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Abstract 

Novelty seeking (NS) is a personality trait important for adaptive functioning, but an 

excessive level of NS has been linked to psychiatric disorders such as ADHD and 

substance abuse. Previous research has investigated separately the neural and genetic 

bases of the NS trait, but results were mixed and neural and genetic bases have yet to 

be examined within the same study. In this study, we examined the interrelationships 

among the dopamine beta-hydroxylase (DBH) gene, brain structure, and the NS trait 

in 359 healthy Han Chinese subjects. We focused on the DBH gene because it 

encodes a key enzyme for dopamine metabolism, NS is believed to be related to the 

dopaminergic system and has been reported associated with DBH variation. Results 

showed a significant positive association between the cortical surface area of the left 

insula and NS score. Furthermore, the DBH genetic polymorphism at the SNP 

rs7040170 was strongly associated with both the surface area of the left insula and NS 

score, with G carriers having a larger left insula surface area and a higher NS score 

than AA homozygotes. Subsequent path analysis suggested that the insula partially 

mediated the association between the DBH gene and the NS trait. Our data provided 

the first evidence for the involvement of the insula in the dopamine-NS relationship. 

Future studies of molecular mechanisms underlying the NS personality trait and 

related psychiatric disorders should consider the mediation effect of the neural 

structure. 
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Introduction 

Novelty seeking (NS) is a personality trait characterized by a preference for 

exploratory and novel activities, avoidance of monotony and routine, and 

extravagance in approach to reward cues (Cloninger, 1987; Cloninger et al., 1993). 

This trait contributes to adaptive functioning. High NS individuals are impulsive, 

excitable, and quick-tempered, while low NS individuals are rigid, stoic, and 

slow-tempered (Cloninger, 1986; Cloninger et al., 1993). However, excessive NS has 

been linked to psychiatric disorders (Richter and Brandstrom, 2009), such as ADHD 

(Instanes et al., 2013; Jacob et al., 2014), pathological gambling (Kim and Grant, 

2001) and substance abuse (Milivojevic et al., 2012), while reduced levels of NS are 

correlated with obsessive-compulsive disorders (Lyoo et al., 2001). A number of 

genetic and neuroimaging studies have attempted to examine the biological basis of 

NS, but results have been mixed and the combined genetic-neural mechanism of the 

NS remains to be explored. 

 

Following Cloninger’s model (Cloninger, 1986), much of the genetic work of the NS 

trait has focused on candidate genes affecting the dopamine (DA) system, and their 

genetic effects on NS (Davila et al., 2013; Montag et al., 2010; Munafo et al., 2008). 

In this study we focused on the DBH gene, located on chromosome 9q34. It encodes 
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dopamine β-hydroxylase (DβH) protein (Kaufman and Friedman, 1965) and is a 

major quantitative trait locus of plasma DβH activity (Zabetian et al., 2001). DβH 

protein catalyzes the conversion of DA to norepinephrine (NE) (Levin et al., 1960) in 

synaptic vesicles and thereby influences extracellular DA level. Hence, one might 

speculate that variation in the DBH gene could impact NS by virtue of its effect on 

dopamine levels. This hypothesis has been supported by recent studies linking the 

DBH gene to NS (Hess et al., 2009) and several psychiatric disorders related to 

excessive NS, such as ADHD (Carpentier et al., 2013) and addiction (Preuss et al., 

2013). However, the mechanism for these gene-behavior associations, especially 

neural structure as mediating factors (or neural endophenotypes (Goldberg and 

Weinberger, 2004; Meyer-Lindenberg and Weinberger, 2006), remains unclear.  

Therefore, this study aimed to study the role of DBH gene on neural structure 

underlying NS. Our results should help to better elucidate the influence of the DBH 

gene on NS as well as related neuropsychiatric disorders. 

 

Neuroimaging studies have examined the correlation between NS and cortical volume 

in several brain regions (Gardini et al., 2009; Iidaka et al., 2006; Schilling et al., 

2013b; Van Schuerbeek et al., 2011), however, these findings are mixed. Some 

research found that NS was associated with cortical volume in the middle frontal 

gyrus (Iidaka et al., 2006) and orbitofrontal cortex (Schilling et al., 2013b), whereas 

some others found associations with regions such as the posterior cingulate regions 

(Gardini et al., 2009; Van Schuerbeek et al., 2011) and cerebellum (Van Schuerbeek et 
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al., 2011). These inconsistent results might be attributed to differences in sample size, 

methods, or statistical model specifications (Hu et al., 2011). Another possible issue is 

that most studies have examined cortical volume as a whole, while ignoring the two 

individual components that comprise it, cortical thickness and surface area. Cortical 

volume is the product of cortical thickness and surface area, which are genetically 

(Panizzon et al., 2009) and phenotypically (Winkler et al., 2010) independent. 

Moreover, these two measures are distinct aspects of the neural architecture and have 

different developmental trajectories (Lyall et al., 2014). Thus far, to our knowledge, 

the majority of structural neuroimaging studies of the NS trait have investigated the 

volume measure as a whole (Gardini et al., 2009; Iidaka et al., 2006), except for one 

study which estimated the cortical thickness measure but only focused on a facet of 

the NS trait (impulsiveness) (Schilling et al., 2013a). Given this gap in the literature, 

the respective contributions of surface area and cortical thickness to the NS trait 

should be investigated. This could not only help us to clarify the neural structure basis 

of the NS trait, but could also provide appropriate endophenotypes for imaging 

genetics studies (Winkler et al., 2010), to better understand the genetic-neural basis of 

the NS trait. 

 

The aim of the present study was to examine the brain structure underpinnings of NS 

trait and to understand the gene-brain-behavior relationships among the DBH gene, 

brain structure, and the NS score. Therefore, we first evaluated the respective effects 

of cortical surface area and cortical thickness on the NS trait in a large healthy Han 
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Chinese sample. Then we tested the association between the single nucleotide 

polymorphisms (SNPs) in and nearby the DBH gene and NS-related brain structures. 

Finally, to clarify the role of the brain in the complex interrelations, we performed 

path analyses to test whether brain structure served as a mediator between the DBH 

gene and the NS trait. We hypothesized that variations in the DBH gene would be 

related to cortical structure and NS score, and furthermore, that cortical structure 

would mediate the association between the genetic variations and NS score. 

 

Material and methods 

Subjects. Three-hundred and fifty nine healthy Han Chinese subjects (173 females, 

mean age = 19.4±1.1 years) participated in the study. All subjects had no history of 

neurologic or psychiatric disorders, and were not taking any medications that could 

interfere with their ability to complete a questionnaire or provide structural MRI data. 

This study was approved by the Ethics Committee of School of Life Science and 

Technology at the University of Electronic Science and Technology of China. All 

participants gave informed written consent. 

 

Genotyping. After blood sample collection, genomic DNA was extracted using the 

E.Z.N.A.™ Blood DNA Kit (Omega Bio-Tek, Georgia, US). All samples were 

genotyped using the standard Illumina genotyping protocol (Illumina, Inc). As 

described in Supplemental Materials Table S1, 51 SNPs located in or within 100kb 
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around the DBH gene on chromosome 9 were selected. These SNPs covered most of 

the linkage disequilibrium (LD) blocks in this region, as defined for the Chinese 

sample included in the HapMap Project (http://www.hapmap.org[phase 3]). Five of 51 

SNPs failed to pass minor allele frequency (MAF) > 0.05 and were excluded for 

further analyses. The remained 46 SNPs met the criteria for Hardy–Weinberg 

equilibrium (HWE) p > 0.01 and genotype call rate > 0.98 and were included in 

subsequent analyses. When fewer than five participants were categorized as either 

heterozygotes or minor allele homozygotes for a SNP, the two genotype groups were 

combined in further analysis.  

 

Novelty Seeking measure. Each subject was asked to complete the Chinese version 

of the Temperament and Character Inventory-Revised (TCI-R) (Chen et al., 2011; 

Cloninger, 1994). This inventory was translated from English to Chinese and back 

translated and verified through a bilingual group discussion, and the resulting Chinese 

versions had high internal consistency (Chen et al., 2011). The NS subscale of the 

TCI-R measures individual differences in the extent to which a person is quick 

tempered, impulsive, extravagant, and disorderly versus rigid, stoical, and orderly 

(Cloninger et al., 1993). The total score on the NS subscale was used in the current 

study. 

 

Image acquisition and preprocessing. MRI scans were performed with an MR750 

3.0 Tesla magnetic resonance scanner (GE Healthcare). High-resolution 3D 
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T1-weighted brain volume (BRAVO) MRI sequence was performed with the 

following parameters: TR = 8.16 ms, TE = 3.18 ms, flip angle = 7°, FOV = 256 mm × 

256 mm, voxel size = 1 × 1 × 1 mm
3
, and 188 slices. All the raw MRI data were 

inspected by two experienced radiologists who were blind to genotype information. 

MRI data were analyzed with atlas-based FreeSurfer software 

(http://surfer.nmr.mgh.harvard.edu, version 5.3.0). The cortical surface was 

constructed through an automated procedure, involving segmentation of the white 

matter, classification of the gray/white matter boundary, inflation of the folded surface, 

and automatic correction of topological defects(Dale et al., 1999; Fischl and Dale, 

2000). After the initial surface model had been constructed, measures of cortical 

surface area were calculated by computing the area of each triangle of a standardized 

tessellation. Then all of the individual reconstructed cortical surfaces were aligned to 

an average template with a surface-based registration algorithm. Quality control of 

scan images and segmentation was assured by visual inspection of the whole cortex of 

each subject and manual editing following the standard editing rules. Any 

inaccuracies in Talairach-transformation, skull stripping, and segmentation were also 

manually corrected, and re-inspected. A high correlation between these automatic 

measures and manual measures in vivo and ex vivo has been demonstrated (Desikan 

et al., 2006). Cortical thickness and surface area maps were then smoothed using a 

Gaussian kernel (20 mm FWHM).  

 

Statistical analysis. After surface reconstruction, vertex-by-vertex analyses of 
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cortical thickness and surface area were performed separately, by using a general 

linear model to estimate the the association between the morphological measure at 

each vertex and the NS score. Gender and age were included as covariates to avoid 

potential confounding effects (Smith et al., 2007). Significance maps were then 

corrected for multiple comparisons with cluster-based Monte Carlo simulations with 

5,000 permutations (using the FreeSurfer program mri_glmfit-sim, corrected for two 

spaces). Finally, because thickness analysis did not yield any significant results, the 

region significantly correlated with the NS score (corrected p < 0.05) in the cortical 

surface area analysis, the left insula, was extracted. We mapped this region onto the 

average reconstructed surface for visual display, and calculated the mean surface area 

for each subject for subsequent analysis. 

 

Linear regression models were then used to detect the associations between each SNP 

and the mean surface area of the left insula. Additive genetic models (i.e., additive 

effects of allele dosage) were used, with sex and age as covariates. Statistical 

significance level was set at p < 1.09×10
-3

 (0.05/46 [SNPs], i.e., Bonferroni 

correction). Only one SNP (rs7040170) passed the significance level and was selected 

for further analysis. Allelic association tests were carried out by using plink v1.07 

(Purcell et al., 2007). The genotype frequencies (AA = 304, AG = 53, GG = 2) were 

within the Hardy-Weinberg equilibrium (χ2 = 0.036, p = 0.850). Given that there were 

only two GG homozygotes, we combined the two subjects with the AG group and 

comparisons were carried out between AA homozygotes and G carriers. 
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Mediation model. A mediation model was set up, with the surface area of the left 

insula as a mediator, to test the direct and indirect effects of DBH rs7040170 on NS 

score. We used the PROCESS macro developed by Hayes (2012) to test for a 

mediation model (model 4), with NS score as the outcome variable, the DBH 

rs7040170 polymorphism as the predictor, and the average surface area of the left 

insula as the mediator, with sex and age as covariates. The model estimates the total, 

direct (path from DBH genotype to NS score), and indirect (path from DBH genotype 

to NS score through the left insula) relations, to clarify whether the effect of DBH on 

NS was significantly mediated through the surface area of the left insula. Statistical 

significance for the mediators was established by bootstrapped 95% confidence 

intervals (CI) with 5000 iterations.  

 

Results 

The participants’ NS scores (M = 101.2, SD = 11.3) were comparable to those of 

another Chinese sample in a previous study that used the same inventory (Lei et al., 

2014). 

 

Then the cortical surface maps for each individual was calculated, and regression 

analyses with NS scores were conducted. Significant positive correlations between the 

surface area in the left insular cortex (including a few parts of the superior temporal 
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gyrus) and NS score were observed (corrected cluster-wise p = 0.009, Monte-Carlo 

correction, see Figure 1A), whereas no significant correlation was found between 

cortical thickness and NS score. 

 

Then we conducted a series of association tests using Plink, to test the association 

between the polymorphism at each DBH SNP and the mean surface area of the left 

insula. As presented in Figure 1B and Supplemental Materials Table S2, only one 

SNP (rs7040170) located about 62 kb downstream of the DBH gene showed a 

significant association with the left insula surface area after Bonferroni correction 

(t = 3.48, uncorrected p = 5.7 × 10
− 4

 ), after controlling for the potential confounding 

effects of sex and age. Further regression analyses also showed a significant 

correlation between this SNP and the NS score (t = 2.63, p = 9.0 × 10
− 3

, again with 

sex and age as covariates). For rs7040170, G carriers showed both larger left insula 

surface area and higher NS score than AA homozygotes (see Table 1 and Figure 1C, 

1D). 

 

Given the three concurrent relationships between the gene, neural structure and 

behavior, a path model was applied to examine whether the insula mediated the effect 

of DBH rs7040170 on NS score. Analysis in PROCESS revealed significant direct 

paths including a path from DBH rs7040170 genotype to NS score (B = 0.31, SE = 

0.15, p = 0.04), a path from DBH rs7040170 genotype to insula surface area (B = 0.45, 

SE = 0.13, p = 0.0006) and a path from the insula surface area to NS score (B = 0.16, 
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SE = 0.06, p = 0.0058) (model depicted in Figure 2). There was also a significant 

indirect path from DBH rs7040170 genotype to NS score through insula surface area 

(αβ = 0.07, SE = 0.03, p = 0.03, 95% CI = [0.02, 0.17]). This suggested that the effect 

of DBH rs7040170 genotype on the NS trait was partially accounted for by 

genotype-related variations in the insula’s surface area.  

 

Discussion 

The present study found significant associations between the DBH rs7040170, surface 

area of the left insula, and NS scores. Furthermore, path analyses indicated that neural 

structure (i.e., surface area of the left insula) mediated the effect of the DBH 

rs7040170 polymorphisms on the NS trait. These results together provided possible 

genetic and neural mechanisms underlying the NS trait and psychiatric disorders 

related to abnormal NS scores, such as ADHD, pathological gambling and substance 

abuse (Instanes et al., 2013; Jacob et al., 2014; Kim and Grant, 2001; Milivojevic et 

al., 2012). 

 

One of the major findings of this study was the correlation of NS score with cortical 

surface area but not with cortical thickness. This result confirmed our conjecture that 

these two measurements should be considered separately in studies of NS trait. 

According to the radial unit hypothesis (Rakic, 1988), these two phenotypes have 

distinct neurodevelopmental mechanisms, as cortical surface area is influenced by the 
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number of columns, whereas cortical thickness is influenced by the number of cells 

within a column. The significant contribution of surface area in our study might be 

supported by one or more of the following. First, individual differences in cortical 

gray matter volume were found to be more closely related to differences in cortical 

surface area than cortical thickness (Winkler et al., 2010). In addition, cortical surface 

area became dramatically larger during evolution while cortical thickness remained 

relatively conserved (Rakic, 2009). Last but not least, reduced surface area has been 

found to be linked to psychiatric disorders (Rimol et al., 2012), and has been proven 

more useful than cortical thickness in elucidating the associations between brain 

structure and cognitive endophenotypes of psychiatric disorders (Vuoksimaa et al., 

2014). 

 

The positive association between the left insular surface area and NS scores in our 

study is consistent with previous research implicating the insula in impulsiveness (Lee 

et al., 2008) and risk and reward processing (Hauser et al., 2014; Mohr et al., 2010). 

Our results are also in line with previously documented positive correlations between 

regional cerebral blood flow (rCBF) in the insula and NS (Sugiura et al., 2000), and 

insular surface area and impulsivity (Kaag et al., 2014). Besides, this anatomical 

association is consistent with a recent study on patients suffering substance abuse who 

were found to score high on NS (Bell et al., 2014) and showed increased surface area 

in the insular cortex (Kaag et al., 2014). Previous research has indicated that lesions to 

the insula to be associated with a reduction in addictive behaviors (Naqvi et al., 2007). 
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In that case, it is clear that the anatomy of the insula may constrain its function. Hence, 

we speculate that a small regional surface area of insular cortex could lead to 

decreased tendency of impulsivity and to risky behaviors through the insula’s role in 

the processing of interoceptive cues as conscious feeling, such as urge (Naqvi and 

Bechara, 2009), thus associated with a lower NS score. Thus, we believe that the left 

insular surface area represents a promising biomarker for delineating the brain 

structural substrate for human NS trait and for understanding the neurobiological 

correlates for NS-related psychiatric conditions, such as ADHD (Jacob et al., 2014) 

and substance abuse (Bell et al., 2014). 

 

Our study also found a lateralized association between the left insular structure and 

the NS trait. This finding is consistent with earlier studies that documented positive 

correlations between NS and rCBF in the left but not the right insula (Sugiura et al., 

2000) and cigarette smoking induced cortical dopamine release in the left but not the 

right insula (Wing et al., 2014). This lateralization could be due to hypothesized 

differences in functionality of the left and right sides of the forebrain (Craig, 2005). 

Specifically, the left forebrain is predominantly associated with parasympathetic 

activity, which may underlie positive affect and approach behaviors, whereas the right 

forebrain is thought to be associated with sympathetic activity, which may underlie 

negative affect and avoidance behaviors. This left-lateralized result also concurs with 

previous EEG (Sutton and Davidson, 1997), fMRI (Berkman and Lieberman, 2010) 

and repetitive transcranial magnetic stimulation studies [rTMS, (van Honk and 
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Schutter, 2006)] and reviews (Harmon-Jones et al., 2010), all of which demonstrated 

the lateralization of approach tendencies to the left hemisphere. Moreover, such 

leftward lateralization has also been reported in psychiatric disorders related to 

excessive NS, such as ADHD (Bedard et al., 2014) and substance abuse (Krmpotich et 

al., 2013).  

 

We also found that the rs7040170 G allele was associated with a larger insular surface 

area. There are two possible explanations for this association. One came from the 

influence of rs7040170 variation on DβH activity. Rs7040170 is localized in the 

SARDH gene, which is adjacent to, bounded with, and inhabits the same topological 

domain with the DBH gene (Dixon et al., 2012). In a recent genome-wide association 

study (GWAS), rs7040170 was identified as one of the SNPs significantly associated 

with plasma DβH activity ( p = 1.31×10
-14

) (Mustapic et al., 2014). Specifically, the G 

allele is associated with higher plasma DβH activity and correlated with higher DβH 

activity in cerebrospinal fluid (CSF) (O'Connor et al., 1994). DβH is expressed early 

in embryonic development (Yew et al., 1995) and increases in late gestation, and may 

influence the cortical surface area through its roles in cell proliferation, migration and 

differentiation (Tiu et al., 2003). Another possibility is that rs7040170 G allele may be 

associated with larger insula surface area through its influence on lower DA level, and 

then a negative effect of dopamine on insula. The hypothesized effect is supported as 

the rs7040170 G allele related to higher DβH activity could lead to lower dopamine 

levels, since DβH catalyzes the conversion of dopamine to noradrenaline (Levin et al., 
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1960). Moreover, experimental studies have found that the administration of DA 

receptor agonists decreased rCBF in the insula (Black et al., 2002) and that DAergic 

depletion increased insular activity (da Silva Alves et al., 2011). The rs7040170-insula 

relationship can also be inferred as the human insula receives relatively rich DA 

innervation (Gaspar et al., 1989), expresses DA receptors (Hurd et al., 2001), and is 

strongly affected by variation in DAergic neurotransmission. These findings together 

support the influence of the DBH rs7040170 polymorphism on insular surface area. 

 

Additionally, a positive correlation was found between the G allele of DBH 

rs7040170 and NS score. A possible explanation for this finding is that the G allele 

may lead to higher DβH activity and reduced dopamine level, which could in turn 

lead to higher NS. Several studies support this hypothesis. First, as previously 

mentioned, the G-allele of rs7040170 has been found to be positively associated with 

DβH activity (Mustapic et al., 2014). Second, studies suggest that DβH function is 

positively associated with NS-related behaviors. For instance, higher plasma DβH 

activity has been found to be related to extraversion (Roy and Brockington, 1987), a 

trait that is positively correlated with NS (Kristensen et al., 2009), and DβH inhibitors 

have been found to suppress addictive behaviors (Schroeder et al., 2010). These 

aforementioned associations are likely due to the negative effects of DβH on 

dopamine levels (Levin et al., 1960). According to Cloninger’s theory (1986), lower 

basal dopaminergic activity may be associated with more intense orienting responses 

to novel stimuli, thus resulting in higher NS. These studies together indicated that 
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DβH function may underlie NS-related behaviors through its role on DA level. 

 

In the subsequent path analysis, the insula mediated the effect of DBH rs7040170 on 

NS scores. This result echoed the widely accepted hypothesis in gene-brain-behavior 

research (Goldberg and Weinberger, 2004; Green et al., 2008) and existing studies 

(Buckholtz et al., 2008; Fakra et al., 2009; Green et al., 2013) that genetic effects on 

behaviors are mediated by neural substrates. Many studies have found that the insular 

cortex regulates dopaminergic activity associated with the NS trait. For instance, a 

negative correlation between insular cortex DA receptor binding and the NS score has 

been demonstrated (Suhara et al., 2001). A later study also reported an inverse 

correlation between DA receptor availability in the insula and NS (Kaasinen et al., 

2004). In short, the observed mediation effect was consistent with the reported rich 

DA innervation in the insula (Gaspar et al., 1989) and further supported Cloninger’s 

model regarding associations between the NS trait and central dopaminergic pathways 

(Cloninger, 1986). 

 

Further research is needed to support our findings. First, although associations 

between DBH rs7040170, the insula, and NS score were identified in the present 

research, these correlational results are phenomenological and do not imply causation. 

For instance, brain-behavior associations could reflect either a biological 

predetermination or experience-driven plasticity (Hyde et al., 2009). More systematic 

studies using animal models and other techniques are required to explain these 
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relationships. Second, our sample was comprised of only one ethnic group (i.e., Han 

Chinese) and only young adults. While this homogeneity is typically considered as an 

advantage for genetic studies (i.e., in helping with avoidance of ethnic stratification 

and other confounding effects), it also limits the generalizability of our results to other 

populations. It has been demonstrated that the relationships between gene, brain and 

behavior can be modulated by ethnicity (Long et al., 2013), age (Richter-Schmidinger 

et al., 2011), and gender (Kazantseva et al., 2014). Also, rs7040170 has different 

minor allele frequencies (MAF) in different ethnic populations based on the HapMap 

Data (www.hapmap.org, see Table S1). Therefore, to obtain confirmatory evidence, 

this association should be explored in future studies in samples with different age 

groups and ethnicity. 

 

Conclusions 

In conclusion, this study provided the first evidence of interrelationships between the 

DBH gene, insula morphology, and the NS trait, and the mediating effect of the brain 

between the gene and behavior in a sample of healthy Chinese individuals. Our 

findings suggest that cortical surface area may be a promising endophenotype in 

imaging genetic studies, and that future studies of gene-personality associations 

should consider the brain mediation effect. 
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Figure Legends 

Figure 1 Associations among the DBH gene, cortical surface area, and novelty 

seeking score. A, The region in red showed a significant linear increase in cortical 

surface area with increasing novelty seeking score, p < 0.05, Monte-Carlo corrected 

for two hemispheres. B, Associations between 46 SNPs in or within 100kb around 

the DBH gene region and surface area of the survived region with sex and age as 

covariates. All SNPs were plotted with their p values against their genomic position, 

with the most significant SNP in the region indicated as a diamond and other SNPs 

shaded according to their pair-wised correlation (r
2
) with the signal SNP. The light 

blue line represented the estimated recombination rates. Gene annotations were shown 

as dark green lines. The regional plots were generated using the SNAP program 

(Johnson et al., 2008). C and D, Surface area (C) and novelty seeking score (D) in the 

survived region (means and standard errors) in rs7040170 AA homozygotes and AG 

heterozygotes. **p < 0.01 (ANOVA). ***p < 0.001 (ANOVA). 
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Figure 2 rs7040170-insula-NS score Mediation Model after controlling for gender 

and age. Path coefficients in the graph were standardized regression weights. CI, 

confidence interval. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 1 Subject demographics by rs7040170 genotype 

 

DBH Mean(SD) 

p value 

Genotype 

AA 

(N=304) 

G carriers 

(N=55) 

Male/Female 160/144 26/29 0.468
a
 

Age (yrs.) 19.37(1.07) 19.55(1.20) 0.270
b
 

Average Surface Area of each 

vertex inInsula (mm
2
) 

0.49(0.05) 0.51(0.05) 5.662E-4
c
 

Novelty seeking score 100.56(11.08) 105.11(11.84) 0.009
c
 

a
p value (Pearson χ

2
 test). 

b
p value (ANOVA). 

c
p value (main effects of rs7040170 genotype, ANCOVA with gender and age as covariates). 
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Highlights 

• Associations of cortical surface area and thickness with NS were tested separately. 

• The surface area of the insula was positively correlated with NS score. 

• DBH rs7040170 was associated with insula surface area. 

• DBH rs7040170 AA homozygotes had smaller insula surface area than other genotypes. 

• The insular surface area mediated the effect DBH rs7040170 variation on NS score. 


