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Highlights

• We follow up on recent work of Cooper, Pastor, Aparicio and Borras (2011, EJOR).

• We operate with slack-based directional distance function.

• We develop a slack-based decomposition of profit efficiency
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Abstract

This paper develops a slack-based decomposition of profit efficiency based on a di-

rectional distance function. It is an alternative to Cooper, Pastor, Aparicio and Borras

(2011).
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1 Introduction

Chambers, Chung and Färe (1998) introduced an additive decomposition of profit efficiency

based on the directional technology distance function.1 Under suitable regularity conditions

on technology, this distance function has the indication property that it equals zero if and

only if the input-output vector belongs to the g-isoquant (see Färe and Grosskopf, 2010).

A Leontief technology is an example for which the isoquant may be larger than the Pareto-

Koopmans efficiency set. Thus the Chambers et al decomposition does not account for slacks.

This observation has prompted Cooper, Pastor, Aparicio and Borras (2011) to “... show

that the usual measure of profit inefficiency can be decomposed into its technical component,

measured through a weighted additive model, and its allocative component derived as a

residual. Our findings are all based on Fenchel-Mahler inequality using duality theory (see

Färe and Grosskopf, 2000)” p.411.

In this paper we introduce an alternative model to Cooper et al. (2011) using a slack-

based directional technology distance function introduced by Färe and Grosskopf (2010). We

combine this function with the fact that the profit maximum is at least as large as the profit

from any feasible input-output vector.

In the next section, after discussing profit-maximization, we recall the Chambers et al.

(1998) decomposition. Then we introduce our new decomposition of profit efficiency using a

slack-based directional technology distance function.

2 The Main Results

Denote inputs by a column vector x = (x1, . . . , xN)′ ∈ RN
+ and outputs by a column vector

y = (y1, . . . , yM)′ ∈ RM
+ ; the production technology is given by

T = {(x, y) : x can produce y} (1)
1Luenberger introduced this function as a “shortage function”, see e.g., Luenberger (1995).
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which we assume satisfies standard regularity conditions, and strong disposability of inputs

and outputs in particular.2

Let w = (w1, . . . , wN) ∈ RN
+ be a row vector of input prices and p = (p1, . . . , pM) ∈ RM

+ ,

be a row vector of output prices. The profit function is defined as3

π(p, w) = max
(x,y)
{py − wx : (x, y) ∈ T}. (2)

This definition implies that

π(p, w) = py − wx, ∀(x, y) ∈ T (3)

which is the first of our building blocks.

Next, introduce the directional vector

g = (gx, gy) ∈ RN+M
+ : g 6= 0.

This vector determines the direction in which the input-output vector is projected onto the

boundary of T .

To recall the Chambers et al. (1998) decomposition, we define the directional technology

distance function

−→
DT (x, y; g) = max

β
{β ∈ R+ : (x− βgx, y + βgy) ∈ T}. (4)

This function is defined to contract inputs and expand outputs, as in profit maximiza-

tion, except that the optimization for it is done along the chosen direction g = (gx, gy). In
2See Färe and Primont (1995) for an axiomatic discussion of T .
3See Färe and Primont (1995) for details about existence and other properties of this function.
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particular, note that

(x− β∗gx, y + β∗gy) ∈ T

where β∗ is the optimizer in (4), i.e., −→DT (x, y; g). It is important to note that the directional

vector has units of measurement, which makes the scalar β and the directional distance

function independent of units of measurement.

Combining this with the profit inequality yields

π(p, w) = p(y + β∗gy)− w(x− β∗gx), ∀(x, y) ∈ T

= (py − wx) + β∗(pgy + wgx) (5)

or, for (pgy + wgx) 6= 0, we have

π(p, w)− (py − wx)

(pgy + wgx)
= −→

DT (x, y; g), ∀(x, y) ∈ T (6)

and adding allocative efficiency to the right hand side closes the inequality. This is the

Chambers et al. decomposition.

Note that if all prices (on the left hand side of (6)) are scaled by λ > 0, the efficiency

score does not change, thus we may use US Dollar or Swedish kroner as the unit and the

results will be the same. Again, this decomposition would result in slacks being captured by

the residual rather than by technical inefficiency.

Following Färe and Grosskopf (2010), the slack-based directional technology distance

function, when the direction vector is chosen to be the unit vector, i.e., g = 1 = (1, ..., 1), is

−−−−→
SBDT (x, y;1) = max{

N∑

n=1

βn +
M∑

m=1

γm :

(x1 − β1 · 1, ..., xN − βN · 1, y1 + γ1 · 1, ..., yM + γM · 1) ∈ T} (7)
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where the optimization is done over B = (β1, ..., βN) = 0, Γ = (γ1, ..., γM) = 0.4 It is worth

noting that the g vector here equals one unit for each element,5 and so has a unit measure,

making β’s and γ’s independent of units of measurement and hence they can be summed.6

Let B∗ = (β∗1 , ..., β
∗
N), Γ∗ = (γ∗1 , ..., γ

∗
M) be the optimizers in (7), then under standard

regularity conditions on technology set T with strong disposability of inputs and outputs,
−−−−→
SBDT (x, y;1) = 0 if and only if (β∗1 , ..., β

∗
N , γ

∗
1 , ..., γ

∗
M) = 0. Thus, if −−−−→SBDT (x, y;1) = 0

we say that each xn and ym is technically efficient, i.e., (x, y) is on the (Pareto-Koopmans)

efficient frontier of the technology set T .

In the appendix we show that −−−−→SBDT (x, y;1) is independent of units of measurement.

The proof also shows that each component in(β∗1 , ..., β
∗
N , γ

∗
1 , ..., γ

∗
M) is unit independent.

Combining −−−−→SBDT (x, y;1) with the profit inefficiency, yields

π(p, w) =
M∑

m=1

pmym +
M∑

m=1

pmγ
∗
m · 1−

N∑

n=1

wnxn +
N∑

n=1

wnβ
∗
n · 1,∀(x, y) ∈ T (8)

From equation (8) it follows that

π(p, w)− (py − wx) =
M∑

m=1

pmγ
∗
m · 1 +

N∑

n=1

wnβ
∗
n · 1, ∀(x, y) ∈ T (9)

As in the Chambers et al. case, we can normalize with the value of the directional vector,

which is g = 1 here, i.e., (
∑M

m=1 pm · 1 +
∑N

n=1wn · 1), which yields

4In this paper we focus on efficiency measurement, so we consider only points that belong to the technology
set and this requires the non-negativity constraint, to ensure that the reference point on the frontier is obtained
by not increasing any of the inputs (i.e., contracting or keeping constant) and by not decreasing any outputs
(i.e., expanding or keeping constant). It is possible to extend this measure to the case when a point does not
belong to the technology set (e.g., for measuring productivity changes), and for such points the non-negativity
constraints should be changed to a non-positivity constraint for analogous reasons, in addition to feasibility
of the solution assumption. We thank an anonymous referee for this remark and leave further details for
future work.

5To clarify the notation further, note that we explicitly write the multiplication by 1 to emphasize that in
each instance it is multiplication by the unit of measurement corresponding to each different input or output,
e.g., the first element in 1 could stand for 1 litre of petrol, the second could stand for 1 hour of labour, the
last two could stand for 1 kg of apples and 1 kg of oranges, respectively, etc. Also, see appendix for the proof
of independence from units of measurement of this measure.

6Note that if gx = x and gy = y then we have a Russell-type efficiency measure defined on T . See Färe,
Fukuyama, Grosskopf and Zelenyuk (2015) for a related discussion.
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π(p, w)− (py − wx)

(
∑M

m=1 pm · 1 +
∑N

n=1wn · 1)
=

M∑

m=1

pmγ
∗
m · 1∑M

m=1 pm · 1 +
∑N

n=1wn · 1
(10)

+
N∑

n=1

wnβ
∗
n · 1∑M

m=1 pm · 1 +
∑N

n=1wn · 1
,∀(x, y) ∈ T

Define the price-share weights sm = pm·1∑M
m=1 pm·1+

∑N
n=1 wn·1

, m = 1, ...,M and sn = wn·1∑M
m=1 pm·1+

∑N
n=1 wn·1

,

n = 1, ..., N , then sm = 0 and sn = 0 for all m = 1, ...,M and n = 1, ..., N and
∑M

m=1 sm +
∑N

n=1 sn = 1. With these weights, we have

π(p, w)− (py − wx)

(
∑M

m=1 pm · 1 +
∑N

n=1wn · 1)
=

M∑

m=1

smγ
∗
m +

N∑

n=1

snβ
∗
n, ∀(x, y) ∈ T (11)

as the basis of our decomposition, with allocative inefficiency defined as the residual.

Next, note that we should have
∑M

m=1 pmγ
∗
m+

∑N
n=1wnβ

∗
n > 0 if and only if−−−−→SBDT (x, y;1) =

∑M
m=1 γ

∗
m+

∑N
n=1 β

∗
n > 0, because (β∗1 , ..., β

∗
N , γ

∗
1 , ..., γ

∗
M) = 0. So, for the case when−−−−→SBDT (x, y;1) >

0 we can multiply and divide the right hand side of (11) with −−−−→SBDT (x, y;1), to get

π(p, w)− (py − wx)

(
∑M

m=1 pm · 1 +
∑N

n=1wn · 1)
= −−−−→

SBDT (x, y;1)

× (
M∑

m=1

sm
γ∗m∑M

m=1 γ
∗
m +

∑N
n=1 β

∗
n

(12)

+
N∑

n=1

sn
β∗n∑M

m=1 γ
∗
m +

∑N
n=1 β

∗
n

),∀(x, y) ∈ T

where the right hand side is a measure of technical efficiency. The new decomposition follows

from adding an allocative inefficiency term.7

Obviousely, (10), (11) and (12) are equivalent, however, (12) allows us to identify the

contribution of each input and output as a share of the total technical inefficiency.8

7Note that the left hand side of (12) is the ratio of profit differences and the value of the directional vector,
hence it is independent of the units of measurement.

8Also note that the same function (−−−−→SBDT ) appears both inside and outside the parentheses of the de-
composition on the right hand side of (12). Such mathematical rearrangement is commonly used in other
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To take a closer look at the results, note that the right hand side of (12) is a product of two

parts, the −−−−→SBDT (x, y;1) itself and a share weighted sum of various optimal values from (7).

Let us concentrate on the mth term of the second part of this formula. This term can be seen

as: (i) themth output inefficiency γ∗m∑M
m=1 γ

∗
m+

∑N
n=1 β

∗
n
and (ii) weights sm = pm·1

(
∑M

m=1 pm·1+
∑N

n=1 wn·1)
.

That is, the expression in the parentheses consists of the share weighted sum (share of the

value of the directional vector) of the individual input and output inefficiencies. Note that

we have
∑N+M

i=1 si = 1 and si = 0. Incidentally, also note that if γm = βn = β for n = 1, ..., N

and m = 1, ...,M , then the Chambers et al. decomposition is obtained as a special case. Also

note that this decomposition is new to the literature and it is possible to adapt it to produce

a similar decomposition for the Russell-based directional distance function (see Fukuyama

and Weber (2009)).

Finally, a natural approach to estimate these measures in practice from data is to adapt

the data envelopment analysis approach (see Farrell (1957), Charnes, Cooper and Rhodes

(1978), Banker, Charnes and Cooper (1984) for the origins) in a similar fashion as in Cooper,

Pastor, Aparicio and Borras (2011) and Färe, Fukuyama, Grosskopf and Zelenyuk (2015).

instances in performance measurement. For example, the same distance functions appear inside and outside
of parentheses to arrive at decompositions of Malmquist productivity indexes (e.g., see Färe, Grosskopf,
Norris and Zhang (1994)).
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Appendix

To show that −−−−→SBDT (x, y;1) is independent of the units of measurement, let Ωx and Ωy

be arbitrary strictly positive diagonal matrices that transform the units of measurement of,

respectively, inputs and outputs (x and y), into x̃ = Ωxx and ỹ = Ωyy, so that

(x, y) ∈ T ⇐⇒ (x̃, ỹ) ∈ T̃ ,

where T̃ is T expressed in the new units of measurement, i.e.,

T̃ = {(x̃, ỹ) : x̃ = Ωxx can produce ỹ = Ωyy}

Furthermore, let 1̃ = (1 · u1, ..., 1 · uN ; 1 · v1, ..., 1 · vM) be the direction vector defining the

units corresponding to (x̃; ỹ). Now, note that

−−−−→
SBDT̃ (x̃, ỹ; 1̃) = max{

N∑

n=1

βn +
M∑

m=1

γm :

(x̃1,−β1 · 1̃, ..., x̃N − βN · 1̃, ỹ1 + γ1 · 1̃, ..., ỹM + γM · 1̃) ∈ T̃}

= max{
N∑

n=1

βn +
M∑

m=1

γm :

(x̃1,−β1 · 1 · u1, ..., x̃N − βN · 1 · uN , ỹ1 + γ1 · 1 · v1, ..., ỹM + γM · 1 · vM) ∈ T̃}

= max{
N∑

n=1

βn +
M∑

m=1

γm :

(u1(x1 − β1 · 1), ..., uN(xN − βN · 1), v1(y1 + γ1 · 1), ..., vM(yM + γM · 1)) ∈ T̃}

= max{
N∑

n=1

βn +
M∑

m=1

γm :

(Ωx(x1 − β1 · 1, ..., xN − βN · 1), Ωy(y1 + γ1 · 1, ..., yM + γM · 1)) ∈ T̃}

= max{
N∑

n=1

βn +
M∑

m=1

γm :

(x1 − β1 · 1, ..., xN − βN · 1, y1 + γ1 · 1, ..., yM + γM · 1) ∈ T}

=
−−−−→
SBDT (x, y;1).
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Thus, for any scalar-type transformation of units of measurement given by x̃ = Ωxx and

ỹ = Ωyy, we have −−−−→SBDT̃ (x̃, ỹ; 1̃) =
−−−−→
SBDT (x, y;1).
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