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Highlights:1

 Distinct retraction patterns of A. f grown with different energy sources were observed2

 Interaction forces between A. f and minerals with bacterial probe were quantified3

 The conformation of surface biopolymers was affected by salt concentration4
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GRAPHICAL ABSTRACT5
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A bacterial colloid probe and representative force-separation curves 7
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28

Abstract29

The surface appendages and extracellular polymeric substances of cells play an 30

important role in the bacterial adhesion process. In this work, colloidal forces and 31

nanomechanical properties of Acidithiobacillus ferrooxidans (A. f) interacted with silicon 32

wafer and pyrite (FeS2) surfaces in solutions of varying salt concentrations were 33

quantitatively examined using the bacterial probe technique with atomic force microscopy. A. 34

f cells were cultured with either ferrous sulfate or elemental sulfur as key energy sources. Our35

results show that A. f cells grown with ferrous ion and elemental sulfur exhibit distinctive 36

retraction force vs separation distance curves with stairstep and sawtooth shapes, respectively.37

During the approach of bacterial probes to the substrate surfaces, surface appendages and 38

biopolymers of cells are sequentially compressed. The conformations of surface appendages 39

and biopolymers are significantly influenced by the salt concentrations. 40

Keywords: Atomic force microscopy, Acidithiobacillus ferrooxidans, bacterial adhesion,41

nanomechanical properties42

1. Introduction43

Bacterial adhesion to mineral surfaces is of great importance to the growth of bacteria in 44

natural habitats and many industrial applications [1, 2]. In these processes, the bacterial 45

surface largely determines the adhesion process by the surface appendages (e.g. pili and46

flagella) and extracellular polymeric substances. In the bioleaching process, Acidithiobacillus47

ferrooxidans (A. f) was the first described metal sulfide oxidizing microorganism, which is 48

affiliated with the Gram-negative γ-Proteobacteria. It is one of the most important species in 49

the bioleaching of sulfide ores operating at temperature lower than 40 °C [3]. A. f is endowed 50
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with a remarkably broad metabolic capacity, as it can live on the oxidation of ferrous salts, 51

elemental sulfur and a variety of sulfide minerals [4][5, 6].52

Various growth substrates may induce physiological differences in the chemical 53

composition of cell surfaces, which reflects the response of cells in optimizing nutrient 54

uptake. Research associated with macroscopic assays of bacterial adhesion [7, 8], analysis of 55

chemical compositions for cell surface biopolymers [8, 9], and characterization of cell surface 56

structures [10, 11] has been well documented in the literature. However, the effect of 57

different energy sources on bacterial adhesion behavior and the correlation between surface 58

properties and fundamental interacting forces have not been fully resolved at nanoscale.59

In the past decade, remarkable developments in atomic force microscopy (AFM) have 60

made it a versatile tool to determine the surface structures and specific interactions of61

biological samples under near-physiological conditions [12, 13]. AFM is capable of sensing62

picoNewton forces in aqueous solutions, and the obtained force-separation curves can 63

provide information on the adhesive and nanomechanical properties of biological samples 64

[14-18]. Tipped cantilevers have been extensively used as indenters to probe the elastic 65

properties of different bacterial cells such as Escherichia coli [19, 20], Pseudomonas 66

aeruginosa [21] and Shewanella putrefaciens [18]. Alternatively, a cell probe [20, 22] can be 67

used to measure the overall mechanical properties of the cell. A colloidal probe (a 68

microsphere glued onto the end of a cantilever) is often used to indent larger mammal cells 69

[17, 23]. However, the use of AFM to investigate the nanomechanical properties of 70

bioleaching bacteria has been rarely reported.71

The goal of this study is to relate the adhesion behavior and nanomechanical interactions 72

to the biophysical responses of bacterial cells to the change of environmental conditions73

(energy sources and salt concentrations). To this end, we performed AFM force 74



Page 6 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

6

measurements using bacterial probes constructed with A. f cells grown with different energy 75

sources of Fe2+ and S0, and exposed the bacterial probes to solutions of various salt 76

concentrations. The shape of the retraction curves, adhesion forces and the Young’s moduli77

of cell surface biopolymers were compared for A. f cells grown in different energy sources.78

Interesting features such as sequential “jump-in” events of approaching curves and distinct79

retraction curve patterns of A. f cells grown with the energy sources were obtained. Overall, 80

our findings quantitatively describe the adhesion behaviors of A. f on mineral surfaces and the 81

nanomechanical properties may help the further understanding of responses of cell surface 82

appendages to environmental stimuli.   83

2. Materials and methods84

2.1 Microorganism and growth conditions 85

A. f was kindly provided by Professor Guohua Gu (School of Mineral Processing and 86

Bioengineering, Central South University, China). Cells were cultured at 30 °C in 9K 87

medium (pH 2.0) [24]: (NH4)2SO4 3 g/L, KCl 0.1 g/L, K2HPO4∙3H2O 0.5 g/L, MgSO4∙7H2O 88

0.5 g/L, Ca(NO3)2 0.01 g/L. Bacteria were grown with 4.47% (w/v) FeSO4 and 3% (w/v) 89

elemental sulfur as energy source, respectively. A. f cells were incubated on a rotary shaker at 90

170 rpm to their mid-exponential growth phase.91

2.2 Substrate preparation92

The silicon wafers (100 oriented with a 100-nm thermal-oxide surface layer) were 93

purchased from Silicon Valley Microelectronics (USA). The silica surfaces were cleaned 94

using the RCA SC-1 process [25] and stored in Milli-Q deionized water (18.2 MΩcm, 95

Millipore, USA) before use. A museum-grade pyrite (FeS2) sample obtained from Ward’s 96

Natural Science was embedded in an epoxy resin and cut off in a thickness of 3 mm. The 97

sample slice was manually polished with 3 µm and 1 µm diamond suspensions, respectively, 98
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and thoroughly washed with acetone, ethanol and copious amount of deionized water. The 99

sample slice was UV treated for 30 min before exposure to the bacterial probe.100

2.3 Zeta potential measurements101

Cultures in the mid-exponential phase were filtered through Whatman filter paper to 102

remove suspended solid materials. Cells were harvested by centrifugation at acceleration of 103

10000 g-units for 15 min. The cell pellet was washed three times using sterilized H2SO4 (pH 104

1.5) and deionized water to remove trapped ions. The washed cell pellet was re-suspended in 105

0.001, 0.01, 0.1 and 1 M KCl solutions, respectively, to obtain a concentration of 106

approximately 1×107 cells/mL. The zeta potentials of A. f were measured using a zeta 107

potential analyzer (ZetaPLUS analyzer, Brookhaven Instruments Corp.) and calculated from 108

the electrophoretic mobility using the Smoluchowski equation embedded in the ZetaPlus 109

software. Measurements were conducted in triplets and the average value was used.110

The zeta potential of planar silica surfaces was obtained using an EKA (electro kinetic 111

analyzer) with an asymmetric clamping cell (Anton Paar, GmbH, Austria). A piece of PMMA 112

was used as a supporting medium (back-plate) in the asymmetric clamping cell. The 113

streaming potential measurements were taken three times in each salt solution. The zeta 114

potential was calculated from the streaming potential according to the approach developed by 115

Fairbrother and Mastin embedded in the software [26]. The isoelectric point of pyrite surface 116

was reported to be about pH 2 in literatures [27].117

2.4 ATR FT-IR spectroscopy118

Cells in the mid-exponential phase were collected and washed three times with H2SO4119

and deionized water. Cell pellets were dried at 50 °C for 30 min before acquiring the spectra. 120
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The infrared spectra of bacterial surfaces were measured using a Perkin Elmer Spectrum 100 121

spectrometer. Spectra were the results of 43 scans with a resolution of 1 cm-1 in the range 122

650-4000 cm-1.123

2.5 Preparation of bacterial probes124

Bacterial probes were prepared using a protocol described in the previous study [28]:  125

Tipless cantilevers (Veeco, model NP-OW) were cleaned with strong oxidizing Piranha 126

solution [29] for 30 min, and rinsed with copious amounts of deionized water before blow-127

drying with high purity compressed nitrogen gas. A silica microsphere (20 µm in diameter, 128

Fuso Chemical Co., Japan) cleaned by the RCA SC-1 solution was glued to the end of a129

tipless cantilever with a small amount of thermoplastic epoxy resin using a micromanipulator 130

under an optical microscope. The colloidal probe was functionalized with 1% (w/v) 131

polyethyleneimine (PEI, MW~1300, Sigma-Aldrich, Australia) solution for 2.5 h. The excess 132

solution was decanted and the probe was rinsed in deionized water and stored at 4 °C.133

Bacterial pellets were washed and resuspended in a 3% (v/v) glutaraldehyde solution for 134

cell fixation at 4 °C for 2.5 h [30]. After fixation the cells were washed with phosphate buffer 135

solution (PBS), and resuspended in PBS at 4 °C overnight. The cell suspension was spread 136

onto a clean glass slide to allow the colloidal probe to touch the suspension by the means of a 137

micromanipulator. The bacterial probe was then gently rinsed with deionized water to remove 138

loosely attached cells and kept hydrated before force measurements. Scanning electron 139

microscopy (SEM) (Philips XL-30) was performed on all bacterial probes after AFM 140

measurements to verify the presence of cells on the microsphere.141
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2.6 AFM force measurements142

Ultrahigh purity KCl (Sigma-Aldrich) was roasted at 500 °C for 12 h and used as the 143

supporting electrolyte. Force measurements were performed at room temperature in KCl 144

solutions at natural pH 5.6±0.5 using a MFP-3D atomic force microscope (Asylum Research, 145

Santa Barbara, CA) equipped with a closed fluid cell. The actual spring constants of the 146

cantilevers were determined using the thermal noise method embedded in the Asylum 147

Research AFM software [31]. The cantilevers used in this study were found to have a spring 148

constant of 0.09±0.02 N/m. After each probe being immersed in the solution for at least 20 149

min, force curves were recorded under a loading force of 2 nN at an approaching/retraction 150

velocity of 500 nm/s with a piezo movement of 6000 nm. At least three probes, as well as the 151

control probe (PEI-coated silica colloid probe), were used for each set of experiments at 3-5152

contact locations per probe.153

To investigate the effect of loading force on the nanomechanical properties of bacterial 154

cells, the force curves were measured at different loading forces from 0.5 nN to 2.8 nN. After 155

a series of consecutive force measurements applying increasing loading forces, the 156

measurement was conducted again at 2 nN. Once this force profile differed from the 157

previously measured ones at 2 nN, the bacterial probe was considered damaged and replaced 158

by a new one.159
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2.7 AFM data analysis160

2.7.1 Raw data conversion161

From the approaching and retraction curves, several useful parameters can be extracted, 162

for instance, the adhesion force, snap-off distance and Young’s modulus. Due to the 163

deformable nature of biological samples, a correct conversion from raw data to the force-164

separation curves is crucial to the investigation of bacteria-mineral interactions.165

The direct results (raw data) recorded by AFM in a force measurement is a measure of 166

the cantilever deflection ( d , V) versus the relative piezo displacement ( z , nm). Deflection 167

(V) can be converted to cantilever deflection (nm) with a sensitivity of the cantilever obtained 168

by engaging the cantilever against a rigid surface. The raw data can then be converted to 169

force (nN or pN) according to Hooke’s law: cF k d , where ck  is the spring constant of the 170

cantilever. For deformable bacterial cells, the conversion from raw data to force-separation 171

curves is not as simple as that for rigid solid surfaces. The cell deforms in response to the 172

interaction forces and loading forces as shown in Fig. 1A. When the bacterial probe is 173

brought toward the substrate surface, the soft cell is squeezed, reflecting the deformation of 174

the cell surface appendages, biopolymer brush and/or the cell body depending on the 175

magnitude of loading force.176

The distance balance, 0 02 ( ) 2 ( )z R s z d R s        , gives the following equation177

for the actual separation distance s :178

0 0( )s z s d z     (1)179

The relative piezo position z  and the cantilever deflection d  are directly obtained from the 180

AFM measurement, while the values of sample deformation   and 0 0z s  have to be 181

determined. Due to the deformable nature of cells and the presence of interaction forces 182
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between cells and the substrate surfaces, we fit the portion of raw data at high loading force 183

with the Hertz model to determine the required parameters (see Section 2.7.3 for more detail).184

2.7.2 Steric model185

Cell surface appendages and/or biopolymer chains can be considered as a layer of 186

polymeric brush. The steric forces are often the dominant forces during the approach of cells 187

to solid surfaces, particularly in high ionic strength solutions where the electrostatic forces188

between cell and substrate surfaces are largely compressed. The steric force per unit area 189

between two surfaces, only one of which is coated with polymers is estimated by [32, 33]190

023 250 s L
Bf k T e   (2)191

where Bk  is the Boltzmann constant, T  is the absolute temperature, s  is the distance between 192

the two surfaces,   is the density of grafted polymers in m-2 and 0L  is equilibrium length of 193

the polymer brush.194

In our case, the substrate surface is bare, while the cell surface is covered with 195

biopolymers and considered as a microsphere with a radius R of 500 nm (Fig. 1B). We 196

approximate the total force by integrating f  over half of the cell surface as follows:197

 0 02 ( ) 22 3 22 2
00 0

2 2 sin 50 1s R L R L
BF f rdr f R d k TR L e e

 
             (3)198

where sinr R   is the radial distance from a random point on the cell surface to the vertical 199

axis of symmetry.200

2.7.3 Hertz model201

Among different models describing the elastic response of soft samples, the Hertz model 202

has been widely used to describe similar systems in AFM experiments [17, 34-36]. In the 203

Hertz theory, the cell is assumed to be an isotropic material with a well-defined interface and 204
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any surface interactions or adhesions are neglected [37]. At the region of Hertz contact, we 205

have the following equations for the distance of cell deformation and the force of cell 206

deformation in contact with a rigid plane to the AFM data [38]:207

2 3Ad  (4)208

1 2 3 2
2

4

3 1

E
F R 





(5)209

where E  is the Young’s modulus, R  is the radius of bacterial cells, taken as 500 nm,   is 210

the Poisson’s ratio of the deformable bacterial cells (assumed to be 0.5) [34] and A211

represents relationships between the sample radius, the Poisson ratio and the Young’s 212

modulus of the sample according to different geometries of the systems. The Young’s 213

modulus of a bacterial cell is obtained from quantitative interpretation of the non-linear 214

regime that follows the steric interaction portion.215

The deformation   is dependent on the contact point of the bacterial probe with the 216

substrate. However, due to the influence of interaction forces (e.g. steric repulsion), it is 217

difficult to determine the accurate contact point. Various approaches such as manual 218

determination by visual inspection [36], semi-automated [39, 40] and automated approach 219

with software [41, 42], have been used for determining the contact point. Here, we fit the 220

region of raw curve at high loading force with the Hertz model to determine the separation 221

between bacteria and substrate surfaces and the Young’s modulus of the cell with Eq. (1) and 222

(5). 223

2.7.4 WLC model224

The wormlike chain (WLC) model is commonly used to describe the elasticity of the 225

biopolymer chains such as proteins and DNA [43-45]:226
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2

1 1
( )

4(1 ) 4
B

p c c

k T s
F s

L L s L

 
    

(6)227

where pL  and cL  are the persistence length and contour length of the polymer chains. In this 228

study, the WLC model was applied to interpret the sawtooth-shaped adhesion events of 229

sulfur-grown cells. 230

3. Results and discussion231

3.1 Bacterial probes232

The SEM image in Fig. 2A shows a cell-coated colloidal probe which was used for a 233

series of force measurements. The contact area of the microsphere was covered by bacterial 234

cells, thus the measured force curves can reflect the true bacterial-mineral interactions. Fig.235

2C displays typical approach and retraction force curves recorded from a ferrous ion-grown 236

cell probe. Far from the substrate surface, the bacterial probe senses no interaction forces237

between the surfaces. As the probe approaches the substrate, the approaching curve exhibits a 238

repulsive force with several jump-in events. After the mutual contact, adhesins of cells adhere 239

to the substrate surface and show multiple adhesion events during retraction. The deviation in 240

the contact region between the approaching and retraction part of the force curve (the shaded241

area) is due to the deformation of the cell. Usually, the typical “loading-unloading hysteresis”242

can help to verify the quality of bacterial probes before conducting SEM tests.243

3.2 Surface characterization244

The zeta potentials of ferrous ion- and sulfur-grown A. f and the silica wafer in the 245

presence of various salt concentrations are shown in Fig. 3A. At neutral pH, bacterial cells 246

are negatively charged and the absolute value of zeta potential decreases with an increase of 247

the salt concentration, which is in line with enhanced screening of the charges within the 248



Page 14 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

14

surface appendage and/or biopolymer chains by ions present in the solution. The ferrous ion-249

grown cells were slightly more negatively charged than sulfur-grown cells in all solutions, 250

which is in agreement with the findings of Sharma et al. [46]. The zeta potential results 251

demonstrate that different energy sources can affect the surface charge of A. f. 252

An early study [47] found that A. f cells cultured with sulfur, pyrite (FeS2) and 253

chalcopyrite (CuFeS2) are more hydrophobic than ferrous ion-grown cells, indicating that 254

various energy sources can affect the cell surface properties. The depletion of soluble ferrous 255

salts renders the bacteria prone to attaching to the solid energy source such as elemental 256

sulfur and sulfide minerals for growth, which results in the synthesis of more proteinaceous 257

substances for the purpose of facilitating adhesion [8, 9, 46]. To analyze the difference of 258

functional groups on cell surfaces induced by various energy sources, ATR-FTIR tests were 259

performed.260

As can be seen in Fig. 3B, most peaks in the spectra of ferrous ion- and sulfur-grown 261

cells are at similar positions. The assignments of the peaks indicate that A. f surface consists 262

of extracellular polysaccharides, proteins and nucleic acids [48, 49]. Previous FTIR results263

reported by Devasia et al. [47] suggested that a proteinaceous new cell surface appendage 264

was synthesized in sulfur-grown cells while such an appendage was found to be absent in 265

ferrous ion-grown cells. Our FTIR results differ from their results because cells cultured with 266

either ferrous ion or elemental sulfur show similar peaks which represent the proteins. The 267

only remarkable difference is in the range of 1345~1403 cm-1. Ferrous ion-grown cells show 268

a small peak at 1388 cm-1 which is absent in the sulfur-grown ones. Sulfur-grown A. f possess 269

two peaks at 1403 and 1345 cm-1 respectively, which are absent in the spectra of ferrous ion-270

grown cells. The peaks in the range of 1388~1403 cm-1 represent the C=O symmetric 271

stretching of COO- group in amino acids and fatty acids. The weak peak at 1345 cm-1272

represents sulfonic acid. Interestingly, the peak at 1388 cm-1 was observed in the FTIR 273
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spectra of L. ferrooxidans, which is also a ferrous ion-oxidizer, while the peak at 1403 cm-1274

was observed in the spectra of A. thiooxidans which is a sulfur oxidizer [28]. It can be 275

inferred from the qualitative FTIR data that specific energy sources can likely induce the 276

differential expression of specific extracellular biopolymers and lead to the difference in the 277

ratio of various biopolymers.278

3.3 Analysis of retraction curves279

The retraction curves were examined to obtain information regarding the adhesion 280

behavior (i.e. adhesion force and snap-off distance) of the bacterial cells. Representative 281

force-separation curves recorded between A. f cells and substrates are shown in Fig. 4. A 282

notable proportion of the retraction curves obtained from ferrous ion-cultured cells are 283

characterized by a stair-step separation, while those recorded from sulfur-cultured cells are284

featured by larger adhesion forces with sawtooth-shaped multiple peaks. Both separation 285

patterns indicate that the molecular bonds formed between bacterial cells and the substrate286

surfaces break sequentially until they completely separated from each other [15].287

A possible reason for the distinct retraction patterns is the energy source-induced288

differential expression of biopolymers. The stair-step separation pattern likely results from 289

the extension or desorption of extracellular polysaccharides, which was reported by Sletmoen 290

et al. [50]. The sawtooth shaped adhesion peaks, which can be well fitted with WLC model,291

are typical for the stretching of proteins. The fraction of the extracellular proteins of A. f292

cultured with ferrous ion and sulfur was examined by chemical analysis [8] and two-293

dimensional gel electrophoresis [51]. The results reveal higher amount of protein on sulfur-294

grown cells compared to ferrous ion-grown cells and the various ratios of total 295

polysaccharides to proteins are responsible for the different attachment abilities of A. f, which 296

is also in line with our AFM measurements. 297
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As expected for biological samples, the shape of each retraction curve, the number of 298

adhesion events, the magnitude of adhesion forces and the snap-off distances vary from 299

retraction to retraction (Fig. 4 and Table 1). This is attributed to the heterogeneity of the 300

bacterial surface. Different types of biopolymers exist on the cell surface and more than one 301

type can randomly adhere to the substrate surface on contact. In addition, a biopolymer chain 302

can adhere to the substrate at multiple sites on the chain. 303

The properties of retraction curves are summarized in Table 1. To determine the 304

statistical significance of the adhesiveness differences between ferrous ion- and sulfur-grown 305

A. f, we plotted the adhesion forces in histograms (Fig. 4). The data display more than 800306

retraction curves in total obtained from at least three independent experiments using different 307

bacterial probes and substrates under each salt concentration. As shown in Fig. 4, a wide 308

distribution of adhesion forces was observed due to the heterogeneous nature of the bacterial 309

surface. Salt concentration did not dramatically affect the mean adhesion forces of ferrous 310

ion- or sulfur-grown A. f. The adhesion forces of ferrous ion-grown cells are similar to that of 311

sulfur-grown cells on the pyrite surface. Comparing with other sets of experiments, sulfur-312

grown A. f exhibits a higher adhesion affinity to the silica surface. It is interesting to note that, 313

the stair-step unfolding force of ferrous ion-grown cells increases with an increase of the salt 314

concentration, which indicates that biopolymers become stiffer in solutions of higher salt 315

concentration and require larger unfolding forces during retraction. 316

A wide range of the snap-off distances between the bacterial probe and the substrate 317

surfaces was also observed in all solutions (Fig. 5), which again reflects the heterogeneity of 318

the biopolymers on the bacterial surface. The various snap-off distances also provide solid 319

evidence of different responses of the surface appendages and biopolymer chains to various 320

salt concentrations. The snap-off distances vary in a wide range up to 2.2 µm, demonstrating 321

the existence of pili and/or flagella. However, due to the use of different bacterial probes and 322
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the small number of flagella, the frequency of the flagella adhesion events (larger than 1µm) 323

is low.324

3.4 Analysis of approaching curves325

The size of the biopolymers/surface appendages is sufficient to cause the steric repulsion 326

between the bacterial probe and the substrate surface. When the bacterial probes are gradually 327

lowered to touch the substrate surfaces, the steric interactions between the substrate and cell 328

surface biopolymers are first sensed by the probes, followed by mechanical contact and 329

deformation of the surface appendages and polymer brush of the cell envelope as a result of 330

the compression.  The physical properties such as the net surface charge of cells and minerals 331

and the conformation of biopolymers change with increasing the salt concentration. 332

In this study, the steric model and Hertz model were applied to the force curves to 333

estimate the length and Young’s modulus of the biopolymer layer. Although the electrical 334

double layer force can also demonstrate exponential repulsive behavior, the electrostatic 335

interaction at high salt concentration was weak and ignored because the spatial range where336

the steric repulsions are operative is significantly larger than that of the electrostatic forces.337

The Decay length in 0.001 M KCl is approximately 9.7 nm, while the repulsion starts from 338

approximately 600 nm (Fig. 6A). This suggests that the electrostatic model is not applicable 339

to these biopolymers, thus it is justified only to use the steric model and Hertz model to 340

interpret the approaching curves. For approach curves analysis, we only consider the force 341

curves between bacterial probes and the silica wafer, which is more homogeneous and 342

smoother than the pyrite surface.343

3.4.1 Effect of salt concentration on biopolymer344

A significant effect of salt concentration on the approaching curves was observed (Fig. 345

6A and B). The steric model (Eq. (3)) was fitted to the approaching curves at various salt 346
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concentrations. For ferrous ion-grown A. f, the distance of the repulsion force decreased with 347

an increase of the salt concentration (Fig. 6A). From 0.001 M to 1 M salt concentration, the348

equilibrium length of the polymer brush 0L was 675±60, 415±23, 383±21 and 236±4 nm, 349

respectively. The grafted polymer density was between 6.9×1016 m-2 to 13.9×1016 m-2, the 350

magnitude of which was in agreement with other reports [2, 35, 52]. It is interesting to note 351

that the sulfur-grown cells showed an opposite trend. As can be seen from Fig. 6B, the 352

approaching curves of sulfur-grown A. f showed more repulsive peaks and the distance of 353

repulsion gradually increased with an increase of the salt concentration. 354

The histograms presented in Fig. 6C and D were obtained by analyzing more than 50 355

approaching curves using Eq. 5 for each salt concentration, resulting in different Young’s 356

modulus distributions. In our experiments, the applied forces (2 nN) were only sufficient to 357

indent less than 200 nm even in 0.001 M KCl solution (smaller than polymer brush thickness 358

estimated by the steric model). This indicates that the applied forces were mainly used to 359

compress the outer biopolymer brush of the cell wall.360

Generally, the average values of Young’s modulus of ferrous ion-grown cells are larger 361

than that of the sulfur-grown cells in all solutions. The Young’s modulus of ferrous ion-362

grown A. f increased with increasing salt concentration. From 0.001 M to 1 M solution, the 363

average value of E was 30.2±8.9, 29.2±5.1, 46.5±5.1 and 64.5±9.1 kPa, respectively.  The 364

Young’s moduli of sulfur-grown A. f were similar (about 22 kPa) at 0.001 M and 0.01 M KCl. 365

However, the peak distribution of E shifted toward smaller values as the salt concentration 366

increased, showing 14.9±7.1 and 17.2±9.4 kPa at 0.1 M and 1 M, respectively. The Young’s 367

moduli obtained from our experimental data by interpretation with Hertz model are in 368

agreement with the magnitudes reported in the literature for E  of bacterial biopolymer layers369

[19, 22, 35, 53], generally ranging from 1 to 100 kPa. 370
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In salt solutions with neutral pH, bacterial cells and substrate surface are negatively 371

charged due to the presence of anionic groups such as carboxyl and phosphate groups. By 372

increasing the salt concentration of the solution, the repulsive interactions between 373

neighboring charged chains of biopolymer are screened, leading to the collapse of the 374

biopolymer chains onto the cell membrane [54]. In low salt concentration solutions, the 375

biopolymer chains are more extended (larger 0L ), resulting in softer bacterial cells (smaller 376

E ). However, the biopolymer thickness of sulfur-grown cells increased with increasing salt 377

concentration. The E  value of sulfur-grown cells is approximately 4 times softer than that 378

determined for ferrous ion-grown cells at 1 M. Although the reasons for the opposite trend 379

observed from sulfur-grown cells are as yet not well understood, the results seem to agree 380

with the surface characterization results and indicate that the presence of different external 381

polymeric appendages and/or biopolymers and the change in the ratio between different 382

biopolymers lead to the varied nanomechanical properties of A. f. Other surface-specific 383

equipment such as sum frequency generation may be helpful to reveal the molecular 384

differences in surface biopolymers on the cell surface in further researches.385

The absolute determination of the Young’s modulus for a biological sample may not be 386

accurate for the following reasons: (a) A. f cells are rod-shaped instead of a spherical shape. 387

(b) The simple Hertz model ignores the cell-substrate adhesion. (c) The homogeneous 388

assumption for the cell surface in the Hertz model is not physically realistic. The 389

componential and structural complexity in the bacterial surface can lead to variation of the 390

Young’s modulus depending on different indentation depth, i.e. depending on the layer which 391

is actually squeezed. Various surface components and appendages such as fimbria, flagellum, 392

pili and biopolymer chains can contribute to the overall stiffness measured with AFM. 393

However, a trend in the change of Young’s modulus as a function of salt concentration may 394

provide some fundamental information for bacteria-mineral interactions.395
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3.4.2 Effect of loading force396

Upon approaching, the bacterial probe senses a repulsive force due to the steric 397

interaction. A notable fraction of approaching curves exhibit non-monotonic discontinuities 398

referred as sequential “jump-in” events, which reflect large changes in loading force over 399

very small distances. We propose that as the loading force increases, the resistance levied by 400

the surface appendages (pili or flagella) and/or biopolymer chains of cells against the 401

substrate is suddenly relieved, allowing further compression of the cell with less applied force. 402

However, “jump-in” events are rarely observed for experiments between a tip cantilever and 403

bacterial cells in previous studies [2, 52, 55-57]. 404

The reasons for using a colloidal bacterial probe instead of using a tip cantilever as an 405

indenter onto the cell surface are as follows: (a) A sharp tip of the cantilever can possibly 406

penetrate between the biopolymer chains, and deform the cell membrane with the tip apex 407

while deforming a small amount of the polymer chains with the tip sides [17]. (b) A sharp tip 408

with a small contact area can interact with various biopolymers during each approaching 409

process, thus largely enhancing the heterogeneity of the results. To obtain a global410

nanomechanical property of the cell, a bacterial colloidal probe can provide a much larger 411

contact area, the results from which are equivalent to the average of many measurements with 412

the sharp tip (i.e. conducting a nanomechanical force mapping experiment).413

The effect of loading force on the approaching curves is illustrated for the interactions 414

between ferrous ion-grown A. f and the silica surface in 0.001 M KCl solution. For the sake 415

of illustration, the approaching curves were plotted as loading force versus arbitrary 416

separation. As shown in Fig. 7, under a very small loading force of 0.5 nN, the approaching 417

curve displays a monotonic repulsion due to the steric interaction. As the loading force 418

increases, the approaching curves show a first “jump-in” event at a similar distance around 419

150 nm. Under higher loading forces, the approaching curves show several smaller “jump-in”420
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events following the first one. Although the number of “jump-in” events generally increases 421

with an increase of the loading force, the number also varies from curve to curve, which 422

again points to the heterogeneities and complexity of cell surfaces. These “jump-in” events 423

likely reflect the sequential compression of the cell surface appendages and biopolymer 424

chains. By fitting the “jump-in” events to the Hertz model, we obtained the E values from 425

low to high loading forces are 6.9, 9.0, 18.4, 26.9, 34.8 and 34.5 kPa, respectively. As we can 426

see in Fig. 7, under a loading force larger than 1.5 nN, the Young’s moduli of the first 427

compression events are similar and close to the average value of 30.2±8.9 kPa in 0.001 M 428

KCl solution. 429

In order to further rule out the possibility that the “jump-in” events result from the 430

compression of different cells, we used the representative curves in Fig. 7 as an example to 431

estimate the contact area of the bacterial probe. The Hertz contact area can be estimated as 432

follows:433

2 32
2 3 (1 )

4

FR
S a

E

 
 

   
 

(7)434

As the loading force increases from 0.5 to 2.8 nN, the estimated contact area increases from 435

0.23 to 0.25 µm2, which is about half of the area of A. f cell (ca. 0.5 µm2). Similar results 436

were reported by Zhang et al. [20] that under a loading force of 1.5±0.2 nN, the contact 437

radius of E. coli cells is approximately 45±2 nm. Our previous results showed that when the 438

bacterial probe was pressed extremely hard onto the silica surface, the area of destroyed cell 439

layer contained about 10 cells (data not shown). Therefore, under a loading force of 2 nN, it 440

is likely that only one cell is in contact with the substrate, which in turn supports our claim 441

that the sequential compression events reflect the compression of biopolymer chains with 442

different lengths instead of the compression of several cells. Furthermore, we observed that 443
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most “jump-in” events of the approaching curves correspond one-to-one with the adhesion 444

peaks of the corresponding retraction curves for sulfur-grown cells. This also indicates the 445

“jump-in” events reflect the compression of fibrous biopolymers.446

4. Conclusions447

In this study, the fundamental interaction forces between A. f cells cultured with different 448

energy sources and the substrates were directly quantified with the bacterial probe technique. 449

Our results show that the conformational changes in biopolymers due to the salt 450

concentration are important factors in influencing the surface potentials, adhesion behavior451

and the softness of the bacterial cells. This research provides fundamental understanding and 452

evidence that different energy sources and the salt concentration significantly influence the 453

adhesion behavior and cell nanomechanical properties. 454

Bacterial probe technique of AFM is advantageous in direct measurement of the 455

interacting forces between cells and the mineral surface, and is of great importance in the456

investigation of bacteria-mineral interface research. However, due to a lengthy manual 457

analysis, one often had to compromise by reducing the number of force curves to lower 458

analysis time. For deformable samples with heterogeneous surface components, converting 459

raw data, calculating Young’s modulus, and extracting adhesion force and snap-off distance, 460

would have made the manual route very tedious. Commercial data analysis software suitable 461

for batched AFM data analysis of different geometrical systems will be beneficial for faster462

and more accurate analysis of AFM data in future researches.463
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597

Captures to Figures598

Figure 1. (A) Schematic of the relative positions of a bacterial probe with cell deformation 599

(not to scale). The silica microsphere was omitted for simplification. 0z  is the initial piezo 600

position of the cantilever; z  is the relative piezo position of the cantilever; d  is the cantilever 601

deflection;   is the deformation of the cell; 0s  is the initial separation between sample and 602

the substrate surface; s  is the actual separation distance between the two surfaces. (B) 603

Schematic illustration of the abbreviations used to calculate the interaction force from the 604

pressure (force per unit area). The cell is considered as a microsphere.605

606

Figure 2. (A) A representative SEM image of a bacterial probe of A. f (Fe2+). (B) An AFM 607

height image of A. f (Fe2+) immobilized on a glass slide. (C) Typical force curves of ferrous 608

ion-grown cells showing the adhesion events, jump-in events and deformation of the cell.609

610

Figure 3. (A) Zeta potentials of A. f and silica wafers under various salt concentrations. (B) 611

FTIR spectra of A. f cells cultured with (a) ferrous ions and (b) elemental sulfur.612

613

Figure 4. Histograms of adhesion forces and representative retraction curves (inset) obtained 614

from (A) A. f (Fe2+) and (B) A. f (S0) at various salt concentrations. Red lines on retraction 615

curves of sulfur-grown A. f show that the adhesion forces are well-fitted by the wormlike 616

chain model described by Eq. (6).617

618
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Figure 5. Scatter plots of the adhesion forces versus snap-off distances measured between the 619

substrates and (A) A. f (Fe2+) or (B) A. f (S0). Data points were randomly collected from 30 620

different retraction curves measured for each salt concentration.621

622

Figure 6. Representative approaching curves fitted with steric model showing the effect of 623

ionic strength on approaching curves of (A) A. f (Fe2+) and (B) A. f (S0) on the silica surface. 624

Histograms (C and D) of the Young’s modulus obtained at various salt concentrations. 625

626

Figure 7. Effect of loading forces on the approaching curves of A. f (Fe2+) on silica surface in 627

0.001 M KCl solution. 628

629



Page 28 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

28

629

Captures to Tables630

Table 1. Effect of salt concentration on the average properties (mean±SE) of adhesion events 631

between bacteria and substrates632

633
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Table 1. Effect of salt concentration on the average properties (mean±SE) of adhesion events 633

between bacteria and substrates634

Snap-off distance (nm)Bacteria Substrates Salt conc. 

(M)

Adhesion 

events 

(%)

Mean 

adhesion 

force (nN)

Stair-step 

unfolding 

force (nN)
Mean Range

Silica 0.001 16 0.057±0.017 0.041±0.007 1498±332 308~2187

0.01 28 0.074±0.023 0.065±0.016 558±275 40~1644

0.1 42 0.026±0.013 0.048±0.005  254±62 78~627

1 47 0.088±0.021 0.091±0.015 611±184 131~1679

Pyrite 0.001 22 0.044±0.018 0.038±0.007 611±221 33~1625

0.01 29 0.057±0.022 0.066±0.012 747±302 211~1983

0.1 100 0.085±0.031 0.081±0.075 942±198 89~1840

A. f (Fe2+)

1 22 0.061±0.026 0.089±0.036 536±220 237~1853

Silica 0.001 48 0.211±0.117 NA 267±36 76~401

0.01 100 0.352±0.075 NA 222±44 58~351

0.1 86 0.287±0.084 NA 326±102 73~800

1 72 0.113±0.076 NA 537±176 102~

1024

Pyrite 0.001 53 0.069±0.036 NA 260±93 46~625

0.01 75 0.053±0.021 NA 409±130 92~1154

0.1 100 0.081±0.024 NA 572±182 34~1042

A. f (S0)

1 86 0.082±0.035 NA 499±251 32~1688

NA: value was not estimated from this study.635

636



Page 30 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

30

636

BA

637

Figure 1. (A) Schematic of the relative positions of a bacterial probe with cell deformation638

(not to scale). The silica microsphere was omitted for simplification. 0z  is the initial piezo 639

position of the cantilever; z  is the relative piezo position of the cantilever; d  is the cantilever 640

deflection;   is the deformation of the cell; 0s  is the initial separation between sample and 641

the substrate surface; s  is the actual separation distance between the two surfaces. (B) 642

Schematic illustration of the abbreviations used to calculate the interaction force from the 643

pressure (force per unit area). The cell is considered as a microsphere.644

645
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645

646

A C

B

647

Figure 2. (A) A representative SEM image of a bacterial probe of A. f (Fe2+). (B) An AFM 648

height image of A. f (Fe2+) immobilized on a glass slide. (C) Typical force curves of ferrous 649

ion-grown cells showing the adhesion events, jump-in events and deformation of the cell.650

651

A B

652

Figure 3. (A) Zeta potentials of A. f and silica wafers under various salt concentrations. (B) 653

FTIR spectra of A. f cells cultured with (a) ferrous ions and (b) elemental sulfur.654
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655

656

Figure 4. Histograms of adhesion forces and representative retraction curves (inset) obtained657

from (A) A. f (Fe2+) and (B) A. f (S0) at various salt concentrations. Red lines on retraction 658

curves of sulfur-grown A. f show that the adhesion forces are well-fitted by the wormlike 659

chain model described by Eq. (6).660

661
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661

662

Figure 5. Scatter plots of the adhesion forces versus snap-off distances measured between the663

substrates and (A) A. f (Fe2+) or (B) A. f (S0). Data points were randomly collected from 30 664

different retraction curves measured for each salt concentration.665

666
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666

667

668

Figure 6. Representative approaching curves fitted with steric model showing the effect of 669

ionic strength on approaching curves of (A) A. f (Fe2+) and (B) A. f (S0) on the silica surface. 670

Histograms (C and D) of the Young’s modulus obtained at various salt concentrations. 671

672

673
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Figure 7. Effect of loading forces on the approaching curves of A. f (Fe2+) on silica surface in 674

0.001 M KCl solution.675

676


