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Abstract

The aim of this work is to understand how infectious diseases spread through human populations.

Attention is given to those diseases which follow the Susceptible–Infective–Susceptible (SIS) pattern.

When modelling diseases spread in a human population, it is important to consider the social and

spatial structure of the population. Humans usually live in groups such as work places, households,

towns and cities. However, an individual’s membership of a particular group is not fixed. Rather, it

changes over time. This structure determines two paths for a disease to spread through the population.

Disease is spread between individuals in the same group by contact between infected and susceptible

individuals, and is spread from one group to another by the migration of infected individuals. This

type of population structure can be modelled by a metapopulation network. I develop a continuous–

time Markov chain (CTMC) model that describes the spread of an SIS epidemic in a metapopulation

network.

I establish an ordinary differential equations (ODE) and a Gaussian diffusion analogue of the

stochastic process by applying, respectively, the theory of differential equation approximations for

Markov chains, and the theory of density dependent Markov chains. I use the ODE model to derive

analytic expressions for various epidemiological quantities of interest. In particular, I obtain expres-

sions for two threshold quantities; the basic reproduction number, and a quantity called T0 which is

greater than the basic reproduction number. If the basic reproduction number is above 1, then the dis-

ease persists and if the basic reproduction number is below 1, then the disease–free equilibrium (DFE)

is locally attractive. However, if T0 is less than or equal to 1, then the DFE is globally attractive. Using

the theory of cooperative differential equations and the theory of asymptotically autonomous differ-

ential equations, I show the existence and global stability of a unique endemic equilibrium (EE) and

the global stability of the DFE in terms of the basic reproduction number, provided that the migration

rates of susceptible and infected individuals are equal. Numerical examples indicate that a unique

stable EE exists when the condition on the migration rates is relaxed. The approximating Gaussian

diffusion shows that the distribution of the population at the endemic level has an approximate mul-

tivariate normal distribution whose mean is centered at the endemic equilibrium of the ODE model.

i



The results of this study can serve as a basic framework on how to formulate and analyse a more

realistic stochastic model for the spread of an SIS epidemic in a metapopulation which accounts for

births, deaths, age, risk, and level of infectivities.

Assuming that the model presented here accurately describes the spread of an SIS epidemic in a

metapopulation, another question which I address is how to control the spread of the disease. Since

most control strategies such as vaccination, treatment and public awareness require a high cost for

their implementation, I aim to provide a strategy whose cost is minimal and which only requires con-

trol of the migration pattern. Using convex optimisation theory, I obtain an exact analytic expression

for the optimal migration pattern for susceptible individuals which minimises the basic reproduc-

tion number and the initial growth rate of the epidemic, provided that the migration rate of infected

individuals follow a specific pattern. It turns out that the optimal migration pattern for susceptible

individuals can be satisfied if the migration rates between any two patches (or groups) are symmetric.

The control strategy obtained here can be applied to reduce the early growth rate of a disease in con-

junction with or in the absence of another prevention measure.
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Chapter 1

Introduction

A continuous–time Markov chain is used to describe the spread of a Susceptible–Infective–Susceptible

type epidemic in a metapopulation network. This chapter begins with the motivation for studying

infectious diseases spread in human populations. It then reviews some of the common disease char-

acteristics in epidemic modelling. Following this, some of the basic mathematical concepts used in

epidemic modelling are reviewed and motivates the use of continuous–time Markov chains to formu-

late epidemic models. The chapter closes by outlining the materials presented in the thesis.

1.1 Motivation

The spatial spread of infectious diseases, following their introduction at distinct locations, has always

been a major concern for human populations. This is because infectious diseases remain one of the

main cause of morbidity and mortality in both developed and developing countries. One notable

example is the spread of bubonic plague or the Black Death in Europe in the fourteenth century,

which caused the deaths of around 25 per cent of the population in that region [15, page 3], [99]. The

plague was brought to Italy by ships from the East in about December 1347. During the following

few years it spread up through Europe at approximately 200-400 miles per year [146, page 655]. It

continued to strike parts of Europe throughout the fourteenth, fifteenth and sixteenth centuries with

different degrees of intensity and mortality. In 1665, the plague reappeared in London and is thought

to have killed more than 68,000 people in that city [5, page 1].

Another significant example is the spread of smallpox in America between 1507 and 1900. Small-

pox is a viral infection which spreads from person to person mainly by droplets shed by the infected
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CHAPTER 1. INTRODUCTION 2

person through coughing or sneezing, and by direct contact [78, page 186]. The disease was intro-

duced to America by the Spanish explorers and the African slaves. The first case was identified in

1507 in the island of Hispaniola [78, page 236]. An outbreak of the disease began in 1517 and killed

about one-third of the indigenous population in Hispaniola. In 1520, the disease reached the Valley

of Mexico and it is believed that half the population of Mexico died due to it [5, page 1], [78, page

237]. By the time a vaccine for smallpox was developed by Edward Jenner in 1798, the disease had

spread to the North and devastated thousands of people.

At present, the spread of human immunodeficiency virus (HIV), which causes the acquired im-

munodeficiency syndrome (AIDS), is beginning to have a remarkable impact on patterns of mortality

in both developed and developing countries [160], [201, pages 1–2]. The most affected region of the

world is the sub–Saharan Africa, where, by the end of 2004, there were around 23.6 million people

infected with HIV [201, page 2]. Studies indicate that migration of individuals between rural and

urban areas is a key factor in the spread of HIV in West Africa [130, 166, 188]. Furthermore, individ-

uals migrating from West Africa to Europe, America and Asia have contributed to the global spread

of HIV [166].

Similarly, the worldwide spread of severe acute respiratory syndrome (SARS) in 2003 created a

major public health concern in many countries. SARS was first reported in November 2002 in the

Guangdong province of China [155]. It was carried out of China in February 2003 by an infected

physician who had spent a single night in a Hong Kong hotel. By the end of February 2003, the

disease had spread to other parts of the world through international air travel as guests at the hotel

returned to their home cities. By the time SARS came under control in August 2003, it had spread

to 30 countries and caused 623 deaths [155]. International air travel was identified as the key factor

in the global spread of SARS [175, 196, 198]. For this reason, possible control strategies such as

screening for infection at borders and travel bans for residents in highly infected areas were proposed

[180].

Lastly, the outbreak of influenza caused by the H1N1 virus in 2009 is a further example which

elucidates the impact of human mobility on the spatial spread of infectious diseases. The disease was

first identified in March and early April 2009 in Mexico and the United States [49]. As of May 2009,

it had spread to 30 countries with a total of 1,882 confirmed cases [49, 193]. Mobility was known to

be the main reason for the large scale spread of influenza [46, 120, 34].

The examples above highlight the significant role that human mobility plays in the spatial spread

of diseases. Therefore, when modelling the spread of diseases in human populations, it is essen-

tial to consider the structure of the populations. Before discussing mathematical models for disease

spread, I will first describe some commonly studied disease patterns in epidemiology and the basic
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mathematical concepts used in the formulation of such models.

1.2 Characterisation of Diseases

As a disease progresses through a given population, individuals in that population can be classified

according to their ability to transmit it to others. Susceptible individuals are those people who do

not have the disease but who can become infected. Exposed (or latent) individuals are those people

who act as hosts for the infectious pathogen but are not yet able to transmit the disease. Infectious

(or infective) individuals are those people who have the disease and can transmit it to susceptible

individuals. Recovered individuals are those people who have recovered from the disease.

For a disease in which infected individuals do not have an exposed period and recover with no im-

munity, the disease is said to follow the Susceptible–Infective–Susceptible (SIS) pattern. Thus, in the

SIS disease dynamic, a susceptible individual who becomes infected after a successful contact with

an infectious individual is immediately infectious and remains in this state for a period of time. This

period is called the individual’s infectious period. At the end of the infectious period, the individual

returns to the susceptible class, as he or she does not develop immunity to the disease. The flow dia-

gram in Figure 1.1 describes the dynamics of the SIS epidemic model without demography. Diseases

such as tuberculosis, meningitis and gonorrhea follow the SIS pattern [2], [38, pages 345–346], [101],

[113, page 4].

S I
infection

recovery

Figure 1.1: Flow diagram showing the dynamics of SIS epidemic model.

A disease for which infected individuals do not have an exposed period and from which they re-

cover with permanent immunity, is said to follow the Susceptible–Infective–Recovered (SIR) pattern.

However, if the disease has an exposed period, it is said to have the Susceptible–Exposed–Infective–

Recovered (SEIR) dynamic. Recovered individuals in both SIR and SEIR patterns are also known as

removed individuals, as they play no further role in the epidemic. Influenza, rubella, chicken pox and

mumps are examples of diseases which have the SIR dynamic [2, 4, 60]. On the other hand, diseases

such as measles and AIDS are known to have exposed periods [146, page 618].
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1.3 Epidemic Modelling

Mathematical models provide an important tool for understanding the spread of infectious diseases.

Models can be used to capture features that are most influential in the spread of diseases. They allow

us to make predictions of the disease progression and to suggest possible control strategies. It is the

aim of this section to provide some of the basic concepts used in the formulation epidemic models.

For any infectious disease to make progress through a given population, there has to be disease

transmission between susceptible and infective individuals. This transmission depends on three fac-

tors: the rate of contacts which are of an appropriate type for transmission to be possible if one of

the individual is infectious, the probability that a contact is made with an infectious individual, and

the probability that contact between an infectious and a susceptible individual leads to a successful

transmission [33]. The probability of successful transmission is usually assumed to be constant for

any given disease. The probability that the contact is with an infectious individual is usually assumed

to be equal to the prevalence of infection within the population. The product of these three factors

is called the force of infection, λ . The force of infection gives the per capita rate at which suscep-

tible individuals contract the infection [113, page 17]. Therefore, the rate at which new infectives

are produced is λS, where S is the number of susceptible individuals in the population. The term

λS is known as the transmission term [33] or the incidence [99] of the disease. There are two com-

mon forms for the force of infection according to the way the contact rate is defined. If the contact

rate depends on the population size, N, then λ = β I, where I is the number of infectious individuals

and β is called the disease transmission rate, which is equal to the product of the contact rate and

the probability of successful transmission. This type of transmission is known as density–dependent

transmission. If the contact rate is independent of the population size, then λ = β I/N. This type of

transmission is known as frequency–dependent transmission. The SIS model developed in this thesis

is density–dependent according to the above definition.

The concept that the rate of transmission depends on the numbers of susceptibles and infectives

was first formulated by Hamer in 1906 [92]. He referred to λ = β I as the mass–action transmission

rate. However, it was Kermack and Mckendrick [116, 117, 118] (see also [4, 60]) who first applied

Hamer’s idea to epidemic modelling and introduced the simple deterministic SIR model whose vari-

ants are widely being studied and applied in studying specific diseases. The term simple used in

this context means that the models do not include any demographic factors such as births, deaths or

migration of individuals. Hence, the population is unstructured and has a fixed size. Kermack and

Mckendrick used a system of ordinary differential equations (ODE) to describe the SIR disease dy-

namic. By studying the simple SIR model, they proved their celebrated threshold result, which states
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that the initial number of susceptibles must exceed a critical value in order for an epidemic to occur.

An epidemic is a sudden outbreak of a disease which infects a significantly large proportion of the

population. It may be restricted to one area or be global, in which case it is called pandemic. For

example, the outbreak of influenza caused by H1N1 in 2009 is considered pandemic [80]. In contrast,

if a disease is always present in a region, then it is called endemic. It is observed that tuberculosis

(TB) is endemic in some African countries [75]. The simple SIR model is not suitable for modelling

endemic diseases as it cannot display endemic behaviour. One way of accounting for endemicity is to

use an SIS model.

The simple deterministic SIS model is a generalisation of the Susceptible–Infective (SI) model

studied by Bailey [14, page 20] and [15, page 33]. If N is the population size and I(t) is the number

of infected individuals at time t ≥ 0, then, the simple deterministic SIS model is given by

dI
dt

= β I(N− I)− γI, (1.1)

where β is the infection rate and γ is the recovery rate. Since the population size is fixed, the number

of susceptible individuals at time t is given by S(t) = N − I(t). To ecologists, (1.1) is the classic

model considered by Levins [134, 135] (see also [94, Chapter 4]) for modelling the number of oc-

cupied patches in a metapopulation – a collection of interacting subpopulations of the same species,

each of which occupies a distinct habitat patch. In this context, β is the colonisation rate, γ is the

local population extinction rate, and N is the number of patches in the metapopulation. Levins’

metapopulation model has a very similar structure to the island model studied in population genetics

[44, 47, 64, 85, 157, 158, 96]. In the island model, each individual in the population is considered

as a habitat patch for pathogens. The metapopulation consists of a finite number, N, of identical

patches, each containing a finite number of individuals (pathogens) which reproduce according to the

Wright–Fisher model [79, 213]. This means that all individuals in the population during the current

generation are equally likely to be the parents of the next generation. The island model was originally

introduced by Wright in 1930s [213, 214] to study the variations of gene frequency in a given popula-

tion. Recently, the SIS model (1.1) has been applied in population genetics to understand the patterns

of genetic variations in infectious agents [44, 64, 85]. In these models, the population structure was

modelled as the island model. Similar to the Levins’ model, an occupied patch is equivalent to an

infected individual, an extinct patch is equivalent to a susceptible individual, γ is the local population

extinction rate. An extinct patch can become recolonised by the migrants it receives from the occu-

pied patches. Therefore, β is proportional to the migration rate. In this thesis, I will restrict discussion

of model (1.1) to the epidemiology context and direct the interested reader to the books of Hanski and

co–authors [94, 93] for further details regarding the connection between Levins type metapopulation
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and genetics.

The solution of equation (1.1) is derived in [211] and it is shown that if Nβ/γ is less than or equal

to 1, then I(t) converges to 0 as t goes to infinity and for all initial values. Hence, the disease dies

out in the long run. On the other hand, if Nβ/γ is greater than 1, then I(t) converges to a positive

equilibrium as t goes to infinity whenever the initial number of infectives is positive. This implies

that the disease will remain endemic in the population. Thus, Nβ/γ is a threshold quantity in this

model which determines whether the disease will invade the population and remain endemic or will

die out. This threshold quantity is called the basic reproduction ratio (or number) of the model, and

is denoted by R0. It gives the expected number of secondary infections produced by a single infected

individual in a completely susceptible population [5, page 17], [65, page 4], [66], [97]. For the model

developed here, one aim of its analysis is to determine if such a threshold condition exists or not.

The vast majority of epidemic models in the literature are formulated using differential equa-

tions, mainly because of their simpler analysis, in particular regarding the long term behaviour of

the population. However, a key limitation of these models is that they predict the same dynamic and

equilibrium for each realisation of the process; given the same initial condition, we always observe

exactly the same trajectory. Such a static scenario does not apply to real world diseases. If it were

possible for us to re–run a real world epidemic, we would not expect to observe exactly the same

people becoming infected at exactly the same time. Thus, the element of chance is an important fac-

tor to consider when modelling diseases. This chance or probabilistic element can only be captured

in a stochastic setting. Furthermore, there are events which are genuinely stochastic and cannot be

explained by differential equations. For example, in a large population, an outbreak initiated by few

initial infectives may lead either to a minor outbreak infecting only a small proportion of the popu-

lation, or else to a major outbreak infecting a more or less deterministic proportion of the population

[20, 21, 24, 28, 42]. The probability of the occurrence of these two events can only be determined by

using a stochastic model. Additionally, when considering extinction of endemic diseases, the proba-

bility of disease extinction and the expected time to extinction can only be analysed using stochastic

models [149, 150, 151, 152]. Finally, using a stochastic model allows for uncertainty in parameter

estimations, which may be used to create possible control strategies [4, Chapters 9 to 12].

One of the earliest stochastic treatments of epidemic modelling dates back to 1926 and is due

to McKendrick [142]. However, it is the chain binomial model studied by Reed and Frost in 1928

which gained much attention [1, 212] (see also [60, page 12]). It is an SIR model and was formulated

using a discrete–time Markov chain (see Chapter 2 for a definition and also [154, Chapter 1]). The

Markovian character (the future predictions depend only on the current observation) of the model is

due to the assumption that the probabilities of new infection occurring have a binomial distribution
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depending on the number of susceptible and infectious individuals present at the previous stage. After

the introduction of the chain binomial model, most significant developments of stochastic epidemic

models seem to have started in the late 1940s when Bartlett [32] formulated the stochastic version of

the simple SIR model of Kermack and McKendrick. A continuous–time Markov chain (or a Markov

process) was used to describe the model [87, 154].

Since the development of Bartlett’s model, the prevalence of stochastic models for epidemic pro-

cesses in the literature has increased rapidly. Most were constructed using either a discrete or a

continuous time Markov chain. In comparison with the differential equations, the main advantage of

Markov chains lies in their ability to incorporate individual variation arising from chance elements,

which is an important character in population processes. Moreover, they have a discrete state space

and therefore treat individuals as discrete units which is more appropriate for population modelling.

For example, the stochastic analogue of (1.1) is a continuous–time Markov chain with state space

{0, . . . ,N}where the number of infectives at time t, I(t), is defined to increase by one at rate β I(N−I)

and decrease by one at rate γI, where the parameters β and γ are defined as earlier. Although these

transition rates are related to (1.1), the long term behaviour of the stochastic model is very different

from what is predicted above for the deterministic model. The stochastic model predicts absorption at

state 0 with probability 1, implying that the disease will ultimately die out. However, if we consider

a typical sample path of the stochastic process given in Figure 1.2, we can see that the stochastic

process appears to track the deterministic trajectory and fluctuates around the positive equilibrium of

the deterministic trajectory. Therefore, it seems that, despite the fact that the stochastic process pre-

dicts ultimate absorption at state 0, it may attain an equilibrium before absorption. This equilibrium

is known as a quasi–equilibrium [63, 106, 123, 147, 148, 164, 205] and describes the behaviour of

the population at an endemic level. For the continuous–time Markov chain model constructed in this

work, one aim of the analysis is to describe the behaviour of the population at an endemic level.

Despite their usefulness in epidemic modelling, Markov processes have some limitations which

must be addressed. One of the main disadvantages is that as a result of the Markov property, the

time between events is exponentially distributed. This means that the infectious period and the ex-

posed periods are exponentially distributed, which may not be applicable in some disease modelling

scenarios. An alternative approach would be to consider Semi–Markov processes which allow for

different holding time distributions [129, 186]. Another limitation of Markov processes is that they

are usually difficult to analyse. A common approach to analysing Markov processes is to derive for-

ward (or backward) Kolmogorov equations, which describe the dynamics of the transition probability

functions (see Chapter 2), and solve the system of ODE to determine the quantities of interest such

as mean, variance and higher order moments. However, the system can be difficult to solve for these
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quantities when the state space of the Markov chain is large as in our case. In such situations, the

method frequently applied is to simulate the process of interest and use statistical methods to anal-

yse the result. However, large numbers of repeated simulations are required in order to ensure that

the simulated dynamics are representative of average behaviour of the process rather than a chance

outlier due to a rare event. This is also true in the case when the aim is to look for rare events such

as extinctions or unusually large epidemics, despite the fact that methods such as importance sam-

pling and cross–entropy have been developed to improve efficiency [181]. In order to overcome these

limitations, analytical approximation methods are often sought. In Chapter 2, I will present work

of Kurtz [125, 126], Pollett [163], and Darling and Norris [62], which will be employed to obtain

explicit analytical approximations for the Markov process developed here. Before addressing such

mathematical details, I will highlight in the following section the research to date on those types of

epidemic models to which I contribute; that is, models which account for mobility.
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Figure 1.2: A sample path of the simple stochastic SIS model (blue) and the trajectory of (1.1) (black)

1.4 Accounting for Mobility

Early epidemic models were formulated assuming that individuals in the population mix homoge-

neously (mass–action principle) [5, 15, 116, 211]. That is, all pairs of individuals in the population

have the same probability of coming into contact with each other. Although this is a reasonable as-

sumption for modelling diseases spread in small groups such as households, workplaces and schools,
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there are doubts as to its applicability for larger groups. In a large population, there can be several

group formations due to heterogeneity arising, for example, from social and economic factors. Some

people may live in cities while others may live in rural areas. Consequently, demographic and dis-

ease parameters may vary for each group. Furthermore, people may travel between the groups, either

by foot or by using various transportation networks, which leads to the spread of diseases between

groups. These considerations have lead to the development of epidemic models that take into account

the structure of the population.

One way of accounting for the heterogeneity arising from the social and spatial structure is to

model the epidemic on a lattice. In these models, individuals are positioned on a regular grid of points,

usually in just one or two dimensions, and adjacent individuals (nearest neighbours) are connected.

Therefore, contacts are localised in space which is appropriate for modelling the close connection

that an individual has with some members of the population. The best known examples for disease

transmission through lattices are the contact process [74, 109, 133] and the forest–fire [70, 86, 108,

167, 168, 169, 170, 171, 172, 173] model. The contact process is closely related to the spread of

an SIS type infection. In its traditional form, the contact process, as introduced by Harris in 1974

[95], is a Markov process on {0,1}S, where S is the number of vertices in the lattice. Translated into

disease metaphor, states 0 and 1, respectively, correspond to the site being susceptible or infected.

Infected individuals recover at a given rate independent of the status of their neighbours and become

susceptible to the disease once more, while susceptible individuals become infected at a rate that is

proportional to the number of infected neighbours. The contact process is an example of a stochastic

interacting particle systems whose general theory can be found in the book of Liggett [138] and in the

work done by Durrett [71, 72, 73].

On the other hand, the forest–fire model is closely associated with the spread of SIRS–type infec-

tion and is generally studied on a two–dimensional lattice. In the original formulation, lattice sites

can be empty, occupied by a healthy tree, or occupied by a burning tree. The rules which govern

the model are as follows: burning trees die to leave empty spaces, fire can spread between neigh-

bouring trees, healthy trees can colonise empty spaces, and occasional random lightning strikes can

cause spontaneous fires. In epidemiological terms, healthy trees are susceptibles, burning trees are

infectious, empty sites are recovered (and immune), colonisation by trees resembles either the birth of

new susceptibles or wanning immunity, and lightning represents the import of new infection. Again,

the dynamics of this process can be given in terms of rates of change of lattice sites. This model was

originally developed in 1990 by Per Bak and coworkers [16] and has been applied to study diseases

spread in small geographically isolated island populations [169, 171, 173]. In both the contact process

and the forest–fire models, disease is spread between nearest neighbours. However, there are various
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other lattice models with a different choice of neighbourhood. The most common form is to choose

neighbours according to a contact distribution. This approach was first introduced by Mollison in

1977 [144] and has been applied by others [20, 26, 23, 58, 127, 128] since then. Lattice models

are applicable in situations where the spatial location of individuals are important, such as diseases

spread in plants and animals. Furthermore, since individuals are assumed to interact with a small

number of other members (neighbours) in the population, lattice models do not capture the complex

and heterogeneous contacts through which human infections pass, which limits their applicability in

studying diseases spread in human populations.

An alternative approach of modelling the population structure seen in human populations is to

divide the population into distinct groups, assuming that each group mixes homogeneously within

itself as well as there being cross–group infection. For deterministic models, this assumption leads

the force of infection at a given group to be the product of the number of susceptibles in that group

and the sum of the transmission coefficients for all groups. Furthermore, individuals belonging to

the same group are assumed to have equal recovery rate [38, 88, 89, 98, 132, 192]. For stochastic

models, within group and between group transmissions are obtained by assuming that individuals mix

at two levels: local and global. At the global level, a given infective makes contacts at a given rate

with individuals chosen independently and uniformly from the whole population. At the local level,

the infected individual makes contacts at a much higher rate with individuals chosen independently

and uniformly from a set of neighbours of that individual. These stochastic models are known as

household models [12, 20, 23, 26, 27, 28, 41]. The major drawback of these models is the absence of

mobility, in both deterministic and stochastic settings.

This is overcome for deterministic models in the studies made by Bailey [15, Section 7.33], Heth-

cote [98], Sattenspeil and Dietz [187], Allen et al. [3], McCormack and Allen [141], van den Driess-

che [202], Salmani and van den Driessche [183], Arino and van den Driessche [9, 10, 11], Arino et

al. [7, 8], Wang and Zhao [210], Wang and Mulone [209], Jin and Wang [107], Kuniya and Muroya

[124], and Muroya et al. [145]. The authors who have contributed on the stochastic side include

Ball [22], Ball and Clancy [24, 25], Clancy [50, 52], Keeling et al. [112, 114], Sani et al. [185],

Lahodny Jr and Allen [131] and Neal [152]. In all these models the population structure is modelled

by a metapopulation network [93, 134, 135]. More precisely, the population is divided into distinct

groups where each group lives in a discrete location (or patch) and individuals are assumed to travel

between the patches. Some authors refer to these stochastic models as multi–group models. For de-

terministic models, the patch dynamics are usually modelled by a system of ODE. One of the most

important differences between the deterministic and stochastic epidemic models is their asymptotic

dynamics. Although for most stochastic epidemic models, disease extinction in finite time occurs
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with probability one, such behaviour is not possible for the corresponding deterministic models as

they predict either disease extinction or persistence in the long–run. Therefore, the type of questions

often investigated using deterministic models include the asymptotic dynamic of disease–free or en-

demic equilibria. Stochastic models are normally described by a continuous–time Markov chain with

mobility modelled by transition rates between groups. Often, these stochastic processes are analysed

by using an approximating branching process or an approximating system of ODE. The type of ques-

tions addressed, when such an approximation is possible, include the probability of disease outbreak

or extinction, the final size of the epidemic, the equilibrium behaviour of the population at an endemic

level, and the effect of the speed of movement of individuals on the final size of the epidemic. In the

rest of this section I will provide a brief overview of these studies, summarising only those findings

which are related to my work. I will begin with deterministic models.

Bailey [15, Section 7.33] considered a two patch deterministic SIR model, assuming equal travel

rates between patches for susceptibles and similarly for infectives. Disease transmissions within, as

well as between, patches were allowed. Equilibrium points were derived and their stability analysed.

Hethcote [98] also studied a two patch deterministic model but for a disease having the SIS dynamic.

Travel rates were assumed to be the same as in [15]. However, cross patch infections were ignored.

It was shown that if the transmission rate of one patch is slightly bigger than 1 and that of the other

patch is less than 1, then travel can eventually cause disease extinction in both patches. In contrast, if

the transmission rate of one patch is significantly greater than 1 and that of the other patch is less than

1, then travel can cause the disease to remain endemic in both patches.

Sattenspeil and Dietz [187] introduced a deterministic SIR model in which the population in each

disease class is subdivided and which keeps track of the patch where an individual is visiting and the

patch in which an individual normally resides. They showed how their model can be applied to a

population with two types of mobility and in which there are both within group and between group

transmissions. They also applied their model to the spread of measles on the West Indies island of

Dominica. Although their model allows for the simultaneous considerations of both epidemic and

behavioural processes, there are some limitations to the model. Firstly, they have assumed that travel

rates are independent of disease status, which is somewhat questionable. Secondly, it was assumed

that individuals who travel to a given patch must return directly to the patch they originated from

before visiting another patch, which may not be the case for long distance trips. These limitations

have been successfully dealt with in [11] by Arino and van den Driessche.

Arino and van den Driessche have also studied an SIS [10, 202] and an Susceptible–Exposed–

Infective–Recovered–Susceptible (SEIRS) [9] deterministic models using a similar approach to [187].

They obtained an analytic expression for the basic reproduction ratio of these models. Using numer-
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ical simulations, they showed that the basic reproduction ratio acts as a sharp threshold between dis-

ease extinction and invasion. Simulations of the SIS model also indicated that mobility can stabilise

or destabilise the disease–free equilibrium. Arino et al. introduced a multi–species SEIR [7] model in

which disease transmissions between species were allowed in each patch. This model was extended

in [8] to allow for temporary immunity, giving a SEIRS model. In contrast to the models given in

[187, 10, 9], these models did not keep track of where an individual usually resides, but only tracks

where an individual is at a given time. However, similar to [9, 10, 187], the travel rates were assumed

independent of the disease status. Numerical simulations for the SEIR model with two patches and

for a single species suggested that increased travel rates reduce the basic reproduction number to a

value less than 1 and the disease dies out in all patches, while small travel rates help the disease to

persist. For the SEIRS model, the role of quarantine in the form of travel restriction was investigated

for the special case when patches are arranged in a ring, and assuming that travel can only take place

between neighbouring patches. Using numerical examples, they showed that perfect travel restriction

is required for disease extinction for both one way and two way migrations. The models studied in

[7, 8] have been generalised by Arino and van den Driessche by allowing disease dependent travel

rates [11].

Wang and Mulone [209], Wang and Zhao [210] and Jin and Wang [107] studied SIS determin-

istic models in which travel rates depended on disease status. For a two patch frequency–dependent

model, Wang and Mulone [209] concluded that travel rates of susceptibles do not have any influence

on disease persistence and extinction. Wang and Zhao [210], and Jin and Wang [107] considered a

density–dependent model, and have provided analytical results for stability of disease–free and en-

demic equilibrium considering equal travel rates for susceptibles and infectives. Using numerical

simulations, Wang and Zhao [210] showed that population travel can both intensify and reduce the

spread of disease in patches. This was further explored in [107], again by using simulations, to show

that travel between patches may result in multiple endemic equilibria and even multi stable equilib-

ria, and also may result in disease extinction, even though the disease cannot be eradicated in each

isolated patch, provided that the basic reproduction numbers of isolated patches are not very large.

Salmani and van den Driessche [183] considered an SEIRS deterministic model in which travel

rates were assumed to depend on disease status. They showed that, while the population is at an

endemic level, increased travel rates of infectives can cause disease extinction in all patches. In a

similar setting, Allen et al. [3] showed for a frequency–dependent SIS deterministic model that, while

the population is at an endemic level and if infectious individuals travel between the patches but the

rate of travel for susceptible individuals approaches 0, then, contrary to what is expected, the endemic

equilibrium approaches a disease–free equilibrium. McCormack and Allen [141] studied an SIR and
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an SIS model in both deterministic and stochastic settings, assuming disease independent travel rates.

Their analysis of the deterministic models showed that if the disease persists in some patches and is

extinct in others when in isolation, then travel between patches can lead to either disease persistence

or extinction in all patches. They also showed that increased travel rates can cause disease extinction

in all patches. Their numerical examples suggest that the mean of stochastic models is close to the

solution of the deterministic models. For these models, existence and uniqueness of disease–free and

endemic equilibrium were not established. However, for similar models which allow for cross patch

infections, existence uniqueness and global stability for endemic and disease–free equilibrium were

established by Kuniya and Muroya [124] and Muroya et al. [145].

Considering stochastic models, Ball [22] proposed an SIR model in which only infectives were

allowed to move between groups and could infect only those susceptibles in their current group. Mo-

bility of infectives was modelled by a Markov transition matrix and contacts were modelled by ho-

mogeneous Poisson processes. The recovery period of infectives was assumed to have an exponential

distribution, which implies that the process as a whole has the Markov property. Transmission rates

and recovery rates were assumed independent of the group. Approximating branching processes were

used to determine the conditions under which a major epidemic occurs and to calculate the probability

of this event. A deterministic analogue of this model was also investigated. It was shown that the final

size of the epidemic (that is the total number of initial susceptibles ultimately infected in each group)

has an asymptotically Gaussian distribution with mean equal to the final size of the corresponding

deterministic model. Numerical examples were used to show that, for the deterministic model, the

final size of the epidemic increases as the speed at which infectives move around the groups increases.

The author of [22] has conjectured that this observation will be true for all parameter values and a

similar result will hold for the stochastic model. These conjectures were proven by Clancy [50], but

for the stochastic model, the result was shown for a population consisting of two groups with equal

travel rates between the groups.

The complex relationship between migration of individuals and the spread of diseases can be seen

in the models studied by Clancy [51] and [52]. The model studied in [52] was a generalisation of the

SIR model presented in [22] in which movement of both susceptibles and infectives was allowed and

between group infections were considered. An approximating multi–type birth–and–death process

was used to analyse the model. The analysis showed that movement of infectives decreases the

spread of the disease. However, the model in [51] describes the spread of a carrier–borne disease, and

movement of both susceptibles and infectives was allowed while between group infection was not

considered, it was shown that increasing the speed of movement of either infectives or susceptibles

tends to increase the spread of infection.
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For the above stochastic models in which only movement of infective individuals was consid-

ered [22, 50], the general assumptions have been that there were no between group infections and

infectious periods were exponentially distributed and movement processes were Markovian. These

assumptions were relaxed in the model studied by Ball and Clancy [24]. In their model, they allowed

disease transmission rate between a given infective and a given susceptible to depend upon the in-

fectives’ group of origin, its current group and the group of the susceptible. Infectious period and

movement process were assumed to have an arbitrary distribution and could depend on each other.

Sani et al. [185] studied a multi–group SIR model for the spread of AIDS. A Markov process was

used to describe their model. By using an approximating system of ODE, they analysed equilibrium

behaviour of their stochastic process. Furthermore, a central limit theorem was used to model the

fluctuations in the stochastic process around an endemic equilibrium of the deterministic model. Neal

[152] also studied an SIR model, but he allowed for an arbitrarily distributed infectious period. For a

population consisting of only two groups, he showed that the basic reproduction number of the model

is maximised by a constant length infectious period and is decreased when the speed of movement

between the two populations is increased.

All of the above cited stochastic models were concerned with diseases following the SIR pattern.

However, Lahodny Jr and Allen [131] considered frequency–dependent SIS models which allowed

for disease induced deaths. The stochastic models applied in their investigations were formulated

using Markov processes and stochastic differential equations. An approximating branching process

for the Markov process was used to determine the probability of disease extinction. In their analysis,

they classified a given patch as being high–risk if the basic reproduction number for that patch was

greater than 1; otherwise it was called a low–risk patch. Using these classifications, they showed

that, in the early stage of the epidemic, directing movement of infectious individuals into low–risk

patches is an effective control strategy, while movement of susceptible individuals does not impact

the probability of disease extinction.

Various other stochastic metapopulation models exist and some were developed to study specific

diseases [18, 34, 55, 56, 61, 91, 104, 112, 114, 120]. However, due to the size and complexity of the

populations involved, these models needed to be analysed numerically.

The above studies indicate that mobility of individuals between patches and patch dependent

disease transmission and recovery rates can influence disease spread in various ways. This work aims

to give some precise results about this influence in terms of optimal travel patterns.
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1.5 Outline of the Thesis

This thesis concerns an epidemic model that account for mobility. Chapter 1 has provided the mo-

tivation behind incorporating mobility in epidemic models and reviewed mathematical models that

account for such behaviour. The Markov chain approach is particularly popular with the applied

metapopulation community, however these studies mainly focused on understanding the spread of

diseases following the SIR pattern. The model presented in Chapter 3 adapts the continuous–time

Markov chain approach to describe the spread of a disease following the SIS dynamics in a metapop-

ulation network. However, first, Chapter 2 collects the basic materials on continuous–time Markov

chains which are required to understand the materials presented in the latter chapters. Additionally,

it provides two approximation methods (an ODE approximation and a diffusion approximation) for

those continuous–time Markov chains whose transition rates satisfy the density–dependent property.

Furthermore, the background materials required to analyse equilibrium points of an ODE arising

from an epidemic model is provided along with the necessary properties of Metzler, Positive and

M–matrices. Chapter 2 also collects some properties of convex optimisation and closed migration

process which are applied to derive results in the latter chapters.

Chapter 3 introduces the SIS epidemic model studied in this thesis. A number of explicit expres-

sions for quantities of interest are presented, including the basic reproduction number, the disease–

free and endemic equilibria, and the distribution of the population at the disease–free and an endemic

level. The stability of the disease–free and endemic equilibria is also investigated. These analyses are

based on an ODE approximation and a diffusion approximation to the Markov chain model.

Chapter 4 provides optimal migration (or travel) strategies for susceptible individuals which min-

imise the basic reproduction number of the SIS model and the spectral abscissa of the Jacobian matrix

of the ODE derived in Chapter 3, evaluated at the disease–free equilibrium. Both Chapter 3 and Chap-

ter 4 provide concluding comments about the analysis made in them.



Chapter 2

Background Theory

This chapter begins with the definition of a stochastic process and then defines those properties of a

stochastic process required for it to be classified as a continuous–time Markov chain. It then sum-

marises some of the basic properties of continuous–time Markov chains which are required to inter-

pret the terminologies and results discussed in this thesis. Following this, an ODE approximation and

a diffusion approximation method for continuous–time Markov chains, which are applied to analyse

the Markov chain studied in the thesis, are discussed. The background materials needed to establish

stability of fixed points of the ODE model is then discussed. Afterwards, some results on Metzler and

positive matrices are collected which are used to prove some of the results in the following chap-

ters. Following this the properties of convex optimisation and M–matrices are discussed. The chapter

closes by a description of the closed migration process, which describes the population when it is

disease–free.

2.1 Introduction

A stochastic process (X(t); t ∈ T ) is a collection of random variables which take values in a set S

and are indexed by a set T . The set S is called the state space of the process and may be discrete

or continuous. The variable t usually represents time and may once again be discrete or continuous.

If t is discrete, then (X(t); t ∈ T ) is referred to as a discrete–time process. If t is continuous, then

(X(t); t ∈ T ) is referred to as a continuous–time process. In this thesis, I will consider a continuous–

time stochastic process whose state space is discrete and finite. So, the time variable t shall hereafter

takes values in [0,∞).

16
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I am particularly interested in stochastic processes which satisfy the Markov property.

Definition 2.1. A continuous–time stochastic process (X(t); t ≥ 0) satisfies the Markov property if

for any n≥ 1 and any finite sequence of times 0≤ t1 < · · ·< tn < tn+1

P(X(tn+1) = j | X(tn) = i,X(tn−1) = in−1, . . . ,X(t1) = i1)

= P(X(tn+1) = j | X(tn) = i),

for all states i1, i2 . . . , in−1, i, j ∈ S.

Thus, the Markov property states that, provided that the present and past states are known, the

future state of the process is independent of the past states. Due to this property, Markov processes

are sometimes referred to as “memoryless” processes. Among Markov processes, I am particularly

interested in those processes which are time–homogeneous.

Definition 2.2. A Markov process (X(t); t ≥ 0) is said to be time–homogeneous if for any s, t > 0 and

i, j ∈ S,

pi j(t) := P(X(s+ t) = j | X(s) = i) = P(X(t) = j | X(0) = i). (2.1)

That is, given that the process is in state i at time s, the probability of the process is in state j after

an additional t time units pass is independent of s. The probabilities pi j(t) are called the transition

probabilities of the Markov process and gives the probability that the process moves from state i to

state j in time t. The corresponding matrices P(t) = (pi j(t); i, j ∈ S), t ≥ 0 are called the transition

probability matrices.

Time–homogeneous Markov processes have been applied in many areas as they have a high degree

of analytical tractability. The model developed and methods applied in this thesis are concerned with

time–homogeneous Markov processes.

2.2 Continuous–Time Markov Chains

A continuous–time Markov chain (CTMC) is a Markov process which takes values in a discrete set S.

Such processes are often referred to as simply Markov Processes. The sample paths of a continuous–

time Markov chain consist of a sequence of states such that the process remains in each state for

some exponentially distributed random time, after which it jumps to another state. The time that the

process spends in a given state is called the holding time of that state. Below I summarise features

of continuous–time Markov chains needed to understand the materials presented in this thesis. For

further details regarding this subject, I refer the reader to Anderson [6, Chapters 1 and 2] and Norris

[154, Chapters 2 and 3].
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2.2.1 Transition Rates and Probabilities

The evolution of a CTMC as described above is determined by its transition rates Q = (qi j, i, j ∈ S),

where qi j represents the rate of transition from state i to state j, for i 6= j, and qii = −qi, where

qi ≥ ∑ j 6=i qi j, is the total rate out of state i. Q is called the Q–matrix, or transition rate matrix of the

Markov chain and a model is generally defined in terms of Q. A Q–matrix satisfies the following

conditions:

(a) −∞≤ qii ≤ 0, i ∈ S,

(b) 0≤ qi j <+∞, i 6= j ∈ S,

(c) ∑ j∈S qi j ≤ 0, i ∈ S.

Thus, the diagonal elements of Q are nonpositive, the off–diagonal elements are nonnegative and the

row sums are nonpositive. If all row sums are equal to 0 (that is, qi = ∑ j 6=i qi j for all i ∈ S), then

Q is called conservative. If qi < +∞, then state i is called a stable state, otherwise it is said to be

an instantaneous state. Q is called stable if all of its states are stable. The Q–matrix of the CTMC

considered in this thesis is stable and conservative. Hence, any Q–matrix mentioned hereafter is

assumed stable and conservative.

Although the Q–matrix provides us with information about the transition rates of a CTMC, it

does not give us any information about the transition probabilities of the process, because if we know

these probabilities then we know the probability of the process going from any state i to any state

j in any period of time t, and we can therefore, at least in principle, answer any question about the

behaviour of the process. These transition probabilities are given by the transition probability matrix,

P(t), of the Markov chain. The fundamental relationships between a transition probability matrix and

its Q–matrix are given by the (Kolmogorov) forward and backward equations.

Definition 2.3. For a given Q–matrix Q = (qi j, i, j ∈ S), the system of differential equations

d pi j(t)
dt

= ∑
k∈S

pik(t)qk j, pi j(0) = δi j, i, j ∈ S, t ≥ 0,

is called the (Kolmogorov) forward equations. Similarly, the system of differential equations

d pi j(t)
dt

= ∑
k∈S

qik pk j(t), pi j(0) = δi j, i, j ∈ S, t ≥ 0,

is called the (Kolmogorov) backward equations. Here, δi j is the Kronecker delta which is equal to

1 when i = j and 0 otherwise. The forward and backward equations can easily be written in matrix

form: dP(t)/dt = P(t)Q and dP(t)/dt = QP(t) with initial condition P(0) = I, where I is the identity
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matrix. If the state space S is a finite set, as in our case, then both the forward and backward equations

have the unique solution, P(t) = exp(tQ), where exp is the matrix exponential. Specifically,

P(t) = exp(tQ) =
∞

∑
n=0

tn

n!
Qn.

In most situations it is not possible to evaluate the transition probability matrix explicitly. An alter-

native approach often sought in order to study the behaviour of the process in such situations is to

apply numerical computation procedures. However, for process with a large state space, such as the

metapopulation network considered in this thesis, the numerical tasks which need to undertake may

be so large as to make them impracticable due to computer memory constraints and/or time. Hence,

there is a desire for analytic approximations in these situations. In Section 2.3, I will introduce two

such approximation methods– an ODE approximation and a diffusion approximation– which are valid

for large system sizes and which provide a means to study the equilibrium behaviour of the CTMC

considered in this thesis. But, first, I will briefly review the classification of the states of CTMCs

which is useful in understanding the long–term behaviour of the Markov chain studied in this thesis.

2.2.2 Classification of States

As mentioned previously, a CTMC is mostly defined by specifying Q, the transition rates. Therefore,

it is Q which is readily available and not the transition probability matrix, P(t). Of course, if the state

space is finite, then P(t) = exp(tQ), but in practice, this may be difficult to evaluate explicitly. Hence,

it is convenient to classify the states of such processes in terms of Q.

State j is said to be accessible from state i if qi0i1qi1i2 . . .qin−1in > 0 for some finite sequence of

states i0, i1, . . . , in, with i0 = i, in = j and n≥ 1. If i is accessible from j and j is accessible from i, then i

and j communicate with each other. A communicating class is a non–empty set of states consisting of

all states that communicate with each other. If the entire state space is a single communicating class,

then the state space (also the Q–matrix and transition probability matrix) is said to be irreducible.

In this case we simply say that the Markov chain is irreducible. If the state space contains more

than one communicating class, then we may break the state space into disjoint sets, each representing

one communicating class, in which case the Markov chain is said to be reducible. Furthermore, a

communicating class, say A ⊆ S, is called closed if i ∈ A and j is accessible from i implies j ∈ A.

Thus a closed class is one from which there is no escape and such a set is called an absorbing set. If

A = {i}, then state i is called an absorbing state and in this case qi = 0.

I note that if P(t) is known, then the above classification can also be determined in terms of the

transition probabilities of the Markov chain. In that case we say state j is accessible from state i if
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pi j(t)> 0 for some (and then for all) positive time t. Communicating classes can then be determined

based upon this definition. Once we have determined the communicating classes of a CTMC we can

further classify the states in each class as recurrent or transient. In what follows Ti is the random

variable representing the time at which the Markov chain first visits state i after the first jump has

occurred, which is said to be the first passage time of the process to state i.

Theorem 2.1. State i is called recurrent if qi = 0 or P(Ti < +∞ | X(0) = i) = 1, and it is called

transient if qi > 0 and P(Ti < +∞ | X(0) = i) < 1. A recurrent state i is called positive if qi = 0 or

E(Ti | X(0) = i)<+∞, otherwise it is called null.

When qi = 0, state i is absorbing, so this theorem ensures that an absorbing state must be positive

recurrent. Conversely, if state i is nonabsorbing, then it is said to be recurrent if, upon leaving it,

the process is certain to return to state i and such a state will be visited infinitely often. Positivity

and nullity then recognise, respectively, the cases where the expected return time is finite or infinite.

On the other hand, a nonabsorbing state i is said to be transient if, upon leaving it, the process is

not certain to return to state i and such a state will be visited at most a finite number of time (see

for example, Norris [154, pages 115 and 118]). Positivity, nullity and transience are all solidarity

properties, in that all states in a communicating class have the same classification of positivity, nullity

or transience. The state space of the CTMC studied in this thesis can be decomposed as S = A∪C,

where S is finite, A is an absorbing set and C is an irreducible transient set.

2.2.3 Equilibrium and Quasi–Equilibrium Behaviour

When studying any epidemic model, we are often interested in the long–term behaviour of the pop-

ulation. For a CTMC whose state space S is finite and irreducible, the long–term behaviour of the

process is determined by the unique solution π = (π j; j ∈ S), with π j ≥ 0, to

πQ = 0,

and ∑ j∈S π j = 1. In such a case π is called the equilibrium distribution of the process and, for all

states i, j ∈ S, we have

lim
t→∞

P(X(t) = j | X(t) = i) = π j,

which implies that π is also the limiting distribution of the process. However, if the state space

has the form S = A∪C, where S is finite, A is an absorbing set and C is an irreducible transient

set, the absorbing set A is accessible from any state in C. Hence, whichever the initial state is,

the process will eventually escape from C into the absorbing set A with probability 1. For such
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processes, the equilibrium distribution is not necessarily unique and is degenerate, with probability

mass concentrated in the absorbing states. But, such processes often exhibit equilibrium behaviour

prior to absorption over any reasonable time scale. This behaviour, as mentioned previously, is known

as quasi–equilibrium [31, 63, 106, 123, 147, 148, 164, 205]. When A = {0} and C = {1,2, . . . ,N},

where N is finite, the quasi–equilibrium distribution is the unique solution π∗ to

π
∗QC =−xπ

∗,

and ∑i∈C π∗i = 1, where QC is the Q–matrix restricted to the irreducible transient class C, and −x

is the eigenvalue of QC with smallest magnitude. In this case, the quasi–equilibrium distribution is

also the limiting conditional distribution of the process for all initial distributions concentrated on

the transient class C (see, Darroch and Seneta [63, Section 3], and also van Doorn and Pollett [205,

Theorem 3]). The term limiting conditional is used to denote that the distribution is derived from

considering the long–term behaviour of the process conditioned upon it still being in the transient

class. More precisely,

lim
t→∞

P(X(t) = j | X(0) = i,X(t) ∈C) = π
∗
j , i, j ∈C.

When the absorbing set A contains more than one state, they can be amalgamated into one single

absorbing state and we can set qA = 0 and qA j = 0 for j ∈C. Consequently, the above procedure can

be applied to derive a quasi–equilibrium distribution of the Markov chain (see for example [40, 13]

and [121, Section 4.7]). If the state space is multi–dimensional, then we can use an appropriate

bijection, as discussed in the following paragraph, which makes QC a square matrix.

It is often difficult to obtain an explicit formula for the quasi–equilibrium distribution, even for a

process with a small state space, but it can be found relatively simply using any numerical eigenprob-

lem solver when the state space is small [205]. In order to numerically evaluate the quasi–equilibrium

distribution, one requires first to construct the N by N matrix QC and then compute all eigenvalues of

QC and the corresponding left eigenvectors. It is then easy to select the required eigenvalue and the

corresponding eigenvector, which can be normalised. For example, in MATLAB, the function eig can

be used to compute the eigenvalues and the eigenvectors of a square matrix. However, in this case we

need to use the transpose of QC instead of QC to compute the left eigenvectors, since MATLAB evalu-

ates the right eigenvectors. Alternatively, the Eigenvectors function in Maple can be used to compute

the eigenvalues and the right eigenvectors of a square matrix. If the state space is multi–dimensional

we may use a bijection f : C 7→C
′
, where C

′
= {1,2, ..., |C|}, which is easily invertible, to make QC

as a square matrix over C
′
. In this case, the Q–matrix over C

′
can be constructed using the transition

rates q f (i), f ( j), for all states i and j in C. We then compute the eigenvalues and the left eigenvectors
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of QC′ and obtain the quasi–equilibrium distribution. Once this has been done, we can use the inverse

transformation so that the distribution is indexed according to the original state space. If the state

space is large but sparse, in which case most of its elements are zero, then we can use sparse matrix

technology to compute eigenvalues and eigenvectors of QC. For example, the eigs command in MAT-

LAB can be used to evaluate a selection of eigenvalues and eigenvectors of a sparse matrix. The eigs

command implements Arnoldi’s algorithm which is iterative. More details regarding the Arnoldi’s

algorithm and how it is implemented in MATLAB can be found in the web appendix accompanying

the paper [205] (see also [165]). The web appendix accompanying [205] also provides MATLAB

codes which can be used to compute the eigenvalues and the corresponding left eigenvectors of a

square matrix using the eig and eigs functions. If the state space is infinite, then we can approxi-

mate a quasi–equilibrium distribution of the Markov process by employing a truncation method. The

idea behind this approach is that the quasi–equilibrium distribution of an infinite–state process with

restricted Q–matrix QC might be approximated by the quasi–equilibrium distribution of the process

with Q-matrix QC∗ = (qi j, i, j ∈C∗), where C∗ is a large but finite subset of C. Note that since C∗ is

finite, a quasi–equilibrium distribution for the process defined by QC∗ always exists as long as C∗ is

irreducible. Such truncation techniques are known to work well for birth–death processes [40, 122].

Despite their convenience, the above stated numerical methods may not be applicable for pro-

cesses with a large state space due to computer memory constraint and/or time. Therefore, explicit

analytical approximations to these distributions are of great importance. The following section in-

troduces two approximation methods–an ODE approximation and a diffusion approximation–for

CTMCs whose transition rates follow the density–dependent property according to Kurtz [125]. It

will be shown in Chapter 3 that, once the approximating ODE is identified for the Markov chain con-

sidered in this thesis, fixed points of the ODE provide a means to approximate a quasi–equilibrium of

the Markov chain. A Diffusion approximation is then used to describe the distribution of the Markov

chain around a fixed point of the ODE.

2.3 An ODE and A Diffusion Approximation Method

As mentioned above, the dynamic behaviour of the Markov chain considered here is studied by using

an approximating ODE model. This approximation is achieved by applying Theorem 4.1 of Darling

and Norris [62]. However, I note that the Markov chain studied in this work has the density–dependent

property, according to the definition of Kurtz [125]. Therefore, I will first provide the definition of

density–dependent Markov chains as stated in [125]

In his analysis of deterministic approximations to pure jump Markov chains, Kurtz [125] intro-
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duced the notion of density–dependence as follows.

Definition 2.4. A one–parameter family of continuous–time Markov chains (XN(t);N > 0) with state

space SN ⊂ ZJ (J–row vectors with integer components) and Q–matrix QN = (qN
i j; i, j ∈ SN) is called

density–dependent if there exists a continuous function f (x, l) : RJ×ZJ → R, such that

qN
i,i+l = N f

(
i
N
, l
)
, l 6= 0. (2.2)

Thus, the family of Markov chains is density dependent if the transition rates of the corresponding

scaled (or density) process (X̄N(t);N > 0), defined by

X̄N(t) :=
XN(t)

N
, t ≥ 0,

depends on the present state i only through the density i/N. The index parameter N need not be

discrete and it is chosen for a particular process by recognising that the approximation is achieved

by letting N becomes large. For the Markov chain considered in this thesis, the index parameter N is

chosen as the population size. I now proceed to summarise a method which applies Theorem 4.1 of

[62] to density–dependent Markov chains. This method provides an explicit bound on the probability

that the largest deviation between the scaled process (X̄N(t);N > 0) and the solution of an ODE

exceeds a given amount, over a finite time interval. For further details regarding such bounds, I refer

the reader to Section 4 of [62].

When the transition rates of the family of Markov chains (XN(t);N > 0) has the density–dependent

property, as described above, the drift vector β (i) defined in Section 4 of [62] is given by

β (i) = ∑
l 6=0

l f
(

i
N
, l
)
, (2.3)

for each i ∈ SN . The corresponding variance of a jump is given by

α(i) = ∑
l 6=0

|l|2

N
f
(

i
N
, l
)
, (2.4)

for each i∈ SN . Now, let E be a subset of RJ and let the function b : E 7→RJ be a Lipschitz vector field.

Also, let K be the Lipschitz constant of b on E with respect to the Euclidean norm | · |. Let x(t,x0) be

the unique solution to the differential equation dx(t)/dt = b(x(t)), starting with x(0) = x0 ∈ E, which

remains in E for for all t ≤ T , where T > 0 fixed and finite. Set δ = (εe−KT )/3, where ε > 0, and fix

A > 0. Now, consider the following events.

Ω0 = {|X̄N(0)− x(0)| ≤ δ}, Ω1 =

{∫ T

0
|β (XN(t))−b(X̄N(t))|dt ≤ δ

}
, (2.5)

Ω2 =

{∫ T

0
α(XN(t))dt ≤ AT

}
. (2.6)
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The following result provides a probabilistic bound on the largest deviation between the scaled pro-

cess, X̄N(t), and the solution, x(t), of the differential equation by a given amount, over finite time

intervals. The symbol Ωc represents the complement of the set Ω.

Theorem 2.2. (Theorem 4.1 of [62] ) Under the conditions stated in the previous paragraph,

P
(

sup
t≤T
|X̄N(t)− x(t,x0)|> ε

)
≤ 4AT

δ 2 +P(Ωc
0∪Ω

c
1∪Ω

c
2).

Since the transition rates of the Markov chain concerned in this thesis satisfy Kurtz’s density–

dependent property, we shall have the limiting drift b(x) equal to the drift vector β (Nx) when Nx is in

SN , which implies that the probability of Ωc
1 equals zero. This simplifies the application of Theorem

2.2 to our model. Then, to determine the bound on the probability given in Theorem 2.2, we can

choose the initial value of the ODE, x(0), to be the same as the initial value of the scaled process,

X̄N(0), so that the probability of Ωc
0 is zero. It remains to determine the constants A in Ω2 and the

Lipschitz constant, K, of b(·) to give the bound.

At this point, I note that Theorem 3.1 of Kurtz [125] provides some sufficient conditions for weak

convergence of density–dependent Markov processes, which are appropriately scaled, to a solution

of an ODE. That is convergence in probability to zero of the largest deviation of the scaled process

from its limiting deterministic path over any finite time interval on which the deterministic trajectory

is defined. However, the deterministic path in this case must be defined on an open subset O of RJ .

This limits the application of Kurtz’s result to the Markov chain concerned in this thesis in its original

form, so I use Theorem 2.2 instead. But, Kurtz’s result can easily be applied to our Markov chain

after eliminating one variable from its state vector and this is made possible since the population is

assumed closed. Theorem 3.1 of Kurtz [125] can then be used to approximate the scaled process

(X̃N(t);N > 0) of the reduced Markov chain by the unique solution of the ODE satisfying

x(0,x0) = x0 ∈ O, (2.7)

x(t,x0) ∈ O, 0≤ t ≤ T,

∂

∂ t x(t,x0) = F(x(t,x0)), (2.8)

where

F(x) = ∑
l 6=0

l f (x, l) ,

with f (·) as given in (2.2). We can then apply results of Kurtz [126] and Pollett [163] to the reduced

ODE to obtain a central limit theorem which accounts for the random fluctuations about the deter-

ministic path. In particular, the central limit theorem shows that the random fluctuations about the
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deterministic path follow a Gaussian diffusion. Before presenting the central limit result, I will first

review some necessary background material about diffusion processes.

A diffusion process (Z(t); t ≥ 0), where Z(t) = (Z1(t), . . . ,ZJ(t)), is a continuous time Markov

chain with almost sure continuous sample paths. The type of diffusion processes that are considered

in this thesis satisfy the following properties (see for example [111, Chapter 15]).

E[Zi(t +h)−Zi(t) | Z(t) = z = (z1, . . . ,zJ)] = ai(t,z)h+o(h), i = 1, . . . ,J,

E[(Zi(t +h)−Zi(t))(Z j(t +h)−Z j(t)) | Z(t) = z] = ci j(t,z)h+o(h), i, j = 1, . . . ,J,

where (ci j(t,z)), i, j = 1, . . . ,J, is a positive definite matrix. That is

J

∑
i, j=1

ci j(t,z)aia j > 0

for all nontrivial real J–tuples (a1, . . . ,aJ) and z ∈ RJ . The functions a(·) and c(·), respectively,

are called the local (or instantaneous) drift and local (or instantaneous) covariance. The diffusion

process that this thesis is specifically concerned with is the Ornstein–Uhlenbeck (OU) process, which

experiences a drift towards the origin of magnitude proportional to its displacement. That is, a(t,z) =

−Bz and c(t,z) = G, for some constant matrices B and G. The matrix B is known as the the local drift

of the process.

Now, I present the central limit result which models the random fluctuations between the density

process (X̃N(t);N > 0) and the deterministic path, x(t,x0), defined in (2.7)–(2.8). In the following,

transpose of a vector a is denote by a′ and transpose of a matrix is denoted similarly, and these

notations are used throughout the thesis.

Theorem 2.3. (Theorem 3.5 of [126] ) Suppose that F(·) is bounded, Lipschitz continuous and has

uniformly continuous first partial derivatives on O. Suppose also that G(x), a J × J matrix with

elements

gi j(x) = ∑
l 6=0

lil j f (x, l), x ∈ O, l = (l1, . . . , lJ) ∈ ZJ,

is bounded and uniformly continuous on O. If, in addition,

sup
x∈O

∑
l
|l|2 f (x, l)<+∞, (2.9)

lim
δ→+∞

sup
x∈O

∑
l:|l|>δ

|l|2 f (x, l) = 0, (2.10)

then, provided

lim
N→∞

√
N(X̃N(0)− x0) = z, (2.11)
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the family of processes (ZN(·)), defined by

ZN(t) =
√

N(X̃N(t)− x(t,x0)), 0≤ t ≤ T,

converges weakly in D[0,T ] (the space of right-continuous, left-hand limits functions on [0,T ]), as

N → ∞, to a Gaussian diffusion, Z(·), with initial value Z(0) = z and with characteristic function

ψ = ψ(t,θ) = EeiθZ(t) that satisfies

∂ψ

∂ t
(t,θ) =−1

2 ∑
j,k

θ jg jk(x(t,x0))θkψ(t,θ)+∑
j,k

θ j
∂Fj

∂xk
(x(t,x0))

∂ψ

∂θk
(t,θ).

The mean of Z(t) is given by

µ(t) := EZ(t) = M(t)z,

where M(t) is the unique solution to dM(t)/dt = B(t)M(t) with M(0) = I, where B(t) = ∇F(x(t,x0))

with ∇F =
(

∂Fi
∂x j

)
as the matrix of the first partial derivatives (the Jacobian matrix) of F(·). That is

M(t) = e(
∫ t

0 B(u)du).

The covariance matrix, ∑(t), of Z(t) is the unique solution to

d ∑(t)
dt

= B(t)∑(t)+∑(t)B(t)
′
+G(x(t,x0))

with ∑(0) = 0. That is

∑(t) := Cov(Z(t)) = M(t)
(∫ t

0
M(u)−1G(x(u,x0))(M(u)−1)

′
du
)

M(t)
′
.

Although Theorem 2.3 gives us an explicit expression for the asymptotic distribution of the time–

dependent fluctuations about the deterministic path, the required integration often leads to formulas

that are too complicated to be of practical use. However, if x0 is chosen to be equal to an equilibrium

point, x∗, of the limiting deterministic model, then the diffusion approximation can be simplified by

identifying an appropriate Ornstein–Uhlenbeck (OU) process. To be specific, if we now consider

fluctuations about an equilibrium point of the deterministic model, we can derive simple explicit

formulas for the mean and covariance of our density process. This is obtained as follows.

Corollary 2.4. (Ornstein–Uhlenbeck (OU) approximation)

If x∗ satisfies F(x∗) = 0 and if limN→∞

√
N(X̃N(0)− x∗) = z, , then under conditions of Theorem 2.3,

the family (ZN(·)) defined by

ZN(t) =
√

N(X̃N(t)− x∗), 0≤ t ≤ T,
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converges weakly in D[0,T ], as N→ ∞, to an OU process Z(·), with initial value Z(0) = z, and with

local drift matrix B = ∇F(x∗) and local covariance matrix G(x∗), where ∇F and G(·) as defined in

Theorem 2.3. In particular, Z(t) has a normal distribution with mean

µ(t) = EZ(t) = eBtz (2.12)

and covariance matrix

∑(t) := eBt
(∫ t

0
e(−Bu)G(x∗)e−B

′
udu
)

eB
′
t . (2.13)

It follows that, for large N, (X̃N(t);N > 0) has an approximate normal distribution with

Cov(X̃N(t))' 1
N ∑(t), (2.14)

and a “working approximation” for the mean (i.e., for a fixed value of N), obtained by setting z =
√

N(X̃N(0)− x∗), is given by

EX̃N(t)' x∗+ e(Bt)(X̃N(0)− x∗). (2.15)

I note that, as mentioned by Pollett [163] and Barbour [30], in order to use Corollary 2.4 the

equilibrium point x∗ need not be asymptotically stable. In fact the OU approximation is often very

accurate in describing the fluctuations about unstable equilibrium points. This is specifically useful

in systems that have quasi-equilibrium behaviour (see for example, [159]).

When the real part of the eigenvalues of matrix B in equation (2.12) are all negative (in which

case the equilibrium point x∗ is asymptotically stable), the process Z(t) is stable [30]. The stationary

distribution of Z(t) is multivariate normal distribution with mean 0 and covariance matrix ∑ satisfying

B∑+∑B
′
=−G. (2.16)

In this case the density process (X̃N(t);N > 0) has an approximate normal distribution with mean as

x∗ and Cov(X̃N(t))' N−1
∑, where ∑ satisfies equation (2.16).

Equation (2.16) is a Lyapunov matrix equation. It admits a unique, real symmetric positive definite

solution ∑ (that is a′∑a > 0, for any J dimensional real vector a) for any real, symmetric, positive

definite matrix G if and only if the real part of all of the eigenvalues B are negative (see for example

[59] for a statement of this result).

2.4 Disease–Free and Endemic Equilibria and Their Stability

In analysing any epidemic model, one of the most important questions to address is when a disease

will spread through a population. This is often examined by studying the early stage of the epidemic,
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when the population initially contains few infected individuals. As the CTMC concerned here can be

approximated by a system of ODE, the stability of a disease–free equilibrium (DFE) of the ODE pro-

vides a means to study the early stage of the epidemic. A DFE is an equilibrium of the ODE at which

there are no infected individuals in the population. If the disease can invade the population, the next

question to address is whether it can persist in the population. This is mostly examined by analysing

the stability of an endemic equilibrium (EE) of the ODE at which there are some infected individuals

in the population. Determining the existence and stability of an EE to the ODE is important for this

analysis as it provides an approximation to a quasi–equilibrium of the Markov chain. This section

provides some methods which can be used to establish the existence and stability of a DFE and an EE

of the ODE. Before, proceeding to state these theories, I will firstly give the definition of local and

global stability of equilibrium points of an ODE arising from an epidemiological model.

Suppose the evolution of susceptibles and infectives in a population is described by the ODE

system
dx
dt

= f (x), x(0) = x0, (2.17)

where f : RJ
+ 7→ RJ is a continuously differentiable function, and xi ≥ 0 represents the number (or

density) of individuals in state i. An equilibrium point of (2.17) is a point x∗ ∈RJ
+ such that f (x∗) = 0.

Definition 2.5. The equilibrium point x∗ of (2.17) is called

(a) stable if, for each ε > 0, there is a δ = δ (ε)> 0 such that if |x0−x∗|< δ then |x(t)−x∗|, for

all t ≥ 0.

(b) unstable if it is not stable.

(c) locally asymptotically stable, if it is stable and δ can be chosen such that, if |x0−x∗|< δ , then

x(t)→ x∗ as t→+∞.

(b) globally asymptotically stable, if it is stable and x(t)→ x∗ as t→+∞ for all x0 ∈ RJ
+.

From this definition we see that an equilibrium point of (2.17) is stable if all solutions starting at

nearby points stay nearby, otherwise it is unstable. Furthermore, it is locally asymptotically stable, if

all solutions starting at nearby points not only stay nearby, but also tend to the equilibrium point as

time approaches infinity. If the latter situation occurs for all initial points in RJ
+ then the equilibrium

point is globally asymptotically stable (see for example [69, page 151] and [82, pages 27–30]). Thus,

if the population initially contains few infected individuals and the DFE is locally asymptotically

stable, then the disease cannot spread through the population, but if it is unstable then the disease can



2.4. DISEASE–FREE AND ENDEMIC EQUILIBRIA AND THEIR STABILITY 29

invade the population. However, if the DFE is globally asymptotically stable then the disease cannot

remain endemic in the population.

Local stability of a DFE or an EE equilibrium of (2.17) can be established by linearising the ODE

in a neighbourhood Ω ⊂ RJ
+ of the equilibrium point. More precisely, the following result can be

used to determine local stability of a DFE or an EE of the ODE.

Theorem 2.5. (Theorem 4.7 of [119]) Consider system (2.17) and let x∗ be an equilibrium point of

system (2.17), where f : Ω→ RJ is continuously differentiable and Ω is a neighborhood of x∗. Let A

be the Jacobian matrix of f (·), evaluated at the equilibrium point x∗. That is

A =

(
∂ fi(x∗)

∂x j

)
, i, j = 1, . . . ,J.

Let λi, i = 1, . . . ,J be the eigenvalues of A. Then,

1. the equilibrium point x∗ is locally asymptotically stable if Reλi < 0 for all eigenvalues of A.

2. the equilibrium point x∗ is unstable if Reλi> 0 for one or more of the eigenvalues of A.

The results of Theorem 2.5 are used to establish local stability of an EE of the ODE concerned in

this thesis (see Appendix section of Chapter 3). However, note that Theorem 2.5 does not say anything

about the case for which the real part of at least one eigenvalue of A is zero. In this case linearisation

fails to determine the stability of the equilibrium point and we may use alternative approaches such

as the center manifold and bifurcation theories (see for example Chapter 8 of [82]) to investigate the

stability and bifurcations at these equilibrium points. But, instead of applying these methods, I use

the results on Metzler matrices (see Theorem 2.7) and cooperative systems (see Theorem 2.10) to

establish global stability of a DFE and an EE of the ODE studied in this thesis.

It can be inferred from Theorem 2.5 that if the maximum real part of the eigenvalues of the

Jacobian matrix A, evaluated at the DFE is less than 0, then the disease cannot invade the population

as the DFE is stable in this case. However, if this real part is positive, then the disease can invade the

population as the DFE is unstable in this case. Therefore, the maximum real part of the eigenvalue

of A, evaluated at the DFE, equals to 1 is a threshold condition for the model [137]. In some cases,

it may be possible to rearrange this threshold condition to produce a threshold in terms of the basic

reproduction number R0. However, this is not a unique process and may not produce the desired

threshold condition in terms of R0 [137]. Furthermore, as the number of equations in the system gets

large, it becomes difficult to compute the eigenvalues of A. Therefore, in my analysis, I apply the next

generation matrix approach [65, 97] (see also Section 6.3 of [204]) to compute R0 and use Theorem

1 of [204] to establish local stability of the DFE of the ODE studied in this thesis. R0 is defined as
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the expected number of secondary infections produced by an index case in a completely susceptible

population [5, page 17], [65, page 4], [66], [97]. This number is a measure of the potential for disease

spread within a population. If R0 < 1, then a few infected individuals introduced into a completely

susceptible population will, on average, fail to replace themselves, and the disease will not spread.

On the contrary, if R0 > 1, then the number of infected individuals will increase with each generation

and the disease will spread [204]. Before presenting the next generation method and Theorem 1 of

[204], I will first establish some definitions and notations which will be used in the rest of the thesis.

Definition 2.6. Let x ∈ Rn be an n–dimensional real vector and A = (ai j) ∈ Rn×n be a real square

matrix. Then,

(a) x is said to be positive (nonnegative) if xi > 0 (xi ≥ 0) for all i = 1, . . . ,n, and this is denoted by

x > 0 (x≥ 0).

(b) A is said to be positive (nonnegative) if ai j > 0 (ai j ≥ 0) for all i, j = 1, . . . ,n, and this is denoted

by A > 0 (A≥ 0).

(c) A is said to be Metzler if ai j ≥ 0 for all i 6= j, i, j = 1, . . . ,n.

(d) the spectral radius of A is the maximum absolute value of all the eigenvalues of A, and this is

denoted by ρ(A).

(e) the spectral abscissa of A is the maximum real part of all the eigenvalues of A, and this is

denoted by s(A).

(f) if B = (bi j) ∈ Rn×n, and A > B (A≥ B) means ai j > bi j (ai j ≥ bi j) for all pairs (i, j) of row and

column indices.

(g) the matrix A is said to be reducible if there exists a nontrivial partition of the index set {1, . . . ,n}=

M∪N such that (i, j) ∈M×N implies ai j = 0. The matrix A is said to be irreducible if it is not

reducible (see for example [191, Section 3.11]).

Under this definition, all elements of a positive vector or a positive matrix are positive, and all ele-

ments of a nonnegative vector or a nonnegative matrix are greater than or equal to zero. Furthermore,

a Metzler matrix has all its off diagonal elements greater than or equal to zero. Thus, any Q–matrix

as defined in Section 2.2.1 is a Metzler matrix.

Now, returning to the computation of R0 and the local stability of a DFE of the ODE (2.17),
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suppose equation (2.17) can be written in the form

dyi

dt
= Fi(y,z)−Vi(y,z), i = 1, . . . ,J1,

dzi

dt
= gi(y,z), i = 1, . . . ,J2, (2.18)

where J = J1 + J2, y ∈ RJ1
+ represents all infected states and z ∈ RJ2

+ represents all susceptible states

and x = (y,z) is the state of the system. The function Fi(·) denotes the rate at which new infectives

are generated in the i–th infected state and Vi(·) stands for all other rates (for example recovery and

death) in the the i–th infected state. The following assumptions are made to ensure the model is well

posed and to make certain the existence of a DFE.

(A1) Fi(0,z) = 0 and Vi(0,z) = 0 for all z≥ 0 and i = 1, . . . ,J1.

(A2) Fi(y,z)≥ 0 for all y≥ 0 and z≥ 0 and i = 1, . . . ,J1.

(A3) Vi(y,z)≤ 0 whenever yi = 0, i = 1, . . . ,J1.

(A4) ∑
J1
i=1 Vi(y,z)≥ 0 for all y≥ 0 and z≥ 0.

(A5) The disease–free system dz/dt = g(0,z) has a unique equilibrium that is asymptotically stable.

Assumption (A1) implies that all new infections are secondary infections arising from infected indi-

viduals, and there is no immigration of individuals into the infected states. Since the function F (·)

represents new infections, Assumption (A2) ensures that it cannot be negative. Similarly, since each

Vi(·) represents a net outflow from state i, Assumption (A3) implies that it must be negative whenever

the state is empty. Assumption (A4) ensures that the total outflow from all infected states must be

nonnegative. Assumption (A5) states that all solutions with initial conditions of the form (0,z) ap-

proach a point x∗ = (0,z∗) as t approaches positive infinity. The point x∗ is called the DFE of system

(2.18). The Jacobian matrix for the linearisation of system (2.18) about the DFE, x∗, has the block

structure

J =

F−V 0

J21 J22

 , (2.19)

where F and V given by

F =

(
∂Fi

dy j
(x∗)

)
V =

(
∂Vi

dy j
(x∗)

)
, i, j = 1, . . . ,J1.

Since J is block triangular, the eigenvalues of J are those of F −V and J22. By Assumption

(A5), all eigenvalues of J22 have negative real part. Therefore, the local stability of the DFE is
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determined by the eigenvalues of F −V . The (i, j)–th entry of matrix V−1 can be interpreted as

the expected time an individual initially introduced into state j spends in state i, with i and j being

infected states. The (i, j)–th entry of F is the rate secondary infections are produced in state i by

an index case in state j. With these interpretations for F and V−1, and following Diekmann and

Heesterbeek [66, 65, 97], the matrix FV−1 is referred to as the next generation matrix for system

(2.18) at the DFE. The (i, j)–th entry of FV−1 is the expected number of secondary infections in state

i produced by an infected individual initially in state j, assuming that the environment seen by the

individual remains homogeneous for the duration of its infection. The basic reproduction number R0

is then defined as the spectral radius of FV−1. More specifically,

R0 = ρ(FV−1). (2.20)

The following result of van den Driessche and Watmaough [204] shows that R0 can be used to deter-

mine the local asymptotic stability of the DFE.

Theorem 2.6. (Theorem 1 of [204]) Consider the disease transmission model given by (2.18) with

F (·), V (·) and g(·) satisfying conditions (A1)–(A5). The DFE x∗ of (2.18) is locally asymptotically

stable if R0 < 1, but unstable if R0 > 1, where R0 as defined in (2.20).

It can be inferred from Theorem 2.6 that R0 = 1 is a threshold condition for disease invasion or

persistence. As the DFE is locally asymptotically stable when R0 < 1, and if the trajectory of the

ODE starts close to the DFE, then it will tend to the DFE. Thus if R0 < 1 and the population initially

contains few infected individuals, the disease will not spread. However, since the DFE is unstable

when R0 > 1, then any trajectory of the ODE which starts close to the DFE will be repelled by the

DFE. Hence, if R0 > 1, the disease will spread. Although we can determine local stability of the DFE

using Theorem 2.6 for the cases when R0 < 1 and R0 > 1, it does not inform anything about stability

of the DFE when R0 = 1. Thus, the local stability result given by Theorem 2.6 does not completely

determine the stability of the DFE. A stronger result can be obtained if we can determine the global

stability of the DFE. I use the novel procedure given by Kamgang and Sallet [110] to investigate the

global stability of the DFE. Before stating this result, I will first establish the setting required for its

statement.

Suppose equation (2.17) can be written in the form

dy
dt

= A2(y,z)y,

dz
dt

= A1(y,z)(z− z∗)+A12(y,z)y (2.21)

where, as previously defined, y ∈ RJ1
+ represents all infected states and z ∈ RJ2

+ represents all sus-

ceptible states and x = (y,z) is the state of the system. A1(x) and A2(x) are square matrices with
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dimensions J2× J2 and J1× J1, respectively. A12 is a J2× J1 matrix and x∗ = (0,z∗) ∈ RJ1
+ ×RJ2

+ is

a DFE of (2.21). For the model (2.21) to be well posed, we assume that it is defined on a positively

invariant subset Ω of RJ1+J2
+ , which means that any solution of system (2.21) which starts in Ω must

remain in Ω for all positive time. The following theorem of Kamgang and Sallet [110] provides a

method to determine global asymptotic stability of the DFE, x∗ = (0,z∗).

Theorem 2.7. (Theorem 4.3 of [110]) Consider the system (2.21) on a positively invariant set Ω ⊂

RJ1+J2
+ . Assume that

(H1) the system is dissipative on Ω (that is, there exists a bounded set B in Ω that attracts each point

of Ω under the flow of system (2.21) [90, Section 3.4]).

(H2) the equilibrium z∗ of the disease–free system

dz
dt

= A1(y,z)(z− z∗)

is globally asymptotically stable on the canonical projection of Ω on RJ1
+ .

(H3) the matrix A2(y,z) is Metzler and irreducible for any given (y,z) ∈Ω,

(H4) there exists an (elementwise) upper bound matrix Ā2 for the set M = {A2(y,z) : (y,z) ∈ Ω}

with the property that either Ā2 /∈M or if Ā2 ∈M (that is, Ā2 = maxΩ M ), then for any x̄ ∈Ω

such that Ā2 = A2(ȳ, z̄), (ȳ, z̄) ∈ RJ1
+ ×{0} (that is, the points where the maximum is realised

are contained in the disease–free sub–manifold).

(H5) s(Ā2)≤ 0.

Then, the DFE is globally asymptotically stable for system (2.21) in Ω̄, where Ω̄ is the closure of Ω.

Assumption (H1) implies that, for any trajectory which starts in Ω, there exists a time t̄ > 0 de-

pending on the initial point, such that the trajectory is in B for any time t ≥ t̄. Assumption (H2) ensures

that when there are no infected individuals, the population will stabilise at the DFE. Assumption (H3)

supposes that there is no block of states which does not interact with others. Assumption (H4) looks

for the (elementwise) least upper–bound matrix to obtain the best conditions for the threshold given

by (H5).

Now, from Theorem 2.6 it is clear that if R0 > 1, then the disease will spread. In this case,

it is important to investigate the existence and then stability of any endemic equilibria, since it is

these equilibria which can approximate a quasi–equilibrium of the Markov chain. In Chapter 3, I

have shown the existence of an EE, when R0 > 1, for the ODE concerned in this thesis, under a
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specific assumption on the migration rates. Specifically, it is assumed that, for each patch, the rate

that a susceptible individual travels from the patch to all other patches is equal to the rate that a

susceptible individual enters into that patch from all other patches. The same assumption is imposed

on the migration rates of infected individuals. The stability of this EE is proved using Theorem 2.5.

However, these assumptions on the migration rates are relaxed for the EE derived in Section 3.2.1.

More precisely, it is assumed, that susceptible and infected individuals have the same migration rates.

In the latter case, we need to deal with a nonautonomous ODE of the form

dx
dt

= f (t,x), , (2.22)

which has the following autonomous ODE in the limit as t→+∞

dy
dt

= g(y). (2.23)

The asymptotic behaviour of solutions of system (2.22) can be related to equilibrium points of sys-

tem (2.23) using the results of Markus [139] on asymptotically autonomous differential equations.

Therefore, I will review these results here.

Definition 2.7. Consider systems (2.22) and (2.23) in RJ and assume that f (·) and g(·) are continuous

functions and locally Lipschitz in x ∈ RJ . Further all solutions are supposed to exist for all positive

times. Then, equation (2.22) is called asymptotically autonomous with limit equation (2.23) if

f (t,x)→ g(x) as t→ ∞,

locally uniformly in x ∈ RJ . That is, for all x in any compact subset Ω of RJ and for all ε > 0, there

exists a T = T (Ω,ε)> 0 such that | f (t,x)−g(x)|< ε for all t > T .

Note that g(x) is said to be locally Lipschitz in x, if each point x ∈ RJ has a neighbourhood Ω0

such that |g(x)− g(y)| ≤ L0|x− y|, for all points in Ω0 with some Lipschitz constant L0. A similar

interpretation holds for the function f (·) to be locally Lipschitz. Now, define the ω–limit set ω(t,x0)

of a forward bounded solution x(t) to (2.22), satisfying x(t0) = x0, as:

y ∈ ω(t,x0)⇐⇒ y = lim
j→+∞

x(t j),

for some sequence t j → +∞ as j→ +∞. The following result of Markus, which can be found in

Thieme [199] (see also [45, 100, 136, 216]), relates asymptotic behaviour of solutions of system

(2.22) to equilibrium points of system (2.23).

Theorem 2.8. (Theorem 1.2 of [199]) Let y∗ be a locally asymptotically stable equilibrium of (2.23)

and ω be the ω–limit set of a forward bounded solution x(t) of (2.22). If ω contains a point y0 such

that the solution of (2.23), with initial condition y0 converges to y∗ as t→+∞, then, ω = {y∗}; that

is x(t)→ y∗ as t→+∞.
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When the equilibrium of (2.23) is globally asymptotically stable, the following result is observed

in [100, 136, 216] from Theorem 2.8.

Corollary 2.9. If solutions of system (2.22) are bounded and the equilibrium y∗ of the limit system

(2.23) is globally asymptotically stable, then, any solution x(t) of system (2.23) satisfies x(t)→ y∗ as

t→+∞.

Corollary 2.9 implies that if the limiting system (2.23) has an equilibrium point which is glob-

ally asymptotically stable, then the equilibrium is globally asymptotically stable also for the nonau-

tonomous ODE (2.22), provided that the solutions of (2.22) are bounded. This result is used to prove

global stability of the EE concerned in Section 3.2.1 of the thesis. Of course, in order to apply Corol-

lary 2.9 it is first necessary to show the existence and global asymptotic stability of the equilibrium of

system (2.23). This is achieved by applying the following result of Zhao and Jing [218] concerning

cooperative systems.

Corollary 2.10. (Corollary 3.2 of [218]) Consider system (2.23) and let g : RJ
+→ RJ be a continu-

ously differentiable function. Assume that

(1) g is cooperative on RJ
+; that is for any y ∈ RJ

+, ∂gi/∂y j ≥ 0, i 6= j, i, j =1, . . . , J;

(2) Dg(y) = (∂gi/∂y j), i, j = 1, . . . ,J is irreducible for every y ∈ RJ
+;

(3) g(0) = 0 and gi(y)≥ 0 for all y ∈ RJ
+ with yi = 0, i = 1, . . . ,J;

(4) g is strictly sublinear on RJ
+; that is for any α ∈ (0,1) and any y≥ 0, g(αy)> αg(y).

Then

(a) If s(Dg(0))≤ 0, then y = 0 is globally asymptotically stable with respect to RJ
+;

(b) If s(Dg(0))> 0, then either

(i) for any y0 ∈ RJ
+ \ {0}, limt→+∞ |y(t,y0)| = +∞, where y(t,y0) is the unique solution of

(2.23) starting at y0, or alternatively,

(ii) (2.23) admits a unique positive equilibrium point y∗ ≥ 0 and y∗ is globally asymptotically

stable with respect to RJ
+ \{0}.

Note that assumptions (1) and (2) imply that the Jacobian matrix of g(·) is an irreducible Metzler

matrix. Assumption (3) ensures that 0 is an equilibrium point of system (2.23) and that the domain

RJ
+ is positively invariant set for g(·).
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In addition to all the theories reviewed in this section, the proofs of most results obtained in

Chapter 3 and Chapter 4 applies properties of matrices, particularly those properties on positive and

Metzler matrices. Therefore, I gather these results in the following section.

2.5 Metzler and Positive Matrices

The population structure of the SIS epidemic model considered in this thesis is modelled by a metapop-

ulation network in which individuals migrate or travel between patches. In the model, the matrices

describing the migration rates of susceptible and infected individuals are Metzler matrices. Therefore,

the proofs of most results derived in Chapter 3 and Chapter 4 heavily rely on properties of Metzler

matrices. Furthermore, some results in Chapter 4 require theories on positive matrices. Therefore, I

collect the required results of Metzler and positive matrices in this section.

Recall from Definition 2.6 that a positive matrix has all its elements greater than 0 and a Metzler

matrix has all its off diagonal elements greater than or equal to 0. Recall also from Definition 2.6 that

a matrix A = (ai j) is irreducible if its index set cannot be partitioned into two disjoint subset such that

ai j = 0 for i in one subset and j in the other subset. The following result on positive matrices can be

found for example in [68, pages 21–23].

Theorem 2.11. Let A ∈ RJ×J and assume that A is positive. Then,

(a) the spectral radius ρ(A) of A is a positive eigenvalue of A.

(b) with ρ(A) can be associated strictly positive left and right eigenvectors;

(c) ρ(A)> |λ | for any eigenvalue λ of A such that λ 6= ρ(A);

(d) the eigenvectors associated with ρ(A) are unique to constant multiples;

(e) ρ(A) is a simple root of the characteristic equation of A.

The results of Theorem 2.11 are used in Chapter 4 to prove Theorem 4.1. Now I provide some

definitions and results regarding Metzler matrices.

Definition 2.8. (Definition 3.2 of [110] ) For a real Metzler matrix M, M =A+N is a regular splitting

if A is a Metzler stable matrix (that is every eigenvalue of A has strictly negative real part) and N is a

nonnegative matrix.

The following result of Bermann and Plemmons [35] and Varga [206], which relates stability of a

Metzler matrix with the spectral radius of a matrix, can be found in Kamgang and Sallet [110].
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Proposition 2.12. (Proposition 3.3 of [110]) Let M = A+N be a regular splitting of a real Metzler

matrix M. Then M is Metzler stable if and only if ρ(−NA−1)< 1.

Furthermore, the following observations are made in [110] (see also proof of Theorem 1 of [204])

from Proposition 2.12 for any regular splitting of a Metzler matrix M.

Lemma 2.13.

s(M)< 0⇐⇒ ρ(−NA−1)< 1,

s(M) = 0⇐⇒ ρ(−NA−1) = 1.

It can be inferred from Lemma 2.13 that M has at least one eigenvalue with positive real part if

and only if ρ(−NA−1) > 1 [203, 204]. Proposition 2.12 and Lemma 2.13 can be used to show the

local stability result of the DFE in Theorem 2.6 and to relate R0 in (2.20) with the matrix F−V in the

Jacobian matrix (2.19). These connections can be made as follows. By the proof of Theorem 2.6 in

[204], the matrix F −V in the Jacobian matrix (2.19) is a Metzler matrix having a regular splitting,

with F being a nonnegative matrix and−V being a stable Metzler matrix. Thus, if R0 = ρ(FV−1)< 1,

then, by Lemma 2.13 and Proposition 2.12, we know that s(F −V ) is negative. Then, by applying

part 1 of Theorem 2.5, we have that the DFE is locally asymptotically stable. On the other hand, if

R0 = ρ(FV−1) > 1, then by Lemma 2.13, F −V has at least one eigenvalue with positive real part,

and, by part 2 of Theorem 2.5, the DFE is unstable. As noted previously, the weakness of Theorem

2.6 is that it does not state the stability of the DFE for the case R0 = 1. The reason for this is now

apparent from Lemma 2.13, as s(F−V ) = 0 in this case, and thus linear stability cannot determining

the stability of the DFE.

When M is an irreducible Metzler matrix, further results are given by Seneta [189].

Theorem 2.14. (Theorem 2.6 of [189]) Let M ∈ RJ×J and assume that M is irreducible and Metzler.

Then there exists an eigenvalue τ such that:

(a) τ is real;

(b) with τ are associated strictly positive left and right eigenvectors, which are unique to constant

multiples;

(c) τ > Re λ for any eigenvalue λ , λ 6= τ , of M (i.e τ is larger than the real part of any eigenvalue λ

of M, λ 6= τ);

(d) τ is a simple root of the characteristic equation of M;

(e) τ ≤ 0 if and only if there exists y≥ 0, 6= 0 such that My≤ 0, in which case y > 0; and τ < 0 if and

only if there is inequality in at least one position in My≤ 0;

(g) τ < 0 if and only if −M−1 > 0.
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The eigenvalue τ in Theorem 2.14 is called the dominant eigenvalue of M. The migration rate

matrices of the model studied in this thesis are irreducible Metzler matrices. Thus, part (a) of Theorem

2.14 ensures that the dominant eigenvalue of these matrices are real. A Metzler matrix M can be

related with the matrix exp(Mt), t > 0, when the matrix exp(Mt) is defined, as shown below.

Theorem 2.15. (Theorem 2.7 of [189]) A Metzler matrix M is irreducible if and only if exp(Mt)> 0

for all t > 0. In this case

exp(Mt) = exp(τt)wv′+O(eτ̄t),

elementwise as t→+∞, where w and v′ are the positive right and left eigenvectors of M correspond-

ing to the dominant eigenvalue τ of M, normed so that v′w = 1 and τ̄ < τ .

One of the applications of Theorem 2.15 is to show that the system dz/dt = Mz, where M is

an irreducible Metzler matrix with 0 as the dominant eigenvalue, has a unique equilibrium which is

globally asymptotically stable. This is because the solution of dz/dt = Mz with initial condition z(0)

is given by z(t) = exp(Mt)z(0) and Theorem 2.15 ensures that, asymptotically, the solution converges

to the constant solution wv′z(0). System dz/dt = Mz corresponds to the disease–free system of the

ODE model studied in this thesis. Another application of Theorem 2.15 is that it can be used to

approximate the initial growth or decay of the disease, since linearisation of system 2.18 at the DFE

decouples the equations corresponding to the diseased states of the ODE. The system for the diseased

states is given by dy/dt = (F −V )y, where F −V , as given in (2.19), is a Metzler matrix. Thus, if

F −V is irreducible, then Theorem 2.15 states that the solution y(t) = exp((F − v)t)y(0) is positive

for y(0) > 0 and if s(F −V ) < 0, then the disease decays, but if s(F −V ) > 0, then there will be

growth in at least one component of the solution y(t).

Another useful property of Metzler matrices is the following result which states that the dominant

eigenvalue of an irreducible Metzler matrix is bounded.

Corollary 2.16. (Corollary 1 of Theorem 2.8 of [189]) Suppose M ∈ RJ×J is an irreducible Metzler

matrix with dominant eigenvalue τ . Then

min
i

J

∑
j=1

mi j ≤ τ ≤max
i

J

∑
j=1

mi j,

with a similar result for the columns.

The result of Corollary 2.16 can be used to show that an irreducible Metzler matrix, M, is stable.

Since, if either the maximum of the column sums or the maximum of the row sums of M is negative,

then the dominant eigenvalue is negative, and M is stable.

In addition to the above stated results on positive and Metzler matrices, I collect one more result

concerning the comparison of the spectral radius of two nonnegative matrices.



2.6. CONVEX OPTIMISATION AND M–MATRICES 39

Corollary 2.17. ( Corollary 2.7 of [191] ) Let A ∈ RJ×J and let A be an irreducible. If A ≥ B ≥ 0

and A 6= B, then ρ(A)> ρ(B).

Corollary 2.17 is used in Chapter 3, to compare the basic reproduction number R0 and the param-

eter T0 which is used in the global stability result of the DFE.

2.6 Convex Optimisation and M–Matrices

Chapter 4 of this thesis deals with two convex optimisation problems to determine the optimal migra-

tion patterns for susceptible individuals. This section provides the necessary background materials

for the setting of these two problems and to aid with the proofs of the results presented in the chapter.

I will begin with the definition of a convex function and then a convex optimisation problem.

Definition 2.9. (Definition 3.1.1 of [37]) Let X be a subset of RJ . A function f : X → R is called

convex if the domain X of f is a convex set and if for all x, y in X , and θ with 0≤ θ ≤ 1, we have

f (θx+(1−θ)y)≤ θ f (x)+(1−θ) f (y).

Geometrically, this inequality means that the line segment between (x, f (x)) and (y, f (y)), which is

the chord from x to y, lies above the graph of f . With this definition for a convex function, a convex

optimisation function is defined as follows (see for example Section 4.2.1 of Boyd and Vandenberghe

[37]).

Definition 2.10. A convex optimisation problem is one of the form

minimise f0(x)

subject to fi(x)≤ 0, i = 1, . . . ,J,

a′ix = bi, i = 1, . . . , p, (2.24)

where x ∈ RJ , ai ∈ RJ , bi ∈ R, i = 1, . . . , p and the functions fi(x) : RJ → R, i = 0, . . . ,J are convex.

The function f0(·) is called the objective function, the functions fi(·) are called the inequality

constraint functions, and the functions hi(x) = a′ix− bi are called the equality constraint functions.

Let D be the set which contains all points for which the objective and all constraint functions are

defined. Then D is called the domain of the optimisation problem (2.24). A point x ∈ D is feasible

if it satisfies the constraints fi(x) ≤ 0, i = 1, . . . ,J, and hi(x) = 0, i = 1, . . . , p. The problem (2.24) is

said to be feasible if there exists at least one feasible point, and infeasible otherwise. The set of all

feasible points is called the feasible set or the constraint set. The feasible set is convex, since it is the
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intersection of the domain of the problem, which is a convex set. The optimal value p∗ of the problem

(2.24) is defined as

x∗ = inf{ f0(x) | fi(x)≤ 0, i = 1 . . . ,J, hi(x) = 0, i = 1, . . . , p}

A point x∗ is called an optimal point or a solution of the problem (2.24) if x∗ is feasible and f0(x∗) =

p∗. A feasible point x is said to be locally optimal if there is an R > 0 such that

f0(x) = inf{ f0(z) | z is feasible, |z−x| ≤ R}.

Roughly speaking, this means x minimises f0(·) over nearby points in the feasible set. In this thesis,

optimal will mean globally optimal. A fundamental property of convex optimisation is that any locally

optimal point is also (globally) optimal. Therefore, if the objective function f0(·) of problem (2.24) is

differentiable, then we can use the first order Taylor approximation of f0(·) near a point in the domain

of f0(·) to determine an optimal criterion for f0(·). More precisely, the following result, given in

Section 4.2.3 of [37]), can be used to determine an optimal condition for problem (2.24).

Lemma 2.18. (Section 3.1 of [37]) Consider the optimisation problem (2.24) and assume that the

objective function f0(x) is differentiable, so that for all x,y in RJ , we have

f0(y)≥ f0(x)+
J

∑
i=1

(yi− xi)
∂ f0(x)

∂yi
.

Let X denote the feasible set. That is

X = {x | fi(x)≤ 0, i = 1 . . . ,J,hi(x) = 0, i = 1, . . . , p}.

Then x is optimal if and only if x ∈ X and

J

∑
i=1

(yi− xi)
∂ f0(x)

∂yi
≥ 0 (2.25)

for all y in X.

Theorem 2.18 is applied to find an optimal solution for the two optimisation problems studied in

Chapter 4. However, the domain of the objective function of these two problems is a set of matrices.

Specifically the objective function of the first problem is in the form ρ(DA), where the inverse of A

is an M–matrix (definition provided below) and D is a diagonal matrix. In the second problem the

objective function is in the form s(A+D), where A is a Metzler matrix and D is a diagonal matrix.

Therefore, in order to apply Theorem 2.18 it requires that these two objective functions be convex.

The following two theorems, which concern with spectral functions, are used to show that the two

objective functions are convex. But, firstly, I will give the definition of an M–matrix.

An M–matrix is closely related to a Metzler matrix as defined below.
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Definition 2.11. (Definition 1.9 of [68]) Let A ∈RJ×J be such that ai j ≤ 0 for all i, j = 1, . . . ,J, i 6= j.

Then A is called an M–matrix if A is invertible and A−1 is nonnegative.

Thus, if A =−M where M is Metzler, then A is an M–matrix if it is nonsingular and if its inverse

is nonnegative. Now, denote by D+
J the set of J× J nonnegative diagonal matrices. The following

theorem provides the condition required for the spectral radius of DA to be a convex function on D+
J .

Theorem 2.19. (Theorem 4.3 of [81]) Let A−1 be an M–matrix. Then ρ(DA) is a convex functional

on D+
J .

Similarly, the result below states the conditions required for the spectral abscissa of A+D to be a

convex function of diagonal matrices.

Theorem 2.20. ([54]) Let D be a diagonal real J× J matrix and let A be a Metzler matrix. Then,

ρ(A+D) is a convex function of D.

If a matrix has a simple eigenvalue, then the derivative of the eigenvalue with respect to the

elements of the matrix can be related to the corresponding left and right eigenvectors as shown below.

Corollary 2.21. (Corollary 2.4 of [195]) Let A ∈ RJ×J and let λ be a simple eigenvalue of A. Let

x and y,respectively, be the right and left eigenvectors of A corresponding to λ normalised, so that

y′x = 1. Then

∂λ

∂ai j
= yix j,

for all i, j = 1, . . . ,J.

This result is used to derive the optimal condition for the second optimisation problem studied in

Chapter 4.

2.7 Closed Migration Process

As mentioned in Section 2.5, the population structure of the epidemic model concerned in this thesis

is modelled by a metapopulation, where individuals migrate between patches. Since the population is

assumed finite, the population will eventually be disease free. When this happens, the CTMC behaves

as a closed migration process and the equilibrium distribution of the population can be determined

by applying Theorem 2.22 below. For completeness, I describe the closed migration process and its

equilibrium distribution in this section.
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Consider a population consisting of N individuals where each individual is located at one of J

geographically distinct patches. For j = 1,2, . . . ,J, let n j(t) denote the number of individuals at group

j at time t. Let n(t) denote (n1(t), . . . ,nJ(t)), and let (n(t); t ≥ 0) be a continuous–time Markov chain

with state space S = {n | n j ≥ 0, j = 1,2, . . . ,J;∑
J
j=1 n j = N} and transition rates

q(n,n− e j + ek) = λ jkφ j(n j), (2.26)

where φ j(0) = 0 and λ j j = 0. The vector e j is the J dimensional unit row vector whose j–th entry is

1 and 0 elsewhere. The function φ j(n) represents the exit rate at patch j when there are n individuals

present at patch j. The parameter λ jk is the migration rate from patch j to k. It is assumed that the

parameters λ jk allow an individual to pass between any two groups, either directly or indirectly via a

chain of other groups. This implies that the Markov chain (n(t); t ≥ 0) is irreducible.

If N = 1 then the single individual in the system performs a random walk on the set of groups. If

α1,α2, . . . ,α j is the unique collection of positive numbers summing to unity which satisfy

α j

J

∑
k=1

λ jk =
J

∑
k=1

αkλk j j = 1, . . . ,J, (2.27)

then α j is the equilibrium probability that the individual is in node j. For the model concerned in this

thesis, α j is given by the proportion of susceptibles at patch j at the DFE of the approximating ODE

model.

The following theorem which can be found for example in [115, page 41] and [190, 14] gives the

equilibrium distribution of the Markov chain (n(t); t ≥ 0) .

Theorem 2.22. The equilibrium distribution of (n(t); t ≥ 0) is given by

π(m) = BN

J

∏
j=1

α
n j
j

∏
n j
r=1 φ j(r)

, n ∈ S, (2.28)

where BN is a normalizing constant, chosen so that the distribution sums to unity.

Note that if the solution α1,α2, . . . ,αJ of equations (2.27) is not normalized to sum to unity the

expression (2.28) remains valid. In this case the normalizing constant BN will change accordingly.

Theorem 2.22 is used to derive the equilibrium distribution of the Markov chain studied in this thesis

when the population is disease free.



Chapter 3

Spread of an SIS Epidemic in a

Metapopulation

This chapter introduces the SIS epidemic model studied in this thesis. A continuous–time Markov

chain is used to describe the model. The population structure is modelled by a metapopulation net-

work. Under certain assumptions on the migration rates of individuals, conditions under which the

disease becomes endemic are determined. An approximation of the distribution of the population at

the endemic level is also determined. The analysis is based on a deterministic and a diffusion approx-

imation to the Markov chain model.

3.1 Introduction

An important factor in modelling the spread of infectious diseases in human populations is the so-

cial and spatial structure of the populations. Humans spend much of their time in groups such as

workplaces, shopping centres, cities and rural areas. However, an individual’s membership of a par-

ticular group is not fixed, rather it changes over time. This structure determines two paths for disease

to spread through the population. Disease is spread between individuals in the same group by con-

tact between infected and susceptible individuals, and is spread from one group to another by the

migration of infected individuals.

This type of population structure can be modelled by a metapopulation network [93, 134, 135]

where the groups (or patches) of the network represent the groups and links represent the path that

migrating individuals follow. There have been a number of attempts to model the spread of disease

43
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in real populations using metapopulation networks. Some were developed considering the type of

mobility that individuals make between the subgroups, either long distance travel [104, 56, 55], com-

muter movements [34, 61, 91, 112] or mixture of both [18]. Often these models rely on transportation

data to estimate mobility. Due to the size and complexity of the populations involved, these models

needed to be analysed numerically.

Other researchers have focused on simpler models incorporating similar population structure with

the aim of gaining a deeper understanding of the factors affecting an epidemic’s progress [22, 24, 25,

52, 50, 52, 131, 152, 185]. These models generally take the form of a continuous–time Markov chain

with mobility of individuals modelled by transition rates between groups. A similar approach is used

to construct the model studied here.

Much of the above–cited research concerns disease following the Susceptible–Infective–Recovered

(SIR) pattern. That is, if a susceptible individual becomes infected, then, after a certain period of time,

they will either recover with immunity to the disease or be removed from the population. The SIR

pattern has been used to model diseases such as SARS [104] and HIV [185]. In this work I study

the spread of diseases following the Susceptible–Infective–Susceptible (SIS) pattern. The SIS pattern

differs from the SIR pattern in that infected individuals recover with no immunity and become imme-

diately susceptible to reinfection. Certain human diseases such as gonorrhea [101], common cold and

tuberculosis [4, 60] follow the SIS pattern.

I model the spread of an SIS type epidemic in a metapopulation network using a continuous–time

Markov chain. It is assumed that the network consists of a finite number of groups and the total

population size is fixed. Individuals move around the network so that population size of each group

varies. In this model, the rate at which individuals migrate (or travel) between groups depends on

the origin, destination and the disease status of the individual. A susceptible individual in a given

group becomes infected at a rate proportional to the number of infected individuals in that group.

This amounts to assuming density–dependent transmission [33]. The model formulated in this study

is closely related to the frequency–dependent SIS models studied in [131, 3]; I will say more about

the connection as I build the model.

For the SIS network model described, I am primarily interested in determining the conditions

under which the disease becomes endemic and the distribution of the population at an endemic level.

Previous analyses of the SIS epidemic model for an unstructured population have used the equilibrium

distribution of an approximating stochastic model to approximate the distribution of the population

at the endemic level [123, 147, 53]. Here I use an approximating ODE model and an approximating

diffusion model, which are valid for large population sizes, to analyse the endemic level of infection.

Section 3.2 provides a formal mathematical description of the SIS network model and derive its
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approximating ODE model. Equilibrium points of the ODE are analysed and conditions under which

the disease becomes endemic is established in this section. In Section 3.3, an Ornstein-Uhlenbeck

(OU) process approximation is derived which describes the distribution of the population around an

endemic point of the ODE. Finally, in Section 3.4 I make some concluding comments regarding the

analysis made in this chapter.

3.2 The Markov Chain and its ODE Limit

Here I present a complete mathematical description of the SIS epidemic model studied in this work

and its ODE limit. I consider a population of size N where each individual is located at one of J

geographically distinct locations (patches). Each individual may be either susceptible or infected. Let

m j(t) and n j(t) denote the number of infected and susceptible individuals, respectively, at time t and

patch j, j = 1, . . . ,J. Let (m(t),n(t)) denote (m1(t), . . . ,mJ(t),n1(t), . . . ,nJ(t)). Then the dynamics

of the population is modelled using the continuous–time Markov chain ((m(t),n(t));

t ≥ 0) with state space

SN =

{
(m, n) | m j ≥ 0;n j ≥ 0; j = 1, . . . ,J;

J

∑
j=1

(m j +n j) = N

}
.

Individuals within each patch are assumed to mix homogeneously and the disease is spread within a

patch through contact between susceptible and infected individuals. In this model, a contact refers

to the actual event of a transmission opportunity, but for some models a contact may indicate the

pairing of two individuals during which several transmission opportunities can arise (see for example

Chapter 10 of [65]). The latter type of contacts are usually modelled using a network in which

each node represents an individual and each edge represents a contact (or connection) between two

individuals. Translating homogeneous mixing assumption to such a network implies that the network

is complete in which each node is connected to every other node in the network. If a complete network

is used to model the contacts within each patch, the per contact rate per unit of time within a patch

is equal to m j +n j−1 (see for example [29]). However, without using such a network to model the

contacts within a patch, homogeneous mixing implies that the contact rate per susceptible per unit

time is proportional to m j + n j [65, Chapter 1][15, Chapter 6] and [179]. The constant, κ j, of this

proportionality is scaled by the area occupied by the total population at patch j, which is assumed

proportional to N. This leads to density–dependent transmission [33]. The probability that the contact

is with an infected individual is m j/(m j + n j). The probability, p, that this contact in fact leads to

disease transmission is assumed constant. Thus, the force of infection per susceptible individual in

patch j is (κ j pm j)/N. Consequently, the infection rate of a susceptible individual at patch j and time t
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is β jm j/N, where β j = κ j p > 0 is the disease transmission rate. In contrast to the above assumption

on the contact rate, the SIS model studied in [131, 3] has a constant contact rate, which leads their

model to have frequency–dependent transmission rates.

Infected individuals at patch j recover at rate γ j > 0 so that the average infectious period is 1/γ j.

Once an infective individual recovers, it immediately becomes susceptible to further infection. The

disease is spread between patches by the migration of individuals. The migration rates from patch j

to patch k for infected and susceptible individuals are η jk and λ jk, respectively. To summarize, the

nonzero transition rates of the Markov chain are

q(m,n),(m,n)−e j+ek
= η jkm j, j 6= k, (3.1)

q(m,n),(m,n)−eJ+ j+eJ+k
= λ jkn j, j 6= k, (3.2)

q(m,n),(m,n)+e j−eJ+ j =
β jm jn j

N
, (3.3)

q(m,n),(m,n)−e j+eJ+ j = γ jm j, (3.4)

where ei is the 2J–dimensional unit row vector with a 1 at its i–th entry and 0 elsewhere. The Markov

chain ((m(t),n(t)); t ≥ 0) has an absorbing set

S̄N =

{
(0,n) | n j ≥ 0; j = 1, . . . ,J;

J

∑
j=1

n j = N

}
.

Any state in the absorbing set is called a disease–free state because it consists only of susceptible

individuals. As the population size is fixed, the population will eventually enter a disease–free state

with probability 1. However, the time taken to reach a disease–free state may be very long, so that

the number of infected individuals may tend to a quasi–equilibrium prior to the population entering

a disease–free state. I am interested in determining a quasi–equilibrium of the Markov chain as it

describes the behaviour of the population at an endemic level. This is achieved by approximating

the Markov chain by a deterministic model, assuming a large population, and using its fixed points

to approximate an endemic level of the disease. More precisely, I approximate the scaled process

defined by

((uN(t),vN(t));N > 0) :=
(

1
N
(m(t),n(t)); t ≥ 0

)

when N is large. Note that the scaled process takes values in EN := SN/N ⊂ E := {u j ∈ [0,1],v j ∈
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[0,1]; j = 1, . . . ,J;∑
J
j=1(u j + v j) = 1}. Define the continuous function f : E×Z2J 7→ [0,∞) by

f ((u,v), l) =



η jku j, if l =−e j + ek, j 6= k,

λ jkv j, if l =−eJ+ j + eJ+k, j 6= k,

β ju jv j, if l = e j− eJ+ j,

γ ju j, if l =−e j + eJ+ j,

0, otherwise.

The transition rates (3.1) – (3.4) can now be expressed as

q((m,n),(m,n)+ l) = N f
(

1
N
(m,n), l

)
, l ∈ Z2J, l 6= 0.

Therefore, the Markov chain ((m(t),n(t)); t ≥ 0) satisfies Kurtz’s definition (see Definition 2.4) of

density–dependence. Theorem 2.2 can then be applied to show that the scaled process ((uN(t),vN(t));N >

0) is approximated over any finite–time interval by a deterministic path which is defined on that time

interval, for large N. Before stating this result, I will first establish the settings required for the state-

ment of this result.

Let b : E 7→ R2J be defined as

b(u,v) := ∑
l 6=0

l f ((u,v), l).

Then, b(u,v) is given by

b(u,v) =



−∑
J
k 6=1 η1ku1 +β1u1v1− γ1u1 +∑

J
k 6=1 ηk1uk,

...
...

...
...

−∑
J
k 6=J ηJkuJ +βJuJvJ− γJuJ +∑

J
k 6=J ηkJuk,

−∑
J
k 6=1 λ1kv1−β1u1v1 + γ1u1 +∑

J
k 6=1 λk1vk,

...
...

...
...

−∑
J
k 6=J λJkvJ−βJuJvJ + γJuJ +∑

J
k 6=J λkJvk


. (3.5)

Note that for each l 6= 0, f ((u,v), l) is a polynomial in (u,v). As E is a bounded set, b(·) is a

Lipschitz vector field. Let K be the Lipschitz constant associated with b(·). Let (u(t),v(t)) be the

unique solution of

du j

dt
=−

J

∑
k 6= j

η jku j +β ju jv j− γ ju j +
J

∑
k 6= j

ηk juk, (3.6)

dv j

dt
=−

J

∑
k 6= j

λ jkv j−β ju jv j + γ ju j +
J

∑
k 6= j

λk jvk, (3.7)

for j = 1, . . . ,J, subject to (u(0),v(0)) = (u0,v0). Then, the following theorem provides the required

approximation for the scaled process ((uN(t),vN(t));N > 0) by the solution of the ODE (3.6)–(3.7).
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Theorem 3.1. Let (u(t),v(t)) be the unique solution of the ODE (3.6)–(3.7) starting at (u(0),v(0)) =

(u0,v0) ∈ E. Let T be positive and finite such that for all 0 ≤ t ≤ T , (u(t),v(t)) ∈ E. Then, for all

ε > 0,

P
(

sup
t≤T
|(uN(t),vN(t))− (u(t),v(t))|> ε

)
≤ 36CTe2KT

Nε2 +P(Ωc
0), (3.8)

where

Ω0 :=
{
|(uN(0),vN(0))− (u0,v0)| ≤ εe−KT

3

}
(3.9)

and

C := 2

[
J

∑
j=1

(
J

∑
k 6= j

(η jk +λ jk)+β j + γ j)

]
.

Proof. The result is proved using Theorem 2.2. Set δ = εe−KT/3, where ε > 0 and K is the Lipschitz

constant associated with b(u,v) in equation (3.5). Therefore, the event Ω0 defined in (2.5) is given by

Ω0 :=
{
|(uN(0),vN(0))− (u0,v0)| ≤ εe−KT

3

}
.

As the Markov chain is density–dependent, the drift vector β (·) defined in equation (2.3) is given

by b(·). Hence, the probability of the event Ωc
1 defined in (2.5) is 0. For each (m,n) ∈ SN , the

corresponding variance is given by

α(m,n) = ∑
l 6=0

|l|2

N
f
(

1
N
(m,n), l

)
,

and the event Ω2 defined in equation (2.6) is given by

Ω2 =

{∫ T

0
∑
l 6=0

|l|2

N
f
(

1
N
(m,n), l

)
dt ≤ AT

}
.

Now, for each (m,n) ∈ SN , we have α(m,n) ≤ C/N, where C as given in the theorem. Choosing

A =C/N in Ω2 we have P(Ωc
2) = 0. Then, by applying Theorem 2.2 the result follows.

Condition (3.9) specifies that the distance between the initial value of the scaled process and the

initial value of the deterministic path must be less than or equal to a given value. In practice, we can

choose the initial value of the deterministic path, (u0,v0), to be equal to the initial value of the scaled

process, (uN(0),vN(0)), for all N, so that the probability of Ωc
0 is zero. The constant C/N appearing

in (3.8) provides an upper bound for α(·), which is the variance of the jump of the Markov chain

when it makes a transition from a given state to another state. Consequently, (CT )/N provides an

upper bound for the integral in Ω2. It remains to determine the Lipschitz constant, K, of the vector

field b(·), to give an explicit expression for the bound in (3.8).
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To find the Lipschitz constant, K, let |x| be the Euclidean norm of an n–dimensional vector x.

More precisely, |x| = (x2
1 + · · ·+ x2

n)
1/2. Let z = (u,v) and z̃ = (ũ, ṽ) be two points in E. Then, for

each of the first J components of b(·) we have,

|b j(z)−b j(z̃)|=
∣∣∣∣ J

∑
k 6= j

η jk(ũ j−u j)+
J

∑
k 6= j

ηk j(uk− ũk)+ γ j(ũ j−u j)+β jv j(u j− ũ j)+β jũ j(v j− ṽ j)

∣∣∣∣
≤ |ũ j−u j|

J

∑
k 6= j

η jk +
J

∑
k 6= j

ηk j|uk− ũk|+ γ j|ũ j−u j|+β jv j|u j− ũ j|+β jũ j|v j− ṽ j|

Since ũ j ∈ [0,1] and v j ∈ [0,1] and the inequality |z j− z̃ j| ≤ |z− z̃| holds for all j = 1, . . . ,2J, we have

|b j(z)−b j(z̃)| ≤ |z− z̃|
J

∑
k 6= j

η jk + |z− z̃|
J

∑
k 6= j

ηk j + γ j|z− z̃|+2β j|z− z̃|

=

( J

∑
k 6= j

η jk +
J

∑
k 6= j

ηk j + γ j +2β j

)
|z− z̃|, j = 1, . . . ,J.

Similarly for the last J components of b(·), we have

|bl(z)−bl(z̃)| ≤
( J

∑
k 6=l

λlk +
J

∑
k 6=l

λkl + γl +2βl

)
|z− z̃|, l = 1, . . . ,J.

Let

U j =
J

∑
k 6= j

η jk +
J

∑
k 6= j

ηk j + γ j +2β j, j = 1, . . . ,J,

and

Vl =
J

∑
k 6=l

λlk +
J

∑
k 6=l

λkl + γl +2βl, l = 1, . . . ,J.

Then, the Lipschitz constant of b(·) is given by K = [∑J
j=1(U j)

2+∑
J
l=1(Vl)

2]1/2. Using this expression

for the Lipschitz constant and by choosing the initial value of the ODE to be the same as that of the

scaled process for all N, the error bound on the probability in (3.8) is given by 36CTe2KT/(Nε2).

Thus, the error approaches to zero as N increases. However, the computed errors can be too large

for any practical application. As an example, consider a two patch model with parameter values

β1 = β2 = 1.5, γ1 = γ2 = 1, λ12 = λ21 = 0.5, η12 = 0.2, η21 = 0.1 and set T = 1, ε = 0.1 and

N = 109. For these values, the error is 572.0056, which is too large even for a population size as large

as 109. On the other hand, increasing T from 1 to 2, the error increases to 1.44× 1011. This huge

increase in the error is due to the fact that the error bound depends exponentially as well as linearly

on the time horizon T .

Despite the fact that the error bound is of little direct use, Theorem 3.1 ensures that, as the pop-

ulation size, N, becomes large, the proportion of susceptible and infected individuals at each patch

relative to the population size is well approximated by the solution to the ODE given by (3.6) – (3.7),
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provided that the scaled process starts close to the initial value of the ODE solution. A similar ap-

proach was used to study the stochastic SIR model proposed in [185]. However, they used Theorem

3.1 of Kurtz [125] to establish an ODE approximation for their Markov chain model. Here, I applied

Theorem 4.1 of Darling and Norris [62] to derive the ODE approximation in Theorem 3.1, which

provides an explicit expression for the error associated with the approximation, which is not possible

from Kurtz’s result. Nevertheless, obtaining the additional detail of the error bound in Theorem 3.1 is

not particularly advantageous over Kurtz’s result since the computed error bounds are of little prac-

tical use. However, the advantage of the method in [62] is that, unlike Kurtz’s result which requires

that the limiting deterministic trajectory be defined in an open set, such a restriction on the limiting

deterministic path is not imposed in it, and this is the main reason behind choosing [62] over Kurtz

[125]. Kurtz’s result can easily be applied to the Markov chain ((m(t),n(t)); t ≥ 0) after eliminating

one state variable from it. In this case, the approximating ODE has one dimension less than the ODE

given in (3.6)–(3.7). Details of the derivation of the latter ODE is given in Section 3.3.

Figure 3.1 compares the sample paths of the scaled process with the corresponding trajectory of

the limiting ODE for a two patch model as the population size, N, increases. The parameters used

for the simulation are β1 = 4, β2 = 3, γ1 = 1.2, γ2 = 1, λ12 = 0.5, λ21 = 1, η12 = 0.2 and η21 = 0.1.

It can be seen from the plots in Figure 3.1 that the stochastic process is well approximated by the

deterministic trajectory as the population size gets large, thus confirming the result established in

Theorem 3.1. However, as seen from the figure, there are some random fluctuations between the

stochastic process and the deterministic trajectory. These fluctuations are not addressed in Theorem

3.1. In Section 3.3, I will show that these fluctuations can be modelled by a Gaussian diffusion in

the large population limit. Before progressing to model these fluctuations, I will first analyse the

equilibrium points of the ODE given by (3.6)–(3.7).
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(a) N = 500 (b) N = 1000
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(c) N = 3000 (d) N = 5000

Figure 3.1: Comparision of the sample paths of the scaled process of a two patch model with the

corresponding deterministic trajectory as the population size, N, increases. The plots indicate that the

scaled process is well approximated by the deterministic trajectory as N gets large.

3.2.1 Equilibrium Points and their Stability

As previously mentioned, the population will enter a disease–free state in the long run with probabil-

ity 1. Once the Markov chain enters the disease–free set, the population can be described by a closed

migration process (see Section 2.7). However, before reaching a disease–free state, the population

may spend a very long time at a quasi–equilibrium. As the Markov chain model can be approximated

by the solution to an ODE, the equilibrium points of the ODE provide a means of approximating

this quasi–equilibrium. It is the purpose of this section to investigate equilibrium points of the ODE

(3.6)–(3.7) and their stability.

Define matrices Λ and H as

Λ jk =

λk j, j 6= k,

−∑
J
l 6= j λ jl, j = k,

and H jk =

ηk j, j 6= k,

−∑
J
l 6= j η jl, j = k.
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The matrices Λ
′

and H
′

are Q–matrices (or transition rate matrices) of the Markov processes that de-

scribe the migration of a single individual in the network when the population consists of one suscep-

tible and infected individual, respectively. Throughout this thesis, Λ and H are assumed irreducible.

This implies that the J patches of the network cannot be separated into two distinct populations such

that there is no immigration of susceptible or infected individuals from one population to the other.

Note that the off diagonal elements of Λ and H are nonnegative so they are Metzler matrices. Then,

under the assumption of irreducibility, and applying parts (c) and (d) of Theorem 2.14 it is known,

for both Λ and H, that 0 is a simple eigenvalue with maximum real part. This fact will often be used

when analysing equilibrium points of the ODE.

An equilibrium point of system (3.6)–(3.7) is a solution to the equations

−
J

∑
k 6= j

η jku j +β ju jv j− γ ju j +
J

∑
k 6= j

ηk juk = 0, (3.10)

−
J

∑
k 6= j

λ jkv j−β ju jv j + γ ju j +
J

∑
k 6= j

λk jvk = 0, (3.11)

for (u,v) ∈ E. Let (u∗,v∗) denote an equilibrium point of the system. An equilibrium point is called

a disease–free equilibrium (DFE) if u∗ = 0. Otherwise, it is called an endemic equilibrium (EE). The

following theorem shows that system (3.6) – (3.7) always has a unique DFE.

Theorem 3.2. System (3.6) – (3.7) has a unique DFE given by (0,v∗) where Λv∗ = 0 and 1
′
v∗ = 1.

Proof. With u j = 0 for all j = 1, . . . ,J, the system of equations (3.11) can be expressed as Λv = 0.

As 0 is an eigenvalue of Λ, we can apply part (b) of Theorem 2.14 to conclude that the corresponding

eigenvector is unique up to constant multiples and positive. The condition 1
′
v∗ = 1 ensures that

(0, v∗) ∈ E.

As previously noted, in the absence of infected individuals, the process (3.1)–(3.4) is a closed

migration process. Therefore, it is not surprising that v∗j is, in fact, the probability that an individual

in the closed migration process is located at patch j when the process is in equilibrium (see equation

(2.27)). Then, by applying Theorem 2.22 it is straightforward that this equilibrium distribution is

π(n) =


( N

n1,n2...,nJ

)
v∗1v∗2 . . .v

∗
J , ∑

N
j n j = N,

0, otherwise.

Thus, the equilibrium distribution is multinomial with parameters N and v∗.

Note that if Λ satisfies Λ1 = 0 in Theorem 3.2, then, the equilibrium vector v∗ is v∗ = J−11. The

assumption Λ1 = 0 implies that for each patch, the rate that a susceptible individual travels from the

patch to all other patches is equal to the rate that a susceptible individual enters into that patch from
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all other patches. This assumption can be satisfied if, for any given two patches, the migration rate of

susceptible individuals between the two patches are equal, in which case Λ is symmetric.

As the DFE always exists for system (3.6) – (3.7), an important question is whether an outbreak

of the disease can occur when the population initially contains a small number of infected individuals.

This question may be addressed using stability analysis of the DFE. If the DFE is unstable, then a

trajectory of the ODE which starts close to the DFE will be repelled by the DFE and so an outbreak

can occur. On the other hand, if the DFE is locally asymptotically stable, the trajectory of the ODE

which starts close to the DFE will be attracted towards the DFE. In this case, if the population initially

contains few infected individuals, then the disease cannot spread. I will now proceed to analyse the

local stability of the DFE. The analysis employs Theorem 1 of van den Driessche and Watmaough

[204], which is stated in Theorem 2.6. Following the notations of equation (2.18), system (3.6)–(3.7)

can be written as

du j

dt
= F j(u,v)−V j(u,v)

dv j

dt
=−

J

∑
k 6= j

λ jkv j−β ju jv j + γ ju j +
J

∑
k 6= j

λk jvk,

where F j(u,v) = β ju jv j and V j(u,v) = ∑
J
k 6= j η jku j + γ ju j −∑

J
k 6= j ηk juk for j = 1, . . . ,J. Now I

show that system (3.6)–(3.7) satisfies the following properties which are Assumptions (A1)–(A5) of

Theorem 2.6.

Proposition 3.3. System (3.6)–(3.7) has the following properties.

(i ) F j(0,v) = 0 and V j(0,v) = 0 for all nonnegative v and j = 1, . . . ,J;

(ii ) F j(0,v)≥ 0 for all nonnegative u and v and j = 1, . . . ,J;

(iii ) V j(u,v)≤ 0 whenever u j = 0, j = 1, . . . ,J;

(iv ) ∑
J
j=1 V j(u,v)≥ 0 for all nonnegative u and v;

(v ) The disease–free system has a unique equilibrium that is asymptotically stable. That is, all

solutions of system (3.6)–(3.7) with initial condition of the form (0,v0) ∈ E approach the DFE

as t→ ∞.

Proof. Properties (i) to (iv) can be verified for system (3.6)–(3.7) by direct substitution. To check

property (v), consider the disease–free system

dv
dt

= Λv, v(0) = v0. (3.12)
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By Theorem 3.2, this system has a unique positive equilibrium v∗ such that Λv∗ = 0 and 1
′
v∗ = 1.

The solution of (3.12) is given by v(t,v0) = eΛtv0. Since Λ is an irreducible Metzler matrix whose

maximum eigenvalue is 0, by Theorem 2.15 we have eΛt = v∗1
′
+O(eτt), elementwise, as t → +∞,

where τ < 0 and 1
′
is the left eigenvector of Λ associated with the eigenvalue 0. Since v0 ∈ E we have

1
′
v0 = 1. This implies, v(t,v0) = v∗ as t → +∞. Therefore, any solution of (3.6)–(3.7) with initial

condition of the form (0,v0) ∈ E approach the DFE, (0,v∗), as t→+∞.

Now, using equation (2.20), the basic reproduction number R0 of system (3.6)–(3.7) is given by

the spectral radius of

[diag(βββ )diag(v∗)][diag(γγγ)−H]−1, (3.13)

where βββ = (β1, . . . ,βJ), γγγ = (γ1, . . . ,γJ) and v∗ is the proportion of susceptible individuals at the DFE.

In other words, R0 is the maximum modulus of the eigenvalues of matrix (3.13). Matrix (3.13) is

called the next generation matrix [65, 66, 67, 97, 203, 204]. Its ( j,k)–th entry describes the expected

number of new infections in patch j produced by an infected individual originally introduced into

patch k when the population is disease–free. The following result follows from Theorem 2.6.

Theorem 3.4. The DFE of system (3.6)–(3.7) is locally asymptotically stable if R0 < 1, but unstable

if R0 > 1.

It can be inferred from Theorem 3.4 that the disease will not spread if R0 < 1 since the DFE is

locally asymptotically stable in this case. On the other hand, it will spread if R0 > 1, as the DFE

is unstable in this case. This implies that R0 = 1 is a threshold which determines disease invasion

or extinction. However, Theorem 3.4 does not mention the stability of the DFE for the case when

R0 = 1. Therefore, a complete understanding of the stability of the DFE cannot be determined from

the local stability results given in Theorem 3.4. Global stability of the DFE ensures that the disease

cannot persist in the population. To prove global stability of the DFE, I employ the novel approach in

Kamgang and Sallet [110, Theorem 4.3] which is given in Theorem 2.7. Before progressing to show

global stability of the DFE, I will first show that the set E in which the ODE is defined is positively

invariant. That is, any solution of (3.6)–(3.7) which starts in E must remain in E for all positive time.

Lemma 3.5. E is a positively invariant set with respect to (3.6)–(3.7).

Proof. Note that E is a closed and convex set. Then by Nagumo (see [36, Theorem 3.1]), E is

positively invariant if the direction field of the differential equation is tangent or pointing into E at

every boundary point of E. Observe that if u j = 0, then, du j/dt =∑
J
k 6= j ηk juk ≥ 0. Similarly, if v j = 0,

then, dv j/dt = γ ju j +∑
J
k 6= j λk jvk ≥ 0. Furthermore, d ∑

J
j=1(u j + v j)/dt = 0. Therefore, any solution

of the ODE (3.6)–(3.7) which starts in E stays inside E for all positive time.
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The result of Lemma 3.5 is used to prove global stability of the DFE. Define T0 as the spectral

radius of

diag(βββ )[diag(γγγ)−H]−1, (3.14)

where βββ and γγγ as defined in (3.13). The following result shows that T0 ≤ 1 is a sufficient condition

which determines the global stability of the DFE.

Theorem 3.6. The DFE of system (3.6)–(3.7) is globally asymptotically stable if T0 ≤ 1.

Proof. The theorem will hold if assumptions (H1) to (H5) of Theorem 2.7 are satisfied. Assumption

(H1) holds as E is bounded and positively invariant by Lemma 3.5. From part (v) of Proposition 3.3

we know that v∗ is globally asymptotically stable for the disease–free system (3.12) which is defined

on {
v j ∈ [0,1]; j = 1, . . . ,J;

J

∑
j=1

v j = 1

}
.

Therefore, assumption (H2) is satisfied. Matrix A2(u,v) in assumption (H3) is given by [H−diag(γγγ)+

diag(βββ )diag(v)], which is an irreducible Metzler matrix for any (u,v) ∈ E. So, Assumption (H3) is

also satisfied. Now, to check Assumption (H4), we consider the set

M = {[H−diag(γγγ)+diag(βββ )diag(v)] | (u,v) ∈ E}.

The smallest upper bound for M is given by

Ā2 = H−diag(γγγ)+diag(βββ ),

which is not attained in E. To show that Assumption (H5) holds, we want to apply Lemma 2.13 to

Ā2. In order to apply Lemma 2.13, we need to first show that Ā2 is a regular splitting (see Definition

2.8). Note that H−diag(γγγ) is an irreducible Metzler matrix. Then by Corollary 2.16, the maximum

real part of the eigenvalues of H− diag(γγγ) is bounded above by max1≤k≤J{−γk} which is negative.

Therefore, H − diag(γγγ) is a stable Metzler matrix. Since diag(βββ ) is a nonnegative matrix, Ā2 is a

regular splitting. If T0 ≤ 1, then, by Lemma 2.13 the maximum real part of the eigenvalues of Ā2 is

less than or equal to 0 and Assumption (H5) holds.

The implication of Theorem 3.6 is that the disease elimination from the population is possible

if the value of T0 is less than or equal to 1. Although there is no biological interpretation of T0,

comparing matrix (3.14) with the next generation matrix (3.13), it is clear that T0 measures the

spectral radius of (3.13) when v∗ = 1. Furthermore, T0 has an association with R0 as can be seen

from the following lemma.

Lemma 3.7. R0 < T0.
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Proof. From the proof of Theorem 3.6 we know that the maximum real part of the eigenvalues of

H − diag(γγγ) is negative. It follows from part (g) of Theorem 2.14 that [diag(γγγ)−H]−1 is positive.

Therefore, the matrices [diag(βββ )diag(v∗)][diag(γγγ)−H]−1 and diag(βββ )[diag(γγγ)−H]−1 are also posi-

tive. Furthermore, these two matrices satisfy the relation

[diag(βββ )diag(v∗)][diag(γγγ)−H]−1 < diag(βββ )[diag(γγγ)−H]−1. (3.15)

Then, by noting that both matrices in (3.15) are irreducible, we can apply Corollary 2.17 to conclude

that R0 < T0.

From Lemma 3.7 we know that T0 is always greater than R0 but it is not clear how large it is in

comparison with R0. In order to determine how large T0 is, in comparision with R0, we consider a

simple model in which the disease transmission rates and recovery rates are patch independent (that

is β j = β , γ j = γ for all j) and the migration rates of susceptible individuals satisfy Λ1 = 0. In this

case the vector v∗ in (3.13) is given by v∗ = J−11 and so R0 = β/(Jγ) and T0 = β/γ . This shows that

T0 = J×R0. Furthermore, for this simple model, if we have β ≤ γ , then by Theorem 3.6 the DFE is

globally asymptotically stable. However, if β < Jγ but β > γ , then R0 < 1 but T0 > 1.

Figure 3.2 shows plots comparing the trajectory of the ODE for the cases R0 < 1 < T0 (solid

lines) and R0 < T0 < 1 (dashed lines). The plots in part (a) correspond to trajectories of the simple

model as described above for a network consisting of two patches. The plots in part (b) correspond to

trajectories of a general three patch model. The numerical solutions to the ODE were computed using

MATLAB’s ode45() function. In part (a), the disease transmission rate for the case R0 < 1 < T0

was assumed as β = 1.5 and the disease transmission rate for the case R0 < T0 < 1 was assumed

as β = 0.7. The remaining parameters used to produce the plots in part (a) are as follow: γ = 1,

λ12 = λ21 = 0.5, η12 = 1 and η21 = 1.5. In part (b), the disease transmission rate for patch 1 for

the case R0 < 1 < T0 was assumed as β1 = 3.5 and the disease transmission rate for patch 1 for

the case R0 < T0 < 1 was assumed as β1 = 1.5. The remaining parameters used to produce the

plots in part (b) are as follow: γ1 = 1.2, γ2 = 1.5, γ3 = 1, λ12 = 0.5, λ21 = 0, λ23 = 1, λ32 = 1.5,

λ13 = 0, λ31 = 1,η12 = 3, η21 = 1, η23 = 4, η32 = 2, η13 = 1, and η31 = 2.5. It can be seen from the

plots in Figure 3.2 that all trajectories converge to the DFE, furthermore, there appears no significant

difference between the trajectories for the cases R0 <T0 < 1 and R0 < 1 <T0. This suggests that the

local stability result established in Theorem 3.4 for the case R0 < 1 can be used as a disease control

measure in its early stage even if T0 > 1. This is because if the population initially contains few

infected individuals and if the control strategy imposed reduces R0 to less than 1, then the disease is

eliminated from the population. The problem of minimising R0 is fully investigated in Chapter 4.
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(a) Deterministic trajectories of a two patch model.

Trajectories with solid lines correspond to R0 = 0.75 and T0 = 1.5.

Trajectories with dashed lines corresponds to R0 = 0.35 and T0 = 0.7.
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(b) Deterministic trajectories of a three patch model.

Trajectories with solid lines corresponds to R0 = 0.53 and T0 = 1.47.

Trajectories with dashed lines corresponds to R0 = 0.30 and T0 = 0.82.

Figure 3.2: Comparision of the trajectory of the ODE for the cases R0 < T0 < 1 (dashed lines) and

R0 < 1 < T0 (solid lines) for a two patch (a) and a three patch (b) model. Each plot corresponds to a

specific initial condition. In each plot, all trajectories converge to the DFE, and there seem to be no

significant difference between the trajectories for the case R0 < T0 < 1 and R0 < 1 < T0.
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Although I have completely determined the existence and stability of the DFE, except for the

case R0 = 1, I have not examined the possibility of the existence of any endemic equilibrium. The

instability of the DFE given in Theorem 3.4, for the case R0 > 1 implies that any solution of the ODE

which starts near the DFE moves away from the DFE. This suggests that the disease may persist when

R0 > 1. That is, the disease may become endemic, in which case our aim is to determine the existence

of any endemic equilibrium as it is an endemic equilibrium which approximates a quasi–equilibrium

of the Markov chain model. In the case when susceptible and infected individuals have the same

migration rates, the following result shows that a unique endemic equilibrium exists for system (3.6)–

(3.7). It also determines the stability of the DFE when R0 = 1, which could not be determined in

Theorem 2.6. The term componentwise positive used in the statement means that the proportion of

susceptible and infected individuals in each patch at equilibrium is positive.

Theorem 3.8. Assume that Λ = H. If R0 ≤ 1, then, the DFE is globally asymptotically stable. If

R0 > 1, then system (3.6)–(3.7) admits a unique (componentwise) positive endemic equilibrium (ū, v̄),

which is globally asymptotically stable for (u(0),v(0)) ∈ E \{(u,v) |u = 0}.

Proof. If Λ = H, then, by (3.6)–(3.7) we have

du j

dt
=−

J

∑
k 6= j

η jku j +β ju jv j− γ ju j +
J

∑
k 6= j

ηk juk, (3.16)

dv j

dt
=−

J

∑
k 6= j

η jkv j−β ju jv j + γ ju j +
J

∑
k 6= j

ηk jvk, (3.17)

for j = 1, . . . ,J. Let y j = u j + v j, for j = 1, . . . ,J. Then from (3.16)–(3.17) we obtain

dy j

dt
=−

J

∑
k 6= j

η jky j +
J

∑
k 6= j

ηk jyk, j = 1, . . . ,J. (3.18)

By the result of DFE obtained in Theorem 3.2, system (3.18) admits a unique positive equilibrium

y∗ = v∗. Moreover, by using the same argument as in the proof of part (v) of Proposition 3.3, we

conclude that y∗ is globally asymptotically stable in E. Then system (3.16)–(3.17) is equivalent to the

following system.

dy j

dt
=−

J

∑
k 6= j

η jky j +
J

∑
k 6= j

ηk jyk, (3.19)

du j

dt
=−

J

∑
k 6= j

η jku j +β ju j(y j−u j)− γ ju j +
J

∑
k 6= j

ηk juk, (3.20)

for j = 1, . . . ,J. Note that equation (3.19) is independent of equation (3.20) and hence, y(t) can be

obtained from equation (3.19). Then system (3.19)–(3.20) is transformed into the following nonau-

tonomous system.

du j

dt
=−

J

∑
k 6= j

η jku j +β ju j(y j(t)−u j)− γ ju j +
J

∑
k 6= j

ηk juk, j = 1, . . . ,J. (3.21)
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Since y j(t)→ y∗j = v∗j , j = 1, . . . ,J, as t→+∞, system (3.21) has the following limiting system.

du j

dt
=−

J

∑
k 6= j

η jku j +β ju j(v∗j −u j)− γ ju j +
J

∑
k 6= j

ηk juk, j = 1, . . . ,J. (3.22)

Now we define the set Eu as

Eu :=

{
u j ∈ [0,1]; j = 1, . . . ,J;

J

∑
j=1

u j = 1

}
and let f : Eu 7→ RJ , where f = ( f1, . . . , fJ), be defined by the right hand side of equation (3.22). We

want to apply Corollary 2.10 to f. Note that f is continuously differentiable and for all u ∈ Eu, the

Jacobian matrix of f is given by H−diag(γγγ)+diag(βββ )diag(v∗−2u). Since off diagonal elements of

the Jacobian matrix is nonnegative, f is cooperative on Eu. Since H is irreducible, the Jacobian matrix

is irreducible for every u ∈ Eu. Furthermore, f(0) = 0 and if u j = 0, then, f j(u) = ∑
J
k 6= j ηk juk ≥ 0.

For any α ∈ (0,1) and any u > 0, we have

α[−
J

∑
k 6= j

η jku j +β ju jv∗j − γ ju j +
J

∑
k 6= j

ηk juk]−β jα
2u2

j

> α[−
J

∑
k 6= j

η jku j +β ju jv∗j − γ ju j +
J

∑
k 6= j

ηk juk]−β jαu2
j , j = 1, . . . ,J.

That is f(αu) > αf(u), which implies that f is strictly sublinear on Eu. As Eu is a bounded and

positively invariant set, we have for any solution u(t) of (3.22), with initial condition u(0) > 0, that

u(t) is bounded for all t ≥ 0. Now, the Jacobian matrix of f at u = 0 is given by H − diag(γγγ) +

diag(βββ )diag(v∗) which is an irreducible Metzler matrix. Then we can use the same argument as in

the proof Theorem 3.6 to show that H−diag(γγγ)+diag(βββ )diag(v∗) is a regular splitting.

If R0 ≤ 1, then, by Lemma 2.13 or by using the same argument as in the proof of Theorem 2 of

[203] we conclude that the maximum real part of the eigenvalues of the Jacobian matrix of f at u = 0

is less than or equal to 0. Hence, by part (a) of Corollary 2.10, u = 0 is globally asymptotically stable

in Eu. Now, by Definition 2.7, system (3.21) is asymptotically autonomous with limit system (3.22).

Since solution u(t) of (3.21) is bounded for any initial condition u(0) ∈ E, and u = 0 is globally

asymptotically stable, then by Corollary 2.9 we have u(t)→ 0 as t→+∞ for solution u(t) of (3.21).

Consequently, the DFE is globally asymptotically stable in E.

If R0 > 1, then using a similar argument as above and applying part (b) (ii) of Corollary 2.10,

we see that equation (3.22) admits a unique positive equilibrium ū in Eu \ {0}, which is globally

asymptotically stable. Let v̄ = y∗− ū, then system (3.16)–(3.17) admits a unique positive equilibrium

(ū, v̄) in E. Furthermore, by Corollary 2.9, u(t)→ ū as t→+∞ for solution u(t) of (3.21) with u(0)∈

Eu \ {0}. Hence, the equilibrium (ū, v̄) is globally asymptotically stable for any initial condition

(u(0),v(0)) ∈ E \{(u,v) |u = 0}..
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The condition imposed on the migration rates in Theorem 3.8 implies that travel rates of indi-

viduals do not depend on their disease status. This may be a reasonable assumption for modelling

certain mild diseases such as gonorrhea [101, 102, 132] and head lice infections [197]. In contrast to

the results derived in Theorem 3.8, global asymptotic stability of the DFE for frequency–dependent

SIS models studied in [131, 3] was shown only for the case when R0 < 1. Moreover, the result in

[3] was obtained assuming that Λ ∝ H with Λ and H being symmetric. In their analysis of the SIS

model in [3], the authors were not able to prove stability of the EE, but conjectured that the EE at-

tracts all solutions whose initial conditions have a nonzero proportion of infectives. Thus, the global

asymptotic stability results obtained in Theorem 3.8 for the DFE and EE are a significant step towards

establishing a more general result for the density–dependent SIS model.

As the endemic equilibrium obtained in Theorem 3.8 is for a special case of the migration rates

(that is for the case when Λ = H), it remains to show if the result still holds or not when this as-

sumption is violated. The following section provides numerical examples investigating the case when

Λ 6= H.

3.2.2 Numerical Examples

In order to investigate the equilibrium of the system (3.6)–(3.7) when Λ 6= H, I solved numerically the

equilibrium equations given by (3.10)–(3.11). These numerical experiments were performed for the

cases J = 2 and J = 3 using MapleTM15 software by applying Isolate command in the RootFinding

package. The RootFinding[Isolate] command numerically computes all real roots of polynomials and

polynomial systems with a finite number of solutions. As noted in Maple’s help page concerning the

RootFinding[Isolate] command, all digits returned by the command are correct and no roots are ever

lost. If the system has an infinite number of solutions the RootFinding[Isolate] command will return

an error. In all numerical experiments computed in this section, the RootFinding[Isolate] command

never returned an error. This confirms that Maple had found all solutions to the system (3.10)–(3.11).

For more details regarding the Isolate command I refer the reader to Maple’s help page concerned

with the RootFinding package.

I looked at many cases for J = 2 and J = 3 and they all had similar behaviour. Figure 3.3 shows

plots for the case J = 2 and Figure 3.4 shows plots for J = 3. The parameter values used to produce the

plots in Figure 3.3 and Figure 3.4, respectively, are given in Table 3.1 and Table 3.2. In all examples

reported I varied the infection parameter for patch 1, β1, from 1 to 4 while fixing all other parameters.

In all cases examined, when R0 ≤ 1, no EE point was found. However, when R0 > 1, a unique EE
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point was found. It was determined to be stable by computing eigenvalues of the Jacobian matrix of

system (3.6)–(3.7) evaluated at the EE point.

In other examples considered for J = 2, I varied β2 from 1 to 4. The specific parameters used

in these examples are given in Table 3.3. Additional examples considered for J = 3 include varying

either β2 or β3 from 1 to 4. The specific parameters used for plots of J = 3 in which β2 was varied are

given in Table 3.4 and the parameters for those examples in which β3 was varied are given in Table

3.5. The numerical examples indicate that if the basic reproduction number is greater than 1, a unique

stable endemic equilibrium exists regardless of whether Λ = H holds. Therefore, it may be possible

to drop this assumption from Theorem 3.8.

Parameters (a) (b) (c) (d) (e) (f)

λ12 0.1 0.5 2 0.01 0.5 0.2

λ21 0.5 1 1 1 3 3

η12 2 0.2 0.5 2 0.5 0.3

η21 1 0.1 1 0.5 1.5 1.5

γ1 1 1.2 0.5 0.1 1.5 2

γ2 1.2 1 1 0.6 1.8 1.5

β1 [1,4] [1,4] [1,4] [1,4] [1,4] [1,4]

β2 4 2 1 3 2 2

Table 3.1: Parameter values used to produce the plots in Figure 3.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Plots for the case J = 2. The curves with symbols indicate the following: # = Patch 1

infectives,2 = Patch 2 infectives, = Patch 1 susceptibles, � =Patch 2 susceptibles. Each plot shows

a unique stable EE point when R0 is greater than 1.
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Parameters (a) (b) (c) (d) (e) (f)

λ12 0.02 1 1 0.5 0 1.5

λ21 0 1.5 1.5 0 0.6 2

λ23 0.03 0.03 0.3 1 0 0.3

λ32 0 0 0 0 1.5 1

λ13 0 2 1 0 2 2

λ31 0.01 1.5 1 1 0 1.5

η12 1 0.5 0.5 3 2 0.5

η21 3 1 1.2 1 0 1

η23 4 0.6 1 4 3 0.6

η32 1 2 2 2 0 2

η13 3 1 1 1 0 2

η31 2 2 2.5 2.5 2.5 2

γ1 1 0.1 0.1 1 0.1 0.7

γ2 1.2 1.2 1 0.2 0.5 0.2

γ3 0.2 1 1.3 1 1 2

β1 [1,4] [1,4] [1,4] [1,4] [1,4] [1,4]

β2 1 2 1 3 1 2

β3 1.5 1.5 2 2 2 3

Table 3.2: Parameter values used to produce the plots in Figure 3.4.
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(a) (b)

(c) (d)

Figure 3.4: Plots for the case J = 3. The curves with symbols indicate the following: # = Patch

1 infectives, 2 = Patch 2 infectives, ♦ = Patch 3 infectives,  = Patch 1 susceptibles, � = Patch 2

susceptibles, � = Patch 3 susceptibles. Each plot shows a unique stable EE point when R0 is greater

than 1.
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Parameters (a) (b) (c) (d) (e) (f)

λ12 0.6 2 1.5 0.3 3 1

λ21 0.2 1.5 0.5 0.2 2 2

η12 0.2 1 2.2 3 0.01 1.5

η21 0.1 1.2 1.2 1 1.5 2.2

γ1 1 0.3 2 0.8 1.5 0.1

γ2 0.7 1.4 1.5 0.5 0.5 0.6

β1 2.2 0.5 3 1 3 0.2

β2 [1,4] [1,4] [1,4] [1,4] [1,4] [1,4]

Table 3.3: Parameter values used in plots of J = 2 which are not reported.

Parameters (a) (b) (c) (d) (e) (f)

λ12 0 1.2 1.5 0 1.5 2

λ21 1 0.2 0 0.3 0 1.5

λ23 0 0 1 2 0.4 1

λ32 3 2 0 0.1 0 0.5

λ13 2 0.5 0.5 0.7 0 0.6

λ31 0 0 1.2 0 2 1.6

η12 0.2 0.5 1.5 1 0 0.2

η21 0 0 0.2 0 0.6 1

η23 0.3 1.2 0 0.5 0 1.6

η32 0 1.5 0.3 0 1 0.6

η13 0 0 2 0.3 0.3 1.2

η31 0.1 1 0 1.2 0 0.5

γ1 0.2 1.2 2 0.7 0.5 0.2

γ2 1.5 0.3 1 0.1 1 2

γ3 1 1.7 1.3 0.5 0.8 0.7

β1 1.4 1.5 4 1.7 1.2 1.8

β2 [1,4] [1,4] [1,4] [1,4] [1,4] [1,4]

β3 2 2.2 1.5 1 3 2

Table 3.4: Parameter values used in plots of J = 3 which are not reported.
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Parameters (a) (b) (c) (d) (e) (f)

λ12 0.2 0.1 0.6 0 2 0

λ21 1.2 1.5 0 1.5 0 1

λ23 1.5 0.3 0.5 0.5 0.4 0

λ32 0.5 0 0 1.5 0 1.5

λ13 1.8 0 0 1 1.6 1.3

λ31 0.8 0.6 0.2 0 0.6 0

η12 1.6 1.6 1 0 1 0

η21 0.6 0.6 0 1 0 1.4

η23 1 0.4 1.2 0.2 1.3 0

η32 1.2 0 0 1.2 0 1.6

η13 1.3 0 0 1.5 0.6 1.2

η31 0.3 1 0.8 0 0.3 0

γ1 1 0.4 1 0.3 2 0.5

γ2 0.7 0.1 0.5 0.7 1.5 1

γ3 1.2 0.8 1.2 1 1 0.7

β1 1 0.81 1.5 0.5 3 1.3

β2 1.5 0.77 2 2.1 2 1.4

β3 [1,4] [1,4] [1,4] [1,4] [1,4] [1,4]

Table 3.5: Parameter values used in plots of J = 3 which are not reported.

3.3 Diffusion Approximation

So far, I have analysed equilibrium points of the ODE given by (3.6)–(3.7), which is an approximation

to the scaled process, ((uN(t),vN(t)); t ≥ 0). As mentioned earlier, there are some random fluctuations

between the scaled process and the trajectory of the ODE. It is the aim of this section to describe these

random fluctuations. I will apply Corollary 2.4 to approximate the distribution of the fluctuations of

the density process about the unique endemic equilibrium of the ODE. Since Corollary 2.4 follows

from Theorem 2.3, we need to check the conditions of this theorem are satisfied.

The first step is to determine the open set, O, stated in the theorem and the appropriate determinis-

tic model defined in this open set. As the population size is fixed we can eliminate nJ from the vector
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(m(t),n(t)). Then the Markov chain ((m(t),n(t)); t ≥ 0) has state space

S̄N =

{
(m, n) | m j ≥ 0; j = 1, . . . ,J;n j ≥ 0; j = 1, . . . ,J−1;

J

∑
j=1

m j +
J−1

∑
j=1

n j ≤ N

}
.

Consequently, the scaled process, ((uN(t),vN(t)); t ≥ 0), takes values in ĒN := S̄N/N ⊂ Ē, where

Ē :=

{
u j ∈ [0,1]; j = 1, . . . ,J;v j ∈ [0,1]; j = 1, . . . ,J−1;

J

∑
j=1

u j +
J−1

∑
j=1

v j ≤ 1

}
.

The open set can be given by O = Ē \∂ Ē and the vector F(·) stated in Theorem 2.3 is given by

F(u,v) =



−∑
J
k 6=1 η1ku1 +β1u1v1− γ1u1 +∑

J
k 6=1 ηk1uk,

...
...

...
...

−∑
J
k 6=J ηJkuJ +βJuJ[1−∑

J
j=1 u j−∑

J−1
j=1 v j]− γJuJ +∑

J
k 6=J ηkJuk,

−∑
J
k 6=1 λ1kv1−β1u1v1 + γ1u1 +∑

J−1
k 6=1 λk1vk +λJ1[1−∑

J
j=1 u j−∑

J−1
j=1 v j],

...
...

...
...

...

−∑
J
k 6=J−1 λ(J−1)kvJ−1−βJ−1uJ−1vJ−1 + γJ−1uJ−1 +∑

J−1
k 6=J−1 λk(J−1)vk

+λJ(J−1)[1−∑
J
j=1 u j−∑

J−1
j=1 v j]


.

Then we can use Theorem 3.1 of Kurtz to derive the following limiting system of ODE for the scaled

process when N is large and for t ∈ [0,T ], where T is finite.

du j

dt
=−

J

∑
k 6= j

η jku j +β ju jv j− γ ju j +
J

∑
k 6= j

ηk juk, (3.23)

duJ

dt
=−

J

∑
k 6=J

ηJkuJ +βJuJ[1−
J

∑
l=1

ul−
J−1

∑
l=1

vl]− γJuJ +
J

∑
k 6=J

ηkJuk,

dv j

dt
=−

J

∑
k 6= j

λ jkv j−β ju jv j + γ ju j +
J−1

∑
k 6= j

λk jvk +λJ j[1−
J

∑
l=1

ul−
J−1

∑
l=1

vl],

(3.24)

for j = 1, . . . ,J−1, subject to (u(0),v(0)) = (u0,v0)∈O. Note that by substituting vJ = 1−∑
J
l=1 u j−

∑
J−1
l=1 vl in (3.23)–(3.24), we get system (3.6)–(3.7). Therefore, system (3.23)–(3.24) has the same EE

as that of system (3.6)–(3.7).

Now we need to check if conditions of Theorem 2.3 are satisfied for F(·) given above and for

system (3.23)–(3.24). Note that each term in F(u,v) is continuous in O and since O is a bounded set,

F(·) is Lipschitz continuous. Next, we need to show that F(·) has uniformly continuous first partial

derivatives. For this, we compute the Jacobian of F(·) as follows.

Let e denote the column vector of length J with a 1 in the final position and 0 elsewhere, and let 1

be the column vector with 1 in all entries and whose dimension can be implied from the context it is
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used. To simplify notations, matrix Λ is partitioned as

Λ =

 Λ̃ λJ·

λ
′
·J −∑

J−1
k=1 λJk

 . (3.25)

Then the Jacobian of F(·) is given by

J (u,v) =

J 1 J 2

J 3 J 4

 , (3.26)

where J 1, J 2, J 3 and J 4 are block matrices with dimensions, respectively, J× J, J× (J− 1),

(J−1)× J and (J−1)× (J−1). The matrices J 1 and J 4 are given by

J 1 = H +diag(β )diag(v)−diag(γ)−βJuJe1
′
,

J 4 = Λ̃−λJ·1
′
−diag(β )diag(u),

and J 2 and J 3 are in the form

J 2
jk =


−βJuJ, j = J,

β ju j, j = k, j,k = 1, . . . ,(J−1),

0, otherwise,

J 3
jk =

−β jv j + γ j−λJk, j = k, j,k = 1, . . . ,(J−1),

−λJ j, otherwise.

It can be seen that the Jacobian is uniformly continuous on O. The matrix G(·) defined in Theorem

2.3 is given by

G(u,v) =

G1 G2

G3 G4

 , (3.27)

where G1, G2, G3 and G4 are block matrices with dimension, respectively, (J × J), J × (J − 1),

(J−1)× J and (J−1)× (J−1). These matrices are given by

G1
jk =

∑
J
l 6= j η jlu j +β ju jv j + γ ju j +∑

J
l 6= j ηl jul, j = k, j,k = 1, . . . ,J,

−η jku j−ηk juk, otherwise,

G4
jk =

∑
J
l 6= j λ jlv j +β ju jv j + γ ju j +∑

J
l 6= j λl jul, j = k, j,k = 1, . . . ,(J−1),

−λ jkv j−λk jvk, otherwise,
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G2
jk =

−β ju jv j− γ ju j, j = k, j,k = 1, . . . ,(J−1),

0, otherwise,

and G3 = (G2)
′
. Since the elements of G(·) are continuous and noting that O is bounded, we see that

all conditions of Theorem 2.3 are satisfied.

Let (u∗,v∗) be the EE of system (3.23)–(3.24). Let

B = J (u∗,v∗), G∗ = G(u∗,v∗), (3.28)

and

ZN(t) =
√

N((uN(t),vN(t))− (u∗,v∗)), 0≤ t ≤ T.

Thus, (ZN(·)) is the process of scaled difference between the density process and the EE point. The

following result follows from Corollary 2.4.

Theorem 3.9. Suppose limN→∞

√
N((uN(0),vN(0))− (u∗,v∗)) = z. Then the family of processes

(ZN(·)), converges weakly in D[0,T ] (the space of right–continuous, left–hand limit functions on

[0,T ]), as N → ∞, to an OU process Z(·) with initial value Z(0) = z, and with local drift matrix B

and local covariance matrix G∗, where B and G∗ as given in (3.28). In particular, Z(t) has a normal

distribution with mean

µ(t) = EZ(t) = eBtz (3.29)

and covariance matrix

∑(t) := eBt
(∫ t

0
e(−Bu)G∗e−B

′
udu
)

eB
′
t . (3.30)

It follows that, for large N, the scaled process ((uN(t),vN(t));N > 0) has an approximate normal

distribution with

Cov(uN(t),vN(t))'
1
N ∑(t), (3.31)

and a “working approximation” for the mean given by

E(uN(t),vN(t))' (u∗,v∗)+ e(Bt)((uN(0),vN(0))− (u∗,v∗)). (3.32)

Now, from the numerical examples shown in Section 3.2.2 we have that the EE is locally asymp-

totically stable. Therefore, the OU process Z(·) is stationary. Its stationary distribution is multivariate

normal distribution with mean 0 and covariance matrix satisfying

B∑+∑B
′
=−G∗. (3.33)

In this case the quasi–equilibrium distribution of the original Markov chain ((m(t),n(t)); t ≥ 0) has

an approximate multivariate normal distribution with mean vector given by N(u∗,v∗) and covariance

matrix N ∑.
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Figure 3.5 shows a numerical example illustrating the application of Theorem 3.9 to a network

consisting of two patches, with a population size of 5000. The parameters used in the simulation

are given in the figure. The initial point of the scaled process and that of the ODE were taken as

(u1,u2,v1,v2) = (0.417,0.58,0.002,0.003). The histograms show the distribution of the proportion

of the population at each patch around the endemic level (u1,u2,v1,v2) = (0.31,0.14,0.34,0.22). It

can be seen from the plots in Figure 3.5 that the distribution of the proportion of the population at the

endemic level can be approximated by a normal distribution.
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Figure 3.5: Distribution of the proportion of the population of a two patch model around the endemic

equilibrium of the ODE. The parameters used are β1 = 4, β2 = 3, γ1 = 1.2, γ2 = 1, λ12 = 0.5, λ21 = 1,

η12 = 0.2 and η21 = 0.1.
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3.4 Conclusions

This chapter provides an analysis of the spread of a disease following the SIS pattern through a

metapopulation network. I have shown that the DFE is globally asymptotically stable if the threshold

quantity T0 is less than or equal to 1 (Theorem 3.6). Unlike the basic reproduction number, R0, T0

has no biological interpretation, but it can be related to R0 by R0 < T0. In contrast to the result in

Theorem 3.6, global asymptotic stability of the DFE for the frequency–dependent SIS models studied

in [131, 3] was shown only for the case when R0 < 1. Furthermore, the result in [3] was obtained

under a specific condition on the migration rates. More precisely, for Λ ∝ H with Λ and H being

symmetric. Thus, the global asymptotic stability result obtained in this work is a significant step

towards establishing a more general result for the density–dependent SIS model. Additionally, the

DFE obtained in [3] was spatially homogeneous in the sense that the number of susceptible individuals

in all patches at the DFE is equal. A similar result can be obtained for the SIS model studied here

by assuming that the migration rates of susceptible individuals satisfy Λ1 = 0. Under this condition

the proportion of susceptible individuals at the DFE is given by v∗ = J−11. The assumption Λ1 = 0

implies that, for each patch, the rate that a susceptible individual travels from the patch to all the other

patches is equal to the rate that a susceptible individual enters that patch from all other patches. Note

that if Λ is symmetric, as assumed in [3], then Λ1 = 0 is satisfied. Thus, the assumption Λ1 = 0 is

more general than the symmetric condition for Λ imposed in [3].

I have also shown that under the assumption that susceptible and infected individuals have the

same migration rates (Λ = H) and if R0 ≤ 1, then, the DFE is globally asymptotically stable, but if

R0 > 1, then, a unique EE exists which is globally asymptotically stable (Theorem 3.8). I note that in

their analysis of the frequency–dependent SIS model, [3] were not able to prove stability of the EE,

but conjectured that the EE attracts all solutions whose initial conditions have a nonzero proportion

of infectives. Theorem 3.8 is an important step towards establishing a similar result for the density–

dependent SIS model.

For a special case of the model, in which the disease transmission and recovery rates are inde-

pendent of patches (that is β j = β and γ j = γ), and assuming that migration rates of susceptible and

infected individuals, respectively, satisfy Λ1 = 0 and H1 = 0, I have obtained an explicit form of the

EE and analysed its local stability. These results are given in the Appendix of this chapter. The con-

ditions β j = β and γ j = γ can be applied for a disease in which environmental conditions of patches

do not affect much on the disease; example common cold. Conditions Λ1 = 0 and H1 = 0 are cer-

tainly satisfied if, for any two patches, the migration rates of susceptible individuals between the two

patches are equal and the migration rates of infected individuals between the two patches are equal,
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in which case Λ and H are symmetric. Furthermore, under the assumption of patch independent dis-

ease transmission and recovery rates and assuming that the migration rates of susceptible individuals

satisfy Λ1 = 0, an explicit expression for R0 and T0 can be computed. Specifically, R0 = β/(Jγ) and

T0 = β/γ which implies that T0 = J×R0.

Theorem 3.4 implies that it may be possible to decrease the likelihood of a disease reaching the

endemic level by reducing R0 since, if a small number of infected individuals are introduced into a

population with R0 < 1, then, the disease will die out quickly. As R0 is given by the spectral radius of

the next generation matrix (3.13), it may be possible to reduce R0 by altering the migration rates in Λ

and H. As an example, suppose that H = cH̃ for some H̃ and c > 0, so that R0 is now a function of

c. Increasing c can be interpreted as increasing the speed at which infected individuals move around

the network. Numerical results suggest that by increasing c we decrease R0 (see Figure 3.6 for an

example). Therefore, in some instances, it is possible to alter migration rates so that R0 < 1. The

same possibilities were observed in the two patch multi–city frequency–dependent SIS model studied

in [10] and in the two patch density–dependent SIS model studied in [210], where births and death

are accounted for in both models. The problem of finding an optimal strategy for migration rates will

be studied in Chapter 4.

Figure 3.6: The effect of increasing the constant c on R0 for a two patch system. The parameter values

used are β1 = β2 = 2.23 , γ1 = γ2 = 1, λ12 = 0.5, λ21 = 1, η12 = c×0.5, η21 = c×0.2. This example

suggests that it may be possible to reduce R0 to less than 1 by altering the migration rates of infected

individuals.

Theorem 3.9 implies that the distribution of the population at the endemic level can be approxi-

mated by a multivariate normal distribution for large population size. The result of this theorem may
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be used for estimating parameters of the model by applying the methods given in [177, 178]. How-

ever, as noted in [177, 178], in order to justify their method a local limit theorem will be required. I

leave this problem for future studies.

As with all theoretical models, I have imposed a number of simplifications which may not always

provide a good approximation to reality. For example, I have assumed that infected individuals are

infectious for a period of time having an exponential distribution. However, for certain diseases such

as gonorrhea and chlamydia, a gamma distribution may be a more realistic model of the infectious

period [48]. The model studied in this work could incorporate gamma distributed infectious periods

using a similar construction to that employed in [177]. Alternatively, the model could be generalised

by incorporating a general infectious period along the lines of [153]. Another limitation is that I have

ignored population dynamics such as births or deaths within the patches. This can be justified on

the ground that epidemic dynamics often occur on a time scale which is much faster than population

demography. I note that for the density–dependent SIS model studied in [210, 107] which incorpo-

rated births and deaths, a result similar to Theorem 3.8 was shown. Moreover, they proved global

stability of the DFE for the case when R0 < 1 and assuming that Λ = H. Based on this observation, I

expect that the results obtained in Theorem 3.6 and Theorem 3.8 to hold even if births and deaths are

included in the model. I also expect that by incorporating births and deaths in the model, existence

of an endemic equilibrium may be shown by dropping the assumption Λ = H and applying uniform

persistence results given for example in [200, 217]. A similar approach was used in [210, 107] to

show the existence of an endemic equilibrium for their model. A further limitation of the model is

the assumption that the travel pattern of susceptible and infected individuals between patches follow

Markov processes. This assumption implies that the rate of migration is unrelated to factors such as

the duration of stay in a patch and the patch in which an individual initially resides. However, sev-

eral studies have shown that such factors are of important consideration to accurately model human

mobility patterns [19, 17, 34, 43, 57, 61, 77, 84, 91, 112, 143, 161, 162, 176, 194, 207, 208]. The

model studied in this thesis could be generalised by incorporating arbitrarily distributed infectious

periods and allowing infectives and susceptibles to follow specified movement processes, which are

not necessarily Markovian, by following a similar construction as described by Clancy [52]. For this

general model, it may be possible to apply a similar approach as in [52] to obtain a branching process

approximation for the early stages of the epidemic. Of course, all these are intuitions which need to

be fully investigated.

The assumptions of exponentially distributed infectious periods and Markovian travel rates imply

that the SIS stochastic model studied in this thesis is a Markov process. These two assumptions

are essential in deriving the ODE and the OU approximations given, respectively, by Theorem 3.1
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and Theorem 3.9. An ODE and a diffusion approximations are usually hard to obtain when the

stochastic process is not Markovian [4]. In such cases the process is often analysed by using an

approximating branching process for the early stage of the epidemic [4, Chapter 3]. Despite the fact

that the Markovian assumption may be a limitation of the model, the results of this analysis provide a

useful insight into the spread of diseases following the SIS pattern. More realistic stochastic models

are highly complex and their analyses mostly depend on numerical techniques. Therefore, despite

their limitations, the analyses of simpler models can provide useful insights into the behaviour of

more complex models and this fact is true as well for the SIS model studied in this thesis.
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3.5 Appendix

Here I show the existence of a unique EE for the ODE (3.6)–(3.7) and determine its local stability

for the special case when all patches have equal transmission rates and equal recovery rates. More

precisely, I assume β j = β and γ j = γ for all j.

For this analysis, I use the following assumptions.

(A1) Λ1 = 0.

(A2) H1 = 0.

(A3) Λ is diagonalizable.

(A4) H is diagonalizable.

(A5) If ϕH 6= 0 is an eigenvalue of H then ϕH 6= ρΛ− (β − Jγ)/J, where ρΛ is an eigenvalue of Λ.

Assumption (A1) implies that, for each patch, the rate that a susceptible individual travels from

the patch to all other patches is equal to the rate that a susceptible individual enters into that patch

from all other patches. Assumption (A2) has a similar interpretation for the migration rates of infected

individuals. As previously noted these assumptions are more general than the assumptions imposed

on the migration rates in [3]. Their assumptions amount to assuming that Λ and H are symmetric

matrices satisfying Λ ∝ H. Assumptions (A3) – (A5) are milder technical conditions which will be

used to show the local stability of an EE. Recall from the definition of Λ and H in Section 3.2.1that

the transpose of these matrices are Q–matrices, which implies that the column sums of Λ and H equal

to 0. Then, Assumptions (A1) and (A2) ensure that the row sums of these matrices are also equal to

0.

Under Assumption (A1), the expression for R0 given in (3.13) simplifies to R0 = β/(Jγ). The

following theorem shows that, in this case, a unique EE exists for system (3.6) – (3.7).

Theorem 3.10. Assume that (A1) holds. If β ≤ Jγ , then system (3.6) – (3.7) has no EE. If β > Jγ ,

then system (3.6) – (3.7) has a unique EE (u∗,v∗), where v∗j = γ/β for j = 1, . . . ,J, and u∗ satisfies

Hu∗ = 0 and 1
′
u∗ = (1− Jγ/β ).

Proof. If (u∗,v∗) is an EE, then u∗j > 0 for at least one j ∈ {1, . . . ,J}. For j = 1, . . . ,J, define δ j :=

βv∗j − γ . Substituting v∗j = (δ j + γ)/β into (3.11) and applying Assumption (A1), we obtain

−

(
J

∑
j 6=k

λ jk +βu∗j

)
δ j +

J

∑
j 6=k

λk jδk = 0, j = 1, . . . ,J,
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which can be expressed as Aδδδ = 0, where A = Λ−diag(βu∗) and δδδ = (δ1, . . . ,δJ)
′. Note that A is an

irreducible Metzler matrix and A1 =−βu∗. Then we can apply part (e) of Theorem 2.14 to see that 0

is not an eigenvalue of A. Hence, Aδδδ = 0 implies δδδ = 0 and v∗j = γ/β for j = 1, . . . ,J.

If β ≤ Jγ , then ∑
J
j=1 v∗j = Jγ/β ≥ 1. Therefore, there is no (u,v)∈ E satisfying (3.11) with u j > 0

for at least one j ∈ {1, . . . ,J}.

If β > Jγ , then substituting v∗j = γ/β into (3.10) we obtain

−
J

∑
k 6= j

η jku∗j +
J

∑
k 6= j

ηk ju∗k = 0, j = 1, . . . ,J,

that is, Hu∗ = 0. As previously noted, 0 is an eigenvalue of H. Then, by applying part (b) of Theorem

2.14, we see that the corresponding eigenvector is unique up to constant multiples and positive. The

condition 1
′
u∗ = (1− Jγ/β ) ensures that (u∗,v∗) ∈ E.

From Theorem 3.10 we see that the rate of infection at each patch is equal to the rate of recovery

when the system is in the EE. This implies that the EE (u∗,v∗) satisfies Hu∗ = 0 and Λv∗ = 0.

These two equations are closely related to the equilibrium equations [190, equation 3.1] for a two–

type closed migration process in which individuals do not change their type. These equations then

determine how susceptible and infected individuals are distributed throughout the network.

The stability of the EE can be studied by examining the eigenvalues of the Jacobian of system

(3.6)–(3.7) evaluated at the EE point. If all eigenvalues of the Jacobian have negative real part, then

by part 1 of Theorem 2.5, the equilibrium point is locally asymptotically stable. However, as system

(3.6) – (3.7) must satisfy ∑
J
j=1(u j + v j) = 1, the variable vJ can be eliminated, giving the reduced

system (3.23)–(3.24). I use the Jacobian of this reduced system, evaluated at the EE, to investigate

the stability of the EE point. Note that the Jacobian matrix of (3.23)–(3.24) is given in (3.26).

Let JEE denote the Jacobian matrix of the system (3.23)–(3.24) evaluated at the EE given in

Theorem 3.10. Recall from Section 3.3 that e is the column vector of length J with a 1 in the final

position and 0 elsewhere, and 1 is the column vector with 1 in all entries. These two vectors are used

here again to define the block matrices of JEE . Furthermore, define matrix C as

C = Λ̃−λJ·1
′
, (3.34)

where Λ̃ as given by equation (3.25). The Jacobian matrix JEE is given by

JEE =

A B

C D

 , (3.35)
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where,

A = H− β − Jγ

J
e1
′
,

C =−λJ·1
′
,

D =C− (β − Jγ)

J
I,

and

B jk =


− (β−Jγ)

J , j = J,

(β−Jγ)
J , j = k, j,k = 1, . . . ,(J−1),

0, otherwise.

Let sp(A) denote the spectrum (the set of eigenvalues) of matrix A. Then, the following lemma

provides the relationship between eigenvalues of C and the nonzero eigenvalues of Λ .

Lemma 3.11. Assume (A3) holds. Then, sp(C) = sp(Λ)\{0}.

Proof. Let ϕ be a nonzero eigenvalue of Λ and let g denote the corresponding eigenvector. Denote

the first J−1 elements of g by g−J and the last element by gJ . As Λg = ϕg,

Λ̃g−J +λJ·gJ = ϕg−J,

which can be expressed as (
Λ̃−λJ·1

′
)

g−J +λJ·1
′
g−J +λJ·gJ = ϕg−J.

Noted that 1
′
Λ = 0, so 1

′
g = 0 and gJ =−1

′
g−J . Therefore,(

Λ̃−λJ·1
′
)

g−J = ϕg−J

and ϕ is an eigenvalue of C. If all eigenvalues of Λ were distinct, the proof would be complete. I now

show that all nonzero eigenvalues are repeated the same number of times in both Λ and C by showing

that the identified eigenvectors are linearly independent.

From Assumption (A3), Λ has J linearly independent eigenvectors which we denote by g(i), i =

1, . . . ,J. Assume that g(J) denotes the eigenvector corresponding to the zero eigenvalue. We denote

the first J− 1 elements of g(i) by g(i)−J and the last element by g(i)J . I want to show that the vec-

tors g(1)−J, . . . ,g
(J−1)
−J are linearly independent. Suppose the contrary holds, then there exists scalars

a1, . . . ,aJ−1 which are not all 0, such that

a1g(1)−J + · · ·+aJ−1g(J−1)
−J = 0. (3.36)
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Premultiplying equation (3.36) by 1
′
gives

a1g(1)J + · · ·+aJ−1g(J−1)
J = 0, (3.37)

where I have used the fact that 1
′
g(i)−J = −g(i)J . Together equations (3.36) and (3.37) imply that the

vectors g(i), i = 1, . . . ,J− 1 are linearly dependent, which is a contradiction. Therefore, the vectors

g(1)−J, . . . ,g
(J−1)
−J are linearly independent. Noting that an eigenvalue’s geometric multiplicity is less

than or equal to its algebraic multiplicity, we see that sp(C) = sp(Λ)\{0}.

Lemma 3.11 shows that the eigenvalues of C are the nonzero eigenvalues of Λ. This result is used

in the following theorem to investigate local stability of the EE.

Theorem 3.12. Assume that (A1) – (A5) hold. If β > Jγ , then the EE is locally asymptotically stable.

Proof. Let ϕ be an eigenvalue of JEE with the corresponding eigenvector (h
′
,g′)′ , where h and g are

column vectors whose dimensions, respectively, are J and (J−1). The eigenvalue problem of JEE

is given by

Ah+Bg = ϕh, (3.38)

Ch+Dg = ϕg. (3.39)

Equations (3.38) and (3.39) can be expressed as

Ah+Bg = Hh− (β − Jγ)

J
e1
′
h+

(β − Jγ)

J

 g

−1
′
g

 , (3.40)

Ch+Dg =−λJ·1
′
h+ Λ̃g−λJ·1

′
g− (β − Jγ)

J
g. (3.41)

From Assumption (A4), H has J linearly independent eigenvectors, which we denote by h(1), . . . ,h(J).

Let h(J) denote the eigenvector corresponding to the zero eigenvalue of H. As 1
′
H = 0, it follows

1
′
h(i) = 0 for i = 1, . . . ,J−1. It is easily verified that (h(i)′,0

′
)
′
, i = 1, . . . ,J−1, are eigenvectors of

JEE . The corresponding eigenvalues of JEE are the nonzero eigenvalues of H, which we know all

have negative real parts from (c) and (e) of Theorem 2.14.

Next, using Assumption (A2), we see that (1
′
,−1

′
)
′
is an eigenvector of JEE with corresponding

eigenvalue ϕ =−(β − Jγ)/J, which is negative if β > Jγ .

Let ϕΛ
i , i = 1, . . . ,J−1 be the nonzero eigenvalues of Λ and g(i) the corresponding eigenvectors.

Applying Lemma 3.11, we see that the eigenvalues of D are ωi = ϕΛ
i − (β − Jγ)/J, i = 1, . . . ,J−1.

From the proof of Lemma 3.11, the corresponding eigenvectors of D are g(i)−J . If Assumption (A5)

holds, then (H−ωiI) is invertible and we may define the vectors

h̃
(i)

:=−(β − Jγ)

J
(H−ωiI)−1g(i), (3.42)
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for i = 1, . . . ,J−1. This vector satisfies 1
′
h̃
(i)

= 0 since

1
′
h̃
(i)

=−(β − Jγ)

J
1
′
(H−ωiI)−1g(i) =

(β − Jγ)

Jωi
1
′
g(i)

and we know 1
′
g(i) = 0 as 1

′
Λ = 0. From equations (3.40) and (3.41), we see that (h̃

(i)′
,g(i)′)′ are

eigenvectors of JEE with corresponding eigenvalues ωi.

If the set {−(β−Jγ)/J}∪
(⋃J−1

i=1 ωi
)
∪sp(H)\{0} contained distinct elements, then this set would

be the complete set of 2J−1 eigenvalues of JEE . Furthermore, as all these eigenvalues have negative

real parts when β > Jγ , the proof would be complete. To deal with any potential multiplicity in

the eigenvalues, we show that the 2J− 1 eigenvectors (h(i)′,0
′
)
′
, (1

′
,−1

′
)
′
, (h̃

(i)′
,g(i)′)′ , where i =

1, . . . ,J− 1, are linearly independent. This is achieved in two parts. We first show that the vectors

(h(i)′,0
′
)
′
, (h̃

(i)′
,g(i)′)′ , where i = 1, . . . ,J−1, are linearly independent. We then show that (1

′
,−1

′
)
′

is linearly independent of the rest.

Suppose (h(i)′ ,0
′
)
′
, (h̃

(i)′
,g(i)′)′ , i = 1, . . . ,J−1, are linearly dependent. Then there exists scalars

ai,bi, i = 1, . . . ,J−1, not all 0, such that

J−1

∑
i=1

ai(h(i)′,0
′
)
′
+

J−1

∑
i=1

bi(h̃
(i)′

,g(i)
′
)
′
= 0. (3.43)

Therefore,
J−1

∑
i=1

big(i) = 0.

However, we know from Assumption (A3) that the vectors g(i), i = 1, . . . ,J−1, are linearly indepen-

dent. Therefore, bi = 0 for all i = 1, . . . ,J−1. Equation (3.43) now reduces to

J−1

∑
i=1

aih(i) = 0.

From Assumption (A5), the vectors h(i), i = 1, . . . ,J− 1, are linearly independent, so ai = 0 for all

i = 1, . . . ,J−1. As ai = 0 and bi = 0 for all i = 1, . . . ,J−1, we arrive at a contradiction. Therefore,

the vectors (h(i)′,0
′
)
′
, (h̃

(i)′
,g(i)′)′ , i = 1, . . . ,J−1, are linearly independent.

Now from Assumption (A5), −(β − Jγ)/J is not in the set
(⋃J−1

i=1 ωi
)
∪ sp(H)\{0}. As eigen-

vectors with distinct eigenvalues are linearly independent, the eigenvectors (h(i)′,0
′
)
′
, (h̃

(i)′
,g(i)′)′ ,

i = 1, . . . ,J− 1, and (1
′
,−1

′
)
′

are linearly independent. Therefore, sp(JEE) = {−(β − Jγ)/J} ∪(⋃J−1
i=1 ωi

)
∪ sp(H)\{0} and all the eigenvalues of JEE have negative real parts. This completes the

proof.



Chapter 4

Optimal Migration Patterns

This chapter provides results for optimal migration patterns for susceptible individuals which min-

imise the basic reproduction number and the spectral abscissa of the Jacobian matrix of the ODE,

derived in Chapter 3, evaluated at the DFE. It is shown that if the migration rates of infected indi-

viduals satisfy H1 = 0, then setting the migration rates of susceptible individuals to satisfy Λ1 = 0

simultaneously minimises both measures.

4.1 Introduction

One of the purposes of modelling epidemics is to provide a useful guide to decision makers about

strategies which can be used to control the spread of a disease. Most control strategies aim either

to decrease the number of susceptibles in the population, and, where possible, to below a threshold

level, or to increase the rate of removal of infectives to reduce their mixing with the population of

susceptibles (that is, increase the recovery rate), or to decrease the pairwise rate of infectious contact

between infectives and susceptibles (that is, decrease the disease transmission rate), or to achieve a

combination of these measures. For example, immunising some or all of the population reduces the

initial number of susceptibles; operating a screening program or raising public awareness of higher

disease prevalence may increase the recovery rate or reduce the disease transmission rate (or both);

discouraging the assembly of large crowds or quarantining infected individuals reduces the disease

transmission rate [60, Chapter 7].

Immunisation and patient isolation were shown as effective strategies in the global eradication of

smallpox [39, 78, 140, 174]. On the other hand, early case detection, treatment and public awareness

80
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were successful methods in reducing the spread of AIDS in highly endemic regions [201, 215, 156].

In the case of influenza, travel restrictions in conjunction with vaccination and discouragement of

public gatherings were proposed as possible control measures [46, 76, 83, 103, 193]. Similarly, travel

restrictions together with patient isolation were proposed as possible control measures in reducing the

spread of SARS in its early stage [104, 175, 180]. While immunisation, treatment, patient isolation

and public awareness are effective control strategies, their implementation can be more costly in

comparison with travel restrictions [76]. Moreover, for an emerging disease for which a vaccine is not

available and a treatment is unknown, the most sensible method of reducing its spread to distant areas

is to control travel patterns. This work aims to provide an optimal migration pattern for susceptible

individuals which reduces the spread of a disease in its initial stage.

Most studies concerning movement of individuals between groups have shown that movement can

influence the spread of a disease in a complicated way, depending on the heterogeneity of groups with

regard to the demographic and the disease parameters. While some results have shown that movement

of either susceptible or infected individuals can enhance both disease extinction and persistence [10,

98, 107, 141, 202, 209, 210], others have demonstrated that increased travel rate of either susceptible

or infected individuals can cause disease extinction [7, 152]. However, some results have suggested

that increased movement of infected individuals can decrease the spread of a disease [3, 52, 183] or

increase the final size of an epidemic [22, 50]. Most of these results were found by analysing the

effect of travel rates on the stability of either the disease–free or the endemic equilibria or on the basic

reproduction number.

In contrast to the above studies, the approach used here is to formulate and solve convex optimi-

sation problems. The results provide an optimal migration strategy for susceptible individuals which

minimises the basic reproduction number and the spectral abscissa of the Jacobian matrix of the ODE,

which was derived in Chapter 3, evaluated at the disease–free equilibrium. Optimisation of network

movement and resource allocation for minimising the total number of infected individuals for the

frequency–dependent SIS model proposed in [3] was studied in [184]. They used a genetic algorithm

to obtain numerical solutions for their optimisation problems. Unlike the results in [184], the analysis

performed here provides exact analytic results for the optimisation problems.

The rest of this chapter is organised as follows. In Section 4.2, I review the necessary materials

from Chapter 3 which are required for the analysis in this chapter. Section 4.3 provides the result on

minimising the basic reproduction number. In Section 4.4, I determine an optimal migration pattern

for susceptible individuals which minimises the spectral abscissa of the Jacobian matrix of the ODE,

evaluated at the disease–free equilibrium. Finally, in Section 4.6, I make some concluding comments

about the results obtained in this section.
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4.2 The ODE Model and Relevant Results

The ODE model derived in Chapter 3 is described using the variables u j and v j, j = 1, . . . ,J, where

J is the number of patches in the network. These variables, respectively, define the proportion of

infected and susceptible individuals at patch j, relative to total population. Model parameters which

appear in the ODE are the disease transmission rates, β j, the recovery rates, γ j, and the migration

rates. The migration rate of susceptible and infected individuals from patch j to k, respectively, are

given by λ jk and η jk. The ODE model is given by

du j

dt
=−

J

∑
k 6= j

η jku j +β ju jv j− γ ju j +
J

∑
k 6= j

ηk juk, (4.1)

dv j

dt
=−

J

∑
k 6= j

λ jkv j−β ju jv j + γ ju j +
J

∑
k 6= j

λk jvk, (4.2)

for j = 1, . . . ,J.

From the analysis of the ODE made in Chapter 3, the results required for this chapter are those ob-

tained for the disease–free equilibrium (DFE). To review these results, some definitions are required.

Recall that the matrices for the migration rates are defined as

Λ jk =

λk j, j 6= k,

−∑
J
l 6= j λ jl, j = k,

and H jk =

ηk j, j 6= k,

−∑
J
l 6= j η jl, j = k.

(4.3)

These matrices are assumed irreducible.

It is shown that a unique DFE of the ODE always exists and is given by (0,v∗) where Λv∗ = 0

and 1
′
v∗ = 1. The DFE is locally asymptotically stable if R0 < 1, but unstable if R0 > 1, where R0 is

the spectral radius of the next generation matrix

[diag(βββ )diag(v∗)][diag(γγγ)−H]−1, (4.4)

where βββ = (β1, . . . ,βJ), γγγ = (γ1, . . . ,γJ) and v∗ is the proportion of susceptible individuals at the DFE.

For a formal statements of these results, I refer the reader to Theorems 3.2 and 3.4 of Chapter 3.

From now on I assume that all patches have the same disease transmission rate and the same

recovery rate. More precisely, β j = β and γ j = γ for all j = 1, . . . ,J. Under these assumptions the

next generation matrix is given by

diag(βv∗)(γI−H)−1 . (4.5)

The following assumption on the migration rates of infected individuals will be employed in the

analyses made in this chapter.



4.3. MINIMISING R0 83

(A2) H1 = 0.

Recall that Assumption (A2) implies that, for each patch, the rate that an infected individual travels

from the patch to all the other patches is equal to the rate that an infected individual enters that patch

from all other patches.

As discussed in Chapter 3, the local stability result for the DFE obtained in Theorem 3.4 suggests

that it may be possible to stop the disease invading the population by reducing R0 since, if a small

number of infected individuals are introduced into a disease–free population with R0 less than 1, the

disease will die out. As R0 depends on the migration rates, it may be reduced by altering the migration

rates. This is explored in the following section.

4.3 Minimising R0

It can be seen from equation (4.5) that the next generation matrix depends on the migration rates of

both susceptible and infected individuals. It depends on the migration rates of susceptible individuals

through v∗, where v∗ is the proportion of susceptible individuals at the DFE. Thus, it may be possible

to reduce R0 by altering the migration rates of infected or susceptible individuals. It can be seen

from Figure 3.6 that, R0 may be reduced by increasing the speed at which the infected individuals

move around the network. However, the speed of movement of susceptible individuals has no effect

on R0. This is because if we consider the migration rates of susceptibles as given by cΛ , with c > 0

interpreted as the speed of movement. Then, from basic linear algebra theory, we know that cΛv∗= 0.

This implies that the DFE remains the same, no matter the value of c we choose. Consequently, R0 is

the same for all c. This observation implies that it is only the migration pattern and not the speed of

susceptibles which influences R0. Thus, in this section I investigate the problem of finding the optimal

migration pattern for susceptible individuals which minimises the basic reproduction number R0. In

order to proceed with this analysis, I firstly define some notations.

Define the matrices D and A as

D := diag(βv) and A := (γI−H)−1 , (4.6)

where v j ≥ 0 for j = 1, . . . ,J and 1
′
v = 1. Let ρ(DA) be the spectral radius of DA and define

L := {Λ | Λ jk as defined in equation (4.3)}, (4.7)

X =

{
D is a J× J diagonal matrix | D j j ≥ 0, j = 1, . . . ,J;

J

∑
j=1

D j j = β

}
.
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Note that X consists of the diagonal matrices given in (4.6). Furthermore, for any D in X there is

a corresponding Λ in L satisfying the equation Λv = 0. This is achieved by taking λ jk = Dkk for

all j,k = 1, . . . ,J. Thus, minimising R0 over L is equivalent to minimising R0 over X . Therefore,

minimising R0 is equivalent to the following optimisation problem.

minimise ρ(DA), (4.8)

subject to D j j ≥ 0, for j = 1, . . . ,J,
J

∑
j=1

D j j = β . (4.9)

This optimisation problem will be shown to be convex. Under the assumption on the migration rates

of infected individuals (A2), an explicit solution to the problem can be found.

Theorem 4.1. Suppose (A2) holds. Then R0 is minimised over L if Λ satisfies Λ1 = 0.

Proof. The first step of the proof is to show that the optimisation problem given in (4.8)–(4.9) is a

convex optimisation problem. Since X is a convex set, then according to Definition 2.10, problem

(4.8)–(4.9) is a convex optimisation problem if ρ(DA) is a convex function on X . We show that

ρ(DA) is a convex function on X as follows.

Note that−A−1 = (H− γI) is an irreducible Metzler matrix and s(−A−1) =−γ < 0. By applying

part (g) of Theorem 2.14, we see that A = (γI−H)−1 is a positive matrix. Since the off diagonal

elements of A−1 = (γI−H) are nonpositive, by Definition 2.11, A−1 is a nonsingular M–matrix.

Then, by applying Theorem 2.19, we conclude that ρ(DA) is a convex function on the set X .

The next step is to find an optimal condition for the optimisation problem (4.8)–(4.9). By Lemma

2.18, D∗ is optimal if and only if D∗ ∈ X and

J

∑
j=1

∂ρ(DA)
∂D j j

∣∣∣∣
D∗
(D j j−D∗j j)≥ 0 (4.10)

for all D ∈ X . Now, suppose the diagonal elements of D∗ are positive. Then, D∗A is an irreducible

positive matrix. So we can apply parts (a) and (e) of Theorem 2.11 to conclude that ρ(D∗A) is

positive and a simple eigenvalue of D∗A. Furthermore, parts (b) and (d) of Theorem 2.11 ensure that

D∗A has strictly positive left and right eigenvectors corresponding to the eigenvalue ρ(D∗A), which

are unique to constant multiples. Let η and ξ , respectively, be the left and right eigenvectors of D∗A

corresponding to the eigenvalue ρ(D∗A), such that η
′
ξ = 1. Then, it can be shown that (see [81,

equation (4.22)])

∂ρ(DA)
∂D j j

∣∣∣∣
D∗

= η
′ ∂D
∂D j j

Aξ = ρ(D∗A)
η jξ j

D∗j j
, j = 1, . . . ,J. (4.11)
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Therefore, D∗ minimises ρ(DA) if
J

∑
j=1

η jξ j

D∗j j
D j j ≥ 1, (4.12)

for all D ∈ X .

I claim that D∗ = β

J I satisfies (4.12). Note that D∗ = β

J I is in the set X . The left and right

eigenvectors of D∗A, corresponding to eigenvalue ρ(D∗A), satisfy the following systems of equations:

η
′
(γI−H)−1 =

1
γ

η
′

(γI−H)−1
ξ =

1
γ

ξ . (4.13)

The eigenvectors η
′
and ξ , respectively, are the left and right eigenvectors of H corresponding to the

zero eigenvalue. Therefore, η
′
= 1

′
. Imposing Assumption (A2) implies ξ = J−11 so that η

′
ξ = 1.

Furthermore, the optimal D∗ corresponds to v∗= J−11. To complete the proof I note that if v∗= J−11,

then Λ1 = 0.

Theorem 4.1 implies that if the infected individuals in the population move between patches un-

der the assumption given by (A2), then the susceptible individuals can take their migration pattern

satisfying Λ1 = 0 to minimise R0. Now, R0 = β/(Jγ) when Λ1 = 0. Therefore, if β/(Jγ) < 1 and

the population initially contains a small number of infected individuals, then the disease will become

extinct quickly since then the DFE is stable. If β/(Jγ) > 1, then the disease will spread through the

population. However, it may be possible to slow down the initial spreading rate of the disease by

minimising the initial growth rate of the disease.

4.4 Minimising the Spectral Abscissa

The type of growth of a spatial epidemic in its early phase depends on how individuals are located

in space. For certain diseases spread in wildlife or plants, there may not be a natural partitioning

of the population into groups. Instead, it is usually assumed that individuals are either uniformly or

randomly distributed, with their density reflecting landscape and environmental factors [113, Section

7.4]. In such cases, the space is treated as continuous and movement is assumed completely random.

For these models, the early phase of a disease outbreak is known to have uniform growth [65, Chapter

8]. However, for the metapopulation model considered in this thesis, the initial phase of the epidemic

exhibits exponential growth [67]. The rate of this exponential growth is given by the maximum real

part (spectral abscissa) of the eigenvalues of the Jacobian matrix of system (4.1)–(4.1), evaluated at

the DFE. If the spectral abscissa is positive but small, then the number of infectives in the population

in the initial stage will be reduced. It is the aim of this section to find an optimal migration pattern for



CHAPTER 4. OPTIMAL MIGRATION PATTERNS 86

susceptible individuals that minimises the spectral abscissa of the Jacobian matrix of the ODE (4.1)–

(4.1), evaluated at the DFE. I note that minimising the spectral abscissa is not the same as minimising

R0. This is because, in general, there is no explicit relation between the value of the spectral abscissa

and the value of R0, in the sense that infection with a high R0 does not automatically lead to fast

exponential increase of infected individuals [67]. However, the value of R0 does determine the sign of

the spectral abscissa since R0 is greater than or equal to 1 if and only if the spectral abscissa is greater

than or equal to 0. Equivalently, R0 is less than 1 if and only if the spectral abscissa is less than 0 [67].

Using the same argument as in the Appendix of Chapter 3, we can use the Jacobian of the reduced

system (3.23)–(3.24) to investigate the analysis in this section. The Jacobian matrix of system (3.23)–

(3.24) evaluated at the DFE is given by

JDFE =

A 0

B C

 , (4.14)

where

A = H− γI +diag(βv∗),

B jk =

−λJ j, j 6= k,

γ−βv∗j −λJ j, j = k,

and

C = Λ̃−λJ·1
′
,

with Λ̃ as given in equation (3.25). The spectrum of JDFE is given by union of the spectrum of A and

the spectrum of C. Note that, by Lemma 3.11, the eigenvalues of C are the nonzero eigenvalues of Λ.

Let V = H− γI and A = V +D, where D as given in (4.6). Let s(JDFE) be the spectral abscissa of

JDFE . Minimising s(JDFE) over L is equivalent to the following optimisation problem.

minimise s(JDFE), (4.15)

subject to D j j ≥ 0, for j = 1, . . . ,J,
J

∑
j=1

D j j = β . (4.16)

This optimisation problem will be shown to be convex. The following result gives an explicit solution

to this optimisation problem under the assumption on the migration rates of infected individuals (A2).

Theorem 4.2. Suppose (A2) holds. Then s(JDFE) is minimised over L if Λ satisfies Λ1 = 0.

Proof. For any D in X there is a corresponding Λ in L satisfying Λv = 0 and s(C) ≤ s(A). This is

achieved by choosing λ jk = c× s(A)Dkk
β

for all j,k = 1, · · · ,J, where c is a constant chosen depending
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on the sign of s(A). With this choice of Λ, s(C) = −c× s(A). If s(A) > 0, we can choose c to be

any positive constant so that s(C) < s(A). If s(A) < 0, we can choose c = −a with a ≥ 1 so that

s(C) ≤ s(A). In either case, we have s(JDFE) = s(A). Therefore, minimising s(JDFE) reduces to

minimising s(A) subject to the constraints given in (4.15)–(4.16).

Since A = V +D, where V is an irreducible Metzler matrix and D is a diagonal matrix, then, by

Theorem 2.20, s(V +D) is a convex function on the set X . As X is a convex set, it follows that the

problem (4.15)–(4.16) is a convex optimisation problem.

Now, by Lemma 2.18, D∗ ∈ X is optimal if and only if

J

∑
j=1

∂ s(V +D)

∂D j j

∣∣∣∣
D∗
(D j j−D∗j j)≥ 0 (4.17)

for all D ∈ X . Note that (V +D∗) is an irreducible Metzler matrix. It follows from parts (b) and (d)]

of Theorem 2.14, that s(V +D∗) is a simple eigenvalue of V +D∗ and s(V +D∗) has positive left and

right eigenvectors, which are unique to constant multiples. Let x and y be, respectively, the left and

right eigenvectors of V +D∗ corresponding to the eigenvalue s(V +D∗), such that x′y = 1. Then by

using the chain rule and applying Corollary 2.21 we have

∂ s(V +D)

∂D j j

∣∣∣∣
D∗

= x jy j, j = 1, . . . ,J. (4.18)

Therefore, D∗ minimises s(V +D) if

J

∑
j=1

x jy j(D j j−D∗j j)≥ 0, (4.19)

for all D ∈ X .

I claim that D∗ = β

J I satisfies (4.19). Note that the left and right eigenvectors of V +D∗, corre-

sponding to the eigenvalue s(V +D∗), satisfy the following systems of equations:

x′
(

H +(β

J − γ)I
)
= (β

J − γ)x′, (4.20)(
H +(β

J − γ)I
)

y = (β

J − γ)y. (4.21)

By applying Assumption (A2) and using the same arguments as in the proof of Theorem 4.1, we have

x′ = 1
′

and y = J−11 which satisfies condition (4.19). The optimal D∗ corresponds to v∗ = J−11 and

the proof is completed by noting that if v∗ = J−11, then, Λ1 = 0.

4.5 Numerical Examples

In this section, I provide some numerical examples which confirm the results obtained in Theorem 4.1

and Theorem 4.2, and some examples in which the assumption of the two theorems do not hold. I also
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provide numerical examples in which patch dependent transmission and recovery rates are considered

for the two optimisation problems studied in this chapter. One of the purposes of computing these

numerical examples is to see if Assumption (A2) is relaxed in Theorem 4.1 and Theorem 4.2, whether

the migration pattern of susceptible individuals satisfy Λ1 = 0 or not. Another aim is to see if patch

dependent infection and recovery rates are assumed, whether the conclusion of Theorem 4.1 and

Theorem 4.2 still holds or not. All numerical experiments were performed for the case J = 2 using

MapleTM15 software.

In order to compute the numerical examples, I note that the diagonal matrix D in the optimisation

problems (4.8)–(4.9) and (4.15)–(4.16) depends on v, with v j ∈ [0,1] and ∑
J
j=1 v j = 1. Therefore, to

find the optimal D which minimises the basic reproduction number R0 or the spectral abscissa of A in

the Jacobian matrix (4.14) is equivalent to finding an optimal v such that v j ∈ [0,1] and ∑
J
j=1 v j = 1.

With this observation I computed R0 and s(A) by varying v1 from 0 to 1. The corresponding value for

v2 is determined so that v1 + v2 = 1 holds. The approximate value for the optimal v∗ is then used to

compute λ jk, the migration rates for susceptible individuals.

Figures 4.1, 4.2 and 4.3 show plots for patch independent disease transmission and recovery rates.

For these plots, the disease transmission and recovery rates were chosen, respectively, as β j = β = 3

and γ j = γ = 1 in both patches. Figures 4.4, 4.5 and 4.6 show plots for patch dependent disease

transmission and recovery rates. The transmission and recovery rates for these plots were chosen as

β1 = 2, β2 = 3, γ1 = 1 and γ2 = 1.2.

Figure 4.1 represents plots of R0 when the migration rates of infected individuals satisfy Assump-

tion (A2), that is H1 = 0. The specific values for the migration rates of infected individuals are given

in the figure. It can be seen from Figure 4.1 that for each plot the minimum value of R0 is attained

when v∗1 = v∗2 = 0.5. The corresponding optimal D is D∗ = diag(3×v∗) = diag(1.5,1.5). Choosing

λ jk = D∗kk, for j,k = 1,2, implies that Λ1 = 0, confirming the result of Theorem 4.1.

Figure 4.2 show plots of R0 when the migration rate of infected individuals do not satisfy As-

sumption (A2). The specific parameters used for the migration rates of infected individuals are given

in Table 4.1 along with the optimal v∗, the corresponding minimum values of R0 and the optimal mi-

gration rates of susceptible individuals. These plots show that when Assumption (A2) is not satisfied

the optimal migration pattern for susceptible individuals do not satisfy Λ1 = 0. This suggests that for

the conclusion of Theorem 4.1 to hold, Assumption (A2) must be satisfied.
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(a) η12 = η21 = 1 (b) η12 = η21 = 0.2

(c) η12 = η21 = 0.7 (d) η12 = η21 = 1.5

Figure 4.1: Plots of R0 for the case H1 = 0, and for patch independent transmission and recovery

rates. Each plot shows that R0 is minimum when v1 = v2 = 0.5, which implies that Λ1 = 0.

Parameters (a) (b) (c) (d) (e) (f)

η12 1.5 3 2 0.2 0.5 2

η21 2 2 1 0.5 1.5 0.5

v∗1 0.38 0.74 0.73 0.43 0.28 0.80

v∗2 0.62 0.26 0.27 0.57 0.72 0.20

R∗0 1.47 1.428 1.382 1.451 1.322 1.200

λ12 1.86 0.78 0.81 1.71 2.16 0.60

λ21 1.14 2.22 2.19 1.29 0.84 2.40

Table 4.1: Parameter values used to produce the plots in Figure 4.2
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Plots of R0 for the case H1 6= 0, and for patch independent transmission and recovery

rates. Each plot shows that R0 is minimum when v1 6= v2, which implies that Λ1 6= 0.
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Figure 4.3 (a) and (b) show plots of s(A) for the case when the migration rate of infected in-

dividuals satisfy Assumption (A2). Plots (c) to (f) show the case when Assumption (A2) is not

satisfied. The specific parameters used for the migration rates of infected individuals are given in

Table 4.2 along with the optimal v∗, the corresponding optimal value of s(A) and values for the mi-

gration rate of susceptible individuals. The migration rates for susceptible individuals are chosen as

λ jk = c× s(A)Dkk
β

= s(A)vk, for j,k = 1,2, with c = 1. It can be inferred from plots (a) and (b) that

when Assumption (A2) is satisfied, the optimal migration pattern for susceptible individuals follow

Λ1 = 0, which confirms the result obtained in Theorem 4.2. However, when Assumption (A2) is not

satisfied, plots (c) to (f), show that the optimal migration pattern for susceptible individuals cannot

be chosen to follow Λ1 = 0. This suggests that Assumption (A2) is required for the conclusion of

Theorem 4.2 to hold.

Figure 4.4 and Figure 4.5 show plots of R0 with patch dependent transmission and recovery rates,

respectively, for the case when Assumption (A2) holds and when it does not hold. As previously

stated, the disease transmission and recovery rates for the plots in Figure 4.4 and Figure 4.5 were

taken as β1 = 2, β2 = 3, γ1 = 1 and γ2 = 1.2. The remaining parameters used in these plots are given

in Figure 4.4 and Figure 4.5 along with the optimal v∗ and the corresponding optimal migration rates

for susceptible individuals. In both Figure 4.4 and Figure 4.5, the migration rates for susceptible indi-

viduals are chosen as λ jk = Dkk = βkvk. These plots suggest that when patch dependent transmission

and recovery rates are considered, the conclusion of Theorem 4.1 may not hold even if Assumption

(A2) is satisfied.

Parameters (a) (b) (c) (d) (e) (f)

η12 1 0.2 1 0.2 0.5 2

η21 1 0.2 2 0.5 1.5 0.5

v∗1 0.50 0.50 0.33 0.45 0.33 0.75

v∗2 0.50 0.50 0.67 0.55 0.67 0.25

s(A)∗ 0.5 0.5 0.414 0.466 0.366 0.25

λ12 0.25 0.25 0.28 0.26 0.25 0.06

λ21 0.25 0.25 0.14 0.21 0.12 0.19

Table 4.2: Parameter values used to produce the plots in Figure 4.3
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Plots of s(A) for patch independent transmission and recovery rates. Plots (a) and (b) are for the

case H1 = 0 and plots (c) to (f) are for the case H1 6= 0. The minimum value of s(A) and the corresponding

values of v1 and v2 determines that, Λ1 = 0 for the plots in (a) and (b) and Λ1 6= 0 for plots in (c) to (f).
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(a) η12 = η21 = 1, v∗1 = 0.65, v∗2 = 0.35 (b) η12 = η21 = 0.2, v∗1 = 0.57, v∗2 = 0.43

λ12 = 1.05, λ12 = 1.30 λ12 = 1.29, λ12 = 1.14

(c) η12 = η21 = 1.5, v∗1 = 0.69, v∗2 = 0.31 (d) η12 = η21 = 2, v∗1 = 0.73, v∗2 = 0.27

λ12 = 0.93, λ12 = 1.38 λ12 = 2.19, λ12 = 0.54

Figure 4.4: Plots of R0 for the case when H1 = 0, and for patch dependent transmission and recovery

rates. The values of v1 and v2 at which R0 is minimum determine that Λ1 6= 0.
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(a)η12 = 1, η21 = 1.5, v∗1 = 0.56, v∗2 = 0.44 (b)η12 = 1, η21 = 0.5, v∗1 = 0.72, v∗2 = 0.28

λ12 = 0.1.32, λ12 = 1.12 λ12 = 0.84, λ12 = 1.44

(c) η12 = 2, η21 = 3, v∗1 = 0.56, v∗2 = 0.44 (d)η12 = 0.2, η21 = 0.5, v∗1 = 0.52, v∗2 = 0.48

λ12 = 1.32, λ12 = 1.12 λ12 = 1.44, λ12 = 1.04

Figure 4.5: Plots of R0 for the case when H1 6= 0, and for patch dependent transmission and recovery

rates. The values of v1 and v2 at which R0 is minimum determine that Λ1 6= 0.

Figure 4.6 show plots of s(A) with patch dependent transmission and recovery rates. Parts (a) and

(b) show plots for the case when Assumption (A2) holds and parts (c) to (f) are plots for the case when

Assumption (A2) is not satisfied. The specific parameters used to produce the plots in Figure 4.6 are

given in Table 4.3. The migration rates of susceptible individuals are chosen as λ jk = c× s(A)Dkk
βk

=

s(A)vk, for j,k = 1,2, with c = 1. These plots suggest that when patch dependent transmission and

recovery rates are considered, the conclusion of Theorem 4.2 may not hold even if Assumption (A2)

is satisfied.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Plots of s(A) for patch dependent transmission and recovery rates. Plots (a) and (b) are for the

case when H1 = 0 and plots (c) to (f) are for the case when H1 6= 0. The minimum value of s(A) and the

corresponding values of v1 and v2 determine that Λ1 6= 0 for all cases.
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Parameters (a) (b) (c) (d) (e) (f)

η12 1 0.2 0.2 1 1 2

η21 1 0.2 0.5 1.5 0.5 3

v∗1 0.64 0.58 0.53 0.56 0.72 0.56

v∗2 0.36 0.42 0.47 0.44 0.28 0.44

s(A)∗ 0.10 0.116 0.11 0.12 0.013 0.12

λ12 0.036 0.05 0.05 0.53 0.004 0.53

λ21 0.064 0.07 10.06 0.07 0.009 0.07

Table 4.3: Parameter values used to produce the plots in Figure 4.6

It can be seen from the plots given in all figures that, whether the migration rates of infected

individuals satisfy H1 = 0 or not, the maximum of R0 and s(A) occurs when v1 is either 0 or 1. If

v1 = 0 then λ21 = 0, and if v1 = 1, then λ12 = 0, as v2 = 0 in this case. In either case, this implies

that the migration of susceptible individuals is in one direction, either from patch 1 to patch 2 or from

patch 2 to patch 1. Therefore, it appears that, for the two patch case, the worst case migration for

susceptible individuals is when there is only one way migration between the two patches.

4.6 Conclusions

The aim of the analyses in this chapter is to provide optimal migration strategies which can be applied

to minimise the basic reproduction number and the initial growth rate of a disease. The results show

that if the migration rates of infected individuals follow H1 = 0, then setting the migration rates of

susceptible individuals to satisfy Λ1 = 0 simultaneously minimises both measures. Instead, if we

consider minimising these two measures over possible H when Λ is given, the optimisations become

trivial when Λ satisfies Λ1 = 0. In this case the solution to the problem (4.8)–(4.9) is β/(Jγ) and

that to problem (4.15)–(4.16) is β/(J)− γ . If β/(Jγ)< 1, then β/(J)− γ < 0 and the DFE is locally

asymptotically stable. Consequently, the disease will not spread. If β/(Jγ) > 1, then the DFE is

unstable and the disease will spread. The rate of the spread of the disease in its initial stage is given

by β/(J)− γ .

As mentioned in Chapter 3, the migration patterns H1 = 0 and Λ1 = 0 can be satisfied when H

and Λ are symmetric, in which case the migration rates of susceptible individuals between any given

two patches are equal and the same implication applies to the migration rates of infected individuals.

Such an assumption was used in [105, 182, 207] to model the spread of influenza between cities,



4.6. CONCLUSIONS 97

based on air travel data. Therefore, the assumption imposed on the migration rates in Theorem 4.1

and Theorem 4.2 can be applied in some practical situations. As noted above, when Λ1 = 0, the

basic reproduction number is given by β/Jγ . Therefore, complete eradication of a disease is only

possible when β/(Jγ) is less than 1. On the other hand, if β/(Jγ) is greater than 1, then Theorem 4.2

provides a means to minimise the initial growth rate of the disease. This is a useful control strategy

in conjunction with or in the absence of any other preventive measure.

Numerical examples suggest that the conclusion of Theorem 4.1 and Theorem 4.2 may not hold

if the assumption on the migration rates of infected individuals (Assumption (A2)) is relaxed or when

patch dependent transmission and recovery rates are considered. It is unclear if the same method of

proof can be applied to provide an analytic result after relaxing Assumption (A2) in both theorems,

since it is not easy to choose the right eigenvector to satisfy the optimal conditions given in (4.12) and

(4.19) in this case. In the case of patch dependent transmission and recovery rates, the choice of both

the left and right eigenvectors is difficult to determine. For an equivalent SIR model, the parameters

R0 and s(A) defined in this chapter remains the same, so the results determined in Theorem 4.1 and

Theorem 4.2 are applicable for the SIR model too. Further direction of exploration is to consider

demographic factors such as births and deaths. In this case I expect similar techniques as in this

chapter to be applicable for minimising the basic reproduction number and the spectral abscissa of

the Jacobian matrix of the approximating ODE.
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[150] I. Nåsell. Extinction and quasi–stationarity in the Verhulst logistic model. J. Theoret. Biol.,

211(1):11–27, 2001.
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