

face = {}

face.u = 1000.0

face.v = 0.0

face.w = 0.0

face.T = {[0]=1103.0 ,}

face.massf = {[0]=1.0 ,}

return face

end

function convective_flux(args)

-- Function that returns the fluxes of conserved quantities.

-- For use in the inviscid flux calculations.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

--

-- Set constant conditions across the whole boundary.

-- print("Hello from function flux .")

R = 287 -- gas constant J/(kg.K)

g = 1.4 -- ratio of specific heats

Cv = R / (g - 1) -- specific -heat , constant volume

p = 95.84e3 -- pressure , Pa

T = 1103.0 -- temperature , K

rho = p/(R*T) -- density , kg/m**3

u = 1000.0 -- x-velocity , m/s

v = 0.0 -- y-velocity , m/s

w = 0.0

massf = {} -- mass fractions to be provided as a table

massf [0] = 1.0 -- mass fractions are indexed from 0 to nsp -1

-- Assemble flux vector

F = {}

244

F.mass = rho * (u*args.csX + v*args.csY) -- kg/s/m**2

F.momentum_x = p * args.csX + u * F.mass

F.momentum_y = p * args.csY + v * F.mass

F.momentum_z = 0.0

F.total_energy = F.mass * (Cv*T + 0.5*(u*u+v*v) + p/rho)

F.species = {}

F.species [0] = F.mass * massf [0]

F.renergies = {}

F.renergies [0] = F.mass * (Cv*T)

return F

end

-- udf -extrapolate -out.lua

-- Lua script for the user -defined functions

-- called by the UserDefinedGhostCell BC.

--

-- This particular example is defining the supersonic outflow

-- for the cone20 test case.

function ghost_cell(args)

-- Function that returns the flow state for a ghost cell

-- for use in the inviscid flux calculations.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

--

-- Sample the flow field at the current cell

-- which is beside the boundary.

cell = sample_flow(block_id , args.i, args.j, args.k)

return cell , cell

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

return sample_flow(block_id , args.i, args.j, args.k)

end

-- udf -slip -wall.lua

-- Lua script for the user -defined functions

-- called by the UserDefinedBC boundary condition.

--

-- This particular example is defining the slip -wall condition

-- for the cone20 test case.

function reflect_normal_velocity(ux, vy , cosX , cosY)

-- Copied from cns_bc.h.

un = ux * cosX + vy * cosY; -- Normal velocity

vt = -ux * cosY + vy * cosX; -- Tangential velocity

un = -un; -- Reflect normal component

ux = un * cosX - vt * cosY; -- Back to Cartesian coords

vy = un * cosY + vt * cosX;

return ux, vy

end

function ghost_cell(args)

-- Function that returns the flow state for a ghost cell

-- for use in the inviscid flux calculations.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

i = args.i; j = args.j; k = args.k

cell1 = sample_flow(block_id , i, j, k)

cell1.u, cell1.v = reflect_normal_velocity(cell1.u, cell1.v, args.csX , args.csY)

if args.which_boundary == NORTH then

245

j = j - 1

elseif args.which_boundary == EAST then

i = i - 1

elseif args.which_boundary == SOUTH then

j = j + 1

elseif args.which_boundary == WEST then

i = i + 1

end

cell2 = sample_flow(block_id , i, j, k)

cell2.u, cell2.v = reflect_normal_velocity(cell2.u, cell2.v, args.csX , args.csY)

return cell1 , cell2

end

function zero_normal_velocity(ux , vy, cosX , cosY)

-- Just the interesting bits from reflect_normal_velocity ().

vt = -ux * cosY + vy * cosX; -- Tangential velocity

ux = -vt * cosY; -- Back to Cartesian coords

vy = vt * cosX; -- just tangential component

return ux, vy

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

cell = sample_flow(block_id , args.i, args.j, args.k)

cell.u, cell.v = zero_normal_velocity(cell.u, cell.v, args.csX , args.csY)

return cell

end

-- udf -process.lua

-- This file sets up functions that will be called

-- from the main time -stepping loop.

print(" Hello from the set -up stage of udf -process .")

print(" nblks=", nblks)

function at_timestep_start(args)

if (args.step ~= 0) then

-- do nothing , just leave

return

end

-- For the 0th step only

mass = 0.0

for ib=0,(nblks -1) do

imin = blks[ib].imin; imax = blks[ib].imax

jmin = blks[ib].jmin; jmax = blks[ib].jmax

blk_id = blks[ib].id

for j=jmin ,jmax do

for i=imin ,imax do

cell = sample_flow(blk_id , i, j, k)

-- We are only given p and T

-- so need to compute density

-- using gas model

Q = create_empty_gas_table ()

Q.p = cell.p

Q.T = cell.T

for isp=0,(nsp -1) do Q.massf[isp] = cell.massf[isp] end

eval_thermo_state_pT(Q)

rho = Q.rho

-- Now we can compute mass in cell using volume of cell

mass = mass + rho*cell.vol

end

end

end

print("Mass (kg) of gas in domain: ", mass)

return

246

end

function at_timestep_end(args)

if (args.step % 100) == 0 then

print("At end of timestep ", args.step , " t=", args.t)

end

return

end

function source_vector(args , cell_data)

-- args contains t

-- cell_data table contains most else

src = {}

src.mass = 0.0

src.momemtum_x = 0.0

src.momentum_y = 0.0

src.momentum_z = 0.0

if cell_data.x > 0.2 and cell_data.x < 0.4 and

cell_data.y > 0.2 and cell_data.y < 0.3 then

src.total_energy = 100.0e+6 -- J/m**3

src.energies = {[0]=100.0 e6}

else

src.total_energy = 0.0

src.energies = {[0]=0.0}

end

src.species = {[0]=0.0 ,}

return src

end

40.3 Shell scripts

#! /bin/sh

cone20_run.sh

exercise the Navier -Stokes solver for the Cone20 test case.

It is assumed that the path is set correctly.

Prepare the simulation input files (parameter , grid and initial flow data).

The SVG file provides us with a graphical check on the geometry

e3prep.py --job=cone20 --do-svg

Integrate the solution in time ,

recording the axial force on the cone surface.

time e3shared.exe -f cone20 --run --verbose

Extract the solution data and reformat.

If no time is specified , the final solution found is output.

e3post.py --job=cone20 --vtk -xml

Extract the average coefficient of pressure from the axial force

records that were written to the simulation log file.

awk -f cp.awk e3shared.log > cone20_cp.dat

Plot the average coefficient of pressure on the cone surface.

We assume that the high -resolution data file is also available.

gnuplot <<EOF

set term postscript eps enhanced 20

set output "cone20_cp.ps"

set style line 1 linetype 1 linewidth 3.0

set title "20 degree cone in Mach 1.5 flow"

set xlabel "time , ms"

set ylabel "average C_p"

set xtic 1.0

set ytic 0.1

set yrange [0:0.5]

set key bottom right

set arrow from 5.2 ,0.387 to 5.8 ,0.387 nohead linestyle 1

247

set label "Value from\nNACA 1135\ nChart 6" at 5.0 ,0.3 right

set arrow from 5.0 ,0.3 to 5.5 ,0.387 head

plot "cone20_cp.dat" using 1:2 title "10 x40+30x40", \

"cone20_cp_hi -res.dat" using 1:2 title "20 x80+60x80" with lines

EOF

echo "At this point , we should have a solution that can be viewed with Paraview ."

40.4 Notes

• Run time is approximately 94 seconds for 1126 steps on a computer with an Intel

Dual Pentium E2160, 1.6 GHz processor. As would be expected, the calling of the

user-defined (Lua) functions carries some cost, but not much.

248

41 A section of an ideal compressible-flow vortex

This flow example was used by Ian Johnston in his thesis and it comes with an analytic

solution [26]. With respect to Eilmer3, it illustrates the use of a specified flow profile as

an input and it shows the use of profile extraction, again.

The flow domain (Fig. 102) includes only part of the first quadrant of an ideal vortex

flow in inviscid air with R = 287J/kg·K, γ=1.4). The NORTH and SOUTH boundaries

are specified as reflecting walls at radii ro and ri, representing the outer and inner radii

of the vortex segment that is centred at node A. The WEST boundary has the specified

inflow as a function of radius

ρ(r) = ρi

[
1 +

γ − 1

2
M2

i

{
1−

(ri
r

)2
}] 1

γ−1

,

p(r) = pi

(
ρ

ρi

)γ
,

u(r) = ui
ri
r

,

with ro = 1.384ri and the properties at the inner radius being Mi = 2.25, ρi = 1.0 kg/m3

and pi = 100 kPa.

x
0 0.5 1 1.5

y

0

0.5

1

1.5

Duct

USER_DEFINED

EXTRAPOLATE_OUT

USER_DEFINED

U
S
E
R
_D

E
F
IN
E
D

Figure 102: Schematic diagram of the first quadrant domain for the compressible-flow
vortex.

Figure 103 shows the radial distributions of flow properties and highlight some of the

problems with the crude reflecting-wall boundary condition. Other than at the bound-

aries, there is close agreement between the analytic and numerical solutions. The errors

249

at the inner and outer radii stand out clearly because we know that the trends of the

flow property variations should continue at these boundaries and not mirror what is just

inside the flow domain.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

p/
p i

r/ri

Inviscid Vortex

exact
45 degrees

exit plane

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

T
/T

i

r/ri

Inviscid Vortex

exact
45 degrees
90 degrees

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

u/
u i

r/ri

Inviscid Vortex

exact
45 degrees
90 degrees

Figure 103: Radial distributions of normalized pressure, temperature and velocity. Also,
the bottom right image shows the flow speed over the simulated domain

250

41.1 Input script (.py)

file: vtx.py

PJ, 14-Dec -2006

01-Feb -2010 ported to Eilmer3

gdata.title = "Inviscid supersonic vortex -- flow in a bend."

Geometry

R_inner = 1.0

R_outer = 1.384

a = Node (0.0, 0.0)

b = Node (0.0, R_inner)

c = Node (0.0, R_outer)

d = Node(R_inner , 0.0)

e = Node(R_outer , 0.0)

north0 = Arc(c, e, a)

east0 = Line(d, e)

south0 = Arc(b, d, a)

west0 = Line(b, c)

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

The following flow condition is not really important because

the actual data will be taken from the user -defined boundaries.

initial = FlowCondition(p=1000.0 , u=0.0, v=0.0, T=348.43)

blk_0 = Block2D(psurf=make_patch(north0 , east0 , south0 , west0),

fill_condition=initial ,

nni=80, nnj=40,

bc_list =[UserDefinedBC ("udf -vortex -flow.lua"),

ExtrapolateOutBC (),

UserDefinedBC ("udf -vortex -flow.lua"),

UserDefinedBC ("udf -vortex -flow.lua")],

label="Duct")

Simulation -control information

gdata.flux_calc = ADAPTIVE

gdata.max_time = 20.0e-3

gdata.max_step = 6000

gdata.dt = 1.0e-6

gdata.dt_plot = 5.0e-3

Some hints to scale and place the SVG layout figure.

sketch.xaxis (0.0, 1.5, 0.5, -0.1)

sketch.yaxis (0.0, 1.5, 0.5, -0.1)

sketch.window (0.0, 0.0, 1.5, 1.5, 0.05, 0.05, 0.17, 0.17)

41.2 Boundary condition file (.lua)

-- udf -vortex -flow.lua

-- Lua script for the user -defined functions

-- called by the UserDefinedBC.

--

-- This particular example defines the inviscid flow field

-- of a compressible vortex.

Rgas = 287 -- J/kg.K

g = 1.4 -- ratio of specific heats

-- radial limits of flow domain

r_i = 1.0 -- metres

r_o = 1.384

-- Set flow properties ar the inner radius.

p_i = 100.0e3 -- Pa

M_i = 2.25

251

rho_i = 1.0 -- kg/m**3

T_i = p_i / (Rgas * rho_i) -- K

a_i = math.sqrt(g * Rgas * T_i) -- m/s

u_i = M_i * a_i -- m/s

-- We’ll use a bit of extra information to estimate

-- the locations of the ghost cells.

n = 40

dr = (r_o - r_i) / nnj

print("Set up inviscid vortex ")

print(" p_i=", p_i , "M_i=", M_i , "rho_i=", rho_i ,

"T_i=", T_i , "a_i=", a_i , "u_i=", u_i)

function vortex_flow(r)

u = u_i * r_i / r

t1 = r_i / r

t2 = 1.0 + 0.5 * (g - 1.0) * M_i * M_i * (1.0 - t1 * t1)

rho = rho_i * math.pow(t2, 1.0/(g - 1.0))

p = p_i * math.pow(rho/rho_i , g)

T = p / (rho * Rgas)

return u, p, T

end

function ghost_cell(args)

-- Function that returns the flow states for a ghost cells.

-- For use in the inviscid flux calculations.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

--

-- We make an estimate of where the ghost cell is in space and

-- then compute the vortex flow properties for that point.

x = args.x

y = args.y

r = math.sqrt(x*x + y*y)

theta = math.atan2(y, x)

ghost1 = {}

if which_boundary == NORTH then

r_ghost1 = r + 0.5*dr

else

r_ghost1 = r - 0.5*dr

end

speed , p, T = vortex_flow(r_ghost1)

ghost1.p = p

ghost1.T = {} -- temperatures as a table

ghost1.T[0] = T -- indexed from 0 to nmodes -1

ghost1.u = math.sin(theta) * speed

ghost1.v = -math.cos(theta) * speed

ghost1.w = 0.0

ghost1.massf = {} -- mass fractions to be provided as a table

ghost1.massf [0] = 1.0 -- mass fractions are indexed from 0 to nsp -1

ghost2 = {}

if which_boundary == NORTH then

r_ghost2 = r + 1.5*dr

else

r_ghost2 = r - 1.5*dr

end

speed , p, T = vortex_flow(r_ghost2)

ghost2.p = p

ghost2.T = {[0]=T,}

ghost2.u = math.sin(theta) * speed

ghost2.v = -math.cos(theta) * speed

ghost2.w = 0.0

ghost2.massf = {[0]=1.0 ,}

return ghost1 , ghost2

end

function interface(args)

-- Function that returns the conditions at the boundary

252

-- when viscous terms are active.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

x = args.x

y = args.y

r = math.sqrt(x*x + y*y)

theta = math.atan2(y, x)

speed , p, T = vortex(r)

face = {}

face.u = math.sin(theta) * speed

face.v = -math.cos(theta) * speed

face.w = 0.0

face.T = {[0]=T,}

face.massf = {[0]=1.0 ,}

return face

end

41.3 Shell scripts

#! /bin/sh

vtx_run.sh

e3prep.py --job=vtx --do -svg

time e3shared.exe --job=vtx --run

e3post.py --job=vtx --vtk -xml

#! /bin/sh

vtx_plot.sh

Generate the ideal profile.

awk -f make_profile.awk

Extract the flow data 45 degrees around.

e3post.py --job=vtx --tindx =9999 --output -file=vtx_profile_45.dat \

--slice -list ="0,39,:,0"

Extract the flow data 90 degrees around.

e3post.py --job=vtx --tindx =9999 --output -file=vtx_profile_90.dat \

--slice -list="0,-1,:,0"

awk -f extract_radial.awk vtx_profile_45.dat > radial_profile_45.dat

awk -f extract_radial.awk vtx_profile_90.dat > radial_profile_90.dat

Generate postscript plots of the radial profiles.

gnuplot radial_profile.gnu

echo At this point , we should have a plotted the solution

41.4 Notes

• This simulation reaches a final time of 20 ms in 2610 steps and, on an Intel Core 2

Duo CPU (E8400 @ 3.0 Ghz) system, this takes 2 min, 23 s.

• The plots were generated via the following scripts

253

extract_radial.awk

Extract the radial profile data from e3post.py generated files.

BEGIN{

r_i = 1.0; p_i = 100.0e3; u_i = 841.87; T_i = 348.43;

}

$1 != "#" {

x = $1; y = $2; p = $9; u = $6; v = $7; T = $20

r = sqrt(x * x + y * y)

speed = sqrt(u * u + v * v)

print r/r_i , p/p_i , speed/u_i , 0.0, T/T_i

}

radial_profile.gnu

set term postscript eps enhanced 20

set output "radial_profile_p.eps"

set title "Inviscid Vortex"

set xlabel "r/r_i"

set ylabel "p/p_i"

set yrange [1.0:4.5]

set key bottom right

plot "radial_profile_0.dat" using 1:2 title "exact" with lines , \

"radial_profile_45.dat" using 1:2 title "45 degrees", \

"radial_profile_90.dat" using 1:2 title "exit plane"

set term postscript eps enhanced 20

set output "radial_profile_u.eps"

set title "Inviscid Vortex"

set xlabel "r/r_i"

set ylabel "u/u_i"

set yrange [0.7:1.0]

set key

plot "radial_profile_0.dat" using 1:3 title "exact" with lines , \

"radial_profile_45.dat" using 1:3 title "45 degrees", \

"radial_profile_90.dat" using 1:3 title "90 degrees"

set term postscript eps enhanced 20

set output "radial_profile_T.eps"

set title "Inviscid Vortex"

set xlabel "r/r_i"

set ylabel "T/T_i"

set yrange [1.0:1.7]

set key bottom right

plot "radial_profile_0.dat" using 1:5 title "exact" with lines , \

"radial_profile_45.dat" using 1:5 title "45 degrees", \

"radial_profile_90.dat" using 1:5 title "90 degrees"

make_profile.awk

Set up an inflow profile for the inviscid vortex case

PJ, 20-Feb -01, 14-Dec -06 write 1.0 for mass -fraction [0]

#

function pow(base , exponent) {

print base , exponent

return exp(exponent * log(base))

}

BEGIN {

Rgas = 287 # J/kg.K

g = 1.4 # ratio of specific heats

n = 40

r_i = 1.0 # metres

r_o = 1.384

254

dr = (r_o - r_i) / n

Set flow properties ar the inner radius.

p_i = 100.0e3 # kPa

M_i = 2.25

rho_i = 1.0 # kg/m**3

T_i = p_i / (Rgas * rho_i) # K

a_i = sqrt(g * Rgas * T_i) # m/s

u_i = M_i * a_i # m/s

print p_i , M_i , rho_i , T_i , a_i , u_i

Generate the profile along the radial direction.

print n > "profile.dat"

for (i = 1; i <= n; ++i) {

r = r_i + dr * (i - 0.5)

print "i= ", i, "r=", r

u = u_i * r_i / r

t1 = r_i / r

t2 = 1.0 + 0.5 * (g - 1.0) * M_i * M_i * (1.0 - t1 * t1)

rho = rho_i * pow(t2, 1.0/(g - 1.0));

p = p_i * pow(rho/rho_i , g)

T = p / (rho * Rgas)

print p, u, 0.0, T, 1.0 > "profile.dat"

print r/r_i , p/p_i , u/u_i , 0.0, T/T_i , 1.0 > "radial_profile_0.dat"

} # end for

}

255

256

42 Method of manufactured solutions – Euler flow

The method of manufactured solutions as a code verification exercise for inviscid flow.

This shows a sophisticated use of the user-defined source terms to add the extra pieces

required to model a known (manufactured) flow solution.

Figure 104: Density and pressure fields for the steady-state solution for the Method of
Manufactured Solutions.

257

42.1 Input script (.py)

#

This file can be used to simulate the

Method of Manufactured Solutions test case.

#

Author: Rowan J. Gollan

Updated: 05-Feb -2008

#

gdata.title = "Method of Manufactured Solutions: Euler test case."

gdata.viscous_flag = 0

gdata.stringent_cfl = 1

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’,

species=[’air ’])

p0 = 1.0e5

u0 = 800.0

v0 = 800.0

T0 = p0 / 287.1

initial = FlowCondition(p=p0 , u=u0, v=v0, T=T0 , massf =[1.0 ,])

a = Node (0.0, 0.0, label="a")

b = Node (1.0, 0.0, label="b")

c = Node (0.0, 1.0, label="c")

d = Node (1.0, 1.0, label="d")

ab = Line(a, b)

ac = Line(a, c)

cd = Line(c, d)

bd = Line(b, d)

nx = 16

ny = 16

blk_0 = Block2D(make_patch(cd, bd , ab , ac),

nni=nx , nnj=ny ,

fill_condition=initial , label="blk -0")

blk_0.set_BC(NORTH , EXTRAPOLATE_OUT)

blk_0.set_BC(EAST , EXTRAPOLATE_OUT)

blk_0.set_BC(SOUTH , USER_DEFINED , filename ="udf -bc.lua")

blk_0.set_BC(WEST , USER_DEFINED , filename ="udf -bc.lua")

gdata.udf_file = "udf -source.lua"

gdata.udf_source_vector_flag = 1

gdata.flux_calc = AUSM

gdata.max_time = 20.0e-3

gdata.max_step = 2000

gdata.dt = 1.0e-6

gdata.fixed_time_step = False

gdata.cfl = 0.5

gdata.dt_plot = gdata.max_time /20.0

42.2 Boundary condition file (.lua)

-- Lua script for the south and west boundaries

-- of a Manufactured Solution which

-- treats Euler flow.

--

-- Author: Rowan J. Gollan

-- Date: 04-Feb -2008

258

M_PI = math.pi

cos = math.cos

sin = math.sin

L = 1.0

gam = 1.4

rho0 = 1.0

rhox = 0.15

rhoy = -0.1

uvel0 = 800.0

uvelx = 50.0

uvely = -30.0

vvel0 = 800.0

vvelx = -75.0

vvely = 40.0

wvel0 = 0.0

press0 = 1.0e5

pressx = 0.2e5

pressy = 0.5e5

function rho_function(x, y)

rho = rho0 + rhox*sin((M_PI*x)/L) + rhoy*cos((M_PI*y)/(2.0*L))

return rho;

end

function rho_south_bc(x) return rho_function(x, 0.0) end

function rho_west_bc(y) return rho_function (0.0, y) end

function pressure_function(x, y)

p = press0 + pressx*cos ((2.0* M_PI*x)/L) + pressy*sin((M_PI*y)/L)

return p

end

function pressure_south_bc(x) return pressure_function(x, 0.0) end

function pressure_west_bc(y) return pressure_function (0.0, y) end

function u_function(x, y)

u = uvel0 + uvelx*sin ((3.0* M_PI*x)/(2.0*L)) + uvely*cos ((3.0* M_PI*y)/(5.0*L))

return u

end

function u_south_bc(x) return u_function(x, 0.0) end

function u_west_bc(y) return u_function (0.0, y) end

function v_function(x, y)

v = vvel0 + vvelx*cos((M_PI*x)/(2.0*L)) + vvely*sin ((2.0* M_PI*y)/(3.0*L))

return v

end

function v_south_bc(x) return v_function(x, 0.0) end

function v_west_bc(y) return v_function (0.0, y) end

function ghost_cell(args)

-- Function that returns the flow states for a ghost cells.

-- For use in the inviscid flux calculations.

--

-- args contains {t, x, y, z, csX , csY , csZ , i, j, k, which_boundary}

-- Set constant conditions across the whole boundary.

x = args.x; y = args.y

ghost = {}

if args.which_boundary == SOUTH then

ghost.p = pressure_south_bc(x) -- pressure , Pa

rho = rho_south_bc(x) -- density , kg/m^3

ghost.u = u_south_bc(x) -- x-velocity , m/s

ghost.v = v_south_bc(x) -- y-velocity , m/s

else

-- Assumed WEST and that we won ’t call this

259

-- from any other boundary

ghost.p = pressure_west_bc(y) -- pressure , Pa

rho = rho_west_bc(y) -- density , kg/m^3

ghost.u = u_west_bc(y) -- x-velocity , m/s

ghost.v = v_west_bc(y) -- y-velocity , m/s

end

ghost.w = 0.0

R = 287.1

ghost.T = {}

ghost.T[0] = ghost.p/(rho*R) -- temperature , K

ghost.massf = {} -- mass fractions to be provided as a table

ghost.massf [0] = 1.0 -- mass fractions are indexed from 0 to nsp -1

ghost.Tvib = {} -- vibrational temperatures also indexed from 0

return ghost , ghost

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

--

-- args contains {t, x, y, z, csX , csY , csZ , i, j, k, which_boundary}

x = args.x; y = args.y

wall = {}

if args.which_boundary == SOUTH then

wall.u = u_south_bc(x)

wall.v = v_south_bc(x)

p = pressure_south_bc(x)

rho = rho_south_bc(x)

else

wall.u = u_west_bc(y)

wall.v = v_west_bc(y)

p = pressure_west_bc(y)

rho = rho_west_bc(y)

end

wall.w = 0.0

R = 287.1

wall.T = {}

wall.T[0] = p/(rho*R)

wall.massf = {}

wall.massf [0] = 1.0

return wall

end

42.3 Source term file (.lua)

The source terms were generated with the aid of the Maxima computer algebra system.

-- Lua script for the source terms

-- of a Manufactured Solution which

-- treats Euler flow.

--

-- Author: Rowan J. Gollan

-- Date: 04-Feb -2008

-- dummy functions to keep eilmer3 happy

function at_timestep_start(args) return nil end

function at_timestep_end(args) return nil end

M_PI = math.pi

cos = math.cos

sin = math.sin

pow = math.pow

L = 1.0

gam = 1.4

260

rho0 = 1.0

rhox = 0.15

rhoy = -0.1

uvel0 = 800.0

uvelx = 50.0

uvely = -30.0

vvel0 = 800.0

vvelx = -75.0

vvely = 40.0

wvel0 = 0.0

press0 = 1.0e5

pressx = 0.2e5

pressy = 0.5e5

function rho_source(x, y)

f_m = (3* M_PI*uvelx*cos ((3* M_PI*x)/(2.*L))*(rho0 + rhoy*cos((M_PI*y)/(2.*L)) +

rhox*sin((M_PI*x)/L)))/(2.*L) + (2* M_PI*vvely*cos ((2* M_PI*y)/(3.*L))*(rho0 + rhoy

*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L)))/(3.*L) + (M_PI*rhox*cos((M_PI*x)/L)

*(uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L))))/L - (M_PI

*rhoy*sin((M_PI*y)/(2.*L))*(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI

*y)/(3.*L))))/(2.*L)

return f_m

end

function xmom_source(x, y)

f_x = (3* M_PI*uvelx*cos ((3* M_PI*x)/(2.*L))*(rho0 + rhoy*cos((M_PI*y)/(2.*L)) +

rhox*sin((M_PI*x)/L))*(uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)

/(2.*L))))/L + (2* M_PI*vvely*cos ((2* M_PI*y)/(3.*L))*(rho0 + rhoy*cos((M_PI*y)/(2.

*L)) + rhox*sin((M_PI*x)/L))*(uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin((3

*M_PI*x)/(2.*L))))/(3.*L) + (M_PI*rhox*cos((M_PI*x)/L)*pow(uvel0 + uvely*cos ((3*

M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L)) ,2))/L - (2* M_PI*pressx*sin ((2* M_PI

*x)/L))/L - (M_PI*rhoy*(uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)

/(2.*L)))* sin((M_PI*y)/(2.*L))*(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2*

M_PI*y)/(3.*L))))/(2.*L) - (3* M_PI*uvely*(rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*

sin((M_PI*x)/L))* sin ((3* M_PI*y)/(5.*L))*(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) +

vvely*sin ((2* M_PI*y)/(3.*L))))/(5.*L)

return f_x

end

function ymom_source(x, y)

f_y = (M_PI*pressy*cos((M_PI*y)/L))/L - (M_PI*vvelx*sin((M_PI*x)/(2.*L))*(rho0 +

rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L))*(uvel0 + uvely*cos ((3* M_PI*y)/(5.

*L)) + uvelx*sin ((3* M_PI*x)/(2.*L))))/(2.*L) + (3* M_PI*uvelx*cos ((3* M_PI*x)/(2.*L))

*(rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L))*(vvel0 + vvelx*cos((M_PI

*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L))))/(2.*L) + (4* M_PI*vvely*cos ((2* M_PI*y)/

(3.*L))*(rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L))*(vvel0 + vvelx*

cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L))))/(3.*L) + (M_PI*rhox*cos((M_PI

x)/L)(uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L)))*(vvel0

+ vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L))))/L - (M_PI*rhoy*sin((

M_PI*y)/(2.*L))*pow(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L)

) ,2))/(2.*L)

return f_y

end

function energy_source(x, y)

f_e = (uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L)))*((-2*

M_PI*pressx*sin ((2* M_PI*x)/L))/L + (rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI

x)/L))((-2* M_PI*pressx*sin ((2* M_PI*x)/L))/((-1 + gam)*L*(rho0 + rhoy*cos((M_PI*y)/

(2.*L)) + rhox*sin((M_PI*x)/L))) + ((3* M_PI*uvelx*cos ((3* M_PI*x)/(2.*L))*(uvel0 +

uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L))))/L - (M_PI*vvelx*sin((

M_PI*x)/(2.*L))*(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L))))

/L)/2. - (M_PI*rhox*cos((M_PI*x)/L)*(press0 + pressx*cos ((2* M_PI*x)/L) + pressy*sin(

(M_PI*y)/L)))/((-1 + gam)*L*pow(rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)

/L),2))) + (M_PI*rhox*cos((M_PI*x)/L)*((pow(wvel0 ,2) + pow(uvel0 + uvely*cos ((3* M_PI

*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L)),2) + pow(vvel0 + vvelx*cos((M_PI*x)/(2.*L)

) + vvely*sin ((2* M_PI*y)/(3.*L)) ,2))/2. + (press0 + pressx*cos ((2* M_PI*x)/L) + pressy

*sin((M_PI*y)/L))/((-1 + gam)*(rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L

)))))/L) + (3* M_PI*uvelx*cos ((3* M_PI*x)/(2.*L))*(press0 + pressx*cos ((2* M_PI*x)/L) +

pressy*sin((M_PI*y)/L) + (rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L))*

261

((pow(wvel0 ,2) + pow(uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*

L)),2) + pow(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L)) ,2))/2.

+ (press0 + pressx*cos ((2* M_PI*x)/L) + pressy*sin((M_PI*y)/L))/((-1 + gam)*(rho0 +

rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L))))))/(2.*L) + (2* M_PI*vvely*cos ((2*

M_PI*y)/(3.*L))*(press0 + pressx*cos ((2* M_PI*x)/L) + pressy*sin((M_PI*y)/L) + (rho0 +

rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L))*((pow(wvel0 ,2) + pow(uvel0 + uvely*

cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L)),2) + pow(vvel0 + vvelx*cos((

M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L)) ,2))/2. + (press0 + pressx*cos ((2* M_PI*

x)/L) + pressy*sin((M_PI*y)/L))/((-1 + gam)*(rho0 + rhoy*cos((M_PI*y)/(2.*L)) + rhox*

sin((M_PI*x)/L))))))/(3.*L) + (vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*

y)/(3.*L)))*((M_PI*pressy*cos((M_PI*y)/L))/L - (M_PI*rhoy*sin((M_PI*y)/(2.*L))*((pow(

wvel0 ,2) + pow(uvel0 + uvely*cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L)),2)

+ pow(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*sin ((2* M_PI*y)/(3.*L)) ,2))/2. +

(press0 + pressx*cos ((2* M_PI*x)/L) + pressy*sin((M_PI*y)/L))/((-1 + gam)*(rho0 + rhoy

*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L)))))/(2.*L) + (rho0 + rhoy*cos((M_PI*y)/

(2.*L)) + rhox*sin((M_PI*x)/L))*((M_PI*pressy*cos((M_PI*y)/L))/((-1 + gam)*L*(rho0 +

rhoy*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L))) + ((-6* M_PI*uvely *(uvel0 + uvely*

cos ((3* M_PI*y)/(5.*L)) + uvelx*sin ((3* M_PI*x)/(2.*L)))* sin ((3* M_PI*y)/(5.*L)))/(5.*L)

+ (4* M_PI*vvely*cos ((2* M_PI*y)/(3.*L))*(vvel0 + vvelx*cos((M_PI*x)/(2.*L)) + vvely*

sin ((2* M_PI*y)/(3.*L))))/(3.*L))/2. + (M_PI*rhoy*sin((M_PI*y)/(2.*L))*(press0 +

pressx*cos ((2* M_PI*x)/L) + pressy*sin((M_PI*y)/L)))/(2.*(-1 + gam)*L*pow(rho0 + rhoy

*cos((M_PI*y)/(2.*L)) + rhox*sin((M_PI*x)/L) ,2))))

return f_e

end

function source_vector(args , cell)

src = {}

src.mass = rho_source(cell.x, cell.y)

src.momentum_x = xmom_source(cell.x, cell.y)

src.momentum_y = ymom_source(cell.x, cell.y)

src.momentum_z = 0.0

src.total_energy = energy_source(cell.x, cell.y)

src.species = {}

src.species [0] = src.mass

return src

end

42.4 Shell scripts

#!/ bin/bash

e3prep.py --job=euler_manufactured

#!/ bin/bash

time e3shared.exe --job=euler_manufactured --run

The postprocessing script shows features of the post-processor that allow one to compare

one solution with another (in order to check convergence to steady state) and also to

report the norms of the differences between the computed solution and a reference solution

described by a Python file.

#!/ bin/bash

echo "Check that simulation has converged by comparing solution instances :"

e3post.py --job=euler_manufactured --tindx=6 \

--compare -job=euler_manufactured --compare -tindx =20

262

e3post.py --job=euler_manufactured --tindx=7 \

--compare -job=euler_manufactured --compare -tindx =20

echo "--"

echo "Check simulation against analytical data:"

e3post.py --job=euler_manufactured --tindx =20 \

--ref -function=euler_wrapper.py \

--per -block -norm -list="0,rho ,L2;0,rho ,L1" \

--global -norm -list="rho ,L2"

echo "--"

echo "Generate VTK files for plotting :"

e3post.py --job=euler_manufactured --tindx =20 --vtk -xml

42.5 Python reference-function files

euler_verify.py

from math import sin , cos , pi

R_air = 287.1

class EulerManufacturedSolution:

def __init__(self , L,

rho0 , rhox , rhoy , a_rhox , a_rhoy ,

press0 , pressx , pressy , a_pressx , a_pressy ,

uvel0 , uvelx , uvely , a_uvelx , a_uvely ,

vvel0 , vvelx , vvely , a_vvelx , a_vvely):

self.L = L

self.rho0 = rho0

self.rhox = rhox

self.rhoy = rhoy

self.a_rhox = a_rhox

self.a_rhoy = a_rhoy

self.press0 = press0

self.pressx = pressx

self.pressy = pressy

self.a_pressx = a_pressx

self.a_pressy = a_pressy

self.uvel0 = uvel0

self.uvelx = uvelx

self.uvely = uvely

self.a_uvelx = a_uvelx

self.a_uvely = a_uvely

self.vvel0 = vvel0

self.vvelx = vvelx

self.vvely = vvely

self.a_vvelx = a_vvelx

self.a_vvely = a_vvely

return

def calculate_rho(self , x, y):

rho = self.rho0

rho += self.rhox*sin((self.a_rhox*pi*x)/self.L)

rho += self.rhoy*cos((self.a_rhoy*pi*y)/self.L)

return rho

def calculate_p(self , x, y):

p = self.press0

p += self.pressx*cos((self.a_pressx*pi*x)/self.L)

p += self.pressy*sin((self.a_pressy*pi*y)/self.L)

return p

def calculate_u(self , x, y):

u = self.uvel0

u += self.uvelx*sin((self.a_uvelx*pi*x)/self.L)

u += self.uvely*cos((self.a_uvely*pi*y)/self.L)

263

return u

def calculate_v(self , x, y):

v = self.vvel0

v += self.vvelx*cos((self.a_vvelx*pi*x)/self.L)

v += self.vvely*sin((self.a_vvely*pi*y)/self.L)

return v

euler_wrapper.py

from euler_verify import *

ev = EulerManufacturedSolution(1.0,

1.0, 0.15, -0.1, 1.0, 0.5,

1.0e5 , 0.2e5, 0.5e5, 2.0, 1.0,

800.0, 50.0, -30.0, 1.5, 0.6,

800.0, -75.0, 40.0, 0.5, 2.0/3.0)

def ref_function(x, y, z, t):

rho = ev.calculate_rho(x, y)

p = ev.calculate_p(x, y)

T = p / (rho*R_air)

u = ev.calculate_u(x, y)

v = ev.calculate_v(x, y)

return {"rho":rho , "p":p, "T":T, "vel.x":u, "vel.y":v}

42.6 Notes

• This simulation required 1 min, 18 sec on a single core of a Pentium 1.6 GHz proces-

sor to reach a final time of 20 ms in 1092 steps.

264

43 Method of manufactured solutions – Viscous flow

This extends the method of manufactured solutions as a code verification exercise to

viscous flow. If you thought that the user-defined source terms for the Euler case (Sec-

tion 42) were ugly, the viscous terms are so bad we no longer look at them. Here all of

the source-term code is machine generated, principally by the SymPy computer algebra

system (http://sympy.org).

Figure 105: Density and error-in-density fields for the steady-state solution for the viscous
(case=2) Method of Manufactured Solutions.

Note the smooth solution for the density field but the pattern of errors hinting at the

4 blocks used in this simulation. With respect to interior points in a block, the viscous

terms are estimated with fewer data along the edges and at the corners.

Rowan might like to add his convergence plots here...

265

http://sympy.org

43.1 Input script (.py)

mms.py

This file can be used to simulate the

Method of Manufactured Solutions test case.

#

Author: Rowan J. Gollan

Updated: 05-Feb -2008

Generalized to the viscous case by PJ, June 2011.

#

Read some case parameters from a fixed file format.

fp = open(’case.txt ’, ’r’);

case_str = fp.readline (). strip()

case = int(case_str)

flux_calc_str = fp.readline (). strip()

flux_calc = fluxcalcIndexFromName[flux_calc_str]

x_order_str = fp.readline (). strip()

x_order = int(x_order_str)

blocking = fp.readline (). strip()

nn_str = fp.readline ()

nn = int(nn_str)

fp.close ()

gdata.title = "Method of Manufactured Solutions , Case=%d." % case

select_gas_model(fname=’very -viscous -air.lua ’)

p0 = 1.0e5

T0 = p0 / 287.0 # rho0 = 1.0

if case == 1 or case == 3:

Supersonic inviscid flow

u0 = 800.0; v0 = 800.0

gdata.viscous_flag = 0

elif case == 2 or case == 4:

Subsonic viscous flow

u0 = 70.0; v0 = 90.0

gdata.viscous_flag = 1

else:

print "UNKNOWN CASE"

sys.exit()

initial = FlowCondition(p=p0 , u=u0, v=v0, T=T0 , massf =[1.0 ,])

a = Node (0.0, 0.0, label="a")

b = Node (1.0, 0.0, label="b")

c = Node (0.0, 1.0, label="c")

d = Node (1.0, 1.0, label="d")

if case == 1 or case == 3:

bc_list = [ExtrapolateOutBC(x_order =1), ExtrapolateOutBC(x_order =1),

UserDefinedBC ("udf -bc.lua"), UserDefinedBC ("udf -bc.lua")]

elif case == 2 or case == 4:

bc_list = [UserDefinedBC ("udf -bc.lua"),]*4

if blocking == ’single ’:

blk = Block2D(make_patch(Line(c,d), Line(b,d), Line(a,b), Line(a,c)),

nni=nn , nnj=nn ,

bc_list=bc_list ,

fill_condition=initial , label="blk")

elif blocking == ’multi ’:

blk = SuperBlock2D(make_patch(Line(c,d), Line(b,d), Line(a,b), Line(a,c)),

nni=nn , nnj=nn , nbi=4, nbj=4,

bc_list=bc_list ,

fill_condition=initial , label="blk")

else:

print "UNKOWN BLOCKING SELECTION:", blocking

sys.exit()

gdata.udf_file = "udf -source.lua"

gdata.udf_source_vector_flag = 1

266

gdata.flux_calc = flux_calc

gdata.x_order = x_order

if case == 1 or case == 3:

gdata.max_time = 60.0e-3

gdata.max_step = 1000000

gdata.dt = 1.0e-6

gdata.cfl = 0.5

elif case == 2 or case == 4:

gdata.max_time = 150.0e-3

gdata.max_step = 3000000

gdata.dt = 1.0e-7

gdata.cfl = 0.5

For the verification tests ,

do NOT use the limiters

gdata.apply_limiter_flag = 0

gdata.extrema_clipping_flag = 0

gdata.stringent_cfl = 1

gdata.dt_plot = gdata.max_time /20.0

267

43.2 Boundary condition file (.lua)

-- Lua script for the boundaries of a Manufactured Solution

--

-- Author: Rowan J. Gollan

-- Date: 04-Feb -2008

-- Generalised by PJ, May -June -2011

pi = math.pi

cos = math.cos

sin = math.sin

exp = math.exp

L = 1.0

R = 287.0

gam = 1.4

file = io.open("case.txt", "r")

case = file:read ("*n")

file:close()

if case == 1 or case == 3 then

-- Supersonic flow

rho0 =1.0; rhox =0.15; rhoy =-0.1; rhoxy =0.0; arhox =1.0; arhoy =0.5; arhoxy =0.0;

u0 =800.0; ux =50.0; uy= -30.0; uxy =0.0; aux =1.5; auy =0.6; auxy =0.0;

v0 =800.0; vx= -75.0; vy =40.0; vxy =0.0; avx =0.5; avy =2.0/3; avxy =0.0;

p0=1.0e5; px=0.2e5; py=0.5e5; pxy =0.0; apx =2.0; apy =1.0; apxy =0.0

end

if case == 2 or case == 4 then

-- Subsonic flow

rho0 =1.0; rhox =0.1; rhoy =0.15; rhoxy =0.08; arhox =0.75; arhoy =1.0; arhoxy =1.25;

u0 =70.0; ux=4.0; uy= -12.0; uxy =7.0; aux =5.0/3; auy =1.5; auxy =0.6;

v0 =90.0; vx= -20.0; vy =4.0; vxy = -11.0; avx =1.5; avy =1.0; avxy =0.9;

p0=1.0e5; px=-0.3e5; py=0.2e5; pxy=-0.25e5; apx =1.0; apy =1.25; apxy =0.75

end

w0=0.0

if case == 1 or case == 2 then

function S(x, y) return 1.0 end

else

function S(x, y)

rsq = (x - L/2)^2 + (y - L/2)^2

return exp (-16.0* rsq/(L*L))

end

end

function rho(x, y)

return rho0 + S(x,y)*rhox*sin(arhox*pi*x/L) + S(x,y)*rhoy*cos(arhoy*pi*y/L)

+ S(x,y)* rhoxy*cos(arhoxy*pi*x*y/(L*L))

end

function u(x, y)

return u0 + S(x,y)*ux*sin(aux*pi*x/L) + S(x,y)*uy*cos(auy*pi*y/L)

+ S(x,y)*uxy*cos(auxy*pi*x*y/(L*L))

end

function v(x, y)

return v0 + S(x,y)*vx*cos(avx*pi*x/L) + S(x,y)*vy*sin((avy*pi*y)/L)

+ S(x,y)*vxy*cos(avxy*pi*x*y/(L*L))

end

function p(x, y)

return p0 + S(x,y)*px*cos((apx*pi*x)/L) + S(x,y)*py*sin(apy*pi*y/L)

+ S(x,y)*pxy*sin(apxy*pi*x*y/(L*L))

end

function fill_table(t, x, y)

t.p = p(x, y)

268

t_rho = rho(x, y)

t.u = u(x, y)

t.v = v(x, y)

t.w = 0.0

t.T = {}

t.T[0] = t.p/(t_rho*R) -- temperature , K

t.massf = {} -- mass fractions to be provided as a table

t.massf [0] = 1.0 -- mass fractions are indexed from 0 to nsp -1

t.Tvib = {} -- vibrational temperatures also indexed from 0

return t

end

function ghost_cell(args)

-- Function that returns the flow states for a ghost cells.

-- For use in the inviscid flux calculations.

--

-- args contains {t, x, y, z, csX , csY , csZ , i, j, k, which_boundary}

-- Set constant conditions across the whole boundary.

x = args.x; y = args.y

i = args.i; j = args.j; k = args.k

ghost1 = {}

ghost2 = {}

if args.which_boundary == NORTH then

cell = sample_flow(block_id , i, j+1, k)

ghost1 = fill_table(ghost1 , cell.x, cell.y)

cell = sample_flow(block_id , i, j+2, k)

ghost2 = fill_table(ghost2 , cell.x, cell.y)

elseif args.which_boundary == SOUTH then

cell = sample_flow(block_id , i, j-1, k)

ghost1 = fill_table(ghost1 , cell.x, cell.y)

cell = sample_flow(block_id , i, j-2, k)

ghost2 = fill_table(ghost2 , cell.x, cell.y)

elseif args.which_boundary == EAST then

cell = sample_flow(block_id , i+1, j, k)

ghost1 = fill_table(ghost1 , cell.x, cell.y)

cell = sample_flow(block_id , i+2, j, k)

ghost2 = fill_table(ghost2 , cell.x, cell.y)

else -- WEST

cell = sample_flow(block_id , i-1, j, k)

ghost1 = fill_table(ghost1 , cell.x, cell.y)

cell = sample_flow(block_id , i-2, j, k)

ghost2 = fill_table(ghost2 , cell.x, cell.y)

end

return ghost1 , ghost2

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

--

-- args contains {t, x, y, z, csX , csY , csZ , i, j, k, which_boundary}

x = args.x; y = args.y

face = {}

face.u = u(x, y)

face.v = v(x, y)

face_p = p(x, y)

face_rho = rho(x, y)

face.w = 0.0

face.T = {}

face.T[0] = face_p /(face_rho*R)

face.massf = {}

face.massf [0] = 1.0

return face

end

269

43.3 Source term file (.lua)

The source terms are generated with the aid of the SymPy computer algebra system and

inserted into the following template. The expressions for fmass, fxmom, fymom, and fe

turn out to be 10, 23, 23 and 124 lines of 80-column text.21

-- udf -source -template.lua

-- Lua template for the source terms of a Manufactured Solution.

--

-- PJ, 29-May -2011

-- RJG , 06-Jun -2014

-- Declared maths functions as local

-- dummy functions to keep eilmer3 happy

function at_timestep_start(args) return nil end

function at_timestep_end(args) return nil end

local sin = math.sin

local cos = math.cos

local exp = math.exp

local pi = math.pi

function source_vector(args , cell)

src = {}

x = cell.x

y = cell.y

<insert -source -terms -here >

src.mass = fmass

src.momentum_x = fxmom

src.momentum_y = fymom

src.momentum_z = 0.0

src.total_energy = fe

src.species = {}

src.species [0] = src.mass

return src

end

The Python script to do the real work is:

Author: Rowan J. Gollan

Place: The University of Queensland , Brisbane , Australia

Date: 06-Jun -2014

#

This script is used to generate the analytical source

terms required to run the Method of Manufactured Solutions

test case. The generated code is in Fortran95 and it can

be converted to Lua with a separate script.

#

This is an exercise in using sympy to generate the source

terms. It is a transliteration of PJ’s original work

done using Maxima.

from sympy import *

from analytic_solution import *

Rgas , g, Prandtl , Cv, Cp = symbols(’Rgas g Prandtl Cv Cp ’)

Rgas = 287.0

g = 1.4

Prandtl = 1.0

Cv = Rgas/(g-1)

21For the Maxima generated version. The SymPy version is similar but the source text is no longer
wrapped at 80 characters.

270

Cp = g*Cv

mu, k = symbols(’mu k’)

mu = 10.0

k = Cp*mu/Prandtl

if case == 1 or case == 3:

mu = 0.0

k = 0.0

Thermodynamic behvaiour , equation of state and energy equation

e, T, et = symbols(’e T et ’)

e = p/rho/(g-1)

T = e/Cv

et = e + u*u/2 + v*v/2

Heat flux

qx, qy = symbols(’qx qy ’)

qx = -k*diff(T, x)

qy = -k*diff(T, y)

Shear stress

tauxx , tauyy , tauxy = symbols(’tauxx tauyy tauxy ’)

tauxx = 2./3* mu*(2* diff(u, x) - diff(v, y))

tauyy = 2./3* mu*(2* diff(v, y) - diff(u, x))

tauxy = mu*(diff(u, y) + diff(v, x))

Navier -Stokes equations in conservative form

t, fmass , fxmom , fymom , fe = symbols(’t fmass fxmom fymom fe ’)

fmass = diff(rho , t) + diff(rho*u, x) + diff(rho*v, y)

fxmom = diff(rho*u, t) + diff(rho*u*u+p-tauxx , x) + diff(rho*u*v-tauxy , y)

fymom = diff(rho*v, t) + diff(rho*v*u-tauxy , x) + diff(rho*v*v+p-tauyy , y)

fe = diff(rho*et, t) + diff(rho*u*et+p*u-u*tauxx -v*tauxy+qx , x) + diff(rho*v*et+p*v-u*tauxy -v*tauyy+qy , y)

if __name__ == ’__main__ ’:

import re

from sympy.utilities.codegen import codegen

print ’Generating manufactured source terms.’

[(f_name , f_code), (h_name , f_header)] = codegen(

[(" fmass", fmass), ("fxmom", fxmom), ("fymom", fymom), ("fe", fe)],

"F95", "test", header=False)

Convert F95 to Lua code

This is heavily borrowed PJ ’s script: f90_to_lua.py

First we ’ll do some replacements

f_code = f_code.replace(’**’, ’^’)

f_code = f_code.replace(’d0’, ’’)

Now we’ll break into lines so that we can completely remove

some lines and tidy others

lines = f_code.split(’\n’)

lines [:] = [l.lstrip () for l in lines if (not l.startswith(’REAL*8’) and

not l.startswith(’implicit ’) and

not l.startswith(’end ’))]

Now reassemble but collect the split lines into a large line

buf = ""

f_code = ""

for i,l in enumerate(lines):

if l.endswith (’&’):

buf = buf + l[:-2]

else:

if buf == "":

f_code = f_code + l + ’\n’

else:

f_code = f_code + buf + l + ’\n’

buf = ""

Keep a tally of lines that end with an open function call

so that we can fix these

fn_list = [’cos ’, ’sin ’, ’exp ’]

open_call_lines = []

for i,l in enumerate(lines):

for fn in fn_list:

if l.endswith(fn + ’ ’):

open_call_lines.append(i)

follow_on_lines = [i+1 for i in open_call_lines]

271

Now rebuild as a single string

For the special lines with open function

calls , we’ll append the following.

For all other lines , we add them just

as they are.

f_code = ""

for i,l in enumerate(lines):

if i in open_call_lines:

f_code += l[:-1] + lines[i+1]. lstrip () + ’\n’

elif i in follow_on_lines:

continue

else:

f_code += l + ’\n’

fin = open(’udf -source -template.lua ’, ’r’)

template_text = fin.read()

fin.close()

lua_text = template_text.replace(’<insert -source -terms -here >’,

f_code)

fout = open(’udf -source.lua ’, ’w’)

fout.write(lua_text)

fout.close()

print ’Done converting to Lua.’

272

Also, a user-defined gas model is needed so that a very large value for viscosity can be

specified:

-- very -viscous -air.lua

--

-- User -defined gas model adapted from Rowan ’s example

-- PJ , 08-Jun -2011

-- Mandatory , set nsp and nmodes

model = ’user -defined ’

nsp = 1

nmodes = 1

-- Local parameters for model

local R0 = 8.31451

local R = 287.0

local gamma = 1.4

local C_v = R / (gamma - 1)

local C_p = R + C_v

local mu0 = 1.0e1

local Pr = 1.0

local k0 = mu0 * C_p / Pr

-- Local helper functions

local sqrt , pow = math.sqrt , math.pow

local function sound_speed(gamma , R, T)

return sqrt(gamma*R*T)

end

-- Mandatory function:

function eval_thermo_state_rhoe(Q)

-- Assume rho and e[0] are given , compute the

-- remaining thermodynamic variables.

-- Remember: we need to access the temperature

-- and energy as the 0th entry in an array

-- of possible energies/temperatures.

Q.T[0] = Q.e[0]/ C_v

Q.p = Q.rho*R*Q.T[0]

Q.a = sound_speed(gamma , R, Q.T[0])

-- Pass back the updated table

return Q

end

function eval_transport_coefficients(Q)

-- Assume that all pertinent values in Q are

-- at the correct state. In this particular

-- model , viscosity and thermal conductivity

-- are constants.

Q.mu = mu0

Q.k[0] = k0

return Q

end

function molecular_weight(isp)

-- PJ added July 2010

return R0/R

end

function eval_diffusion_coeficients(Q)

-- PJ added July 2010

Q.D_AB [0][0] = 0.0

return Q

end

273

43.4 Shell scripts

The coordination of the scripts to generate the simupation input files is handled at prepa-

ration stage.

#!/ bin/bash

python make_source_terms.py

cp mms -regular.py mms.py

e3prep.py --job=mms

And, since we’re is a hurry and have a nice new quad-core machine at home, we use the

MPI version of the code to run the simulation.

#!/ bin/bash

time mpirun -np 16 e3mpi.exe --job=mms --run

As for the simpler Euler case (Section 42), the postprocessing script shows features of the

post-processor that allow one to compare one solution with another (in order to check

convergence to steady state) and also to report the norms of the differences between the

computed solution and a reference solution described by a Python file.

#!/ bin/bash

echo "Check that simulation has converged by comparing solution instances :"

e3post.py --job=mms --tindx=6 --gmodel -file="very -viscous -air.lua" \

--compare -job=mms --compare -tindx =20

e3post.py --job=mms --tindx=7 --gmodel -file="very -viscous -air.lua" \

--compare -job=mms --compare -tindx =20

echo "--"

echo "Check simulation against analytical data:"

e3post.py --job=mms --tindx =20 --gmodel -file="very -viscous -air.lua" \

--ref -function=analytic_solution.py \

--global -norm -list="rho ,L2"

echo "--"

echo "Generate VTK files for plotting :"

e3post.py --job=mms --tindx =20 --gmodel -file="very -viscous -air.lua" \

--vtk -xml

274

43.5 Python reference-function files

analytic_solution.py

Python version of the analytic solution described in Appendix A of

C.J. Roy , C.C. Nelson , T.M. Smith and C.C. Ober

Verification of Euler/Navier -Stokes codes using the method

of manufactured solutions.

Int J for Numerical Methods in Fluids 2004; 44:599 -620

#

PJ, 28-May -2011

It essentially Rowan ’s code with more and renamed variables

to bring it closer to the original paper.

PJ, 30-June -2012

Scale the disturbance to reduce its magnitude away from the centre.

RJG , 06-June -2014

Re-worked completely to use sympy

from sympy import *

R_air = 287.0

Read case no.

fp = open(’case.txt ’, ’r’);

case_str = fp.readline (). strip()

case = int(case_str)

fp.close ()

constants

L = 1.0

if case == 1 or case == 3:

Supersonic flow

rho0 =1.0; rhox =0.15; rhoy =-0.1; rhoxy =0.0; arhox =1.0; arhoy =0.5; arhoxy =0.0;

u0 =800.0; ux =50.0; uy= -30.0; uxy =0.0; aux =1.5; auy =0.6; auxy =0.0;

v0 =800.0; vx= -75.0; vy =40.0; vxy =0.0; avx =0.5; avy =2.0/3; avxy =0.0;

p0=1.0e5; px=0.2e5; py=0.5e5; pxy =0.0; apx =2.0; apy =1.0; apxy =0.0

if case == 2 or case == 4:

Subsonic flow

rho0 =1.0; rhox =0.1; rhoy =0.15; rhoxy =0.08; arhox =0.75; arhoy =1.0; arhoxy =1.25;

u0 =70.0; ux=4.0; uy= -12.0; uxy =7.0; aux =5.0/3; auy =1.5; auxy =0.6;

v0 =90.0; vx= -20.0; vy =4.0; vxy = -11.0; avx =1.5; avy =1.0; avxy =0.9;

p0=1.0e5; px=-0.3e5; py=0.2e5; pxy=-0.25e5; apx =1.0; apy =1.25; apxy =0.75

x, y, rho , u, v, p, S = symbols(’x y rho u v p S’)

if case == 1 or case == 2:

S = 1.0

else:

S = exp (-16.0*((x-L/2)*(x-L/2) + (y-L/2)*(y-L/2))/(L*L))

rho = rho0 + S*rhox*sin(arhox*pi*x/L) + S*rhoy*cos(arhoy*pi*y/L) + \

S*rhoxy*cos(arhoxy*pi*x*y/(L*L));

u = u0 + S*ux*sin(aux*pi*x/L) + S*uy*cos(auy*pi*y/L) + S*uxy*cos(auxy*pi*x*y/(L*L));

v = v0 + S*vx*cos(avx*pi*x/L) + S*vy*sin(avy*pi*y/L) + S*vxy*cos(avxy*pi*x*y/(L*L));

p = p0 + S*px*cos(apx*pi*x/L) + S*py*sin(apy*pi*y/L) + S*pxy*sin(apxy*pi*x*y/(L*L));

def ref_function(x1 , y1, z1, t):

inp = {x:x1, y:y1}

rho1 = rho.subs(inp). evalf()

p1 = p.subs(inp).evalf()

T1 = p1/(rho1*R_air)

u1 = u.subs(inp).evalf()

v1 = v.subs(inp).evalf()

return {"rho":rho1 , "p":p1, "T":T1, "vel.x":u1, "vel.y":v1}

if __name__ == "__main__ ":

pt = {x:0.5, y:0.5}

print ’rho=’, rho.subs(pt).evalf(), \

’u=’, u.subs(pt). evalf(), \

’v=’, v.subs(pt). evalf(), \

’p=’, p.subs(pt). evalf()

275

43.6 Notes

• This simulation requires more than 14 minutes on a single core of an AMD Phenom

II processor to reach a final time of 80 ms in 6803 steps. With 4 cores running MPI,

the wall-clock time is about 4 minutes.

276

44 Oblique detonation wave

RJG’s oblique detonation wave as a code verification exercise for the interaction of finite-

rate chemistry and gas dynamics. The specified (nonlinear) shape of the ramp should

result in a straight shock when the gas is reacting. This also shows a use of the user-

defined source terms to activate the finite-rate chemical reactions.

x

-0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75

y

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

a b

c

d e f

blk-0

EXTRAPOLATE_OUT

SLIP_WALL

S
U
P
_I
N

blk-1

EXTRAPOLATE_OUT

E
X
T
R
A
P
O
L
A
T
E
_O

U
T

SLIP
_WA

LL

Figure 106: Layout for the oblique detonation wave simulation.

277

Figure 107: Pressure and temperature-difference fields for the steady-state solution. The
temperature difference is the computed flow temperature minus the analytic solution
temperature.

44.1 Input script (.py)

odw.py

#

A Python input file to describe the oblique

detonation wave used as a verification case.

#

This Python file prepared by...

Rowan J Gollan

and adjusted for the new geometry spec by PJ (Aug -06)

17-May -2009: updated for Eilmer3 by RJG

Read discretisation from a fixed file format.

fp = open(’case.txt ’, ’r’)

nn_str = fp.readline (). strip()

nn = int(nn_str)

gdata.title = "The oblique detonation wave verification case."

select_gas_model(fname ="binary -gas.lua")

inflow = FlowCondition(p=86.1e3, u=964.302 , v=0.0, T=[300.0] , massf =[1.0 , 0.0])

initial = FlowCondition(p=28.7e3 , u=0.0, v=0.0, T=[300.0] , massf =[1.0, 0.0])

#

Geometry

xmin = -0.25

xmax = 1.75

ymin = 0.0

ymax = 2.0

nnx = nn

nny = nn

from oblique_detonation import *

from math import pi

od = ObliqueDetonation(pi/4.0, 300.0, 3.0, 1.0)

wall = PyFunctionPath(od.create_wall_function (0.0, xmax))

a = Node(xmin , 0.0, label="a")

b = Node (0.0, 0.0, label="b")

c = Node(wall.eval (1.0).x, wall.eval (1.0).y, label ="c")

278

d = Node(xmin , ymax , label ="d")

e = Node (0.0, ymax , label="e")

f = Node(xmax , ymax , label ="f")

south0 = Line(a, b)

west0 = Line(a, d)

south1 = wall

east0west1 = Line(b, e)

east1 = Line(c, f)

north0 = Line(d, e)

north1 = Line(e, f)

nnx0 = int (0.125* nnx)

nnx1 = nnx - int (0.125* nnx)

blk_0 = SuperBlock2D(

psurf=make_patch(north0 , east0west1 , south0 , west0),

nni=nnx0 , nnj=nny ,

nbi=1, nbj=8,

bc_list =[ExtrapolateOutBC(x_order =1), AdjacentBC (), SlipWallBC (), SupInBC(inflow)],

fill_condition=inflow ,

label="blk -0"

)

blk_1 = SuperBlock2D(

psurf=make_patch(north1 , east1 , south1 , east0west1),

nni=nnx1 , nnj=nny ,

nbi=7, nbj=8,

bc_list =[ExtrapolateOutBC(x_order =1), ExtrapolateOutBC(x_order =1), SlipWallBC (), AdjacentBC ()],

fill_condition=inflow ,

label="blk -1"

)

identify_block_connections ()

Simulate the reaction between reactants

to form products by giving an appropriate

user -defined source vector

gdata.udf_file = "udf -source.lua"

gdata.udf_source_vector_flag = 1

Do a little more setting of global data.

gdata.flux_calc = AUSMDV

gdata.max_time = 2.0e-2 # seconds

gdata.max_step = 300000

gdata.dt = 1.0e-6

gdata.dt_plot = gdata.max_time /40.0

gdata.dt_history = 10.0e-5

Values to make the SVG look good

sketch.xaxis (-0.25, 1.75, 0.25, -0.06)

sketch.yaxis (0.0, 2.0, 0.25, -0.06)

sketch.window (-0.25, 0.0, 1.75, 2.0, 0.05, 0.05, 0.17, 0.17)

44.2 gas-model file (binary-gas.lua)

-- Auto -generated by gasfile on: 17-May -2009 20:49:48

-- and edited manually by PJ , 21-Jan -2010

model = ’composite gas ’

equation_of_state = ’perfect gas ’

thermal_behaviour = ’constant specific heats ’

sound_speed = ’equilibrium ’

mixing_rule = ’Wilke ’

diffusion_coefficients = ’hard sphere ’

ignore_mole_fraction = 1.0e-15

species = {’A’, ’B’, }

279

A = {}

A.atomic_constituents = {}

A.charge = 0

A.M = {

value = 8.31451/287.0 ,

reference = "Powers and Aslam , artifical gas.",

description = "molecular mass",

units = "kg/mol",

}

A.gamma = {

value = 1.2,

reference = "Powers and Aslam , artificial gas.",

description = "(ideal) ratio of specific heats at room temperature",

units = "non -dimensional",

}

A.d = {

value = 3.617e-10,

reference = "Bird , Stewart and Lightfoot (2001) , p. 864",

description = "air value: equivalent hard -sphere diameter , sigma from L-J parameters",

units = "m",

}

A.e_zero = {

value = 0,

description = "reference energy",

units = "J/kg",

}

A.q = {

value = 0,

description = "heat release",

units = "J/kg",

}

A.viscosity = {

parameters = {

T_ref = 273,

ref = "Table 1-2, White (2006)" ,

S = 111,

mu_ref = 1.716e-05,

},

model = "Sutherland",

}

A.thermal_conductivity = {

parameters = {

S = 194,

ref = "Table 1-3, White (2006)" ,

k_ref = 0.0241 ,

T_ref = 273,

},

model = "Sutherland",

}

B = {}

B.atomic_constituents = {}

B.charge = 0

B.M = {

value = 8.31451/287.0 ,

reference = "Powers and Aslam , artifical gas.",

description = "molecular mass",

units = "kg/mol",

}

B.gamma = {

value = 1.2,

reference = "Powers and Aslam , artificial gas.",

description = "(ideal) ratio of specific heats at room temperature",

units = "non -dimensional",

}

B.d = {

value = 3.617e-10,

reference = "Bird , Stewart and Lightfoot (2001) , p. 864",

description = "air value: equivalent hard -sphere diameter , sigma from L-J parameters",

units = "m",

}

B.e_zero = {

value = 0,

280

description = "reference energy",

units = "J/kg",

}

B.q = {

value = 300000 ,

description = "heat release",

units = "J/kg",

}

B.viscosity = {

parameters = {

T_ref = 273,

ref = "Table 1-2, White (2006)" ,

S = 111,

mu_ref = 1.716e-05,

},

model = "Sutherland",

}

B.thermal_conductivity = {

parameters = {

S = 194,

ref = "Table 1-3, White (2006)" ,

k_ref = 0.0241 ,

T_ref = 273,

},

model = "Sutherland",

}

44.3 Source term file (.lua)

The source terms are used to activate the chemical reaction.

-- Lua script for the source terms

-- of a Manufactured Solution which

-- treats Euler flow.

--

-- Author: Rowan J. Gollan

-- Date: 04-Feb -2008

-- dummy functions to keep eilmer3 happy

function at_timestep_start(args) return nil end

function at_timestep_end(args) return nil end

local T_i = 362.58

local alpha = 1000

-- Heaviside step function

local function H(T)

if T >= T_i then

return 1

else

return 0

end

end

function source_vector(args , cell)

src = {}

src.mass = 0

src.momentum_x = 0

src.momentum_y = 0

src.momentum_z = 0

src.total_energy = 0

src.species = {}

src.species [0] = -alpha*cell.rho*cell.massf [0]*H(cell.T[0])

src.species [1] = alpha*cell.rho*cell.massf [0]*H(cell.T[0])

return src

end

281

44.4 Shell scripts

#!/ bin/bash

prep_simulation.sh

e3prep.py --job=odw --do -svg

#!/ bin/bash

run_simulation.sh

time e3shared.exe --job=odw --run

The postprocessing script shows features of the post-processor that allow one to compare

one solution with a reference solution described by a Python file.

#!/ bin/bash

e3post.py --job=odw --ref -function=odw -ref -function.py --gmodel -file="binary -gas.lua" --tindx =9999

44.5 Python reference function files

odw_analytical.py

#

Small script to help the mbcns_verify.py find

the correct solution function.

from oblique_detonation import *

from math import pi

od = ObliqueDetonation(pi/4.0, 300.0, 3.0, 1.0)

def ref_function(x, y, z, t):

x1, y1 , rho , p, T, f, u, v, X, Y = od.solution(x, y)

return {"rho":rho , "T[0]":T,

"vel.x":u, "vel.y":v,

"massf [0]":f[0], "massf [1]":f[1]}

#!/ usr/bin/env python

oblique_detonation.py

#

This Python script contains a class

which encapsulates the analytical

solution for an oblique detonation wave.

#

The analytical solution was originally published

by Powers and Stewart (1992) and then re-presented

as a verfication test case by Powers and Aslam (2006).

282

The form of the solution is easier to interpret

in the 2006 paper.

#

References:

#

1. Powers , J.M. and Stewart , D.S. (1992)

Approximate solutions for oblique detonations

in the hypersonic limit.

AIAA Journal , 30:3 pp. 726--736

#

2. Powers , J.M and Aslam , T.D. (2006)

Exact solution for multidimensional compressible

reactive flow for verifying numerical algorithms

AIAA Journal , 44:2 pp. 337--344

#

This Python script was created by...

Rowan J Gollan

23-Jul -2006

#

from math import cos , sin , sqrt , pow , log , fabs

from cfpylib.nm.zero_solvers import secant

from libprep3 import *

class ObliqueDetonation:

def __init__(self , beta , T1, M1, rho1 ,

R=287.0 , alpha =1000.0 , gamma =6.0/5.0 ,

q=300000.0):

self.beta = beta

self.T1 = T1

self.M1 = M1

self.rho1 = rho1

self.R = R

self.alpha = 1000.0

self.gamma = gamma

self.q = q

self.p1 = rho1*R*T1

self.a1 = sqrt(gamma * R * T1)

self.u1 = self.M1 * self.a1

self.v1 = 0.0

self.V = self.u1 * cos(self.beta)

def get_V(self):

return self.V

def calculate_X(self , lmbda):

MsinBeta2 = (self.M1 * sin(self.beta))**2

a1 = (1.0/ ((self.gamma + 1.0) * self.M1 * sin(self.beta))) * (self.a1 / self.alpha)

a2 = 1.0 + self.gamma * MsinBeta2

a3 = MsinBeta2 - 1.0

a4 = ((2.0 * MsinBeta2) / (MsinBeta2 - 1)**2) * ((self.gamma **2 - 1.0) / self.gamma) \

* (self.q / (self.R*self.T1))

OneMinusA4L = 1.0 - a4*lmbda

OneMinusA4 = 1.0 - a4

t1 = 2.0*a3*(sqrt(OneMinusA4L) - 1.0)

t2 = pow((1.0/(1.0 - lmbda)), a2)

t3 = 1.0 - sqrt((OneMinusA4L)/(OneMinusA4))

t4 = 1.0 + sqrt(1.0 / OneMinusA4)

t5 = 1.0 + sqrt((OneMinusA4L)/(OneMinusA4))

t6 = 1.0 - sqrt(1.0 / OneMinusA4)

X = a1 * (t1 + log(t2 * pow((t3*t4) / (t5*t6) , a3*sqrt(OneMinusA4))))

return X

def calculate_rho(self , lmbda):

MsinBeta2 = (self.M1 * sin(self.beta))**2

t1 = self.rho1 * (self.gamma + 1.0) * MsinBeta2

t2 = 1.0 + self.gamma * MsinBeta2

t3 = t2*t2

t4 = (self.gamma + 1.0)* MsinBeta2

283

t5 = ((self.gamma - 1.0)/ self.gamma) * (2.0* lmbda*self.q / (self.R*self.T1))

t6 = (self.gamma - 1.0)* MsinBeta2

rho = t1 / (t2 - sqrt(t3 - t4 * (2.0 + t5 + t6)))

return rho

def calculate_U(self , lmbda , rho):

U = self.rho1 * self.u1 * sin(self.beta) / rho

return U

def calculate_T(self , lmbda , rho):

t1 = self.p1 / (rho*self.R)

t2 = (self.rho1*self.u1*sin(self.beta))**2 / (rho*self.R)

t3 = 1.0/ self.rho1 - 1.0/ rho

T = t1 + t2*t3

return T

def calculate_p(self , lmbda , rho):

t2 = (self.rho1*self.u1*sin(self.beta))**2

t3 = 1.0/ self.rho1 - 1.0/ rho

p = self.p1 + t2 * t3

return p

def calculate_Yw(self , lmbda):

Yw = (self.u1*cos(self.beta) / self.alpha) * log(1.0 / (1.0 - lmbda))

return Yw

def transform_xy_2_XY(self , x, y):

X = x * sin(self.beta) - y * cos(self.beta)

Y = x * cos(self.beta) + y * sin(self.beta)

return (X, Y)

def transform_XY_2_xy(self , X, Y):

x = X * sin(self.beta) + Y * cos(self.beta)

y = Y * sin(self.beta) - X * cos(self.beta)

return (x, y)

def transform_UV_2_uv(self , U, V):

u = U * sin(self.beta) + V * cos(self.beta)

v = V * sin(self.beta) - U * cos(self.beta)

return (u, v)

def find_XYw_from_x(self , x):

def f(lmbda):

X = self.calculate_X(lmbda)

Yw = self.calculate_Yw(lmbda)

(xg , yg) = self.transform_XY_2_xy(X, Yw)

return (x - xg)

lmbda = secant(f, 0.0, 0.999, limits =[0.0, 0.999])

X = self.calculate_X(lmbda)

Yw = self.calculate_Yw(lmbda)

return (X, Yw)

def create_test_spline(self , xmin , xmax , no_points):

dx = (xmax - xmin) / (no_points - 1.0)

(X, Yw) = self.find_XYw_from_x(xmin)

(x, y) = self.transform_XY_2_xy(X, Yw)

points = [Vector(x, y)]

for i in range(no_points -2):

x = xmin + dx*(i+1)

(X, Yw) = self.find_XYw_from_x(x)

(x, y) = self.transform_XY_2_xy(X, Yw)

points.append(Vector(x, y))

(X, Yw) = self.find_XYw_from_x(xmax)

(x, y) = self.transform_XY_2_xy(X, Yw)

points.append(Vector(x, y))

284

return Spline(points)

def test_wall_spline(self , wall_spline):

no_div = 2000

dt = 1.0 / (no_div - 1.0)

sp_point = wall_spline.eval(0.0)

xs = sp_point.x

ys = sp_point.y

X, Yw = self.find_XYw_from_x(xs)

xa, ya = self.transform_XY_2_xy(X, Yw)

max_error = fabs(ya - ys)

for i in range(1, no_div):

t = dt*i

sp_point = wall_spline.eval(t)

xs = sp_point.x

ys = sp_point.y

X, Yw = self.find_XYw_from_x(xs)

xa, ya = self.transform_XY_2_xy(X, Yw)

error = fabs(ya - ys)

if error > max_error:

max_error = error

return max_error

def create_wall_spline(self , xmin , xmax , error_tol):

no_points = 70

error = 1.0

while(error > error_tol):

spline = self.create_test_spline(xmin , xmax , no_points)

error = self.test_wall_spline(spline)

no_points += 1

return spline

def create_wall_function(self , xmin , xmax):

def wall(t):

Map t --> x

x = t*(xmax - xmin)

(X, Yw) = self.find_XYw_from_x(x)

(x, y) = self.transform_XY_2_xy(X, Yw)

return (x, y, 0.0)

return wall

def solution(self , x, y):

(X, Y) = self.transform_xy_2_XY(x, y)

if(X < 0.0):

rho = self.rho1

p = self.p1

T = self.T1

f = [1.0, 0.0]

u = self.u1

v = self.v1

else:

def f(lmbda):

X = self.calculate_X(lmbda)

(xg , yg) = self.transform_XY_2_xy(X, Y)

return (x - xg)

lmbda = secant(f, 0.0, 0.999, limits =[0.0, 0.999])

rho = self.calculate_rho(lmbda)

p = self.calculate_p(lmbda , rho)

T = self.calculate_T(lmbda , rho)

U = self.calculate_U(lmbda , rho)

285

V = self.V

(u, v) = self.transform_UV_2_uv(U, V)

f = [1.0 - lmbda , lmbda]

return (x, y, rho , p, T, f, u, v, X, Y)

if __name__ == ’__main__ ’:

from math import pi

obl = ObliqueDetonation(pi/4.0, 300.0, 3.0, 1.0)

X = obl.calculate_X (0.1)

Y = obl.calculate_Yw (0.1)

(x, y) = obl.transform_XY_2_xy(X, Y)

rho = obl.calculate_rho (0.1)

p = obl.calculate_p (0.1, rho)

T = obl.calculate_T (0.1, rho)

U = obl.calculate_U (0.1, rho)

print "X(lmbda =0.1)= ", X

print "Yw(lmbda =0.1)= ", Y

print "x(lmbda =0.1)= ", x

print "y(lmbda =0.1)= ", y

print "rho(lmbda =0.1)= ", rho

print "p(lmbda =0.1)= ", p

print "T(lmbda =0.1)= ", T

print "U(lmbda =0.1)= ", U

(X, Yw) = obl.find_XYw_from_x(x)

print "X from x: ", X

print "Yw from x: ", Yw

#spline = obl.create_wall_spline (0.0, 1.75, 1.0e-5)

print "Solution at x=0.066116 , y=0.035483..."

print obl.solution(0.066116 , 0.035483)

print "Done."

44.6 Notes

• This simulation required 2 min, 20 sec on a single core of a pse-58 (HP workstation)

to reach a final time of 10 ms in 871 steps. The cpu time on busemann (Toshiba

L500 portable) was 3 min, 43 sec.

286

45 Subsonic compressor blade – sc10

Standard-condition 10 for a two-dimensional compressor blade with subsonic flow. The

main objective is to provide a solution of a transonic flow for comparison with the solution

produced by Paul Petrie-Repar’s RPMTurbo code. The geometry for this example was set

up in mbcns2 by Hannes Wojciak and Paul Petrie-Repar. The UDF boundary conditions

for a periodic boundary were later completed by PJ.

Figure 108: Overview of the flow geometry, showing the interior block boundaries and
a number of anchor points. A number of the automatically-generated labels have been
removed and others have been moved to make the diagram clearer.

45.1 Input script (.py)

"""

2D Compressor Blade Standard Condition 10

Hannes Wojciak , Paul Petrie -Repar

February 2008: Original implementation

Peter J.

March 2008: Clean -up and periodic boundary condition

03-Sep -2008: Port to Eilmer3

Peter Blyton

June 2011: Geometry cleaned up and simplified.

"""

from cfpylib.geom.path import Polyline2 , Spline2

---------------- First , set the global data ----------------------

gdata.title = "inviscid Euler for 2D-sc10"

gdata.dimensions = 2

Accept defaults for air giving R=287.1 , gamma =1.4

287

Figure 109: A further-edited diagram showing the blade surface and the arrangement of
the inner blocks. More of the anchor-points are labelled.

288

Figure 110: Mesh around the subsonic compressor blade.

Figure 111: Mach number field for flow over a subsonic compressor blade.

289

Figure 112: Pressure field for flow over a subsonic compressor blade.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

s
s
u

re
 r

a
ti
o
 p

/p
0

x, m

Standard Condition 10 M=0.7

Elmer3
RPM-Turbo

Figure 113: Pressure around the blade surface; comparison with RPM-Turbo reference
data.

290

select_gas_model(model=’ideal gas ’, species=[’air ’])

gdata.viscous_flag = 0 # inviscid simulation

gdata.gasdynamic_update_scheme = "euler"

gdata.max_time = 0.300

gdata.max_step = 800000

gdata.dt_plot = 0.020

gdata.dt = 1.0e-7

-----------flow conditions -------------------

p_tot = 100.0 e3 # Pa

T_tot = 300.0 # degree K

gma = 1.4

Rgas = 287.0 # J/kg.K

a_tot = math.sqrt(gma*Rgas*T_tot)

M_exit = 0.45

T0_T = 1 + (gma -1.0)/2.0 * M_exit * M_exit

p0_p = T0_T **(gma/(gma -1.0))

print "p0_p=", p0_p , "T0_T=", T0_T

p_exit = p_tot / p0_p

T_exit = T_tot / T0_T

u_exit = M_exit * a_tot / math.sqrt(T0_T)

print "p_exit=", p_exit , "T_exit=", T_exit , "u_exit=", u_exit

initialCond = FlowCondition(p=p_exit , u=u_exit , T=T_exit)

Mesh setup parameters

mrf = 6 # Mesh refinement factor , must be an even integer

clust_chord = RobertsClusterFunction (1, 1, 1.3) # clustering along chord

clust_blade_top = RobertsClusterFunction (1, 0, 1.05) # normal to chord , top

clust_blade_bottom = RobertsClusterFunction (0, 1, 1.05) # normal to chord , bottom

clust_LE_surface = RobertsClusterFunction (1, 0, 1.05) # along surface toward LE

clust_LE_chord = RobertsClusterFunction (0, 1, 1.02) # clustering toward LE in LE blocks

Suction and pressure surfaces of blades defined using coordinate data.

profile_SS = Spline2 (" sc10_inner1.dat")

profile_Front_up = Spline2 (" sc10_inner2.dat")

profile_Front_down = Spline2 (" sc10_inner3.dat")

profile_Front_down.reverse ()

profile_PS = Spline2 (" sc10_inner4.dat")

profile_PS.reverse ()

Nodes on and surrounding the blade surface

TE = profile_SS.eval (1.0)

TE_up = TE + Vector (-0.06, 0.12)

LE_up = Node (0.007375 , 0.038160 , label =" LE_up")

LE_out_up = Node(-0.1, 0.07, label =" LE_out_up ")

LE = Node (0.0, 0.0, label ="LE")

LE_out = Node (-0.05, -0.09, label=" LE_out ")

LE_down = Node (0.026541 , 0.015230 , label =" LE_down ")

LE_out_down = Node (0.09 , -0.07, label =" LE_out_down ")

TE_down = Node (0.75, 0.6, label =" TE_down ")

---------------path definitions -------------------

SS = Node (0.18 ,0.44) # Node for spline at SS

spline_SS = Spline ([LE_out_up ,SS,TE_up]) # outer spline at SS of profile

Fup = Node (-0.1, -0.01) # Nodes for spline in front of profile

spline_Front_up = Spline ([LE_out ,Fup ,LE_out_up]) # outer spline in front of profile

Fdown = Node (0.02 , -0.1) # Nodes for spline in front of profile

spline_Front_down = Spline ([LE_out ,Fdown ,LE_out_down]) # outer spline in front of profile

PS = Node (0.45 ,0.34) # Nodes for spline at PS of profile

spline_PS = Spline ([LE_out_down ,PS,TE_down]) # outer spline at PS of profile

---------------------- inner1 --------------------------

path_s = profile_SS

path_n = spline_SS

path_w = Line(LE_up ,LE_out_up)

path_e = Line(TE,TE_up)

cflist = [clust_chord , clust_blade_top , clust_chord , clust_blade_top]

patch = make_patch(path_n , path_e , path_s , path_w)

inner1 = Block2D(label=" inner1", nni=mrf*8, nnj=mrf , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

---------------------- inner2 --------------------------

291

path_s = Line(LE_out ,LE)

path_n = Line(LE_out_up ,LE_up)

path_w = spline_Front_up

path_e = profile_Front_up

patch = make_patch(path_n , path_e , path_s , path_w)

cflist = [clust_blade_bottom , clust_LE_surface , clust_LE_chord , None]

inner2 = Block2D(label=" inner2", nni=inner1.nnj , nnj=int(mrf *1.5) , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

---------------------- inner3 --------------------------

path_s = spline_Front_down

path_n = profile_Front_down

path_w = Line(LE_out ,LE)

path_e = Line(LE_out_down ,LE_down)

patch = make_patch(path_n , path_e , path_s , path_w)

cflist = [clust_LE_surface , clust_blade_bottom , None , clust_LE_chord]

inner3 = Block2D(label=" inner3", nni=int(mrf*1.5), nnj=inner2.nni , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

-------------------inner4 ------------

path_s = spline_PS

path_n = profile_PS

path_w = Line(LE_out_down ,LE_down)

path_e = Line(TE_down ,TE)

patch = make_patch(path_n , path_e , path_s , path_w)

cflist = [clust_chord , clust_blade_bottom , clust_chord , clust_blade_bottom]

inner4 = Block2D(label=" inner4", nni=mrf*7, nnj=inner3.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

-------------------- inflow1 -------------------

A = Node(-1.0, 0.15)

B = LE_out_up

C = Node (-0.3 ,0.5)

D = Node (-1.0 ,0.5)

path_s = Line(A,B)

path_n = Line(D,C)

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

in1 = Block2D(label="in1", nni=mrf*6, nnj=mrf*2, psurf=patch ,

fill_condition=initialCond)

in1.set_BC(WEST , USER_DEFINED , filename ="udf -subsonic -sc10.lua", label="INLET ")

in1.set_BC(NORTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

-------------------- inflow2 -------------------

A = Node (-1.0, -0.15)

B = LE_out

C = LE_out_up

D = Node(-1.0, 0.15)

path_s = Line(A,B)

path_n = Line(D,C)

path_w = Line(A,D)

path_e = spline_Front_up

patch = make_patch(path_n , path_e , path_s , path_w)

in2 = Block2D(label="in2", nni=in1.nni , nnj=inner2.nnj , psurf=patch ,

fill_condition=initialCond)

in2.set_BC(WEST , USER_DEFINED , filename ="udf -subsonic -sc10.lua", label="INLET ")

-------------------- inflow3 -------------------

A = Node (-1.0,-0.5)

AB = Node (0.0 , -0.5)

B = Node (0.05 , -0.45)

C = LE_out

D = Node (-1.0, -0.15)

path_s = Polyline2 ([A,AB ,B])

292

path_n = Line(D,C)

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

in3 = Block2D(label ="in3", nni=in2.nni , nnj=mrf*2, psurf=patch ,

fill_condition=initialCond)

in3.set_BC(WEST , USER_DEFINED , filename ="udf -subsonic -sc10.lua", label="INLET ")

in3.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

-------------------- outer1 -------------------

A = LE_out_up

B = TE_up

C = Node (0.6 ,1.1)

CD = Node (0.0 ,0.5)

D = Node (-0.3 ,0.5)

path_s = spline_SS

path_n = Polyline2 ([D,CD ,C])

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

cflist = [None , None , clust_chord , None]

outer1 = Block2D(label=" outer1", nni=inner1.nni , nnj=in1.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

outer1.set_BC(NORTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

-------------------- outer2 -------------------

A = Node (0.05 , -0.45)

B = Node (0.2 , -0.3)

C = LE_out_down

D = LE_out

path_s = Line(A,B)

path_n = spline_Front_down

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

outer2 = Block2D(label=" outer2", nni=inner3.nni , nnj=in3.nnj , psurf=patch ,

fill_condition=initialCond)

outer2.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

-------------------- outer3 -------------------

A = Node (0.2 , -0.3)

AB = Node (0.707107 ,0.207107)

B = Node (0.9 ,0.207107)

C = TE_down

D = LE_out_down

path_s = Polyline2 ([A,AB ,B])

path_n = spline_PS

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

cflist = [clust_chord , None , None , None]

outer3 = Block2D(label=" outer3", nni=inner4.nni , nnj=outer2.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

outer3.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

-------------------- outflow1 -------------------

A = TE_up

B = Node (1.707107 ,0.9)

C = Node (1.707107 ,1.207107)

CD = Node (0.707107 ,1.207107)

D = Node (0.6 ,1.1)

path_s = Line(A,B)

path_n = Polyline2 ([D,CD ,C])

path_w = Line(A,D)

path_e = Line(B,C)

293

patch = make_patch(path_n , path_e , path_s , path_w)

out1 = Block2D(label ="out1", nni=mrf*8, nnj=outer1.nnj , psurf=patch ,

fill_condition=initialCond)

out1.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label=" OUTLET ")

out1.set_BC(NORTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

-------------------- outflow2 -------------------

A = TE

B = Node (1.707107 ,0.707107 ,0.0)

C = Node (1.707107 ,0.9 ,0.0)

D = TE_up

path_s = Line(A,B)

path_n = Line(D,C)

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

cflist = [None , None , None , clust_blade_top]

out2 = Block2D(label ="out2", nni=out1.nni , nnj=inner1.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

out2.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label=" OUTLET ")

-------------------- outflow3 -------------------

A = TE_down

B = Node (1.707107 ,0.5 ,0.0)

C = Node (1.707107 ,0.707107 ,0.0)

D = TE

path_s = Line(A,B)

path_n = Line(D,C)

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

cflist = [None , None , None , clust_blade_bottom]

out3 = Block2D(label ="out3", nni=out2.nni , nnj=inner4.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

out3.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label=" OUTLET ")

-------------------- outflow4 -------------------

A = Node (0.9 ,0.207107 ,0.0)

B = Node (1.707107 ,0.207107 ,0.0)

C = Node (1.707107 ,0.5 ,0.0)

D = TE_down

path_s = Line(A,B)

path_n = Line(D,C)

path_w = Line(A,D)

path_e = Line(B,C)

patch = make_patch(path_n , path_e , path_s , path_w)

out4 = Block2D(label ="out4", nni=out3.nni , nnj=outer3.nnj , psurf=patch ,

fill_condition=initialCond)

out4.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label=" OUTLET ")

out4.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

identify_block_connections ()

#------------------- Presentation -----------------

sketch.xaxis(-1.0, 2.0, 0.5, -0.1)

sketch.yaxis(-0.5, 1.5, 0.5, -0.1)

sketch.window (-1.0, -0.5, 2.0, 2.5, 0.02, 0.02, 0.20, 0.20)

294

45.2 Boundary-condition files (.lua)

-- udf -subsonic -sc10.lua

-- Lua script for the user -defined subsonic inflow for sc10 profile

-- called by the UserDefinedGhostCell BC.

-- input parameters:

T0 = 300 -- total temp in [K]

p0 = 100.0 e3 -- total pressure [Pa]

alpha = math.rad (55) -- inflow angle [rad]

-- constants and definitions:

R = 287.0 -- gas constant [J/(kg.K)]

g = 1.4 -- ratio of specific heats [-]

Cp = g*R/(g-1) -- specific -heat , constant volume [J/(kg.K)]

h0 = Cp*T0 -- total enthalpy [J/kg]

function ghost_cell(args)

-- Function that returns the flow states for a ghost cells.

-- For use in the inviscid flux calculations.

-- Set constant conditions across the whole boundary.

cell_flow = sample_flow(block_id , args.i, args.j, args.k) -- adjacent cell properties

vel_sq = cell_flow.u^2+ cell_flow.v^2 -- square of inflow velocity [m^2/s^2]

vel = math.sqrt(vel_sq) -- inflow velocity [m/s]

M_sq = vel_sq /(h0 -0.5* vel_sq)/(g-1) -- square of Mach number [-]

ratio = 1+0.5*(g-1)* M_sq -- T0/T [-]

ghost = {}

ghost.p = p0/math.pow(ratio ,(g/(g -1))) -- pressure [Pa]

ghost.T = {}

ghost.T[0] = (h0 -0.5* vel_sq)/Cp -- temperature [K]

ghost.u = vel*math.cos(alpha) -- x-velocity [m/s]

ghost.v = vel*math.sin(alpha) -- y-velocity [m/s]

ghost.w = 0.0

ghost.massf = {} -- mass fractions to be provided as a table

ghost.massf [0] = 1.0 -- mass fractions are indexed from 0 to nsp -1

return ghost , ghost

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

return sample_flow(block_id , args.i, args.j, args.k)

end

-- udf -periodic -bc.lua

-- Lua script for the user -defined periodic BC

--

-- This particular example sets up peroidic boundary conditions

-- for the turbine -blade simulation.

-- When called , this boundary conditions looks up the flow data

-- in a cell that would overlay the ghost cell ,

-- shifted by 1 period in the y-direction.

-- We will assume that the boundary blocks are approximately aligned

-- with the x,y-axes so that we simply add or subtract the y_period value.

--

-- PJ , 07-Mar -2008

-- 03-Sep -2008 port to Elmer3

-- We will remember where we found the appropriate cells.

g1_src_blk = {}; g1_src_i = {}; g1_src_j = {}; g1_src_k = {}

g2_src_blk = {}; g2_src_i = {}; g2_src_j = {}; g2_src_k = {}

y_period = 1.0 -- as set by Hannes and Paul

function ghost_cell_position(xc , yc , xw, yw)

295

-- c represents the cell -centre

-- w represents the wall -interface position

dx = xc - xw; dy = yc - yw

return xc - 2*dx, yc - 2*dy

end

function ghost_cell(args)

-- Function that returns the flow state for a ghost cell

-- for use in the inviscid flux calculations.

i = args.i; j = args.j; k = args.k

x = args.x; y = args.y

-- old indx = j*nnj + i

indx = j * nni + i

if g1_src_blk[indx] == nil then

if args.which_boundary == NORTH then

-- Search for the cell corresponding to the ghost -cell ,

-- offset by one period.

c = sample_flow(block_id , i, j, k)

xg, yg = ghost_cell_position(c.x, c.y, x, y)

yg = yg - y_period

g1_src_blk[indx], g1_src_i[indx], g1_src_j[indx], g1_src_k[indx] =

locate_cell(xg , yg, 0.0)

-- Locate cell corresponding to second ghost cell similarly.

j = j - 1

c = sample_flow(block_id , i, j, k)

xg, yg = ghost_cell_position(c.x, c.y, x, y)

yg = yg - y_period

g2_src_blk[indx], g2_src_i[indx], g2_src_j[indx], g2_src_k[indx] =

locate_cell(xg , yg, 0.0)

elseif args.which_boundary == EAST then

print("EAST boundary should not be periodic !")

elseif args.which_boundary == SOUTH then

-- Search for the cell corresponding to the ghost -cell ,

-- offset by one period.

c = sample_flow(block_id , i, j, k)

xg, yg = ghost_cell_position(c.x, c.y, x, y)

yg = yg + y_period

g1_src_blk[indx], g1_src_i[indx], g1_src_j[indx], g1_src_k[indx] =

locate_cell(xg , yg, 0.0)

-- Locate cell corresponding to second ghost cell similarly.

j = j + 1

c = sample_flow(block_id , i, j, k)

xg, yg = ghost_cell_position(c.x, c.y, x, y)

yg = yg + y_period

g2_src_blk[indx], g2_src_i[indx], g2_src_j[indx], g2_src_k[indx] =

locate_cell(xg , yg, 0.0)

elseif args.which_boundary == WEST then

print("WEST boundary should not be periodic !")

end

-- print("indx=", indx , "g1=", g1_src_blk[indx], g1_src_i[indx], g1_src_j[indx],

-- "g2=", g2_src_blk[indx], g2_src_i[indx], g2_src_j[indx])

end

-- On subsequent calls , the array entries should be non -nil so

-- we can immediately look up the flow data.

cell1 = sample_flow(g1_src_blk[indx], g1_src_i[indx], g1_src_j[indx], g1_src_k[indx])

cell2 = sample_flow(g2_src_blk[indx], g2_src_i[indx], g2_src_j[indx], g2_src_k[indx])

return cell1 , cell2

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

return sample_flow(block_id , args.i, args.j, args.k)

end

296

45.3 Shell scripts

#! /bin/sh

sc10_prep.sh

e3prep.py --job=sc10 --do-svg

Extract the initial solution data and reformat.

e3post.py --job=sc10 --tindx=0 --vtk -xml

echo At this point , we should be ready to start the simulation.

#! /bin/sh

sc10_run.sh

Integrate the solution in time.

time e3shared.exe --job=sc10 --run

echo At this point , we should have a solution in sc10.flow.xxxx

#! /bin/sh

sc10_post.sh

2D sc10 profile , extract data and plot it.

Around the blade

e3post.py --job=sc10 --output -file=surface.dat --tindx =9999 \

--slice -list="0,:,0,0;1,-1,:,0;2,:,-1,0;3,:,-1,0"

0south 1east 2north 3north

Extract the solution data over whole flow domain and reformat.

e3post.py --job=sc10 --vtk -xml --add -mach --tindx=all

Calculate average flow properties at inlet and outlet

turbo_post.py sc10

gnuplot <<EOF

set term postscript eps 20

set output "surface_p.eps"

set title "Standard Condition 10 M=0.7"

set xlabel "x, m"

set ylabel "Pressure ratio p/p0"

#set xrange [0.05:0.8]

#set yrange [-0.6:1.0]

plot "surface.dat" using 1:(\$9 /100000) title "Eilmer3" with points , \

"rpmTurboSc10SubsonicSteady -M0.7. txt" using 2:4 title "RPM -Turbo" with points

EOF

echo At this point , we should have a plotted data.

45.4 Notes

• Run time is approximately 11600 seconds for 276720 steps on a computer with an

AMD Phenom 9650 2.7 GHz processor.

297

298

46 Subsonic compressor blade – PyFun version

This is the same flow specification as for the previous example but we directly use the func-

tional form of the Standard Configuration 10 from http://rpmturbo.com/testcases/

sc10/index.html.

In the input script, the blade surfaces are defined using PyFunctionPath objects that

receive the functions sc10 top rotated and sc10 bottom rotated. These functions are

created by rotating the original sc10 top and sc10 bottom functions by the blade stagger

angle, using the cfpylib.geom.transform pyfunc library. Shell scripts and user defined

boundary condition files are the same as for the previous example.

Figure 114: Mesh around the subsonic compressor blade.

46.1 Input scripts (.py)

"""

2D Compressor Blade Standard Condition 10 parametric setup.

Hannes Wojciak , Paul Petrie -Repar

February 2008: Original implementation.

Peter J.

March 2008: Clean -up and periodic boundary condition.

03-Sep -2008: Port to Eilmer3.

Peter Blyton

March 2011: Blade profile defined using functions , sc10_blade_profile.py.

April 2011: Block mesh set up to handle small perturbations.

June 2011: Geometry cleaned up and simplified.

"""

from sc10_blade_profile import *

299

http://rpmturbo.com/testcases/sc10/index.html
http://rpmturbo.com/testcases/sc10/index.html

Figure 115: Mach number field for flow over a subsonic compressor blade.

Figure 116: Pressure field for flow over a subsonic compressor blade.

300

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

s
s
u
re

 r
a
ti
o
 p

/p
0

x, m

Standard Condition 10 M=0.7

Elmer3
RPM-Turbo

Figure 117: Pressure around the blade surface; comparison with RPM-Turbo reference
data.

from cfpylib.geom.transform_pyfunc import rotate_pyfunc

#---

Global data

#---

gdata.title = "Inviscid Euler Simulation for 2D sc10"

gdata.t_order = 1

gdata.max_time = 0.3

gdata.max_step = 800000

gdata.dt_plot = 0.020

gdata.dt = 1.0e-7

#---

Flow conditions

#---

select_gas_model(model=’ideal gas ’, species=[’air ’])

p_tot = 100.0 e3 # Pa

T_tot = 300.0 # K

gma = 1.4

Rgas = 287.0 # J/kg.K

a_tot = math.sqrt(gma*Rgas*T_tot)

M_exit = 0.45

T0_T = 1 + (gma -1.0)/2.0 * M_exit * M_exit

p0_p = T0_T **(gma/(gma -1.0))

print "p0_p=", p0_p , "T0_T=", T0_T

p_exit = p_tot / p0_p

T_exit = T_tot / T0_T

u_exit = M_exit * a_tot / math.sqrt(T0_T)

print "p_exit=", p_exit , "T_exit=", T_exit , "u_exit=", u_exit

initialCond = FlowCondition(p=p_exit , u=u_exit , T=T_exit)

#---

Geometric parameters

#---

STAGGER_ANGLE = math.pi/4.0

PITCH = 1.0

#---

Mesh setup parameters

#---

mrf = 6 # Mesh refinement factor , must be an even integer

division = 0.03 # fraction of chord length for block division in C-mesh

clust_chord = RobertsClusterFunction (1, 1, 1.3) # clustering along chord

clust_blade_top = RobertsClusterFunction (1, 0, 1.05) # normal to chord , top

301

clust_blade_bottom = RobertsClusterFunction (0, 1, 1.05) # normal to chord , bottom

clust_LE_surface = RobertsClusterFunction (1, 0, 1.01) # along surface toward LE

clust_LE_chord = RobertsClusterFunction (0, 1, 1.01) # clustering toward LE in LE blocks

#---

General path and node setup

#---

Suction surface paths

sc10_top_rotated = rotate_pyfunc(sc10_top , "z", STAGGER_ANGLE)

profile_Front_up = PyFunctionPath(sc10_top_rotated , "", 0, division)

profile_SS = PyFunctionPath(sc10_top_rotated , "", division , 1)

Pressure surface paths

sc10_bottom_rotated = rotate_pyfunc(sc10_bottom , "z", STAGGER_ANGLE)

profile_Front_down = PyFunctionPath(sc10_bottom_rotated , "", 0, division)

profile_PS = PyFunctionPath(sc10_bottom_rotated , "", division , 1)

Nodes at leading and trailing edges

LE = profile_Front_up.eval (0.0)

LE_up = profile_SS.eval (0.0)

LE_down = profile_PS.eval (0.0)

TE = profile_SS.eval (1.0)

chord_normal = TE.clone (). rotate_about_zaxis(math.pi/2.0)

Nodes surrounding leading edge

LE_out = -0.1*TE

LE_out_up = LE_up + 0.1* chord_normal

LE_out_down = LE_down - 0.1* chord_normal

Nodes surrounding trailing edge

TE_up = TE + Vector (-0.06, 0.12)

TE_down = TE + Vector (0.06, -0.12)

Nodes bounding the flow domain

IN_top = Vector (-1.0, PITCH /2.0)

IN_bottom = Vector (-1.0, -PITCH /2.0)

LE_top = LE + Vector (0.0, PITCH /2.0)

LE_bottom = LE - Vector (0.0, PITCH /2.0)

TE_top = TE + Vector (0.0, PITCH /2.0)

TE_bottom = TE - Vector (0.0, PITCH /2.0)

OUT_top = TE_top + Vector (1.0, 0.0)

OUT_bottom = TE_bottom + Vector (1.0, 0.0)

Spline above suction surface

SS = profile_SS.eval (0.5) + 0.1* chord_normal

spline_SS = Spline ([LE_out_up , SS, TE_up])

Splines in front of leading edge

Fup = LE + Vector (-0.1, 0)

spline_Front_up = Spline ([LE_out , Fup , LE_out_up])

Fdown = LE + Vector(0, -0.1)

spline_Front_down = Spline ([LE_out , Fdown , LE_out_down])

Splines below pressure surface

PS = profile_PS.eval (0.5) - 0.12* chord_normal

spline_PS = Spline ([LE_out_down , PS, TE_down])

#---

inner1 block

#---

inner1_east = Line(TE , TE_up)

inner1_west = Line(LE_up , LE_out_up)

patch = make_patch(spline_SS , inner1_east , profile_SS , inner1_west , "AO")

cflist = [clust_chord , clust_blade_top , clust_chord , clust_blade_top]

inner1 = Block2D(label=" inner1", nni=mrf*8, nnj=mrf , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

#---

inner2 block

#---

inner2_south = Line(LE_out , LE)

patch = make_patch(inner1_west.reverse(), profile_Front_up , inner2_south , spline_Front_up)

302

cflist = [clust_blade_bottom , clust_LE_surface , clust_LE_chord , None]

inner2 = Block2D(label=" inner2", nni=inner1.nnj , nnj=int(mrf *1.5) , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

#---

inner3 block

#---

inner3_east = Line(LE_out_down , LE_down)

patch = make_patch(profile_Front_down , inner3_east , spline_Front_down , inner2_south)

cflist = [clust_LE_surface , clust_blade_bottom , None , clust_LE_chord]

inner3 = Block2D(label=" inner3", nni=int(mrf*1.5), nnj=inner2.nni , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

#---

inner4 block

#---

inner4_east = Line(TE_down , TE)

patch = make_patch(profile_PS , inner4_east , spline_PS , inner3_east)

cflist = [clust_chord , clust_blade_bottom , clust_chord , clust_blade_bottom]

inner4 = Block2D(label=" inner4", nni=mrf*7, nnj=inner3.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

#---

inflow1 block

#---

inflow1_lower_left = Vector (-1.0, 0.15)

inflow1_upper_right = Vector (-0.3, PITCH /2.0)

inflow1_north = Line(IN_top , inflow1_upper_right)

inflow1_east = Line(LE_out_up , inflow1_upper_right)

inflow1_south = Line(inflow1_lower_left , LE_out_up)

inflow1_west= Line(inflow1_lower_left , IN_top)

patch = make_patch(inflow1_north , inflow1_east , inflow1_south , inflow1_west)

inflow1 = Block2D(label=" inflow1", nni=mrf*6, nnj=mrf*2, psurf=patch ,

fill_condition=initialCond)

inflow1.set_BC(WEST , USER_DEFINED , filename ="udf -subsonic -sc10.lua", label =" INLET")

inflow1.set_BC(NORTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

#---

inflow2 block

#---

inflow2_lower_left = Vector (-1.0, -0.15)

inflow2_south = Line(inflow2_lower_left , LE_out)

inflow2_west = Line(inflow2_lower_left , inflow1_lower_left)

patch = make_patch(inflow1_south , spline_Front_up , inflow2_south , inflow2_west)

inflow2 = Block2D(label=" inflow2", nni=inflow1.nni , nnj=inner2.nnj , psurf=patch ,

fill_condition=initialCond)

inflow2.set_BC(WEST , USER_DEFINED , filename ="udf -subsonic -sc10.lua", label =" INLET")

#---

inflow3 block

#---

inflow3_east = Line(LE_bottom , LE_out)

inflow3_south = Line(IN_bottom , LE_bottom)

inflow3_west = Line(IN_bottom , inflow2_lower_left)

patch = make_patch(inflow2_south , inflow3_east , inflow3_south , inflow3_west)

inflow3 = Block2D(label=" inflow3", nni=inflow2.nni , nnj=mrf*2, psurf=patch ,

fill_condition=initialCond)

inflow3.set_BC(WEST , USER_DEFINED , filename ="udf -subsonic -sc10.lua", label =" INLET")

inflow3.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

#---

outer1 block

#---

outer1_upper_right = LE_top + 0.8*TE

outer1_north = Polyline2 ([inflow1_upper_right , LE_top , outer1_upper_right])

outer1_east = Line(TE_up , outer1_upper_right)

patch = make_patch(outer1_north , outer1_east , spline_SS , inflow1_east)

303

cflist = [None , None , clust_chord , None]

outer1 = Block2D(label=" outer1", nni=inner1.nni , nnj=inflow1.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

outer1.set_BC(NORTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

#---

outer2 block

#---

outer2_lower_right = LE_bottom + 0.3*TE

outer2_east = Line(outer2_lower_right , LE_out_down)

outer2_south = Line(LE_bottom , outer2_lower_right)

patch = make_patch(spline_Front_down , outer2_east , outer2_south , inflow3_east)

outer2 = Block2D(label=" outer2", nni=inner3.nni , nnj=inflow3.nnj ,

psurf=patch , fill_condition=initialCond)

outer2.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

#---

outer3 block

#---

outer3_lower_right = TE_bottom + Vector (0.2, 0.0)

outer3_east = Line(outer3_lower_right , TE_down)

outer3_south = Polyline2 ([outer2_lower_right , TE_bottom , outer3_lower_right])

patch = make_patch(spline_PS , outer3_east , outer3_south , outer2_east)

cflist = [clust_chord , None , None , None]

outer3 = Block2D(label=" outer3", nni=inner4.nni , nnj=outer2.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

outer3.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

#---

outflow1 block

#---

outflow1_lower_right = OUT_top - Vector(0, 0.3)

outflow1_north = Polyline2 ([outer1_upper_right ,TE_top , OUT_top])

outflow1_east = Line(outflow1_lower_right , OUT_top)

outflow1_south = Line(TE_up , outflow1_lower_right)

patch = make_patch(outflow1_north , outflow1_east , outflow1_south , outer1_east)

outflow1 = Block2D(label=" outflow1", nni=mrf*8, nnj=outer1.nnj , psurf=patch ,

fill_condition=initialCond)

outflow1.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label =" OUTLET ")

outflow1.set_BC(NORTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

#---

outflow2 block

#---

outflow2_lower_right = OUT_top - Vector(0, PITCH /2.0)

outflow2_east = Line(outflow2_lower_right , outflow1_lower_right)

outflow2_south = Line(TE , outflow2_lower_right)

patch = make_patch(outflow1_south , outflow2_east , outflow2_south , inner1_east)

cflist = [None , None , None , clust_blade_top]

outflow2 = Block2D(label=" outflow2", nni=outflow1.nni , nnj=inner1.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

outflow2.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label =" OUTLET ")

#---

outflow3 block

#---

outflow3_lower_right = OUT_bottom + Vector (0.0, 0.3)

outflow3_east = Line(outflow3_lower_right , outflow2_lower_right)

outflow3_south = Line(TE_down , outflow3_lower_right)

patch = make_patch(outflow2_south , outflow3_east , outflow3_south , inner4_east , "AO")

cflist = [None , None , None , clust_blade_bottom]

outflow3 = Block2D(label=" outflow3", nni=outflow2.nni , nnj=inner4.nnj , psurf=patch ,

cf_list=cflist , fill_condition=initialCond)

outflow3.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label =" OUTLET ")

#---

outflow4 block

304

#---

outflow4_east = Line(OUT_bottom , outflow3_lower_right)

outflow4_south = Line(outer3_lower_right , OUT_bottom)

patch = make_patch(outflow3_south , outflow4_east , outflow4_south , outer3_east)

outflow4 = Block2D(label=" outflow4", nni=outflow3.nni , nnj=outer3.nnj ,

psurf=patch , fill_condition=initialCond)

outflow4.set_BC ("EAST", "FIXED_P_OUT", Pout=p_exit , label=" OUTLET ")

outflow4.set_BC(SOUTH , USER_DEFINED , filename ="udf -periodic -bc.lua")

identify_block_connections ()

#---

Presentation

#---

sketch.xaxis(-1.0, 2.0, 0.5, -0.1)

sketch.yaxis(-0.5, 1.5, 0.5, -0.1)

sketch.window (-1.0, -0.5, 2.2, 2.7, 0.02, 0.02, 0.20, 0.20)

"""

Standard Condition 10 blade profile and camber functions.

Peter Blyton

March 2011: Blade profile defined using functional form.

"""

import math

def thickness(s):

"""

Modified NACA0006 aerofoil thickness distribution.

Standard NACA0006 aerofoil equation modified to give a zero thickness

at the trailing edge. Return the full aerofoil thickness

from top to bottom surface , not just centerline to top surface.

Equation source: http :// rpmturbo.com/testcases/sc10/index.html

Arguments:

s: (float) The distance along the chord of aerofoil [0 <= s <= 1].

Return Value:

(float) Full aerofoil thickness.

"""

if abs(s) < 1.0e-12: s = 0

return 0.06*(2.969*s**0.5 - 1.26*s - 3.516*s**2 + 2.843*s**3 - 1.036*s**4)

def camber(s):

"""

Standard Configuration 10 camber line.

Equation for the circular arc for the camber line of the Standard

Configuration 10 blade profile. This is the upper arc of a circle

where camber (0) = camber (1) = 0. Return the y coordinate of the arc ,

and the angle that a tangent makes above the horizontal.

Equation source: http :// rpmturbo.com/testcases/sc10/index.html

Arguments:

s: (float) The distance along the chord of aerofoil [0 <= s <= 1].

Return Value:

(tuple(float , float)) The y coordinate and angle of a tangent line above

the horizontal at the location "s".

"""

Camber line is equation of a circle.

(x - a)**2 + (y - b)**2 = r**2

a = 0.5

305

b = -2.475

r = 2.525

y = b + math.sqrt(r**2 - (s - a)**2)

First derivative of camber line.

dy_ds = -(s - a)/(math.sqrt(r**2 - (s - a)**2))

Angle that tangent makes above horizontal

phi = math.atan(dy_ds)

return (y, phi)

def sc10_top(s):

"""

Standard Configuration 10 upper surface.

Returns a tuple coordinate along the surface to be used with PyFunctionPath.

Equation source: http :// rpmturbo.com/testcases/sc10/index.html

Arguments:

s: (float) The distance along the chord of aerofoil [0 <= s <= 1].

"""

camber_data = camber(s)

x = s - 0.5* thickness(s)*math.sin(camber_data [1])

y = camber_data [0] + 0.5* thickness(s)*math.cos(camber_data [1])

return (x, y, 0.0)

def sc10_bottom(s):

"""

Standard Configuration 10 lower surface.

Returns a tuple coordinate along the surface to be used with PyFunctionPath.

Equation source: http :// rpmturbo.com/testcases/sc10/index.html

Arguments:

s: (float) The distance along the chord of aerofoil [0 <= s <= 1].

"""

camber_data = camber(s)

x = s + 0.5* thickness(s)*math.sin(camber_data [1])

y = camber_data [0] - 0.5* thickness(s)*math.cos(camber_data [1])

return (x, y, 0.0)

46.2 Notes

• Run time is approximately 11700 seconds for 280460 steps on a computer with an

AMD Phenom 9650 2.7 GHz processor.

306

47 Couette Flow

This case is contributed by Jason Qin and computes the Couette flow between two parallel

plates, one is a moving wall with a translational velocity while the other stationary wall.

The flow is driven by the virtue of viscous drag force acting on the fluid and the applied

pressure gradient parallel to the plates. This test case exercises the moving-wall boundary

condition.

The boundary conditions are shown in Figure 118, with the NORTH and SOUTH faces

set as the moving-wall and adiabatic boundary conditions, respectively. The velocity of

the NORTH face is set as 100 m/s. The function connect_blocks_2D is used to connect

the WEST and EAST faces, which can be regarded as periodic boundary conditions.

x
0 0.01 0.02 0.03 0.04

y

0

0.01

blk-0

MOVING_WALL

ADIABATIC

Figure 118: Flow domain for viscous flow between two parallel plates.

The mesh of 20× 10 for this simple domain is plotted in Figure 119a and the velocity

coutour is shown in Figure 119b. The maximum velocity at is approximately 95 m/s,

slightly less than the translational velocity of moving wall, as expected for a cell-centre

value.

(a) Mesh. (b) Velocity magnitude.

Figure 119: Uniform mesh and resulting velocity field for the two-dimensional Couette
flow example.

Since the initial velocity profile along the height is set as linear, the solution achieves

307

steady state condition quickly. The final velocity profile is the same as the initial profile,

as shown in Figure 120.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 20 40 60 80 100

H
ei

gh
t,

m

Velocity, m/s

Velocity profile along the height

Initial value
Steady state condition

Figure 120: Velocity profile across the channel.

47.1 Input script (.py)

couette.py

Jason (Kan) Qin , November 2013

gdata.dimensions = 2

select_gas_model(model=’ideal gas ’, species=[’air ’])

x_max = 0.040

y_max = 0.010

nx = 20

ny = 10

def simple_rectangle(r, s, t=0.0):

global x_max , y_max

return (x_max*r, y_max*s, 0.0)

p_inf = 100.0 e3 # Pa

u_max = 100.0 # m/s

initial = FlowCondition(p=p_inf , u=u_max , v=0.0)

def initial_flow(x, y, z):

global y_max , T_inf , p_inf , u_max

u = u_max * y / y_max

return FlowCondition(p=p_inf , u=u, v=0.0, add_to_list =0). to_dict ()

blk = Block2D(PyFunctionSurface(simple_rectangle),

nni=nx , nnj=ny ,

fill_condition=initial_flow ,

cf_list =4*[None ,])

blk.set_BC ("NORTH", "MOVING_WALL", r_omega =[0.0 ,0.0 ,0.0] , v_trans =[u_max ,0.0 ,0.0])

308

blk.bc_list[SOUTH] = AdiabaticBC ()

the WEST face is connected with the EAST face

connect_blocks_2D(blk ,WEST ,blk ,EAST ,check_corner_locations=False)

identify_block_connections ()

gdata.title = "Couette flow (Just at start -up)"

gdata.viscous_flag = 1

gdata.flux_calc = ADAPTIVE

gdata.max_time = 50e-3

gdata.max_step = 20000

gdata.dt = 1.0e-9

gdata.dt_plot = 1e-3

gdata.dt_history = 1e-3

The following scales provide a reasonable picture.

sketch.xaxis (0.0, 0.040 , 0.01, -0.005)

sketch.yaxis (0.0, 0.010 , 0.01, -0.004)

sketch.window (0.0, 0.0, 0.040, 0.010, 0.05, 0.05, 0.15, 0.075)

47.2 Shell scripts

#!/ bin/sh

couette.sh

e3prep.py --job=couette --do -svg

e3post.py --job=couette --vtk -xml --tindx=0

time e3shared.exe --job=couette --run

e3post.py --job=couette --vtk -xml --tindx=last

e3post.py --job=couette --output -file=dudy0.dat --tindx=0 \

--slice -list ="0,1,:,0"

e3post.py --job=couette --output -file=dudy1.dat --tindx=last \

--slice -list ="0,1,:,0"

gnuplot <<EOF

set term postscript eps 20

set output "velocity.ps"

set title "Velocity profile along the height"

set ylabel "Height , m"

set xlabel "Velocity , m/s"

set yrange [0.0:0.0115]

set xrange [-10.0:110.0]

plot "dudy0.dat" using 6:2 with lines title "Initial value", \

"dudy1.dat" using 6:2 with lines title "Steady state condition"

EOF

47.3 Notes

• None

309

310

48 Radiating argon shock layer with thermochemical

nonequilibrium

48.1 Experiment description

Rutowski et al. [27] measured the total and radiative heat fluxes at the stagnation point

of a 1 inch diameter hemisphere immersed in a freestream flow of shock heated argon.

A schematic of the experimental setup is depicted in Figure 121. The hemispherical

model was placed in the test section of a 3 inch diameter stainless steel shock tube at the

Lockheed Research Laboratories [28]. Incident shock waves with velocities up to 4.3 km/s

(Ms = 13.2) were driven through the argon test gas at an initial pressure of 10 Torr. Total

heat transfer at the stagnation point was measured with a surface mounted calorimetric

gauge, in which a thin strip of polished platinum is exposed to the flow and the heat

transfer determined from change in resistivity. Radiative heat transfer was measured

with a similar gauge mounted behind a sapphire window that allowed transmission in

the wavelength range 180 ≤ λ ≤ 6000 nm. The platinum strip was determined to have

a weighted average absorptivity of 0.4, however some experiments were also performed

with a thin layer of camphor lampblack to give an absorptivity of 1.0. The error in the

total heat transfer and radiative measurements were estimated to be ±5 % and ±15 %,

respectively.

Boundary layer

Bow shock

Incident shock

Shock heated flow Undisturbed

test gas

Stagnation point

Shock layer

Figure 121: Schematic diagram of hemispherical model immersed in shock heat flow
(adapted from Rutowski et al. [27]).

311

48.2 Simulation description

In the present work the experiment with a shock Mach number of 12.7 is considered. This

condition has three experiment datapoints available for comparison. The simulation is

run in three parts:

1. Inviscid (Euler equations, 10 body lengths of flow)

2. Viscous (Navier–Stokes equations, 5 body length of flow)

3. Viscous with radiation-flowfield coupling (Navier–Stokes equations, 2 body lengths

of flow with 2 radiation transport calculations)

As the radiation–flowfield coupling is not very strong for this case, just two iterations

between the radiation-transport solver and the flowfield solver were required to achieve a

converged solution.

The computational domain and boundary conditions applied in the viscous stages of

the simulation are illustrated in Figure 122a. The stainless steel surface is modelled as

a fixed temperature, fully catalytic wall at 300 K. The computation grid for the viscous

stages of the simulation is shown in Figure 122b. Clustering is applied in the vicinity of

the shock front and boundary layer to enable the strong density gradients in these regions

to be adequately captured.

x (cm)

-2.0 -1.5 -1.0 -0.5 0

y
 (

c
m

)

0

1.0

2.0

3.0

4.0

extrapolated

out ow

Fixed temperature (300K),

fully catalytic (α=0) wall

supersonic

in ow

Axisymmetry axis

(slip wall)

(a) Computation domain (b) Computation grid

Figure 122: Computational domain and grid for Navier–Stokes simulations of the Ru-
towski and Bershader [27] experiments.

312

48.2.1 Thermodynamics

The argon plasma is modelled via the consideration of three species (Ar, Ar+ and e−)

and two temperatures (a heavy particle translation temperature, T , and a combined

free electron and bound electronic temperature, Te). This allows the nonequilibrium

between heavy-particle and free-electron translation to be captured whilst acknowledging

the efficiency of bound electronic excitation via free electron impact. The electronic

energy of the heavy particle species are calculated assuming Boltzmann distribution of the

electronic state populations. The electronic level structure of Ar and Ar+ are represented

with 8 and 13 grouped levels, respectively, using the energy level from NIST ASD [29].

48.2.2 Viscous transport

Viscosity and thermal conductivity are calculated via the Gupta-Yos model [30]. The

collision integrals are compiled from Wright et al. [31], Levin et al. [32] and Mason et

al. [33]. Species mass diffusion is not considered.

48.2.3 Chemical reactions

Three chemical reactions are considered:

Ar + Ar � Ar+ + e− + Ar (1)

Ar + Ar+ � Ar+ + e− + Ar+ (2)

Ar + e− � Ar+ + e− + e− (3)

(4)

where photoionization has been omitted based on its relatively minor contribution for

other high enthalpy conditions [34] . The reaction rates are determined via fitting an

Arrhenius equaion to the two-stage model proposed by Petschek et al. [35]:

kf,M(TM) = S∗Ar−M

√
32

π

(
mAr +mM

mArmM

)
· (kBTM)

3
2

(
Θ1

2TM
+ 1

)
exp

(
−Θ1

TM

)
(5)

where S∗Ar−M is the first excitation collision cross-section for colliding particle M , TM is the

translational temperature of the colliding particle and Θ1 is the characteristic temperature

of the first excited state of argon (134,800 K). Glass et al. [36] found good agreement with

shock tube electron density profiles using S∗Ar−Ar = 1.0 × 10−19 and S∗Ar−e− = 4.9 ×
10−18 cm2/eV; these cross-section are therefore used in the present work.

313

48.2.4 Thermal energy exchange

Translational energy exchange due to elastic collisions between free electrons and heavy

particles is calculated via the model proposed by Appleton et al. [37]. The e−–Ar effective

elastic collision cross-section are taken from Jaffrin [38].

48.2.5 Radiation transport

A photon Monte–Carlo model is implemented to numerically solve for the both the ra-

diative divergence throughout the flowfield (∇ · ~qrad), and the radiative heating incident

on solid surfaces (qrad). The basis of photon Monte–Carlo models [39, 40, 41] is the

modelling of radiation transport by a collection of photon bundles with statistically de-

termined properties. For the present simulations, a maximum of 32768 photons-per-cell

are emitted, and their absorption throughout the flowfield is modelled via the partitioned

energy model [42]. See § 4.5 of the Eilmer3 theory book (http://cfcfd.mechmining.

uq.edu.au/pdf/eilmer3-theory-book.pdf) for a detailed description of the model.

48.2.6 Radiation spectra

The radiation spectra of the argon plasma are calculated via the Photaura model (see

http://cfcfd.mechmining.uq.edu.au/pdf/photaura-users-guide.pdf). Three radi-

ation mechanisms are considered:

1. Bound-bound line radiation

2. Photoionization continuum radiation

3. Bremsstrahlung continuum radiation

425 individual Ar lines and 307 individual Ar+ lines from the NIST ASD [29] are

considered, and photoionization cross-sections are obtained from TOPBase [43]. The

experimentally measured Stark widths for 48 Ar lines collated by Griem [44] are imple-

mented, with the remaining lines using the empirical fit suggested by Park [45]. The

upper and lower state populations for the Ar atom are determined via application of a

collisional-radiative model in the QSS limit [46]. The spectral grid is uniformally dis-

tributed in wavenumber space in the range 1000 ≤ η ≤ 150000 1/cm, with a resolution of

1 point / 10 1/cm.

48.3 Results

Temperature solutions from Eilmer3 simulation of the Rutowski hemisphere with radiation-

flowfield coupling are presented in Figure 123. Immediately behind the shock there is a

region of thermal nonequilibrium, with the electron temperature being significantly lower

314

http://cfcfd.mechmining.uq.edu.au/pdf/eilmer3-theory-book.pdf
http://cfcfd.mechmining.uq.edu.au/pdf/eilmer3-theory-book.pdf
http://cfcfd.mechmining.uq.edu.au/pdf/photaura-users-guide.pdf

Figure 123: Temperature solutions from Eilmer3 simulation of the Rutowski hemisphere
with radiation-flowfield coupling.

than the heavy particle temperature. Both temperatures radidly drop towards the 300K

wall temperature near the model surface.

The radiation solution is presented in Figure 124. The hot shock layer is a net emitter

of radiation (blue), whilst the cool and dense boundary layer is a net absorbed of radiation

(red).

The computed surface radiative heating profiles are compared with the experiment

measurements in Figure 125. The computed result at the stagnation point in the spectral

range 67 ≤ λ ≤ 10000 nm of approximately 5.1 kW/cm2 is in agreement with the black-

ened guage data to within the measurement uncertainty bounds. The computed result

for the supposed range of sensitivity for the radiometer (180 ≤ λ ≤ 6000 nm), however, is

slightly lower than the measured data. A finer spectral grid may improve the agreement

with experiment by allowing the peaks of the atomic lines to be better resolved.

48.4 Run script (.sh)

#!/ bin/bash

#

Radiation argon shock layer test case.

#

DFP , 2-June -2014

315

(a) Full computational domain (b) Stagnation point detail

Figure 124: Radiation solution from Eilmer3 simulation of the Rutowski hemisphere with
radiation-flowfield coupling.

Figure 125: Radiative heating on the hemisphere surface: Eilmer3 for 67 ≤ λ ≤ 10000 nm
(), Eilmer3 for 180 ≤ λ ≤ 6000 nm (), experiment with blackened gauge () and
experiment with adjust gauge ()

−100 −80 −60 −40 −20 0 20 40 60 80 100

1

2

3

4

5

6

7

θ (◦)

q r
a
d

(k
W

/c
m

2
)

316

echo "Run the inviscid stage"

cd part1 -inviscid/

e3prep.py --job=hemisphere > LOGFILE_PREP

mpirun -np 4 e3mpi.exe -f hemisphere -r > LOGFILE_RUN

cd ..

echo "Run the viscous stage"

cd part2 -viscous/

e3prep.py --job=hemisphere > LOGFILE_PREP

echo "Adding viscous effects"

mpirun -np 4 e3mpi.exe -f hemisphere -q -r > LOGFILE_RUN

echo "Increasing CFL number to 0.5"

set_control_parameter.py hemisphere.control cfl 0.5

set_control_parameter.py hemisphere.control max_time 1.88964e-05

mpirun -np 4 e3mpi.exe -f hemisphere -t 1 -q -r >> LOGFILE_RUN

echo "Run the viscous with radiation stage"

cd part3 -viscous -with -radiation/

radmodel.py -i Ar-nonequilibrium -radiation.py -L rad -model.lua > LOGFILE_PREP

e3prep.py --job=hemisphere >> LOGFILE_PREP

echo "Run e3mpi for one body length on new grid"

mpirun -np 4 e3mpi.exe -f hemisphere -q -r > LOGFILE_RUN

get_residuals.py 0 residuals -0.txt

mv e3mpi*.log e3mpi.log.part1/

echo "First radiation transport calculation"

e3rad.exe -f hemisphere -q -t 1 -r > LOGFILE_RUN

echo "Run e3mpi for another body length with radiation coupling"

set_control_parameter.py hemisphere.control max_time 7.55855e-06

mpirun -np 4 e3mpi.exe -f hemisphere -q -t 2 -r >> LOGFILE_RUN

get_residuals.py 0 residuals -1.txt

echo "Final radiation transport calculation"

radmodel.py -i Ar-nonequilibrium -radiation -180 to6000nm.py -L rad -model.lua >> LOGFILE_PREP

e3rad.exe -f hemisphere -q -t 3 -r >> LOGFILE_RUN

echo "Extract final surface heat flux profile"

e3post.py --job=hemisphere --tindx =4 --heat -flux -list ="2:3,1,:,:,:" > LOGFILE_POST

cd ..

Compute the radiative heat flux error with respect to the experiment

measurement using average of the two experimental datapoints with

blackened gauges at Ms =12.7 from Figure 9

./ compute_qrad_error.py part3 -viscous -with -radiation/hf_profile.data 5.5188 e7 > LOGFILE_COMPARE

48.5 Eilmer3 input scripts (.py)

48.5.1 Part 1 – inviscid flow

\file hemisphere.py

\brief Mach 12.7 condition from Rutowski and Bershader (1964)

\author DFP , 28-May -2014

##

from cfpylib.grid.shock_layer_surface import *

gdata.title = "Shock heated argon flow over a 1/2 inch hemisphere"

gdata.title += "- part 1: inviscid"

print gdata.title

axisymmetry

gdata.axisymmetric_flag = 1

gas model

species = select_gas_model(model = "two temperature gas", \

species = ["Ar", "Ar_plus", "e_minus"])

317

gm = get_gas_model_ptr ()

nsp = gm.get_number_of_species ()

ntm = gm.get_number_of_modes ()

kinetics

set_reaction_update ("../../ kinetic -models/Ar -2T-chemical -reactions.lua")

set_energy_exchange_update ("../../ kinetic -models/Ar -2T-energy -exchange.lua")

flow conditions - shock heated argon , initially at 10 Torr and 300K

T_wall = 300.0

Ms = 12.7

from cfpylib.gasdyn.cea2_gas import *

reactants = { "Ar" : 1.0, "Ar+" : 0.0, "e-" : 0.0 }

cea = Gas(reactants , onlyList=reactants.keys(), with_ions=True , \

trace =1.0e-20)

cea.set_pT(p=1333.3 ,T=300.0)

Us = cea.a * Ms

print "Us = ", Us

cea.shock_process(Us)

rho_inf = cea.rho

T_inf = [cea.T]*ntm

massf_inf = []

for isp ,sp in enumerate(species):

cea_sp = sp.replace (" _plus " ,"+"). replace (" _minus ","-")

massf_inf.append(cea.species[cea_sp])

u_inf = Us - cea.u2

do some calculations to get pressure and Mach number

Q = Gas_data(gm)

Q.rho = rho_inf

for itm in range(ntm):

Q.T[itm] = T_inf[itm]

mf_sum = 0.0

for isp in range(nsp):

Q.massf[isp] = massf_inf[isp]

mf_sum += Q.massf[isp]

massf_inf = []

for isp in range(nsp):

Q.massf[isp] /= mf_sum

massf_inf.append(Q.massf[isp])

gm.eval_thermo_state_rhoT(Q)

Q.print_values(False)

M_inf = u_inf / Q.a

p_inf = Q.p

print "M_inf = %0.2f" % (M_inf)

inflow and initial conditions

inflow = FlowCondition(p=p_inf , u=u_inf , v=0.0, T=T_inf , \

massf=massf_inf)

initial = FlowCondition(p=p_inf /10.0, u=0.0, v=0.0, T=T_inf , \

massf=massf_inf)

geometry

Rn = 1.27e-2

psurf , west = make_parametric_surface(1.0, 1.0, M_inf , Rn , \

axi=gdata.axisymmetric_flag)

mesh clustering

cf_list =[None] * 4

boundary conditions

bc_list =[ExtrapolateOutBC (), # outflow

FixedTBC(T_wall), # surface

SlipWallBC (), # symmetry

SupInBC(inflow)] # inflow

catalytic boundary conditions

wc_bc_list =[NonCatalyticWBC ()]*4

blk_0 = SuperBlock2D(psurf=psurf ,

fill_condition=initial ,

nni=40, nnj=30,

nbi=2, nbj=2,

318

cf_list=cf_list ,

bc_list=bc_list ,

wc_bc_list=wc_bc_list ,

label="BLOCK -0")

identify_block_connections ()

global simulation parameters

gdata.viscous_flag = 0

gdata.viscous_delay = 0.1 * Rn / u_inf

gdata.viscous_factor_increment = 1.0e-3

gdata.diffusion_flag = 0

gdata.diffusion_model = "ConstantLewisNumber"

gdata.electric_field_work_flag = 0

gdata.reaction_time_start = 0 * Rn / u_inf

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.max_time = Rn * 10 / u_inf # 10 body lengths

gdata.reaction_time_start = Rn * 1 / u_inf

gdata.max_step = 230000

gdata.dt = 1.0e-10

gdata.stringent_cfl = 1

gdata.dt_plot = Rn * 1 / u_inf # 10 solutions

gdata.cfl = 1.0

gdata.cfl_count = 10

gdata.print_count = 20

sketch.scales (0.03/Rn , 0.03/Rn)

sketch.origin (0.0, 0.0)

sketch.xaxis (-2.0e-2, 0.0, 0.5e-2, -0.3e-2)

sketch.yaxis (0.0, 4.0e-2, 1.0e-2, -0.3e-2)

48.5.2 Part 2 – viscous flow

\file hemisphere.py

\brief Mach 12.7 condition from Rutowski and Bershader (1964)

\author DFP , 28-May -2014

##

from cfpylib.grid.shock_layer_surface import *

gdata.title = "Shock heated argon flow over a 1/2 inch hemisphere"

gdata.title += "- part 2: viscous"

print gdata.title

axisymmetry

gdata.axisymmetric_flag = 1

gas model

species = select_gas_model(model = "two temperature gas", \

species = ["Ar", "Ar_plus", "e_minus"])

gm = get_gas_model_ptr ()

nsp = gm.get_number_of_species ()

ntm = gm.get_number_of_modes ()

kinetics

set_reaction_update ("../../ kinetic -models/Ar -2T-chemical -reactions.lua")

set_energy_exchange_update ("../../ kinetic -models/Ar -2T-energy -exchange.lua")

flow conditions - shock heated argon , initially at 10 Torr and 300K

T_wall = 300.0

Ms = 12.7

from cfpylib.gasdyn.cea2_gas import *

reactants = { "Ar" : 1.0, "Ar+" : 0.0, "e-" : 0.0 }

cea = Gas(reactants , onlyList=reactants.keys(), with_ions=True , \

trace =1.0e-20)

cea.set_pT(p=1333.3 ,T=300.0)

319

Us = cea.a * Ms

print "Us = ", Us

cea.shock_process(Us)

rho_inf = cea.rho

T_inf = [cea.T]*ntm

massf_inf = []

for isp ,sp in enumerate(species):

cea_sp = sp.replace (" _plus " ,"+"). replace (" _minus ","-")

massf_inf.append(cea.species[cea_sp])

u_inf = Us - cea.u2

do some calculations to get pressure and Mach number

Q = Gas_data(gm)

Q.rho = rho_inf

for itm in range(ntm):

Q.T[itm] = T_inf[itm]

mf_sum = 0.0

for isp in range(nsp):

Q.massf[isp] = massf_inf[isp]

mf_sum += Q.massf[isp]

massf_inf = []

for isp in range(nsp):

Q.massf[isp] /= mf_sum

massf_inf.append(Q.massf[isp])

gm.eval_thermo_state_rhoT(Q)

Q.print_values(False)

M_inf = u_inf / Q.a

p_inf = Q.p

print "M_inf = %0.2f" % (M_inf)

inflow and initial conditions (continuation from part 1)

inflow = FlowCondition(p=p_inf , u=u_inf , v=0.0, T=T_inf , \

massf=massf_inf)

initial = ExistingSolution(rootName =" hemisphere", \

solutionWorkDir ="../ part1 -inviscid/", \

nblock=4, tindx =10)

geometry

Rn = 1.27e-2

gamma = 0.2

print "WARNING: the shock fitting procedure takes a long time as the"

print " Billig function is difficult to solve at this Mach"

print " number ."

shock , nodes = fit_billig2shock(initial , gdata.axisymmetric_flag , \

M_inf , Rn, None , show_plot=False)

psurf , west = make_parametric_surface(M_inf=M_inf , R=Rn , \

axi=gdata.axisymmetric_flag , \

east=None , shock=shock , \

f_s =1.0/(1.0 - gamma))

boundary conditions

bc_list =[ExtrapolateOutBC (), # outflow

FixedTBC(T_wall), # surface

SlipWallBC (), # symmetry

SupInBC(inflow)] # inflow

catalycity boundary conditions

wc_bc_list =[NonCatalyticWBC (), # outflow

SuperCatalyticWBC ([1.0 ,0.0 ,0.0]) , # surface

NonCatalyticWBC (), # symmetry

NonCatalyticWBC ()] # inflow

mesh clustering

beta0 = 1.1; dx0 = 5.0e-1; dx1 = 5.0e-2

beta1 = 1.0

cf_list = [BHRCF(beta0 ,dx0 ,dx1 ,gamma), # outflow

RCF(0,1,beta1), # surface

BHRCF(beta0 ,dx0 ,dx1 ,gamma), # symmetry

RCF(0,1,beta1)] # inflow

computation domain

blk_0 = SuperBlock2D(psurf=psurf ,

fill_condition=initial ,

320

nni=60, nnj=45,

nbi=2, nbj=2,

cf_list=cf_list ,

bc_list=bc_list ,

wc_bc_list=wc_bc_list ,

label="BLOCK -0")

identify_block_connections ()

global simulation parameters

gdata.viscous_flag = 1

gdata.viscous_delay = 0.001 * Rn / u_inf

gdata.viscous_factor_increment = 1.0e-4

NOTE: diffusion is currently turned off

gdata.diffusion_flag = 0

gdata.diffusion_delay = 0.001 * Rn / u_inf

gdata.diffusion_factor_increment = 1.0e-4

gdata.diffusion_model = "Ramshaw -Chang"

NOTE: if an ambipolar diffusion model is being used , the electric

field work term should be included

gdata.electric_field_work_flag = gdata.diffusion_flag

gdata.reaction_time_start = 0 * Rn / u_inf

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.max_time = Rn * 1 / u_inf # 1 body length

gdata.max_step = 2300000

gdata.dt = 1.0e-10

gdata.stringent_cfl = 1

gdata.dt_plot = Rn * 1 / u_inf # 1 solution

NOTE: the CFL number can be increased to 0.5 after the viscous terms

have been added

gdata.cfl = 1.0e-1

gdata.cfl_count = 1

gdata.print_count = 10

sketch.scales (0.03/Rn , 0.03/Rn)

sketch.origin (0.0, 0.0)

sketch.xaxis (-2.0e-2, 0.0, 0.5e-2, -0.3e-2)

sketch.yaxis (0.0, 4.0e-2, 1.0e-2, -0.3e-2)

48.5.3 Part 3 – viscous flow with radiation coupling

\file hemisphere.py

\brief Mach 12.7 condition from Rutowski and Bershader (1964)

\author DFP , 28-May -2014

##

from cfpylib.grid.shock_layer_surface import *

gdata.title = "Shock heated argon flow over a 1/2 inch hemisphere"

gdata.title += "- part 3: viscous with radiation coupling"

print gdata.title

axisymmetry

gdata.axisymmetric_flag = 1

gas model

species = select_gas_model(model = "two temperature gas", \

species = ["Ar", "Ar_plus", "e_minus"])

gm = get_gas_model_ptr ()

nsp = gm.get_number_of_species ()

ntm = gm.get_number_of_modes ()

kinetics

set_reaction_update ("../../ kinetic -models/Ar -2T-chemical -reactions.lua")

set_energy_exchange_update ("../../ kinetic -models/Ar -2T-energy -exchange.lua")

321

radiation model

NOTE: update frequency of 0 means e3mpi.exe and e3shared.exe will not

try and compute the radiation source term - we leave this to

the dedicated , parallelised radiation solver , e3rad.exe

select_radiation_model(input_file ="rad -model.lua", update_frequency =0, \

scaling=True)

flow conditions - shock heated argon , initially at 10 Torr and 300K

T_wall = 300.0

Ms = 12.7

from cfpylib.gasdyn.cea2_gas import *

reactants = { "Ar" : 1.0, "Ar+" : 0.0, "e-" : 0.0 }

cea = Gas(reactants , onlyList=reactants.keys(), with_ions=True , \

trace =1.0e-20)

cea.set_pT(p=1333.3 ,T=300.0)

Us = cea.a * Ms

print "Us = ", Us

cea.shock_process(Us)

rho_inf = cea.rho

T_inf = [cea.T]*ntm

massf_inf = []

for isp ,sp in enumerate(species):

cea_sp = sp.replace (" _plus " ,"+"). replace (" _minus ","-")

massf_inf.append(cea.species[cea_sp])

u_inf = Us - cea.u2

do some calculations to get pressure and Mach number

Q = Gas_data(gm)

Q.rho = rho_inf

for itm in range(ntm):

Q.T[itm] = T_inf[itm]

mf_sum = 0.0

for isp in range(nsp):

Q.massf[isp] = massf_inf[isp]

mf_sum += Q.massf[isp]

massf_inf = []

for isp in range(nsp):

Q.massf[isp] /= mf_sum

massf_inf.append(Q.massf[isp])

gm.eval_thermo_state_rhoT(Q)

Q.print_values(False)

M_inf = u_inf / Q.a

p_inf = Q.p

print "M_inf = %0.2f" % (M_inf)

inflow and initial conditions (continuation from part 2)

inflow = FlowCondition(p=p_inf , u=u_inf , v=0.0, T=T_inf , \

massf=massf_inf)

initial = ExistingSolution(rootName =" hemisphere", \

solutionWorkDir ="../ part2 -viscous/", \

nblock=4, tindx =5)

geometry

Rn = 1.27e-2

gamma = 0.2

print "WARNING: the shock fitting procedure takes a long time as the"

print " Billig function is difficult to solve at this Mach"

print " number ."

shock , nodes = fit_billig2shock(initial , gdata.axisymmetric_flag , \

M_inf , Rn, None , show_plot=False)

psurf , west = make_parametric_surface(M_inf=M_inf , R=Rn , \

axi=gdata.axisymmetric_flag , \

east=None , shock=shock , \

f_s =1.0/(1.0 - gamma))

boundary conditions

bc_list =[ExtrapolateOutBC (), # outflow

FixedTBC(T_wall), # surface

SlipWallBC (), # symmetry

SupInBC(inflow)] # inflow

catalycity boundary conditions

wc_bc_list =[NonCatalyticWBC (), # outflow

322

SuperCatalyticWBC ([1.0 ,0.0 ,0.0]) , # surface

NonCatalyticWBC (), # symmetry

NonCatalyticWBC ()] # inflow

mesh clustering

beta0 = 1.1; dx0 = 5.0e-1; dx1 = 5.0e-2

beta1 = 1.0

cf_list = [BHRCF(beta0 ,dx0 ,dx1 ,gamma), # outflow

RCF(0,1,beta1), # surface

BHRCF(beta0 ,dx0 ,dx1 ,gamma), # symmetry

RCF(0,1,beta1)] # inflow

computation domain

blk_0 = SuperBlock2D(psurf=psurf ,

fill_condition=initial ,

nni=60, nnj=45,

nbi=2, nbj=2,

cf_list=cf_list ,

bc_list=bc_list ,

wc_bc_list=wc_bc_list ,

label="BLOCK -0")

identify_block_connections ()

global simulation parameters

gdata.viscous_flag = 1

NOTE: diffusion is currently turned off

gdata.diffusion_flag = 0

gdata.diffusion_model = "Ramshaw -Chang"

NOTE: if an ambipolar diffusion model is being used , the electric

field work term should be included

gdata.electric_field_work_flag = gdata.diffusion_flag

gdata.reaction_time_start = 0 * Rn / u_inf

gdata.flux_calc = ADAPTIVE

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.max_time = Rn * 1 / u_inf # 1 body length

gdata.max_step = 2300000

gdata.dt = 1.0e-10

gdata.stringent_cfl = 1

gdata.dt_plot = Rn * 1 / u_inf # 1 solution

NOTE: the CFL number can be increased to 0.5 after the viscous terms

have been added

gdata.cfl = 5.0e-1

gdata.cfl_count = 1

gdata.print_count = 10

sketch.scales (0.03/Rn , 0.03/Rn)

sketch.origin (0.0, 0.0)

sketch.xaxis (-2.0e-2, 0.0, 0.5e-2, -0.3e-2)

sketch.yaxis (0.0, 4.0e-2, 1.0e-2, -0.3e-2)

323

48.6 Chemical reaction script (.lua)

-- Ar -2T-chemical -reactions.lua

--

-- Original reaction rates from:

--

-- Hoffert , M.I. and Lien , H. (1967)

-- Quasi -one -dimensional , nonequilibrium gas dynamics of partially

-- ionized two -temperature Argon

-- Physics of Fluids , Volume 10 Number 8 pp 1769 -1777 Aug. 1967

--

-- New cross -sections from:

--

-- Glass , I.I and Liu , W.S. (1978)

-- Effects of hydrogen impurities on shock structure and stability in

-- ionizing monatomic gases. Part 1. Argon

-- Journal of Fluid Mechanics , Vol. 84 Part 1 pp 55-77 1978

--

-- The presented rates are in the form:

-- k = A (Ta / T + 2) exp(- Ta / T)

-- and have therefore been curve -fitted to the Generalized Arrhenius

-- form for numerical implementation. The Argon impact reaction was

-- curve fitted in the temperature range of [10500 ,35000] and the

-- electron impact reaction was curve fitted in the temperature range of

-- [500 ,20000]. The respective maximum errors were 0.0259% and 0.0078%.

--

-- Author: Daniel F. Potter

-- Date: 18-Apr -2012

-- Place: DLR , Goettingen , Germany

--

-- History:

-- 18-Apr -2012: - Initial implementation

-- 01-Oct -2013: - Updated with better cross -sections from Glass and Liu

-- 28-May -2014: - Aesthetic improvements

scheme_t = {

update = "chemical kinetic ODE MC",

temperature_limits = {

lower = 20.0,

upper = 100000.0

},

error_tolerance = 0.000001

}

-- Argon -impact ionization

Q_hoffert = 1.2e-19 -- cm2/eV

Q_glass = 1.0e-19 -- cm2/eV

f = Q_glass / Q_hoffert

reaction{

’Ar + Ar <=> Ar+ + Ar + e-’,

fr={’Arrhenius ’, A=f*8.996906e06 , n=1.004 , T_a =129441.6 },

ec={ model=’from thermo ’,iT=-1,species ="Ar", mode=" translation "}

}

-- Electron -impact ionization

Q_hoffert = 7.0e-18 -- cm2/eV

Q_glass = 4.9e-18 -- cm2/eV

f = Q_glass / Q_hoffert

reaction{

’Ar + e- <=> Ar+ + e- + e-’,

fr={’Park ’, A=f*9.039202e11 , n=0.867 , T_a =132482.8 ,

p_name=’e_minus ’, p_mode=’translation ’, s_p=1.0,

q_name=’NA’, q_mode=’NA’

},

chemistry_energy_coupling ={

{species=’e_minus ’, mode=’translation ’,

324

model=’electron impact ionization ’, T_I =181700.0}

},

ec={ model=’from thermo ’,iT=-1,species =" e_minus", mode=" translation "}

}

48.7 Thermal energy exchange script (.lua)

-- Ar -2T-energy -exchange.lua

--

-- Electron -translation thermal energy exchange for the Ar ,Ar+,e- system

-- via the Appleton and Bray (1967) model. Heavy -particle excitation

-- cross sections have been curve fitted from the data presented in:

--

-- Hoffert , M.I. and Lien , H. (1967)

-- Quasi -one -dimensional , nonequilibrium gas dynamics of partially

-- ionized two -temperature Argon

-- Physics of Fluids , Volume 10 Number 8 pp 1769 -1777 Aug. 1967

--

-- Author: Daniel F. Potter

-- Date: 18-Apr -2012

-- Place: DLR , Goettingen , Germany

--

-- History:

-- 18-Apr -2012: - Initial implementation

-- 28-May -2014: - Aesthetic improvements

mechanism{

’e- ~~ Ar : E-T’,

rt={’Appleton -Bray:TwoRangeNeutral ’,

T_switch =10000.0 ,

sigma_low_T ={ 3.9e-21, -5.51e-25, 5.95e-29},

sigma_high_T ={-3.5e-21, 7.75e-25, 0.0}

}

}

mechanism{

’e- ~~ Ar+ : E-T’,

rt={’Appleton -Bray:Ion ’}

}

48.8 Radiation model (for flowfield coupling) script (.py)

1. transport model

gdata.transport_model = "monte carlo"

gdata.nrays = 32768

gdata.clustering = "by area"

gdata.absorption = "partitioned energy"

2. spectral model

gdata.spectral_model = "photaura"

gdata.lambda_min = 1.0e7 / 150000.0

gdata.lambda_max = 1.0e7 / 1000.0

gdata.spectral_points = int ((1.0e7 / gdata.lambda_min - 1.0e7 / gdata.lambda_max) * 0.1)

gdata.adaptive_spectral_grid = False

params = {

"species" : [’Ar ’, ’Ar_plus ’, ’e_minus ’],

"radiators" : [’Ar’, ’Ar_plus ’, ’e_minus ’],

"QSS_radiators" : [’Ar’],

"no_emission_radiators" : [],

325

"iTe" : 1,

"atomic_level_source" : "NIST_ASD",

"atomic_line_source" : "NIST_ASD",

"atomic_PICS_source" : "TOPBase",

"allow_inexact_Stark_matches" : True ,

"require_PICS_term_match" : False

}

declare_radiators(params , gdata)

48.9 Radiation model (for experiment comparison) script (.py)

1. transport model

gdata.transport_model = "monte carlo"

gdata.nrays = 32768

gdata.clustering = "by area"

gdata.absorption = "partitioned energy"

2. spectral model

gdata.spectral_model = "photaura"

gdata.lambda_min = 180.

gdata.lambda_max = 6000.

gdata.spectral_points = int ((1.0e7 / gdata.lambda_min - 1.0e7 / gdata.lambda_max) * 0.1)

gdata.adaptive_spectral_grid = False

params = {

"species" : [’Ar ’, ’Ar_plus ’, ’e_minus ’],

"radiators" : [’Ar’, ’Ar_plus ’, ’e_minus ’],

"QSS_radiators" : [’Ar’],

"no_emission_radiators" : [],

"iTe" : 1,

"atomic_level_source" : "NIST_ASD",

"atomic_line_source" : "NIST_ASD",

"atomic_PICS_source" : "TOPBase",

"allow_inexact_Stark_matches" : True ,

"require_PICS_term_match" : False

}

declare_radiators(params , gdata)

48.10 Radiation error checking script (.py)

#!/ usr/bin/env python

import sys

qrad = {}

qrad[" measured "] = float(sys.argv [2])

ifile = open(sys.argv [1],"r")

lines = ifile.readlines ()

ifile.close ()

for line in lines:

tks = line.split()

if len(tks)==0: continue

if tks [0]=="#": continue

elif float(tks [0])==0.0:

qrad[" calculated "] = float(tks [3])

break

326

error = abs(qrad[" measured "] - qrad[" calculated "])/ qrad[" measured "] * 100.0

print "qrad error = %0.1f percent" % (error)

48.11 Notes

• The radiation-flowfield coupling is relatively weak for this case, and therefore the

flowfield solution with and without radiation are relatively similar. For cases where

radiation-flowfield coupling is stronger, difficulties may arise when the scaling of the

radiation source term is turned on.

• The radiation portion of this simulation can be run in parallel on a shared memory

computer. See http://cfcfd.mechmining.uq.edu.au/eilmer3.html for intruc-

tions on how to compile e3rad.exe for parallel computations.

327

http://cfcfd.mechmining.uq.edu.au/eilmer3.html

328

49 Microscale combustion

Here is an example of a reacting flow at submillimeter scale. The gas mixture of stoichio-

metric methane/air is fed to a 2-D micro-channel at the dimension of 5 mm (in length)

× 0.6 mm (in height). However, using a symmetry assumption the computational do-

main is only 0.3 mm in height. The reaction mechanism of 19-species and 84-reaction

methane/air chemistry (DRM19) [47] is used in the simulation. The method of “Igni-

tionZone” is switched on for the initial 1 ms in order to trigger the combustion and then

switched off subsequently. Figure 126 shows the computational domain.

Figure 126: Computational domain of the planar micro-channel and boundary conditions
used.

49.1 Input script (.py)

Micro -combustion

5 mm x 0.3 mm channel

methane/air , V = 40 cm/s, Phi = 1.0

Xin Kang

gdata.title = "full channel simulation"

gdata.dimensions = 2

gdata.axisymmetric_flag = 0

gdata.viscous_flag = 1

Gas Model Set -up

select_gas_model(fname=’thermally -perfect -drm19.lua ’)

set_reaction_scheme ("drm19.lua",reacting_flag =1)

gdata.diffusion_model = ’ConstantLewisNumber ’

gdata.diffusion_lewis_number = 1.0

gdata.diffusion_flag = 1

Flow Conditions

molef = {’N2 ’:7.52 , ’O2 ’:2.0, ’CH4 ’:1.0}

gmodel = get_gas_model_ptr ()

massf=gmodel.to_massf(molef)

P_exit = 1.01325 e5 #Pa , 1 atm

T0 = 300.0 #K, total inlet stagnation temperature

u0 = 0.4 #m/s, expected combustor inlet velocity

inflow = FlowCondition(p=P_exit ,T=T0,u=u0,v=0,massf=massf)

Geometry

329

L = 5.0e-3 #m, length of the channel

h = 0.3e-3 #m, full channel simulation

a = Node (0.0 ,0.0)

b = Node (0.0,h)

c = Node(L,0.0)

d = Node(L,h)

ab = Line(a,b)

ac = Line(a,c)

cd = Line(c,d)

bd = Line(b,d)

Block Configuration

Ensure only one blocks along y axis to facilitate udf lua function

nxcells0 = 390

nycells0 = 23

nbi0 = 64

nbj0 = 1

blk0 = SuperBlock2D(make_patch(bd , cd, ac, ab),

nni = nxcells0 , nnj = nycells0 , nbi=nbi0 , nbj=nbj0 ,

bc_list = [UserDefinedBC(filename ="udf -wall.lua", is_wall =1),\

FixedPOutBC(P_exit),\

UserDefinedBC(filename ="udf -wall.lua", is_wall =1),\

UserDefinedBC(filename ="udf -massflux -in.lua")],

fill_condition = inflow ,

cf_list = [None , None , None , None])

Make Block connections

identify_block_connections ()

IgnitionZone

point0 = Vector3 (0.5*L, 0.0)

point1 = Vector3(point0.x + 0.05*L, h)

IgnitionZone (2000.0 , point0 , point1)

gdata.ignition_time_stop = 1.0e-3 # s

History locations

HistoryLocation (0.0, 0.0)

HistoryLocation (0.0, h/2.0)

HistoryLocation (0.0, h)

HistoryLocation(L/2.0, 0.0)

HistoryLocation(L/2.0, h/2.0)

HistoryLocation(L/2.0, h)

HistoryLocation(L, 0.0)

HistoryLocation(L, h/2.0)

HistoryLocation(L, h)

Simulation Parameters

gdata.flux_calc = AUSM_PLUS_UP

gdata.gasdynamic_update_scheme = "classic -rk3"

gdata.cfl = 0.3

gdata.max_time = 60.0e-3 # seconds

gdata.max_step = 20000000

gdata.dt = 3.0e-11

gdata.dt_plot = gdata.max_time /600.0

gdata.dt_history = 1.0e-7

330

49.2 UDF Boundary conditions

At the inlet of the channel, an inflow boundary condition based on the characteristic wave

relations [48] is employed. It is capable of absorbing acoustic waves due to the chemical

heat release and heat exchange between the flow and the wall. The gas total temperature

(T0), mass flow rate (Ṁ) and incoming species mass fractions are specified.

-- udf -massflux -in.lua

-- Lua script for the user -defined functions

-- called by the UserDefinedGhostCell BC.

function ghost_cell(args)

-- Function that returns the flow states for a ghost cells.

-- For use in the inviscid flux calculations.

--------------------------!!!Input parameters ------------------------------------

dt_plot = 1e-4 -- timestep for saving the ghost cell information , s

mass = 1.122497365547*0.4 -- mass flow rate , kg/s/m2

T0 = 300 --total temperature , K

massf = {}

for isp=0,(nsp -1) do

massf[isp] = 0.000000e+00

end

massf [3] = 2.201527e-01 --O2

massf [10] = 5.518596e-02 --CH4

massf [19] = 7.246613e-01 --N2

-- mass fractions are indexed from 0 to nsp -1

------------------for the very first timestep , set values in the ghost cell ------

if (args.t == 0) then

cell0 = sample_flow(block_id , args.i, args.j, args.k)

filename = "update -".. string.format ("%04d", args.j)..". data"

file = io.open(filename , "w")

file:write(dt_plot ,"\t",cell0.u,"\t",cell0.p,"\t",cell0.T[0] ,"\n")

file:close()

end

if (args.t_step == 0 and args.j == 2) then

----- initialize the data records in each ghost cell along j axis

step_previous = {}

dt_save = {}

update_u = {}

update_p = {}

update_T = {}

end

if (args.t_step == 0) then

step_previous[args.j] = args.t_step

filename = "update -".. string.format ("%04d", args.j)..". data"

file = io.open(filename , "r")

dt_save[args.j], update_u[args.j], update_p[args.j], update_T[args.j] \

= file:read ("* number ","* number ","* number ","* number ")

file:close()

end

Q = create_empty_gas_table ()

Q.p = update_p[args.j]

Q.T[0] = update_T[args.j]

for isp=0,(nsp -1) do

Q.massf[isp] = massf[isp]

end

eval_thermo_state_pT(Q)

eval_sound_speed(Q)

a = Q.a

Cp = eval_Cp(Q)

331

gamma = eval_gamma(Q)

R = eval_R(Q)

rho = Q.rho

u = update_u[args.j]

p = update_p[args.j]

M = math.abs(u/a)

-- Sample the flow field from the inner cells near the boundary.

cell1 = sample_flow(block_id , args.i, args.j, args.k)

x1 = cell1.x

u1 = cell1.u

p1 = cell1.p

cell2 = sample_flow(block_id , args.i+1, args.j, args.k)

x2 = cell2.x

u2 = cell2.u

p2 = cell2.p

cell3 = sample_flow(block_id , args.i+2, args.j, args.k)

x3 = cell3.x

u3 = cell3.u

p3 = cell3.p

cell4 = sample_flow(block_id , args.i+3, args.j, args.k)

x4 = cell4.x

u4 = cell4.u

p4 = cell4.p

if (args.t_step ~= step_previous[args.j]) then

-- NSCBC Wave amplitude and LODI relations by T.J.Poinsot:

dpdx = (-25/12*p+4*p1 -3*p2 +4/3*p3 -1/4* p4)/(x2-x1)

dudx = (-25/12*u+4*u1 -3*u2 +4/3*u3 -1/4* u4)/(x2-x1)

L1 = (u-a)*(dpdx -rho*a*dudx) -- sound wave at speed u-c

L2 = (1-M)/(M+1/(gamma -1))*L1 -- entropy wave at speed u

L5 = (M -1)*(M*(gamma -1) -1)/(M+1)/(M*(gamma -1)+1)* L1

-- sound wave at speed u+c

-- As total temperature and mass flow rate are specified ,

-- only continuity equation needs to be solved on the boundary:

d1 = 1/a/a*(L2 +0.5*(L1+L5))

rho = rho -d1*args.dt

step_previous[args.j] = args.t_step

end

update_u[args.j] = mass/rho

update_T[args.j] = T0 -0.5/ Cp*update_u[args.j]* update_u[args.j]

update_p[args.j] = rho*R*update_T[args.j]

-- update ghost cells

ghost = {}

ghost.T = {} -- temperatures , K (as a table)

ghost.T[0] = update_T[args.j]

ghost.u = update_u[args.j] -- x-velocity , m/s

ghost.v = 0.0 -- y-velocity , m/s

ghost.w = 0.0 -- z-velocity , m/s

ghost.p = update_p[args.j] -- pressure , Pa

ghost.massf = massf -- mass fractions

------------------save ghost cell information every dt_plot ----------------------

if (args.t >= dt_save[args.j]) then

dt_save[args.j] = dt_save[args.j] + dt_plot

filename = "update -".. string.format ("%04d", args.j)..". data"

file = io.open(filename , "w")

file:write(dt_save[args.j],"\t",update_u[args.j],"\t",update_p[args.j],\

"\t",update_T[args.j],"\n")

file:close()

filename1 = "data -records.data"

file = io.open(filename1 , "a")

file:write(args.t_step ,"\t",args.t_level ,"\t",args.dt ,"\t",d1 ,"\t",rho ,\

"\t",ghost.u,"\t",ghost.p,"\t",ghost.T[0] ,"\n")

file:close()

end

332

return ghost , ghost

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

return sample_flow(block_id , args.i, args.j, args.k)

end

At the wall of the channel, a hyperbolic tangent temperature profile is prescribed. The

temperature ramps from 300 K to 1500 K over the initial 1 mm of the channel length and

maintains at 1500K for the rest length of the combustor.

-- udf -wall.lua

-- Lua script for the user -defined functions

-- called by the UserDefinedBC boundary condition.

function reflect_normal_velocity(ux, vy , cosX , cosY)

-- Copied from cns_bc.h.

un = ux * cosX + vy * cosY; -- Normal velocity

vt = -ux * cosY + vy * cosX; -- Tangential velocity

un = -un; -- Reflect normal component

ux = un * cosX - vt * cosY; -- Back to Cartesian coords

vy = un * cosY + vt * cosX;

return ux, vy

end

function ghost_cell(args)

-- Function that returns the flow state for a ghost cell

-- for use in the inviscid flux calculations.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

i = args.i; j = args.j; k = args.k

cell1 = sample_flow(block_id , i, j, k)

cell1.u, cell1.v = reflect_normal_velocity(cell1.u, cell1.v, args.csX , args.csY)

if args.which_boundary == NORTH then

j = j - 1

elseif args.which_boundary == EAST then

i = i - 1

elseif args.which_boundary == SOUTH then

j = j + 1

elseif args.which_boundary == WEST then

i = i + 1

end

cell2 = sample_flow(block_id , i, j, k)

cell2.u, cell2.v = reflect_normal_velocity(cell2.u, cell2.v, args.csX , args.csY)

return cell1 , cell2

end

function interface(args)

-- Function that returns the conditions at the boundary

-- when viscous terms are active.

--

-- args contains t, x, y, z, csX , csY , csZ , i, j, k, which_boundary

Tleft = 300

Tright = 1500

cell = sample_flow(block_id , args.i, args.j, args.k)

cell.u, cell.v = 0

cell.T = {} -- temperatures , K (as a table)

x = args.x

if (x >= 0.0 and x <= 1e-3) then

cell.T[0] = ((Tright -Tleft)*(1- math.exp(-1e4*(x-0.5e -3)))\

333

/(1+ math.exp(-1e4*(x-0.5e -3)))+(Tright+Tleft))/2 --hypertangent profile

else

cell.T[0] = Tright

end

return cell

end

49.3 Running the simulation

This simulation is running on Barrine cluster (the High-Performance Computing Unit at

UQ) using 64 processors, with a shell script:

#!/ bin/bash -l

#PBS -S /bin/bash

#PBS -N micro -combustion

#PBS -q workq

#PBS -l select =16: ncpus =4: NodeType=medium:mpiprocs =4

#PBS -A uq -MechMinEng

#PBS -l walltime =48:00:00

echo "---"

echo "Begin MPI job ..."

date

cd $PBS_O_WORKDIR

mpirun -np 64 e3mpi.exe --job=microchannel --run > LOGFILE

echo "End MPI job."

date

This heavy task will take approximately 10 days wall clock time to reach a stable

solution.

49.4 Results

Figure 127 plots the temporal evolution of CH3 radicals which are responsible for the

establishment of the flame front. In the initial 0.1 ms, CH3 radicals are generated and ac-

cumulated near the walls. Then the flame is established and bifurcated into two branches:

The main flame propagates upstream and finally gets stablized, while the bifurcated flame

propagtes downstream and then flows out of the domain. After around 4 ms, a stable

solution is obtained.

334

Figure 127: Temporal evolution of CH3 radical concentrations.

335

336

Part V

Examples for 3D flow

337

50 Mach 1.5 flow over a 10-degree ramp

This is a small (in both memory and run time) example that is useful for checking that

the simulation and plotting programs have been built or installed correctly. Assuming

that you have the program executable files built and accessible on your system’s search

PATH, try the following commands:

$ cd ∼/cfcfd3/examples/eilmer3/3D/simple ramp

$./simple ramp run.sh

And, within a couple of minutes, you should end up with a number of files containing the

flow solution data. The grid and initial solution are created and the time-evolution of the

flow field is computed for 5 ms (with 862 time steps being required). In the early stages of

developing a new simulation, it may be best to run the commands manually because the

main program writes information to the console and even more information to a log file.

Although the shell script displayed in subsection 50.2 will run all stages of the simulation,

each call to e3shared.exe will overwrite the log file from the previous call.

The flow domain shown in Figure 128 is essentially two-dimensional with all of the

action happening in the (x, z)-plane. Hence, only a thin slice in the cross-stream (y)

direction is defined. The free-stream conditions (p∞ = 95.84 kPa, T∞ = 1103 K and

u∞ = 1000 m/s) are related to the shock-over-ramp test problem in the original ICASE

Report [10] for the two-dimensional flow simulation code MB CNS and are set to give a

Mach number of 1.5. From Chart 2 in Ref. [11], the expected steady-state shock wave

angle is 57o

The postprocessing stage is the most variable part of the flow simulation process.

Just what a user of the code wants to do in detail is often unclear at the start of a

simulation exercise but visualizing the data is usually the first action in postprocessing.

Using the visualization software, ParaView22, one may view the transient development of

the planar shock travelling over the ramp and establishing the steady-flow oblique shock

seen in Fig. 128. Starting with VTK parallel file simple ramp.t0000.pvtu, ParaView

understands the time-stamp sequence numbering of the VTK output files and allows you

to step back and forth in time and study the time development of the flow field.

Visualization is often followed by a more quantitative analysis. The Python program

in section 50.3, for example, picks up the data and computes the pressure force on the in-

clined surface of the ramp. The end result is force= Vector3(2209.07, 0, -12528.2)

Newtons. The BlockGrid3D class provides methods to read the grid and flow solution

22The Parallel Visualization Application (http://www.paraview.org) developed by Kitware (http:
//www.kitware.com) is freely available for download.

338

http://www.paraview.org
http://www.kitware.com
http://www.kitware.com

Figure 128: Filled surface representation of the cells Colours representing pressure at
t = 5.0 ms. The 10o slope on the ramp is seen running up to the right. Note that the
shock propagating from the start of the ramp is nearly straight until it approaches the
top surface of the simulation domain where it is reflected. This PDF figure was generated
with Paraview from the final solution file.

Figure 129: Wireframe representation of the cells on the outer surfaces of the blocks. The
grid is coloured, representing pressure at t = 5.0 ms.

339

for any particular block and makes the data available as a multidimensional array. The

libgeom2 module provides a number of geometric methods and these are used to compute

the cell interface properties on the surface of the ramp. The final section of the postpro-

cessing program computes the distances of the cell centres from the ramp surface for a

strip of cells along the ramp. Such data might be useful when computing shear stress or

heat flux, for example.

50.1 Input script (.py)

A sample job description file ... is actually Python code.

This is a fudged version of the cone20 case from mb_cns in 3D.

It is now a ramp at 10 degrees rather than a conical surface.

PJ, August 2004, Jan 2006, Jul 2006 (new thermochemistry module)

July 2008 Eilmer3 port by adding gdata.dimensions =3

Nov 2013 Test manual block connection with flow vector reorientation

---------------- First , set the global data ----------------------

To see what parameters one can set , look up the class definition

in the file e3prep.py.

gdata.title = "Ramp at 10 degrees ."

gdata.dimensions = 3

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

gdata.viscous_flag = 0

gdata.max_time = 5.0e-3

gdata.max_step = 1000

gdata.reacting_flag = 0

Set some of the other properties separately , just for fun.

gdata.t_order = 1

gdata.x_order = 2

gdata.stringent_cfl = 1

gdata.dt_plot = 1.0e-3

gdata.dt_history = 1.0e-5

------------ Second , set up flow conditions -------------------

These will be used for fill and boundary conditions.

initialCond = FlowCondition(p=5.955e3, u=0.0, T=304.0 , massf =[1.0 ,])

inflowCond = FlowCondition(p=95.84e3, u=1000.0 , T=1103.0 , massf =[1.0 ,])

------------ Third , set up the blocks ---------------------

These may explicitly reference previously defined flow conditions

but , even if they don ’t, their setup implicitly references the

first flow condition.

Note that we can use the Python language to do some of our

calculations. Here are some handy definitions for later.

def toRadians(degrees):

import math

return degrees * math.pi / 180.0

def simpleBoxCorners(xPos =0.0, yPos =0.0, zPos =0.0, xSize =1.0, ySize =1.0, zSize =1.0):

"""\ brief Creates a corner coordinate list for a simple box ."""

p0 = Node(xPos , yPos , zPos)

p1 = Node(xPos+xSize , yPos , zPos)

p2 = Node(xPos+xSize , yPos+ySize , zPos)

p3 = Node(xPos , yPos+ySize , zPos)

p4 = Node(xPos , yPos , zPos+zSize)

p5 = Node(xPos+xSize , yPos , zPos+zSize)

p6 = Node(xPos+xSize , yPos+ySize , zPos+zSize)

p7 = Node(xPos , yPos+ySize , zPos+zSize)

340

return [p0, p1 , p2 , p3, p4, p5, p6, p7]

def makeSimpleBox(p):

return SimpleBoxVolume(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7])

First block is the region in front of the ramp. 10x40(x4)

pvolume = makeSimpleBox(simpleBoxCorners(xSize =0.2, ySize =0.1))

cluster_k = RobertsClusterFunction (1, 0, 1.2) # cluster down , toward the wedge surface

cflist = [None ,]*8 + [cluster_k ,]*4; # 12 edges is a full complement

blk0 = Block3D(label ="first -block", nni=10, nnk=40,

parametric_volume=pvolume ,

cf_list=cflist ,

fill_condition=initialCond)

blk0.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

For the grid over the ramp , start with a regular box... 30x40(x4)

blk1Corners = simpleBoxCorners(xPos =0.2, xSize =0.8, ySize =0.1)

Now , raise the end of the ramp.

blk1Corners [1].z = 0.8 * math.tan(toRadians (10.0))

blk1Corners [2].z = blk1Corners [1].z

blk1 = Block3D(label ="second -block", nni=30, nnk=40,

parametric_volume=makeSimpleBox(blk1Corners),

cf_list=cflist ,

fill_condition=initialCond ,

hcell_list =[(1 ,1 ,2) ,(20 ,1 ,1)])

blk1.set_BC ("EAST", "SUP_OUT ")

identify_block_connections ()

Let ’s manually connect and exercise the flow reorientation code.

connect_blocks_3D(blk0 , blk1 , [(1,0),(5,4),(6,7),(2,3)],

reorient_vector_quantities=True ,

nA=[1.0 ,0.0 ,0.0] , t1A =[0.0 ,1.0 ,0.0] ,

nB=[1.0 ,0.0 ,0.0] , t1B =[0.0 ,1.0 ,0.0])

50.2 Shell script

#! /bin/sh

simple_ramp_run.sh

e3prep.py --job=simple_ramp

time e3shared.exe --job=simple_ramp --run --verbose

e3post.py --job=simple_ramp --vtk -xml --tindx=all

50.3 Postprocessing program

#! /usr/bin/env python

\file estimate_ramp_force.py

#

Example postprocessing script to look at the data along the ramp

and compute some potentially useful information.

import sys , os , string

sys.path.append(os.path.expandvars (" $HOME/e3bin ")) # installation directory

sys.path.append ("") # so that we can find user ’s scripts in working directory

from e3_grid import StructuredGrid

from e3_flow import StructuredGridFlow

from libprep3 import *

from gzip import GzipFile

print "\n\nEstimate force on the ramp surface ."

341

fileName = ’grid/t0000/simple_ramp.grid.b0001.t0000.gz’

print "Read grid file:", fileName

fin = GzipFile(fileName , "rb")

grd = StructuredGrid ()

grd.read(f=fin)

fin.close()

print "Read grid: ni=", grd.ni, "nj=", grd.nj, "nk=", grd.nk

fileName = ’flow/t0005/simple_ramp.flow.b0001.t0005.gz’

print "Read solution file:", fileName

fin = GzipFile(fileName , "rb")

soln = StructuredGridFlow ()

soln.read(fin)

fin.close()

ni = soln.ni; nj = soln.nj; nk = soln.nk

print "Read solution: ni=", ni, "nj=", nj, "nk=", nk

Integrate the pressure force over the BOTTOM surface of the block.

force = Vector (0.0, 0.0, 0.0)

k = 0

for i in range(ni):

for j in range(nj):

p0,p1,p2 ,p3,p4,p5 ,p6,p7 = grd.get_vertex_list_for_cell(i,j,k)

The bottom cell face has p0, p1, p2, p3 as corners.

surface_centroid = quad_centroid(p0, p1, p2 , p3)

surface_normal = quad_normal(p0, p1, p2 , p3)

surface_area = quad_area(p0, p1 , p2 , p3)

pressure = soln.data["p"][i][j][k] # average pressure in cell

df = surface_area * pressure * surface_normal

force -= df # negative because the unit normal of this cell face is into the volume

print "force=", force , "Newtons"

Find the distance from the cell centre to the centroid of the cell face

for a strip of cells along the ramp. Although it is not of much use here ,

this information could be used to estimate the boundary -layer growth

along the plate. Katsu did this for his scramjet calculations.

fileName = "distances.txt"

fout = open(fileName , "w")

k = 0; j = 0

for i in range(ni):

p0,p1,p2 ,p3,p4,p5 ,p6,p7 = grd.get_vertex_list_for_cell(i,j,k)

The bottom cell face has p0, p1, p2, p3 as corners.

surface_centroid = quad_centroid(p0, p1, p2 , p3)

surface_normal = quad_normal(p0, p1, p2 , p3)

surface_area = quad_area(p0, p1 , p2 , p3)

We pull the cell -centre information out of the solution data.

cell_centre = Vector(soln.data["pos.x"][i][j][k],

soln.data["pos.y"][i][j][k],

soln.data["pos.z"][i][j][k])

distance1 = vabs(cell_centre - surface_centroid)

We compute the cell centroid from the grid vertices.

cell_centre_2 = hexahedron_centroid(p0, p1, p2 , p3 , p4 , p5, p6, p7)

distance2 = vabs(cell_centre_2 - surface_centroid)

fout.write ("%d %e %e\n" % (i, distance1 , distance2))

fout.close()

print "done."

50.4 Notes

• None.

342

51 Sod shock tube problem in 3D

This example shows the use of the Python functions to set up a very simple 3D flow

geometry with a simple initial flow state. It’s a long hexahedral box filled half with high-

pressure and half with low-pressure gas. Run the case with the following commands:

$ cd ∼/cfcfd3/examples/eilmer3/3D/sod/
$./sod run and plot.sh

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 0.2 0.4 0.6 0.8 1

P
re

ss
ur

e,
 P

a

x, m

One-D Shock Tube at t = 0.6ms

"sod_new.dat" using 1:9
"sod_old.dat" using 1:7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

, k
g/

m
**

3

x, m

One-D Shock Tube at t = 0.6ms

"sod_new.dat" using 1:5
"sod_old.dat" using 1:3

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1

V
el

oc
ity

, m
/s

x, m

One-D Shock Tube at t = 0.6ms

"sod_new.dat" using 1:6
"sod_old.dat" using 1:4

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1

T
em

pe
ra

tu
re

, K

x, m

One-D Shock Tube at t = 0.6ms

"sod_new.dat" using 1:20
"sod_old.dat" using 1:10

Figure 130: Flow properties along the duct for the Sod shock tube problem.

343

51.1 Input script (.py)

\file sod.py

\brief Test job -specification file for e3prep.py

\author PJ , 08-Sep -2006 adapted from Tcl script to Python

11-Feb -2009 ported to Eilmer3 to demonstrate the use

of user -supplied functions for geometry

and flow conditions.

job_title = "One -dimensional shock tube with air driving air."

print job_title

gdata.dimensions = 3

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

def tube_volume(r, s, t):

"""

User -defined function for the parametric volume maps from

parametric space to physical space.

Note that a (Python) tuple of coordinates is returned.

"""

A simple hexahedron , one unit long in the i-direction.

return (1.0*r, 0.1*s, 0.1*t)

def tube_gas(x, y, z):

"""

User -defined function for the initial gas state

works in physical space.

Note that this function returns a dictionary of flow properties.

"""

if x < 0.5:

Fill the left -half of the volume with high -pressure gas.

p = 1.0e5; T = 348.4

else:

and the right -half with low -pressure gas.

p = 1.0e4; T = 278.8

We use the FlowCondition object to conveniently set all of

the relevant properties.

return FlowCondition(p=p, u=0.0, v=0.0, T=T, add_to_list =0). to_dict ()

Define a single block for the tube.

Block3D(PyFunctionVolume(tube_volume),

nni=100, nnj=2, nnk=2,

fill_condition=tube_gas)

We can set individual attributes of the global data object.

These are often used to control the simulation process.

gdata.title = job_title

gdata.flux_calc = AUSMDV

gdata.max_time = 0.6e-3 # seconds

gdata.max_step = 600

gdata.dt = 1.0e-6

344

51.2 Shell script

sod_run_and_plot.sh

Sod ’s 1-D shock tube exercise as a 3D simulation overkill.

#

e3prep.py --job=sod

time e3shared.exe --job=sod --run

e3post.py --job=sod --output -file=sod_new.dat --slice -list ="0:1,:,0,0"

gnuplot <<EOF

set term postscript eps

set output "sod_p.eps"

set title "One -D Shock Tube at t = 0.6ms"

set xlabel "x, m"

set ylabel "Pressure , Pa"

set xrange [0.0:1.0]

set yrange [0.0:120.0 e3]

plot "sod_new.dat" using 1:9 with points ps 1 pt 1, \

"sod_old.dat" using 1:7 with points ps 1 pt 2

EOF

gnuplot <<EOF

set term postscript eps

set output "sod_rho.eps"

set title "One -D Shock Tube at t = 0.6ms"

set xlabel "x, m"

set ylabel "Density , kg/m**3"

set xrange [0.0:1.0]

set yrange [0.0:1.2]

plot "sod_new.dat" using 1:5 with points ps 1 pt 1, \

"sod_old.dat" using 1:3 with points ps 1 pt 2

EOF

gnuplot <<EOF

set term postscript eps

set output "sod_u.eps"

set title "One -D Shock Tube at t = 0.6ms"

set xlabel "x, m"

set ylabel "Velocity , m/s"

set xrange [0.0:1.0]

set yrange [0.0:500.0]

plot "sod_new.dat" using 1:6 with points ps 1 pt 1, \

"sod_old.dat" using 1:4 with points ps 1 pt 2

EOF

gnuplot <<EOF

set term postscript eps

set output "sod_T.eps"

set title "One -D Shock Tube at t = 0.6ms"

set xlabel "x, m"

set ylabel "Temperature , K"

set xrange [0.0:1.0]

set yrange [0.0:500.0]

plot "sod_new.dat" using 1:20 with points ps 1 pt 1, \

"sod_old.dat" using 1:10 with points ps 1 pt 2

EOF

51.3 Notes

• None

345

346

52 Injection of hydrogen into a nitrogen stream

Figure 131 shows half of a duct representing a simple scramjet combustor. Nitrogen flows

through the duct, from the inflow plane to the outflow plane (in the x-direction), and

hydrogen is injected normal to the main flow from a port in the bottom surface. The

simulated flow domain represents half of the full scramjet duct which is symmetric about

the y = 0 plane.

inflow

outflow

port

x

z

y

Figure 131: Wireframe representation of the duct with the hydrogen injection port shaded
on the bottom surface. The main stream flow is from the closest (West) boundary to the
furtherest (East) boundary.

The flow domain consists of 6 blocks filling the whole flow domain as shown in Fig-

ure 132. The plan form of the blocks is shown as an ASCII diagram in the middle of

Python input script and has been arranged this way because each block face can accept

only one boundary condition, be it a solid surface or an inflow/outflow surface. Thus the

inflow of hydrogen is across the whole of the BOTTOM surface of block “10”.

Figure 133 shows the pressure field and the distribution of the hydrogen jet at a point

3 ms into the simulation. With the flow properties selected, the hydrogen jet does not

penetrate far into the main nitrogen stream but the pressure perturbations can can be

seen right across the duct with reflections influencing the downstream part of the hydrogen

plume. This figure was generated with Paraview version 3.8.0 by applying the following

filters to the full data set:

• Cell Data to Point Data

• Group Data Sets

• Merge Blocks

and then the following to the Merge-Blocks data set:

347

• 3 Slice filters, one in each coordinate direction with its cutting plane somewhere

near the boundary of the data. One of these shows massf1 at the exit plane and

the others show the pressure field on the bottom surface and the symmetry plane

through the injector.

• A contour (value 0.1) of massf1, coloured by p and set at an opacity of 0.6 so that

the Slice planes show through it.

Figure 132: Wireframe representation of the surface grid on three surfaces, coloured by
pressure on the bottom and symmetry surfaces and coloured by mass fraction on the
outflow surface. Also plotted is a contour surface for a mass-fraction of hydrogen with a
value 0.1, coloured by pressure and made partially transparent so that the planar surfaces
show through.

348

Figure 133: Filled surface representation of pressure and mass-fraction for hydrogen at
the final time.

52.1 Input script (.py)

inject.py -- single discrete -hole injection.

PJ

Elmer2 original: Nov -2006

Eilmer3 port: 06-Feb -2010

Some handy definitions for later.

import math

from cfpylib.geom.box3d import makeSimpleBox

---------------- First , set the global data ----------------------

gdata.title = "Single -hole injection ."

gdata.dimensions = 3

gdata.dt = 1.0e-8

gdata.t_order = 1

gdata.max_time = 3.0e-3

gdata.max_step = 60000

gdata.reacting_flag = 0

gdata.dt_plot = 0.5e-3

gdata.dt_history = 1.0e-5

------------ Second , set up flow conditions -------------------

These will be used for fill and boundary conditions.

species_list = select_gas_model(model=’ideal gas ’, species=[’N2 ’, ’H2 ’])

initialCond = FlowCondition(p=5.955e3, u=0.0, T=304.0 , massf={’N2 ’:1.0})

inflowCond = FlowCondition(p=95.84e3 , u=1000.0 , T=1103.0 , massf={’N2 ’:1.0})

injectCond = FlowCondition(p=95.84e3 , w=1000.0 , T=300.0 , massf={’H2 ’:1.0})

------------ Third , set up the blocks ---------------------

Parameters defining the duct ...

L0 = 20.0e-2 # length of duct in flow direction

L1 = 5.0e-2 # distance from leading edge to injector

L2 = 1.0e-2 # streamwise length of injector

Whalf0 = 5.0e-2 # half -width of duct

349

Whalf1 = 5.0e-3 # half -width of injector

H = 5.0e-2 # height of duct

Plan of blocks

NORTH BNDRY

+--------+---+---------------+

| | | |

| 01 | 11| 21 |

inflow > | | | | outflow >

(WEST) +--------+---+---------------+ (EAST)

| 00 | 10| 20 |

+--------+---+---------------+

SOUTH BNDRY

#

^

injector

cluster_k = RobertsClusterFunction (1, 0, 1.2) # cluster down , toward the bottom surface

cluster_i0 = RobertsClusterFunction (0, 1, 1.2) # cluster streamwise toward injector

cluster_i2 = RobertsClusterFunction (1, 0, 1.2)

cluster_j1 = RobertsClusterFunction (1, 0, 1.2) # cluster cross -stream toward injector

upstream pair of blocks

pv = makeSimpleBox(xPos =0.0, yPos =0.0, xSize=L1 , ySize=Whalf1 , zSize=H)

cflist = [cluster_i0 ,None ,cluster_i0 ,None]*2 + [cluster_k ,]*4;

12 edges is a full complement; see elmer_prep.py for the order of edges

blk00 = Block3D(nni=40, nnj=10, nnk=30, parametric_volume=pv,

cf_list=cflist , fill_condition=initialCond)

pv = makeSimpleBox(xPos =0.0, yPos=Whalf1 , xSize=L1 ,ySize=Whalf0 -Whalf1 , zSize=H)

cflist = [cluster_i0 ,cluster_j1 ,cluster_i0 ,cluster_j1]*2 + [cluster_k ,]*4;

blk01 = Block3D(nni=40, nnj=30, nnk=30, parametric_volume=pv,

cf_list=cflist , fill_condition=initialCond)

injector and part of plate beside it

pv = makeSimpleBox(xPos=L1,yPos =0.0, xSize=L2 , ySize=Whalf1 , zSize=H)

cflist = [None ,None ,None ,None]*2 + [cluster_k ,]*4;

blk10 = Block3D(nni=10, nnj=10, nnk=30, parametric_volume=pv,

cf_list=cflist , fill_condition=initialCond)

pv = makeSimpleBox(xPos=L1,yPos=Whalf1 , xSize=L2, ySize=Whalf0 -Whalf1 , zSize=H)

cflist = [None ,cluster_j1 ,None ,cluster_j1]*2 + [cluster_k ,]*4;

blk11 = Block3D(nni=10, nnj=30, nnk=30, parametric_volume=pv,

cf_list=cflist , fill_condition=initialCond)

blocks downstream of injector

pv = makeSimpleBox(xPos=L1+L2,yPos =0.0, xSize=L0 -(L1+L2), ySize=Whalf1 , zSize=H)

cflist = [cluster_i2 ,None ,cluster_i2 ,None]*2 + [cluster_k ,]*4;

blk20 = Block3D(nni=50, nnj=10, nnk=30, parametric_volume=pv,

cf_list=cflist , fill_condition=initialCond)

pv = makeSimpleBox(xPos=L1+L2,yPos=Whalf1 , xSize=L0 -(L1+L2), ySize=Whalf0 -Whalf1 , zSize=H)

cflist = [cluster_i2 ,cluster_j1 ,cluster_i2 ,cluster_j1]*2 + [cluster_k ,]*4;

blk21 = Block3D(nni=50, nnj=30, nnk=30, parametric_volume=pv,

cf_list=cflist , fill_condition=initialCond)

identify_block_connections ()

blk00.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

blk01.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

blk10.set_BC (" BOTTOM", "SUP_IN", inflow_condition=injectCond)

blk20.set_BC ("EAST", "SUP_OUT ")

blk21.set_BC ("EAST", "SUP_OUT ")

52.2 Shell script

#! /bin/sh

inject_run.sh

e3prep.py --job=inject

time e3shared.exe --job=inject --run

mpirun -np 6 e3mpi.exe --job=inject --run

e3post.py --job=inject --vtk -xml

350

52.3 Notes

• The first part of the input script sets up an ideal-gas mixture model. This could

have been done separately such that the thermochemistry files were already present

at the preparation stage.

• For an ideal-gas model, the run time on 6 cores of geyser was 23,987 seconds for

21340 steps. This is about 1.1 µs-per-cell-per-update.

351

352

53 Flow of nitrogen over a cylinder of finite length

This example is relevant to Troy and Tim’s X2 experiments on flows of weakly-ionizing

nitrogen over cylinders of various length over diameter ratios. It exercises the three-

dimensional flow solver with a strong bluff-body shock and a very sudden expansion over

the end of the cylinder. The thermochemical module is also exercised with both near-

equilibrium and frozen thermochemistry regions in the flow field and temperatures that

rise above 20 000 K. Two simulations of the cylinder flow are presented: the first with

chemical nonequilibrium and thermal equilibrium, and the second with both chemical

and thermal nonequilibrium.

The flow domain shown is made up of 4 block-structured grids as shown in Figure 134

and number of the surface grids are are indicated in Figure 135 for a 15 mm diameter

cylinder with L
D

= 2. Note that only half of the length and only the upper-front quarter

of the cylinder is in the simulation. Slip-wall boundary conditions are used (implicitly)

along the planes of symmetry.

Figure 134: Left: full cylinder with the expected shock location scribed on the symmetry
plane. Right: layout of finite-cylinder simulation with one-quarter of forward-facing half
of the cylinder surface shown as wire-frame. Some of the edges of the flow domain are
shown dashed and the labelled nodes correspond to those in the input script.

The free-stream conditions (p∞ = 2 kPa, T∞ = 3000 K and u∞ = 10 km/s) correspond

approximately to Troy’s X2 experiments. These are representative of those produced by

the X2 expansion tube and, for an ideal nitrogen test gas, the free stream Mach number

353

is 8.96.

53.1 Chemical nonequilibrium and thermal equilibrium

Here we describe the finite-cylinder simulations with chemical nonequilibrium and ther-

mal equilibrium. This means chemical reactions are permitted to occur at a finite-rate

(chemical nonequilibrium), but all thermal modes are assumed to be governed by a single

temperature (thermal equilibrium).

The script sets up the simulation to run for 30 flow-lengths (30 ∗ Rc/u∞) and the

final time reached is 22.5µs The relieving effect on the shock is clear in both the pressure

and temperature field (Figure 136). The temperature field also shows the influence of the

finite-rate reactions with peak temperatures immediately behind the shock, followed by

a relaxation as dissociation of the nitrogen molecules soaks up energy from within the

shock layer.

Figure 135: A selection of surface grids from the finite-cylinder simulation with chemical
nonequilibrium, shown as wire-frame on the cylinder surface and coloured by pressure
in the flow field. This PNG figure was generated with Paraview using block surfaces
extracted from final solution file.

This case is quite difficult for both the flow solver and the finite-rate chemistry module

and defects can be seen in the solution around the flat end of the cylinder and toward

the outflow boundaries. These defects are quite obvious in the temperature field with

a checker-board pattern of extreme high and low temperatures. However, the forebody

flow looks to be reliably computed and the shock stand-off distance is 1.13 mm near the

midplane of the cylinder.

354

Figure 136: Static temperature and mass fraction of nitrogen atoms in the flow field from
the chemical nonequilibrium simulation.

355

53.1.1 Input script (.py)

\file cyl.py

#

This geometry is a set of three blocks describing a quarter -cylinder

of finite length in supersonic flow.

#

PJ, 20-Jun -2005 , 04-Dec -2005 increase number of blocks along cylinder axis

06-Feb -2006 new geometry objects

19-Aug -2009 Eilmer3 port

23-Jan -2010 SuperBlock3D and use of MPI code cor comparison

RJG , 02-Apr -2007 new reacting gas spec.

gdata.dimensions = 3

D = 15.0e-3 # Diameter of cylinder , metres

L = 2.0 * D # (axial) length of cylinder

Gas model used in the simulation.

select_gas_model(model=’thermally perfect gas ’, species=[’N2’,’N’,’N2+’,’N+’,’e-’])

set_reaction_scheme ("nitrogen -5sp -6r.lua",reacting_flag =1)

mf = {’N2 ’:1.0}

Free -stream properties

T_inf = 3000.0 # degrees K

p_inf = 2000.0 # Pa

u_inf = 10000.0 # m/s

gdata.title = "Cylinder L/D=%g in N2 at u=%g m/s." % (L/D, u_inf)

print "title=", gdata.title

Flow conditions for fill and boundary conditions.

inflowCond = FlowCondition(p=p_inf , u=u_inf , v=0.0, T=T_inf , massf=mf)

initialCond = FlowCondition(p=p_inf /3.0, u=0.0, v=0.0, T=300.0 , massf=mf)

Geometry is built from the bottom up.

Rc = D/2.0 # cylinder radius

Define a few key nodes.

a = Node(-Rc, 0.0, 0.0, label="a") # stagnation point on the cylinder

b = Node(0.0, Rc , 0.0, label ="b") # top of cylinder

c = Node(0.0, 0.0, 0.0, label="c") # centre of curvature

In order to have a grid that fits reasonably close the the shock ,

use Billig ’s shock shape correlation to generate

a few sample points along the expected shock position.

from math import sqrt

from cfpylib.gasdyn.billig import x_from_y

ideal N2 properties used for shock shape estimate

R_N2 = 296.8

gamma_N2 = 1.4

a_inf = sqrt(gamma_N2 * R_N2 * T_inf)

M_inf = u_inf / a_inf

print "M_inf=", M_inf

xys = []

for y in [0.0, 0.5, 1.0, 1.5, 2.0, 2.5]:

x = x_from_y(y*Rc, M_inf , theta =0.0, axi=0, R_nose=Rc)

xys.append ((x,y*Rc)) # a new coordinate pair

print "x=", x, "y=", y

Scale the Billig distances , depending on the expected behaviour

relative to the gamma =1.4 ideal gas.

if gdata.reacting_flag == 1:

b_scale = 0.87 # for finite -rate chemistry

else:

b_scale = 1.1 # for ideal (frozen -chemistry) gas

d = [] # will use a list to keep the nodes for the shock boundary

for x, y in xys:

the outer boundary should be a little further than the shock itself

d.append(Node(-b_scale*x, b_scale*y, 0.0, label ="d"))

print "front of grid: d[0]=", d[0]

356

Extent of the cylinder in the z-direction to end face.

c2 = c.clone (); c2.translate (0.0, 0.0, L/2.0)

e = d[0]. clone (). translate (0.0, 0.0, L/2.0)

f = a.clone (). translate (0.0, 0.0, L/2.0)

g = Node(-Rc/2.0, 0.0, L/2.0)

h = Node (0.0, Rc/2.0, L/2.0)

i = Node (0.0, Rc, L/2.0)

the domain is extended beyond the end of the cylinder

j = e.clone (). translate (0.0, 0.0, Rc)

k = f.clone (). translate (0.0, 0.0, Rc)

... then lines , arcs , etc , that will make up the domain -end face.

xaxis = Line(d[0], a) # first -point of shock to nose of cylinder

cylinder = Arc(a, b, c)

shock = Spline(d)

outlet = Line(d[-1], b) # top -point of shock to top of cylinder

domain_end_face = CoonsPatch(xaxis , outlet , shock , cylinder)

... lines along which we shall extrude the domain -end face

yaxis0 = Line(d[0], e)

yaxis1 = Line(e, j)

End -face of cylinder

xaxis = Line(f, g)

cylinder = Arc(f, i, c2)

inner = Arc(g, h, c2)

outlet = Line(i, h)

cyl_end_face = CoonsPatch(xaxis , outlet , cylinder , inner)

yaxis2 = Line(f, k)

Third , set up the blocks from the geometric and flow elements.

nr = 20 # radial discretization

nc = int (1.5 * nr) # circumferential discretization

na = int(L/D * nc) # axial discretization along the cylinder

na1 = nc # axial discretization off the end of the cylinder

nr2 = int(nr/2) # radial discretization toward the cylinder axis

The volume constructor extrudes the end -face along the axis in the k-direction.

We want to divide the over -cylinder block up to make reasonable use of the

cluster computer.

blk0 = SuperBlock3D(label="over -cylinder", nni=nr , nnj=nc , nnk=na , nbk=int(L/D),

parametric_volume=WireFrameVolume(domain_end_face ,yaxis0 ,"k"),

fill_condition=initialCond)

for blk in blk0.blks [0][0]:

We work along the line of blocks in the k-direction

blk.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

blk.set_BC ("NORTH", "SUP_OUT ")

blk1 = Block3D(label ="outside -cylinder", nni=nr, nnj=nc, nnk=na1 ,

parametric_volume=WireFrameVolume(domain_end_face ,yaxis1 ,"k"),

fill_condition=initialCond)

blk1.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

blk1.set_BC ("NORTH", "SUP_OUT ")

blk2 = Block3D(label ="beside -cylinder", nni=nr2 , nnj=nc, nnk=na1 ,

parametric_volume=WireFrameVolume(cyl_end_face ,yaxis2 ,"k"),

fill_condition=initialCond)

blk2.set_BC ("EAST", "SUP_OUT ")

blk2.set_BC ("NORTH", "SUP_OUT ")

identify_block_connections ()

Finally , Other simulation control parameters. ----------

gdata.viscous_flag = 0

gdata.flux_calc = ADAPTIVE

gdata.interpolation_type = "pT"

gdata.t_order = 1

gdata.x_order = 2

gdata.max_time = Rc/u_inf * 30

gdata.max_step = 40000

gdata.dt = 1.0e-10

gdata.cfl = 0.5

gdata.dt_history = 1.0e-5

357

gdata.dt_plot = gdata.max_time /2

print "Total number of blocks=", len(blk0.blks)+2

53.1.2 Reaction scheme file (.lua)

-- Author: Rowan J. Gollan

-- Date: 11-Nov -2009

-- Place: Poquoson , Virginia , USA

--

-- Updated from the work by RJG and DFP as found in

-- lib/gas_models2/input_files/nitrogen/nitrogen -5sp -6r.py

--

-- Note: Based on Dan ’s comments , I’ve only included

-- the Goekcen rates at present.

--

-- Reference:

-- Goekcen (2004)

-- N2-CH4 -Ar Chemical Kinetic Model for Simulations of

-- Atmospheric Entry to Titan

-- AIAA Paper 2004 -2469

--

reaction{

’N2 + N2 <=> N + N + N2 ’,

fr={’Arrhenius ’, A=7.0e21 , n=-1.6, T_a =113200.0}

}

reaction{

’N2 + N <=> N + N + N’,

fr={’Arrhenius ’, A=3.0e22 , n=-1.6, T_a =113200.0}

}

reaction{

’N2 + e- <=> N + N + e-’,

fr={’Arrhenius ’, A=3.0e24 , n=-1.6, T_a =113200.0}

}

reaction{

’N + N <=> N2+ + e-’,

fr={’Arrhenius ’, A=4.40e7, n=1.5, T_a =67500.0}

}

reaction{

’N2 + N+ <=> N2+ + N’,

fr={’Arrhenius ’, A=1.0e12 , n=0.5, T_a =12200.0}

}

reaction{

’N + e- <=> N+ + e- + e-’,

fr={’Arrhenius ’, A=2.50e34 , n=-3.82, T_a =168600.0}

}

358

53.1.3 Shell script

#!/ bin/bash

run_simulation.sh

#$ -S /bin/bash

#$ -N FiniteCyl

#$ -pe orte 4

#$ -cwd

#$ -V

job=cyl

np=4

echo "Start time: "; date

mpirun -np $np e3mpi.exe --job=$job --run

e3shared.exe --job=$job --run

echo "Finish time: "; date

53.1.4 Postprocessing program

#!/ bin/bash

post_simulation.sh

Create a VTK plot file of the steady full flow field.

e3post.py --job=cyl --tindx =9999 --vtk -xml

Pull out the cylinder surfaces.

e3post.py --job=cyl --tindx =9999 --output -file=cylinder \

--surface -list="0,east;1,east;3,bottom"

Now pull out some block surfaces that show cross -sections of the flow field.

e3post.py --job=cyl --tindx =9999 --output -file=interior \

--surface -list="0, bottom;1,bottom;0,north;1,north;2,north;3,north;0,south;1,south;2,south;3,south;3,east"

Stagnation -line flow data

e3post.py --job=cyl --tindx =9999 --slice -list ="0,:,0,0" \

--output -file=stagnation -line.data

#! /usr/bin/env python

\file locate_bow_shock.py

PJ, 08-Nov -2009 , updated for Eilmer3

import sys , os , gzip

sys.path.append(os.path.expandvars (" $HOME/e3bin "))

from e3_flow import StructuredGridFlow

print "Locate a bow shock by its pressure jump."

Block 0 contains the stagnation point.

fileName = ’flow/t9999/cyl.flow.b0000.t9999.gz’

fp = gzip.open(fileName , "r")

blockData = StructuredGridFlow ()

blockData.read(fp)

fp.close ()

Since this is a 3D simulation , the shock is not expected

to be flat in the k-direction (along the cylinder axis).

Sample the shock layer in a few places near the stagnation line.

x_sum = 0.0

n_sample = 6

359

for k in range(n_sample):

j = 0

p_trigger = 10000.0 # Pa

x_old = blockData.data[’pos.x’][0,j,k]

p_old = blockData.data[’p’][0,j,k]

for i in range(blockData.ni):

x = blockData.data[’pos.x’][i,j,k]

p = blockData.data[’p’][i,j,k]

if p > p_trigger: break

x_old = x

p_old = p

frac = (p_trigger - p_old) / (p - p_old)

x_loc = x_old * (1.0 - frac) + x * frac

print "shock at x=", x_loc , \

"y=", blockData.data[’pos.y’][0,j,k], \

"z=", blockData.data[’pos.z’][0,j,k]

x_sum += x_loc

x_average = x_sum / n_sample

print "Average x-location=", x_average

print "Done."

53.1.5 Notes

• It is well worth the bother to run this simulation on multiple processors. The elapsed

time for the run with 4 MPI processes is 9193 seconds on geyser, a Dell server with

4× 4 AMD cores. Of course, our MPI job used only 4 of those cores.

• We tried a couple of reconstruction variations. The original simulation required 5999

steps using rhoe interpolation. Using pT interpolation (as shown in the script), the

simulation required an elapsed computing time of 8492 seconds and 6025 steps on

geyser in January 2010. In August 2010, the same calculation took 4315 seconds

on 4 cores of the barrine cluster to do 6023 steps at final time.

• To double the grid resolution (as one might want to do for a convergence study),

would require a factor of 8 increase in memory. If you are planning to do calculations

of any reasonable complexity, it is worth your while to invest in learning to use the

cluster computer and the parallel version of the code.

53.2 Chemical and thermal nonequilibrium

Here we describe the finite-cylinder simulations with both chemical and thermal nonequi-

librium. Specifically, a two-temperature thermal model as proposed by Park [49] is imple-

mented. This means chemical reactions are permitted to occur at a finite-rate (chemical

nonequilibrium), and the translation and rotation thermal modes are governed by one

temperature Ttr and the vibration and electronic thermal modes by a separate tempera-

ture Tve

360

(a) Translation-rotation temperature, p (b) Atomic nitrogen mass-fraction, fN2

(c) Translation-rotation temperature, Ttr (d) Vibration-electron-electronic temperature, Tve

Figure 137: Flow field contour plots from the thermal nonequilibrium simulation.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

T
em

pe
ra

tu
re

 (
K

)

Distance from stagnation point, x (mm)

Thermal eq.: T
Thermal noneq.: Ttr

Thermal noneq.: Tve

(a) Temperature profile

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

N
2

de
ns

ity
 (

kg
/m

3)

Distance from stagnation point, x (mm)

Thermal eq.
Thermal noneq.

(b) Diatomic nitrogren density profile

Figure 138: Stagnation-line profile plots from the thermal nonequilibrium simulation.

361

53.2.1 Input script (.py)

\file cyl.py

#

This geometry is a set of three blocks describing a quarter -cylinder

of finite length in supersonic flow.

#

PJ, 20-Jun -2005 , 04-Dec -2005 increase number of blocks along cylinder axis

06-Feb -2006 new geometry objects

19-Aug -2009 Eilmer3 port

23-Jan -2010 SuperBlock3D and use of MPI code cor comparison

RJG , 02-Apr -2007 new reacting gas spec.

DFP , 08-Dec -2011 port to thermal nonequilibrium

gdata.dimensions = 3

D = 15.0e-3 # Diameter of cylinder , metres

L = 2.0 * D # (axial) length of cylinder

Gas model used in the simulation.

select_gas_model(model=’two temperature gas ’, species=[’N2 ’,’N’,’N2_plus ’,’N_plus ’,’e_minus ’])

set_reaction_scheme ("nitrogen -5sp -6r.lua",reacting_flag =1)

set_energy_exchange_scheme ("TV-TE_exchange.lua")

mf = {’N2 ’:1.0}

Free -stream properties

T_inf = 3000.0 # degrees K

p_inf = 2000.0 # Pa

u_inf = 10000.0 # m/s

gdata.title = "Cylinder L/D=%g in N2 at u=%g m/s." % (L/D, u_inf)

print "title=", gdata.title

Flow conditions for fill and boundary conditions.

inflowCond = FlowCondition(p=p_inf , u=u_inf , v=0.0, T=T_inf , massf=mf)

initialCond = FlowCondition(p=p_inf /3.0, u=0.0, v=0.0, T=300.0 , massf=mf)

Geometry is built from the bottom up.

Rc = D/2.0 # cylinder radius

Define a few key nodes.

a = Node(-Rc, 0.0, 0.0, label="a") # stagnation point on the cylinder

b = Node(0.0, Rc , 0.0, label ="b") # top of cylinder

c = Node(0.0, 0.0, 0.0, label="c") # centre of curvature

In order to have a grid that fits reasonably close the the shock ,

use Billig ’s shock shape correlation to generate

a few sample points along the expected shock position.

from math import sqrt

from cfpylib.gasdyn.billig import x_from_y

ideal N2 properties used for shock shape estimate

R_N2 = 296.8

gamma_N2 = 1.4

a_inf = sqrt(gamma_N2 * R_N2 * T_inf)

M_inf = u_inf / a_inf

print "M_inf=", M_inf

xys = []

for y in [0.0, 0.5, 1.0, 1.5, 2.0, 2.5]:

x = x_from_y(y*Rc, M_inf , theta =0.0, axi=0, R_nose=Rc)

xys.append ((x,y*Rc)) # a new coordinate pair

print "x=", x, "y=", y

Scale the Billig distances , depending on the expected behaviour

relative to the gamma =1.4 ideal gas.

if gdata.reacting_flag == 1:

b_scale = 0.87 # for finite -rate chemistry

else:

b_scale = 1.1 # for ideal (frozen -chemistry) gas

d = [] # will use a list to keep the nodes for the shock boundary

for x, y in xys:

the outer boundary should be a little further than the shock itself

d.append(Node(-b_scale*x, b_scale*y, 0.0, label ="d"))

362

print "front of grid: d[0]=", d[0]

Extent of the cylinder in the z-direction to end face.

c2 = c.clone (); c2.translate (0.0, 0.0, L/2.0)

e = d[0]. clone (). translate (0.0, 0.0, L/2.0)

f = a.clone (). translate (0.0, 0.0, L/2.0)

g = Node(-Rc/2.0, 0.0, L/2.0)

h = Node (0.0, Rc/2.0, L/2.0)

i = Node (0.0, Rc, L/2.0)

the domain is extended beyond the end of the cylinder

j = e.clone (). translate (0.0, 0.0, Rc)

k = f.clone (). translate (0.0, 0.0, Rc)

... then lines , arcs , etc , that will make up the domain -end face.

xaxis = Line(d[0], a) # first -point of shock to nose of cylinder

cylinder = Arc(a, b, c)

shock = Spline(d)

outlet = Line(d[-1], b) # top -point of shock to top of cylinder

domain_end_face = CoonsPatch(xaxis , outlet , shock , cylinder)

... lines along which we shall extrude the domain -end face

yaxis0 = Line(d[0], e)

yaxis1 = Line(e, j)

End -face of cylinder

xaxis = Line(f, g)

cylinder = Arc(f, i, c2)

inner = Arc(g, h, c2)

outlet = Line(i, h)

cyl_end_face = CoonsPatch(xaxis , outlet , cylinder , inner)

yaxis2 = Line(f, k)

Third , set up the blocks from the geometric and flow elements.

nr = 20 # radial discretization

nc = int (1.5 * nr) # circumferential discretization

na = int(L/D * nc) # axial discretization along the cylinder

na1 = nc # axial discretization off the end of the cylinder

nr2 = int(nr/2) # radial discretization toward the cylinder axis

The volume constructor extrudes the end -face along the axis in the k-direction.

We want to divide the over -cylinder block up to make reasonable use of the

cluster computer.

blk0 = SuperBlock3D(label="over -cylinder", nni=nr , nnj=nc , nnk=na , nbk=int(L/D),

parametric_volume=WireFrameVolume(domain_end_face ,yaxis0 ,"k"),

fill_condition=initialCond)

for blk in blk0.blks [0][0]:

We work along the line of blocks in the k-direction

blk.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

blk.set_BC ("NORTH", "SUP_OUT ")

blk1 = Block3D(label ="outside -cylinder", nni=nr, nnj=nc, nnk=na1 ,

parametric_volume=WireFrameVolume(domain_end_face ,yaxis1 ,"k"),

fill_condition=initialCond)

blk1.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

blk1.set_BC ("NORTH", "SUP_OUT ")

blk2 = Block3D(label ="beside -cylinder", nni=nr2 , nnj=nc, nnk=na1 ,

parametric_volume=WireFrameVolume(cyl_end_face ,yaxis2 ,"k"),

fill_condition=initialCond)

blk2.set_BC ("EAST", "SUP_OUT ")

blk2.set_BC ("NORTH", "SUP_OUT ")

identify_block_connections ()

Finally , Other simulation control parameters. ----------

gdata.viscous_flag = 0

gdata.flux_calc = ADAPTIVE

gdata.interpolation_type = "pT"

gdata.t_order = 1

gdata.x_order = 2

gdata.max_time = Rc/u_inf * 30

gdata.max_step = 40000

gdata.dt = 1.0e-10

363

gdata.cfl = 0.5

gdata.dt_history = 1.0e-5

gdata.dt_plot = gdata.max_time /10

gdata.print_count = 1

print "Total number of blocks=", len(blk0.blks)+2

53.2.2 Reaction scheme file (.lua)

-- Author: Daniel F. Potter

-- Date: 29-Nov -2011

-- Place: DLR G t t i n g e n , Germany

--

-- Two -temperature version of the ionising nitrogen

-- reaction scheme.

--

-- Updated from the work by RJG and DFP as found in

-- lib/gas_models2/input_files/nitrogen/nitrogen -5sp -6r.py

--

-- Note: Based on Dan ’s comments , I’ve only included

-- the Goekcen rates at present.

--

-- Reference:

-- Goekcen (2004)

-- N2-CH4 -Ar Chemical Kinetic Model for Simulations of

-- Atmospheric Entry to Titan

-- AIAA Paper 2004 -2469

--

scheme_t = {

update = "chemical kinetic ODE MC",

temperature_limits = {

lower = 20.0,

upper = 100000.0

},

error_tolerance = 0.000001

}

reaction{

’N2 + N2 <=> N + N + N2 ’,

fr={’Park ’, A=7.0e21 , n=-1.6, T_a =113200.0 , p_name=’N2’, p_mode=’vibration ’,

s_p=0.3, q_name=’N2 ’, q_mode=’translation ’},

ec={ model=’from CEA curves ’,iT=0}

}

reaction{

’N2 + N <=> N + N + N’,

fr={’Park ’, A=3.0e22 , n=-1.6, T_a =113200.0 , p_name=’N2’, p_mode=’vibration ’,

s_p=0.3, q_name=’N’, q_mode=’translation ’},

ec={ model=’from CEA curves ’,iT=0}

}

reaction{

’N2 + e- <=> N + N + e-’,

fr={’Park ’, A=3.0e24 , n=-1.6, T_a =113200.0 , p_name=’N2’, p_mode=’vibration ’,

s_p=0.3, q_name=’e_minus ’, q_mode=’translation ’},

ec={ model=’from CEA curves ’,iT=0}

}

reaction{

’N + N <=> N2+ + e-’,

fr={’Arrhenius ’, A=4.40e7, n=1.5, T_a =67500.0} ,

ec={ model=’from CEA curves ’,iT=0}

}

reaction{

’N2 + N+ <=> N2+ + N’,

364

fr={’Arrhenius ’, A=1.0e12 , n=0.5, T_a =12200.0} ,

ec={ model=’from CEA curves ’,iT=0}

}

reaction{

’N + e- <=> N+ + e- + e-’,

fr={’Park ’, A=2.50e34 , n=-3.82, T_a =168600.0 , p_name=’e_minus ’,

p_mode=’translation ’, s_p=1.0, q_name=’NA’, q_mode=’NA ’},

ec={ model=’from CEA curves ’, iT=-1, species=’e_minus ’, mode=’translation ’}

}

53.2.3 Energy exchange scheme file (.lua)

scheme_t = {

update = "energy exchange ODE",

temperature_limits = {

lower = 20.0,

upper = 100000.0

},

error_tolerance = 0.000001

}

ode_t = {

step_routine = ’rkf ’,

max_step_attempts = 4,

max_increase_factor = 1.15,

max_decrease_factor = 0.01,

decrease_factor = 0.333

}

-- all VT exchange mechanisms identified by Park (1993)

-- all ET exchange mechanisms from Gnoffo (1989)

rates = {

{

mechanisms = {

{

type = ’VT_exchange ’,

p_name = ’N2’,

relaxation_time = {

type = ’VT_MillikanWhite_HTC ’,

HTCS_model = {

type = ’Park ’,

sigma_dash = 3.0e-17

},

p_name = ’N2’,

q_names = { ’N2’, ’N’ },

a_values = { -1, -1 },

b_values = { -1, -1 }

}

},

{

type = ’ET_exchange ’,

relaxation_time = {

type = ’ET_AppletonBray ’,

ions = {

{ c_name = ’N_plus ’, },

},

neutrals = {

{ c_name = ’N’, sigma_coefficients = { 5.0e-20, 0.0, 0.0 } },

{ c_name = ’N2’, sigma_coefficients = { 7.5e-20, 5.5e-24, -1.0e-28 } },

}

}

}

}

}

}

365

equilibriation_mechanisms = {}

366

53.2.4 Shell script

#!/ bin/bash

run_simulation.sh

#$ -S /bin/bash

#$ -N FiniteCyl

#$ -pe orte 4

#$ -cwd

#$ -V

job=cyl

np=4

echo "Start time: "; date

mpirun -np $np e3mpi.exe --job=$job --run

e3shared.exe --job=$job --run

echo "Finish time: "; date

53.2.5 Postprocessing program

#!/ bin/bash

post_simulation.sh

Create a VTK plot file of the steady full flow field.

e3post.py --job=cyl --tindx =9999 --vtk -xml

Pull out the cylinder surfaces.

e3post.py --job=cyl --tindx =9999 --output -file=cylinder \

--surface -list="0,east;1,east;3,bottom"

Now pull out some block surfaces that show cross -sections of the flow field.

e3post.py --job=cyl --tindx =9999 --output -file=interior \

--surface -list="0, bottom;1,bottom;0,north;1,north;2,north;3,north;0,south;1,south;2,south;3,south;3,east"

Stagnation -line flow data

e3post.py --job=cyl --tindx =9999 --slice -list ="0,:,0,0" \

--output -file=stagnation -line.data

Plot temperature and N2 density profiles along the stagnation -line

NOTE: thermal equilibrium solution needs to be present

gnuplot <<EOF

set term postscript eps enhanced "Helvetica" 20

set output "temperature_profiles.eps"

set size 1.0 ,1.0

set ylabel "Temperature (K)"

set xlabel "Distance from stagnation point , x (mm)"

set grid

set key top right

plot ’../thermal -eq/stagnation -line.data ’ u (\$1 *1000+7.5):25 w l lt 1 lw 3 t "Thermal eq.: T", \

’stagnation -line.data ’ u (\$1 *1000+7.5):25 w lp lt 2 lw 2 pt 4 ps 0.7 t "Thermal noneq.: T_{tr}", \

’stagnation -line.data ’ u (\$1 *1000+7.5):27 w lp lt 3 lw 2 pt 5 ps 0.7 t "Thermal noneq.: T_{ve}"

set output "N2_profiles.eps"

set key top right

set ylabel "N_2 density (kg/m^3)"

plot ’../thermal -eq/stagnation -line.data ’ u (\$1 *1000+7.5):(\ $5*\$18) w l lt 1 lw 3 t "Thermal eq.", \

’stagnation -line.data ’ u (\$1 *1000+7.5):(\ $5*\$18) w lp lt 2 lw 2 pt 4 ps 0.7 t "Thermal noneq ."

EOF

epstopdf temperature_profiles.eps

epstopdf N2_profiles.eps

367

#! /usr/bin/env python

\file locate_bow_shock.py

PJ, 08-Nov -2009 , updated for Eilmer3

import sys , os , gzip

sys.path.append(os.path.expandvars (" $HOME/e3bin "))

from e3_flow import StructuredGridFlow

print "Locate a bow shock by its pressure jump."

Block 0 contains the stagnation point.

fileName = ’flow/t9999/cyl.flow.b0000.t9999.gz’

fp = gzip.open(fileName , "r")

blockData = StructuredGridFlow ()

blockData.read(fp)

fp.close ()

Since this is a 3D simulation , the shock is not expected

to be flat in the k-direction (along the cylinder axis).

Sample the shock layer in a few places near the stagnation line.

x_sum = 0.0

n_sample = 6

for k in range(n_sample):

j = 0

p_trigger = 10000.0 # Pa

x_old = blockData.data[’pos.x’][0,j,k]

p_old = blockData.data[’p’][0,j,k]

for i in range(blockData.ni):

x = blockData.data[’pos.x’][i,j,k]

p = blockData.data[’p’][i,j,k]

if p > p_trigger: break

x_old = x

p_old = p

frac = (p_trigger - p_old) / (p - p_old)

x_loc = x_old * (1.0 - frac) + x * frac

print "shock at x=", x_loc , \

"y=", blockData.data[’pos.y’][0,j,k], \

"z=", blockData.data[’pos.z’][0,j,k]

x_sum += x_loc

x_average = x_sum / n_sample

print "Average x-location=", x_average

print "Done."

53.2.6 Notes

• The elapsed time for this simulation was 12895 seconds on 4 CPU’s of the barrine

cluster. On the same hardware the thermal equilibrium version of this simula-

tion took 4130 seconds — a three-fold increase in computation time. This is to

be expected as the implementation of a thermal nonequilibrium model introduces

an additional conserved quantity to be accounted for (vibration-electron-electronic

energy), and requires the ODE system for thermal energy exchange to be solved.

368

54 Spherically-blunted cone

An aeroshell-type model is shown in Figure 139. The surface of the aeroshell is constructed

as a RevolvedSurface with a sphere blended into a cone. The construction Path is a

Polyline consisting of an Arc and a straight Line. The outer (inflow) surface of the

block is constructed by revolving a spline (approximating Billig’s shock shape) about

the x-axis. For specifying the flow domain, only subsections of these surfaces were used

(as MappedSurface objects) as opposite sides of the single block grid. The remaining

four surfaces were constructed by joining the edges and corners of these two original

surfaces. During the development of this example, it was useful to view parts of the

constructed paths and surfaces and a later section of the input script shows how the

objects can be rendered to a Virtual Reality Markup Language (VRML) file. Although,

not as convenient as a direct-manipulation graphical interface, this rendering facility does

enable the debugging of fairly complex constructions.

Figure 139: Views of the pressure field around a spherically-blunted cone. The left figure
is the cell-average data for the entire block rendered as a coloured surface. The view is
from behind the aeroshell surface. Only one half of the RevolvedSurface was used in the
simulation. The right figure shows two cutting planes through the block of data, coloured
according to pressure, again. The surface mesh corresponds to the EAST boundary surface
of the block and is shown with its mirror image in the (x,y)-plane.

For the 20× 20× 40 grid and requested final time of 5 ms in this simulation, the run

time was a fairly short 9m8.5s on geyser. (Compare with Elmer2, which used 3m57s on the

LG LS70 laptop for the same exercise.) The grid generation phase takes a relatively long

time because of the implied nested function calls required by the interpolation procedure

when using mapped surfaces and paths defined on those mapped surfaces. For finer grids,

the grid generation will become quite slow but it is a once-off cost.

369

54.1 Input script (.py)

A job description file for a spherically -blunted cone.

PJ

Elmer2 original: 13-Feb -2006

Eilmer3 port: 06-Feb -2010

from math import *

from cfpylib.gasdyn.billig import x_from_y

First , set the global data

gdata.title = "Sphere -cone."

gdata.dimensions = 3

select_gas_model(model=’ideal gas ’, species=[’air ’])

gdata.max_time = 5.0e-3

gdata.dt = 1.0e-7

gdata.max_step = 1000

Second , set up flow conditions

initialCond = FlowCondition(p=1000.0 , u=0.0, T=300.0)

M_inf = 4.0

u_inf = M_inf * initialCond.flow.gas.a

inflowCond = FlowCondition(p=50.0e3, u=u_inf , T=300.0)

Third , set up the block

The vehicle surface is defined as a path that is revolved about the x-axis.

Rnose = 1.0 # radius of spherical nose

Angle = 45.0 * pi / 180.0 # angle of cone wrt x-axis

Dmax = 4.0 # diameter of base

The conical section extends from nose to base radius.

Length = (Dmax / 2.0 - Rnose * sin(Angle)) / sin(Angle)

c = Vector (0.0, 0.0, 0.0) # centre of radius

a = Vector(-Rnose , 0.0, 0.0) # tip of nose

b = Vector(-Rnose*cos(Angle), Rnose*sin(Angle), 0.0) # join between sphere and cone

d = b + Length * Vector(cos(Angle), sin(Angle), 0.0) # skirt of cone

path = Polyline ([Arc(a,b,c), Line(b,d)])

surf1 = RevolvedSurface(path , "vehicle_surface ")

To put a mesh onto this revolved surface , we define a query surface with

a better outline for the block grid.

L2 = Dmax / 2.0 / sqrt (2.0)

We have made sure that our query surface is within the bounds of the original.

q0 = Vector3 (0.0, -L2 , L2)

q1 = Vector3 (0.0, -L2 , 0.0)

q2 = Vector3 (0.0, L2, 0.0)

q3 = Vector3 (0.0, L2, L2)

qsurf2 = CoonsPatch(q0, q1 , q2 , q3, "query_surface ")

east = MappedSurface(qsurf2 , surf1)

The outer mesh surface is derived from Billig ’s shock -shape correlation.

In preparation for defining nodes , generate a few sample points

along the expected shock position.

e = [] # will use a list to keep the nodes for the shock boundary

for y in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2]:

y *= Dmax /2.0 # scale up to cover the base of the vehicle

Note that we lie about the cone angle. Detached shock.

x = x_from_y(y, M_inf , theta =20.0/180.0*pi, axi=1, R_nose=Rnose)

print "x=", x, "y=", y

the outer boundary should be a little further than the shock itself

e.append(Vector (-1.2*x, 1.2*y, 0.0))

shock = Spline(e)

print "shock=", shock

surf2 = RevolvedSurface(shock , "shock_surface ")

L3 = e[-1].y / sqrt (2.0)

qs0 = Vector3 (0.0, -L3, L3)

qs1 = Vector3 (0.0, -L3, 0.0)

qs2 = Vector3 (0.0, L3, 0.0)

qs3 = Vector3 (0.0, L3, L3)

qsurf2 = CoonsPatch(qs0 , qs1 , qs2 , qs3 , "query_surface_shock ")

west = MappedSurface(qsurf2 , surf2)

370

p0 = west.eval (0.0, 0.0)

p1 = east.eval (0.0, 0.0)

p2 = east.eval (1.0, 0.0)

p3 = west.eval (1.0, 0.0)

p4 = west.eval (0.0, 1.0)

p5 = east.eval (0.0, 1.0)

p6 = east.eval (1.0, 1.0)

p7 = west.eval (1.0, 1.0)

print "p0=", p0 , "p1=", p1

We shall assemble the other surfaces as CoonsPatch surfaces with

their relevant bounding edges lying on the shock and body surfaces.

c76 = Line(p7 , p6)

c32 = Line(p3 , p2)

c37 = PathOnSurface(west , LinearFunction (0.0 ,1.0) , LinearFunction (1.0 ,0.0))

c26 = PathOnSurface(east , LinearFunction (0.0 ,1.0) , LinearFunction (1.0 ,0.0))

north = CoonsPatch(c32 , c76 , c37 , c26 , "symmetry -plane ")

c45 = Line(p4 , p5)

c01 = Line(p0 , p1)

c04 = PathOnSurface(west , LinearFunction (0.0 ,0.0) , LinearFunction (1.0 ,0.0))

c15 = PathOnSurface(east , LinearFunction (0.0 ,0.0) , LinearFunction (1.0 ,0.0))

south = CoonsPatch(c01 , c45 , c04 , c15 , "south -outflow ")

c47 = PathOnSurface(west , LinearFunction (1.0 ,0.0) , LinearFunction (0.0 ,1.0))

c56 = PathOnSurface(east , LinearFunction (1.0 ,0.0) , LinearFunction (0.0 ,1.0))

top = CoonsPatch(c45 , c76 , c47 , c56)

c03 = PathOnSurface(west , LinearFunction (1.0 ,0.0) , LinearFunction (0.0 ,0.0))

c12 = PathOnSurface(east , LinearFunction (1.0 ,0.0) , LinearFunction (0.0 ,0.0))

bottom = CoonsPatch(c01 , c32 , c03 , c12)

if 0:

Here is a bit of debug ...

You can look to see that the surfaces are reasonable and join at the edges.

print surf2

print "surf2.eval (0.25 ,0.75)=" , surf2.eval (0.25 ,0.75)

print "west=", west

print "west.eval (0.25 ,0.75)=" , west.eval (0.25 ,0.75)

print "Render to VRML"

outfile = open("sphere -cone.wrl", "w")

outfile.write ("# VRML V2.0 utf8\n")

outfile.write(east.vrml_str () + "\n")

outfile.write(west.vrml_str () + "\n")

outfile.write(north.vrml_str () + "\n")

outfile.write(south.vrml_str () + "\n")

outfile.write(top.vrml_str () + "\n")

outfile.write(bottom.vrml_str () + "\n")

outfile.close ()

import sys; sys.exit()

Assemble the surfaces into a volume.

pvolume = ParametricVolume(north , east , south , west , top , bottom , "Sphere -cone")

blk = Block3D(label ="first -block", nni=20, nnj=20, nnk=40,

parametric_volume=pvolume ,

fill_condition=initialCond)

blk.set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

blk.set_BC ("SOUTH", "SUP_OUT ")

blk.set_BC ("TOP", "SUP_OUT ")

blk.set_BC (" BOTTOM", "SUP_OUT ")

371

372

55 Katsu’s scramjet combustor and nozzle

The core of Katsuyoshi Tanimizu’s scramjet model is shown in Figure 140. It was designed

in 1994 by Prof. Ray Stalker and consists of 6 scramjet ducts distributed around a

centrebody.

Figure 140: The core section of the scramjet model with the cowl removed from the
combustor and nozzle sections to show the individual scramjet ducts between the dividing
walls. The inlets are at the upper-left of the image. This image was scanned from a
document provided by Katsu.

The geometry for only half of one duct is set up in the job script. We use a Trian-

glePatch surface for the side wall (north surface) which is is somewhat angular; in the

original model, it was milled from solid. The cowl and centre-body surfaces were origi-

nally cut on a lathe and so are curved about the streamwise axis. These surfaces (top

and bottom) are approximated in sections as CoonsPatch surfaces and then faceted into

TrianglePatch surfaces in order to join consistently with the side (north and south) walls.

So that the volume is properly closed, the inflow(west) and outflow (east) surfaces are

defined from paths along the edges of the other four surfaces.

The simulation is run for only 1000 steps and reaches this point in a little over 12

minutes on an Intel E2140 @ 1.6GHz (euler). Compare this with 4 minutes on an LG

LS70 laptop computer; we really need to do some code profiling and optimization. The

pressure distribution across some of the surfaces is shown in Figure 142

373

Figure 141: Front-view of the wireframe representation of one scramjet duct. The labelling
of key points corresponds to that used in the job input file with the exception that points
9 through 16 were moved to the centre-plane of the duct (south surface).

Figure 142: Pressure distribution on the inlet, combustor, nozzle, and cowl surfaces of
the scramjet duct.

374

55.1 Input script (.py)

A job description file for a simplified scramjet combustor and nozzle.

PJ, Feb , Mar 2006

Apr 2007, updated for Elmer2

Feb 2010, updated for Eilmer3

from math import pi, sin , cos

def deg2rad(d):

from math import pi

return d/180.0* pi

Define some geometric parameters that will be useful for specifying control points.

See Katsu ’s sketch and workbook sketch on page 37 for labelling of points.

r1 = r2 = r3 = 34.0e-3

r4 = 41.5e-3

r5 = 14.6e-3

r6 = 18.0e-3

r7 = 28.0e-3

r8 = 30.0e-3

x1 = x8 = -95.981e-3

x2 = x7 = -65.981e-3

x3 = -60.564e-3

x4 = x5 = 9.019e-3

x6 = -15.858e-3

th1 = th8 = deg2rad (11.6)

th2 = th7 = deg2rad (14.0)

th3 = deg2rad (16.0)

th4 = th5 = deg2rad (29.0)

th6 = deg2rad (18.5)

Create the collection of points for use in defining the surfaces.

p0 = Vector(0.0, 0.0, 0.0)

p1 = Vector(x1, r1*cos(th1), -r1*sin(th1))

p2 = Vector(x2, r2*cos(th2), -r2*sin(th2))

p3 = Vector(x3, r3*cos(th3), -r3*sin(th3))

p4 = Vector(x4, r4*cos(th4), -r4*sin(th4))

p5 = Vector(x5, r5*cos(th5), -r5*sin(th5))

p6 = Vector(x6, r6*cos(th6), -r6*sin(th6))

p7 = Vector(x7, r7*cos(th7), -r7*sin(th7))

p8 = Vector(x8, r8*cos(th8), -r8*sin(th8))

Define the plane of symmetry

p9 = Vector(x1, r1, 0.0)

p10 = Vector(x2 , r2, 0.0)

p11 = Vector(x3 , r3, 0.0)

p12 = Vector(x4 , r4, 0.0)

p13 = Vector(x5 , r5, 0.0)

p14 = Vector(x6 , r6, 0.0)

p15 = Vector(x7 , r7, 0.0)

p16 = Vector(x8 , r8, 0.0)

A few more points along the x-axis for later generation of circular arcs.

p1_0 = Vector(x1 , 0.0, 0.0)

p2_0 = Vector(x2 , 0.0, 0.0)

p3_0 = Vector(x3 , 0.0, 0.0)

p4_0 = Vector(x4 , 0.0, 0.0)

p6_0 = Vector(x6 , 0.0, 0.0)

North and south surfaces are defined directly as TrianglePatches

In preparation , gather the control points into a single list.

Note that a list is indexed from 0.

p = [p0, p1, p2, p3 , p4 , p5, p6, p7, p8, p9 , p10 ,

p11 , p12 , p13 , p14 , p15 , p16]

north = TrianglePatch(p, [1,8,7, 1,7,2, 2,7,3, 7,6,3, 3,6,4, 6,5,4],

[8,7,6,5], [1,2,3,4], [8,1], [5,4], "NORTH")

south = TrianglePatch(p, [9,16,15, 9,15,10, 10,15,11, 15,14,11, 11,14,12, 14,13,12],

[16,15,14,13], [9,10,11,12], [16,9], [13,12], "SOUTH")

The top and bottom surfaces are somewhat curved.

The surfaces in the physical model were cut on a lathe.

c9_1 = Arc(p9 , p1 , p1_0)

375

c10_2 = Arc(p10 , p2 , p2_0)

c9_10 = Line(p9, p10)

c1_2 = Line(p1 , p2)

top = TrianglePatch(CoonsPatch(c9_10 , c1_2 , c9_1 , c10_2), 1, 5, "COWL")

c11_3 = Arc(p11 , p3 , p3_0)

c10_11 = Line(p10 , p11)

c2_3 = Line(p2 , p3)

top.add(TrianglePatch(CoonsPatch(c10_11 , c2_3 , c10_2 , c11_3), 1, 5))

c12_4 = Arc(p12 , p4 , p4_0)

c11_12 = Line(p11 , p12)

c3_4 = Line(p3 , p4)

top.add(TrianglePatch(CoonsPatch(c11_12 , c3_4 , c11_3 , c12_4), 1, 5))

c16_8 = Arc(p16 , p8 , p1_0)

c15_7 = Arc(p15 , p7 , p2_0)

c16_15 = Line(p16 , p15)

c8_7 = Line(p8 , p7)

bottom = TrianglePatch(CoonsPatch(c16_15 , c8_7 , c16_8 , c15_7), 1, 5, "CENTRE -BODY")

c14_6 = Arc(p14 , p6 , p6_0)

c15_14 = Line(p15 , p14)

c7_6 = Line(p7 , p6)

bottom.add(TrianglePatch(CoonsPatch(c15_14 , c7_6 , c15_7 , c14_6), 1, 5))

c13_5 = Arc(p13 , p5 , p4_0)

c14_13 = Line(p14 , p13)

c6_5 = Line(p6 , p5)

bottom.add(TrianglePatch(CoonsPatch(c14_13 , c6_5 , c14_6 , c13_5), 1, 5))

The west and east faces are built to close the ends of the duct.

f_zero = LinearFunction (0.0, 0.0)

f_one = LinearFunction (0.0, 1.0)

f_linear = LinearFunction (1.0, 0.0)

cA = PathOnSurface(bottom , f_zero , f_linear)

cB = PathOnSurface(top , f_zero , f_linear)

cC = PathOnSurface(south , f_zero , f_linear)

cD = PathOnSurface(north , f_zero , f_linear)

west = CoonsPatch(cA, cB, cC, cD, "INLET")

cA = PathOnSurface(bottom , f_one , f_linear)

cB = PathOnSurface(top , f_one , f_linear)

cC = PathOnSurface(south , f_one , f_linear)

cD = PathOnSurface(north , f_one , f_linear)

east = CoonsPatch(cA, cB, cC, cD, "OUTLET ")

then assemble the surfaces into a volume.

pvolume = ParametricVolume ([south , bottom , west , east , north , top],

"Simplified -scramjet ")

Now , to the flow part of the simulation definition ...

gdata.title = "Simplified scramjet duct -- Katsu."

gdata.dimensions = 3

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

gdata.max_time = 5.0e-3

gdata.dt = 1.0e-9

gdata.max_step = 1000

initialCond = FlowCondition(p=1000.0 , u=0.0, T=304.0)

inflowCond = FlowCondition(p=50.0e3, u=2000.0 , T=300.0)

nblocks = 3

blk = MultiBlock3D(label="duct",

parametric_volume=pvolume ,

nbi=nblocks ,

nni=40, nnj=20, nnk=20,

fill_condition=initialCond)

Inlet to the nozzle is the first block.

blk.blks [0][0][0]. set_BC ("WEST", "SUP_IN", inflow_condition=inflowCond)

Exit from the nozzle is in the last block.

blk.blks[nblocks -1][0][0]. set_BC ("EAST", "SUP_OUT ")

We are done with definitions; e3prep.py will do its work ...

376

56 Titan aeroshell using imported grids

Another aeroshell model is shown in Figure 143. The grids were generated by Bianca

Capra using ICEM-CFD grid generation software and written as Plot3D format file. These

files were then converted to VTK files with the following script:

#!/bin/sh
prepare_grid.sh

gzip -d icem_grid_plot3d.fmt
import_grid.py --input=icem_grid_plot3d.fmt \

--output=icem_grid \
--plot3dplanes

gzip icem_grid_plot3d.fmt

echo "Done."

The identification of the (seemingly random) orientation of each block was done manu-

ally by loading the VTK data into ParaView and examining the grid planes as the indices

were adjusted from one limit to another.

Figure 143: Views of the temperature and pressure fields around a Titan aeroshell. The
surface grid is shown as a wire-frame rendering and a vertical slice (with solid colouring)
is made through the flow field around the aeroshell.

Once in VTK format, the block meshes can be read in and used as ParametricVolume

objects within the user’s job script. We can then generate grids of arbitrary resolution

from the original ICEM grids. Note that the bulk of the script is used to assign the bound-

ary conditions to each block because the original information about boundary conditions

(as might have been part of the ICEM database) is not available from the Plot3D file.

Because this exercise is only to show that complex grids can be imported, the simu-

lation was run at low grid resolution and to a final time of 300 ms. This is long enough

377

for the Mach 7 flow to establish over the aeroshell and, on the geyser server, took just

under one hour (3554 s) of CPU time and required 2251 steps.

56.1 Input script (.py)

titan_x2_shell.py

A job description file for Bianca ’s Titan Aeroshell used in X2.

PJ

30-Oct -2006: Elmer2 original

07-Feb -2010: Eilmer3 port

First , set the global data

gdata.title = "Titan Aeroshell used in X2."

gdata.dimensions = 3

Accept defaults for air giving R=287.1 , gamma =1.4

select_gas_model(model=’ideal gas ’, species=[’air ’])

gdata.max_time = 300.0e-3

gdata.dt = 1.0e-7

gdata.max_step = 5000

gdata.dt_plot = 30.0e-3

Second , set up flow conditions

from math import pi, sin , cos

alpha = 20.0* pi /180.0 # angle of attack in radians

initialCond = FlowCondition(p=1000.0 , u=0.0, T=300.0)

M_inf = 7.0

u_inf = M_inf * initialCond.flow.gas.a

inflowCond = FlowCondition(p=50.0e3, u=-u_inf*cos(alpha),

v=u_inf*sin(alpha), T=300.0)

Third , set up the blocks from the ICEM -generated grids.

The discretization is just a fraction of the original ICEM grids.

block 0 1 2 3 4 5 6 7 8 9 10 11 12

nni_list = [10,10,10,24,10,10,10,10,10, 7,10,10, 3]

nnj_list = [10,24,24,10,10,10,10, 7, 7,10, 3, 3,10]

nnk_list = [30 ,30 ,30 ,30 ,30 ,30 ,30 ,30 ,30 ,30 ,30 ,30 ,30]

pv_list = []

blk_list = []

for ib in range (13):

pv_list.append(MeshVolume (" icem_grid ."+ str(ib)+".g.vtk"))

blk_list.append(Block3D(nni=nni_list[ib],

nnj=nnj_list[ib],

nnk=nnk_list[ib],

parametric_volume=pv_list[ib],

fill_condition=initialCond))

identify_block_connections ()

Apply boundary conditions.

The appropriate surfaces were determined by loading each block

with MayaVi , then putting on a gridplane , and fiddling with the

index directions to find out which surface was which.

blk_list [0]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [0]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [1]. set_BC (" BOTTOM", "SUP_IN", inflow_condition=inflowCond)

blk_list [1]. set_BC ("TOP", "FIXED_T", Twall =300.0)

blk_list [1]. set_BC ("SOUTH", "SUP_OUT ")

blk_list [2]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [2]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [2]. set_BC ("SOUTH", "SUP_OUT ")

blk_list [3]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [3]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [3]. set_BC ("WEST", "SUP_OUT ")

blk_list [4]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [4]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [5]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [5]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

378

blk_list [6]. set_BC (" BOTTOM", "SUP_IN", inflow_condition=inflowCond)

blk_list [6]. set_BC ("TOP", "FIXED_T", Twall =300.0)

blk_list [7]. set_BC (" BOTTOM", "SUP_IN", inflow_condition=inflowCond)

blk_list [7]. set_BC ("TOP", "FIXED_T", Twall =300.0)

blk_list [8]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [8]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [9]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [9]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [10]. set_BC (" BOTTOM", "SUP_IN", inflow_condition=inflowCond)

blk_list [10]. set_BC ("TOP", "FIXED_T", Twall =300.0)

blk_list [11]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [11]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

blk_list [12]. set_BC (" BOTTOM", "FIXED_T", Twall =300.0)

blk_list [12]. set_BC ("TOP", "SUP_IN", inflow_condition=inflowCond)

379

380

57 Couette Flow: 3D

This three-dimensional Couette flow case is provided by Jason Qin, as an extension of the

two-dimensional case in Sec 47. The front and side views of the flow doamin are shown in

Figure 144. Since we are going to monitor the velocity profile between the plates that are

separated by a small distance in z direction, the grid has high resolution in that direction

compared to the resolutions in x and y directions.

Figure 144: Front and side view of 3D couette flow.

57.1 Input script (.py)

The top surface is set as Moving-Wall boundary condition, while the BOTTOM sur-

face Adiabatic-Wall. These are effectively the two plates that bound the flow. Slip-

Wall boundary conditions were set both the the WEST and EAST surface, while the

NORTH and SOUTH surfaces are connected manually with the aid of the function

connect_blocks_3D. Since the NORTH and SOUTH boundary surfaces are not geo-

metrically adjacent, the boolean parameter of check_corner_locations should be set to

False, else the connect_blocks_3D will flag an error.

couette.py

Jason (Kan) Qin , November 2013

from math import pi, sin , cos

gdata.dimensions = 3

gdata.title = "pressure distribution in a thrust bearing chamber 3D"

print gdata.title

select_gas_model(model=’ideal gas ’, species=[’air ’])

gdata.viscous_flag = 1

gdata.turbulence_model = "k_omega"

gdata.flux_calc = ADAPTIVE

gdata.max_time = 5.0e-3 # seconds

gdata.max_step = 30000

381

gdata.dt = 1.0e-10

gdata.dt_plot = 1.0e-3

gdata.dt_history = 1.0e-3

Define flow conditions

p_exit = 0.1e6

v_trans = 130.0 ;

Geometry

h_1 = 0.0 ;

h_2 = 3e-3 ;

r_1 = 0.0 ;

r_2 = 1e-1 ;

l_1 = 0.0 ;

l_2 = 1.5e-1 ;

def initial_flow(x, y, z):

global h_2 , p_exit , v_trans

v = v_trans * z / h_2 # linear velocity profile

return FlowCondition(p=p_exit , u=0.0, v=v, w=0.0). to_dict ()

def makeSimpleBox(ini_x0 , ini_x1 , ini_y0 , ini_y1 , ini_z0 , ini_z1):

x0 = ini_x0 ; x1 = ini_x1 ;

y0 = ini_y0 ; y1 = ini_y1 ;

z0 = ini_z0 ; z1 = ini_z1 ;

p0 = Vector(x0, y0, z0)

p1 = Vector(x1, y0, z0)

p2 = Vector(x1, y1, z0)

p3 = Vector(x0, y1, z0)

p4 = Vector(x0, y0, z1)

p5 = Vector(x1, y0, z1)

p6 = Vector(x1, y1, z1)

p7 = Vector(x0, y1, z1)

p01 = Line(p0 , p1)

p12 = Line(p1 , p2)

p32 = Line(p3 , p2)

p03 = Line(p0 , p3)

p45 = Line(p4 , p5)

p56 = Line(p5 , p6)

p76 = Line(p7 , p6)

p47 = Line(p4 , p7)

p04 = Line(p0 , p4)

p15 = Line(p1 , p5)

p26 = Line(p2 , p6)

p37 = Line(p3 , p7)

return WireFrameVolume(p01 , p12 , p32 , p03 , p45 , p56 , p76 , p47 , p04 , p15 , p26 , p37)

Define the blocks , boundary conditions and set the discretisaztion.

nx0 = 5 ; ny0 = 30 ; nz0 = 20 ;

c_0 = RobertsClusterFunction (1 ,1 ,1.0)

pvolume0 = makeSimpleBox(r_1 ,r_2 ,l_1 ,l_2 ,h_1 ,h_2)

cflist0 = [c_0 ,]*12 ;

blk_0 = Block3D(label=" plate", nni=nx0 , nnj=ny0 , nnk=nz0 ,

parametric_volume=pvolume0 ,

cf_list=cflist0 ,

fill_condition=initial_flow)

blk_0.set_BC ("TOP", "MOVING_WALL", r_omega =[0.0 ,0.0 ,0.0] , v_trans =[0.0, v_trans ,0.0])

blk_0.bc_list[BOTTOM] = AdiabaticBC ()

blk_0.set_BC ("WEST"," SLIP_WALL ")

blk_0.set_BC ("EAST"," SLIP_WALL ")

the south face is connected with the north face

connect_blocks_3D(blk_0 ,blk_0 ,[(1,2) ,(5,6) ,(4,7),(0 ,3)],

reorient_vector_quantities=True ,

nA=[0.0 ,1.0 ,0.0] , t1A =[1.0 ,0.0 ,0.0] ,

nB=[0.0 ,1.0 ,0.0] , t1B =[1.0 ,0.0 ,0.0] ,

check_corner_locations=False)

identify_block_connections ()

382

57.2 Shell scripts

#!/ bin/sh

couette.sh

e3prep.py --job=couette --do -svg

e3post.py --job=couette --vtk -xml --tindx=0

time e3shared.exe --job=couette --run

e3post.py --job=couette --vtk -xml --tindx=last

e3post.py --job=couette --output -file=dudy0.dat --tindx=0 \

--slice -list ="0,1,:,0"

e3post.py --job=couette --output -file=dudy1.dat --tindx=last \

--slice -list ="0,1,:,0"

gnuplot <<EOF

set term postscript eps 20

set output "velocity.ps"

set title "Velocity profile along the height"

set ylabel "Height , m"

set xlabel "Velocity , m/s"

set yrange [0.0:0.0115]

set xrange [-10.0:110.0]

plot "dudy0.dat" using 6:2 with lines title "Initial value", \

"dudy1.dat" using 6:2 with lines title "Steady state condition"

EOF

57.3 Results

The velocity profile along the height with different initial values are shown in Figure 145,

respectively. The form of the initial velocity profile has a big effect on the computation

time for this test case, with the uniform velocity requiring a long simulation time to reach

steady state, compared with a linear initial velocity profile.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 20 40 60 80 100 120 140

H
ei

gh
t,

m

Velocity, m/s

Velocity profile along the height

Initial value
Steady state condition

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 20 40 60 80 100 120 140

H
ei

gh
t,

m

Velocity, m/s

Velocity profile along the height

Initial value
Intermediate value

Steady state condition

Figure 145: Velocity profile along the height: linear and uniform initial velocity profiles.

57.4 Notes

• None

383

384

58 Taylor Couette Flow

This test case, used to verify the nonzero rotational speed version of the Moving-Wall

boundary condition, was provided by Jason Qin. It selects some examples of compressible

Taylor-Couette flow from Ref. [50] for an annulus with inner radius 215.5 mm and gap

width 3.1 mm. The axial extent of the annulus is 10 times the gap width. The outer

cylindrical surface of the annulus (the housing) was fixed and the inner surface (the

rotor) was moving with a rotational speed of 27600 rpm. Three different pressures are

simulated to cover a range of cases, with and without Taylor vortices. Other parameters

used for the simulations are shown in Table 2.

Table 2: Parameters for simulations, used match the experimental conditions reported in
Ref.[50]

Case intermediate high low
pressure pressure pressure

Pressure, Pa 100 1000 10
Rotor Temperature, K 348 351 344
Stator Temperature, K 350 366 344
Taylor Number 17 181 3.6

58.1 Input script (.py)

To simulate this test case, only a small segment of the annulus is modelled, then periodic

boundary conditions are applied to connect the ends of the segment. Note that the ends of

the segment have different spatial orientations and this must be handled by the boundary

condition. For the low and intermediate pressure cases, since the Taylor numbers are

quite low, there is no vortices generated. In those cases, the grid is low resolution in z

direction while, for high pressure case, the vortices might be generated in the gap, and it

needs a high resolution grid in z direction (i.e. the axial direction of the rotor).

taylor_couette.py

Jason (Kan) Qin , December 2013

from math import pi, sin , cos , sqrt

gdata.dimensions = 3

gdata.title = "taylor couette flow"

print gdata.title

select_gas_model(model=’ideal gas ’, species=[’N2 ’])

gdata.viscous_flag = 1

gdata.turbulence_model = "k_omega"

gdata.flux_calc = ADAPTIVE

gdata.max_time = 500.0e-3 # seconds

gdata.max_step = 400000

385

gdata.dt = 1.0e-11

gdata.dt_plot = 1.0e-4

gdata.dt_history = 1.0e-4

Define flow conditions

p_exit = 1000 ;

r_omega = 2*pi *27600.0/60.0 ;

T_1 = 351.0 ;

T_2 = 366.0 ;

theta = 60.0* pi/180 ;

Geometry

r_1 = 0.2125 ;

g_width = 0.0031 ;

r_2 = r_1 + g_width ;

h_1 = 0.0 ;

h_2 = 10.0* g_width ;

initial = FlowCondition(p=p_exit , u=0.0, v=0.0, w=0.0, T=T_1)

def makeSimpleBox(ini_angular1 , ini_angular2 , ini_h1 , ini_h2):

from math import pi, sin , cos

inih1 = ini_h1 ;

inih2 = ini_h2 ;

ini1 = ini_angular1 ;

ini2 = ini_angular2 ;

center_b = Node (0.0, 0.0, inih1)

center_t = Node (0.0, 0.0, inih2)

p0 = Vector(r_1*cos(ini1), r_1*sin(ini1), inih1)

p1 = Vector(r_2*cos(ini1), r_2*sin(ini1), inih1)

p2 = Vector(r_2*cos(ini2), r_2*sin(ini2), inih1)

p3 = Vector(r_1*cos(ini2), r_1*sin(ini2), inih1)

p4 = Vector(r_1*cos(ini1), r_1*sin(ini1), inih2)

p5 = Vector(r_2*cos(ini1), r_2*sin(ini1), inih2)

p6 = Vector(r_2*cos(ini2), r_2*sin(ini2), inih2)

p7 = Vector(r_1*cos(ini2), r_1*sin(ini2), inih2)

p01 = Line(p0 , p1)

p12 = Arc(p1 , p2 , center_b)

p32 = Line(p3 , p2)

p03 = Arc(p0 , p3 , center_b)

p45 = Line(p4 , p5)

p56 = Arc(p5 , p6 , center_t)

p76 = Line(p7 , p6)

p47 = Arc(p4 , p7 , center_t)

p04 = Line(p0 , p4)

p15 = Line(p1 , p5)

p26 = Line(p2 , p6)

p37 = Line(p3 , p7)

return WireFrameVolume(p01 , p12 , p32 , p03 , p45 , p56 , p76 , p47 , p04 , p15 , p26 , p37)

nx = 25 ; ny = 80 ; nz = 200 ;

nbx = 1 ; nby = 40 ; nbz = 1 ;

c_0 = RobertsClusterFunction (1 ,1 ,1.0)

North , East , South , West , Top , Bottom

mv = MovingWallBC(r_omega =[0.0 ,0.0 , r_omega],v_trans =[0.0 ,0.0 ,0.0] , Twall_flag=True ,Twall=T_1)

ft = FixedTBC(Twall=T_2)

slip = SlipWallBC ()

pvolume0 = makeSimpleBox (0.0*pi/180, 60.0*pi/180, h_1 , h_2)

bclist0 = [None ,ft ,None ,mv,slip ,slip]

cflist0 = [c_0 ,]*12 ;

blk0 = SuperBlock3D(label ="check", nni=nx , nnj=ny , nnk=nz ,

nbi=nbx , nbj=nby , nbk=nbz ,

parametric_volume=pvolume0 ,

bc_list=bclist0 ,

cf_list=cflist0 ,

fill_condition=initial)

South and North

connect_blocks_3D(blk0.blks [0][0][0] , blk0.blks [0][-1][0] ,[(1 ,2) ,(5 ,6) ,(4 ,7) ,(0 ,3)] ,

reorient_vector_quantities=True ,

nA=[0.0 ,1.0 ,0.0] , t1A =[1.0 ,0.0 ,0.0] ,

386

nB=[-sin(theta),cos(theta),0.0], t1B=[cos(theta),sin(theta),0.0],

check_corner_locations=False)

identify_block_connections ()

58.2 Shell scripts

#!/ bin/sh

prep.sh

e3prep.py --job=tc_flow_nitrogen --do -svg

#!/ bin/bash -l

#PBS -S /bin/bash

#PBS -N tc_flow

#PBS -q workq

#PBS -l select =5: ncpus =8: NodeType=medium:mpiprocs =8 -A uq-XXX

#PBS -l walltime =40:00:00

echo "---"

echo "Begin MPI job ..."

date

cd $PBS_O_WORKDIR

mpirun -np 40 $HOME/e3bin/e3mpi.exe --job=tc_flow_nitrogen --run --max -wall -clock =150000 > LOGFILE

echo "End MPI job."

date

#!/ bin/sh

post -processing script

post.sh

gnuplot <<EOF

set term postscript eps 20

set output "velocity.eps"

set title "axially averaged tangential velocity profile"

set xlabel "radial position"

set ylabel "velocity"

set xrange [0.0:1.0]

set yrange [0.0:1.0]

plot "average.txt" using 1:2 with lines title "Eilmer3", \

"tangential.dat" using 1:2 with lines title "CTDNS"

EOF

gnuplot <<EOF

set term postscript eps 20

set output "temperature.eps"

set title "axially averaged temperature profile"

set xlabel "radial position"

set ylabel "temperature"

set xrange [0.0:1.0]

set yrange [350.0:400.0]

plot "average.txt" using 1:3 with lines title "Eilmer3", \

"temperature.dat" using 1:2 with lines title "CTDNS"

EOF

387

58.3 Results

For the low pressure case, the velocity profile is roughly linear accross the narrow gap,

and the temperature profile has a parabolic shape with maximum temperature near the

center of the gap. Figure 146 shows the comparison results of velocity and temperature

with different methods. The apparent difference is caused by the slip-wall boundary

condition being considered in DSMC method and a no-slip boundary condition being

used by Eilmer3. This is not too much of a problem because, with pressure increases, the

real boundary condition more-closely approaches the no-slip condition.

 340

 350

 360

 370

 380

 390

 400

 0 0.2 0.4 0.6 0.8 1

te
m

pe
ra

tu
re

radial position

axially averaged temperature profile

Eilmer3
DCMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ve
lo

ci
ty

radial position

axially averaged tangential velocity profile

Eilmer3
DCMS

Figure 146: Comparison of temperature and velocity profiles in radial direction at low
pressure condition.

For the intermediate pressure case, shown in Figure 147, there is a similar result. The

profile for the tangential velocity is nearly linear and the temperature profile is nearly

parabolic with a maximum slightly closer to the hotter wall as seen in The agreement

between numercial schemes is now good.

 340

 350

 360

 370

 380

 390

 400

 0 0.2 0.4 0.6 0.8 1

te
m

pe
ra

tu
re

radial position

axially averaged temperature profile

Eilmer3
DSMC

CTDNS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ve
lo

ci
ty

radial position

axially averaged tangential velocity profile

Eilmer3
DCMS

Figure 147: Comparison of temperature and velocity profiles in radial direction at inter-
mediate pressure condition.

For the high pressure case, the Taylor number has exceeded a critical value and vor-

tices, aligned with the surface velocity of the rotor, make the gap flow fully three dimen-

388

sional. Figure 148 shows velocity and temperature contours within the gap, the periodic

structure being associated with the Taylor vortices.

Figure 148: Temperature and velocity contours within the gap, at the high pressure
condition. The left-most boundary is the rotor and the right-most surface is the housing
wall.

The velocity profile (averaged over the axial direction) has changed to an “S”-shapes

curve in Figure 149). This velocity profile characterizes a flow with a higher gradient at

the walls, due to enhanced radial transport of fluid induced by the vortices.

The axially averaged temperature profile (seen in Figure 149) is much flatter than the

parabolic profiles of the lower Taylor number cases. This averaged shape also exhibits

steeper graidents at the walls, which induce a high heat flux. Again, these changes are

due to the presence of vortices and the associated increase in radial transport across the

gap.

 350

 360

 370

 380

 390

 400

 0 0.2 0.4 0.6 0.8 1

te
m

pe
ra

tu
re

radial position

axially averaged temperature profile

Eilmer3
CTDNS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ve
lo

ci
ty

radial position

axially averaged tangential velocity profile

Eilmer3
CTDNS

Figure 149: Comparison of averaged temperature velocity profiles in radial direction at
high pressure condition.

58.4 Notes

• Python script for calculating axially averaged temperature and velocity profile.

389

#! /usr/bin/env python

\file a_vt.py

#

caculate the averaged velocity and temperature along the radial gap

import sys , os , string

sys.path.append(os.path.expandvars (" $HOME/e3bin ")) # installation directory

sys.path.append ("") # so that we can find user ’s scripts in working directory

from e3_grid import StructuredGrid

from e3_flow import StructuredGridFlow

from libprep3 import *

from gzip import GzipFile

from math import sin , cos , tan , atan , pi , sqrt

print "\n\ncaculate the average temperature and velocity ."

fileName = ’grid/t0000/tc_flow_nitrogen.grid.b0000.t0000.gz’

print "Read grid file:", fileName

fin = GzipFile(fileName , "rb")

grd = StructuredGrid ()

grd.read(f=fin)

fin.close()

print "Read grid: ni=", grd.ni, "nj=", grd.nj, "nk=", grd.nk

fileName = ’flow/t0036/tc_flow_nitrogen.flow.b0000.t0036.gz’

print "Read solution file:", fileName

fin = GzipFile(fileName , "rb")

soln = StructuredGridFlow ()

soln.read(fin)

fin.close()

ni = soln.ni; nj = soln.nj; nk = soln.nk

print "Read solution: ni=", ni, "nj=", nj, "nk=", nk

Caculate the averaged velocity and temperature along the radial gap

South surface of block 0

fileName = "average.txt"

fout = open(fileName , "w")

j = 0

v_tan = 0.0

vel_tan = 0.0

T_tan = 0.0

Tem_tan = 0.0

for i in range(ni):

for k in range(nk):

pos_x = soln.data["pos.x"][i][j][k]

pos_y = soln.data["pos.y"][i][j][k]

r_g = sqrt(pos_x*pos_x + pos_y*pos_y)

r_1 = (r_g -0.2125) / 0.0031 # radial position

vel_x = soln.data["vel.x"][i][j][k]

vel_y = soln.data["vel.y"][i][j][k]

T_tan = soln.data["T[0]"][i][j][k] # temp temperature

theta = atan(pos_y/pos_x)

v_tan = vel_y*cos(theta) - vel_x*sin(theta) # temp tangential velocity

v_tan = v_tan / 614.0 # change into nondimensionalized form

vel_tan += v_tan # the sum of tangential velocity

Tem_tan += T_tan # the sum of tempearture

fout.write ("%e %e %e\n" % (r_1 , vel_tan/nk , Tem_tan/nk))

v_tan = 0.0

vel_tan = 0.0

T_tan = 0.0

Tem_tan = 0.0

fout.close()

print "done."

390

Part VI

References and Appendices

References

[1] W. Y. K. Chan, M. K. Smart, and P. A. Jacobs. Experimental validation of the T4

Mach 7.0 nozzle. School of Mechanical and Mining Engineering Report 2014/14, The

University of Queensland, Brisbane, Australia, September 2014.

[2] P. A. Jacobs, R. J. Gollan, A. J. Denman, B. T. O’Flaherty, D. F. Potter, P. J. Petrie-

Repar, and I. A. Johnston. Eilmer’s theory book: Basic models for gas dynamics

and thermochemistry. Mechanical Engineering Report 2010/09, The University of

Queensland, Brisbane, Australia, 2010.

[3] J. J. Quirk. A contribution to the great Riemann solver debate. International Journal

for Numerical Methods in Fluids, 18(6):555–574, 1994.

[4] M. S. Liou and C. J. Steffen. A new flux splitting scheme. NASA Technical Memo-

randum 104404, 1991.

[5] D. I. Pullin. Direct simulation methods for compressible inviscid ideal-gas flow.

Journal of Computational Physics, 34(2):231–244, 1980.

[6] M. N. Macrossan. The equilibrium flux method for the calculation of flows with non-

equilibrium chemical reactions. Journal of Computational Physics, 80(1):204–231,

1989.

[7] Y. Wada and M. S. Liou. A flux splitting scheme with high-resolution and robustness

for discontinuities. AIAA Paper 94-0083, January 1994.

[8] M. S. Liou. A sequel to AUSM, part II: AUSM+-up for all speeds. Journal of

Computational Physics, 214:137–170, 2006.

[9] J. W. Maccoll. The conical shock wave formed by a cone moving at high speed.

Proceedings of the Royal Society of London, 159(898):459–472, 1937.

[10] P. A. Jacobs. Single-block Navier-Stokes integrator. ICASE Interim Report 18, 1991.

[11] Ames Research Staff. Equations, tables and charts for compressible flow. NACA

Report 1135, 1953.

[12] R. J. Hakkinen, I. Greber, L. Trilling, and S. S. Abarbanel. The interaction of an

oblique shock wave with a laminar boundary layer. NASA Memorandum 2-18-59W,

1959.

391

[13] S. Mohammadian. Viscous interaction over convave and convex surfaces at hypersonic

speeds. Journal of Fluid Mechanics, 55(1):163–175, 1972.

[14] M. S. Holden, T. P. Wadhams, J. K. Harvey, and G. V. Candler. Comparisons

between DSMC and Navier-Stokes solutions on measurements in regions of laminar

shock wave boundary layer interaction in hypersonic flows. AIAA Paper 2002-0435,

January 2002.

[15] M. S. Holden and T. P. Wadhams. A database of aerothermal measurements in

hypersonic flows in ”building block” experiments for CFD validation. AIAA Paper

2003-1137, January 2003.

[16] M. MacLean and M. Holden. Validation and comparison of WIND and DPLR results

for hypersonic, laminar problems. AIAA-Paper 2004-0529, AIAA, January 2004.

[17] I. Nompelis, G. V. Candler, and M. S. Holden. Effect of vibrational nonequilibrium

on hypersonic double cone experiments. A.I.A.A. Journal, 41(11):2162–2169, 2003.

[18] J. D. Anderson. Hypersonic and High Temperature Gas Dynamics. McGraw-Hill,

New York, 1989.

[19] J. M. Kendall. Experiments on supersonic blunt-body flows. Progress Report 20-372,

Jet Propulsopn Laboratory, California Institute of Technology, Pasadena, California.,

February 1959.

[20] L. H. Back, P. F. Massier, and H. L. Gier. Comparison of measured and predicted

flows through conical supersonic nozzles, with emphasis on the transonic region.

A.I.A.A. Journal, 3(9):1606–1614, 1965.

[21] K. Sawada and E. Dendou. Validation of hypersonic chemical equilibrium flow cal-

culations using ballistic-range data. Shock Waves, 11:43–51, 2001.

[22] P. H. Rose and W. I. Stark. Stagnation point heat-transfer measurements in disso-

ciated air. Journal of the Aeronautical Sciences, (February):86–97, 1958.

[23] N. H. Kemp, R. H. Rose, and R. W. Detra. Laminar heat transfer around blunt

bodies in dissociated air. Journal of the Aero/Space Sciences, 26(7):421–430, 1959.

[24] H. F. Lehr. Experiments on shock induced combustion. Astronautica Acta, 17:589–

597, 1972.

[25] G. J. Wilson. Computation of steady and unsteady shock-induced combustion over

hypervelocity blunt bodies. PhD thesis, Stanford University, California., December

1991.

392

[26] A. Aftosmis, D. Gaitonde, and T. S. Tavares. Behaviour of linear reconstruction

techniques on unstructured meshes. A.I.A.A. Journal, 33(11):2038–2049, 1995.

[27] R.W. Rutowski and D. Bershader. Shock tube studies of radiative transport in an

argon plasma. The physics of fluids, 7(4):568–577, 1964.

[28] P.L. McDill, E.A. Brown, P.A. Ross, and O.A. Huseby. The performance of a buffered

shock tube with area reduction. In A.M. Krill, editor, Proceedings of the Second

Symposium on Hypervelocity Techniques, Advances in Hypervelocity Techniques,,

pages 749–772, New York, 1962. Plenum Press.

[29] A.E. Kramida, Yu. Ralchenko, , J. Reader, and NIST ASD Team. NIST Atomic Spec-

tra Database (version 5.1). [Online]. Available: http://physics.nist.gov/asd [Monday,

28-Oct-2013]. National Institute of Standards and Technology, Gaithersburg, MD.,

2013.

[30] R.N. Gupta, J.M. Yos, R.A. Thompson, and K.-P. Lee. A Review of Reaction Rates

and Thermodynamic and Transport Properties for an 11-Species Air Model for Chem-

ical and Thermal Nonequilibrium Calculations to 30,000 K. Reference Publication

1232, NASA, August 1990.

[31] M.J. Wright, D. Bose, G.E. Palmer, and E. Levin. Recommended collision inte-

grals for transport property computations, Part 1: Air species. AIAA Journal,

43(12):2558–2564, 2005.

[32] E. Levin and M.J. Wright. Collision integrals for ion-neutral interactions of air and

argon. Journal of Thermophysics and Heat Transfer, 19(1):127–128, 2005.

[33] Mason. Transport properties of ionized gases. The Physics of Fluids, 10(8):1827–

1832, 1967.

[34] J.-L. Cambier. Numerical simulations of a nonequilibrium argon plasma in a shock-

tube experiment. AIAA Paper 91-1464, 1991.

[35] H. Petschek and S. Byron. Approach to equilibrium lonization behind strong shock

waves in argon. Annals of Physics, 1(3):270 – 315, 1957.

[36] I.I. Glass and W.S. Liu. Effects of hydrogen impurities on shock structure and

stability in ionizing monatomic gases. part 1. argon. Journal of Fluid Mechanics,

84(1):55–77, January 1978.

[37] J.P. Appleton and K.N.C. Bray. The conservation equations for a nonequilibrium

plasma. Journal of Fluid Mechanics, 20(4):659–672, December 1964.

393

[38] M.Y. Jaffrin. Shock structure in a partially ionized gas. Physics of Fluids, 8:606,

1965.

[39] J.R. Howell and M. Perlmutter. Monte Carlo solution of thermal transfer through

radiant media between gray walls. Journal of Heat Transfer, 86(1):116–122, 1964.

[40] M.F. Modest. The Monte Carlo method applied to gases with spectral line structure.

Numerical Heat Transfer, 86(1):273–284, 1992.

[41] A. Wang and M.F. Modest. Spectral Monte Carlo models for nongray radiation

analyses in inhomogeneous participating media. International Journal of Heat and

Mass Transfer, 50(19-20):3877–3889, September 2007.

[42] M.F. Modest and S.C. Poon. Determination of three-dimensional radiative exchange

factors for the space shuttle by monte carlo. ASME Paper 77-HT-49, 1977.

[43] W. Cunto, C. Mendoza, F. Ochsenbein, and C.J. Zeippen. TOPbase at the CDS.

Astronomy and Astrophysics, 275(1):5–8, August 1993.

[44] H.R. Griem. Spectral line broadening by plasmas. Academic Press, New York, 1974.

[45] C. S. Park. Calculation of radiation from argon shock layers. Journal of Quantitative

Spectroscopy and Radiative Transfer, 28(1):29–40, 1982.

[46] C. S. Park. Nonequilibrium hypersonic aerothermodynamics. John Wiley and Sons,

1990.

[47] A. Kazakov and M. Frenklach. Reaction Set DRM19.

[48] T.J Poinsot and S.K Lelef. Boundary conditions for direct simulations of compressible

viscous flows. Journal of Computational Physics, 101(1):104 – 129, 1992.

[49] C.S. Park. Assessment of two-temperature kinetic model for ionizing air. Journal of

Thermophysics and Heat Transfer, 3(3):233–244, 1989.

[50] B. Larignon, K. Marr, and D. B. Goldstein. Monte Carlo and Navier-Stokes simula-

tions of compressible Taylor-Couette flow. A.I.A.A. Journal of Thermophysics and

Heat Transfer, 20(3):544–551, 2006.

[51] Mark G. Sobell. A Practical Guide to Linux Commands, Editors and Shell Program-

ming. Prentice Hall, Upper Saddle River, New Jersey, 2005.

[52] R. Ierusalimschy, L. H. de Figueiredo, and W.C. Filho. Lua - an extensible extension

language. Software: Practice & Experience, 26(6):635–652, 1996.

394

[53] S. Gordon and B. J. McBride. Computer program for calculation of complex chemical

equilibrium compositions and applications. part 1: Analysis. Reference Publication

1311, NASA, 1994.

[54] B. J. McBride and S. Gordon. Computer program for calculation of complex chem-

ical equilibrium compositions and applications. part 2: Users manual and program

description. Reference Publication 1311, NASA, 1996.

[55] D. R. Mott. New Quasi-Steady-State and Partial-Equilibrium Methods for Integrating

Chemically Reacting Systems. PhD thesis, University of Michigan, 1999.

[56] E. Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and

their application to some heat transfer problems. Technical Report R-315, NASA,

1969.

[57] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics, 17(2):416–429, 1969.

395

396

A Instructions for installation and getting started

The latest version of this files should be in the doc/sphinx/ directory of the package of

source files.

Getting the codes and preparing to run them

===

The code repository

The codes are available for download from a Mercurial repository.

To make a clone of the repository ::

$ cd $HOME

$ hg clone https :// source.eait.uq.edu.au/hg/cfcfd3 cfcfd3

and provide the username "cfcfd -user@svn.itee.uq.edu.au" for authentication.

This takes about 40 seconds on campus at UQ.

It may take much longer , depending on your internet connection.

To see what ’s changed ::

$ cd cfcfd3

$ hg incoming https :// source.eait.uq.edu.au/hg/cfcfd3

...

$ hg pull -u https :// source.eait.uq.edu.au/hg/cfcfd3

Notes

#. You will need a password for any access. Please ask.

#. You can read but not write with the "cfcfd -user" username.

#. Some usernames (cfcfd -dev@svn.itee.uq.edu.au) may push changesets back

to the repository. You will need to negotiate a developer role for this access.

#. Some gas models depend on the NASA CEA code or the NIST REFPROP library.

If you want to use these models (and there is no look -up -table equivalent

already available) you will need to obtain these codes and place them

into the extern/ directory.

They are not included as part of our cfcfd3 repository but the cfcfd3 makefiles

will be aware of them if they are sitting in the extern/ directory.

Licence

CFCFD program collection is a set of flow simulation tools for compressible fluids.

Copyright (C) 1991 -2012 Peter Jacobs , Rowan Gollan , Daniel Potter ,

Brendan O’Flaherty , Fabian Zander , Wilson Chan , Peter Blyton and

other members of the CFCFD group.

This collection is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation , either version 3 of the License , or any later version.

This program collection is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU -General -Public -License_

along with this program. If not , see <http ://www.gnu.org/licenses/>.

.. _GNU -General -Public -License: ./ _static/gpl.txt

Your computational environment

The code collection comes as source code only so,

to use any of them , you will need to compile and install them.

To build and run the newer codes , you will need the following:

397

* a Unix -like system with GNU -make , C and C++ compilers

* popt (command -line parser) library and development files

* readline library (including the header files , libreadline -dev on Ubuntu)

* Python + the numpy , matplotlib and scipy extensions

* SWIG

* Tcl/Tk + the BWidget library (to run the GUI program e3console.tcl)

We have been able to get the programs to build on Linux , MacOS -X

(with a recent Xcode development environment) and Cygwin 1.7 (on MS-Windows).

On MS -Windows , install the full kit of Cygwin (Python , X-Windows and all)

and be careful not to have another Python installed outside of Cygwin.

The multiple installations of Python seem not to play well together.

Some other things that are useful:

* awk

* MetaPost (mpost) or, more recently , InkScape (for looking at and editing svg files)

* GNUplot

* Paraview or MayaVi or VisIt

To a basic Fedora 16 installation , you should add the following packages:

#. mercurial

#. gcc

#. gcc -c++

#. m4

#. openmpi

#. openmpi -devel

(to use openmpi on Fedora ,

:ref:‘the module must be loaded <label -openmpi -fedora >‘)

#. gcc -gfortran

#. libgfortran.i686 , glibc -devel.i686 and libgcc.i686

(to compile the 32-bit CEA code on 64-bit Fedora)

#. swig

#. python -devel

#. numpy

#. python -matplotlib

#. scipy

#. readline -devel (for Lua)

#. popt -devel

#. sympy (to run the Method -of-Manufactured -Solutions test case for Eilmer3)

To a basic Ubuntu 10.04 (or any recent Debian derivative) installation ,

you should add the following packages and their dependencies:

#. mercurial

#. g++

#. m4

#. mpi -default -dev

#. mpi -default -bin

#. gfortran

#. gfortran -multilib (for compiling 32-bit CEA2 on a 64-bit system)

#. swig

#. python -dev

#. python -numpy

#. python -matplotlib

#. python -scipy

#. libreadline -dev

#. libpopt -dev

#. libncurses5 -dev

#. tk

#. bwidget

#. gnuplot

#. tcl -dev (if you want to build IMOC)

#. python -sympy (to run the Method -of -Manufactured -Solutions test case for Eilmer3)

Compiler versions

Since March 2013, we have started using some of the C++11 features

such as range -based for loops and initializer expressions.

Because of this you will need a suitable C++ compiler.

398

For the GNU compiler collection , versions 4.6.3 and 4.8.0 are suitable.

Clang/LLVM versions 3.2 and later are also good.

Using the codes on MS-Windows

The codes assemble most conveniently on a Linux/Unix -like environment.

They should also build and run within Cygwin (http :// cygwin.com/), however ,

it may be convenient to run a full linux installation within

VirtualBox (https :// www.virtualbox.org/), on your MS-Windows computer.

Using the codes on Apple OSX

The codes can be compiled and run on OSX as this is a Unix based OS.

The Xcode development environment (https :// developer.apple.com/xcode/)

should be downloaded and installed to provide Apple ’s versions of the

GNU Compiler Collection , Python and the make utility , amongst other

development tools.

popt , readline , SWIG and Tcl/Tk can either be installed from source

or via a package manager such as MacPorts (http ://www.macports.org/) or

Fink (http :// www.finkproject.org/).

Notes:

#. If possible , it is recommended to install these dependencies from source.

#. The required Python packages (numpy , scipy and matplotlib) are all available

as pre -packaged binaries for OSX on sourceforge.net , although they can also

be installed from source if necessary.

#. Ingo has had a good experience installing binary packages from MacPorts ,

the only subtly being the need to install swig and swig -python.

SSH access to the repository for developers

Alternative access to the Mercurial repository for developers is possible via https.

You will need the password for the cfcfd -dev@svn.itee.uq.edu.au login. Please ask.

::

$ cd ~

$ hg clone https :// source.eait.uq.edu.au/hg/cfcfd3 cfcfd3

$ cd cfcfd3/extern/

$ hg clone https :// source.eait.uq.edu.au/hg/cea2 cea2

$ hg clone https :// source.eait.uq.edu.au/hg/refprop refprop

Eilmer3

=======

Eilmer3 is our principal simulation code for 2D and 3D gas dynamics.

It is a research and education code , suitable for the exploration of

flows where the bounding geometry is not too complex.

.. figure :: _static/Kiock -Mach.png

:align: center

:scale: 30%

Transonic flow through a plane turbine cascade (Kiock et al., 1986).

Simulation by Peter Blyton , 2011.

Visualization with Paraview.

Documententation (PDF)

The full Eilmer3 User Guide and Example Book: pdf -user -guide_

.. _pdf -user -guide: ./pdf/eilmer3 -user -guide.pdf

The Theory Book: pdf -theory -book_

.. _pdf -theory -book: ./pdf/eilmer3 -theory -book.pdf

399

Slides from Fabian Zander ’s lecture introducing Eilmer3 to

MECH4480 students: zander -lecture -slides_

.. _zander -lecture -slides: ./pdf/mech4480_lecture.pdf

Typical build and run procedure

The new 2D/3D code Eilmer3 is built from source into

an installation directory ‘‘$HOME/e3bin/‘‘.

A typical build procedure (using the default ‘‘TARGET=for_gnu ‘‘) might be::

$ cd $HOME/cfcfd3/app/eilmer3/build

$ make install

$ make clean

Or, if you want the MPI version of the code built as well::

$ cd $HOME/cfcfd3/app/eilmer3/build

$ make TARGET=for_openmpi install

$ make clean

You may need to add the installation directory to your system ’s

search path to run Eilmer3.

On a recent Linux system , this could be done by adding the line::

$ export PATH=${PATH}:${HOME}/e3bin

to the ‘‘.bash_profile ‘‘ or ‘‘.bashrc ‘‘ file in your home directory.

To access the Lua gas module from within the user -defined (Lua) functions ,

or to use the REFPROP gas model , the following lines should also be added

to your bash configuration ::

$ export LUA_PATH=${HOME}/ e3bin /?.lua

$ export LUA_CPATH=${HOME}/ e3bin /?.so

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH }:${HOME}/e3bin

If you wish to make use of the cfpylib functions

from your own stand -alone Python scripts ,

it may be convenient to set the PYTHONPATH environment variable ::

$ export PYTHONPATH=${PYTHONPATH }:${HOME}/e3bin/

.. _label -nonstandard -install -path:

If you choose to install eilmer3 in a different location from the

default location (‘‘$HOME/e3bin ‘‘), then you will need to

set an environment variable called ‘‘E3BIN ‘‘ and point it to

the non -standard install directory. For example , if you installed

the executables and supporting scripts to: ‘‘/work/e3bin ‘‘ then

you would set the following in your ‘‘.bashrc ‘‘::

$ export E3BIN=/work/e3bin

.. _label -openmpi -fedora:

For running on Fedora , also add the following ::

module load openmpi -i386

Or, for 64-bit:

module load openmpi -x86_64

Then , try out the cone20 -simple example ::

$ mkdir $HOME/work; cd $HOME/work; mkdir 2D; cd 2D

$ mkdir cone20 -simple; cd cone20 -simple

$ cp $HOME/cfcfd3/examples/eilmer3 /2D/cone20 -simple /* .

$./ cone20_run.sh # exercise the shared -memory version of the code

or::

$./ cone20_run_mpi.sh # exercise the MPI version of the code

400

This should generate a postscript figure of the drag coefficient

history about a sharp 20-degree cone and also put the VTK data file

into the plot/ subdirectory. It is not really necessary to make all

of the subdirectories as shown above , however , that arrangement

reflects the directory tree that PJ uses. If you want him to come and

look at your simulation files when things go wrong , use the same. If

not , use whatever hierarchy you like.

Summary of lines for your ‘‘.bashrc ‘‘ file::

export E3BIN=${HOME}/e3bin

export PATH=${PATH}:${E3BIN}

export LUA_PATH=${E3BIN }/?. lua

export LUA_CPATH=${E3BIN }/?.so

export PYTHONPATH=${PYTHONPATH }:${E3BIN}

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH }:${E3BIN}

Building and running on Mac OSX

This is mostly the same as for a Linux machine but we provide a couple of

specific targets ::

$ make TARGET=for_macports_gnu install

$ make TARGET=for_macports_openmpi install

Building and running on the Barrine cluster at UQ

The details of running simulations on any cluster computer will be

specific to the local configuration. The Barrine cluster is run by

the High -Performance Computing Unit at The University of Queensland

and is a much larger machine , with a little over 3000 cores , running

SUSE Enterprise Linux.

Set up your environment by adding the following lines to your ‘‘.bashrc ‘‘ file::

module purge

module load mercurial

module load intel -cc -13

module load intel -mpi

export PATH=${PATH}:${HOME}/ e3bin

export LUA_PATH=${HOME}/e3bin /?. lua

export LUA_CPATH=${HOME}/e3bin /?.so

Get yourself an interactive shell on a compute node so that you don ’t

hammer the login node while compiling. You won ’t make friends if you

keep the login node excessively busy::

$ qsub -I -A uq

To compile the MPI -version of the code , use the command ::

$ make TARGET=for_intel_mpi install

from the ‘‘cfcfd3/app/eilmer3/build/‘‘ directory.

Optionally , clean up after the build::

$ make clean

To submit a job to PBS -Pro , which is the batch queue system on barrine ,

use the command ::

$ qsub script_name.sh

An example of a shell script prepared for running on the Barrine cluster ::

#!/ bin/bash -l

#PBS -S /bin/bash

#PBS -N lehr

#PBS -q workq

#PBS -l select =3: ncpus =8: NodeType=medium:mpiprocs =8 -A uq

401

#PBS -l walltime =6:00:00

echo "---"

echo "Begin MPI job ..."

date

cd $PBS_O_WORKDIR

mpirun -np 24 $HOME/e3bin/e3mpi.exe --job=lehr --run \

--max -wall -clock =20000 > LOGFILE

echo "End MPI job."

date

This is the script input ‘‘examples/eilmer3 /2D/lehr -479/ run_simulation.sh ‘‘.

Here , we ask for 3 nodes with 8 cores each for a set of 24 MPI tasks.

The medium nodes have 8 cores available , and we ask for all of them so

that we are reasonably sure that our job will not be in competition

with another job on the same nodes. Note the -A accounting option.

You will have to use an appropriate group name and you can determine

which groups you are part of with the ‘‘groups ‘‘ command. Unlike SGE

on Blackhole , we seem to need to change to the working directory

before running the simulation code. Finally , we have redirected the

standard output from the main simulation to the file LOGFILE so that

we can monitor progress with the command ::

$ tail -f LOGFILE

Building and running the radiation transport solver

--

While a flowfield calculation with coupled radiation can be performed

via the single processor version of eilmer3 (e3shared.exe), the

radiation transport portion of such calculations can often take a very

long time to run. The obvious solution is to implement the radiation

transport calculation in parallel. Due to the non -local nature of the

radiation transport problem , however , for most radiation transport

models it is necessary to implement the parallelisation via the shared

memory multiprocessor approach. The radiation transport solver in

eilmer3 has therefore been written to make use of the OpenMP API. As

the Eilmer3 flowfield solver does not currently support an OpenMP

build , the radiation transport solver can be built as a separate

executable , e3rad.exe.

The typical build procedure for the OpenMP version of the radiation

transport solver using the GNU compiler is::

$ cd $HOME/cfcfd3/app/eilmer3/build

$ make TARGET=for_gnu_openmp e3rad

$ make clean

Then , try out the radiating -cylinder example ::

$ mkdir $HOME/work; cd $HOME/work; mkdir 2D; cd 2D

$ mkdir radiating -cylinder; cd radiating -cylinder

$ cp $HOME/cfcfd3/examples/eilmer3 /2D/radiating -cylinder /* .

$ tclsh cyl.test

On the barrine cluster , the Intel compiler should be used for best performance ::

$ cd $HOME/cfcfd3/app/eilmer3/build

$ make TARGET=for_intel_openmp e3rad

$ make clean

It should be noted that the e3mpi.exe executable is able to run

radiation transport calculations in parallel when either the

"optically thin" or "tangent slab" models are implemented , however a

specific blocking layout is required for the "tangent slab" model.

See the radiatively coupled Hayabusa simulation in

$HOME/cfcfd3/examples/eilmer3 /2D/hayabusa for an example of this

blocking layout.

When things go wrong

Eilmer3 is a complex piece of software , especially when all of the

thermochemistry comes into play. There will be problems buried in the

402

code and , (very) occasionally , you will expose them. We really do

have some pride in this code and will certainly try to fix anything

that is broken , however , we do this work essentially on our own time

and that time is limited.

When you have a problem , there are a number of things that you can do

to minimize the duration and pain of debugging:

#. Check the repository and be sure that you have the most recent

revision of the code. This code collection is a work in progress

and , in some cases , you will not be the only one hitting a blatant

bug. It is likely that we or someone else has hit the same problem

and , if so, it may be fixed already. The code changes daily in

small ways. This may sound chaotic , such that you should just stay

with an old version , however , we do try hard to not break things.

In general , it is safest to work with the lastest revision.

#. Put together a simple example that displays the problem. This

example should be as simple as possible so that there are not extra

interactions that confuse us.

#. Provide a complete package of input files and output pictures.

We should be able to run your simulation within a few minutes

and see the same output.

#. Be prepared to dig into the code and identify the problem yourself.

We appreciate all of the help that we can get.

Source Code Docs

The following documentation is tentative and experimental.

Use the PDF files above; they are the primary documents.

.. toctree ::

:maxdepth: 2

eilmer3/e3prep

eilmer3/e3post

eilmer3/e3history

eilmer3/e3cgns

eilmer3/e3_flow

eilmer3/e3_block

eilmer3/e3_grid

eilmer3/cgns_grid

eilmer3/e3_defs

eilmer3/bc_defs

eilmer3/flux_dict

eilmer3/e3_render

‘Doxygen documenation of C++ sources <http :// mech.uq.edu.au/cfcfd/doxygen/group__eilmer3.html >‘_

Other Notes

On Xserver for Linux (especially Ubuntu):

* If Paraview crashes on exporting a bitmap image , try adding the line::

Option "AIGLX" "false"

to the Section "ServerLayout" in ‘‘/etc/X11/xorg.conf ‘‘

* To use Paraview 3.6.1 on Ubuntu 9.04 or later , it seems that we need

to customize the look of the desktop by turning off the Visual Effects.

This setting can be found in the System ->Preferences ->Appearance menu.

* To get Paraview Screenshot to behave , uncheck "Use Offscreen Rendering

for Screenshots" button in the Edit ->Settings (" Options ") dialog.

You will find the checkbutton under "Render View"->General.

Transferring input files between machines

^^^

If you find you want to transfer just the input files between

403

machines , ignoring the generated output files , you can do this by

using the ‘‘--exclude ‘‘ option for the ‘‘rsync ‘‘ command. For example ,

to transfer just the input files of a directory called ‘‘my-sim ‘‘ on a

local machine to a remote machine , use::

$ rsync -av --exclude=flow --exclude=grid --exclude=hist --exclude=heat \

--exclude=plot my-sim/ remote:my -sim

If you find you are using this often , you can define an alias as

appropriate for your shell. In BASH , I add the following line to my

‘‘.bashrc ‘‘ file::

alias rsync -eilmer =" rsync -av --progress --exclude=flow --exclude=grid \

--exclude=hist --exclude=heat --exclude=plot"

Then I can use do the above transfer by issuing the following command ::

$ rsync -eilmer my-sim/ remote:my -sim

404

B Surviving the Linux Command Line

For running jobs on a Linux machine, it is worth knowing how to get around and do

things in the shell, which is a command interpreter and programming language. Sobell’s

text [51] is a good source of information but here are a few notes to get you started.

A basic command is composed of a sequence of words, separated by spaces and has

the usual form

cmd [options] arguments

where

• cmd is the name of the command or utility program that will do the work. Command

names on Linux are often terse, 2 or 3 character names.

• options are words that are optionally included and are typically preceded by one or

two dashes. These modify the behaviour of the command, if the default behaviour

is not quite what you want.

• arguments are the things to work on. If these are file names, you can often use

patterns with wildcard characters that may match more then one file at a time.

Commands often put their standard output to the console. If the amount of text output

is overwhelming, it can be redirected to a file or piped through a paging filter. This latter

option is an example of putting multiple command together so that the output from one

command becomes the input for another. Once you understand the system, customised

commands can be build rather simply in this way.

The following tables summarize a number of commands that you are likely to find

useful while using Eilmer3.

Logging in and getting out

ssh user@host Connect to computer named host as user.
Ctrl+d Quit current session.
exit Quit current session.

Getting help

man cmd-name Display the manual page for the named command.
man cmd-name | less Display the manual page through the paging filter.
ls --help | less Look at the online help provided by the ls command.
man -k keyword List man pages that contain keyword.
apropos subject List man pages on subject.

405

Moving about and looking in your folders

cd dir Change to directory dir.
cd Change to home directory.
cd .. Change to parent of current directory.
pwd Print current (working) directory.
pushd dir Change to new directory dir, putting the current directory onto a stack.
popd Go back to the directory at the top of that stack.
ls -l List the files in the current directory, long format.
ls -a .. List the files in the directory above, including all hidden files.
du -h dir Report the size of the directory and its subdirectories.
df -h Report the capacities of the file systems and how much is used for each.
mkdir dir Make new directory.
rmdir dir Remove an empty directory.

Handling files

cat file Displays the content of a text file.
head -n 20 file-to-show Display the first 20 lines of a text file.

tail -f file-to-show
Show the last few lines of a file and continue to show
lines as that file changes.

grep ’ideal gas’ *.py
Find the string ideal gas in all of the Python files
in the current directory.

mv src-file dest-file Renames the source file to the destination name.
cp src-file dest-file Copy the content from the source file to the destination file.

scp src-file user@host:
Copy the file from the local computer to the home
directory of user on the remote computer host.

rm -r dir Remove a directory and all of its contents (recursively).
gzip src-file Compresses the file, adding the extension .gz to its name.
tar -zcf tarfile dir Pack all of the contents of dir into the tarfile.
tar -zxf tarfile Unpack the contents of tarfile into the current directory.

Managing processes

top
Display information about all running processes. This is very handy for finding
out which jobs are taking all of your workstation’s CPU cycles and memory.

Ctrl+z Stops the current command.
bg Resumes a stopped job in the background.
fg Brings most recent job to the foreground.
Ctrl+c Halts current command.

Command-line editing

On most Linux systems, it seems that you can use the cursor keys to move about within

the command line. Delete and backspace also seem to have suitable effect.

Ctrl+u Erases whole command line.
!! Repeats last command.
history Shows command history.
!n Repeats command n.

406

C Just enough Python to be dangerous

When e3prep.py is run, the first thing that happens is that a number of Eilmer3-specific

modules are loaded and a number of classes are defined to assist with the definition of

flow and geometry. The user’s input file is then read in and executed by the Python

interpreter in the context of these predefined classes and functions. Since the input file

has to be valid Python code, it’s worth knowing a little about the language itself. We will

discuss the features of Python using examples from the periodic shear layer input file on

page 237.

Python is a statement-based language where indentation is used to define the block

structure of compound statements. One of the implications of this significant whitespace

is that the first statement in the user’s input file must start right at the beginning of the

line. That is, it must not be indented. The first couple of lines in the periodic shear layer

input file are:

psl.py

gdata.title = "Periodic shear layer"

The comment line, starting with the sharp (or hash) character is ignored and the first

statement assigns a string literal to the title.

Single statements, such as assignment statements, may extend over several lines if

they are continued by one of:

• a backslash (\) at the end of each incomplete line;

• an open left parenthesis, bracket or brace without the corresponding closing paren-

thesis, bracket or brace; or

• an open triple quote that has indicated the start of a multiline string.

The second of these is quite commonly seen in the example files because many of the

function calls and object constructors have a lot of arguments, some of which may be

quite complex in themselves. The following assignment statement, from near the end of

the periodic shear layer input file, calls the SuperBlock2D object constructor and then

binds the resultant object to the name superblk.

superblk = SuperBlock2D(psurf=domain, nni=nnx, nnj=nny,

bc list=[SlipWallBC(),]*4,

fill condition=initial gas,

nbi=nbi, nbj=nbj, label="blk")

On the selection of names to bind to returned data objects, the usual rules apply.

Start the name with a letter from the alphabet and follow it with any number of letters,

digits or underscores. Don’t use any of the following reserved words for your own names:

407

and del from None try

as elif global not while

assert else if or with

break except import pass yield

class exec in print

continue finally is raise

def for lambda return

And, if you want to see the list of names that are predefined for the environment in which

your input file is interpreted, start e3prep.py with the --show-names option. There are

conventions that leading and trailing underscores are reserved for system names and that

names starting with an uppercase letter are class names.

Control flow statements such are implemented as compound statements. These start

with an opening clause at the current indentation level. This clause will start with a

keyword, such as if, while, or for, and end with a colon. The body of the compound

statement will typically start on the following line, indented one level. All statements

at that level of indentation or more form part of the body of that compound statement.

There may be nested compounded statements and each level of indentation will be 4

spaces, by convention.

The definition of a function is itself a compound statement and an example can be

seen in the periodic shear layer example (page 237) where the initial state of the gas is

defined in the function initial gas(x, y, z)) in the user’s input file. Collections of

functions are typically available as modules in Python. These modules, or items from the

modules may be “imported”. By default, Python does not load a lot of modules so you

will typically have to import math functions, for example.

As well as the simple numerical data types of integers and floats, there are strings and

more complex, structured data types built into the language. These include tuples, lists

and dictionaries. e3prep.py also makes use of numpy arrays.

You will make use of lists when defining collections of mass fractions and boundary

conditions, for example. A list literal is denoted by square brackets, with items separated

by commas. Lists are ordered collections of items that may be indexed, starting from

zero. Negative index values count backward from the end of the list. The for loop is

a convenient way of working through all the elements of a list. In the periodic shear

layer example above, the boundary conditions are specified as a list of 4 SlipWallBC

objects. The following code works through the list of blocks that had been returned

by the SuperBlock2D constructor and makes the appropriate connections for a periodic

domain.

for j in range(nbj):

connect blocks 2D(superblk.blks[-1][j], EAST, superblk.blks[0][j], WEST)

408

Here, the call to the function range returns a list of integer values starting with 0, going

up to but not including the value bound to nbj.

Dictionaries are collections of named objects. They are a convenient way of setting

species mass fractions, especially for a gas model that has many species. You may typically

only have only one or a couple of species present in and particular inflow or initial gas

condition as, for example, the literal dictionary {’He’:0.1, ’air’:0.9} is used to set the

mass fraction of helium to 0.1 and the mass fraction of air to 0.9. Use of the dictionary

has the benefit of making the input script somewhat self-documenting and you don’t

have to remember the order in which the gas species were defined in the call to the

select gas model function, earlier in the input file.

More specialized data objects can be defined via classes, and e3prep.py does exactly

that. The name gdata is bound to an instance of the GlobalData class and contains

many attributes that set the configuration of the flow solver. The user input file will use

the already defined gdata object but will typically create new instances of objects such as

Node and SuperBlock2D. It is often convenient to bind the reference returned to the newly

created object to a name in the input script so that it can be conveniently referenced in

later statements. In the periodic shear layer case, the Node objects are bound to names

that are then used to construct the Line objects that are, in turn, used to define the

rectangular flow domain.

When working in Python it is possible to see what options are available to you with

a particular function or object using the dir command. This enables you to get a print

out of the properties and functions associated with the object. For example create a node

and see what the dir output is.

a = Node(0.0,0.1,label=’a’)

print dir(a)

[’ add ’, ’ class ’, ’ del ’, ’ delattr ’, ’ dict ’, ’ div ’, ’ doc ’, ’ format ’, ’ getattr ’,

’ getattribute ’, ’ hash ’, ’ iadd ’, ’ idiv ’, ’ imul ’, ’ init ’, ’ isub ’, ’ module ’, ’ mul ’,

’ neg ’, ’ new ’, ’ pos ’, ’ reduce ’, ’ reduce ex ’, ’ repr ’, ’ rmul ’, ’ setattr ’, ’ sizeof ’,

’ str ’, ’ sub ’, ’ subclasshook ’, ’ swig destroy ’, ’ swig getmethods ’, ’ swig setmethods ’,

’ weakref ’, ’clone’, ’copy’, ’label’, ’mirror image’, ’nodeList’, ’norm’, ’rotate about zaxis’, ’str’,

’this’, ’transform to global’, ’transform to local’, ’translate’, ’vrml str’, ’vtk str’, ’x’, ’y’, ’z’]

The last items in this list are the different options available to a Node object that can

be used within the prep file.

409

410

D Make your own debugging cube

w
e
st

fa
ce

so
u

th
fa

ce
e
a
st

fa
ce

n
o
rt

h
fa

ce

b
o
tt

o
m

fa
ceto

p
fa

ce

7 3
04

4 0
15

15

26

26

37
47

6 5

0 3
21

k
i

k
j

k
i

k
j

i
jj

i
glue to edge 3-7

glue to edge 7-4

glue to edge 5-6 glue to edge 1-2

glue to edge 3-0

g
lu

e
 t

o
 e

d
g
e
 2

-3

g
lu

e
 t

o
 e

d
g
e
 7

-6

so
u

th
so

u
th

so
u

th
so

u
th

so
u

th

so
u

th

n
o
rt

h

n
o
rt

h

n
o
rt

h

n
o
rt

h
n
o
rt

h
n

o
rt

h

west

easteast

west

west

east

east

east

east

west

west

west

411

412

E cfpylib modules

There are a number of modules that are useful for the definition of flow simulations but

are not part of the core Eilmer code. These are available in a cfpylib Python library that

may be imported into the user’s input or postprocessing scripts. This library has become

a bit of a catch-all for various utility modules and functions that don’t fit directly into the

main application source directories or the gas or geometry libraries. Documentation for

the individual functions can be found online at http://cfcfd.mechmining.uq.edu.au/,

under the link to Libraries. Alternatively, you may use Python’s introspection facility

or look at the source code directly.

E.1 Numerical Methods module

• nm.collect_run_stats: Run an executable a number of times and report.

• nm.adapti: Adaptive quadrature using Newton-Cotes 5- and 3-point rules.

• nm.least_squares: Fits a generalized polynomial basis to given data.

• nm.line_search: Implementation of an algorithm for optimization from Gerald

and Wheatley.

• nm.nelmin: Nelder-Mead simplex minimization of a nonlinear (multivariate) func-

tion.

• nm.ode: Integrate a set of first-order ODEs.

• nm.roberts: Node distribution and coordinate stretching functions.

• nm.secant_method: Function solver, using the secant method.

• nm.sode: Integrate a set of stiff ODEs.

• nm.stats: Simple statistics for arrays of values. To replace those in scipy, just in

case scipy is not installed.

• nm.zero_solvers: A small collection of function solvers, including bracketing.

E.2 Gas Dynamics module

• gasdyn.billig: Fred Billig’s correlations for hypersonic shock-wave shapes. This

module is shown completely in the following Section E.6.

• gasdyn.ideal_gas_flow: One-dimensional steady flow of an ideal gas. This module

includes many small functions grouped into:

413

http://cfcfd.mechmining.uq.edu.au/

– Isentropic flow relations.

– 1D (Normal) Shock Relations.

– 1-D flow with heat addition (Rayleigh-line).

– Prandtl-Meyer functions.

– Oblique-shock relations.

– Taylor-Maccoll conical flow.

• gasdyn.cea2_gas: Thermodynamic properties of a gas mixture in chemical equilib-

rium. This module interfaces to the CEA code by writing a small input file, running

the CEA code as a child process and then reading the results from the CEA plot

file.

• gasdyn.libgas_gas: Access the gas models from the libgas library. This module

gives you access to the same gas-model library as used in the main simulation

program.

• gasdyn.ideal_gas: Thermodynamic properties of an ideal gas. This module pro-

vides a look-alike Gas class for use in the gas flow functions. Where ever cea2 gas

works, so should this.

• gasdyn.gas_flow: Gas flow calculations using CEA2 or ideal Gas objects. The

functions are generalized versions of those in gasdyn.ideal gas flow.

• gasdyn.sutherland: Sutherland form of viscosity and thermal conductivity for a

few gases. Species available: Air, N2, O2, H2, CO2, CO, Ar.

E.3 Flow (house-keeping) module

• flow.blockflow2d: Pick up the flow data for mbcns2 block-structured grids.

• flow.vtk_xml_writer: Writing of BlockGrid2D and BlockFlow2D (mbcns2) ob-

jects to VTK XML files.

• flow.tecplot_writer: Writing of BlockGrid2D and BlockFlow2D (mbcns2) ob-

jects to Tecplot files.

E.4 Geometry module

• geom.minimal_geometry: A bare minimum geometry library to do some of the

work required by Rowan’s laura2vtk.py.

• geom.svg_render: Render a drawing in Scalable Vector Graphics format.

414

• geom.transform_pyfunc: Apply a matrix transformation to a Python function.

The functions provided by this module are used to manipulate a python function

prior to using the function to create a path with libprep3’s PyFunctionPath. Avail-

able transformations are rotation and translation.

E.5 Utility module

• util.flatten: Function to flatten a nested list.

• util.FortranFile: Defines a file-derived class to read/write Fortran unformatted

files.

E.6 Billig shock shape correlation

"""

billig.py: Fred Billig ’s correlations for hypersonic shock -wave shapes.

These are a direct implementation of equations 5.36, 5.37 and 5.38

from J.D. Anderson ’s text Hypersonic and High Temperature Gas Dynamics

.. Author: PJ

.. Version: 19-June -2005

"""

from math import exp , sqrt , pow , tan

from ideal_gas_flow import beta_obl , beta_cone2

def delta_over_R(M, axi):

"""

Calculates the normalised stand -off distance.

"""

if axi == 1:

Spherical nose

d_R = 0.143 * exp (3.24/(M*M))

else:

Cylindrical nose

d_R = 0.386 * exp (4.67/(M*M))

return d_R

def Rc_over_R(M, axi):

"""

Calculates the normalised radius of curvature of the shock.

"""

if axi == 1:

Spherical nose

Rc_R = 1.143 * exp (0.54/ pow(M-1, 1.2))

else:

Cylindrical nose

Rc_R = 1.386 * exp (1.8/ pow(M-1, 0.75))

return Rc_R

def x_from_y(y, M, theta =0.0, axi=0, R_nose =1.0):

"""

Determine the x-coordinate of a point on the shock wave.

:param y: y-coordinate of the point on the shock wave

:param M: free -stream Mach number

:param theta: angle (in radians wrt free -stream direction)

of the downstream surface

415

:param axi: (int) axisymmetric flag:

| == 0 : cylinder -wedge

| == 1 : sphere -cone

:param R_nose: radius of the forebody (either cylinder or sphere)

It is assumed that , for the ideal gas , gamma =1.4.

That ’s the only value relevant to the data used for

Billig ’s correlations.

"""

Rc = R_nose * Rc_over_R(M, axi)

d = R_nose * delta_over_R(M, axi)

if axi == 1:

Use shock angle on a cone

beta = beta_cone2(M, theta)

else:

Use shock angle on a wedge

beta = beta_obl(M, theta)

tan_beta = tan(beta)

cot_beta = 1.0/ tan_beta

x = R_nose + d - Rc * cot_beta **2 * (sqrt(1 + (y*tan_beta/Rc)**2) - 1)

return x

def y_from_x(x, M, theta =0.0, axi=0, R_nose =1.0):

"""

Determine the y-coordinate of a point on the shock wave.

:param x: x-coordinate of the point on the shock wave

:param M: free -stream Mach number

:param theta: angle (in radians wrt free -stream direction)

of the downstream surface

:param axi: (int) axisymmetric flag:

| == 0 : cylinder -wedge

| == 1 : sphere -cone

:param R_nose: radius of the forebody (either cylinder or sphere)

It is assumed that , for the ideal gas , gamma =1.4.

That ’s the only value relevant to the data used for

Billig ’s correlations.

"""

Rc = R_nose * Rc_over_R(M, axi)

d = R_nose * delta_over_R(M, axi)

if axi == 1:

Use shock angle on a cone

beta = beta_cone2(M, theta)

else:

Use shock angle on a wedge

beta = beta_obl(M, theta)

tan_beta = tan(beta)

cot_beta = 1.0/ tan_beta

tmpA = (x - R_nose - d)/(-Rc * cot_beta **2) + 1

y = sqrt(((tmpA **2 - 1) * Rc**2) / (tan_beta **2))

return y

#--

if __name__ == ’__main__ ’:

print "Begin demo of Billig ’s correlations ."

print "Compare with Fig 5.31 in Anderson ’s text."

M_inf = 4.0

for y in [0.0, 0.5, 1.0, 2.0]:

print "x=", x_from_y(y, M_inf , 0.0, 1), "y=", y

print "Done."

416

F Gas models: specification by configuration file

As explained in Section 5, most users can select a gas model by a call to select gas model

using the model and species keyword arguments. For more advanced uses of the gas

models, a configuration file created directly by the user is required. This section discusses

the creation of that file.

The configuration file has a Lua-style format, meaning that the statements and expres-

sions in the file must conform to proper Lua syntax. Do not be concerned with the need

to learn Lua in order to build a configuration file: nearly all of the statements you will

require can be taken from the following examples. Besides, Lua has been designed from

the outset as an embedded language for configuration purposes, and, with that aim in

mind, it has a simple syntax suitable for non-programmers [52]. The following subsections

explain the requirements of configuration files for specific gas models.

F.1 User-defined gas model

The user may define their own gas model by providing callable functions that implement

the desired behaviour. There is a minimal (read mandatory) set of functions that the

user must provide in the configuration file. There are also some optional functions. When

the optional functions are not provided, the underlying C++ code will provide a default

implementation. For example, if the user does not provide a function dT dp const rho

then the default implementation will use a numerical differentiation technique to compute

this value when required. In addition to providing some mandatory functions, the user’s

configuration file needs to set three global variables:

• model: set as ’user-defined’

• nsp: the number of species in the gas model

• nmodes: the number of thermal modes in the gas model

Each of the functions which the user specifies has certain rules that they must conform

to: they must accept a distinct set of arguments in the correct order; and they must

return the expected number of results of the correct type and in correct order.23 The job

of the function will be to compute the required results based on the input arguments,

typically this involves manipulating a supplied Gas data table (see Table 3). The set

of functions recognised by a ‘user-defined’ gas model, along with their arguments lists

and return value lists, are given in Table 4. The mandatory functions are listed first,

23This statement about received function arguments is not strictly true. If the user is familiar with
how Lua treats missing and or extra arguments, then (s)he will be aware that the implementation may
still function even if not all arguments are present. In practice and for ease of understanding the code, it
is best to stick to the documented function signatures.

417

Table 3: Description of fields in Gas data table

Field Type Description
Thermodynamic properties

rho float density, kg/m3

p float pressure, Pa
a float sound speed, m/s
e vector of floats specific internal energies, J/kg
T vector of floats temperatures, K

Transport properties
mu float dynamic viscosity, Pa.s
k vector of floats thermal conductivities (for each

mode), W/(m.K)
D AB matrix of floats binary diffusion coefficients, m2/s

Composition
massf vector of floats species mass fractions
massf mode vector of floats mass fraction associated with spe-

cific thermal modes

followed by the optional functions. A majority of the functions accept a Gas data table

as an argument and also return a Gas data table. The fields in the Gas data table are

described in Table 3. Note that the fields for temperature (T), internal energy (e), species

mass fractions (massf) and mass fractions per energy mode (massf mode) are vector fields

indexed from 0. So, to access what is commonly the translational temperature, one uses

Q.T[0]. Similarly, the field for binary diffusion coefficients (D AB) is a 2-dimensional array,

also using indices beginning from 0. 24 As a pre-condition to the function calls, certain

data members in the Gas data table may be assumed to be present and correct. As a

post-condition to the function calls, certain data members in the Gas data table should

be correctly set upon return. These pre- and post-conditions for the Gas data table are

also shown in Table 4.

24While typical Lua code uses 1-based indexing, the use of 0-based indexing was chosen here so that
the user input is consistent with all of the other 0-based indexing used throughout eilmer3. Note that
this means the Lua # operator for returning the length of an array will return the wrong result for the
vector fields, and should not be used. Instead, nsp and nmodes are available globally in the module as
they must be set by the user.

418

T
ab

le
4:

U
se

r-
d
efi

n
ed

fu
n
ct

io
n
s

fo
r

sp
ec

ifi
ca

ti
on

of
ga

s
m

o
d
el

b
eh

av
io

u
r

F
u
n
ct

io
n

A
rg

u
m

en
ts

R
et

u
rn

va
lu

es
D

es
cr

ip
ti

on
M

an
da

to
ry

fu
n

ct
io

n
s

e
v
a
l
t
h
e
r
m
o
s
t
a
t
e
r
h
o
e

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
s:

r
h
o
,
e

an
d
m
a
s
s
f

ar
e

se
t

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
s:

se
t

al
l

ot
h
er

th
er

m
o
d
y
n
am

ic
va

ri
ab

le
s

G
iv

en
d
en

si
ty

,
th

e
in

te
rn

al
en

er
gy

(v
ec

to
r)

an
d

m
as

s
fr

ac
ti

on
s,

co
m

-
p
u
te

th
e

re
st

of
th

e
th

er
m

o
d
y
n
am

ic
st

at
e.

e
v
a
l
t
r
a
n
s
p
o
r
t
p
r
o
p
e
r
t
i
e
s

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
s:

th
er

m
o
d
y
n
am

ic
st

at
e

is
u
p
-t

o-
d
at

e

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
s:

tr
an

sp
or

t
d
at

a
se

t,
i.
e.

,
m
u

an
d
k

G
iv

en
an

u
p
-t

o-
d
at

e
th

er
m

o
d
y
n
am

ic
st

at
e,

co
m

p
u
te

th
e

tr
an

sp
or

t
p
ro

p
er

-
ti

es
:

v
is

co
si

ty
an

d
th

er
m

al
co

n
d
u
c-

ti
v
it

y
(i

n
al

l
th

er
m

al
m

o
d
es

as
ap

-
p
ro

p
ri

at
e)

.
e
v
a
l
d
i
f
f
u
s
i
o
n
c
o
e
f
f
i
c
i
e
n
t
s

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
s:

th
er

m
o
d
y
n
am

ic
st

at
e

is
u
p
-t

o-
d
at

e

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
s:

al
l

b
in

ar
y

d
iff

u
si

on
co

effi
ci

en
ts

se
t,
D
A
B

G
iv

en
an

u
p
-t

o-
d
at

e
th

er
m

o
d
y
n
am

ic
st

at
e,

co
m

p
u
te

th
e

b
in

ar
y

d
iff

u
si

on
co

effi
ci

en
ts

fo
r

al
l
sp

ec
ie

s
in

te
ra

ct
io

n
p
ai

rs
in

th
e

m
ix

tu
re

.
m
o
l
e
c
u
l
a
r
w
e
i
g
h
t

is
p

:
sp

ec
ie

s
in

d
ex

,
i
n
t
e
g
e
r

M
W

:
m

ol
ec

u
la

r
w

ei
gh

t
of

sp
ec

ie
s

is
p,

f
l
o
a
t

R
et

u
rn

s
th

e
m

ol
ec

u
la

r
w

ei
gh

t,
k
g/

-
m

ol
,

fo
r

sp
ec

ie
s

is
p.

O
pt

io
n

al
fu

n
ct

io
n

s
e
v
a
l
t
h
e
r
m
o
s
t
a
t
e
p
T

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
s:

p
,
T

an
d

m
a
s
s
f

ar
e

se
t

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
s:

se
t

al
l

ot
h
er

th
er

m
o
d
y
n
am

ic
va

ri
ab

le
s

G
iv

en
p
re

ss
u
re

,
te

m
p

er
at

u
re

(s
),

an
d

m
as

s
fr

ac
ti

on
s,

co
m

p
u
te

th
e

re
st

of
th

e
th

er
m

o
d
y
n
am

ic
st

at
e.

e
v
a
l
t
h
e
r
m
o
s
t
a
t
e
r
h
o
T

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
s:

r
h
o
,
T

an
d
m
a
s
s
f

ar
e

se
t

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
s:

se
t

al
l

ot
h
er

th
er

m
o
d
y
n
am

ic
va

ri
ab

le
s

G
iv

en
d
en

si
ty

,
te

m
p

er
at

u
re

(s
),

an
d

m
as

s
fr

ac
ti

on
s,

co
m

p
u
te

th
e

re
st

of
th

e
th

er
m

o
d
y
n
am

ic
st

at
e.

419

F
u
n
ct

io
n

A
rg

u
m

en
ts

R
et

u
rn

va
lu

es
D

es
cr

ip
ti

on
e
v
a
l
t
h
e
r
m
o
s
t
a
t
e
r
h
o
p

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
s:

r
h
o
,
p

an
d
m
a
s
s
f

ar
e

se
t

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
s:

se
t

al
l

ot
h
er

th
er

m
o
d
y
n
am

ic
va

ri
ab

le
s

G
iv

en
d
en

si
ty

,
p
re

ss
u
re

,
an

d
m

as
s

fr
ac

ti
on

s,
co

m
p
u
te

th
e

re
st

of
th

e
th

er
m

o
d
y
n
am

ic
st

at
e.

e
n
c
o
d
e
c
o
n
s
e
r
v
e
d
e
n
e
r
g
y

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
s:

r
h
o
,
e

an
d
m
a
s
s
f

ar
e

se
t

rh
o
e
:

ta
b
le

of
f
l
o
a
t

va
lu

es
po

st
-c

on
di

ti
on

s:
ta

b
le

h
as

d
im

en
si

on
n
m
o
d
e
s

an
d

st
or

es
th

e
co

n
se

rv
ed

en
er

gy
q
u
an

ti
ti

es

G
iv

en
th

e
p
ri

m
ar

y
va

ri
ab

le
s,

en
co

d
e

th
e

co
n
se

rv
ed

en
er

gy
q
u
an

ti
ti

es
.

d
e
c
o
d
e
c
o
n
s
e
r
v
e
d
e
n
e
r
g
y

Q
:
G
a
s
d
a
t
a

rh
o
e
:

ta
b
le

of
f
l
o
a
t

va
lu

es
pr

e-
co

n
di

ti
on

s:
r
h
o

an
d
m
a
s
s
f

ar
e

se
t

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
s:

th
e

ve
ct

or
m

em
b

er
e

is
u
p
-t

o-
d
at

e
(d

ec
o
d
ed

)

G
iv

en
d
en

si
ty

an
d

th
e

ve
ct

or
of

co
n
-

se
rv

ed
en

er
gi

es
,

se
t

th
e

sp
ec

ifi
c

en
er

-
gi

es
.

u
p
d
a
t
e
m
a
s
s
f
m
o
d
e

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
:
m
a
s
s
f

ar
e

se
t

Q
:
G
a
s
d
a
t
a

po
st

-c
on

di
ti

on
:

m
a
s
s
f
m
o
d
e

ar
e

se
t

G
iv

en
th

e
m

as
s

fr
ac

ti
on

s,
u
p

d
at

e
th

e
ve

ct
or

m
a
s
s
f
m
o
d
e

w
h
ic

h
st

or
es

th
e

m
as

s
fr

ac
ti

on
as

so
ci

at
ed

w
it

h
ea

ch
th

er
m

al
m

o
d
e.

d
T
d
p
c
o
n
s
t
r
h
o

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
:

th
er

m
o
d
y
n
am

ic
st

at
e

va
ri

ab
le

s
ar

e
u
p
-t

o-
d
at

e

d
T

d
p

:
f
l
o
a
t

R
et

u
rn
(∂T ∂

p

) ρ
.

d
T
d
r
h
o
c
o
n
s
t
p

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
:

th
er

m
o
d
y
n
am

ic
st

at
e

va
ri

ab
le

s
ar

e
u
p
-t

o-
d
at

e

d
T

d
rh

o
:
f
l
o
a
t

R
et

u
rn
(∂T ∂

ρ

) p
.

420

F
u
n
ct

io
n

A
rg

u
m

en
ts

R
et

u
rn

va
lu

es
D

es
cr

ip
ti

on

d
p
d
r
h
o
c
o
n
s
t
T

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
:

th
er

m
o
d
y
n
am

ic
st

at
e

va
ri

ab
le

s
ar

e
u
p
-t

o-
d
at

e

d
p

d
rh

o
:
f
l
o
a
t

R
et

u
rn
(∂p ∂

ρ

) T
.

d
e
d
T
c
o
n
s
t
v

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
:

th
er

m
o
d
y
n
am

ic
st

at
e

va
ri

ab
le

s
ar

e
u
p
-t

o-
d
at

e

d
e
d
T

:
f
l
o
a
t

R
et

u
rn
(∂e ∂

T

) v
:
C
v
,

th
e

sp
ec

ifi
c

h
ea

t
ca

p
ac

it
y

at
co

n
st

an
t

vo
lu

m
e.

d
h
d
T
c
o
n
s
t
p

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
:

th
er

m
o
d
y
n
am

ic
st

at
e

va
ri

ab
le

s
ar

e
u
p
-t

o-
d
at

e

d
h
d
T

:
f
l
o
a
t

R
et

u
rn
(∂h ∂

T

) p
:
C
p
,

th
e

sp
ec

ifi
c

h
ea

t

ca
p
ac

it
y

at
co

n
st

an
t

vo
lu

m
e.

g
a
s
c
o
n
s
t
a
n
t

Q
:
G
a
s
d
a
t
a

pr
e-

co
n

di
ti

on
:

th
er

m
o
d
y
n
am

ic
st

at
e

va
ri

ab
le

s
ar

e
u
p
-t

o-
d
at

e

R
:
f
l
o
a
t

R
et

u
rn
R

,
th

e
sp

ec
ifi

c
ga

s
co

n
st

an
t.

421

F.1.1 An example minimal user-defined gas model

The following code listing shows the minimum requirements to specify a user-defined

gas model. This is a concrete example to complement the abstract discussion presented

previously. This particular example implements ideal air. This is a trivial example for

the sake of demonstration, and one would not use the slow user-defined gas model for

ideal air when an internally implemented model already exists. The intended use for the

user-defined gas models is for more exotic gases or rapid prototyping of a new gas model.

-- Author: Rowan J. Gollan

-- Date: 08-Jul -2008

--

-- User -defined gas model

-- ----------------------

-- This is an example model which

-- implements ideal gas behaviour

-- for a single component gas.

--

-- This is a minimal implementation:

-- numerical techniques are used to

-- give the rest of the functionality.

--

-- Notes:

-- 20-Nov -2012 : Updated to compute thermal conductivity

-- from Prandtl number

--

-- Mandatory , set nsp and nmodes

model = ’user -defined ’

nsp = 1

nmodes = 1

-- Local parameters for model

local R0 = 8.31451

local R = 287.1

local gamma = 1.4

local C_v = R / (gamma - 1)

local C_p = R + C_v

local mu0 = 1.716e-5

local T0_v = 273.0

local S_v = 111.0

local Pr = 0.72

-- Local helper functions

local sqrt , pow = math.sqrt , math.pow

local function sound_speed(gamma , R, T)

return sqrt(gamma*R*T)

end

local function Sutherland_viscosity(T)

return mu0 * pow(T/T0_v , 3/2) * (T0_v + S_v)/(T + S_v)

end

local function thermal_conductivity(T)

local mu = Sutherland_viscosity(T)

local k = C_p*mu/Pr

return

end

-- Mandatory function:

function eval_thermo_state_rhoe(Q)

-- Assume rho and e[1] are given , compute the

-- remaining thermodynamic variables.

-- Remember: we need to access the temperature

422

-- and energy as the first value in an array

-- of possible energies/temperatures.

Q.T[0] = Q.e[0]/ C_v

Q.p = Q.rho*R*Q.T[0]

Q.a = sound_speed(gamma , R, Q.T[0])

-- Pass back the updated table

return Q

end

function eval_transport_coefficients(Q)

-- Assume that all pertinent values in Q are

-- at the correct state. In this particular

-- model , viscosity and thermal conductivity

-- are only dependent on temperature , ie. Q.T[1]

Q.mu = Sutherland_viscosity(Q.T[0])

Q.k[0] = thermal_conductivity(Q.T[0])

return Q

end

function molecular_weight(isp)

-- PJ added July 2010

return R0/R

end

function eval_diffusion_coeficients(Q)

-- PJ added July 2010

Q.D_AB [0][0] = 0.0

return Q

end

F.2 Equilibrium gas based on a look-up table

The properties of a gas mixture in thermochemical equilibrium can be computed using

the CEA program [53, 54]. By pre-computing the properties for a range of densities and

internal energies, a look-up table can be created. The use of a look-up table is much more

efficient to use than calling out to the CEA program during simulation execution; there

is some small sacrifice in accuracy using the look-up table.

F.2.1 Selecting a look-up table for the gas model

A number of pre-built look-up tables are provided as par the code collection. After

installing Elmer3, the pre-built look-up tables are provided in $HOME/e3bin/cea-cases/.

A list of these tables and a description of what gas mixture they model is given in Table 5.

The steps to using a look-up table in your simulation are:

1. Copy a pre-built table to your working directory.

2. Specify the name of thie pre-built table in your call to select gas model in your

simulation setup script.

As an example, suppose that we wish to run a simulation with CO2 in equilibrium. Then

as per above the sequence of steps is (assuming your are in your working directory):

1. cp $HOME/e3bin/cea-cases/cea-lut-co2-ions.lua.gz .

423

Table 5: Description of pre-built look-up tables distributed with Elmer3

Pre-built table Description
cea-lut-air-ions.lua.gz Equilibrium air with ionisation. Useful for

Earth reentry problems.
cea-lua-co2-ions.lua.gz Pure carbon dioxide in equilibrium with ion-

isation.
cea-lua-jupiter-like.lua.gz A H2-Ne mixture used to simulate the Jovian

H2-He atmosphere in expansion tube work.
Includes ionisation.

cea-lut-kr.lua.gz Pure Krypton with ionisation allowed.
cea-lut-mars-basic.lua.gz A basic Martian atmosphere, without trace

species. The included species are CO2 (97%
by weight) and N2 (3% by weight). No ioni-
sation is considered.

cea-lut-mars-trace.lua.gz A Martian atmosphere which includes the
trace species O2 and Ar. No ionisation is
considered.

cea-lut-mars-trace-ions.lua.gz A Martian atmosphere incluing trace species
and ionisation.

cea-lut-n2-ions.lua.gz Pure nitrogen in equilibrium with ionisation.
cea-lut-titan-like.lua.gz A Titan-like atmosphere (N2 and CH4, no

trace species). No ionisation is considered.
cea-lut-titan-like-ions.lua.gz A Titan-like atmosphere which includes ion-

isation.

2. Add the following function call to your script:

select gas model(fname=’cea-lua-co2-ions.lua.gz’)

F.2.2 Building your own look-up table

Of course, you might have a gas mixture you wish to simulate that is not listed in Table 5.

The tool build-cea-lut.py is provided as part of the code collection to aid in building a

look-up table of the appropriate format. You will need access to the cea2 program [53, 54],

and have that setup in your working area 25.

The build-cea-lut.py program has a lot of options. If you invoke it with out any
options at all, you get the following text:

Begin build-cea-lut.py...

Usage: build-cea-lut.py [options]

Options:

-h, --help show this help message and exit

-g GASNAME, --gas=GASNAME

25By setup, I mean that the thermo.inp and trans.inp files have been processed and the corresponding
.lib files are available in the working directory. Also, the program cea2 needs to be available as an
executable in your $PATH.

424

name of built-in gas mixture

-l, --list-gases list available gas names and exit

-c, --custom build a custom gas model from reactants

-b BOUNDS, --bounds=BOUNDS

bounds of the table in form

"T_min,T_max,log_rho_min,log_rho_max"

-T T_FOR_OFFSET, --T-for-offset=T_FOR_OFFSET

Temperature (degree K) at which to evaluate the

internal energy offset.

Custom gas options:

-r REACTANTS, --reactants=REACTANTS

reactant fractions in dictionary form

-o ONLYLIST, --only-list=ONLYLIST

limit species to this list

-m, --moles reactant fractions as mole fractions [default]

-f, --massf reactant fractions as mass fractions

-n, --no-ions excluding ions [default]

-i, --with-ions including ions

Example 1: build-cea-lut.py --gas=air5species

Example 2: build-cea-lut.py --custom --reactants="N2:0.79,O2:0.21" --only-list="N2,O2,NO,O,N"

Example 3: build-cea-lut.py --gas=air-ions --bounds="500,20000,-6.0,2.0"

Example 4: build-cea-lut.py --gas=co2 --T-for-offset=650.0 --bounds="1000.0,20000,-6.0,2.0"

Example 5: build-cea-lut.py --gas=co2-ions --T-for-offset=1000.0 --bounds="1000.0,20000,-6.0,2.0"

Sometimes CEA2 has problems and the table will fail to build.

The best approach to fixing the problem seems to be to raise

the lower temperatures, as shown in examples 3, 4 and 5 (above).

These options allow you to set bounds on the range of the table, select a gas model from

a small library of prespecified gases or to make your own custom mixture. The available

gases (as at end September 2013) are: “air”, “air-ions”, “air5species”, “air7species”,

“air11species”, “air13species”, “n2”, “n2-ions”, “co2”, “co2-ions”, “mars-basic”, “mars-

trace”, “mars-trace-ions”, “jupiter-like”, “titan-like”, “titan-like-ions”, “h2ne”, “h2ne-

ions”, “ar”, and “kr”. If you make a custom mixture, you specify the reactants as a

dictionary where the keys are species names, as recognised by the CEA2 program. The

only_list option can be used to restrict the allowable species in the gas mixture. If

it is not specified, CEA2 is free to choose which species are considered according to its

own internal algorithm. To make equilibrium gas models that are consistent with a

corresponding finite-rate kinetics model, it would probably be best to supply a value for

the only_list option.

Upon successful execution of the build-cea-lut.py, you will have a compressed

(gzipped) Lua file in your working directory. This file can be used to select an equilib-

rium gas in the same manner as using a pre-built table, as was discussed in the preceding

section.

425

426

G Chemical reactions: specification by configuration

file

The chemical reactions which may take place in a reacting flow simulation are described

in a Lua input file. This input file, prepared by the user, is read directly by the main

simulation code at run time. There is no pre-processing step for this input file. As the

input file is Lua-based, the user has access to the full extent of the Lua scripting language

when preparing her files. Do not be concerned if you do not know the Lua syntax; the

instructions and examples given here should be ample to get you started building reaction

schemes.26

Let’s proceed by looking at an example input file and discussing the keywords and

syntax. Listed here is an input file which describes the simple thermal dissociation of

nitrogen. There are only two participating species, N2 and N, and only two reactions.

reaction{

’N2 + N2 <=> N + N + N2 ’,

fr={’Arrhenius ’, A=7.0e21 , n=-1.6, T_a =113200.0} ,

br={’Arrhenius ’, A=1.09e16 , n=-0.5, T_a =0.0}

}

reaction{

’N2 + N <=> N + N + N’,

fr={’Arrhenius ’, A=3.0e22 , n=-1.6, T_a =113200.0} ,

br={’Arrhenius ’, A=2.32e21 , n=-1.5, T_a =0.0}

}

The first reaction is the dissociation of N2 by collision with other N2 molecules. The

forward reaction rate coefficient is computed with a generalised Arrhenius model, and the

parameters for that model are specified. Similarly the backward reaction rate coefficient

is computed using the Arrhenius expression.

More generally, each reaction is specified within a reaction table. The table is de-

limited by the opening and closing braces ({ }). The first entry in the table is always

a string. That string is the chemical equation for the reaction. The remaining items in

the table are denoted by key-value pairs (of the form key=val), and may appear in any

order. Each item in the table is separated by a comma.27 This example file contained two

reaction tables, hence two reactions are treated in the reaction scheme.

Some final notes before discussing the input file in further depth. There is no explicit

mention of the participating species in the reaction file. The participating species are

taken from the species that are present in the gas model file for the same flow simulation.

26If you are worried about needing to “learn Lua” just to get started, then don’t be. First, you may
just look at this as an input format for the chemistry, and forget that it has anything to do with Lua
altogether. Second, Lua was designed with non-programmers in mind and so it uses a simple syntax,
specifically so that those non-programmers could quickly use Lua as a configuration language.

27Lua also permits the use of semi-colons instead of commas to delimit table entries.

427

In other words, if you list species in the reaction scheme that are not present in the gas

model, then you will get an error message.

G.1 Overview of input file format

By leveraging Lua as the input data description language, the input file is almost self-

describing, in my opinion. This provides an excellent record of what modelling was used

when you performed a simulation. A valid reaction input file will conform to the following

rules.

1. Any legal Lua code is acceptable, but you must not rename the following the pre-

defined functions:

• reaction

• remove reactions by label

• remove reactions by number

• select reactions by label

• select reactions by number

2. Reactions are declared in reaction tables.

3. Comments in the file begin when two dashes (--) are encountered and proceed to

the end of the line. (This is a repetition of Item 1 in that comments are legal Lua

code.)

As the the reactions are listed, they are numbered internally beginning from 1. In

some cases, it is convenient to list all reactions in a scheme but then only use some of the

reactions. This is quite common if you wish to use a reduced mechanism or if you believe

that one of the species is inert at your flow conditions of interest, and so would want

to remove all reactions involving the transformation of that species. Two convenience

functions are provided so that you do not have to hack into your input file to remove the

unwanted reactions:

• remove reactions by label

• remove reactions by number

Both functions will take a single item or an array of items. An array is a special form of

Lua table which is bracketed with braces ({ }). The first function accepts strings which

correspond to the labels of reactions. The labelling of reactions is explained in the next

section. The second function accepts integers which correspond to the internal numbering.

The convenience functions must be called after the declaration of the associated reactions.

428

Typically, the user would place the calls to these functions at the end of his input file.

Two examples follow.

remove reactions by label({’r3’, ’r5’})

This call would remove the reactions labelled ’r3’ and ’r5’

from the list of participating reactions.

remove reactions by number(13)

In this call, the 13th listed reaction is removed from the list (because we all know that 13

is unlucky, right?)28

Similarly, there are two complementary convenience functions that allow for the selec-

tion of only certain reactions from the full set:

• select reactions by label

• select reactions by number

They work in reverse to the remove functions: these functions will only select those

reactions listed in their arguments for inclusion in the chemistry scheme.

Note, it is not advisable to mix and match the use of the remove and select functions

in the one reaction script. The behaviour is untested. Now on to the details of the

reaction table.

G.2 Details of the reaction table

The reaction table accepts a number of items; some are mandatory, most are not. The

full list of items is shown here, and each item is described below.

reaction{

’equation string’,

fr={...},

br={...},

ec=’model name’,

efficiencies={...},

label=’r1’

}

28Actually, unlike the Americans and their buildings, you don’t get rid of 13 that easily. If you have
more than 13 reactions, the higher numbered reactions will shuffle up one spot so that the numbering
remains continuous from 1. This all happens internally.

429

’equation string’ (mandatory)

As mentioned earlier, this string must appear first in the table and has no key

associated with it. This string represents the reaction equation. As an example,

dissociation of nitrogen may be written as

’N2 + N2 <=> N + N + N2’

If the reaction involves a collision with a general third body, then this is strictly

denoted as species ’M’. For example, the formation of hydroperoxyl from oxygen

and monatomic hydrogen requires the presence of a third body. This reaction is

written as

’H + O2 + M <=> HO2 + M’.

The reactants and products are delimited by direction arrows. The use of <=>

indicates that the reaction proceeds in both directions, while => will mean that the

reaction proceeds in the forward direction only (no backward rate of conversion will

be computed).

fr (optional, if br supplied)

The fr key is used to specify the forward reaction rate coefficient and expects a table

value. The format of the table is a string naming the model followed by key-value

pairs giving the parameters for the model. The currently implemented reaction rate

coefficient models are listed in Table 6, along with their input format.

br (optional, if fr supplied)

The br key is used to specify the backward reaction rate coefficient. It is used in

the same manner as the forward rate key (fr).

ec (optional)

The ec key is used to specify the model for computing the equilibrium constant. It

accepts a string naming the model. Currently, there is only one model implemented,

’from thermo’, which calculates the equilibrium constant based on thermodynamic

principles. For reversible reactions, if only one of fr or br is specified, then the use

of the equilibrium constant is assumed and does not need to be declared.

efficiencies (optional)

If declaring a third body reaction, all species in the mixture are assumed to react

with an efficiency of 1.0. The efficiencies key accepts a list of exceptions to

that assumption of a value of 1.0. The list contains the key-value pairs of the type

species=efficiency value. For example, to denote that N2 has a 6-fold efficiency

value and O2 a value of 3.5, the list would be:

430

Table 6: Reaction rate coefficient models input format

Model Format
generalised Arrhenius

k = AT n exp(−Ta/T)

{’Arrhenius’, A=..., n=..., T a=...}

• ’Arrhenius’ appears first to name the
model

• A=... is the pre-exponential coefficient
given in ‘cgs’ units (because they are most
common in the chemistry reaction rate liter-
ature).

• n=... is the non-dimensional power for T

• T a=... is the activation temperature in
Kelvin.

Do not get confused by the appearance of a neg-
ative sign in the formula; you are required to in-
put the activation barrier temperature which in
the majority of cases is a positive value. On occa-
sion, the activation temperature is negative. This
will be given in the reaction scheme you are fol-
lowing.

efficiencies={N2=6.0, O2=3.5}

Remember that all species are assumed to have a value of 1.0 unless otherwise noted

in the list. If you have a species that does not participate as a third body, then be

sure to set its efficiency value to 0.0 (e.g. H=0.0).

label (optional)

The label accepts a string allowing the user to give the reaction a name. This is

useful if one wishes to later remove certain reactions based on their labels using the

remove reactions by label convenience function.

Note that if you specify all three of fr, br and ec, you have overspecified the modelling

of reaction rate coefficients. In this case, no error is given. Instead, the ec model is ignored.

G.3 Extra control of the chemistry scheme

There are a number of details to do with solving the finite-rate chemistry problem that

are set by default for the user. However, all of these parameters may be controlled by the

user by setting values in the input file.

431

Let’s first describe the scheme table. The user may set values in this table that

pertain to the chemistry scheme as a whole. In the example input snippet below, the

lower temperature limit is set to 300 K and the upper limit is set to 50 000 K. These

values are used to control the temperature limits at which reaction rate coefficients are

evaluated. When the local temperature exceeds the limits (on either side), the rate is

simply evaluated at the temperature corresponding to the exceeded limit. As pseudo-

code:

if T > T_upper

then T = T_upper

if T < T_lower

then T = T_lower

eval_rate_coeff(T)

Note that these values are set as part of a subtable, temperature limits. The example

here shows the current default values if not set by the user.

scheme{

temperature_limits = {lower = 300.0,

upper = 50000.0}

}

The scheme table is currently only a container for the temperature limits. In future

implementations it is planned to contain other options. For example, the scheme table will

contain options for setting parameters related to multi-temperature chemistry schemes.

The other table presently offered to the user is the ode solver table which, unsurpris-

ingly, contains parameters that allow the user to select details about the ODE method

used to solve the chemistry system. Let’s look at an example of its use.

ode_solver{

step_routine = ’qss’,

max_step_attempts = 4,

max_increase_factor = 1.15,

max_decrease_factor = 0.01,

decrease_factor = 0.333

}

432

The various parameters in the ode solver table are described in the list below. As an

aside, the values shown in the example above are actually the default values used when

the user does not specify any ode solver table.

step routine

This string sets the ODE stepping method. The available stepping methods are:
’qss’ : Mott’s α-QSS method [55]
’rkf’ : Runge-Kutta-Fehlberg method [56]
’euler’ : Euler stepping

max step attempts

This integer value sets the maximum number of retry attempts the stepping routine

will attempt on a single step if the ODE system indicates failure.

max increase factor

This value is used to control the maximum factor the chemistry timestep will increase

when the step is successful. The ’qss’ and ’rkf’ methods can suggest their own

timestep increase. However, the increase will be calculated as MIN(suggestion,

max increase factor).

max decrease factor

This value is used to control the maximum amount of decrease or reduction in

timestep that occurs. It is computed as MAX(suggestion, max decrease factor).

decrease factor

Occasionally, the step fails and yet the step routines suggests using a larger timestep

for the retry. In this case, the decrease factor is used to reduce the timestep size

for the retry attempt.

433

434

H Thermal energy exchange mechanisms: specifica-

tion by configuration file

For thermal nonequilibrium flow simulations, the user may wish to model a set of energy

exchange mechanisms operating between the thermal modes. In a similar fashion as for

chemical reactions (see Appendix G), thermal energy exchange mechanisms are described

in a Lua input file prepared by the user.

As a first example, let’s look at an input file for a two-temperature simulation of

nitrogen flow. The fact that it is a two-temperature flow is not explicit in the the en-

ergy exchange file; this information appears in the accompanying gas model file. The

two temperatures are a transrotational temperature (translational and rotational energy

modes are assumed to be equilibriated at a common temperature) and a vibroelectronic

temperature (the vibrational and electronic energy modes are assumed to equilibriated a

common temperature, different from the transrotational temperature). The user-created

energy exchange input file lists the mechanism and relaxation times which describe how

these two temperature modes relax (or equilibriate) with one another. In this example, we

just consider a V-T exchange: a mechanism for the vibrational energy mode to exchange

energy with the translational energy mode. The input file is listed here.

mechanism{

’N2 ~~ N2 : V-T’,

rt={’Landau -Teller -cf ’, A=7.12e-9, B = 124.07 , C = 0.0}

}

There is only one mechanism listed here. What this says is that in the collision between a

nitrogen molecule and another nitrogen molecule, the vibrational energy may be altered

and the change in energy is soaked up in the translational mode. This energy exchange

occurs at a particular rate which is controlled by a relaxation time. The relaxation

time depends on the local thermodynamic state. In this case, the relaxation time is

modelled as a curve fit to a Landau-Teller type relaxation. The parameters A, B and

C control the shape of the curve fit and have been determined to a give a best fit to

experimental measurement of the relaxation time. In this example, there is only one

energy exchange mechanism. For certain gas mixtures, there may be several mechanisms

of energy exchange amongst the various energy modes. Each of these mechanisms is

listed in separate mechanism tables, and strictly speaking, there is also the facility to

group families of mechanisms in one table (more on that later).

H.1 Overview of the input file format

The Lua programming language is used for the input data description. Any legal Lua

code may appear in the energy exchange file. However, the user should not rename the

435

following special pre-defined functions:

1. mechanism

2. scheme

3. ode solver

There are supplied default values for the selection of a scheme (how the energy ex-

change relaxation is computed) and the ode solver (if used). These defaults should be

adequate for the vast majority of cases. The bulk of the work for the user is usually

specifying a set of appropriate mechanism entries. The format for a mechanism entry is

discussed next.

H.2 Details of the mechanism table

The mechanism table consists of two mandatory fields, and an optional list field used in

certain circumstances. The first mandatory field is unnamed and always appears first. It

is a string describing the particular energy exchange mechanism. The second mandatory

entry is a named field rt which stands for ‘relaxation time’. This field is used to select

the model for how the relaxation time of the particular energy exchange mechanism is

computed. Thus, the minimal format of the mechanism table is:

mechanism{

’mechanism string’,

rt={...}

}

If the ’mechanism string’ makes use of the symbol (*list), then a list entry should

also appear in the mechanism table.

The ’mechanism string’ is used to list which species and which energy modes are

involved in a particular energy exchange mechanism. This string must conform to a strict

syntax in order to be a valid description of an energy exchange system.29 The general

form of the mechanism string is:

’A ~~ <colliders> : modeA-modeC’

The first part of the string (before the colon), declares which main species is having

one of its energy modes changed due to collisions with certain other species. So in this

declaration, our attention is focussed on how a particular energy mode of species A is

altered due to collisions with other particles. The second part of the string (after the

29For those with an interest in computer programming, the syntactical parsing of the mechanism string
is an example of an embedded domain specific language.

436

colon) tells us which energy modes are affected. There should always be two modes

affected: the first corresponds to a mode of species A and the second to a mode of the

colliding species. The details and allowable values for the generic fields in the mechanism

string are:

A is the name of a single species. This is the main species of interest. We are going to

consider how collisions of other particles with this species affect the energy in one

of its energy modes.

<colliders> is the list of colliding species which will affect the energy content of the

main species A. There are four possible values allowed.

1. a single species name, e.g. ’O2’

2. a bracketed list of species, e.g. (’O2’, ’N2’)

3. the special keyword ‘all’ to denote collisions with all species in the mix, e.g.

(*all)

4. the special keyword ‘list’ to denote collisions with a specific list of species, e.g.

(*list). If this value is used, a list field should appear in the mechanism

table. Basically, this is used to instruct the parser to look in the mechanism

table for a list of colliding species.

Options 2, 3 and 4 are means by which to group families of mechanisms into one

entry. This can be used when a number of different B colliders all alter the energy

state of the A molecule in the same way. Internally, the code will expand out the

colliders list and treat each A-B interaction pair as a separate mechanism.

modeA-modeC This is a string which denotes which mode of collider A is altered during

the collision and which mode of the other colliders is altered. The possible values

for this string are:

V-T A vibration-translation energy exchange between vibrational mode of collider

A and the translational energy of the colliding partners.

V-V A vibration-vibration energy exchange between the vibrational mode of collider

A and the vibrational mode of another collider. Whenever this entry is present

for a pair A-B, there should usually be a reciprocal mechanism listed. For

example, a V-V exchange for N2-O2 should have a matching V-V exchange

written for O2-N2.30

30 The user might think that it is redundant having to specify two mechanisms for reciprocal pairs
of V-V exchanges. There is a subtle reason for this: the relaxation times calculated for V-V exchanges
are the relaxation time for an upper vibrational energy level of collider A to drop down a level due to
collisions with collider B, and at the same time the vibrational energy level of collider B is raised a

437

E-T An electron-translation energy exchange. This is actually a translation-translation

energy exchange. It is the exchange of translational energy of the electron

species with the translational energy of the heavy particles.

When writing the mechanism string, the guiding rule is that it is written from the

perspective of collider A. You are listing how collisions with other particles affect a

certain energy mode of collider A.

Next we describe the rt field which is required as part of specifiying a mechanim.

The rt field is used to select a model for the relaxation time related to the particular

mechanism. For example, the Landau-Teller relaxation time model was selected in the

first example by setting

rt={’Landau-Teller-cf’, A=7.12e-9, B=124.07, C=0.0}

The value for the rt field is always a table. The first entry of this table is always a string

which denotes a particular relaxation time model. The remaining key-value pairs in the

table are specific to the chosen model. The relaxation time model must be appropriate

for the type of mechanism. So for V-T exchanges, there is a certain set of relaxation

time models available. For V-V exchanges, there is a different set of relaxation time

models availables, as so on for other energy exchange mechanism types. The list of

available relaxation time models and their required key-value pairs are grouped accodring

to mechanism type in Table 7. Any keys which are enclosed in bracket [] are optional

values. There will usually be a default method to compute the optional values if not

supplied.

level. However, we have not looked at the relaxation time for the process of an upper vibrational level
of B dropping due to collisions with A, and the accompanying promotion of the vibrational energy level
of A. This will have a different relaxation time associated with the process, and so requires a separate
mechanism entry.

438

T
ab

le
7:

R
el

ax
at

io
n

ti
m

e
m

o
d
el

s
fo

r
en

er
gy

ex
ch

an
ge

m
ec

h
an

is
m

s

M
o
d
el

F
or

m
at

—
fo

r
V

-T
ex

ch
an

ge
s

—

M
il
li
ka

n
-W

h
it

e

τ
=

(1
/p

b
a
th

)
(ex

p
(a
T
−

1
/
3
−
b)
−

18
.4

2){
’
M
i
l
l
i
k
a
n
-
W
h
i
t
e
’
,

[
a
=
.
.
.
]
,

[
b
=
.
.
.
]
}

•
’
M
i
l
l
i
k
a
n
-
W
h
i
t
e
’

ap
p

ea
rs

fi
rs

t
to

n
am

e
th

e
m

o
d
el

•
a

is
a

co
n
st

an
t

of
th

e
m

o
d
el

.
If

n
ot

su
p
p
li
ed

it
ca

n
b

e
ca

lc
u
la

te
d

b
as

ed
on

th
e

re
d
u
ce

d
m

as
s

(µ
)

of
th

e
co

ll
id

er
s

an
d

th
e

ch
ar

at
er

is
ti

c
v
ib

ra
ti

on
al

te
m

p
er

at
u
re

(Θ
v
)

of
co

ll
id

er
A

as

a
=

1.
16
e−

3
√
µ

Θ
4
/
3

V
.

•
b

is
a

co
n
st

an
t

of
th

e
m

o
d
el

.
If

n
ot

su
p
p
li
ed

,
it

ca
n

b
e

co
m

p
u
te

d
b
as

ed
on

th
e

re
d
u
ce

d
m

as
s

(µ
)

as
b

=
0.

01
5µ

1
/
4
.

M
il
li
ka

n
-W

h
it

e
w

it
h

a
h
ig

h
-

te
m

p
er

at
u
re

co
rr

ec
ti

on
{’
M
i
l
l
i
k
a
n
-
W
h
i
t
e
:
H
T
C
S
’
,

[
a
=
.
.
.
]
,

[
b
=
.
.
.
]
,

H
T
C
S
=
{}
}

P
ar

am
et

er
s
a

an
d
b

as
ab

ov
e.

•
’
M
i
l
l
i
k
a
n
-
W
h
i
t
e
:
H
T
C
S
’

ap
p

ea
rs

fi
rs

t
to

n
am

e
th

e
m

o
d
el

•
H
T
C
S

is
a

m
o
d
el

fo
r

th
e

h
ig

h
-t

em
p

er
at

u
re

co
rr

ec
ti

on
cr

os
s-

se
ct

io
n
.

A
ll
ow

ab
le

va
lu

es
ar

e:

’
P
a
r
k
’

T
h
e

u
se

r
al

so
su

p
p
li
es

a
va

lu
e

fo
r
s
i
g
m
a
d
a
s
h
.

S
o

th
e

se
le

ct
io

n
lo

ok
s

li
ke

H
T
C
S
=
{’
P
a
r
k
’
,

s
i
g
m
a
d
a
s
h
=
3
.
0
e
-
1
7
}.

’
F
u
j
i
t
a
’

In
th

is
ca

se
,

n
o

ot
h
er

p
ar

am
et

er
s

ar
e

re
q
u
ir

ed
.

T
h
e

se
le

ct
io

n
is

H
T
C
S
=
{’
F
u
j
i
t
a
’
}.

439

M
o
d
el

F
or

m
at

L
an

d
au

-T
el

le
r

cu
rv

e
fi
t

τ
=

(A
/p

ba
th

)
ex

p
(B
/T

1
/
3

+
C

)

{’
L
a
n
d
a
u
-
T
e
l
l
e
r
-
c
f
’
,

A
=
.
.
.
,

B
=
.
.
.
,

C
=
.
.
.
}

•
’
L
a
n
d
a
u
-
T
e
l
l
e
r
-
c
f
’

ap
p

ea
rs

fi
rs

t
to

n
am

e
th

e
m

o
d
el

•
A

is
a

co
n
st

an
t

of
th

e
m

o
d
el

.

•
B

is
a

co
n
st

an
t

of
th

e
m

o
d
el

.

•
C

is
a

co
n
st

an
t

of
th

e
m

o
d
el

.

S
ch

w
ar

tz
-S

la
w

sk
y
-H

er
zf

el
d

re
la

x
at

io
n

ti
m

e
m

o
d
el

fo
r

V
-T

tr
an

sf
er

s
{’
S
S
H
-
V
T
’
}

T
h
is

m
o
d
el

u
se

s
m

ol
ec

u
la

r
p
ar

am
et

er
s

to
co

m
p
u
te

th
e

re
la

x
at

io
n

ti
m

e
fo

r
V

-T
tr

an
s-

fe
rs

.
N

o
ot

h
er

in
fo

rm
at

io
n

is
re

q
u
ir

ed
fr

om
th

e
u
se

r.

—
fo

r
V

-V
ex

ch
an

ge
s

—

S
ch

w
ar

tz
-S

la
w

sk
y
-H

er
zf

el
d

re
la

x
at

io
n

ti
m

e
m

o
d
el

fo
r

V
-V

tr
an

sf
er

s
{’
S
S
H
-
V
V
’
}

T
h
is

m
o
d
el

u
se

s
m

ol
ec

u
la

r
p
ar

am
et

er
s

to
co

m
p
u
te

th
e

re
la

x
at

io
n

ti
m

e
fo

r
V

-V
tr

an
s-

fe
rs

.
N

o
ot

h
er

in
fo

rm
at

io
n

is
re

q
u
ir

ed
fr

om
th

e
u
se

r.

—
fo

r
E

-T
ex

ch
an

ge
s

—

A
p
p
le

to
n
-B

ra
y

m
o
d
el

fo
r

io
n
s

..
.

A
p
p
le

to
n
-B

ra
y

m
o
d
el

fo
r

n
eu

tr
al

s
..
.

A
p
p
le

to
n
-B

ra
y

m
o
d
el

fo
r

n
eu

tr
al

s
w

it
h

tw
o

ra
n
ge

s
..
.

440

scheme_t = {...}

ode_t = {...}

rates = {...}

equilibriation_mechanisms = {...}

The scheme t table defines the scheme that will be used to model the energy exchange

update during a timestep. The table should have the following format:

scheme_t = {

update =’energy exchange ODE’,

temperature_limits = {

lower = 20.0,

upper = 100000.0

},

error_tolerance = 0.000001

}

update

A string defining the update method. Presently the only available option is energy

exchange ODE, where the energy exchange update is modelled via solving a system

of ordinary differential equations.

temperature limits

Specifies the range of translational temperatures where thermal energy exchange is

permitted to occur. The fields lower and upper expect floating point values.

error tolerance

Although not currently used in the code, a floating point value is expected in this

field.

The ode t table defines parameters for controlling the ODE solver used during the

energy exchange update. Note this has the same format as the ode solver table in the

chemistry input file described in Appendix G. The table should have the following format:

ode_t = {

step_routine = ’rkf’,

max_step_attempts = 4,

max_increase_factor = 1.15,

441

max_decrease_factor = 0.01,

decrease_factor = 0.333

}

step routine

A string specifying the desired ODE stepping method. The available methods are:
’qss’ : Mott’s α-QSS method [55]
’rkf’ : Runge-Kutta-Fehlberg method [56]
’euler’ : Euler stepping

max step attempts

This integer value sets the maximum number of retry attempts the stepping routine

will attempt on a single step if the ODE system indicates failure.

max increase factor

This value is used to control the maximum factor the thermal timestep will increase

when the step is successful. The ’qss’ and ’rkf’ methods can suggest their own

timestep increase. However, the increase will be calculated as MIN(suggestion,

max increase factor).

max decrease factor

This value is used to control the maximum amount of decrease or reduction in

timestep that occurs. It is computed as MAX(suggestion, max decrease factor).

decrease factor

Occasionally, the step fails and yet the step routines suggests using a larger timestep

for the retry. In this case, the decrease factor is used to reduce the timestep size

for the retry attempt.

The rates table lists the thermal energy exchange mechanisms to be considered for

each thermal mode except the primary mode31. Therefore one entry is expected for a

two temperature model, two entries for a three temperature model, etc. For a three

temperature model, for example, where the list of thermal modes in the gas-model.lua

file reads:

thermal_modes = { ’transrotational’, ’vibrational’, ’electronic’ }

the table should have the following format:

rates = {

{

31The energy of the primary thermal mode is solved for by enforcing the conservation of total energy
during the thermal time-step.

442

-- vibrational mode

mechanisms = {...}

},

{

-- electronic mode

mechanisms = {...}

}

}

where the first table entry is for the vibrational thermal mode, whilst the second table

entry is for the electronic thermal mode. The mechanisms tables list the thermal energy

exchange mechanisms to be applied to the respective thermal modes. The mandatory

items for a mechanisms table entry are:

type

A string specifying the type of energy exchange mechanism. The available types

are:
’VT exchange’ : Vibration-translation exchange
’ET exchange’ : Electron-translation exchange

relaxation time

A table listing the parameters for the relaxation time model.

When specifying a ’VT exchange’ mechanism, an additional field ’p name’ that in-

dicates the name of the vibrating species is required. A detailed description of the

relaxation time table will be available in a future version of this user guide. For the

moment, please refer to the following example as a basic guide.

Below is the thermal energy exchange Lua input file for dissociating and ionising nitro-

gen described by the two temperature model (see Section 53.2 for an example simulation

using this model). The gas consists of five species, namely N2, N+
2 , N, N+ and e+, and

two thermal modes, translation-rotation and vibration-electron-electronic. Two thermal

energy exchange mechanisms are specified: vibration-translation exchange due to inelastic

collisions with the N2 molecule, and electron-translation exchange due to elastic collisions

between free-electrons and heavy particles.

rates = {

{

mechanisms = {

{

type = ’VT_exchange ’,

p_name = ’N2’,

relaxation_time = {

type = ’VT_MillikanWhite_HTC ’,

HTCS_model = {

443

type = ’Park ’,

sigma_dash = 3.0e-17

},

p_name = ’N2’,

q_names = { ’N2’, ’N’ },

a_values = { -1, -1 },

b_values = { -1, -1 }

}

},

{

type = ’ET_exchange ’,

relaxation_time = {

type = ’ET_AppletonBray ’,

ions = {

{ c_name = ’N_plus ’, },

},

neutrals = {

{ c_name = ’N’, sigma_coefficients = { 5.0e-20, 0.0, 0.0 } },

{ c_name = ’N2’, sigma_coefficients = { 7.5e-20, 5.5e-24, -1.0e-28 } },

}

}

}

}

}

}

444

I User-defined functions for run-time customization

User-defined functions (UDFs) are callable functions written in Lua that are used to

perform specialized and/or customized tasks.32 These callable functions can be used for:

• specialized boundary conditions;

• the addition of custom source terms; and

• to perform special operations at the beginning and end of each timestep.

Some examples follow to give this idea a more concrete form. A specialized boundary

condition might model mass injection from a porous boundary which is not presently

available as a boundary condition in the simulation code. We use custom source terms

when we are testing the code using the method of manufactured solutions (see Sections 42

and 43). The callable functions at the start and end of each timestep could be used to

compute a special flow field variable.

I.1 Customizing the boundary conditions

Using a customized boundary condition requires two steps:

1. Selecting the UserDefinedBC() in the block setup.

2. Constructing a Lua file which defines the boundary condition behaviour.

When the user’s (Python) input script calls up a UserDefinedBC() boundary condi-

tion, a Lua file is specified. This file is run at the time of boundary-condition instantiation

and it needs to define the Lua functions ghost cell(args) and interface(args) at a

minimum. These functions are later called, every time the boundary condition is applied

during the simulation. As well as providing the expected functions, the Lua file may con-

tain whatever else the user wishes. It may start up external processes, read data files,

or any other suitable activity that sets up data for later use in the boundary condition

functions.

When using the user-defined boundary conditions you need to instruct the code about

what to do for the convective (inviscid) update and then, separately, for the viscous effects.

The inviscid interaction at the boundary may be handled in one of two ways:

1. Defining a ghost_cell() function.

In this case, you populate the properties of two ghost cells such that they give the

desired inviscid effect at the wall. The ghost cells are abstract in that they do not

32Note that the following information is likely to become dated with code changes, so it is best to
refer to the actual source code to see what is expected. Look in bc user defined.cxx for the boundary
condition functions and main.cxx for the functions related to source terms.

445

exist in the simulated flow domain but do exist in the code data for each block

boundary. They are used in the interpolation phase of the convective update, for

cell faces that lie along the boundary. For the case of a solid wall, you use the

ghost_cell() function and reflect the normal velocity. Examples of this are in the

test cases.

2. Defining a convective_flux() function.

This is an alternative to the ghost_cell() function and allows you to directly

specify the convective flux. This function is only used if the sets_conv_flux_flag

is set in the boundary condition. If it is set, the convective_flux() function will

override anything in the ghost_cell() function thus causing the ghost_cell()

function to have no effect (however, it is still needs to be present due to the way

the implementation works).

The viscous effects at the boundary are also handled in one of two ways:

1. Defining an interface() function.

In this case, you set the properties at the interface directly and, as part of the

viscous update, the main code computes spatial derivatives from these specified

flow properties. For example, you could set a temperature at the interface and zero

velocity for a no-slip wall with the function called interface(). By doing this, you

would not directly control the viscous heat flux into the flow directly, however, it

would be controlled indirectly by setting the temperature.

2. Defining a viscous_flux() function.

The other option is to specify the viscous flux directly at the boundary. The function

inputs and outputs are identical to the convective_flux() function, except that

the values for viscous fluxes of conserved quantities are returned. This option is

convenient when something is directly known about the viscous flux effect at the

boundary. For example, a heat flux at the boundary may be specified directly using

this user-defined function. This function is only used if the sets_visc_flux_flag

is set in the boundary condition, otherwise the code will just look to apply the

interface() function.

Note that in an inviscid simulation, any user-specied viscous boundary effect functions

are ignored: they are never called by the code.

446

The Lua execution environment provided to the file includes the following data:

block id

index of the current block. Boundary conditions exist
in the context a block. This means that the information
accessible from the UDFs is limited to that contained
within the block plus a little bit of global data. This
is particularly important for parallel (MPI) simulations
because blocks exist is separate processes and the data
in one block is not generally available in another.

nsp number of species
nmodes number of energy storage modes (and temperatures)
nni,nnj,nnk number of cells in each index direction for the current block

NORTH

index of the “North” boundary. This index (and the fol-
lowing indices) will be handy for deciding which bound-
ary we are working on when the ghost cell(args) and
interface(args) are called.

EAST,SOUTH,WEST

TOP,BOTTOM

As well as the data, there are a couple of functions that can be called to get more

information about the flow at specific locations:

447

sample flow(jb,i,j,k)

a function that returns a table of the flow state for a
particular cell. The data is the same as that listed for
the ghost cell tables (see below) with the addition of
vol, the cell volume. This function is not likely to work
for a MPI simulation, where only one block is visible to
the current process.
This function may be called with indices which sample
the properties in the ghost cells themselves. When this
is the case, the flow properties in the ghost cells should
not be relied on. The only useful data is the position (x,
y and z) and the volume vol. These values are estimated
by using a linear extrapolation from the nearby interior
cells. The values of position and volume may be useful
when setting the properties in the ghost cells (see for
example the application in MMS case to give a first-
order boundary condition).

sample i face(jb,i,j,k)

a function that returns a table of the flow state for a
particular I-interface. The data is the same as that listed
for the ghost cell tables with the addition of length,
the interface. This function is not likely to work for a
MPI simulation, where only one block is visible to the
current process.

sample j face(jb,i,j,k)
As for sample i face() except that the properties are
returned for a J-interface.

sample k face(jb,i,j,k)
As for sample i face() except that the properties are
returned for a K-interface.

locate cell(x,y,z)

a function that will search for the cell nearest the spec-
ified coordinates and return the cell indices and the in-
dex of the containing block. This function is not likely
to work for a MPI simulation, where only one block is
visible to the current process.

There are some additional convenience functions available to the user to compute or

obtain values related to the gas model such as thermodynamic properties and transport

coefficients. These are discussed in detail in Section I.4.

On being called at run time, the function ghost cell(args) returns two Lua tables.

It is the user writing the function who is responsible for constructing and returning these

two tables. The first contains the flow state in the ghost cell nearest the boundary face,

and the second contains the flow state for the ghost cell further away from the boundary

face. Items to appear in the returned tables are:

448

p gas pressure
u,v,w velocity components in x,y,z-directions
massf table of nsp mass fractions. The zero entry, at least, must be

specified.
T table of nmodes temperatures. The zero entry, at least, must be

specified.
tke turbulent kinetic energy
omega ω for the k − ω turbulence model
mu t turbulence viscosity
k t turbulent heat conduction coefficient
sigma T variance of the local temperature (for Henrik’s reacting flow)
sigma c variance of the local concentration (for Henrik’s reacting flow)
S shock-detector value (1 or 0)

and the input args table contains:
t the current simulation time, in seconds
x,y,z coordinates of the midpoint of the interface
csX,csY,csZ direction cosines for the interface
i,j,k indices of the cell adjacent to the interface
which boundary index of the boundary (NORTH,...)

Note that the ghost cell function is called once for every cell along the boundary, so

be mindful of the possibility of repeating calculations that remain fixed across the full

boundary. It may be efficient to do the calculation once, at the time the function is called

for the first cell, and store the resulting data in global variables so that they are ready

for use in subsequent calls.

If viscous effects are active, the Lua function interface(args) is called to get a few

properties right at the bounding interface. These properties are to be returned in a table

containing:
massf table of nsp mass fractions. The zero entry, at least, must be

specified.
T table of nmodes temperatures to be set at interface, possibly a wall.
u,v,w flow velocity at the interface
tke turbulent kinetic energy
omega ω for the k − ω turbulence model

On entry to the function, args contains all of the same attributes as for the call to the

ghost cell function. Additionally, args contains:
dt the current global timestep, in seconds
t level an integer denoting the level within the explicit update
area the interface area (at t level, which is important for moving grid

simulations)
fs a table containing the present flow state data for the interface. Note

that typically the user will provide new flow state data at the end
of the function.

The flow state, fs, is table with the following flow properties:

449

p pressure, Pa
rho density, kg/m2

u,v,w velocity components in x,y,z-directions, m/s
a sound speed, m/s
mu molecular (dynamic) viscosity
k a table of nmodes thermal conductivities
mu t turbulent viscosity
k t turbulent heat conduction coefficient
massf table of nsp mass fractions. The zero entry, at least, must be

specified.
T table of nmodes temperatures. The zero entry, at least, must be

specified.
tke turbulent kinetic energy
omega ω for the k − ω turbulence model
mu t turbulence viscosity
k t turbulent heat conduction coefficient
S shock-detector value (1 or 0)

The functions are evaluated in the Lua interpreter environment that was set up when

the boundary condition was instantiated so any data that was stored then is available to

the functions now, possibly via global variables.

The user may also provide functions convective flux(args) and/or viscous flux(args)

that return a table specifying the interface fluxes, convective and viscous respectively, that

are used instead of the internally computed fluxes. The table of fluxes returned contains

the following entries:
mass mass flux per unit area of the interface
momentum x x-direction momentum flux per unit area
momentum y y-direction momentum flux per unit area
momentum z z-direction momentum flux per unit area
total energy flux of energy per unit area
romega flux of ω for the k − ω turbulence model
rtke flux of turbulent kinetic energy

species
table of nsp species mass fluxes. The zero entry, at least, must be
specified.

renergies
table of nmodes energy fluxes. The zero entry, at least, must be
specified.

and the input args table contains:
t the current simulation time, in seconds
x,y,z coordinates of the midpoint of the interface
csX,csY,csZ direction cosines for the interface
i,j,k indices of the cell adjacent to the interface
which boundary index of the boundary (NORTH,...)

A note on orientation of fluxes

When setting flux values, the user is responsible for giving the magnitude of flux that

crosses normal to the boundary interface. As such, the user’s function is given the com-

450

ponents of the interface normal vector in the Cartesian frame (nx, ny, nz) to aid in

computing the correct flux magnitude for interfaces of arbitrary orientation. The posi-

tive sense for the unit normal is shown for two-dimensional boundaries in Figure 150. In

words, the normals point inwards for the WEST and SOUTH boundaries, and the normals

point outwards for EAST and NORTH. For example, if you are setting a flux that crosses the

NORTH boundary and enters the domain, the magnitude of its value should be negative to

indicate flux into the domain. The same holds for fluxes across the EAST boundary.

NORTH

EAST

SOUTH

WEST

Figure 150: The positive sense of direction for unit normals at each of the boundaries in
2D.

The reason for this arrangement of face-normals is that, internal to the code, all EAST

and WEST interfaces are part of the single array of i-faces. For NORTH and SOUTH, there is

the single array of j-faces and, for TOP and BOTTOM faces, there is the array of k-faces.

So, a single i-face will serve as the EAST face of one cell and the WEST face of the next

cell to its right.

I.2 Source terms

The Python input script can also specify the filename for a Lua file that contains functions

that can be called to specify additional source terms for each step of the simulation. The

functions expected to be defined are source vector(t, cell), at timestep start(args)

and at timestep end(args). If you don’t have any useful work for the latter two, just

define them to return nil. These latter two functions are described in Section I.3. The

Lua execution environment provided provided to the file includes the following data:
nsp number of species
nmodes number of energy storage modes (and temperatures)
sample flow a function that returns a table of the flow state for a particular cell

locate cell
a function that will search for the cell nearest the specified coor-
dinates and return the cell indices and the index of the containing
block

The

451

Lua execution environment also includes information about the number of blocks and their

configuration. We do not discuss this further here because this information is often not

that useful for source vector specification. More details about the block information are

given in Section I.3 where the at timestep start() and at timestep end() functions

are discussed.

When activated, the function source vector(t, cell) will be called at each time

step. The first argument, t, is the current simulation time, in seconds. The table cell

contains:
x,y,x coordinates of the cell centre
vol cell volume
p gas pressure
rho gas density
u,v,w gas velocity components
a speed of sound in gas
mu gas viscosity
T table of nmodes temperatures
k table of nmodes thermal conductivities
massf table of nsp mass fractions

On return, the table of source terms should contain:
mass rate of mass addition per unit volume
momentum x rate of x-momentum addition per unit volume
momentum y rate of y-momentum addition per unit volume
momentum z rate of z-momentum addition per unit volume
total energy rate of energy addition per unit volume
romega dω/dt addition per unit volume
rtke rate of turbulent kinetic-energy addition per unit volume
radiation rate of energy addition via radiation per unit volume
species table of nsp values
energies table of nmodes values

I.3 Callable functions at timestep start and timestep end

The callable functions at timestep start and timestep end differ from the user-defined

boundary conditions and user-defined source terms in two key ways:

1. the functions are only called once on each timestep iteration; and

2. the functions are used to extract information from the flow field but cannot alter

its state in anyway (nothing is returned to the C++ code)

In the case of the callable boundary conditions, the functions are called many times

each timestep for each of the interfaces. Similarly, the callable source vector func-

tion is called once for every cell in the flow field. However, the user-defined functions

at_timestep_start() and at_timestep_end() are only called once in each iteration.

452

As such, if the user would like to gather data from all cells, then the user is responsible

for looping over those cells.

In the present implementation, we do not provide a mechanism to alter the state of

the cells and boundaries in the flow field via the functions at_timestep_start() and

at_timestep_end(). The callable functions are only intended to extract information

from the flowfield.33

The global Lua environment for the at_timestep_start() and at_timestep_end()

functions is the same as that for the user-defined source terms (see Section I.2). We

did not introduce earlier the globally-set variables related to block information. These

variables are:
nblks number of blocks (in MPI process)
blks array of block tables, each with block configuration

Note that the number of

blocks is given on a per MPI rank basis and the list of blocks are the blocks associated

with that rank.

One of the global variables, blks, is an array (or table in Lua speak) containing

information about each of the blocks individually. To access the information in the second

block, for example, you could interrogate the table blks[1], using 1 for the second block

because of 0-offset indexing. So each entry in blks is a table itself. Each table within

blks contains the following information about a particular block:
id the unique block id with the global collection of blocks
nicells number of cells in i-direction
imin index of minimum cell number in i-direction
imax index of maximum cell number in i-direction
njcells number of cells in j-direction
jmin index of minimum cell number in j-direction
jmax index of maximum cell number in j-direction
nkcells number of cells in k-direction
kmin index of minimum cell number in k-direction
kmax index of maximum cell number in k-direction

When either of the timestep functions is called, it is passed a table of arguments from

the flow solver. That table contains:
t current simulation time in seconds
step current step number in simulation

The brief example below shows how we could loop over all the cells in a flowfield and get

a tally of the total mass at the start of the first timestep using the at_timestep_Start()

function. This example appears in the file udf-process.lua as part of the example in

Section 40.

function at_timestep_start(args)

33Note the cunning user could use all of the Lua callable functions to affect the flow field. For example,
the user could extract certain information from the flow field using the at timestep end() hook, make a
decision based on that information, write some data to a local file and then have a user-defined boundary
condition pick up and act on that data. An early implementation of a conjugate heat transfer boundary
condition was done in a similar manner to this.

453

if (args.step ~= 0) then

-- do nothing, just leave

return

end

-- For the 0th step only

mass = 0.0

for ib=0,(nblks-1) do

imin = blks[ib].imin; imax = blks[ib].imax

jmin = blks[ib].jmin; jmax = blks[ib].jmax

blk_id = blks[ib].id

for j=jmin,jmax do

for i=imin,imax do

cell = sample_flow(blk_id, i, j, k)

-- We are only given p and T

-- so need to compute density

-- using gas model

Q = create_empty_gas_table()

Q.p = cell.p

Q.T = cell.T

for isp=0,(nsp-1) do Q.massf[isp] = cell.massf[isp] end

eval_thermo_state_pT(Q)

rho = Q.rho

-- Now we can compute mass in cell using volume of cell

mass = mass + rho*cell.vol

end

end

end

print("Mass (kg) of gas in domain: ", mass)

return

end

There’s a little bit to digest in the example above. We’ll begin with the if-statement.

Remember that the at_timestep_start() is called for every timestep, which means we

enter this piece of code on every iteration. However we only want to compute the mass

at the very beginning of the simulation. So, the if-statement says that if we are not at

step 0 (the beginning step), then do nothing and move on. The code only continues then

in the case where the step number is equal to 0.

In the case where the step number is 0, we want to loop over all cells and tally the

mass. To do that, we firstly need to know how many blocks there are in the simulation.

454

(Admittedly, we might know how many blocks there are already because we set the

simulation up ourselves! However, by keeping the code general we can reuse it for other

simulations without alterting the Lua code.) We can get the number of blocks from the

global environment variabl (supplied by the C++ code) nblks. Then we loop over all

blocks using the ib variable as a counter for the block index. Within any particular

block, we want to loop over the simulation cells only, and exclude any ghost cells at the

boundaries. The appropriate ranges for the simulation cells in each of the i-, j- and

k-directions are given by the min and max variables within each block table. Having

extracted those values, we can set up loops to visit every simulation cell in a block.

Be careful to note that the sample flow() function requires the global block id. This

is may not be the same as the variable ib in an MPI simulation where different processes

work on collections of blocks. To ensure that we supply sample flow() with the correct

global block id, we retrieve that id value from the blks table and store it as blk id.

In the inner most loop, we visit every cell and extract its density and volume so that

we can compute the mass in the cell. We call the sample_flow() function to get the

information of a single cell. To compute the density is a little complicated. We are only

given pressure, temperature and species mass fractions. The provided gas model functions

are used to compute density. For the moment, don’t worry too much about the details of

making the calculation to get density. These functions are explained later in Section I.4.

The volume is easy to get: we extract directly from the cell as variable vol. In the last

step, we compute the mass in this cell (ρ× V) and add it to the total.

I.4 Helper gas model functions

There are a large number of functions provided by the gas module to the internal (C++)

section of the code. For consistency with the internal gas model, a selection of the gas

module functions are made available to the Lua run-time scripts. The names of these

Lua-exposed functions match the internal C++ names very closely (and in fact, identi-

cally in most cases). The provided gas model functions are:

455

create empty gas table() Returns an empty Gas data table with all entries set
to 0.0 and appropriately sized internal arrays. This is
useful to populate and pass to other functions which
accept a Gas data table.

eval thermo state pT(Q) A function that computes the thermodynamic state
given the pressure and temperatures as set in the
Gas data table Q. The thermodynamic properties are
updated and returned in place in the Q variable, that is,
it is modified in place.

eval thermo state rhoe(Q) A function that computes the thermodynamic state
given density and internal energy. The Gas data table
Q is modified in place.

eval thermo state rhoT(Q) A function that computes the thermodynamic state
given density and temperatures. The Gas data table
Q is modified in place.

eval thermo state rhop(Q) A function that computes the thermodynamic state
given density and pressure. The Gas data table Q is
modified in place.

eval sound speed(Q) A function that computes the sound speed based on the
supplied thermodynamic state in Q. The Gas data table
Q is modified in place such Q.a contains the computed
sound speed value.

eval transport coefficients(Q) A function that computes the transport coefficients, vis-
cosity and thermal conductivities, based on the supplied
gas state in Q. The Gas data table Q is modified in place
so that Q.mu and Q.k[] are up to date.

eval diffusion coefficients(Q) A function that computes the diffusion coefficients for
interacting species pairs based on the thermodynamic
state in Q. The values in Q.D[][] are modified in place
so that they are up to date.

eval Cv(Q) A function that returns (as a double) the mixture spe-
cific heat at constant volume (in J/(kg.K)) based on the
supplied thermodynamic state in Q.

eval Cp(Q) A function that returns (as a double) the mixture spe-
cific heat at constant pressure (in J/(kg.K)) based on
the supplied thermodynamic state in Q.

eval R(Q) A function that returns (as a double) the mixture gas
constant (in J/(kg.K)) based on the supplied thermody-
namic state in Q.

eval gamma(Q) A function that returns (as a double) the ratio of specific
heats (non-dimensional) based on the supplied thermo-
dynamic state in Q.

456

molecular weight(isp) A function that returns the molecular weight of
species number isp. The units of molecular weight
is returned in kg/mol because this is consistent
with the internal units of the code. Note that the
units of molecular weight listed on the Periodic
Table and commonly used in textbook formulas is
in g/mol. The returned value should be multiplied
by 1000.0 to give g/mol.

enthalpy(Q, isp) A function that returns the enthalpy in J/kg of
species isp. The enthalpy is computed based on the
supplied gas state in Q. When using the thermally
perfect gas mix, the enthalpies of formation can
be obtained by evaluating the enthalpy at T =
298.15 K.

massf2molef(massf) A function that returns a table of mole fractions
based on a supplied table of mass fractions. Note
the table of supplied mass fractions must be the
full size of the number of species in the gas model.
Similarly, the returned mole fractions table has
values for all participating species.

molef2massf(molef) A function that returns a table of mass fractions
based on a supplied table of mole fractions. Note
the table of supplied mole fractions must be the full
size of the number of species in the gas model. Sim-
ilarly, the returned mass fractions table has values
for all participating species.

massf2conc(rho, massf) A function that returns a table of concentrations
(mol/m3) based on a supplied density and table of
mass fractions. Note the table of supplied mass
fractions must be the full size of the number of
species in the gas model. Similarly, the returned
concentrations table has values for all participating
species.

conc2massf(rho, conc) A function that returns a table of mass fractions
based on a supplied density and table of concen-
trations in mol/m3. Note the table of supplied
concentrations must be the full size of the number
of species in the gas model. Similarly, the returned
mass fraction table has values for all participating
species.

species rate of change(Q) A function that returns a table of the time rate of
change of species concentrations based on the reac-
tion scheme and current gas state and composition.
The returned values have units of mol/(m3.s).
Note that the thermodynamic state and compo-
sition in the gas data Q must be filled with up-
to-date values. You can ensure this by making an
appropriate call to one of the thermo eval functions
before passing Q to this function.

457

I.5 Notes on global variables and Lua interpreters

For each boundary condition that uses a USER-DEFINED boundary condition, an inde-

pendent Lua interpreter is started. The global state in each of these interpreters (read

boundary conditions) is kept between timesteps (i.e. the interpreter is reentrant). How-

ever, there is no way to communicate information internally from one Lua interpreter

to another. There is a subtlety here. You could actually write just one Lua file as the

boundary condition but set it on multiple boundaries however, you would need to make

it smart enough to use the Eilmer-provided information to work out which boundary it

was and then act accordingly. Remember that, although you might use the one file, it is

running as an independent process for each boundary. Those independent processes will

not share global state and cannot communicate.

An independent Lua interpreter is also started when using the global udf_file to

supply at_timestep_start() and at_timestep_end() functions. A single interpreter

is started to house both those functions and the global state in that interpreter is also

reentrant.

458

J Hints for Solution Visualisation with ParaView

J.1 Plotting Streamlines and Streamtubes

The following steps can be used to visualise streamlines and streamtubes in ParaView.

1. Postprocess simulation results with the --vtk-xml flag as described in Section 3.7

to get the flow solution data into a form suitable for viewing in ParaView.

2. Open the Parallel (Partitioned) VTK Unstructured Data file (.pvtu file from the

plot directory where the simulation was run) with ParaView and click Apply in the

Properties tab of the Object Inspector panel.

3. Convert the cell data to point data (at the cell nodes) by applying the filter Filters

> Alphabetical > Cell Data to Point Data and once again clicking Apply. For

multi-block simulations, the user must also apply the filters Group Data Sets and

Merge Blocks as described in Section 52.

4. Now the streamlines can be plotted by selecting the menu Filters > Alphabetical

> Stream Tracer and once again clicking Apply.

5. These streamlines can be converted into streamtubes by selecting the menu Filters

> Alphabetical > Tube and once again clicking Apply.

Streamtubes passing through the scramjet from Section 55 is illustrated in Figure 151.

Figure 151: Streamtubes passing through Katsu’s scramjet combustor and nozzle.

459

J.2 Moving Blocks

Each block or collection of blocks visualised in ParaView can be translated, scaled or ori-

entated. This may be useful when checking the operation of periodic boundary conditions,

as illustrated in Figure 152. A block mesh can be moved by selecting it in the ParaView

Pipeline Browser panel, then selecting the Display tab in the Object Inspector panel

and making changes to the Transform section of this tab.

Figure 152: Standard Configuration 10 Mach field illustrating correct operation of periodic
boundary condition.

460

K Load balancing MPI simulations

Consider a parallel simulation with 16 blocks which you wish to run on 16 processes. Due

to the geometry, the 16 blocks are not of equal size. For example, 2 of the blocks are

twice as large (have twice the number of cells) as the other 14 blocks. When running

this simulation in parallel over 16 processes, there is a degree of inefficiency. The code

needs to synchronise the exchange of block-boundary data at the end of every timestep,

so the 14 smaller blocks are spending roughly 50% of their compute time just waiting on

the two larger blocks to complete their calculations. This type of inefficiency is not a big

deal on your own machine with 16 cores but it will make you unpopular on large shared

resource machines such as shared-memory supercomputers and supercomputing clusters.

To alleviate some of this inefficiency, it’s possible to run Eilmer3 in a mode where several

blocks are handled by just one MPI process. In the example here, we would assign several

of the smaller blocks to just one MPI process. In the end, we could use 9 MPI processes

instead of 16, placing each of the two large blocks on their own MPI process and then

assigining two of the smaller blocks to each of the remaining MPI processes. We do this

with an MPImap file which is explained below.

The other case in which we might want to use the MPImap feature is when we are

running a simulation with many blocks (on the order of 100s of blocks) which exceeds the

number of processes available. In this case, the only way to start a parallel simulation is

by using the MPImap mode to assign multiple blocks to one MPI process.

Using the MPImap feature is a three-step process. First, we prepare an Eilmer3 simula-

tion as usual, using e3prep.py. Second, a mapping file is built with the e3loadbalance.py

program. Third, when running e3mpi.exe the mapping file is supplied as an option using

the mpimap= flag. As an example, consider the simulation included in

examples/eilmer3/3D/load-balance-test. This contains a GridPro grid with 27 blocks.

After running e3prep.py, we are ready to use the load-balance program to map blocks

to processes. We wish to run this simulation on 16 MPI processes, so first we call

e3loadbalance.py to build an MPImap file:

> e3loadbalance.py --job=test -n 16

We provide two options: we give the base file name to the --job option and supply

the desired number of MPI processes with the -n option. The number of MPI processes

should be less than (or equal to) the number of blocks. After running this, an mpimap file

is created. In this case, it’s called test.mpimap. The contents of that file are shown here.

It is an INI-type file which lists which blocks have been assigned to which MPI process

(called ‘ranks’ in the MPI terminology).

461

[global]

nrank = 16

[rank /0]

nblock = 1

blocks = 13

[rank /1]

nblock = 1

blocks = 9

[rank /2]

nblock = 1

blocks = 11

[rank /3]

nblock = 1

blocks = 15

[rank /4]

nblock = 1

blocks = 16

[rank /5]

nblock = 1

blocks = 14

[rank /6]

nblock = 2

blocks = 5 19

[rank /7]

nblock = 2

blocks = 6 21

[rank /8]

nblock = 2

blocks = 7 23

[rank /9]

nblock = 2

blocks = 8 24

[rank /10]

nblock = 2

blocks = 10 26

[rank /11]

nblock = 2

blocks = 0 12

[rank /12]

nblock = 2

blocks = 1 17

[rank /13]

nblock = 2

blocks = 3 18

[rank /14]

nblock = 2

blocks = 2 25

[rank /15]

nblock = 3

blocks = 4 20 22

Now to run this simulation, we would invoke e3mpi.exe in the following manner:

> mpirun -np 16 e3mpi.exe --job=test --mpimap=test.mpimap --run

Note the new option --mpimap= which we haven’t seen before. This supplies the name of

the mapping file to use.

The advantage to having e3loadbalance.py as a separate step is that you can re-

configure how you want your blocks mapped to MPI processes without re-prepping the

simulation. Say you had a 200-block simulation but could only reliably get 16 CPUs on

a cluster machine one week, then you could build a mapping file for 16 MPI processes. If

462

later on, you want to re-run the same simulation but there are now 64 CPUs available,

you could rebuild the mapping file. Just build a new mapping file for 64 MPI processes

and supply that to the e3mpi.exe command.

The algorithm used to do the load balancing does not guarantee the optimal ar-

rangement for mapping of blocks to MPI processes, but it can be shown that it gives

a very good load balancing for minimal computational expense [57]. The optimal ar-

rangement is possible to compute by brute force (trying every combination of block ar-

rangement for processes) but that is computationally very expensive. There is an extra

option for the e3loadbalance.py program which will give some measure of the quality

of the load balancing based on the selected number of processes. The program will ac-

tually sweep over a range of numbers of processes. For example, let’s see how the load

balancing looks for this 27 block case if we vary the number of processes from 2 to 27.

> e3loadbalance.py --job=test -n 16 --sweep-range=2:27

The results of this sweep are written to the file load-balance.dat. It’s a simple text file

with four columns of data: (1) number of processes; (2) ∆cells, the difference between the

process with the largest number of cells to the process with the smallest number of cells;

(3) packing quality, computed as 1.0− Lmax−Lmin

Lmax
where L is the load (based on number of

cells assigned to a process); and (4) estimated speedup, computed as Ltotal

Lmax
. The contents

of this file are displayed here:

nprocs Delta_cells packing -quality speedup

002 32 0.993610 1.993610

003 64 0.980952 2.971429

004 48 0.980892 3.974522

005 64 0.968504 4.913386

006 64 0.962617 5.831776

007 240 0.850000 6.240000

008 416 0.740000 6.240000

009 576 0.640000 6.240000

010 704 0.560000 6.240000

011 800 0.500000 6.240000

012 896 0.440000 6.240000

013 976 0.390000 6.240000

014 1072 0.330000 6.240000

015 1120 0.300000 6.240000

016 1184 0.260000 6.240000

017 1216 0.240000 6.240000

018 1280 0.200000 6.240000

019 1312 0.180000 6.240000

020 1344 0.160000 6.240000

021 1376 0.140000 6.240000

022 1440 0.100000 6.240000

023 1440 0.100000 6.240000

024 1472 0.080000 6.240000

025 1472 0.080000 6.240000

026 1536 0.040000 6.240000

027 1536 0.040000 6.240000

Note that there is no benefit to choosing more than 7 processes for this simulation. We

463

see that beyond 7, the speedup remains constant and that the packing quality starts to

drop rapidly. What this essentially means is that we have got to the point where one large

block (or possibly several) is dominating the load balancing. This large block is given one

process to itself, the remaining blocks are smaller such that when combined they are still

not as large as the largest block. By increasing more processes, you are effectively only

sharing the smaller blocks around more processes. You are still limited by the one large

block dominating the load. If this really is limiting achieving a good load-balancing, then

the solution is to divide that block at the gridding stage. It might be possible to subdivide

the block using the SuperBlock option in Eilmer3.

464

L Radiation transport models

A variety of radiation transport models are implemented in Eilmer3:

• Optically thin model

• Tangent slab model

• Modified discrete transfer model

• Photon Monte-Carlo model

The radiation transport model is defined the transport data table of the radiation

Lua input file. Note that all radiation transport models also require a radiation spectral

model to run. See § 8 of the Photaura Users Guide (http://cfcfd.mechmining.uq.

edu.au/pdf/photaura-users-guide.pdf) for a detailed explanation of how to setup a

radiation spectral model via the tools provided in the cfcfd3 radiation library.

L.1 Optically thin model

The optical thin radiation transport model is selected by setting the transport model

field in the transport data field to "optically thin". The following code snippet gives

an example of selecting and defining the parameters for the optically thin model:

transport_data = {

transport_model = "optically thin",

spectrally_resolved = true

}

A description of the Lua input fields for the optically thin radiation transport model

is given in Table 8.

Table 8: Description of Lua input fields for the optically thin radiation transport model

Field Type Description
spectrally resolved bool Flag to request a spectrally resolved or unre-

solved determination of the radiative power
density

465

http://cfcfd.mechmining.uq.edu.au/pdf/photaura-users-guide.pdf
http://cfcfd.mechmining.uq.edu.au/pdf/photaura-users-guide.pdf

L.2 Tangent slab model

The tangent slab radiation transport model is selected by setting the transport model

field in the transport data field to "tangent slab". No other input parameters need

to be set. The following code snippet gives an example of selecting and defining the

parameters for the tangent slab model:

transport_data = {

transport_model = "tangent slab"

}

L.3 Modified discrete transfer model

An implementation of the modified discrete transfer radiation transport model is se-

lected by setting the transport model field in the transport data field to "discrete

transfer". The following code snippet gives an example of selecting and defining the

parameters for the discrete transfer model:

transport_data = {

transport_model = "discrete transfer",

nrays = 32,

clustering = "by volume",

binning = "opacity",

N_bins = 10

}

A description of the Lua input fields for the modified discrete transfer radiation trans-

port model is given in Table 9.

Table 9: Description of Lua input fields for the modified discrete transfer radiation trans-
port model

Field Type Description
nrays int Number of rays emitted per cell and per fre-

quency interval
clustering string Ray clustering: by volume, by area or none
binning string Binning model: opacity, frequency or none
N bins int Number of bins (does not need to be set if

binning = "none")

466

L.4 Photon Monte-Carlo model

The photon Monte-Carlo radiation transport model is selected by setting the transport model

field in the transport data field to "monte carlo". The following code snippet gives an

example of selecting and defining the parameters for the photon Monte-Carlo model:

transport_data = {

transport_model = "monte carlo",

nrays = 512,

clustering = "by area",

absorption = "partitioned energy"

}

A description of the Lua input fields for the photon Monte-Carlo radiation transport

model is given in Table 10. Note that here nrays is the total number of rays emitted per

cell, whereas for the discrete transfer model nrays is the number of rays emitted per cell

per frequency interval.

Table 10: Description of Lua input fields for the photon Monte-Carlo radiation transport
model

Field Type Description
nrays int Number of rays emitted per cell
clustering string Ray clustering: by volume, by area or none
absorption string Absorption model: standard, or

partitioned energy

467

468

Index

Billig, 415

block

Block2D, 44

Block3D, 55

connect blocks 2D, 49

connect blocks 3D, 57

identify block connections, 48, 58

MultiBlock2D, 48

MultiBlock3D, 58

SuperBlock2D, 47

example of use, 101

SuperBlock3D, 58

example of use, 356, 362

boundary conditions, 59

AdiabaticBC, 60

AdjacentBC, 59

AdjacentPlusUDFBC, 62

ExtrapolateOutBC, 60

FixedPOutBC, 61

FixedTBC, 60

JumpWallBC, 60

list of available, 59

MappedCellBC, 62

MovingWallBC, 62

example of use, 307, 381, 385

periodic, 59

example of use, 235

set BC, 63

example of use, 77

setting individually, 63

SlipWallBC, 60

StaticProfileBC, 61

SubsonicInBC, 60

example of use, 181

SupInBC, 60

TransientProfBC, 61

TransientUniBC, 61

user defined, 445

UserDefinedBC, 61

example of use, 242, 258, 266

cfpylib

ideal gas relations

example of use, 101

chemical reaction, 31

example of use, 215, 221, 277, 356

reaction scheme file, 31, 427

dissociating nitrogen, 218

H2-air combustion, 227

weakly-ionising nitrogen, 358

thermal nonequilibrium reaction scheme

file

weakly-ionising nitrogen, 364

clustering

See univariate function, 46

config file, 14, 66

configuration parameters, 66

control file, 14, 66

control parameters, 66

e3mpi.exe, 17, 26

example of use, 89, 265, 359, 367

running a simulation, 17

e3post.py

reference function, 262, 274, 282

report norms, 262, 274

using, 19

e3prep.py, 26

interactive mode, 27

using, 14

e3rad.exe, 18

e3shared.exe, 26

running a simulation, 16

469

energy exchange

energy exchange scheme file

weakly-ionising nitrogen, 365

example of use, 311

ExistingSolution, 34

example of use, 208, 225

finish file, 17

finite-rate chemistry, see chemical reaction

example of use, 311

FlowCondition, 33

add to list parameter, 33

example of use, 237

gas model

change ideal gas attribute, 31

example of use, 233

equilibrium chemistry, see look-up table

gas-model.lua file, 30

ideal, 28

look-up table, 30, 423

combined with composite-gas, 197

example of use, 189, 203

real gas

Bender, 28

MBWR, 28

REFPROP, 28

thermally perfect, 28

example of use, 215, 221

two temperature, 28

example of use, 311

user-defined, 30, 417

example of use, 277

minimal example, 422

geometric element

AOPatch, 42

Arc, 39

Arc3, 39

Bezier, 39

BezierPatch, 43

ChannelPatch, 41

CoonsPatch, 41

example of use, 375

Helix, 39

Line, 39

MappedSurface, 43

example of use, 370

mesh patch, 42

MeshPatch, 42

MeshVolume, 44

example of use, 378

Node, 38

Nurbs, 39

NurbsSurface, 43

ParametricSurface, 40

ParametricVolume, 43

Path, 39

PathOnSurface, 40

example of use, 375

PolarPath, 40

PolarSurface, 43

Polyline, 39

Polyline2, 40

PyFunctionPath, 40

example of use, 165

PyFunctionSurface, 42

example of use, 233

PyFunctionVolume, 44

RevolvedSurface, 43

example of use, 370

SimpleBoxVolume, 44

Spline, 40

example of use, 162

Spline2, 40

SurfaceThruVolume, 43

TrianglePatch, 43

example of use, 375

Vector, 38

Vector3, 38

470

WireFrameVolume, 43

Getting started, 397

grid

2D, 44

3D, 54

AO, 44

area orthogonality, 44

TFI, 44

transfinite interpolation, 44

gzip, 15

halting a simulation, 14

HeatZone, 65

history location, 16

extracting the data, 186

HistoryLocation, 66

IgnitionZone, 65

import grid file name, 45, 56

Installation, 397

Internet address, 12

Kirchhartz, 35

make patch, 44

Maxima

example of use, 265

module

cfpylib, 413

e3 block.py, 44

e3 flow.py, 24

e3 grid.py, 24

libgas, 27

libgeom2, 38

mpimap, 18, 461

example of use, 107, 115, 123, 140, 150

PBS batch system

example of use, 140, 150

postprocessing, 19

customized, 24

shock location, 202, 359, 367

preparation, 14

radiation transport model

available models, 465

definition in input script, 36

example of use, 311

ReactionZone, 65

restart, 18

example of use, 103

restarting a simulation, 18

select gas model, 27

select radiation model, 36, 37

sketch, 72

source terms

user defined, 451

example of use, 257, 265, 277

species

list of available, 28

SVG, 15

thermal energy exchange, 32

thermal nonequilibrium

energy exchange scheme file, 32, 435

example of use, 362

thermochemical models, 27

times file, 17

transient profile faces, 47, 57

TurbulenceZone, 65

univariate function

HypertanClusterFunction, 46

LinearFunction, 46

example of use, 375

LinearFunction2, 46

RobertsClusterFunction, 46

example of use, 162, 208

ValliammaiFunction, 46

verification, 257, 265, 277

471

VRML, 15

xforce list, 47

example of use, 83, 170

472

	I Introduction
	Compressible flow simulation and the Eilmer3 code
	History of the codes
	More information
	Citing the user of Eilmer3

	II User guide
	Building and installing the programs
	Running simulations
	Data preparation (with e3prep.py)
	Checking your grid
	Running the simulation (with e3shared.exe)
	Running the simulation in parallel (e3mpi.exe)
	Running a radiation transport calculation (e3rad.exe)
	Restarting a simulation
	Postprocessing (with e3post.py)
	Supervisory GUI

	Input Script Overview
	Thermochemical model and flow conditions
	10 second version: just tell me how to select perfect air
	2 minute version: tell me about other simple models
	Specifying the gas model with gasmodel.py
	10 minute version: the detail of gas model configuration
	Selecting a simple model and adjusting it
	Specifying chemically reacting flow
	Specifying thermal energy exchange mechanisms
	Defining flow conditions
	Using flow conditions from other simulations
	Using mole fractions and species dictionaries

	Radiation transport model
	Boundary representation of the gas domain
	Geometric elements
	Paths
	Surfaces
	Volumes

	Two-dimensional grids
	Putting a 2D description together
	Three-dimensional grids

	Specifying flow conditions at block boundaries
	Setting conditions with setBC (deprecated)

	Special zones and history points
	Simulation control parameters
	Parameters for a 2D sketch of the flow domain

	III A tutorial example
	Mach 1.5 flow over a 20-degree cone
	The simulation
	Input script (.py)
	Running the simulation

	Results and Postprocessing
	Accessing the field data for specialized postprocessing
	Grid convergence
	Other notes on this first example
	Parametric modelling using Python
	Input script (.py)

	Exploring the gas dynamics
	Building a more robust simulation
	Input script (.py)
	Final results

	IV Examples for 2D flow
	Oblique shock boundary layer interaction.
	Input script (.py)
	Running the simulation
	Results
	Shell scripts
	Postprocessing for shear stress
	Notes

	Viscous Flow Along a Cylinder
	Input script (.py)
	Shell scripts
	Notes

	Hypersonic flow over a concave surface.
	Input script (.py)
	Running the simulation
	Results
	Postprocessing to get heat transfer
	Notes

	Hypersonic flow over a convex ramp.
	Input script (.py)
	Running the simulation
	Results
	Postprocessing to get heat transfer
	Notes

	Hypersonic, nonequilibrium flow over a convex ramp.
	Input script (.py)
	Running the simulation
	Results
	Postprocessing to get heat transfer
	Notes

	Hypersonic flow over a hollow cylinder with flare.
	Input script (.py)
	Running the simulation
	Results
	Postprocessing heat transfer and separation-point tracking
	Notes

	Hypersonic flow over a double-cone.
	Input script (.py)
	Running the simulation
	Results
	Postprocessing heat transfer and separation-point tracking
	Notes

	Mach 3 flow over a sharp-nosed two-dimensional body
	Input script (.py)
	Shell scripts
	Notes

	Sharp-nosed 2D body – PyFun version
	Input script (.py)
	Notes on using Python for the input script

	Hypersonic flow of ideal air over a blunt wedge
	Input script (.py)
	Shell scripts
	Notes

	Pressure on a flat-faced cylinder
	Input script (.py)
	Shell scripts
	Awk scripts
	Notes

	Flow through a conical nozzle
	Input script (.py)
	Shell scripts
	Notes

	Flow of equilibrium air over a sphere
	Input script (.py)
	Shell scripts
	Notes

	Classic shock tube problem
	Input script (.py)
	Shell scripts
	Solution using finite wave and shock analysis
	Extracting shock location and getting average gas speed
	Notes

	Heat transfer to a sphere in equilibrium air
	Template input script (.py)
	Coordinating script (.py)
	Shell script for postprocessing
	Notes

	Dissociating nitrogen flow over a 2D cylinder
	Input script (.py)
	Reaction scheme file (.lua)
	Shell scripts
	Notes

	Flow of detonable mixture over a sphere
	Input script (.py)
	Reaction scheme file (.lua)
	Notes

	MNM implosion problem
	Input script (.py)
	Shell scripts
	Notes

	Periodic Shear Layer
	Input script (.py)
	Shell scripts
	Notes

	Mach 1.5 flow over a 20-degree cone – UDF boundaries
	Input script (.py)
	Boundary-condition files (.lua)
	Shell scripts
	Notes

	A section of an ideal compressible-flow vortex
	Input script (.py)
	Boundary condition file (.lua)
	Shell scripts
	Notes

	Method of manufactured solutions – Euler flow
	Input script (.py)
	Boundary condition file (.lua)
	Source term file (.lua)
	Shell scripts
	Python reference-function files
	Notes

	Method of manufactured solutions – Viscous flow
	Input script (.py)
	Boundary condition file (.lua)
	Source term file (.lua)
	Shell scripts
	Python reference-function files
	Notes

	Oblique detonation wave
	Input script (.py)
	gas-model file (binary-gas.lua)
	Source term file (.lua)
	Shell scripts
	Python reference function files
	Notes

	Subsonic compressor blade – sc10
	Input script (.py)
	Boundary-condition files (.lua)
	Shell scripts
	Notes

	Subsonic compressor blade – PyFun version
	Input scripts (.py)
	Notes

	Couette Flow
	Input script (.py)
	Shell scripts
	Notes

	Radiating argon shock layer with thermochemical nonequilibrium
	Experiment description
	Simulation description
	Thermodynamics
	Viscous transport
	Chemical reactions
	Thermal energy exchange
	Radiation transport
	Radiation spectra

	Results
	Run script (.sh)
	Eilmer3 input scripts (.py)
	Part 1 – inviscid flow
	Part 2 – viscous flow
	Part 3 – viscous flow with radiation coupling

	Chemical reaction script (.lua)
	Thermal energy exchange script (.lua)
	Radiation model (for flowfield coupling) script (.py)
	Radiation model (for experiment comparison) script (.py)
	Radiation error checking script (.py)
	Notes

	Microscale combustion
	Input script (.py)
	UDF Boundary conditions
	Running the simulation
	Results

	V Examples for 3D flow
	Mach 1.5 flow over a 10-degree ramp
	Input script (.py)
	Shell script
	Postprocessing program
	Notes

	Sod shock tube problem in 3D
	Input script (.py)
	Shell script
	Notes

	Injection of hydrogen into a nitrogen stream
	Input script (.py)
	Shell script
	Notes

	Flow of nitrogen over a cylinder of finite length
	Chemical nonequilibrium and thermal equilibrium
	Input script (.py)
	Reaction scheme file (.lua)
	Shell script
	Postprocessing program
	Notes

	Chemical and thermal nonequilibrium
	Input script (.py)
	Reaction scheme file (.lua)
	Energy exchange scheme file (.lua)
	Shell script
	Postprocessing program
	Notes

	Spherically-blunted cone
	Input script (.py)

	Katsu's scramjet combustor and nozzle
	Input script (.py)

	Titan aeroshell using imported grids
	Input script (.py)

	Couette Flow: 3D
	Input script (.py)
	Shell scripts
	Results
	Notes

	Taylor Couette Flow
	Input script (.py)
	Shell scripts
	Results
	Notes

	VI References and Appendices
	Instructions for installation and getting started
	Surviving the Linux Command Line
	Just enough Python to be dangerous
	Make your own debugging cube
	cfpylib modules
	Numerical Methods module
	Gas Dynamics module
	Flow (house-keeping) module
	Geometry module
	Utility module
	Billig shock shape correlation

	Gas models: specification by configuration file
	User-defined gas model
	An example minimal user-defined gas model

	Equilibrium gas based on a look-up table
	Selecting a look-up table for the gas model
	Building your own look-up table

	Chemical reactions: specification by configuration file
	Overview of input file format
	Details of the reaction table
	Extra control of the chemistry scheme

	Thermal energy exchange mechanisms: specification by configuration file
	Overview of the input file format
	Details of the mechanism table

	User-defined functions for run-time customization
	Customizing the boundary conditions
	Source terms
	Callable functions at timestep start and timestep end
	Helper gas model functions
	Notes on global variables and Lua interpreters

	Hints for Solution Visualisation with ParaView
	Plotting Streamlines and Streamtubes
	Moving Blocks

	Load balancing MPI simulations
	Radiation transport models
	Optically thin model
	Tangent slab model
	Modified discrete transfer model
	Photon Monte-Carlo model

	Index

