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superintegrable Lissajous systems on the sphere
and of their rational extensions
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(Received 22 March 2015; accepted 22 May 2015; published online 3 June 2015)

We extend the construction of 2D superintegrable Hamiltonians with separation of
variables in spherical coordinates using combinations of shift, ladder, and super-
charge operators to models involving rational extensions of the two-parameter
Lissajous systems on the sphere. These new families of superintegrable systems
with integrals of arbitrary order are connected with Jacobi exceptional orthogonal
polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we
present an algebraic derivation of the degenerate energy spectrum for the one- and
two-parameter Lissajous systems and the rationally extended models. These results
are based on finitely generated polynomial algebras, Casimir operators, realizations
as deformed oscillator algebras, and finite-dimensional unitary representations. Such
results have only been established so far for 2D superintegrable systems sepa-
rable in Cartesian coordinates, which are related to a class of polynomial algebras
that display a simpler structure. We also point out how the structure function of
these deformed oscillator algebras is directly related with the generalized Heisen-
berg algebras spanned by the nonpolynomial integrals. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4922020]

I. INTRODUCTION

Realizations of polynomial associative algebras, arising in the classification of two-dimensional
quantum superintegrable systems, in terms of a deformed oscillator algebra have proved very useful
to study representations and algebraically obtain the energy spectrum of such systems. Initiated
by Daskaloyannis1 in the case of quadratic associative algebras generated by two second-order
integrals of motion, they were later on extended to cubic2 and quartic3 associative algebras. Very
recently, the polynomial associative algebras generated by a second-order integral of motion and
one of order M were studied in their full generality.4

These realizations have among others found applications to new superintegrable systems con-
nected with exceptional orthogonal polynomial (EOP) families,5,6 a domain that has aroused a
lot of interest (see, e.g., Refs. 7–16 and references quoted therein) since the introduction of such
families.17,18 In this context, some other procedures, such as the recurrence relation method19 and
the direct action of the ladder operators, used to build the integrals of motion,20 on the constituent
one-dimensional Hamiltonian eigenstates have also been used.21,22

All our previous studies on this subject5,6,22 were devoted to superintegrable systems separable
in Cartesian coordinates. We will start considering here other types of systems and turn our attention
to a recent study of so-called (one- and two-parameter) Lissajous systems on the sphere.23,24 The
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name “Lissajous” given to such systems comes from the fact that the corresponding classical trajec-
tories on the sphere look like the well-known Lissajous curves on the plane. The authors of Refs. 23
and 24 used a unified procedure to compute the integrals of motion of the classical and quantum
superintegrable systems, based on the factorization method. Furthermore, and more importantly for
us, they devised a procedure to construct a set of polynomial integrals of motion equivalent to the
set of nonpolynomial ones so derived.

The purpose of the present paper is twofold: first to show that this set of polynomial integrals of
motion may be used as the starting point for the construction of a polynomial associative algebra of
the type considered in Ref. 4 and, consequently, for an approach in terms of a deformed oscillator
algebra, and second to prove that some rational extensions of Lissajous systems can be constructed
via combination of ladder, shift, and supercharge operators and are amenable to a similar analysis.

In Sec. II, the quantum Lissajous systems considered in Refs. 23 and 24 are presented and
some of their rational extensions are constructed. The procedure used to derive polynomial integrals
of motion is then reviewed. Section III is devoted to obtain the realizations as deformed oscillator
algebra with two approaches, one based on the polynomial associative algebras of the polyno-
mial integrals of motion and the other relying on the generalized Heisenberg algebra generated by
the nonpolynomial integrals. In Sec. IV, we obtain the finite-dimensional unitary representations
(unirreps) and the corresponding energy spectrum, which we compare with the physical spectrum.
Finally, Sec. V contains the Conclusion.

II. QUANTUM SUPERINTEGRABLE LISSAJOUS SYSTEMS AND THEIR
RATIONAL EXTENSIONS

A. Definition of the systems

The Lissajous systems on the sphere23,24 correspond to the Hamiltonians

H = −∂2
θ − cot θ∂θ −

1
sin2θ

∂2
ϕ −

k2

sin2θ

(
1/4 − α2

cos2kϕ
+

1/4 − β2

sin2kϕ

)
= −∂2

θ − cot θ∂θ +
k2

sin2θ

(
−∂2

φ +
α2 − 1/4

cos2φ
+

β2 − 1/4
sin2φ

)
,

(2.1)

where 0 < θ < π, k = m/n is a rational number, and either one or two terms are present in the
potential. In the former case, we assume α ≥ 1, β = 1/2, −π/(2k) < ϕ < π/(2k), and −π/2 < φ =
kϕ < π/2, whereas in the latter, we suppose α ≥ 1, β ≥ 1, 0 < ϕ < π/(2k), and 0 < φ = kϕ < π/2.
The range of the parameters taken here ensures that the potentials are strongly repulsive at the ends
of the interval, the singularities being there of the type g/φ2 (g ≥ 3/4) or g/(π/2 − φ)2 (g ≥ 3/4).
This means that at each extremity, only one basis solution is quadratically integrable and that the
corresponding Hamiltonian is essentially self-adjoint.25–27

Hamiltonian (2.1) is separable in the coordinates θ and φ and the corresponding eigenvalue
equation

HΨ(K )
µ,ν(θ,φ) = EK

µ Ψ
(K )
µ,ν(θ,φ) (2.2)

has the solutions

Ψ
(K )
µ,ν(θ,φ) = ΘK

µ (θ)Φν(φ), EK
µ = (K + µ)(K + µ + 1), µ, ν = 0,1,2, . . . , (2.3)

where

Θ
K
µ (θ) = NK

µ sinKθ C
(K+ 1

2 )
µ (−cos θ),

NK
µ = (−1)µ2K

Γ

(
K +

1
2

)
*
,

µ!
�
µ + K + 1

2

�

πΓ(µ + 2K + 1)
+
-

1/2 (2.4)
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and

Φν(φ) = Nν cosλφC(λ)
ν (sin φ), λ = 1

2 (1 + 2α),

Nν = 2λ− 1
2Γ(λ)

(
ν!(ν + λ)
πΓ(ν + 2λ)

)1/2 (2.5)

or

Φν(φ) = Nν(cos φ)α+ 1
2 (sin φ)β+ 1

2 P(α,β)
ν (−cos 2φ),

Nν = (−1)ν
(

2(α + β + 1 + 2ν)ν!Γ(α + β + 1 + ν)
Γ(α + 1 + ν)Γ(β + 1 + ν)

)1/2 (2.6)

in the one- or two-parameter case, respectively. Here, C(λ)
ν (x) denotes a Gegenbauer polynomial and

P(α,β)
ν (x) a Jacobi one.28 The functions Φν(φ), given in (2.5) or (2.6), satisfy the equation

HφΦν(φ) = ϵ2
νΦν(φ), Hφ = −∂2

φ +
α2 − 1/4

cos2φ
, ϵν = λ + ν, ν = 0,1,2, . . . , (2.7)

or

HφΦν(φ) = ϵ2
νΦν(φ), Hφ = −∂2

φ +
α2 − 1/4

cos2φ
+

β2 − 1/4
sin2φ

,

ϵν = α + β + 1 + 2ν, ν = 0,1,2, . . .
(2.8)

according to which case applies, while ΘK
µ (θ) fulfils

HK
θ Θ

K
µ (θ) = EK

µ Θ
K
µ (θ), HK

θ = −∂2
θ − cot θ∂θ +

K2

sin2θ
,

K = kϵν, µ = 0,1,2, . . . .
(2.9)

To construct a rational extension of H , defined in (2.1), is an easy task because Hφ of (2.8)
is a two-parameter trigonometric Pöschl-Teller (TPT) Hamiltonian, whose extensions have been
thoroughly studied (see, e.g., Refs. 7–9, 12, 14, and 16). Here, we will restrict ourselves to type
I extensions, constructed as one-step isospectral partners of a standard TPT Hamiltonian. At this
stage, it is worth observing that the other isospectral extensions, namely, type II ones, are related to
them because types I and II Jacobi EOP are mirror images of one another, obtained by permuting
the roles of α and β and changing φ into π

2 − φ.
In the case we consider to get a rational extension of a TPT potential of parameters α and β in

supersymmetric quantum mechanics (SUSYQM),29 we have to start from a TPT one of parameters
α + 1, β − 1 and use a supercharge operator,

A = ∂φ − ∂φ log χm1(φ), χm1(φ) = (cos φ)−α− 1
2 (sin φ)β− 1

2 P(−α−1, β−1)
m1 (−cos 2φ), (2.10)

with α > m1 − 1,30 together with its Hermitian conjugateA†. Then, we arrive at a set of partners on
the sphere

H (1) = −∂2
θ − cot θ∂θ +

k2

sin2θ

(
−∂2

φ +
(α + 3/2)(α + 1/2)

cos2φ
+
(β − 1/2)(β − 3/2)

sin2φ

)
(2.11)

and

H (2) = −∂2
θ − cot θ∂θ +

k2

sin2θ

(
−∂2

φ +
α2 − 1/4

cos2φ
+

β2 − 1/4
sin2φ

− 2∂2
φ log P(−α−1, β−1)

m1 (−cos 2φ)
)
,

(2.12)

where α > m1 − 1. The additional restrictions on the parameters coming from the behaviour of the
set of potentials at the ends of the interval now read as α ≥ 1, β ≥ 2.

The third Hamiltonian H defined on the sphere we are going to consider here corresponds to
H (2) given in (2.12). It still satisfies Eqs. (2.2)–(2.4) and (2.9), but with different functions Φν(φ)
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resulting from the action of A on the wavefunctions of Eq. (2.6) with (α, β) → (α + 1, β − 1).
Hence, in this case, Eqs. (2.6) and (2.8) are replaced by

Φν(φ) = Nν

W
(
χm1(φ), (cos φ)α+ 3

2 (sin φ)β− 1
2 P(α+1, β−1)

ν (−cos 2φ)
)

χm1(φ)
,

Nν = (−1)ν
( (α + β + 1 + 2ν)ν!Γ(α + β + 1 + ν)

2(α + ν − m1 + 1)(β + ν + m1)Γ(α + 2 + ν)Γ(β + ν)
)1/2

(2.13)

and

HφΦν(φ) = ϵ2
νΦν(φ),

Hφ = −∂2
φ +

α2 − 1/4
cos2φ

+
β2 − 1/4

sin2φ
− 2∂2

φ log P(−α−1, β−1)
m1 (−cos 2φ),

ϵν = α + β + 1 + 2ν, ν = 0,1,2, . . . ,

(2.14)

respectively. In Eq. (2.13),W( f1, f2) denotes a Wronskian of f1 and f2.

B. Parameter-dependent integrals of motion

The procedure used in Refs. 23 and 24 to construct integrals of motion for H , defined in (2.1),
starts by combining shift operators for HK

θ with ladder operators for Hφ. The Hamiltonian HK
θ being

the same for the three Hamiltonians on the sphere considered here, and the same is true for their
shift operators. According to Refs. 23 and 24, they are given by

A+K = −∂θ + (K − 1) cot θ, A−K = ∂θ + K cot θ. (2.15)

For the ladder operators, the situation is more complicated since the three Hamiltonians Hφ are
different. For the one- and two-parameter cases, i.e., for (2.7) and (2.8), they read as

B+ν = −cos φ∂φ + (λ + ν) sin φ, B−ν = cos φ∂φ + (λ + ν + 1) sin φ (2.16)

and

B+ν = (α + β + 2 + 2ν) sin 2φ∂φ + (α + β + 1 + 2ν)(α + β + 2 + 2ν) cos 2φ

− α2 + β2,

B−ν = −(α + β + 2ν) sin 2φ∂φ + (α + β + 1 + 2ν)(α + β + 2ν) cos 2φ − α2 + β2,

(2.17)

respectively. As is usual in SUSYQM,29 those for rationally extended partner (2.14) can be ob-
tained by combining the ladder operators for the starting Hamiltonian, i.e., operators (2.17) with
(α, β) → (α + 1, β − 1), with supercharge operator (2.10) and its Hermitian conjugate, thus yielding

B+ν = A[(α + β + 2 + 2ν) sin 2φ∂φ + (α + β + 1 + 2ν)(α + β + 2 + 2ν) cos 2φ

+ (β − α − 2)(β + α)]A†,
B−ν = A[−(α + β + 2ν) sin 2φ∂φ + (α + β + 1 + 2ν)(α + β + 2ν) cos 2φ

+ (β − α − 2)(β + α)]A†.

(2.18)

On using known properties of Gegenbauer and Jacobi polynomials,28 as well as SUSYQM,29

we have determined the explicit action of operators (2.15)–(2.18) on the corresponding wavefunc-
tions. For the operators (2.15) and (2.16), for instance, we obtain

A+KΘ
K−1
µ = [µ(µ + 2K − 1)]1/2

Θ
K
µ−1, A−KΘ

K
µ = [(µ + 1)(µ + 2K)]1/2

Θ
K−1
µ+1 (2.19)

and

B+νΦν =

( (ν + 1)(ν + λ)(ν + 2λ)
ν + λ + 1

)1/2

Φν+1,

B−νΦν+1 =

( (ν + 1)(ν + λ + 1)(ν + 2λ)
ν + λ

)1/2

Φν,

(2.20)
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respectively. Results similar to (2.20) for the two-parameter case and the corresponding rational
extension are listed in Appendix A.

On combining shift operators (2.15) with ladder ones (2.16), valid for the one-parameter
Hamiltonian, one can form the operators

X+µ,ν = A+K+m · · · A+K+2A+K+1B+ν+n−1 · · · B
+
ν+1B+ν ,

X−µ,ν = A−K−m+1 · · · A
−
K−1A−KB−ν−n · · · B−ν−2B−ν−1.

(2.21)

Whenever an operator X+µ,ν acts on a wavefunction Ψ(K )
µ,ν(θ,φ) of the total Hamiltonian, the product

of operators B+ν+n−1 · · · B
+
ν+1B+ν transforms Φν(φ) into Φν+n(φ), hence ϵν into ϵν+n = ϵν + n, while

the product A+K+m · · · A+K+2A+K+1 changes ΘK
µ (θ) into ΘK+m

µ−m (θ). Both transformations are compat-
ible because K = kϵν = mϵν/n becomes mϵν+n/n = m(ϵν + n)/n = K + m. In this way and with a
similar reasoning for X−µ,ν, we arrive at the explicit results

X+µ,νΨ
(K )
µ,ν =

( (λ + ν)(ν + n)!Γ(2λ + ν + n)µ!Γ(µ + 2K + m + 1)
(λ + ν + n)ν!Γ(2λ + ν)(µ − m)!Γ(µ + 2K + 1)

)1/2

Ψ
(K+m)
µ−m,ν+n,

X−µ,νΨ
(K )
µ,ν =

( (λ + ν)ν!Γ(2λ + ν)(µ + m)!Γ(µ + 2K + 1)
(λ + ν − n)(ν − n)!Γ(2λ + ν − n)µ!Γ(µ + 2K − m + 1)

)1/2

× Ψ(K−m)
µ+m,ν−n,

(2.22)

and we observe that the wavefunctions on both sides of these relations correspond to the same
energy EK

µ = EK±m
µ∓m . The operators X±µ,ν therefore commute with H when acting on Ψ(K )

µ,ν . One may
also note that the successive application of two operators of type X±µ,ν leads to a multiple of the
initial eigenfunction,

X+µ+m,ν−nX−µ,νΨ
(K )
µ,ν =

ν!Γ(2λ + ν)(µ + m)!Γ(µ + 2K + 1)
(ν − n)!Γ(2λ + ν − n)µ!Γ(µ + 2K − m + 1)Ψ

(K )
µ,ν ,

X−µ−m,ν+nX+µ,νΨ
(K )
µ,ν =

(ν + n)!Γ(2λ + ν + n)µ!Γ(µ + 2K + m + 1)
ν!Γ(2λ + ν)(µ − m)!Γ(µ + 2K + 1) Ψ

(K )
µ,ν .

(2.23)

For two-parameter Hamiltonian (2.1) and its rational extension (2.12), one considers instead the
operators

X+µ,ν = A+K+2m · · · A
+
K+2A+K+1B+ν+n−1 · · · B

+
ν+1B+ν ,

X−µ,ν = A−K−2m+1 · · · A
−
K−1A−KB−ν−n+1 · · · B

−
ν−1B−ν ,

(2.24)

which change Ψ(K )
µ,ν(θ,φ) into Ψ(K±2m)

µ∓2m,ν±n(θ,φ) with the same energy EK
µ = EK±2m

µ∓2m . Their explicit
action can be found in Appendix A.

C. Parameter-independent (nonpolynomial) integrals of motion

Since the operators X±µ±m,ν∓nX∓µ,ν of Eq. (2.23) leave Ψ(K )
µ,ν(θ,φ) essentially unchanged, they

have the same effect on the latter as some functions of H and Hφ. As suggested by Calzada
et al.,23,24 we therefore replace them by the parameter-independent products

X+X− =
n

r=1

(
Hφ − r

) (
Hφ − r + 1

)
− α2 + 1

4



×
m
p=1


H −

(
k


Hφ − p
) (

k


Hφ − p + 1
)

,

X−X+ =
n

r=1

(
Hφ + r

) (
Hφ + r − 1

)
− α2 + 1

4



×
m
p=1


H −

(
k


Hφ + p
) (

k


Hφ + p − 1
)

.

(2.25)
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By proceeding similarly for the products of operators (A3) and (A6), valid for the two-parameter
Hamiltonian and its rational extension, we get

X+X− =
n

r=1

 (
Hφ − 2r

) (
Hφ − 2r + 2

)
− (α + β + 1)(α + β − 1)



×
(

Hφ − 2r
) (

Hφ − 2r + 2
)
− (α − β + 1)(α − β − 1)


×

2m
p=1


H −

(
k


Hφ − p
) (

k


Hφ − p + 1
)

,

X−X+ =
n

r=1

 (
Hφ + 2r

) (
Hφ + 2r − 2

)
− (α + β + 1)(α + β − 1)



×
(

Hφ + 2r
) (

Hφ + 2r − 2
)
− (α − β + 1)(α − β − 1)


×

2m
p=1


H −

(
k


Hφ + p
) (

k


Hφ + p − 1
)

(2.26)

and

X+X−

=

n
q=1

 (
Hφ − 2q − 1

) (
Hφ − 2q + 1

)
− (α − β − 2m1)(α − β − 2m1 + 2)



×
(

Hφ − 2q + 1
) (

Hφ − 2q + 3
)
− (α − β − 2m1)(α − β − 2m1 + 2)


×

n
r=1

 (
Hφ − 2r

) (
Hφ − 2r + 2

)
− (α + β + 1)(α + β − 1)



×
(

Hφ − 2r
) (

Hφ − 2r + 2
)
− (α − β + 3)(α − β + 1)


×

2m
p=1


H −

(
k


Hφ − p
) (

k


Hφ − p + 1
)

,

X−X+

=

n
q=1

 (
Hφ + 2q + 1

) (
Hφ + 2q − 1

)
− (α − β − 2m1)(α − β − 2m1 + 2)



×
(

Hφ + 2q − 1
) (

Hφ + 2q − 3
)
− (α − β − 2m1)(α − β − 2m1 + 2)


×

n
r=1

 (
Hφ + 2r

) (
Hφ + 2r − 2

)
− (α + β + 1)(α + β − 1)



×
(

Hφ + 2r
) (

Hφ + 2r − 2
)
− (α − β + 3)(α − β + 1)


×

2m
p=1


H −

(
k


Hφ + p
) (

k


Hφ + p − 1
)

,

(2.27)

respectively.
In all three cases, we have a set of four (formal) integrals of motion (H,Hφ,X±), which, as

shown in Eqs. (2.25)–(2.27), are algebraically dependent and nonpolynomial since the square root
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operator


Hφ appears everywhere. We may actually decompose X+X− and X−X+ as

X+X− = P1(H,Hφ) − P2(H,Hφ)


Hφ, X−X+ = P1(H,Hφ) + P2(H,Hφ)


Hφ, (2.28)

where P1(H,Hφ) and P2(H,Hφ) are polynomials in H and Hφ of respective degrees (n + m, n + m −
1), (2n + 2m, 2n + 2m − 1), and (4n + 2m, 4n + 2m − 1) in the three cases (2.25)–(2.27).

In the one-parameter case, the action of Hφ and X±µ,ν on Ψ(K )
µ,ν(θ,φ), given in Eqs. (2.7) and

(2.22), directly leads to the (formal) commutator


Hφ,X±

= ±nX±, (2.29)

which implies

[Hφ,X±] = X±
(
±2n


Hφ + n2

)
. (2.30)

The latter may be completed by a commutator and a restriction relation, directly deriving from
(2.28),

[X+,X−] = −2P2(H,Hφ)


Hφ, X+X− + X−X+ = 2P1(H,Hφ). (2.31)

In the two-parameter case and its rational extension, Eq. (2.31) remains valid, but Eqs. (2.29)
and (2.30) are replaced by


Hφ,X±


= ±2nX±, [Hφ,X±] = X±

(
±4n


Hφ + 4n2

)
, (2.32)

where 2n has been substituted for n.

D. Polynomial integrals of motion

From the nonpolynomial (formal) integrals of motion X±, it is now possible to build some
polynomial ones by decomposition. Let us indeed set

X+ = O


Hφ + E, X− = ε
(
−O


Hφ + E

)
, (2.33)

where O and E may be written as polynomial differential operators in ∂θ, ∂φ of respective orders
(n + m − 1, n + m), (2n + 2m − 1, 2n + 2m), and (4n + 2m − 1, 4n + 2m) in the three cases we
consider. Here, ε is some sign defined by ε = (−1)n+m, ε = (−1)2n+2m = +1, and ε = (−1)4n+2m =

+1, respectively. Since X± are integrals of motion, the same is true for O and E. We therefore arrive
at a set (H,Hφ,O,E) of four (formal) polynomial, albeit nonalgebraically independent, integrals of
motion.

Inserting definitions (2.33) in relations (2.29)–(2.31) leads to the commutation relations


Hφ,O
 

Hφ = nE,


Hφ,E

= nO


Hφ, (2.34)

[Hφ,O] = n2O + 2nE, [Hφ,E] = 2nOHφ + n2E, [O,E] = −nO2 − εP2(H,Hφ) (2.35)

and the restriction relation

−O2Hφ + E2 − nOE = εP1(H,Hφ). (2.36)

As before, the two-parameter case and its rational extension are simply dealt with by replacing n by
2n and by taking care of the appropriate definition of ε in these equations.

Since the Hermitian properties of X± with respect to the inner product corresponding to the
measure sin θdθdφ are not known a priori, the same is true for those of O and E. Calzada et al.23,24

have devised a procedure to determine them, which uses both the order of the differential operators
and the fact that their Hermitian properties must preserve commutation relations (2.35), as well as
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restriction relation (2.36). The results read as

O† = −εO, E† = ε(E + nO). (2.37)

It then follows that the new set of polynomial integrals of motion (H, Hφ, O, E ′), with

E ′ = E + 1
2 nO, (2.38)

only contains Hermitian/anti-Hermitian operators since

O† = −εO, E ′† = εE ′. (2.39)

In terms of these new operators, Eqs. (2.35) and (2.36) become

[Hφ,O] = 2nE ′, [Hφ,E ′] = n{Hφ,O} − 1
2 n3O, [O,E ′] = −nO2 − εP2(H,Hφ) (2.40)

and

−OHφO + E ′2 + 1
4 n2O2 = ε

�
P1(H,Hφ) + 1

2 nP2(H,Hφ)� , (2.41)

respectively. Here, {A,B} denotes the anticommutator of A and B. Equations (2.37)–(2.41) remain
valid for the two-parameter case and its rational extension after the appropriate changes in n and ε
have been carried out.

III. REALIZATION AS DEFORMED OSCILLATOR ALGEBRAS

In this section, we will obtain the realizations as deformed oscillator algebra for the three
models corresponding to Eqs. (2.7), (2.8), and (2.14) using two approaches. One of these methods is
based on the finitely generated polynomial algebra that is constructed from the polynomial integrals
of motion E ′ and O, given by Eqs. (2.33) and (2.38). The other approach uses the nonpolynomial
integrals X+ and X−, obtained from Eqs. (2.21) and (2.24), and satisfying with Hφ a generalized
Heisenberg algebra (GHA).

A. Daskaloyannis approach and polynomial algebras

The most general polynomial algebra for a 2D superintegrable system with an integral of
second order and another one of arbitrary order M was studied in Ref. 4. The set of constraints on
the structure constants, obtained by imposing the Jacobi identity and using various commutator and
anticommutator identities, was presented. In addition, a way was devised to construct the Casimir
operator and to obtain the realizations as deformed oscillator algebras.

Among the general class of finitely generated polynomial algebras with only three generators
studied, let us take a particular case relevant to this paper and the quantum models considered,

[A,B] = C, (3.1a)

[A,C] = α1A + α2A2 + δB + ϵ + β{A,B}, (3.1b)

[B,C] =
M
i=1

λiAi − βB2 − α1B − α2{A,B} + ζ, (3.1c)

where A and B are two Hermitian operators (so that C is anti-Hermitian) and α1, α2, δ, ϵ , β, λi, and
ζ in commutation relations (3.1a)–(3.1c) are the structure constants. Let us point out that they are
not simply constants as they can be polynomials of the Hamiltonian, which is a central element of
the polynomial associative algebra. The maximal order of these polynomials in terms of H can be
deduced from the order as differential operator of the commutator on the left-hand side.

This algebra has a Casimir operator, which can be expressed in terms of A, B, and C as

K = C2 − (α1 − βα2){A,B} − α2{A2,B} − β{A,B2} +
M+1
i=1

kiAi − (2ϵ − α1β)B

+ (β2 − δ)B2,

(3.2)
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where ki, i = 1, 2, . . . , M + 1, are some parameters that can be determined in principle to any
given order by solving a set of constraints. In the case of integrals of arbitrary order M , no explicit
solutions are known to these constraints.

Moreover, this class of algebras admits a realization as deformed oscillator algebra of the form

A = A(N), B = B0(N) + b†ρ(N) + ρ(N)b, (3.3)

where the generators of the deformed oscillator algebra {b,b†,N,1} satisfy

[N,b†] = b†, [N,b] = −b, b†b = Φ(N), bb† = Φ(N + 1), (3.4)

and Φ(N) is referred to as a structure function.1 The functions A(N) and B0(N) in Eq. (3.3) take the
following form:4

A(N) = β

2

(
(N + u)2 − 1

4

)
− δ

β2


, (3.5)

B0(N) = −α2

4

(
(N + u)2 − 1

4

)
+

(
−βα1 + α2δ

2β2

)
+ ϵ

−
(
−2βα1δ + α2δ

2

4β4

)
1�(N + u)2 − 1

4

� ,
(3.6)

where u is some representation-dependent constant. Provided one is able to get some supplementary
information on the Casimir operator, two additional equations linear in Φ(N) and Φ(N + 1),

−2Φ(N)ρ(N − 1)2∆A(N − 1) + 2Φ(N + 1)ρ(N)2∆A(N)

= ζ +

M
i=1

λiA(N)i − α1B0(N) − 2α2B0(N)A(N)

− β[B0(N)2 + ρ(N − 1)2Φ(N) + ρ(N)2Φ(N + 1)],

(3.7)

K = −[∆A(N − 1)]2ρ(N − 1)2Φ(N) − [∆A(N)]2ρ(N)2Φ(N + 1)
− 2α1A(N)B0(N) − 2α2A(N)2B0(N) + 2βα2A(N)B0(N)
− 2βA(N)B0(N)2 − 2βA(N)ρ(N − 1)2Φ(N) − 2βA(N)ρ(N)2Φ(N + 1)

+

M+1
i=1

kiA(N)i − (2ϵ − βα1)B0(N)

+ (β2 − δ) �B0(N)2 + ρ(N − 1)2Φ(N) + ρ(N)2Φ(N + 1)� ,

(3.8)

allow to obtain the structure function Φ(N). Here, ∆A(N) = A(N + 1) − A(N).
For low order integrals of motion, an expression of K as a differential operator can be deter-

mined from that of A, B, C, and the Hamiltonian H . From this, K can be rewritten as a polynomial
of H only. This turns out, however, to be an involving task even for low values of M ≤ 4.1–3 In
recent papers,20,22 it has been demonstrated, in the case of 2D Hamiltonians with separation of
variables in Cartesian coordinates and for which the integrals are generated using combinations of
ladder operators, that it is possible to overcome this difficulty in the application of this algebraic
method and to get the structure function by exploiting the underlying structure of the polynomial
algebra. We will show here how we can also avoid such calculations concerning the Casimir oper-
ator for our models with separation in spherical variables by taking advantage of the existence of
an algebraic relation in addition to the polynomial algebra commutation relations and the Casimir
operator.

Taking the algebra defined by Eq. (2.40), valid for the one-parameter Lissajous system, and
setting A = Hφ, B = ηO, and C = 2nηE ′ with η = im+n−1 (so that A† = A, B† = B, and C† = −C),
we obtain the standard form (3.1a)–(3.1c),

[A,B] = C, (3.9a)

[A,C] = 2n2{A,B} − n4B, (3.9b)
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[B,C] = −2n2B2 + 2nP2(H, A), (3.9c)

with the polynomial identity given by Eq. (2.41) in terms of the generators A, B, and C as

C2 − 2n2{A,B2} + 5n4B2 = −4n2
(
P1 −

n
2

P2

)
. (3.10)

This is one of the key steps in extending the Daskaloyannis approach for these Hamiltonians,
the products X+X− and X−X+ providing in fact two relations, the last commutation relation of
polynomial algebra (3.9c) and, moreover, this algebraic constraint (3.10) that plays an important
role in the algebraic derivation. From Eq. (3.2), the Casimir operator takes the form

K = C2 − 2n2{A,B2} + 5n4B2 +

M+1
i=1

kiAi, (3.11)

where the ki’s satisfy a set of constraints, as explained above. However, we do not need to solve the
latter because using Eq. (3.10), the Casimir operator can be rewritten as

K = −4n2
(
P1 −

n
2

P2

)
+

M+1
i=1

kiAi. (3.12)

Inserting then this alternative form in the left-hand side of Eq. (3.8), the system of equations (3.7)
and (3.8) for the structure function can be simplified and only involves the central element H and
the generator A, which is directly connected to the number operator. The results read as

A(N) = n2(N + u)2, B0(N) = 0, (3.13)

ρ2(N) = [4n2(N + u)(N + u + 1)]−1, (3.14)

Φ(N) = P1
�
H, A(N)� − n(N + u)P2

�
H, A(N)�. (3.15)

In the case of the two-parameter Lissajous system and its rational extensions related to Jacobi
EOP of type I (or II), all relations remain valid by replacing n by 2n and setting η = i. The fact that
the structure function can be obtained in this way is highly nontrivial and is a consequence of the
structure of the algebra generated by Hφ, O, and E ′. Let us also note that we did not need to obtain
explicitly the structure constants of the polynomial algebra, the parameters of the Casimir operator,
nor, more importantly, the Casimir operator expressed in terms of the Hamiltonian only.

B. Realization as deformed oscillator algebras from generalized Heisenberg ones

For these models, instead of the polynomial integrals O and E ′, let us consider the nonpolyno-
mial ones X+ and X−. The algebras generated by {Hφ,X+,X−} and defined by Eqs. (2.29)–(2.31)
are in fact GHA,31–36 belonging to the following class of algebraic structures:

HφX+ = X+ f (Hφ), (3.16)

X−Hφ = f (Hφ)X−, (3.17)

[X−,X+] = g(Hφ), (3.18)

where f (z) and g(z) are not simply polynomials. Such algebras were observed in various contexts
and, in particular, in regard of 1D quantum systems, such as the infinite well as well as the Morse
and Pöschl-Teller potentials. To find such algebraic structures in the context of superintegrable
systems and their integrals is highly interesting.

Here, the generalized Heisenberg algebra has a very specific structure. The function f (Hφ)
involves only square roots of Hφ, and not only the commutator [X−,X+] is known but also the
products X−X+ and X+X− themselves have been calculated explicitly in a convenient product form.
It can be shown that the GHA of the one-parameter Lissajous system on the sphere can be put in
the form of a deformed oscillator algebra by defining the number operator N through the equa-
tion


Hφ = (N + u)n, where u is some representation-dependent constant, and by taking b = X−

and b† = X+. The structure function coincides with the one obtained using the polynomial algebra
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approach with a Casimir operator and is explicitly given by

Φ(N,H,u) = b†b = X+X− = P1(H,Hφ) − P2(H,Hφ)


Hφ

= P1(H,Hφ) − n(N + u)P2(H,Hφ).
(3.19)

In a similar way, for the two-parameter Lissajous system and its rational extensions, we take
simply


Hφ = (N + u)2n.

Let us now present at this stage, the expression for the structure function of the one-parameter
Lissajous (Φ(1)(N,H,u)), the two-parameter Lissajous (Φ(2)(N,H,u)), and the rationally extended
two-parameter Lissajous (Φ(E2)(N,H,u)),

Φ
(1)(N,H,u) =

m
p=1

{H − [m(N + u) − p][m(N + u) − p + 1]}

×
n

r=1


[n(N + u) − r][n(N + u) − r + 1] − α2 +

1
4


,

(3.20)

Φ
(2)(N,H,u) =

2m
p=1

{H − [2m(N + u) − p][2m(N + u) − p + 1]}

×
n

r=1

{[2n(N + u) − 2r][2n(N + u) − 2r + 2] − (α + β + 1)(α + β − 1)}

×
n

r=1

{[2n(N + u) − 2r][2n(N + u) − 2r + 2] − (α − β + 1)(α − β − 1)},

(3.21)

Φ
(E2)(N,H,u) =

2m
p=1

{H − [2m(N + u) − p][2m(N + u) − p + 1]}

×
n

q=1

{[2n(N + u) − 2q − 1][2n(N + u) − 2q + 1]

− (α − β − 2m1)(α − β − 2m1 + 2)}

×
n

q=1

{[2n(N + u) − 2q + 1][2n(N + u) − 2q + 3]

− (α − β − 2m1)(α − β − 2m1 + 2)}

×
n

r=1

{[2n(N + u) − 2r][2n(N + u) − 2r + 2] − (α + β + 1)(α + β − 1)}

×
n

r=1

{[2n(N + u) − 2r][2n(N + u) − 2r + 2] − (α − β + 3)(α − β + 1)}.

(3.22)

IV. ANALYSIS OF STRUCTURE FUNCTION AND SPECTRUM

In this section, we will use the expressions obtained in two different ways for structure
functions (3.20)–(3.22) and present an algebraic derivation of the spectrum of the models using
finite-dimensional unirreps of the deformed oscillator algebra.

The unirreps can be obtained by introducing an energy-dependent Fock space of dimension
p̄ + 1, defined by the action of the Hamiltonian H , the number operator N , and the creation and
annihilation operators b† and b. By acting iteratively on a state with a given energy, these operators
b† and b allow to reach every state in the multiplet it belongs. Let us mention that the underlying
structure of these unirreps is not always related in a straightforward manner to the physical states of
the model, but can be revealed by using a detailed analysis.22
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We consider H |E,n⟩ = E |E,n⟩, N |E,n⟩ = n|E,n⟩, and b|E,0⟩ = 0. The action of the operators
b† and b is given by

b†|E,n⟩ = 
Φ(n + 1,E,u)|E,n + 1⟩,

b|E,n⟩ = 
Φ(n,E,u)|E,n − 1⟩.

(4.1)

We see the important role of the structure function in this construction of the Fock space. To obtain
the unirreps, we further impose the following constraints:

Φ(p̄ + 1,E,u) = 0, Φ(0,E,u) = 0, Φ(n,E,u) > 0 n = 1,2, . . . , p̄. (4.2)

The energy E and the constant u can be obtained from this set of constraints, which are algebraic
equations. The dimension of the finite-dimensional unirreps is given by p̄ + 1. The nonlinearity of
the structure function allows the existence of patterns of unirreps describing a more complicated
spectrum and the fact that levels associated with a given energy can be organized in several multi-
plets of different lengths. It also enables to obtain different types of solutions that correspond to
equivalent ways to enumerate the levels.

A. One-parameter Lissajous system

The structure function given by Eq. (3.20) can be factorized in the following way:

Φ(x,E,u) = (−1)mm2mn2n
n

r=1

(
x + u − 2r − 1 − 2α

2n

) (
x + u − 2r − 1 + 2α

2n

)

×
m
p=1


*
,

x + u − 2p − 1 +
√

1 + 4E
2m

+
-
*
,

x + u − 2p − 1 −
√

1 + 4E
2m

+
-


.

(4.3)

On using constraints (4.2), two equivalent solutions are obtained,

u1 =
2r̃ − 1 + 2α

2n
, r̃ ∈ {1,2, . . . ,n}, (4.4)

u2 =
2p̃ − 1 −

√
1 + 4E

2m
, p̃ ∈ {1,2, . . . ,m}, (4.5)

with the corresponding energy spectrum

E1 = m2
(
p̄ + 1 +

2r̃ − 1 + 2α
2n

+
1 − 2p̃

2m

)2

− 1
4
, (4.6)

E2 = m2
(
p̄ + 1 +

1 − 2r̃ + 2α
2n

+
2p̃ − 1

2m

)2

− 1
4

(4.7)

and finite-dimensional unirreps associated with the structure functions

Φ1(x) = n2nm2m
n

r=1

(
x +

r̃ − r
n

) (
x +

2α + r̃ − r
n

)

×
m
p=1

(
p̄ + 1 − x − p̃ − p

m

) (
p̄ + 1 + x +

1 − p̃ − p
m

+
2α + 2r̃ − 1

n

)
,

(4.8)

Φ2(x) = n2nm2m
m
p=1

(
x +

p̃ − p
m

) (
2p̄ + 2 − x +

2α − 2r̃ + 1
n

+
p̃ + p − 1

m

)

×
n

r=1

(
p̄ + 1 − x − r̃ − r

n

) (
p̄ + 1 − x +

2α − r̃ + r
n

)
.

(4.9)

Here, p̄ = 0, 1, 2, . . . , p̃ ∈ {1,2, . . . ,m}, and r̃ ∈ {1,2, . . . ,n}.
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B. Two-parameter Lissajous system

The structure function given for this model by Eq. (3.21) can be factorized as

Φ(x,E,u)

= (2n)4n(2m)4m
n

r=1

(
x + u − 2r − 1 − α − β

2n

) (
x + u − 2r − 1 + α + β

2n

)
×

(
x + u − 2r − 1 + α − β

2n

) (
x + u − 2r − 1 − α + β

2n

)
×

2m
p=1


*
,

x + u − 2p − 1 −
√

1 + 4E
4m

+
-
*
,

x + u − 2p − 1 +
√

1 + 4E
4m

+
-


.

(4.10)

On using constraints (4.2), we obtain the following equivalent solutions:

u1 =
2r̃ − 1 + α + β

2n
, r̃ ∈ {1,2, . . . ,n}, (4.11)

u2 =
2p̃ − 1 −

√
1 + 4E

4m
, p̃ ∈ {1,2, . . . ,2m}, (4.12)

with the corresponding energy spectrum

E1 = 4m2
(
p̄ + 1 +

2r̃ − 1 + α + β

2n
+

1 − 2p̃
4m

)2

− 1
4
, (4.13)

E2 = 4m2
(
p̄ + 1 +

2p̃ − 1
4m

+
1 − 2r̃ + α + β

2n

)2

− 1
4

(4.14)

and the finite-dimensional unirreps associated with the structure functions

Φ1(x) = (2n)4n(2m)4m
n

r=1

(
x +

r̃ − r + α + β

n

) (
x +

r̃ − r
n

)
×

(
x +

r̃ − r + β

n

) (
x +

r̃ − r + α

n

)
×

2m
p=1

(
p̄ + 1 − x − p̃ − p

2m

) (
p̄ + 1 + x +

2r̃ − 1 + α + β

n
+

1 − p̃ − p
2m

)
,

(4.15)

Φ2(x) = (2n)4n(2m)4m
n

r=1

(
p̄ + 1 − x − r̃ − r

n

) (
p̄ + 1 − x +

α + β − r̃ + r
n

)
×

(
p̄ + 1 − x +

α − r̃ + r
n

) (
p̄ + 1 − x +

β − r̃ + r
n

)
×

2m
p=1

(
x +

p̃ − p
2m

) (
2p̄ + 2 − x +

p̃ + p − 1
2m

+
1 + α + β − 2r̃

n

)
.

(4.16)

Here, p̄ = 0, 1, 2, . . . , p̃ ∈ {1,2, . . . ,2m}, and r̃ ∈ {1,2, . . . ,n}.
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C. One-step extensions of the two-parameter Lissajous system

Similarly, the structure function given by Eq. (3.22) can be factorized as

Φ(x,E,u) = (2n)8n(2m)4m

×
n

q=1

(
x + u − 2q + 1 + α − β − 2m1

2n

) (
x + u − 2q − 1 − α + β + 2m1

2n

)

×
(
x + u − 2q − 1 + α − β − 2m1

2n

) (
x + u − 2q − 3 − α + β + 2m1

2n

)
×

n
r=1

(
x + u − 2r − 1 − α − β

2n

) (
x + u − 2r − 1 + α + β

2n

)
×

(
x + u − 2r + 1 + α − β

2n

) (
x + u − 2r − 3 − α + β

2n

)
×

2m
p=1


*
,

x + u − 2p − 1 −
√

1 + 4E
4m

+
-
*
,

x + u − 2p − 1 +
√

1 + 4E
4m

+
-


.

(4.17)

On using constraints (4.2) to have finite-dimensional unirreps, we get the solutions

u1 =
2r̃ − 1 + α + β

2n
, r̃ ∈ {1,2, . . . ,n}, (4.18)

u2 =
2p̃ − 1 −

√
1 + 4E

4m
, p̃ ∈ {1,2, . . . ,2m}, (4.19)

with the energy spectrum

E1 = 4m2
(
p̄ + 1 +

2r̃ − 1 + α + β

2n
+

1 − 2p̃
4m

)2

− 1
4
, (4.20)

E2 = 4m2
(
p̄ + 1 +

2p̃ − 1
4m

+
1 − 2r̃ + α + β

2n

)2

− 1
4

(4.21)

and the final structure functions

Φ1(x) = (2n)8n(2m)4m

×
n

q=1

(
x +

r̃ − q + β + m1 − 1
n

) (
x +

r̃ − q + α − m1

n

)
×

(
x +

r̃ − q + β + m1

n

) (
x +

r̃ − q + α − m1 + 1
n

)
×

n
r=1

(
x +

r̃ − r + α + β

n

) (
x +

r̃ − r
n

)
×

(
x +

r̃ − r + β − 1
n

) (
x +

r̃ − r + α + 1
n

)
×

2m
p=1

(
p̄ + 1 − x − p̃ − p

2m

) (
p̄ + 1 + x +

2r̃ − 1 + α + β

n
+

1 − p̃ − p
2m

)
,

(4.22)
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Φ2(x) = (2n)8n(2m)4m

×
n

q=1

(
p̄ + 1 − x − r̃ − q − α + m1 − 1

n

) (
p̄ + 1 − x − r̃ − q − β − m1

n

)

×
(
p̄ + 1 − x − r̃ − q − α + m1

n

) (
p̄ + 1 − x − r̃ − q − β − m1 + 1

n

)
×

n
r=1

(
p̄ + 1 − x − r̃ − r

n

) (
p̄ + 1 − x +

α + β − r̃ + r
n

)
×

(
p̄ + 1 − x +

α − r̃ + r + 1
n

) (
p̄ + 1 − x +

β − r̃ + r − 1
n

)
×

2m
p=1

(
x +

p̃ − p
2m

) (
2p̄ + 2 − x +

p̃ + p − 1
2m

+
1 + α + β − 2r̃

n

)
.

(4.23)

Here, p̄ = 0, 1, 2, . . . , p̃ ∈ {1,2, . . . ,2m}, and r̃ ∈ {1,2, . . . ,n}.

D. Physical spectrum

We can compare these results with the physical spectrum of the three models provided by
separation of variables. The latter is given by EK

µ in Eq. (2.3) with K defined in (2.9) and the
appropriate ϵν.

In the case of the one-parameter Lissajous system on the sphere, we make the following
transformation:

ν = nν′ + a1, a1 ∈ {0,1, . . . ,n − 1}, (4.24)
µ = mµ′ + a2, a2 ∈ {0,1, . . . ,m − 1}, (4.25)

p̄ = ν′ + µ′, (4.26)

use ϵν as given by (2.7), and write the physical spectrum in the form m2(p̄ + ξ) − 1
4 , where ξ

depends on n,m,α,a1, and a2. By defining a1 = r̃ − 1 and a2 = m − p̃, the physical spectrum takes
the form as given by E1 in (4.6). Alternatively, by taking a2 = p̃ − 1 and a1 = n − r̃ , the spectrum
coincides with E2 in (4.7). Thus, the two solutions are different, but equivalent ways to enumerate
the degenerate levels.

In the case of the two-parameter Lissajous system and its rational extensions, we replace sim-
ply m by 2m everywhere and take for the physical spectrum the parameter ϵν as given by (2.8).
The spectrum obtained algebraically is thus also corroborated by the physical spectrum obtained via
separation of variables for these two models.

V. CONCLUSION

In this paper, we presented an algebraic derivation of the spectrum of the one- and two-
parameter Lissajous systems, which was so far unexplored. In addition, we introduced rationally
extended two-parameter Lissajous systems related to Jacobi EOP of type I (or II), which are new
families of superintegrable Hamiltonians with higher order integrals of motion (in fact arbitrary
order) and demonstrated how the SUSYQM approach and the supercharges can be combined with
ladder and shift operators to generate new superintegrable models with separation of variables in
spherical coordinates. The spectrum of these models was also derived algebraically.

As one of the main results, we extended the Daskaloyannis approach to obtain the realizations
as deformed oscillator algebras for systems separable in spherical coordinates and for which the
polynomial algebras display a more complex structure. This is achieved by exploiting previous re-
sults on a class of polynomial algebras with three generators4 and the presence of an extra algebraic
relation that allows to write the Casimir operator in terms of the number operator N and the Hamil-
tonian H , without having to compute explicitly this operator and its expression in terms of H only,
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and even without having to calculate all the structure constants of the polynomial algebra itself. This
is a novelty that could provide a way to study algebraically many classes of superintegrable systems
and have a wider applicability as many models introduced in recent years remain to be studied
algebraically using their symmetry algebra.

The results also showed how the studies of polynomial algebras, their Casimir operator, and
realizations as abstract algebraic structures in the line of Ref. 4 are important as a ladder and shift
operators approach can be used to create the integrals and identify the polynomial algebra. The
algebraic derivation of the spectrum requires an understanding of the constraints for the existence of
the realizations and of the form of the Casimir operator.

Furthermore, we connected these results with the GHA generated by their nonpolynomial inte-
grals of motion. This illustrates how the structure of these GHA is directly related to the additional
algebraic relation and how there is a direct transformation that allows to obtain the realizations as
deformed oscillator algebra and the corresponding structure function. These results highlight that
the use of intermediate nonpolynomial integrals of motion that allow to obtain the polynomial ones,
as discovered by Calzada, Kuru, and Negro23,24 in recent papers, is not only useful in this regard but
also for the algebraic derivation of the spectrum.

There are many possible generalizations of these results, in particular to the k-step rational
extensions of these models and also to the study of systems related with Jacobi EOP of type III. The
latter will require to modify the type of ladder operators used, as new levels are created below the
ground state of the initial Hamiltonian in the SUSYQM approach.
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APPENDIX: ACTION OF B±ν AND X ±µ,ν ON WAVEFUNCTIONS FOR THE TWO-PARAMETER
HAMILTONIAN AND ITS RATIONAL EXTENSION

In this appendix, we present some explicit formulas generalizing Eqs. (2.20), (2.22), and (2.23).
For two-parameter Hamiltonian (2.1), we obtain the following results:

B+νΦν

= 4
( (α + β + 1 + 2ν)(ν + 1)(α + β + 1 + ν)(α + 1 + ν)(β + 1 + ν)

α + β + 3 + 2ν

)1/2

Φν+1,

B−νΦν

= 4
( (α + β + 1 + 2ν)ν(α + β + ν)(α + ν)(β + ν)

α + β − 1 + 2ν

)1/2

Φν−1,

(A1)

X+µ,νΨ
(K )
µ,ν

= 22n
( (α + β + 1 + 2ν)(ν + n)!Γ(α + β + ν + 1 + n)Γ(α + ν + 1 + n)

(α + β + 1 + 2ν + 2n)ν!Γ(α + β + ν + 1)Γ(α + ν + 1)
)1/2

×
(
Γ(β + ν + 1 + n)µ!Γ(µ + 2K + 1 + 2m)
Γ(β + ν + 1)(µ − 2m)!Γ(µ + 2K + 1)

)1/2

Ψ
(K+2m)
µ−2m,ν+n

,

X−µ,νΨ
(K )
µ,ν

= 22n
( (α + β + 1 + 2ν)ν!Γ(α + β + ν + 1)Γ(α + ν + 1)
(α + β + 1 + 2ν − 2n)(ν − n)!Γ(α + β + ν + 1 − n)Γ(α + ν + 1 − n)

)1/2

×
(
Γ(β + ν + 1)(µ + 2m)!Γ(µ + 2K + 1)
Γ(β + ν + 1 − n)µ!Γ(µ + 2K + 1 − 2m)

)1/2

Ψ
(K−2m)
µ+2m,ν−n,

(A2)
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X+µ+2m,ν−nX−µ,νΨ
(K )
µ,ν

= 24n ν!Γ(α + β + ν + 1)Γ(α + ν + 1)Γ(β + ν + 1)(µ + 2m)!
(ν − n)!Γ(α + β + ν + 1 − n)Γ(α + ν + 1 − n)Γ(β + ν + 1 − n)µ!

× Γ(µ + 2K + 1)
Γ(µ + 2K + 1 − 2m)Ψ

(K )
µ,ν ,

X−µ−2m,ν+nX+µ,νΨ
(K )
µ,ν

= 24n (ν + n)!Γ(α + β + ν + 1 + n)Γ(α + ν + 1 + n)Γ(β + ν + 1 + n)µ!
ν!Γ(α + β + ν + 1)Γ(α + ν + 1)Γ(β + ν + 1)(µ − 2m)!

× Γ(µ + 2K + 1 + 2m)
Γ(µ + 2K + 1) Ψ

(K )
µ,ν .

(A3)

Similarly, calculations for its rational extension (2.12) yield

B+νΦν

= 16[(α + ν − m1 + 1)(α + ν − m1 + 2)(β + ν + m1)(β + ν + m1 + 1)]1/2

×
( (α + β + 1 + 2ν)(ν + 1)(α + β + 1 + ν)(α + 2 + ν)(β + ν)

α + β + 3 + 2ν

)1/2

Φν+1,

B−νΦν

= 16[(α + ν − m1 + 1)(α + ν − m1)(β + ν + m1)(β + ν + m1 − 1)]1/2

×
( (α + β + 1 + 2ν)ν(α + β + ν)(α + ν + 1)(β + ν − 1)

α + β − 1 + 2ν

)1/2

Φν−1,

(A4)

X+µ,νΨ
(K )
µ,ν

= 24n Γ(α + ν − m1 + n + 1)Γ(β + ν + m1 + n)
Γ(α + ν − m1 + 2)Γ(β + ν + m1 + 1)

× [(α + ν − m1 + 1)(α + ν − m1 + n + 1)(β + ν + m1)(β + ν + m1 + n)]1/2

×
( (α + β + 1 + 2ν)(ν + n)!Γ(α + β + ν + 1 + n)Γ(α + ν + 2 + n)

(α + β + 1 + 2ν + 2n)ν!Γ(α + β + ν + 1)Γ(α + ν + 2)
)1/2

×
(
Γ(β + ν + n)µ!Γ(µ + 2K + 1 + 2m)
Γ(β + ν)(µ − 2m)!Γ(µ + 2K + 1)

)1/2

Ψ
(K+2m)
µ−2m,ν+n

,

X−µ,νΨ
(K )
µ,ν

= 24n Γ(α + ν − m1 + 1)Γ(β + ν + m1)
Γ(α + ν − m1 − n + 2)Γ(β + ν + m1 − n + 1)

× [(α + ν − m1 + 1)(α + ν − m1 − n + 1)(β + ν + m1)(β + ν + m1 − n)]1/2

×
( (α + β + 1 + 2ν)ν!Γ(α + β + ν + 1)Γ(α + ν + 2)
(α + β + 1 + 2ν − 2n)(ν − n)!Γ(α + β + ν + 1 − n)Γ(α + ν + 2 − n)

)1/2

×
(
Γ(β + ν)(µ + 2m)!Γ(µ + 2K + 1)
Γ(β + ν − n)µ!Γ(µ + 2K + 1 − 2m)

)1/2

Ψ
(K−2m)
µ+2m,ν−n,

(A5)
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X+µ+2m,ν−nX−µ,νΨ
(K )
µ,ν

= 28n Γ(α + ν − m1 + 1)Γ(α + ν − m1 + 2)Γ(β + ν + m1)
Γ(α + ν − m1 − n + 1)Γ(α + ν − m1 − n + 2)Γ(β + ν + m1 − n)

× Γ(β + ν + m1 + 1)ν!Γ(α + β + ν + 1)Γ(α + ν + 2)
Γ(β + ν + m1 − n + 1)(ν − n)!Γ(α + β + ν + 1 − n)Γ(α + ν + 2 − n)

× Γ(β + ν)(µ + 2m)!Γ(µ + 2K + 1)
Γ(β + ν − n)µ!Γ(µ + 2K + 1 − 2m)Ψ

(K )
µ,ν ,

X−µ−2m,ν+nX+µ,νΨ
(K )
µ,ν

= 28n Γ(α + ν − m1 + n + 1)Γ(α + ν − m1 + n + 2)Γ(β + ν + m1 + n)
Γ(α + ν − m1 + 1)Γ(α + ν − m1 + 2)Γ(β + ν + m1)

× Γ(β + ν + m1 + n + 1)(ν + n)!Γ(α + β + ν + n + 1)Γ(α + ν + n + 2)
Γ(β + ν + m1 + 1)ν!Γ(α + β + ν + 1)Γ(α + ν + 2)

× Γ(β + ν + n)µ!Γ(µ + 2K + 1 + 2m)
Γ(β + ν)(µ − 2m)!Γ(µ + 2K + 1) Ψ

(K )
µ,ν .

(A6)
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