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Abstract 1 

Encapsulation of three forms of lactoferrin (Lf) (apo-, native- and holo-) was undertaken using the 2 

novel impinging aerosol technique (Progel). The micro-gel particles were produced from a 2% 3 

(w/w) solution of Lf and alginate (at equal mixing ratio) using 0.1 M CaCl2 as the cross-linking 4 

solution. An encapsulation efficiency of 68 − 88% was achieved based on the total amount of Lf 5 

entrapped in alginate micro-gel matrix. Increasing the CaCl2 concentration to 0.2 M reduced the 6 

encapsulation efficiency. An in-vitro digestion study conducted in simulated gastric fluid (SGF) and 7 

intestinal fluid (SIF) used pepsin and pancreatin (porcine) enzymes, respectively. Lf encapsulated 8 

micro-gel particles were able to retain significantly higher amount (76 − 89%) of Lf (apo- and 9 

native- forms) when digested in the SGF for 2 hours as compared to their corresponding un-10 

encapsulated pure Lf (41 − 58%). The effect of encapsulation on digestibility in SGF of holo-Lf 11 

was minimal. Digestion of all forms of Lf, pure or encapsulated, in the SIF was very rapid. Within 12 

10 min, apo- and native-Lf were completely digested, while holo-Lf, exhibited some resistance as 13 

less than 5% remained after 10 min. This study showed that encapsulating apo- and native-Lf in 14 

alginate micro-gel particles can provide protection from the action of pepsin in the SGF and allow 15 

their releases in the SIF.  16 

Keywords: Lactoferrin, alginate, micro-gel particles, in-vitro digestion, simulated gastric fluid, 17 

simulated intestinal fluid. 18 

1. Introduction 19 

The possibility of supplementing different food products other than baby formula with lactoferrin 20 

(Lf) has generated much attention in recent years because of its ability to exert many health 21 

beneficial effects for humans. Antimicrobial, anti-inflammatory, immunomodulatory and anti-22 

carcinogenic effects are a few of the claimed health benefits of Lf (Legrand et al., 2008). These 23 

physiological effects of Lf are attributed by its strongly cationic nature (Brock, 2002) with or 24 

without the conjunction of its ability to bind iron with high affinity (KD~ 10-20 M) (Moore, 25 
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Anderson, Groom, Haridas, & Baker, 1997). In addition, Lf can act as an iron carrier because of its 26 

iron binding ability and this has enabled its use as nutritional iron supplement (Steijns, 2001). 27 

Greater bioavailability of iron from Lf as compared to inorganic iron has been reported by several 28 

researchers (Ueno, Ueda, Morita, Kakehi, & Kobayashi, 2012; Hu et al., 2008). 29 

To enable the use of Lf as a food ingredient, apart from optimising the processing conditions, it is 30 

required that it can withstand the harsh gastrointestinal conditions to reach the site of digestion and 31 

absorbance, the small intestine in its bioactive state (Lönnerdal, & Kelleher, 2009). Researches in 32 

the past have shown that oral delivery of Lf leads to diminished effects due to its breakdown by 33 

gastric conditions (Steijns, Brummer, Troost, & Saris, 2001; Eriksen et al., 2010). Different forms 34 

of Lf, iron-free (apo-), iron-saturated (holo-) or native-Lf (composed of a mixture of apo- and holo-35 

Lf) (Steijns, & van Hooijdonk, 2000) and/or monoferric Lf (iron bound either in N or C lobe) 36 

(Brisson, Britten, & Pouliot, 2007) possess different physico-chemical properties (Bokkhim, 37 

Bansal, Grøndahl, & Bhandari, 2013). The differences in their molecular conformation and other 38 

properties can lead to difference in their resistance towards the harsh processing and gastrointestinal 39 

conditions. Research has shown that iron saturated holo-Lf is less susceptible to the gastric 40 

degradation (Steijns et al., 2001; Brock, Arzabe, Lampreave, & Piñeiro, 1976) and thermal 41 

denaturation (Sánchez et al., 1992; Conesa et al., 2008) compared to apo-Lf.   42 

In the food sector, microencapsulation has been in use for more than 75 years to entrap in a matrix 43 

or coat sensitive compounds such as vitamins, antioxidants, flavours, bioactives, enzymes, peptides, 44 

proteins and microbial cells (Pegg, & Shahidi, 2007; Millqvist-Fureby, 2009; Gombotz, & Wee, 45 

1998; Ding, & Shah, 2007). Various matrix materials such as starches, sugars, cellulose, 46 

hydrocolloids, lipids, and proteins have been used (Zuidam, & Shimoni, 2010). Encapsulation 47 

offers immobilization, protection, controlled release, structure and functionalization for sensitive 48 

compounds (Poncelet, 2006). Amongst these different microencapsulation materials, alginate gel 49 

particles have been reported to enhance the stability against processing and gastric conditions (pH 50 
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and proteolytic enzymes) for a number of water insoluble and micro-particulate core compounds 51 

(Rayment et al., 2009; Brownlee, Seal, Wilcox, Dettmar, & Person, 2009).  52 

Alginate is a natural polysaccharide, composed of unbranched binary copolymers of (1→ 4) linked 53 

β-D mannuronic acid (M) and α-L-guluronic acid (G) residues of widely varying composition and 54 

sequence (Draget, 2009). Because of its biocompatibility, safety and ability to form gel particles 55 

under mild conditions in the presence of calcium ions, it has been extensively used for 56 

encapsulation and immobilization of sensitive active ingredients for food applications (Martinsen, 57 

Storrø, & Skjåk-Bræk, 1992). The non-toxic nature yet synergistic effect of calcium on humans and 58 

animals has enabled its use as the most favourable cross-linking ion in alginate based delivery 59 

system (Draget & Taylor, 2011). In-vitro studies have shown that alginates retard the actions of a 60 

range of digestive enzymes by limiting the availability of the enzyme to the substrates (Brownlee et 61 

al., 2009). Andresen, Skipnes, Smidsrød, Ostgaard and Hemmer (1977) reported that calcium 62 

treated alginate forms gel networks characterized by a pore size between 5 and 150 nm and allows 63 

the diffusion of water soluble components with molecular weight as high as 300 kDa, in and out of 64 

the calcium alginate gel  network (Tanaka, Matsumura, & Veliky, 1984; Pothakamury, & Barbosa-65 

Cánovas, 1995). Degradation of alginate gel networks in the presence of chelating agents (eg. 66 

citrates and phosphates) can also lead to release of encapsulated macromolecules such as proteins 67 

(Gombotz & Wee, 1998). Furthermore, alginate is an anionic polysaccharide and therefore 68 

electrostatic interactions (Draget, 2009) can occur in the presence of charged polymers (eg. cationic 69 

proteins such as Lf) leading to a sustained release of macromolecules from the gel particles (Wells, 70 

& Sheardown, 2007; Bokkhim, Bansal, Grøndahl, & Bhandari, 2014). Research has shown that 71 

electrostatic as well as other intermolecular interactions occur between Lf and alginate and that the 72 

extent of interactions is affected by the form of Lf (Peinado, Lesmes, Andrés, & McClements, 73 

2010; Bokkhim, Bansal, Grøndahl, & Bhandari, 2015). These interactions minimise the loss of 74 

entrapped Lf by diffusion, lower at pH 4 compared to pH 7 for native- and holo-Lf, thus ensuring 75 

the stability of Lf within the alginate gel matrix (Bokkhim et al., 2014). The release of encapsulated 76 
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bioactive compounds from the alginate gel particles is governed by either diffusion or dissolution of 77 

gel particles or a combination of both (Kuang, Oliveira, & Crean, 2010). In the human intestine, the 78 

presence of chelating agents such as lactate, citrates and phosphates (Coppi, Iannuccelli, Leo, 79 

Bernabei, & Cameroni, 2001) and other cations such as sodium ions (Gombotz & Wee, 1998) play 80 

an important role in the destabilization of cross-linked alginate gel networks by removing the 81 

calcium ions. In-vitro studies conducted on alginate gel particles has reported that the gel particles 82 

were resistant to the gastric conditions while disintegrating in the intestinal conditions (Rayment et 83 

al., 2009) which render them as a potential vehicle for controlled delivery. 84 

The objective of this study is to encapsulate Lf in alginate micro-gel particles using a locally 85 

developed impinging aerosol technique (Bhandari, 2009) in order to develop Lf encapsulated 86 

micro-gel particles with enhanced technological properties for their potential use in food 87 

formulations. In-vitro stability and release of Lf from the micro-gel particles were evaluated in 88 

simulated gastric and intestinal fluids in the presence of proteolytic enzymes pepsin and pancreatin, 89 

respectively.    90 

2. Materials and Methods 91 

2.1. Materials 92 

Bovine lactoferrin (NatraFerrin), with iron saturation levels of approximately 1% (apo-) and 13% 93 

(native-) were provided by MG Nutritionals®, Burnswick, Australia. Sodium alginate (PE 12001-94 

13.8 EN), GRINDSTED® Alginate FD 155 (M/G ratio 1.5; molecular mass 140 kDa) was from 95 

Danisco Australia Pty. Ltd., Sydney, Australia. Calcium chloride dihydrate (99%), bile salts (from 96 

ox gall; BL038-25G), sodium chloride and tri-sodium citrate dehydrate were purchased from Chem-97 

supply Pty. Ltd, SA, Australia. Pepsin from porcine gastric mucosa (P6887; 3200-4500 units/mg 98 

protein), pancreatin from porcine pancreas (P-7545; Activity equivalent to 8×U.S.P. specification), 99 

bis (2-hydroxymethyl) iminotris-[hydroxymethyl] methane) (bis-tris) (purity > 98%), monobasic 100 

potassium phosphate, sodium hydroxide, sodium acetate trihydrate, Trizma® base, sodium 101 
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bicarbonate and glycine were purchased from Sigma Aldrich Co., Castle Hill, Australia (purity > 102 

99%). Acetic acid (99%), hydrochloric acid (concentration ~ 31.5%) and methanol (99.8%) were 103 

from Labtek Pty. Ltd., Brendale, Australia. Sodium dodecyl sulphate (SDS) was from Amresco, 104 

Solon, USA and glycerol was from Ajax Finechem Pty. Ltd., Taren Point, Australia. The dyes, 105 

bromophenol blue and Coomassie brilliant blue G-250, Mini-PROTEAN® TGXTM Gels (4 – 20%, 106 

15 wells comb, 15 µL) were from BIO-RAD, Gladesville, Australia. Cellulose acetate membrane 107 

filter (Ø=47 mm, pore size=0.45µm) was purchased from Advantec®, Toyo Roshi Kaisha, Ltd., 108 

Japan. All chemicals, unless otherwise stated, were of analytical grade. Millipore water was used 109 

for all experiments. Iron saturated holo-Lf (99.7%) was prepared according to the method described 110 

by Bokkhim, Tran, Bansal, Grøndahl and Bhandari (2014). 1% (w/v) solution of native-Lf was 111 

prepared in 10 mM Tris-Cl buffer containing 75 mM NaCl, pH adjusted to 7.2 with HCl solution. 112 

Calculated volume of fresh ferric nitrilotriacetic acid (FeNTA) solution [9.9 mM ferric nitrate and 113 

8.5 mM nitrilotriacetic acid, pH adjusted to 7.0 with solid sodium bicarbonate] was added to the Lf 114 

solution to achieve a molar ratio Lf:iron of 1:2; incubated at room temperature for an hour and 115 

finally dialysed against Millipore water for 48 hours with three changes of water. The dialysed iron 116 

saturated Lf solution was freeze dried prior to use in the study.  117 

2.2. Encapsulation of Lf in alginate micro-gel particles 118 

Two percent solids by weight solutions of sodium alginate (Alg) and the three forms of Lf (apo-, 119 

native- & holo-) were prepared separately in Millipore water. To dissolve sodium alginate, water at 120 

40 ºC was used. The solutions were prepared by mixing for 2 hours at 600 rpm using a high shear 121 

homogenizer (IKA ® RW 20 digital, USA) and allowed to stand at room temperature for another 2 122 

hours. Subsequently the alginate and the Lf solution were mixed at equal ratio (Alg:Lf = 1:1) and 123 

left standing overnight to remove any trapped air.  124 

Micro-encapsulated Lf-alginate particles were prepared using the impinging aerosol technique 125 

(Progel microencapsulating device, Bhandari, 2009) (Fig. 1). This continuous micro-gel forming 126 
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device was previously researched to encapsulate probiotics and pharmaceutical products (Sohail, 127 

Turner, Coombes, Bostrom, & Bhandari, 2011; Hariyadi et al., 2012). The Lf-alginate mixture was 128 

introduced from a nozzle into a close upright chamber at an air pressure of 500 kPa. A solution of 129 

calcium chloride (0.1 M) was introduced from another nozzle fitted at the bottom of the device at an 130 

air pressure of 200 kPa. The cascading fine droplets of the Lf-alginate mixture came in contact with 131 

the uprising fine mist of calcium chloride inside the device, thus creating gelled particles instantly. 132 

The micro-gel particles were collected from the bottom outlet along with the calcium chloride 133 

solution and allowed to cure in the cross-linking solution for 30 minutes. The time interval of 30 134 

minutes for cross-linking of 2% Lf-alginate beads (Lf:Alg = 1:1) was adapted based on the study 135 

conducted by Bokkhim et al., 2014. After curing, the product was collected using vacuum filtration 136 

with a filter paper (Advantec, Quantitative Filter Paper, Grade no. 3, Japan). The product was 137 

washed twice with Millipore water to remove excess calcium, and then frozen at -18 °C and freeze-138 

dried (Christ, ALPHA 1-4 LSC, Osterode, Germany) under the standard condition; ice condenser 139 

temperature of  - 60 ± 5 ºC, shelf temperature of 10 ± 5 ºC and vacuum of 0.021 − 0.040 mbar for 140 

72 hours. To study the effect of the calcium content in the cross-linking solution, micro-gel particles 141 

of similar composition were produced using 0.2M CaCl2. Control blank gel particles were prepared 142 

from 2% alginate alone. The freeze dried micro-gel particles were stored in an air-tight aluminium 143 

foil bag in a freezer (-18 �C) until future characterization. Sample names are outlined in Table 1.  144 

The product recovery and encapsulation efficiency after freeze drying of the gel micro-particles 145 

were calculated from equations 1 and 2, respectively. 146 

Product recovery =                                             (1) 147 

Encapsulation efficiency =                    (2) 148 

Figure 1  149 

2.3. Characterization of Lf encapsulated alginate micro-gel particles 150 
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2.3.1. Calcium and protein content 151 

The micro-gel particles were characterized for their calcium and protein contents. The analyses 152 

were conducted on freeze dried micro-gel particles. The calcium content of the micro-gel particles 153 

was determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) (Varian 154 

Vista Pro Radial ICP-OES system, Melbourne, Australia) after digesting the micro-gel particles in 155 

nitric:perchloric acid (5:1). The calcium values were expressed per unit mass of alginate after 156 

deducting the protein from the total mass. The protein content was analyzed following the 157 

combustion protocol of Dumas method (Rayment, & Higginson, 1992) and the values are expressed 158 

in percentage of dry weight.  159 

2.3.2. Particle size measurement 160 

The particle size of the freshly prepared (non-freeze dried) micro-gel particles encapsulating native-161 

Lf were measured using a Mastersizer 2000 (Malvern Instruments Ltd., Worcestershire, UK). This 162 

method is based on laser diffraction by suspended particles in distilled water, at laser obscuration of 163 

≥ 15% and laser intensity ≥ 75%. The results are expressed in volume weighted mean, D (4,3). The 164 

freshly prepared micro-gel particles were collected after filtration and washed with Millipore water. 165 

These washed micro-gel particles were re-suspended in Millipore water prior to particle size 166 

measurement. The particle size of freeze dried micro-gel particles after rehydration was also 167 

measured using the same method. All measurement were conducted at room temperature (22 ± 2 168 

ºC). 169 

2.4. In-vitro digestion of different forms of Lf 170 

The protocol for in-vitro digestion of Lf or encapsulated Lf in micro-gel particles was developed 171 

after comparative study of similar in-vitro digestion protocols used for different proteins. Dupont et 172 

al. (2010) for food proteins, Mandalari et al. (2008) for almond protein, Eriksen et al. (2010) for 173 

caprine whey proteins and Almaas et al. (2006) for caprine whey proteins including bovine Lf. 174 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
These protocols used a starting protein concentration of 25 – 50 mg protein/mL for gastric 175 

processing. In this study, taking into account, the amount of calcium which is also ingested along 176 

with the encapsulated Lf through micro-gel particles, a protein concentration of 25 mg Lf/mL was 177 

used for gastric processing. 178 

2.4.1. Simulated gastric digestion 179 

The three different forms of Lf (apo-, native- and holo-) were digested in simulated gastric fluid 180 

(SGF) (0.2% NaCl solution in Millipore water, pH adjusted to 2.0 with 1 M HCl, 4500 U 181 

pepsin/mL). To 125 mg of Lf, 5 mL of SGF was added to achieve 180 U pepsin/mg Lf. The Lf 182 

samples were incubated at 37 ºC under constant horizontal shaking (100 strokes/min) (Julabo, SW-183 

22, GmbH, Germany). After 30, 60, 90 and 120 minutes, 100 µL of the digested sample was 184 

removed and diluted with 2.4 mL of 0.1 M sodium bicarbonate solution (pH ~ 8.2) to achieve 0.1% 185 

Lf. The high pH was used to reduce the activity of the pepsin enzyme. This diluted digested sample 186 

was used immediately to prepare samples for SDS-PAGE gel electrophoresis (described below). 187 

2.4.2. Simulated intestinal digestion 188 

To study the effect of pancreatin on the different forms of Lf (apo-, native- & holo-), in-vitro 189 

digestion of Lf was done in simulated intestinal fluid (SIF) prepared according to US Pharmacopeia 190 

with slight modification in pH. 50 mg Lf was dissolved in 2 mL Millipore water. Then 2 mL of pre-191 

warmed SIF (37 ºC; 0.68% monobasic potassium phosphate; 0.5% bile salts; 1.0% pancreatin; pH 192 

8.5) was added, pH was adjusted to 7.5 and incubated at 37 ºC under constant horizontal shaking 193 

(100 strokes/min). After 10, 20, 30 and 60 minutes, 100 µL of the sample was removed and diluted 194 

with 1.15 mL of Millipore water to achieve 0.1% Lf.  This diluted digested sample was used for 195 

SDS-PAGE gel electrophoresis immediately. 196 

2.5. In-vitro digestion of encapsulated Lf  197 

2.5.1. Simulated gastric digestion 198 
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The micro-gel particles were digested in SGF. To 250 mg of micro-gel particles (equivalent to 125 199 

mg Lf), 5 mL of pre-warmed (37 ºC) SGF was added (180 U pepsin/mg Lf). Samples were 200 

incubated in a water bath under constant shaking (37 ºC, 100 horizontal strokes/min) for a set length 201 

of time. After 30, 60, 90 and 120 minutes, the samples were filtered through cellulose acetate 202 

membrane filter (0.45 µm) under vacuum and washed with Millipore water. The gel particles were 203 

collected and dissolved in 12.5 mL of 0.1 M sodium citrate solution under constant shaking at 37 204 

ºC. The activity of the pepsin enzyme was reduced because of high pH of sodium citrate (~ 8.4). 205 

Once completely dissolved, 1 mL of the digested sample was further diluted with 9 mL of Millipore 206 

water to achieve 0.1% Lf content. This diluted mixture was the base sample for SDS-PAGE gel 207 

electrophoresis. As a control sample in SDS-PAGE gel electrophoresis, micro-gel particles which 208 

had not been exposed to SGF were dissolved in 0.1 M sodium citrate solution (0.5% Lf). After 209 

complete dissolution of the micro-gel particles, 1 mL of this solution was diluted with 4 mL of 210 

Millipore water (0.1% Lf). 211 

2.5.2. Simulated intestinal digestion 212 

For in-vitro intestinal digestion, initial digestion of the encapsulated micro-gel particles (100 mg) in 213 

SGF (2 mL) was conducted according to Section 2.5.1. for 2 h at 37 ºC. Then, 2 mL of pre-warmed 214 

(37 ºC) SIF was added. The pH was adjusted to 7.5 with 1 M NaOH (~ 60 µL). The entire sample 215 

was incubated at 37 ºC under constant shaking (100 horizontal strokes/min) for a set interval of time 216 

(10, 20, 30 & 60 min). At the end of the set time interval, the digested sample was diluted with 46 217 

mL of Millipore water to achieve 0.1% Lf. This diluted sample was instantly used for SDS-PAGE 218 

gel electrophoresis. The samples from the SGF digestion (digested for 2 h) were used as controls in 219 

the SDS-PAGE gel electrophoresis.   220 

2.6. SDS-PAGE gel electrophoresis 221 

The amount of Lf remaining undigested in the SGF and SIF after the set length of time was 222 

determined by gel electrophoresis (SDS-PAGE) using 4 – 20% precast polyacrylamide gels under 223 
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reducing conditions. 100 µL of each sample (0.1% Lf) described in Sections 2.4.or 2.5. was added 224 

to 200 µL of SDS-loading buffer (70 mM Tris-Cl, pH 6.8; 26%  glycerol; 2.11% SDS and 0.01% 225 

bromophenol blue dye). Finally, 5 µL of β-mercaptoethanol was added to each sample. 226 

Subsequently it was heated at 95 ºC for 5 minutes. The dilution of Lf samples (0.1% Lf), mixing 227 

with loading buffer (1:2) and heating (95 ºC) were carried out continuously with very short time 228 

lapse in-between to minimize further digestion by the enzymes pepsin and pancreatin. These 229 

samples were kept frozen until loading onto the SDS-PAGE gels. 230 

The frozen samples were thawed, vortexed and 5 µL was loaded into the wells of a SDS-PAGE gel. 231 

Electrophoresis was conducted at 200 V for 47 minutes in a Mini-PROTEAN tetra cell system. 232 

Following this, the SDS-PAGE gel was dipped in a fixative solution (20% acetic acid in 40% 233 

methanol) for 5 minutes, drained and stained overnight under constant shaking (160 rpm) (IKA® 234 

KS 130B, GmbH& Co. KG, Germany) at room temperature (22 ± 2 ºC) with Coomossie brilliant 235 

blue R-250 solution containing 34% methanol. The SDS-PAGE gel was de-stained in de-staining 236 

solution (1% acetic acid) for 24 hours with 2 changes. Scanning of SDS-PAGE gel was done with 237 

Gel Densitiometer (GS-800 Calibrated Densitiometer, UMAX Technologies, Model UTA−2100XL, 238 

Taiwan). The amount of intact Lf was normalized based on the relative quantity of control Lf 239 

sample in lane T0 using Quantity One® software.  240 

2.7. Stability of micro-gel particles 241 

Micro-gel particle stability and integrity during in-vitro digestion was observed by recording 242 

microscope images using an optical microscope (Prism Optical PRO 2300T, Scientific instrument, 243 

Brisbane, Australia). Images were recorded using the software TSView7 under an eye piece Plan 244 

achromat 10/0.25 at different time intervals during in-vitro gastric and intestinal digestion. The 245 

particle size distribution of the micro-gel particles during in-vitro digestion was also analyzed using 246 

Mastersizer 2000 as described above.  247 

2.8. Statistical analysis 248 
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Results are presented as mean ± SD of triplicate experiments where applicable. For other 249 

experiments, the number is indicated by n. The significance of differences between the values 250 

(where applicable) were analyzed by MiniTab 16 software using Analysis of Variance (ANOVA) 251 

with Tukey’s HSD post hoc test at family error rate 5 at 95% confidence level.  252 

3. Results and discussion 253 

3.1. Encapsulation of Lf in alginate micro-gel particles 254 

The encapsulation of Lf in alginate micro-gel particles using the Progel microencapsulating device 255 

gave the highest product recovery for the combination of a 2% Lf-alginate mixture (1:1) with 0.1 M 256 

CaCl2 as the cross-linking solution for native-Lf (86 ± 8%). The actual product recovery of the 257 

micro-gel particles containing apo-Lf and holo-Lf are not included here. During the atomization of 258 

the Lf-alginate solution with apo- and holo-Lf, it was observed that the micro-gel particle production 259 

was non-homogenous leading to a wide distribution of the particle size. In addition, in some 260 

instances aggregation of particles were observed. The difference in behavior of the different forms of 261 

Lf might be due to the differences in the viscosity of the mixtures. The viscosities of Lf-alginate 262 

mixtures with apo- (721 ± 38 mPa s) and holo-Lf (514 ± 14 mPa s) were significantly lower than 263 

that with native-Lf (1297 ± 36 mPa s) (Bokkhim et al., 2015). In order to be able to compare the 264 

micro-gel particles with different forms of Lf, the same composition has to be used for all Lf-265 

alginate mixtures. Thus we limited the encapsulation study to the mixing ratio of 1:1 and total solids 266 

content of 2%. In addition, from our previous study (Bokkhim et al., 2015), within the 2% total 267 

solids content of Lf-alginate mixture, changing the mixing ratio alone was not able to increase the 268 

viscosity of the mixtures with apo- and holo-Lf to the required level for improved encapsulation. 269 

Increasing the concentration of calcium in the cross-linking solution to 0.2 M improved the micro-270 

gel particle formation process for Lf-alginate mixtures containing apo- and holo-Lf however, the Lf 271 

entrapment efficiency was affected concomitantly as discussed below. The colors of the gel particles 272 
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were imparted by the colors of Lf used, and the difference in color of gel particles was very distinct 273 

in their freeze-dried powdered form (Fig. 2).  274 

The colors of the freeze-dried powders of the micro-gel particles made using 0.2 M CaCl2 solution 275 

appeared lighter than the freeze-dried powders of the micro-gel particles made from 0.1 M CaCl2 276 

solution in agreement with the observed lower encapsulation efficiency. The loss of Lf in the filtrate 277 

solution which showed very light pinkish taint was also observed. Kim (1990) has shown that the 278 

use of higher calcium ion concentration during cross-linking of alginate causes a rapid shrinking of 279 

the alginate gel leading to formation of water cavities within the gelled layer of the particles due to 280 

rapid release of bound water from the alginate network. In agreement with this, studies have shown 281 

that the formation of a compact gel results when using high calcium ion concentrations and this is 282 

associated with possible collapse of some junction zones leading to increased pore sizes (Donati, & 283 

Paoletti, 2009) and formation of inhomogeneous gel structure which can affect the permeability 284 

(Skjåk-Bræk, Grasdalen, & SmidsrØd, 1989; Bellich, Borgogna, Cok, & Cesàro, 2011). This 285 

ultimately will cause greater diffusion of Lf during micro-gel particle formation. In order to fully 286 

elucidate the effect of the physico-chemical properties of Lf on the gelation process using the Progel 287 

micro-encapsulating device, further investigations would be required, especially with regards to 288 

calcium ion concentration and to optimize the encapsulation process for apo- and holo-Lf.   289 

Figure 2.  290 

3.2. Characterization of Lf-alginate micro-gel particles 291 

3.2.1. Calcium and protein content  292 

The calcium and protein content of the Lf-alginate micro-gel particles are presented in Table 1. 293 

Apart from the micro-gel particles having apo-Lf (0.1 M CaCl2), the calcium content of all other gel 294 

particles were not significantly different.  Increasing the calcium concentration (0.2 M) in the cross-295 

linking solution did not affect the calcium uptake by the micro-gel particles. The reason for higher 296 

calcium uptake by the micro-gel particles having apo-Lf (0.1 M CaCl2) is not very clearly 297 
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understood. The control alginate micro-gel particles (2%) showed no significant difference in 298 

calcium content of Lf-alginate micro-gel particles produced using solution of CaCl2 at 0.1 M (81 ± 7 299 

mg Ca2+/g alginate) and 0.2 M (85 ± 9 mg Ca2+/g alginate). This indicates that the calcium content of 300 

the washed micro-gel particles fabricated by the impinging aerosol technique using a cross-linking 301 

time of 30 minutes is not affected by the calcium concentration of the cross-linking solution. This 302 

might be related to the size of the gel particles, since it will take a short time for calcium to diffuse 303 

into these micron-sized particles. 304 

The protein content of the micro-gel particles was significantly higher when lower calcium 305 

concentration (0.1 M) was used in the cross-linking solution. This illustrates the importance of 306 

gelation rate to retain the core material. When using a high calcium concentration (0.2 M) in the 307 

cross-linking mist, very rapid formation of densely cross-linked (Jao, Ho, & Chen, 2010) gel 308 

particles could lead to excessive leaching of the Lf. 309 

Table 1 310 

3.2.2. Particle size measurement 311 

The particle size of the micro-gel particles encapsulating native-Lf was measured using a 312 

Mastersizer 2000. The particle size expressed as volume weighted mean D (4,3), of fresh micro-gel 313 

particles prior to washing were significantly smaller (40 ± 1 µm) (P < 0.05) than the micro-gel 314 

particles after washing (70 ± 8 µm). This could be due to osmotic swelling during washing with 315 

Millipore water in the absence of calcium. The particle sizes of rehydrated freeze-dried micro-gel 316 

particles in Millipore water (at 22 ± 2 ºC) were not significantly different (66 ± 3 µm) from that of 317 

freshly washed micro-gel particles. Thus, the shape and size of the micro-gel particles were not 318 

affected by freeze-drying which is based on the rapid sublimation of frozen water from the frozen 319 

alginate gel particles. Microscopic pictures of unwashed, washed and rehydrated freeze-dried micro-320 

gel particles are presented in Figure 3 (A, B & C). Freeze-drying helped to create a porous gel 321 

structure without significant collapse of primary micro-gel particles which recovered the original 322 
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shape and size when rehydrated. A similar result has been reported by Smrdel, Bogataj and Mrhar 323 

(2008) for freeze-dried alginate particles. Furthermore, it has been reported that freeze drying of a 324 

hydrocolloid gel produces stable solid cellular structures. The porous nature of such cellular 325 

structures has enabled its use as carrier materials for drugs and other bioactive compounds enabling 326 

their controlled release (Nussinovitch, A., 2005). 327 

Figure 3 (A, B & C). 328 

3.3. In-vitro digestion of encapsulated Lf 329 

3.3.1. Simulated gastric digestion 330 

The SDS-PAGE gel of apo-, native- and holo-Lf after 2 h in-vitro digestion in SGF (180 U 331 

pepsin/mg Lf) is presented in Figure 4 (A) and that of Lf encapsulated in alginate micro-gel 332 

particles in Figure 4 (B). In both SDS-PAGE gel (4 A & B), the major band in each lane 333 

corresponding    to 75 kDa is the Lf. The lanes T0 represent the control samples, pure Lf at time 0 in 334 

the SDS-PAGE gel (4 A) and encapsulated Lf at time 0 in SDS-PAGE gel (4 B). Their 335 

corresponding amounts based on densitiometric analysis of the 75 kDa bands are taken as 100% to 336 

normalize the relative amount of Lf in other lanes. These lanes showing several minor bands at 337 

lower molecular mass could be due to the breakdown of Lf in the reducing conditions during 338 

sample preparation for SDS-PAGE gel electrophoresis. In-vitro digestion of apo- and native-Lf 339 

produced major bands at the vicinity of 50 kDa and 15 kDa whereas holo-Lf produced major bands 340 

at 37 kDa but only minor bands at 50 kDa (Figure 4 A). Similar bands were seen but at lower 341 

intensity for encapsulated Lf (Figure 4 B). This showed that the action of pepsin on Lf does not 342 

always produce fragments of similar molecular mass with different forms of Lf. SDS-PAGE was 343 

not able to detect pepsin at the level of concentration used in the experiment. 344 

Comparative densitiometric analysis of the Lf and encapsulated Lf are presented in Figure 5. 345 

Among the samples of pure Lf, holo-Lf was more resistant towards pepsin digestion as compared to 346 

apo- and native-Lf. No significant difference between the values of undigested holo-Lf was noted 347 
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for different time intervals, even after 2 h in SGF where 96 ± 0.2% holo-Lf remained intact. Apo- 348 

and native-Lf were more prone to pepsin digestion in the initial 30 min, but their concentrations 349 

remained the same thereafter in the SGF. The result showed that only 54 ± 6% of apo- and 57 ± 6% 350 

of native-Lf remained after 30 min in the SGF. Almaas, Holm, Langsrud, Flengsrud and Vegarud 351 

(2006) also reported similar trend where digestion of Lf from caprine whey by human gastric juice 352 

occurred within the initial 22 − 30 min and with no observable reaction thereafter. These values are 353 

in agreement with an in-vivo digestion study of bovine Lf by Steijns, Brummer, Troost and Saris 354 

(2001), where 62% of apo-Lf and 79% of holo-Lf remained after 30 min. Iron saturated Lf has been 355 

reported to be more resistant to proteolysis than the corresponding apo-Lf (Brock et al., 1976; 356 

Brines, & Brock, 1983). It has been reported that the compact molecular conformation due to the 357 

binding of iron to the Lf, reduces its sensitivity to proteolysis (Sánchez et al., 1992).  358 

Among the samples of encapsulated Lf, the digestion profile was not significantly different for the 359 

different forms of Lf nor for different time intervals in the SGF. The micro-gel particles remained 360 

intact throughout the in-vitro digestion in SGF for 2 h (Fig. 6 B) and a minimum of 76 ± 9% of the 361 

encapsulated Lf remained undigested. This showed that encapsulating Lf, especially apo- and 362 

native-Lf, in alginate micro-gel particles delays the action of pepsin by limiting its access to Lf 363 

thereby leading to lower Lf degradation. The intermolecular interactions which occur between Lf 364 

and alginate (Peinado, et al., 2010; Bokkhim et al., 2015; David-Birman, Mackie, & Lesmes, 2013) 365 

could have played a role in making Lf less available for pepsin degradation. It should be noted that 366 

during the gastric digestion, an increase in pH from 2.0 to 3.5 was observed for all types of micro-367 

gel particles. This increase in the pH will cause a lower activity of pepsin. Pepsin activity is 368 

maximum at pH 1.5 – 2.5 (Piper, & Fenton, 1965) and decreases by nearly 40% at pH 3.5 369 

(Johnston, Dettmar, Bishwokarma, Lively, & Koufman, 2007). However, even at this reduced 370 

activity, there is still a large excess of pepsin present (equivalent to 108 U/mg Lf). Some 371 

encapsulated Lf is being digested by pepsin, which is possible as either the peripheral Lf diffuses 372 

out of the particles (<0.1% in pH (2.0) adjusted Millipore water in 2 h) and become available to 373 
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pepsin degradation or pepsin being small in molecular size (~35 Da), can diffuse inside the particles 374 

and act on the Lf, though at a slower rate. 375 

Figure 4 (A & B).  376 

Figure 5.   377 

3.3.2. Simulated intestinal digestion 378 

The in-vitro stability profile of the micro-gel particles through microscopic images is shown in 379 

Figure 6 (A, B & C). From these images, it can be seen that the micro-gel particles remained intact 380 

throughout the in-vitro digestion in the SGF for 2 h (Fig. 6 B) whereas the particles disintegrated in 381 

the SIF (Fig. 6 C). The presence of phosphate salts and a higher pH (7.5) in the SIF could have led 382 

to the dissolution of the micro-gel particles. High pH and the presence of salts (phosphates, sodium 383 

etc.) have been attributed to the disintegration of alginate particles leading to burst release of 384 

encapsulated proteins, thus exposing it to the proteolytic enzymes (George, & Abraham, 2006; Shi 385 

et al., 2005). 386 

Figure 6 (A, B & C).  387 

Figure 7 (A) and 7 (B) show the SDS-PAGE gel of the different forms of Lf after 1 h in-vitro 388 

digestion in SIF and of encapsulated Lf during successive in-vitro digestion in the SGF for 2 h 389 

followed by 1 h in SIF, respectively. In both SDS-PAGE gels (7 A & B), Lf appeared as the major 390 

bands in each lane corresponding to 75 kDa. The lanes T0 represent the control Lf samples without 391 

any digestion for SDS-PAGE gel (7 A) and encapsulated Lf after 2 h in-vitro digestion in SGF for 392 

SDS-PAGE gel (7 B). With pure Lf, in-vitro digestion of all Lf samples produced major bands at 393 

the vicinity of 50 kDa and 37kDa with minor bands spread in-between 20 and 30 kDa. Some intact 394 

holo-Lf was still detected after digestion in SIF for 1 h but the amount decreased with time. 395 

Furthermore, with holo-Lf, the minor bands within the 20 – 30 kDa region were of higher intensity 396 

compared to apo- and native-Lf. Encapsulated Lf also produced similar bands to pure Lf but with 397 

additional minor bands below 20 kDa (Figure 7 B). Loading of the pancreatin in the SDS-PAGE 398 
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gels produced several bands, the most distinct at 50 kDa (amylase & lipase), four minor bands 399 

mostly present around 25 kDa (trypsin, ribonuclease & protease) and two very faint bands in-400 

between the 10 – 15 kDa range (SDS-PAGE gel profile image not shown). 401 

Comparative digestion profiles of pure Lf and encapsulated Lf by densitiometry is given in Figure 402 

8. The digestion of all forms of Lf by pancreatin was very rapid and after 10 mins both apo- and 403 

native-Lf were completely digested. Holo-Lf was showed some resistance to pancreatin digestion 404 

but the amount of holo-Lf remaining after 10 min was very low (< 5%).  It has been reported that 405 

bile salts aid in the hydrolysis of intact proteins during in-vitro duodenal digestion (Martos, 406 

Contreras, Molina, & López-Fandiño, 2010). Brock, Arzabe, Lampreave and Piñeiro (1976) have 407 

reported that holo-Lf is sensitive to trypsin digestion and that only 6% Lf remained intact after 3 h 408 

digestion. The difference in survival time in our study can be attributed to the use of different 409 

enzyme combination and protein to enzyme ratio. 410 

The digestion pattern for encapsulated Lf in the micro-gel particles was not significantly different 411 

from that of the corresponding Lf. This can be attributed to the low stability of the micro-gel 412 

particles in SIF where rapid disintegration was observed. This would have caused the Lf to be 413 

released into the digest making it prone to the action of pancreatin. Research has shown that intact 414 

Lf from Lf-alginate nano-particles, which survived the gastric digestion beyond 40 min, was 415 

subsequently digested in the duodenum.  416 

Figure 7 (A & B).  417 

Figure 8.  418 

It has been shown that different concentrations of calcium in the cross-linking solution can give rise 419 

to differences in the calcium gradient which is produced during the formation of gel particles. Such 420 

different gelling zones affect the homogeneity of the particles (Donati & Paoletti, 2009). To 421 

understand the effect of the calcium gradient of the alginate micro-gel particles on the digestibility 422 

of encapsulated Lf, in-vitro gastric and intestinal digestion was conducted following the same 423 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
protocol for micro-gel particles but using 0.2 M CaCl2. It was found that higher amounts of Lf was 424 

digested by the pepsin during in-vitro digestion in the SGF as compared to gel particles produced 425 

using 0.1 M CaCl2 (data not shown). The change in porosity of the micro-gel particles could be a 426 

contributing factor to this observation as it increases the accessibility of Lf to the action of pepsin 427 

along with possibility of higher Lf leaching. The in-vitro simulated intestinal digestion profile was 428 

similar to that observed for the 0.1 M CaCl2 cross-linked micro-gel particles. The only difference in 429 

the behavior of the 0.2 M CaCl2 cross-linked micro-gel particles was an increased time for 430 

disintegration in the SIF. Thus, longer time for disintegration of the micro-gel particles did not lead 431 

to greater resistance to proteolytic enzymes during in-vitro digestion. 432 

It was observed that the Lf and encapsulated Lf to some extent was digested in the SGF by pepsin 433 

into smaller peptide fragments (seen in the SDS-PAGE gels at the 2 h time-point, Fig. 4 A & B). 434 

Furthermore, peptide fragments were formed by pancreatin and were still present after 1 h of SIF 435 

treatment (Fig. 7 B). Research has shown that the pepsin hydrolysates, especially lactoferricin and 436 

lactoferrampin from Lf possess strong antimicrobial activity (Tomita et al., 2009; van der Kraan et 437 

al., 2004). Almaas et al. (2006) reported that the digestion products of pepsin and trypsin of porcine 438 

origin still conserve their antibacterial properties, though further degradation could lead to total loss 439 

of activity. In addition, research has shown that the iron binding capacity of holo-Lf is unaffected 440 

by proteolysis (Sánchez, Calvo, & Brock, 1992) by trypsin and chymotrypsin (Brines & Brock, 441 

1983). Wakabayashi, Yamauchi and Takase (2006) has claimed that partially digested bovine Lf 442 

peptides retain their biological activities and can exert various physiological effects similar to that 443 

of intact Lf. The current study has demonstrated that the encapsulation of Lf in micro-gel particles 444 

can delay its hydrolysis by pepsin in SGF, such that it enters the SIF where it encounter further 445 

digestion by pancreatin releasing the peptides later in the digestion process as compared to un-446 

encapsulated Lf. The peptides originating from native- and holo-Lf remain in the SIF in 447 

considerable amounts for more than 30 min. Further work will be required to confirm that the 448 
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digestion of encapsulated Lf maintains functional properties (antimicrobial and iron binding ability) 449 

as predicted based on the previous work described.  450 

4. Conclusion 451 

The novel impinging aerosol technique (Progel) was successful at producing Lf-alginate micro-gel 452 

particles with an encapsulation efficiency of higher than 68%. Calcium concentration of 0.1 M in 453 

the cross-linking solution was found to be optimum to encapsulate a 2% mixture of Lf-alginate 454 

(1:1) and increasing the calcium ion concentration to 0.2 M led to lower entrapment efficiency of Lf 455 

by the micro-gel particles. The micro-gel particles had similar calcium content (except for apo-Lf) 456 

regardless of the concentration of calcium in the cross-linking solution. The particle size of the Lf-457 

alginate micro-gel particles were not affected by freeze drying and rehydration. In-vitro studies 458 

showed that encapsulated Lf (apo- and native-) were more resistant towards the action of pepsin in 459 

the SGF as compared to their corresponding pure Lf, but the effect of encapsulation was not 460 

significant for holo-Lf. The action of pepsin in SGF on Lf was more pronounced in the initial 30 461 

minutes and the Lf concentration remained constant thereafter. The encapsulation of Lf did not 462 

provide any significant delay in the digestion of Lf in the SIF. Holo-Lf was more resistant towards 463 

the action of pancreatin in SIF, and the amount of intact holo-Lf remaining after the initial 10 min 464 

was less than 5%. The findings of this research clearly demonstrate that encapsulation of Lf in 465 

alginate micro-gel particles offers protection of apo- and native-Lf from pepsin, the enzyme of the 466 

gastric juice. In the presence of salts and high pH, the alginate micro-gel particles dissolve to 467 

release the Lf in SIF. Pancreatin partly digested the released Lf in SIF and the peptide fragments 468 

produced survived the simulated intestinal condition for more than 30 min. 469 
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Caption for table supplied: 

Table 1 

Calcium and protein content of freeze-dried micro-gel particlesprepared from 2% Lf-alginate 

mixture (1:1) using three forms of Lf and two concentrations of CaCl2 solutions. 
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Table: 

Table 1 

Sample name Protein form [Ca2+] (M) Calcium content 
(mg/g alginate) 

Protein content 
(%) 

Alg 1 None 0.1 81 ± 7B - 

Alg 2 None 0.2 85 ± 9B - 

MA 1 Apo-Lf 0.1 104 ± 2A 39.4 ± 0.5A 
MA 2 Apo-Lf 0.2 85 ± 2B 20 ± 7B 
MN 1 Native-Lf 0.1 92 ± 2AB 48 ± 2A 
MN 2 Native-Lf 0.2  87 ± 1B 20 ± 1B 
MH 1 Holo-Lf 0.1  82 ± 2B 48 ± 2A 
MH 2 Holo-Lf 0.2  82 ± 3B 12.9 ± 0.3B 

Mean values of calcium content and protein content (vertical columns) that do not share a letter 

are significantly different at P < 0.05. 
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Captions for Figures supplied: 

Figure Caption Remarks/Format 

Fig. 1 Schematic diagram showing the novel Impinging aerosol 
apparatus (Adapted from Ching et al., 2015). 

TIFF 

Fig. 2 Pictures of freeze-dried Lf and Lf-alginate micro-gel particles 
(Top row: Three forms of Lf; middle row: 2% Lf-alginate 
micro-gel particles formed using 0.1 M CaCl2; bottom row: 
2% Lf-alginate micro-gel particles formed using 0.2 M 
CaCl2). M denotes the Lf-alginate mixture and A, N & H 
represent apo-, native- &holo-Lf, respectively. 1 & 2 indicate 
the calcium chloride concentration used in the cross-linking 
solution, 0.1M and 0.2M, respectively). 

JPEG 

Fig. 3 Microscopic pictures of MN 1 gel particles A) As prepared,   
B) Washed & C) Freeze-dried & rehydrated in Millipore 
water. 

JPEG 

Fig. 4 SDS-PAGE profile of Lf after 2 h in-vitro digestion in SGF 
of (A) apo-, native- and holo-Lf and (B) Lf from micro-gel 
particles MA 1, MN 1 & MH 1 at different time intervals (T 
in min). T0 represents the control sample in each group. The 
last lane is in each gel is the molecular marker (kDa). 

JPEG 

Fig. 5 Digestion profile of Lf (band at 75 kDa) based on 
densitiometric values after in-vitro digestion in SGF for 2 h. 
The bars across groups that do not share a letter is 
significantly different at P < 0.05 (n = 2). 

TIFF 

Fig. 6 Microscopic pictures of freeze-dried micro-gel particles (MN 
1) during in-vitro digestion at (A) Time 0 (SGF),          (B) 
Time 2 h (SGF) & (C) Time 4 h (2 h in SGF + 2 h in SIF). 

JPEG 

Fig. 7 SDS-PAGE profile of Lf after in-vitro digestion of (A) apo-, 
native- and holo-Lf in SIF for 1 h and (B) Lf from micro-gel 
particles MA 1, MN 1 & MH 1 in SGF for 2 h and 
subsequent digestion in SIF for 1 h at different time intervals 
(T in min). T0 represents the control sample in each group. 
The last lane in each gel is the molecular marker (kDa). 

JPEG 

Fig. 8 Digestion profile of Lf based on densitiometric values after 
in-vitro digestion in SIF. For pure Lf, digestion was done in 
SIF for 1 hr and for the micro-gel particles MA 1, MN 1 & 
MH 1, digestion was done in SGF for 2 h with subsequent 
digestion in SIF for 1 h. The bars across groups that do not 
share a letter is significantly different at P < 0.05 (n = 2). 

TIFF 
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Highlights: 

1. Resistance to enzymes and acid in the environment is affected by the forms of 

Lactoferrin (Lf). 

2. Encapsulating Lf in alginate micro-gel particles can provide protection from 

enzymatic and acidic action. 

3. Encapsulated Lf is released in the simulated intestinal fluid by dissolution of 

the micro-gel particles. 

4. Holo-Lf is resistant to the action of enzyme and acid without encapsulation. 

 

 


