
The University of Chicago

The Phenome-Wide Distribution of Genetic Variance
Author(s): Mark W. Blows, Scott L. Allen, Julie M. Collet, Stephen F. Chenoweth, Katrina
McGuigan
Source: The American Naturalist, Vol. 186, No. 1 (July 2015), pp. 15-30
Published by: The University of Chicago Press for The American Society of Naturalists
Stable URL: http://www.jstor.org/stable/10.1086/681645 .

Accessed: 07/10/2015 20:40

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press, The American Society of Naturalists, The University of Chicago are
collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist.

http://www.jstor.org 

This content downloaded from 23.235.32.0 on Wed, 7 Oct 2015 20:40:21 PM
All use subject to JSTOR Terms and Conditions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43375206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=amsocnat
http://www.jstor.org/stable/10.1086/681645?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


The Phenome-Wide Distribution of Genetic Variance

vol . 1 86 , no . 1 the amer ican natural i st july 20 1 5
Mark W. Blows,* Scott L. Allen, Julie M. Collet, Stephen F. Chenoweth, and Katrina McGuigan
School of Biological Sciences, University of Queensland, St Lucia 4072, Australia

Submitted October 28, 2014; Accepted January 22, 2015; Electronically published May 12, 2015

abstract: A general observation emerging from estimates of ad- typic space that has very little genetic variance has been
ditive genetic variance in sets of functionally or developmentally re- called the nearly null genetic subspace (Gomulkiewicz and

lated traits is that much of the genetic variance is restricted to few trait
combinations as a consequence of genetic covariance among traits.
While this biased distribution of genetic variance among functionally
related traits is now well documented, how it translates to the broader
phenome and therefore any trait combination under selection in a
given environment is unknown. We show that 8,750 gene expression
traits measured in adult male Drosophila serrata exhibit widespread
genetic covariance among random sets of five traits, implying that
pleiotropy is common. Ultimately, to understand the phenome-wide
distribution of genetic variance, very large additive genetic variance-
covariance matrices (G) are required to be estimated. We draw upon
recent advances in matrix theory for completing high-dimensional
matrices to estimate the 8,750-trait G and show that large numbers
of gene expression traits genetically covary as a consequence of a
single genetic factor. Using gene ontology term enrichment analysis,
we show that the major axis of genetic variance among expression
traits successfully identified genetic covariance among genes involved
in multiple modes of transcriptional regulation. Our approach pro-
vides a practical empirical framework for the genetic analysis of high-
dimensional phenome-wide trait sets and for the investigation of the
extent of high-dimensional genetic constraint.

Keywords: genetic variance, G matrix, pleiotropy, gene expression,
matrix completion.

Introduction

Genetic variation is almost invariably found in individual
traits (Blows and Hoffmann 2005), but recent multivariate
genetic analyses have shown that this focus on individual
traits has given a misleading picture of the evolutionary po-
tential of quantitative phenotypes (Walsh and Blows 2009).
Genetic variation in combinations of traits is often very
low for a substantial proportion of the phenotypic space,
as revealed by geometric analyses of the genetic variance-
covariance matrix (G; Agrawal and Stinchcombe 2009;
Hine et al. 2009; Kirkpatrick 2009). The part of the pheno-
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Houle 2009; Houle and Fierst 2013; Hine et al. 2014), where
the term null has been borrowed from the field of linear al-
gebra, meaning the subspace of a covariance matrix that
contains no variation. While there are statistical limits on
our ability to demonstrate the presence of a true null sub-
space that contains no variation (Mezey and Houle 2005),
the presence of some trait combinations with very low levels
of genetic variance appears to be a common property of the
distribution of genetic variance (Kirkpatrick 2009; Pitchers
et al. 2014), and this nearly null subspace is likely to repre-
sent important evolutionary constraints in natural popula-
tions (Gomulkiewicz and Houle 2009; Hine et al. 2014).
A direct corollary of the presence of nearly null subspaces

is the presence of other trait combinations with relatively
high genetic variance, and this too has evolutionary conse-
quences. Artificial selection experiments have shown that
such a distribution of genetic variance can result in many
of the individual traits under multivariate selection re-
sponding in the direction opposite to the selection gradient
applied to them (e.g., Hine et al. 2011, 2014). The concen-
tration of most of the genetic variance into only part of the
phenotypic space is expected to bias phenotypic evolu-
tionary responses arising from both drift and directional se-
lection toward directions in phenotypic space associated
with the most genetic variance (Lande 1979; Hansen and
Houle 2008; Walsh and Blows 2009). Empirical studies us-
ing natural populations have demonstrated this effect, with
responses to selection biased toward trait combinations as-
sociated with greater genetic variance (Schluter 1996; Che-
noweth et al. 2010).
The concentration of genetic variance into fewer dimen-

sions than the number of phenotypes measured is primarily
a consequence of pleiotropy among phenotypes (Lande
1980; Johnson and Barton 2005). To date, investigations
of G have typically been concerned with small sets of traits
(≤10) that are part of the same morphological structure,
such as fly wings (Phillips et al. 2001; McGuigan and Blows
2007); have strong biochemical associations, such as insect
cuticular hydrocarbons (Blows et al. 2004; Hine et al. 2004;
Van Homrigh et al. 2007); or are part of the same gene reg-
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ulatory network (Innocenti and Chenoweth 2013). Strong
pleiotropic relationships within such trait sets are perhaps

and to be genetically correlated with fitness measures un-
der laboratory conditions (e.g., Rest et al. 2013; Runcie and
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not surprising given their shared development (Cheverud
1984). While these studies of functionally related traits sug-
gest that most genetic variance tends to be confined to few
trait dimensions, the implications of this pattern for the
broader phenome-wide distribution of genetic variance re-
mains untested. If pleiotropy is extensive, the number of
trait dimensions with genetic variance may be much smaller
than the number of phenotypes that can be measured on
organisms (Walsh and Blows 2009).

The extent of pleiotropy at a phenome-wide scale is un-
clear. Some evidence from gene knockout studies suggests
that pleiotropic effects might typically be highly restricted,
corresponding to relatively small variational modules (Wag-
ner and Zhang 2011). In contrast, there are two reasons to
suspect that pleiotropy across the phenome might be exten-
sive rather than restricted. The relative rate of mutation in in-
dividual traits compared to genome-wide estimates and the
strength of stabilizing selection acting on highly heritable
quantitative traits are both observations that are difficult to
explain without extensive pleiotropy among traits, reducing
the number of genetically independent traits (Johnson and
Barton 2005). In support of these two inferences, mutational
pleiotropy among gene expression traits is widespread, with
single putative mutations affecting many traits, even when
those traits are considered without regard to known biolog-
ical function (McGuigan et al. 2014b), and mutations are un-
der stronger stabilizing selection when they are pleiotropic
(McGuigan et al. 2014a). However, empirical studies specifi-
cally targeting high-dimensional phenotypes are required to
characterize the extent of pleiotropy across the phenome.

To begin to understand the phenome-wide distribution
of genetic variance, we need to overcome two difficult chal-
lenges. First, characterizing the full set of phenotypes of an
organism, termed phenomics, is a problem that has been
less advanced than its genetics counterpart, genomics (Houle
2010; Houle et al. 2010). New technologies for the auto-
mated measurement of phenotypes are, however, begin-
ning to generate larger trait sets. Gene expression traits
are one particular class of traits that provides a useful en-
try point for phenomic study, with readily available tech-
nologies allowing the measurement of thousands of traits.
Gene expression traits lie at the interface between geno-
type and phenotype and might underlie evolutionary di-
versifications in other phenotypes (Britten and Davidson
1971; King and Wilson 1975; Carroll 2008; Wittkopp and
Kalay 2012). While there will clearly be ways in which in-
dividuals vary that are not captured by variation in gene
expression, expression traits nevertheless represent a broad
range of biological functions and have been shown to be
associated with responses to selection in the field (e.g., Mc-
Graw et al. 2011; Whitehead et al. 2011; Pespeni et al. 2013)
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Mukherjee 2013). Gene expression therefore provides per-
haps the best opportunity, given current technologies, to
explore the distribution of genetic variance in very-high-
dimensional phenotypes.
The second challenge to be overcome if we are to under-

stand the phenome-wide distribution of genetic variance is
the estimation of high-dimensional G. Standard multivari-
ate mixed-model approaches to estimating G for n traits
typically use restricted maximum likelihood (REML) to fit
an unstructured covariance matrix,

Gp

j2
1 j1,2 ⋯ j1,n

j2
2 ⋮

⋱ ⋮
j2
n

2
664

3
775, (1)

where j2
n is the genetic variance in the nth trait and j2

i,j is the
genetic covariance between traits i and j. As n increases, the
number of parameters to be estimated increases exponen-
tially by a factor of n(n1 1)=2, forming the basis of the
so-called curse of dimensionality. Given the rapid increase
in the number of parameters to be estimated as n increases,
it would at first appear to be a daunting task to ask questions
concerning the distribution of genetic variance in the
hundreds or even thousands of traits necessary to under-
stand what the distribution of genetic variance across the
phenome might be. This is primarily because convergence
of mixed models with dimensions as few as 10 is often dif-
ficult to obtain for reasons that will vary from study to study
but are likely to include limited degrees of freedom and
nonnormal trait distributions.
Several approaches have recently been advanced that at-

tempt to accommodate large numbers of traits measured
within standard quantitative genetic experimental designs
(Meyer and Kirkpatrick 2005; Stone and Ayroles 2009;
McGraw et al. 2011; Runcie and Mukherjee 2013). The
most generalizable of these approaches are likely to be those
that result in the estimation of a reduced-rankG, where the
number of dimensions with genetic variance is constrained
to be fewer than the number of traits measured and thus
fewer parameters need to be estimated. The Bayesian sparse
factor (BSF) approach of Runcie and Mukherjee (2013)
in particular promises to be a versatile approach for iden-
tifying sparse trait combinations that explain substantial
proportions of the observed genetic variance. As a conse-
quence of the Bayesian framework, the implementation of
BSF is quite complex and requires a number of simplifying
assumptions, the most important of which are that (1) the
eigenvectors of the resulting G matrix have few traits con-
tributing to them (the sparse assumption) and (2) the resid-
ual matrix is also of a reduced rank. Both assumptions are
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essentially ways of reducing the number of parameters that
need to be estimated by the model.

determine the extent of genetic covariance among these
random sets sampled from the entire set of 8,780 traits. Sec-

Real symmetric matrices like G are a subclass of Hermitian

High-Dimensional Genetic Variance 17
Quantitative genetics is not alone in the need to estimate
and understand the behavior of high-dimensional covari-
ance matrices. Disciplines as diverse as ecology, mathemat-
ical physics, signal processing, and finance struggle with the
problem of estimating large covariance matrices (Paul and
Aue 2014), although in most cases they tend to be sample
covariance matrices rather than the more derived variance
component matrices that represent G. The use of covari-
ance matrices to describe the distribution of variance in
high dimensions rests on the additional assumption of multi-
variate normality (MVN), which also underlies much of
quantitative genetic theory and the multivariate response
to selection (Lande 1979). Substantial deviation from the
MVN assumption can potentially obscure the distribution
of variance across trait combinations (see fig. 1 in Mahoney
and Drineas 2009 for a graphic illustration). The relative
performance of covariance matrices against alternative for-
mulations using approaches such as information theory that
do not rely on the MVN assumption for high-dimensional
biological applications is currently unknown.

Here, we bring together a series of recent theoretical
results establishing a number of properties of large Her-
mitian matrices completed from smaller submatrices con-
tained within them. We use these theoretical results to de-
velop a framework for the estimation of a large G matrix
(np 8,750) of gene expression traits measured in maleDro-
sophila serrata. Beginning with small matrices (np 5) of a
size typical of many evolutionary quantitative genetic stud-
ies, we show that genetic covariance is common among ran-
dom sets of gene expression traits. Building from this low-
dimensional base, we demonstrate how small submatrices
can be used to complete a higher-dimensional G while esti-
mating just a fraction of the elements of the larger matrix di-
rectly from the data. Having validated the method, we use
the approach to estimate the 8,750-traitGmatrix (from np
50 submatrices) and present evidence for widespread ge-
netic covariance among a very large number of expression
traits. Finally, we employ gene ontology (GO) enrichment
analysis and show that the widespread genetic covariance
uncovered by the analysis of the 8,750-trait G was associ-
ated with genes involved in multiple modes of transcrip-
tional regulation, supplying a plausible mechanism for wide-
spread pleiotropy among gene expression traits.

Methods
We employed two complementary analytical strategies in

this study to investigate the phenome-wide distribution of
genetic variance. First, a large number of G matrices were
estimated using standard methodologies for small (5- and
50-trait) sets of randomly chosen gene expression traits to
This content downloaded from 23.235.3
All use subject to JSTOR
ond, theseGmatrices were used to determine the utility of a
matrix completion approach for approximating very-large-
dimensional G matrices (here, a G matrix of up to 8,750
traits). We begin by outlining the problem ofmatrix comple-
tion and then detail the specific approach we have adapted
for use in estimating very-large-dimensional G.

The Problem of Matrix Completion
matrices, with the latter broader category allowing for com-
plex entries. If the ith rows and jth columns of a symmetric
matrix are sampled so that ip j, the resulting smaller ma-
trix is called a principal submatrix. If all n traits are allocated
to a subset k in this fashion, G can be represented as

Gp

B1,1 B1,2 ⋯ B1,m

B2,2 ⋮
⋱ ⋮

Bm,m

2
664

3
775, (2)

where the mp n=k Bm,m are principal submatrices posi-
tioned along the diagonal. The off-diagonal submatrices
each contain the set of k2 genetic covariances between
the traits contained in any two principal submatrices. If
the off-diagonal blocks remain unestimated from the data,
equation (2) becomes

Kp

B1,1 0 ⋯ 0
B2,2 ⋮

⋱ 0
Bm,m

2
664

3
775, (3)

whereK is an example of a block diagonal partial Hermitian
matrix (Tian 2010). Clearly, the number of individual
elements to be estimated inK is far less than inG. For exam-
ple, for np 8,750 and kp 50, as in our empirical analysis
below, K contains 223,125 unique elements, compared to
3.83#107 unique elements in G. Therefore, only 0.6% of
the unique elements of G are contained in K. Such an enor-
mous difference in the number of elements to be estimated
provides a strong incentive to find ways to completeGwhen
only K is estimated from the data (Candes and Recht 2009;
Tian 2010).
The problem of how to estimate the missing entries of a

matrix from the fewer entries that are known is called the
matrix completion problem, and many of the potential solu-
tions to this problem rest on the assumption that the com-
pleted matrix is of low rank (Candes and Recht 2009). Since
we expectGmatrices to be of rank r< n as a consequence of
pleiotropy (Johnson and Barton 2005) and current estimates
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ofG frommultivariate mixed-model analyses are consistent
with the vast majority of genetic variance being confined to a

Note that the diagonal of the completed matrix Gk
n is the

same asK and therefore the traces ofGk
n andK are the same.

k
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subspace of dimension ! n (Hine et al. 2009; Kirkpatrick
2009), such an assumption seems reasonable in a quantita-
tive genetic context. As a consequence of the vast reduction
in information in equation (3) compared to in equation (2),
however, r≪ n for the completed matrix and the completed
matrix will necessarily be an approximation of the true co-
variance matrix in equation (2). One goal of this article is
to determine whether aG of very high dimension completed
using estimates for only a fraction of the elements contained
in equation (3) can further our understanding of the distri-
bution of genetic variance across the phenome.

Completing G from a Set of Principal Submatrices
Matrices of the form of equation (3) can potentially be com-

pleted using only the information provided by the principal
submatrices because of the regular nature of the block sam-
pling (Candes and Recht 2009). In particular, Bourin and
Lee (2012) established that for mp 2 principal matrices
B1,1 and B2,2, each of size k, the off-diagonal matrix B1,2 could
be estimated under specific conditions if it is assumed that
the completed matrix of size np 2k was of rank rp k.
Expanding to m > 2 blocks, Bourin and Lee (2013, theo-
rem 2.1, corollary 2.7) showed that a completed matrix of
size n and rank k (Gk

n) can be estimated from m principal
submatrices as

Gk
n p

B1=2
1,1 0 ⋯ 0

B1=2
2,2 0 ⋯ 0
⋮ ⋮ ⋱ 0

B1=2
m,m 0 ⋯ 0

2
664

3
775

B1=2
1,1 B1=2

2,2 ⋯ B1=2
m,m

0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 0

2
664

3
775, (4)

where 0 elements fill the two symmetrical matrices on the
right-hand side of equation (4) to each be size n. Although
the algebraic proof is given in Bourin and Lee (2013), here
equation (4) is expressed in the notation used in Bourin
and Lee (2012), which is more amenable to empirical usage.

The B1=2
m,m in equation (4) are calculated as

B1=2
m,m pUFU21,

whereU contains the eigenvectors of Bm,m as columns and F
is a diagonal matrix containing the square root of the eigen-
values of Bm,m. Equation (4) can be understood as substitut-
ing the geometric mean of any pair of principal submatrices
for the associated off-diagonal submatrix of genetic covari-
ances for that pair. Therefore, any (unknown) genetic co-
variance between two traits that is not estimated directly
from the data within one of the principal submatrices is ap-
proximated from the (known) genetic covariances of those
two traits, with the other k2 1 traits contained in their re-
spective principal submatrices.
This content downloaded from 23.235.3
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The sum of the k nonzero eigenvalues of Gn is therefore
equal to the trace of K. This means that the magnitudes of
the eigenvalues of Gk

n in isolation are of little use in in-
terpreting how much genetic variance is captured by a par-
ticular phenome-wide trait combination. Rather, it is the
comparison of the size of the eigenvalues from a null distri-
bution, determined from a Gk

n where the covariance among
traits is absent or due only to sampling covariance (see be-
low), that enables a test for the presence of widespread ge-
netic covariance among high-dimensional trait sets.
The one remaining complication that needs to be ad-

dressed before we can use equation (4) to completeGk
n from

K concerns the estimation of the large set of m principal
submatrices. All principal submatrices need to be positive
semidefinite, but empirical estimates of G tend to be nega-
tive definite as a consequence of sampling (Hill and Thomp-
son 1978). Estimation methods that constrain the estimates
of Bm,m to be positive semidefinite are therefore required.
Two general approaches to guarantee positive semidefinite
matrices are available, differing in their utility depending
on the magnitude of k.
First, if k is chosen to be small enough, the m princi-

pal submatrices of G can each be estimated in separate
standard multivariate mixed models. One readily available
method to constrain a REML estimate of a G matrix to
be positive semidefinite is by applying a factor-analytic co-
variance structure of full rank for the appropriate random
effect within a mixed model (Meyer and Kirkpatrick 2005;
Hine and Blows 2006). We apply this approach using kp
5 (such matrices are referred to as G5 below), where k was
chosen as a compromise between the desire to include as
many traits as possible and model convergence. Notably,
of the published estimates of G surveyed by Pitchers et al.
(2014), an average of five traits were included in any partic-
ular analysis.
A second approach that can be applied to matrices with

larger values of k is to estimate G from a series of bivariate
models and manually arrange the resulting covariances
into a symmetrical matrix. This approach has been used
to estimate single G where n > 5 (e.g., Mezey and Houle
2005; Leinonen et al. 2011), a practical solution to the es-
timation of large covariance matrices that is also used in
other disciplines such as finance (Higham 2002). Once in
symmetrical form, this k#k matrix can then be subjected
to a bending or shrinkage procedure (Hayes and Hill 1981;
Higham 2002; Meyer and Kirkpatrick 2010) to result in a
positive semidefinite matrix. Here, we used matrices formed
from bivariate mixed-model analyses of all possible pair-
wise combinations of 50 traits (kp 50, where such matri-
ces are referred to as G50 below). We chose kp 50 as it
was an order of magnitude larger than the kp 5 used for
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the mixed-model approach and because we wished to estab-
lish the behavior of the Bourin and Lee (2012, 2013) ap-

with the covariances in these null G matrices reflecting the
sampling of random associations between traits. Substitut-

High-Dimensional Genetic Variance 19
proach when the number traits in each block exceeded the
number of inbred lines (30) in the experiment. We applied
the shrinkage estimator of Higham (2002) to ensure that
each matrix was positive semidefinite, which first required
theG50 covariance matrices to be transformed to correlation
matrices. Higham’s shrinkage estimator was applied using
SAS IML code given in Wicklin (2013).

Null Distributions for the Eigenvalues of Gk
n

From random matrix theory, it is known that the spectral

We measured gene expression traits in males from a set of

distribution of a Hermitian matrix with random entries will
follow the Marchenko-Pastur (MP) distribution (Bai and
Silverstein 2010) and the leading eigenvalues will follow
Tracy-Widom (TW) distributions (Tracy and Widom 2009).
Therefore, we can expect that the leading eigenvalues of
Gk

n will be inflated to some extent by this random process.
AsG is derived from a mixed linear model and is not a stan-
dard sample covariance matrix, it is not straightforward to
establish the MP distribution in this case (see Martin 2014
for a discussion). Similarly, it was not possible to test the
leading eigenvalues of Gk

n against the TW distribution, as
the centering and scaling constants required to define the
TW distribution for variance-component-based covariance
matrices are unknown (Blows and McGuigan 2015).

We therefore took two alternative approaches to di-
rectly estimate the extent of the bias generated by random
processes. First, we assumed no covariance among any of
the randomly combined traits within a set, taking the es-
timated genetic variances for each individual trait (the di-
agonal) from the observed data and setting all off-diagonal
elements (covariances) to zero. This null model has been
used previously to explore the extent of bias imposed on
phenotypic evolution by the genetic covariance among
traits (Agrawal and Stinchcombe 2009) and has the useful
property that eigenanalyses of these matrices will return
eigenvalues corresponding to the genetic variance in indi-
vidual expression traits in descending order of individual
trait genetic variances.

Second, we replicated the entire set of mixed-model anal-
yses that generated the sets of G5 and G50 matrices and sub-
sequently the construction of Gk

n using a randomly gener-
ated data set with the observations for each gene expression
trait represented as standard normal deviates and struc-
tured to have the same number of lines (30) and replicates
per line (two) such that the same models could be fit. We
then discarded the diagonals of these random G5 and G50

matrices and substituted the observed expression trait ge-
netic variances (the diagonal) into these matrices. In this
way, the total genetic variance remained the same in the null
data and in the observed data, but the covariances differed,
This content downloaded from 23.235.3
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ing the observed genetic variances for the randomly gener-
ated variances does not change the fundamental nature of
the null matrix, which will be negative definite using either
diagonal as a consequence of sampling error. This is a more
stringent null model, capturing the sampling error associ-
ated with estimation of covariances among traits, and allows
the size of the eigenvalues of the null model to be directly
compared to the observed data.

Gene Expression Data for Drosophila serrata Males
30 inbred lines derived from a collection of inseminated
females from a natural population of Drosophila serrata,
with 15 subsequent generations of brother-sister inbreed-
ing of the offspring of those wild-caught females (Allen
et al. 2013). Expression of 11,604 genes was measured using
a custom-made NimbleGen microarray designed from a D.
serrata expression library (Frentiu et al. 2009). Full details
can be found in McGuigan et al. (2014b), and the data are
available via the National Center for Biotechnology Infor-
mation Gene Expression Omnibus accession GSE45801.
Briefly, five probes, each of which was represented twice
on each array, targeted each gene. Mixed-model analyses
of the average log10 expression of the two replicates per
probe were implemented per gene using a model where
probe was fit as a fixed effect and among- and within-line
variance were fit as random effects. Expression for each
gene was standardized to a mean of 0 and standard devia-
tion of 1 before analysis, negating the need for fitting gene
as a fixed effect. Using log-likelihood ratio tests (with 1 de-
gree of freedom, comparing a model with and without an
among-line effect, and using the P values from those anal-
yses to set a 5% false discovery rate (FDR) correction; Ben-
jamini and Hochberg 2000; Storey and Tibshirani 2003),
McGuigan et al. (2014b) determined that there was signifi-
cant (at FDR) genetic (among-line) variance in 8,782 individ-
ual expression traits, with an average heritability of 0.41.
We randomly discarded two of the heritable expression

traits, resulting in np 8,780 traits (or np 8,750 traits when
kp 50 below), which were randomly assigned to kp 5 trait
sets and subjected to multivariate mixed-model analyses
to estimate the mp 1,756 G5 principal submatrices. The
mixed model, fitted in SAS, version 9.3 (SAS Institute
2011), took the form

Yp m1Xbi 1Zldl 1Zrdr 1 ε (5)

where X is a design matrix for the fixed effects of replicate
probe per gene; ε is a diagonal matrix containing the resid-
ual (among probe mean) variances for each trait; Zl and Zr
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 Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


are designmatrices for the line and replicate within-line ran-
dom effects, respectively; and dl and dr are the covariance

low levels of genetic variance are likely to represent a ge-

1.0

0.9ni
n

G
5

A
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matrices for these effects. We fit two different types of co-
variance structures in these analyses. The within-line vari-
ance (dr) was modeled as an unstructured covariance ma-
trix. To ensure positive semidefinite Bm,m was obtained, the
among-line variance (dl) was modeled using a factor-
analytic structure, dl pLLT, where L is a lower triangular
matrix of factor loadings and superscript T indicates trans-
pose. We fit a full-rank factor-analytic model (see Mc-
Guigan and Blows 2010 for SAS code), with the number
of dimensions equal to kp 5.

To estimate the G50 principal submatrices, we allocated
all 50 traits contained in 10 of the G5 submatrices to one
of 175 50-trait sets. The allocation of the traits contained
in 10 complete sets of G5 matrices to a single G50 matrix
allowed us to directly compare the estimated G50 to the
G5

50 completed from the G5 principal submatrices using
the Bourin and Lee (2012, 2013) approach. Specifically,
we could empirically determine whether completing a ma-
trix using only a fraction of the elements could successfully
capture information on the genetic variance in the larger
trait set. We therefore had to discard 30 traits (correspond-
ing to six G5) from this analysis, resulting in 175 50-trait
sets for estimation of G50 matrices. The 214,375 bivariate
genetic covariances required to construct these 175 matri-
ces were each estimated in a bivariate mixed model using
model (5) but where the dl were modeled with an uncon-
strained covariance structure and the matrices were sub-
sequently transformed to be positive semidefinite, as de-
scribed above.

Results

The Distribution of Genetic Variance in G5 and G50

We begin by describing the patterns of genetic variation in
the G5 and G50 matrices (fig. 1), where each element has
been estimated directly from the data. The G5 matrices, es-
timated in a multivariate mixed model using REML, are
typical of those found in many quantitative genetic studies.
Across the 1,756 G5 matrices, the average pattern of decay
of the eigenvalues (the spectral distribution) was similar
to that established for small sets of functionally related
traits, illustrating the unevenness of the distribution of ge-
netic variance across trait combinations (Kirkpatrick 2009;
Walsh and Blows 2009). A high proportion of the genetic
variation was associated with the first eigenvector, gmax

(medianp 55.6%), with relatively little overlap of the ei-
genvalues of gmax and g2 in the proportion of genetic vari-
ance explained (fig. 1A). The last eigenvectors (g4 and g5)
accounted for very little genetic variance, typically for less
than 10% of the total genetic variance in the trait set. As
demonstrated by Hine et al. (2014) through the application
This content downloaded from 23.235.3
All use subject to JSTOR
netic nearly null subspace in which evolutionary responses
to selection are inconsistent.
The relatively high variance in gmax in the G5 matrices

may not only be a consequence of real genetic covariance
but might also be contributed to by sampling variance in
this trait combination. To address this issue, we compared
the level of genetic variance in the observed gmax with the
of artificial directional selection, trait combinations with
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Figure 1: The distribution of eigenvalues (as a proportion of the to-
tal variance within the matrix) across 1,756 G5 principal submatrices
(A) and 175 G50 principal submatrices (B). Boxes represent the range
between the first and third quartile, with the median shown as a black
band within the box. The whiskers represent the full range of the
data, with values falling between 1.5 and 3 times the interquartile
range (IQR) from the end of the box indicated by circles and extreme
cases (13 IQR from the end of the box) shown as crosses. In B, to
improve the visibility of patterns among higher eigenvectors, eigen-
vectors g26–g49 are not plotted. Eigenvalues of these eigenvectors were
not distinguishable from zero, as shown for g25 and g50.
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major axis of variation in the two null models of G, both of
which have the same per-trait genetic variance (the diago-

genvalues of G50 were consistently estimated close to zero

300 A
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nal) as the observed data, but in which we assumed no ge-
netic covariance or we explicitly estimated the genetic co-
variances generated among traits through random sampling.
The genetic variance of the observed gmax was always greater
than the genetic variance in any individual trait, as captured
by the diagonal null model (fig. 2A). As expected, the ran-
dom covariance null was a more stringent null than the di-
agonal null, but the observed gmax eigenvalue was also typi-
cally greater than gmax of the corresponding random
covariance null model, with only 152 of the 1,756G5 having
a gmax eigenvalue less than the null model (fig. 2B). A paired
t-test indicated that significantly more genetic variance
was captured in the eigenvalues of gmax from the observed
data than in the random covariance null model (excluding
one extreme null model value, t1754 p 15.789, P< .001).
The eigenvalue for the second eigenvector (g2) was signifi-
cantly smaller in the observed data than in the null model
(t1755 p 26.642, P< .001), which reflects the fact that to-
tal genetic variance is constrained to be the same in the
observed and null data; when more genetic variance is
contained in gmax, it is necessarily the case that less genetic
variance is available to be allocated to the remaining ei-
genvalues.

Combining all traits from 10 of our five-trait sets, we
used a pairwise mixed-modeling approach to estimate 175
G50 matrices (fig. 1B). This approach of building a larger
matrix from pairwise analyses is frequently employed to
deal with the computational difficulty of estimating rela-
tively large covariance matrices. Such matrices will typi-
cally be negative definite, and we subjected our matrices
to a shrinkage procedure to transform them to semipositive
definite matrices. The G50 exhibited a similar spectral distri-
bution to the G5, with the eigenvalue of gmax much larger
than and exhibiting relatively little overlap with the ei-
genvalues of subsequent eigenvectors (fig. 1B). Although
the pattern of decay was similar, the proportion of genetic
variation accounted for by gmax was lower in the G50 than
in the G5 matrices—a median of 22.1% compared to
55.6%. This difference in relative magnitude can at least in
part be attributed to differences in the estimation of these
matrices, particularly the transformation of G50 to a corre-
lation matrix as part of the procedure for generating a
semipositive definite matrix. Correlation matrices typically
have a major eigenvector that explains a lower proportion
of total variance than does the major eigenvector of a co-
variance matrix. When the same shrinkage approach was
applied to the G5 matrices, the median proportion of genetic
variance attributable to gmax declined from 55.6% (fig. 1)
to 33.6%.

Because of the limited number of inbred lines (30) in the
experiment, eigenvalues for G50 eigenvectors after g29 are
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All use subject to JSTOR
from g24 on (fig. 1B), consistent with the presence of a sub-
stantial nearly null subspace in these matrices. As with G5,
comparison to the distribution of the random covariance
null model G again provided strong support for widespread
covariance among random sets of gene expression traits,
with the eigenvalue of the observed gmax significantly greater
than in the null model (t174 p 12.658, P< .001).
unlikely to contain any biological information. The ei-
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Figure 2: The difference between the eigenvalue of gmax observed in
the data and the gmax eigenvalue of the diagonal null (A) and the gmax

eigenvalue of the random covariance null (B). The observed gmax was
always greater than gmax of the diagonal null (only positive values in
A). In B, the shaded background indicates values below zero (i.e., where
the random covariance null gmax was associated with greater variance
than the observed gmax). In B, one extreme difference value (226) oc-
curred due to an extreme null model, and this matrix pair is not plotted
and was not included in analyses comparing the observed and null dis-
tributions.
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Prediction of G50 from the G5
50 Approximation

One goal of this article was to explore whether high-

Recent theory has established that all principal submatrices

1.8

1.6E
S

22 The American Naturalist
dimensional G matrices could be completed from only a
very small fraction of all the unique elements of the full
matrix to advance our understanding of the distribution
of genetic variance. We first tested our approach using
matrices of relatively small dimension (np 50) that could
be both estimated in their entirety from the data and com-
pleted from a small fraction of estimated elements. We
compared 175G50 matrices, which had all 1,275 elements es-
timated through pairwise covariance analyses, with their
corresponding G5

50 matrices that we completed from the
150 elements directly estimated in the 10 G5 principal sub-
matrices. Remembering that for theG5

50 matrices, completed
from principal submatrices with kp 5, only the first kp 5
eigenvectors will have nonzero eigenvalues, it is therefore
only this subspace of G5

50 that we can compare to G50.
To determine whether G50 and G5

50 captured the same
information, we projected each of the first five eigenvectors
of G5

50 through G50 (using eTi G50ei, where ei is the ith eigen-
vector of G5

50 scaled to unit length and superscript T in-
dicates matrix transpose) to determine how much of the
genetic variance in G50 had been captured by G5

50. Given
that G5

50 has a maximum of five dimensions, we compared
the sum of the variances from the projection of the five G5

50

eigenvectors to the sum of the first five eigenvalues of G50,
which represents the maximal level of genetic variance con-
tained in five dimensions in G50. For the 175 replicate pairs
of G50 and G5

50, on average, 40% of the genetic variance
associated with the five-dimensional subspace of G50 was
recovered by the five eigenvectors from G5

50. Notably, the
ordered projection of the five G5

50 eigenvectors recovered
genetic variance in the same decreasing order as the ob-
served eigenvalues of the fully estimated G50 (fig. 3), indi-
cating that the order of eigenvectors in G5

50 successfully
predicted the order in G50. We again compared the ob-
served genetic variance to the random covariance null
model, projecting the five G5

50 eigenvectors through the null
G50. For all five eigenvectors of G5

50, the genetic variance in
the observed G50 was significantly greater than the genetic
variance in the null model G50 (paired Wilcoxon tests with
174 degrees of freedom, P< .002; fig. 3). Therefore, esti-
mating only the 150 elements contained in the 10 G5 prin-
cipal submatrices rather than all 1,275 unique elements in
G50 still resulted in the completed G5

50 matrices capturing a
considerable portion of the shared genetic covariance among
the 50 traits in each set.

Completion of Extreme High-Dimensional G
from Principal Submatrices

The spectral distribution of the 1,756 G5 and 175 G50

exhibited the exponential decline that is typically observed
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sampled from a larger Hermitian matrix will have almost
the same spectral distribution if k is sufficiently large (Chat-
terjee and Ledoux 2009; Meckes and Meckes 2011). The
consistency among the spectral distributions of the prin-
cipal submatrices is therefore an expected consequence
of the random sampling of such submatrices. Importantly,
what is not apparent from the independent analyses of
small random subsets of traits, many of which revealed ge-
netic covariance among traits, is whether each submatrix
is capturing a different variational module (sensu Wagner
et al. 2007) or whether all submatrices are sampling the
same large variational module. These different scenarios
would reflect very different spectral distributions of larger-
dimensional G. In general, there appears to be no estab-
lished relationship between the spectral distribution of a
larger covariance matrix and the spectral distributions of
its principal submatrices (Chatterjee and Ledoux 2009).
We can therefore not infer that the genetic covariance
among a much larger set of traits will have a similar de-
cay in the eigenvalues as observed for these smaller spaces
(fig. 1). Therefore, to determine the properties of the dis-
tribution of genetic variance across a larger number of
traits, it is necessary to estimate the spectral distribution
of higher-dimensional G completed from different ran-
for G matrices of morphological traits (Kirkpatrick 2009).
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Figure 3: Distribution of genetic variance in G50 and G5
50. The ge-

netic variance in each of the first five eigenvectors of G50 (open
squares) is plotted on the original covariance scale (without applying
the matrix shrinkage method to ensure a semipositive definite ma-
trix). The variance G50 associated with each of the first five (and only
positive) eigenvectors of G5

50 was determined by projecting each of
these eigenvectors through G50 (black circles) and compared with
the projection of these same eigenvectors through the random covari-
ance null G estimated for 50 traits (gray circles).
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dom samples of the data, and we implement this using both
G5 and G50 principal submatrices.

in the 875 traits is forced into these five dimensions, the re-
maining four eigenvectors had lower genetic variance than

High-Dimensional Genetic Variance 23
We first divided the 8,750 traits into 10 independent sets,
each comprised of 175 G5 principal submatrices, and then
completed the 10 estimates of G5

875, repeating the same pro-
cess for the random covariance null matrices. In general,
the 10 replicates of these G5

875 matrices all behaved in a very
similar way (fig. 4A). The eigenvalues for the five eigen-
vectors of G5

875, which are the only ones that can be non-
zero (as kp 5), indicated that the completed matrices of
the 875-dimensionalG had successfully captured a single di-
mension that consistently had greater genetic variance than
under the null model (fig. 4A). Because of the very limited
number of dimensions (kp 5) that can have genetic vari-
ance, combined with the constraint that all genetic variance
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the null model and hence are of little value for understand-
ing the biology of these traits.
We repeated this approach using the 10 independent sets

of 850 traits, each comprising 17 G50 principal submatrices,
which allowed many more dimensions (kp 50) to have ge-
netic variance in the completed G50

850 matrices. Once again,
the first dimension captured genetic variance that was well
above the null model (fig. 4B; paired t-test: t9 p 12.977,
P< .001). The subsequent two dimensions also had mean
eigenvalues above the null but overlapped with the null dis-
tribution substantially (fig. 4B). Finally, we used all 175 G50

principal submatrices to complete one single G for most of
the gene expression traits (8,750 of 8,780) with significant
individual heritability. This G50

8750 returned very similar re-
sults of a large gmax eigenvalue but little evidence of subse-
quent dimensions. Here, we have only one observed and one
null model matrix, but the leading eigenvector gmax of G

50
8750

had an eigenvalue of 640.9 (7.3% of the trace of all 8,750
traits), which was well in excess of the leading eigenvalue
of 227.6 for the random covariance null estimate of G50

8750.
To this point, we have interpreted only the eigenvalues of

G for evidence of genetic covariance among traits. How-
ever, the distribution of contributions of expression traits
to the eigenvectors also provides insight into the among-
trait relationships (McGuigan et al. 2014b). In the absence
of covariance among traits, eigenvectors will have very large
(approaching 11 or 21 for normalized vectors) contri-
butions from a single trait and very low contributions (ap-
proaching 0) from the remaining traits. In the presence of
positive covariance among traits, traits will load in the same
direction (either positive or negative), whereas under neg-
ative covariance, traits will load in opposing directions.
For any given eigenvector, direction is arbitrary such that
all positively covarying traits might all have positive or all
have negative loadings on the eigenvector; it is only the
direction of contribution of traits relative to other traits
within their set that is informative.
For theG50 principal submatrices, we determined whether

there was any evidence of bias in the direction of covari-
ance among traits (e.g., whether traits typically positively
covary). Because of the arbitrary nature of direction within
each of the 175 matrices, we took the sum of positive and
negative loadings to infer bias. On average, gmax of the 175
G50 principal submatrices had 12 more positive than nega-
tive loadings (fig. 5A). The random covariance null model
also exhibited a bias toward more positive loadings (an av-
erage of three more positive loadings per principal sub-
matrix) but to a lesser extent than in the observed data
(fig. 5A; paired t-test: t174 p 11.254, P< .001).
In theG50

8750 matrix, because there was only onematrix and
thus only one eigenvector, we can directly consider the trait
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Figure 4: Mean (5SE) of the genetic variance partitioned to each
eigenvector over 10 replicate random trait sets for G5

875 (A) and
G50

850 (B) for the matrices estimated from the observed data (black
circles) and from the null model of random trait covariances (gray
circles).
2.0 on Wed, 7 Oct 2015 20:40:21 PM
 Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


efficients for gmax (i.e., contributions of each of the 8,750

the interpretation of significant covariance among traits in
this dimension of trait space. Furthermore, the directional

Having established the existence of widespread genetic

The distribution of genetic variance among quantitative

A20

22

24 The American Naturalist
individual gene expression traits to this statistically signifi-
cant eigenvector) displayed a substantial skew in one direc-
tion (meanp 0.008048) compared to the null eigenvector
(meanp 0.000035; fig. 5B), consistent with the suggestion
from the analysis of the G50 that covariances were consis-
tently directionally biased. This pattern of a shift in mean
contribution away from zero provides further support for
This content downloaded from 23.235.3
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bias in trait loadings indicates that this variational module
is associated with coordinated regulation of expression in
the same direction (up/down) of the many genes involved.

Gene Ontology Analysis
covariance among the large number of expression traits
that contribute to gmax, more detailed questions concern-
ing the mechanistic nature of pleiotropy among expres-
sion traits can be considered. To determine the underlying
nature of the genetic covariance identified in gmax, we per-
formed gene ontology (Ashburner et al. 2000) term enrich-
ment analysis using PANTHER (Mi et al. 2013), as imple-
mented on the Gene Ontology Consortium website (http://
geneontology.org/), on the 100 genes with the largest abso-
lute loading on gmax (high group) and on the 100 genes with
the lowest absolute loading on gmax (low group). Gene ontol-
ogy terms were inferred for Drosophila serrata based on
DNA sequence BLAST to Drosophila melanogaster genes
under the assumption that hits between the two species
are potential orthologs (Waterhouse et al. 2013). Standalone
BLAST, version 2.2.271 (Altschul et al. 1990), was used to
perform tBLASTx (default settings) on the D. melanogaster
chromosome, coding, gene, transcript, and pseudogene se-
quences obtained from Flybase (St. Pierre et al. 2014). Dro-
sophila serrata genes with an e value less than 0.1 were
considered potential orthologs and assigned the D. melano-
gaster GO terms. In the high group, 90 of the 100 genes
were classed as potential D. melanogaster orthologs and 86
contained GO terms. For the low group, 90 of the original
100 genes were classified as potential orthologs; GO terms
were available for 89 of these.
The high group of genes was significantly enriched for

31 GO terms, including a number of processes related to
the regulation of gene expression (table 1). In contrast,
the low group of genes was enriched for only two GO
terms, and these were not directly related to transcrip-
tional regulation. The construction of the major axis of ge-
netic variance through the matrix completion approach
was therefore successful in identifying a mechanistically re-
lated set of genes that share a functional relationship with
transcriptional regulation, which in turn has the potential
to affect a large number of genes, as was shown to be the
case from the distribution of loadings in gmax (fig. 5B).

Discussion
traits is fundamental to our understanding of how genetic
variation is maintained and how traits will evolve in nat-
loadings. The observed distribution of the eigenvector co-
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Figure 5: The distribution of expression trait contributions to gmax.
A, The distribution of the sum of the positive and negative con-
tributions of individual traits to each of the 175 G50 of the observed
and random covariance null (gray-shaded) data. For each matrix, we
assigned all negative trait loadings a value of 21 and all positive load-
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tribution of individual trait contributions to the completed G50

8750 gmax

for observed and null (gray-shaded) data.
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Table 1: Gene enrichment analysis of gene ontology (GO) terms for the high and low groups where the Bonferroni corrected P value
was less than .05

High BP 18 3 .1140 .0067

High BP 55 4 .3470 .0134

High BP 5 2 .0316 .0150

High BP 24 3 .1520 .0156

High BP 244 7 1.5400 .0287

High MF 2 2 .0126 .0010

High MF 8 2 .0505 .0159

High MF 8 2 .0505 .0159

High MF 10 2 .0631 .0246

High CC 2552 30 16.1000 .0056
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are commonly found for individual traits, it is very diffi-
cult to reconcile the maintenance of such levels of genetic
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the distribution of genetic variance and selection may po-
tentially alleviate the severity of the conflict between the
Group Type Term Background Sample Expected P value

High BP Cellular metabolic process (GO:0044237) 3262 39 20.6000 .0004
High BP Positive regulation of transcription initiation from 2 2 .0126 .0024
RNA polymerase II promoter (GO:0060261)
2.0 on Wed, 7 
 Terms and Co
Oct 2015 20:40:21
nditions
 PM
High
 BP
 Positive regulation of DNA-templated transcription,
 2
 2
 .0126
 .0024

initiation (GO:2000144)

Trachea morphogenesis (GO:0060439)

High
 BP
 Negative regulation of mRNA splicing, via

spliceosome (GO:0048025)

4
 2
 .0253
 .0096
High
 BP
 Gene expression (GO:0010467)
 886
 15
 5.5900
 .0128

High
 BP
 Mitotic spindle organization (GO:0007052)

Regulation of protein complex assembly (GO:0043254)

214
 7
 1.3500
 .0133
High
 BP
 Positive regulation of protein complex assembly
 23
 3
 .1450
 .0138

(GO:0031334)
High
 BP
 Regulation of transcription initiation from RNA
 5
 2
 .0316
 .0150

polymerase II promoter (GO:0060260)

Regulation of DNA-templated transcription,

initiation (GO:2000142)

Trachea development (GO:0060438)

High
 BP
 Negative regulation of mRNA metabolic process

(GO:1903312)

6
 2
 .0379
 .0214
High
 BP
 Negative regulation of mRNA processing
 6
 2
 .0379
 .0214

(GO:0050686)

Spindle organization (GO:0007051)

High
 BP
 Negative regulation of RNA splicing (GO:0033119)

TFIIF-class transcription factor binding

7
 2
 .0442
 .0291
(GO:0001096)

High
 MF
 RNA polymerase II basal transcription factor
 7
 2
 .0442
 .0122
binding (GO:0001091)
Basal RNA polymerase II transcription machinery
binding (GO:0001099)
Basal transcription machinery binding
(GO:0001098)
snRNA binding (GO:0017069)
High
 CC
 Transcription factor TFIIF complex (GO:0005674)
Macromolecular complex (GO:0032991)
3
 2
 .0189
 .0033
High
 CC
 Cytosolic ribosome (GO:0022626)
 94
 5
 .5930
 .0065

High
 CC
 Endosome membrane (GO:0010008)
 25
 3
 .1580
 .0107

High
 CC
 Cytoplasmic part (GO:0044444)
 1910
 24
 12.1000
 .0110

High
 CC
 Ribonucleoprotein complex (GO:0030529)
 468
 10
 2.9500
 .0142

High
 CC
 Organelle part (GO:0044422)
 2349
 27
 14.8000
 .0183

High
 CC
 Endosomal part (GO:0044440)
 36
 3
 .2270
 .0305

High
 CC
 Cytosolic part (GO:0044445)
 135
 5
 .8520
 .0325

High
 CC
 Intracellular organelle part (GO:0044446)
 2315
 26
 14.6000
 .0332

Low
 MF
 Transferase activity (GO:0016740)
 1276
 19
 8.3400
 .0155

Low
 CC
 Cell surface (GO:0009986)
 64
 4
 .4180
 .0199
Note: T
 refers t
 e GO term categories biological process (BP), molecular function (M
 and cellular com
 ent (CC).
 kground p t
 umber of

genes con
 ing the
 term in Drosophila melanogaster. Sample p the number of genes
 h the GO term
 r sample
 00 genes. Ex
 ed p the

number
 nes exp
 d in our sample by chance. GO terms in boldface are those directl
 lated to transcrip
 .
ural populations. If all parts of the phenotypic space that
comprise an organism have levels of genetic variation that

variation in the presence of selection (Johnson and Barton
2005; Zhang and Hill 2005). Taking a geometric view of
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simultaneous presence of strong selection and observed lev-
els of genetic variance in natural populations (Walsh and

netic covariance is widespread across the transcriptome. As-
signment of traits was made completely randomly, without

26 The American Naturalist
Blows 2009). However, beyond the patterns found among
small sets of functionally related traits, we have very little
understanding of how many phenotypic dimensions of an
organism might typically exhibit appreciable levels of ge-
netic variance (Mezey and Houle 2005; Hine and Blows
2006; Kirkpatrick 2009; Hine et al. 2014).

There were three features of the distribution of genetic
variance that our genetic analyses of 8,780 gene expression
traits have highlighted. First, genetic covariance was com-
mon among expression traits that were randomly assigned
to small trait sets without regard to biological function.
Second, the matrix completion approximation of the high-
dimensional G consistently uncovered genetic covariance
among a very large number of expression traits, covariance
that was well above random expectations. Finally, the sin-
gle high-dimensional genetic factor identified in G50

8750 sug-
gested a common up/down regulation pattern across a very
large number of genes, an interpretation that was sup-
ported by the GO term enrichment for transcriptional reg-
ulation. We discuss each of these features of the distribu-
tion of genetic variance in turn below.

Genetic Covariance among Small Random Sets
of Gene Expression Traits
As highlighted in several recent publications (Houle 2010;

There is a long tradition in evolutionary biology of high-
lighting the potential importance of pleiotropy among
traits (Fisher 1930). The ubiquitous nature of correlated
responses to selection between pairs of traits (Bohren et al.
1966) is perhaps the most widespread demonstration that
even seemingly disparate traits can sometimes share a genetic
basis. More recently, direct evidence for genetic covariance
between functionally related multivariate sets of quantitative
traits such as wingmeasures or cuticular hydrocarbons is well
established (McGuigan and Blows 2007; Hine et al. 2009;
Kirkpatrick 2009). However, given the likelihood of such
traits sharing common developmental pathways, covariance
among traits comprising related morphological structures
or linked by shared chemistry is not particularly surprising.
More broadly, life-history traits have also been found to be
frequently genetically correlated (e.g., Houle 1991; Garant
et al. 2008), an observation that can be explained by postulat-
ing that major fitness components will compete for the same
finite resources (Lande 1982; Van Noordwijk and Dejong
1986; Riska 1989).

Our analysis of both the 1,756 random sets of five and the
175 random sets of 50 gene expression traits revealed that at
least one dimension (gmax) was typically associated with
greater variance than in any individual gene expression trait
and was greater than expected through random associations
among traits. This common pattern demonstrates that ge-
This content downloaded from 23.235.3
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any a priori information on gene function, and we therefore
only expect to detect genetic covariance if covariance among
gene expression traits is prevalent, in contrast to analyses
that focus on sets of traits known to be functionally or devel-
opmentally related. The genetic covariance detected here
could be a consequence of either physical linkage of loci af-
fecting different gene expression traits or pleiotropy (Lande
1980). Analyzing mutation accumulation lines, which differ
from one another by relatively few mutations, McGuigan
et al. (2014b) reported extensive covariance among five-trait
sets of these same gene expression traits. Because of the few
genetic differences among lines and the limited opportu-
nity for selection, this covariance is more likely to be caused
by pleiotropy than by linkage. Probability analyses of the
mutational pleiotropy suggested that variational modules
(sensu Wagner et al. 2007) spanned at least 70 traits on av-
erage, although there was likely to be a considerable range of
module size around this figure that is yet to be quantified
(McGuigan et al. 2014b). Therefore, the mutational pleiot-
ropy among expression traits is likely to underlie much of
the widespread standing genetic covariance among random
sets of expression traits that we observed in these lines de-
rived from a natural population.

The Distribution of Genetic Variance in High Dimensions
Houle et al. 2010), if we are to extend our understanding of
the development and evolution of phenotypes, we need to
resolve the challenge of both quantifying high-dimensional
phenotypes and analyzing such data. Here, we have ad-
dressed the second issue, extending our understanding of
the phenome-wide distribution of genetic variance by esti-
mating very large covariance matrices under a quantitative
genetic framework. The completion of G from a small frac-
tion of the elements, contained in small principal subma-
trices, was successful in capturing a substantial proportion
of the genetic variance. Specifically, completing matrices
of 50 dimensions using principal submatrices of five di-
mensions recovered 40% of the maximum genetic vari-
ance associated with five dimensions in the fully estimated
G. Furthermore, the approximation represented by the com-
pletedmatrix was able to distinguish between a large num-
ber of dimensions that had little or no genetic variance
and the 10 or so dimensions that contained the vast major-
ity of the genetic variance in these 50-dimensional spaces
(fig. 1B).
For much higher dimensions, such as that recovered in

the G50
850 and G5

875 matrices, it was not feasible to determine
exactly what part of the subspace was recovered since such
large matrices are not readily estimable from the data in
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the way that the G50 matrices were. Instead, the use of the
null distribution allowed us to demonstrate that in these ex-

ers (Patterson et al. 2006). In our case, we suspect that the
detection of a single dimension of genetic variance in our
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treme high-dimensional cases, at least one dimension re-
covered a substantial amount of genetic variance, well in
excess of that expected through random sampling of traits.
Subtracting the level of genetic variance observed in the ran-
dom covariance null gmax vector, the observed gmax vectors
from the 10 replicate G50

850 and G5
875 matrices explained be-

tween 3% and 4% of the genetic variance, respectively. Given
the nature of completed matrices established from the com-
parison between G5

50 and G50, we expect that the leading ei-
genvector of the real 850- and 875-trait matrices accounts
for a much larger proportion of the total genetic variance
in the trait set. Nonetheless, the similarity of order of decay
of the real G50 eigenvalues and the genetic variance in the
projected G5

50 eigenvectors suggest that the major axis that
is recovered from the matrix completion approach will cap-
ture biological information about the shared genetic basis
of a very large number of traits.

Comparing the results for the completed G5
875 and G50

850

matrices, increasing the number of elements directly esti-
mated via the principal submatrices from 0.7% to 6.0% in-
creased the level of genetic variance recovered by only 1%
(3% vs. 4%), which suggests little benefit from the increased
computational effort. However, with the increase in the
number of elements estimated from the data in theG50

850 ma-
trices, there was the suggestion that at least a further two
dimensions of G50

850 might have been associated with genetic
variance, and these dimensions might have been recovered
and available for interpretation if the experiment had more
power. The relative merits of using smaller principal sub-
matrices each estimated within a single multivariate mixed
model to be positive semidefinite, compared to using much
larger negative definite principal submatrices manually con-
structed from an enormous number of bivariate estimates
of covariance, deserves further consideration in future work.

Finally, the distribution of eigenvalues uncovered by the
extreme high-dimension G50

850 and G50
8750 completed matrices

displayed spectral distributions consistent with the behavior
of spiked covariance models of high-dimensional covari-
ance matrices (Paul and Aue 2014). The term spiked refers
to a small number of dimensions that have large eigenval-
ues, while the vast majority of dimensions have eigenval-
ues equal in value to some arbitrary small number. Under
spiked covariance models, the eigenvalues are subject to a
phase transition behavior in relation to their detectability
from the null Marcenko-Pasteur distribution. Given the ra-
tio between the number of dimensions and the number of
observations in a data set, eigenvalues below a certain mag-
nitude are very unlikely to be distinguishable from the null
model. Such behavior of eigenvalues has been shown in a
population genetics context for the detection of genetic
structure among populations from a large number of mark-
This content downloaded from 23.235.3
All use subject to JSTOR
high-dimensional completed matrices is likely to be influ-
enced by a similar phase transition. The presence of a single
significant dimension should therefore not be interpreted
as evidence for a sole underlying variation module for gene
expression but is rather likely to be a consequence of the
structure of the data set we have used. Whether this is a
common characteristic of high-dimensional G estimated
from other experimental designs and trait types is a question
for further exploration.

The Extent of Genetic Covariance among
Gene Expression Traits
While there are numerous examples of the pleiotropic effects
of single genes, the extent of pleiotropy is a contentious issue
(Wagner and Zhang 2011; Hill and Zhang 2012; Paaby and
Rockman 2013). Gene knockout studies suggest that only a
modest number of traits may be affected by each gene (Wang
et al. 2010; Wagner and Zhang 2011), while the frequency of
mutational covariance among traits indicates that pleiotropy
of naturally occurring mutations might be widespread (Mc-
Guigan et al. 2014b). The frequency of covariance among
small sets of random expression traits found here suggests
that there is likely to be some underlying factor(s) that might
affect many such traits at once. We have shown, using the
high-dimensional matrix completion approach of Bourin
and Lee (2013), that the high frequency of covariance among
random sets of expression traits is underpinned by at least
one genetic factor that affects a very large number of these
traits. Several previous studies of gene expression profiles,
taking various approaches such as coexpression (Denver
et al. 2005) or eQTL (West et al. 2007) mapping and the
Bayesian sparse factor approach of Runcie and Mukherjee
(2013), have similarly revealed that the expression of very
many genes might covary.
Consideration of the eigenvector loadings suggested that

genetic covariances were strongly biased in one direction.
At the genomic level, a pattern where a substantial num-
ber of expression traits positively covary would suggest
the involvement of genes with regulatory function. Our
GO term analysis on the 100 genes with the strongest asso-
ciation with gmax ofG

50
8750 illuminated an appreciable number

of terms linked to regulatory functions, including mRNA
processing (Le Hir et al. 2003), transcription initiation (Shi-
latifard et al. 2003), and transcription factors that underlie
gene regulatory networks (Erwin and Davidson 2009). A re-
cent study constructing transcription factor protein inter-
action networks in Drosophila has indicated that many
hundreds of transcription factor proteins display bivariate
interactions, with up to 63% of 647 known or putative tran-
scription factors forming a single protein interaction net-
2.0 on Wed, 7 Oct 2015 20:40:21 PM
 Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


work (Rhee et al. 2014). The genetic variance captured by
gmax represents the possible genetic control of such wide-
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spread protein networks.
As in our study, where the major axis of genetic variation

in gene expression of an outbred population of Drosophila
serrata was for up/down regulation of many genes, Runcie
and Mukherjee (2013) in their genetic analysis of Drosoph-
ila melanogaster gene expression also identified amajor axis
of genetic variation whereby a substantial proportion of
traits changed expression in the same direction (their fac-
tor 2). Importantly, Runcie and Mukherjee (2013) found
that this was one of only two factors that were genetically
correlated with a measure of competitive fitness. Studies
in a variety of taxa have suggested a general pattern across
many genes of stabilizing selection on expression levels
(Denver et al. 2005; Rifkin et al. 2005; Bedford and Hartl
2009; Warnefors and Eyre-Walker 2012), and we have re-
cently demonstrated that stabilizing selection is intensified
in the presence of pleiotropic effects across traits (Mc-
Guigan et al. 2014a). This emergent picture of general
transcriptome-wide mechanisms of gene regulation across
many traits also provides a potential basis for the ubiqui-
tous presence of correlated responses in both evolutionary
experiments and applied animal and plant breeding.

Conclusion
Establishing the phenome-wide distribution of genetic var-

iance is a key component of attempting to understand the
maintenance of genetic variance from an empirical per-
spective, and the approach we have developed here is just
a first step in this regard. If mutation-selection balance is
a leading cause of the maintenance of genetic variance, then
it will be important to determine why some trait combina-
tions display so much genetic variance when others do not.
Is strong selection responsible for the depletion of genetic
variance in the nearly null space or are these phenotypic
combinations simply not prone to the effects of new muta-
tions? On the one hand, two recent mutation-accumulation
studies showed that mutational pleiotropy among function-
ally related traits (Houle and Fierst 2013) and random sets
of gene expression traits (McGuigan et al. 2014b) is com-
mon but that some trait combinations exhibit more muta-
tional variance than others, at least within the relatively
short time frames of such experiments. On the other hand,
stronger stabilizing selection against mutations with greater
pleiotropic effects has been demonstrated for random sets
of gene expression traits (McGuigan et al. 2014a). Disen-
tangling the relative contribution of low mutation variance
and strong selection in generating nearly null subspaces will
require the simultaneous assessment of phenome-wide
patterns of mutational variance and selection.
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