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Theory and practice of simulation of optical tweezers
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Halina Rubinsztein-Dunlop, Timo A. Nieminen

The University of Queensland, School of Mathematics and Physics, Brisbane QLD 4072, Australia

Abstract

Computational modelling has made many useful contributions to the field of optical tweezers. One aspect in which it
can be applied is the simulation of the dynamics of particles in optical tweezers. This can be useful for systems with
many degrees of freedom, and for the simulation of experiments. While modelling of the optical force is a prerequisite
for simulation of the motion of particles in optical traps, non-optical forces must also be included; the most important
are usually Brownian motion and viscous drag. We discuss some applications and examples of such simulations.
We review the theory and practical principles of simulation of optical tweezers, including the choice of method of
calculation of optical force, numerical solution of the equations of motion of the particle, and finish with a discussion
of a range of open problems.

Keywords: Optical tweezers, laser trapping, optical force, optical torque, light scattering
PACS: 42.25.Fx, 42.50.Wk, 42.50.Tx, 87.80.Cc

1. Introduction

The optical forces in optical tweezers result from the
interaction of the trapping beam with the trapped parti-
cle. Thus, the computation of optical forces and torques
is a light scattering problem. While this is a challenging
problem, and much work remains to be done, there has
been a great deal of progress, and for many situations, it
is straightforward to obtain the optical force and torque.
However, if we wish to simulate the behaviour of par-
ticles within optical tweezers, the optical force is only
one of the necessary ingredients. We will discuss some
applications and examples of such simulations, and re-
view the theory and principles of simulation of optical
tweezers.

1.1. The need for simulations

Since it is usually straightforward to calculate the op-
tical force on a trapped particle, it is possible to charac-
terise the trap by determining the force as a function of
particle position (and orientation if the particle is non-
spherical). At first glance, this appears to provide com-
plete information about the trap, and we might ask what
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need there is to perform simulations. There are two
main answers to this question. First, it is not always
feasible to generate such a force map of the trap. Sec-
ond, while a force map of this type does contain com-
plete information about the trap in some sense, it doesn’t
directly answer all questions we might have about the
trap. In particular, the dynamics of a particle in the
trap depend on its interaction with the surrounding en-
vironment as well as the optical force. The dominant
elements of that interaction are often Brownian motion
and viscous drag, but other types of interaction can also
be important. Where the dynamics themselves are the
object of study (e.g., escape probabilities, synchronised
dynamics of trapped particles, etc.) or have a major im-
pact on the behaviour of interest (e.g., in the simula-
tion of measurements to test calibration procedures), it
is necessary to take these non-optical into account.

The first of these cases results from situations with
many degrees of freedom. To map the force as a func-
tion of position with useful (but not high) resolution typ-
ically requires about 30 steps along each degree of free-
dom (giving about 10 steps as forces change from zero
to a maximum value). If it takes 1 second to calculate
the optical force at a single position, this will give re-
quired computational times for different degrees of free-
dom (DOF) of:
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1 DOF Example: calculating axial and/or radial force–
position curves; finding equilibrium position along
beam axis, and axial and radial spring constants.
30 to 60 points. Time: 0.5–1 minute.

2 DOF Example: mapping force for a spherical particle
in a rotationally symmetric trap (e.g., circularly po-
larised Gaussian beam). 302 ≈ 1000 points. Time:
≈ 15 minutes.

3 DOF Example: mapping force for a spherical particle
in a trap lacking rotational symmetry (e.g., linearly
polarised Gaussian beam). 303 ≈ 30, 000 points.
Time: ≈ 8 hours.

4 DOF Example: mapping force for a rotationally sym-
metric non-spherical particle in a rotationally sym-
metric trap. 304 ≈ 106 points. Time: ≈ 10 days.

5 DOF Example: mapping force for a rotationally sym-
metric non-spherical particle in a trap lacking rota-
tional symmetry; two spherical particles in a ro-
tationally symmetry trap. 305 ≈ 3 × 107 points.
Time: ≈ 1 year.

6 DOF Example: mapping force for a non-spherical
particle lacking rotational symmetry in a trap lack-
ing rotational symmetry; two spherical particles in
a trap lacking rotational symmetry. 306 ≈ 109

points. Time: ≈ 30 years.

Additional particles will add 2–3 translational de-
grees of freedom (depending on the symmetry of the
trap) and 0, 2, or 3 rotational degrees of freedom (de-
pending on the symmetry of the particle). If the trapping
beam varies in time, this adds another degree of free-
dom, although if the time variation consists of switch-
ing between a small number of fixed positions, this will
only multiply the number of required calculations and
the computational time by a small number.

The above times do not take parallelisation of the cal-
culations into account—this can readily bring one or
two more degrees of freedom into feasibility. However,
even with parallelisation, we will still rapidly run into
the limits of practicality due to the exponential growth
of computational time with the number of degrees of
freedom. Therefore, it can be necessary to resort to
simulation to obtain information we might prefer to find
from a complete force map. This will typically involve
non-spherical particles or multiple particles.

On the other hand, even if it is feasible to calculate a
complete force map for the trap, we might still wish to
perform simulations. In particular, a force map doesn’t
contain information about the dynamics of a particle in

the trap. While the optical force—which the force map
provides—is a key factor in the dynamics of the parti-
cle, the particle is also influenced by other forces: vis-
cous drag, thermal forces (driving Brownian motion),
and possibly interaction with other parts of the environ-
ment. If the dynamics are of interest, we can use simu-
lation to uncover it.

To explore the dynamics of a particle in the trap, it can
be possible, and advantageous, to use a pre-calculated
force map. If it is feasible to calculate a complete
force map with reasonable resolution, the optical force
at any position can be found by interpolating between
the points in the force map where the forces are known.
This interpolation can be performed very quickly (the
computational implementation should avoid copying
the force map to perform the interpolation). The re-
quired accuracy of the interpolated force will determine
the minimum resolution of the force map. This reso-
lution of the force map, along with the required spa-
tial extent of the simulation, determines the number of
points required in the force map. If this exceed the num-
ber of time steps required in the simulation, then direct
calculation will be more efficient. However, often the
number of time steps will be much greater, and using a
force map to find the optical force will be much more
efficient. This will often be the case for optical traps
with 2 or 3 degrees of freedom. An extreme case of this
is where the particle remains very close to its equilib-
rium position, and the trap can be represented in terms
of a spring constant (which will generally be a diagonal
tensor, with different spring constants in different direc-
tions, or even a non-diagonal tensor).

1.2. Applications of simulations

There are many possible applications of this. Most
fall into three broad categories: simulations to under-
stand experiments that have been performed, simula-
tions to predict the results of potential experiments, and
simulations to explore optical traps and the dynamics of
trapped particles in ways that are not accessible experi-
mentally.

The first of these, simulations of experiments that
have been performed, can be simply seeing if a simu-
lated experiment matches measured results. This can be
very useful if the experimental results are surprising. If
agreement between simulated and measured results is
obtained, the physics and models used in the simulation
adequately model reality. If agreement is not obtained,
then the model is either incomplete (e.g., physics not
included significantly affect the measured results) or el-
ements of the model are incorrect (invalid approxima-
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tions, mathematical errors, incorrect implementation in
software, numerical errors).

For example, Stilgoe et al. (2011) observed the ap-
pearance of a third trapping equilibrium position as two
optical traps were moved close together. In this case,
simulations were valuable for confirming that the third
trap can be produced in this two-beam configuration,
even if the two trapping beams are not mutually coher-
ent, i.e., the third trap doesn’t depend on interference
between the two trapping beams.

Haghshenas-Jaryani et al. (2014) used a combination
of experiment and simulation to explore the transition
from overdamped motion to underdamped motion as the
size of trapped particles was reduced.

Volpe et al. (2014) observed the trajectories of par-
ticles in a laser speckle pattern, and compared the ob-
served trajectories with simulated trajectories in speckle
patterns with the same average intensity. In this case,
the simulations do not aim to exactly replicate the exper-
imental situation, but to replicate it in a statistical sense.
That is, the speckle fields in the simulations have the
same statistical properties as the experimental speckle
fields. Qualitative and statistical agreement between ob-
served and simulated trajectories demonstrates that the
observed behaviour is general, and does not arise due to
some abnormality in the experimental case.

Wu et al. (2009) determined the non-conservative
force field from the motion of a trapped particles. Their
experimental results were supported by simulations. In
the experiment, the force field is inferred from the mo-
tion of the particle, while in the simulations, the force
field is known. This allows validation of the procedure
used to obtain the experimental force field.

Similarly, the knowledge of the optical forces avail-
able in simulations was used to validate escape force
calibrations on chromosomes by Khatibzadeh et al.
(2014). Measurements of the force required to pull
chromosomes free from an optical trap were performed
in order to estimate the forces exerted on chromo-
somes by a cell during cell division (mitosis) from the
power required to halt the motion (Ferraro-Gideon et al.,
2014). Since the exact size and refractive index of the
chromosomes were uncertain, a further series of exper-
iments and simulations on the escape of spheres from
optical traps due an applied force were performed (Bui
et al., 2015), revealing the dependence of the escape tra-
jectory, and the escape force, on the trapping power and
rate of increase of the applied force.

Simulations that deliberately differ from the experi-
ments can show the effect of the difference on observa-
tions or measurements. For example, Czerwinski et al.
(2009) used Allan variance to quantify noise in optical

tweezers setups. Simulations were used to obtain (sim-
ulated) data free of noise and long-term drift, providing
a suitable baseline for comparison with experimental re-
sults.

As noted above, simulations are often necessary
when the system has many degrees of freedom, such
as when there are non-spherical or multiple particles.
Brzobohatý et al. (2015b) used simulations to explore
the shape dependence of the trapping behaviour of non-
spherical gold nanoparticles. Brzobohatý et al. (2015a)
used simulations to support experiments rotational dy-
namics of multiple spheroidal particles in a dual beam
trap. Following observations of optically-driven oscil-
lations of ellipsoidal particles (Mihiretie et al., 2014),
Loudet et al. (2014) performed simulations to under-
stand the physical basis of the observed behaviour.

In these examples above, simulations were performed
to support experiments. The opposite of this, where ex-
periments are performed to support simulations, is also
common. The aim of the simulations can vary greatly,
from demonstration of the feasibility of a particular ex-
periment before performing it, to using simulation as a
tool to help design the experiment, through to a broad
series of exploration via simulation with experiments
being performed to validate the simulations. In this
last case, the experimental work might consist of only
a small fraction of the range covered by the simulations.
If the simulation method and implementation is already
known to be reliable from previous validation, then the
reported work might consist purely of simulations.

Some of this more simulation-focussed work is sim-
ilar to the experiment-focussed work described above.
For example, similar to the work of Wu et al. (2009),
Pesce et al. (2009) also explored the non-conservative
forces in optical traps.

As noted above, simulations allow the optical forces
to be known, and are therefore valuable for testing cal-
ibration methods. Simulated measurements, of the type
that would be measured experimentally in order to cal-
ibrate an optical trap, or to determine the optical force
field from the motion of a trapped particle, can be gen-
erated, and the same analysis that would be performed
on experimental data can be performed on the simulated
data. The simulated calibration or force measurement
can be compared with the actual optical force in the sim-
ulation. Examples of simulations of this type include
Volpe et al. (2007), Volpe and Petrov (2006), and Gong
et al. (2006). Such simulations can also readily include
non-spherical particles (Bui et al., 2013). Similar com-
parison on known quantities in the simulation and simu-
lated measurement of these quantities can be carried out
for methods to measure properties of the surrounding
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medium, such as its viscoelasticity (Fischer and Berg-
Sørensen, 2007).

An application where the trapping beam varies in
time is the simulation of control methods, where the po-
sition or power of the beam can be varied to achieve
a desired effect (Banerjee et al., 2012; Aguilar-Ibañez
et al., 2011; Li et al., 2013). Variation of the beam power
over time introduces an additional degree of freedom,
and movement of the beam introduces 2 to 4 additional
degrees of freedom (time and 1 to 3 spatial degrees of
freedom). Similarly, improved trapping methods can be
explored (Taylor et al., 2015).

Simulations can be aimed at a more general explo-
ration of the behaviour of optically-trapped particles.
These can be specifically investigating the dynamics
of trapped particles (Banerjee et al., 2009; Xu et al.,
2005; Deng et al., 2007; Ren et al., 2010; Cao et al.,
2016; Trojek et al., 2012). Another common goal is
the study of the behaviour of non-spherical particles,
where the additional degrees of freedom motivate the
use of simulations (Simpson and Hanna, 2010a,b; Cao
et al., 2012). These can include optically-driven micro-
machines. One example is the use of simulations to
determine the optimum illumination to drive a corru-
gated rotor with maximum torque efficiency, while re-
taining stable three-dimensional trapping (Loke et al.,
2014). Another example is an optical “wing”, consist-
ing of a semi-cylindrical rod (Artusio-Glimpse et al.,
2013; Simpson et al., 2012), Such a structure can gener-
ate lift—an optical force acting normal to the direction
of illumination—in addition to the expected radiation
pressure force. Simulations by Artusio-Glimpse et al.
(2014) show that complex rocking motion can occur.
The simulations allow the effects of time-varying illu-
mination, producing a parametrically driven nonlinear
bistable oscillator, to be explored.

Finally, simulations can be useful for educational pur-
poses (Volpe and Volpe, 2013; Perkins et al., 2010)

For some of these simulations, it is not necessary to
accurately model the dynamics of the particle. For ex-
ample, to determine the equilibrium position and orien-
tation of a non-spherical particle within the trap, it is
not necessary to correctly model the viscous drag. The
translational and rotational drag tensors can be approx-
imated by Stokes drag for a sphere, even if the parti-
cle is non-spherical. Brownian motion can be ignored,
although it (or random jitter providing similar random
motion) can be useful for preventing the particle from
getting stuck in an unstable equilibrium. This can hap-
pen, for example, if the particle is a flat disc, which
would tend to align with its symmetry axis normal to
the beam axis (Bayoudh et al., 2003), but will be in an

unstable equilibrium if the simulation is begun with the
disc on the beam axis, with its symmetry axis along the
beam axis.

However, for many types of simulations, where ac-
tual or prospective experiments are being simulated, it is
often important to accurately model the dynamics, and
to include all important details of the interaction of the
particle with its environment. At minimum, this can be
expected to include viscous drag and Brownian motion.

2. A recipe for simulation, part 1

The motion of a particle of mass m subject to a force
F(t) can be calculated from

m
d2r
dt2
= F(t), (1)

given initial conditions for the position r(t = 0) and ve-
locity v(t = 0). The force F(t) is the sum of contribu-
tions from various sources:

F(t) = Foptical + Fweight + Fbuoyancy

+Fdrag + FBrownian + Fother, (2)

where we have explicitly listed the optical force, weight,
buoyancy, viscous drag, and thermal forces driving
Brownian motion. We have also included Fother to repre-
sent any other forces present. The weight and buoyancy
are straightforward, with

Fweight = mg = ρparticleVg (3)

and

Fbuoyancy = ρmediumVg, (4)

where V is the volume of the particle, ρparticle and ρmedium

are the densities of the particle and the surrounding
medium, and g is the local gravitational acceleration.
These can almost always be treated as constant, and
present no difficulty for numerical solution of the dif-
ferential equation (1).

The optical force Foptical is the force that typically
has the most attention paid to it in discussion of opti-
cal tweezers and optical trapping. Depending on the
particle in question (and the optical trap), calculation
of the optical force can vary from a formidable com-
putational challenge to an already-solved problem with
freely-available implementations. We will discuss the
calculation of optical forces in the following section.
For the moment, we will consider the spatial scale over
which the optical force varies, since this directly affects
the solutions of differential equation (1). In a typical op-
tical trap, the energy density varies from small to large
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values over a distance of half a wavelength or more. As
a result, the optical forces will vary from small to large
over a similar length scale, or over a distance compa-
rable to the particle radius. For example, when a large
spherical particle is centred on the beam axis in typi-
cal Gaussian beam optical tweezers, the force is zero,
and when the edge of the particle is on the beam axis,
the radial force is approximately maximum. For such a
trap, we can assume that the length scale over which
the optical force varies is the larger of the two (i.e.,
the maximum of the half-wavelength and the particle
radius). However, even for large particles, the force
can vary over the half-wavelength scale, if interference
effects are important, such as when trapping in inter-
ference fringes produced by mutually-coherent counter-
propagating beams. Knowledge of the length scale of
variation in the optical force allows us to estimate a suit-
able maximum distance to allow the particle to move
over a time step when numerically solving equation (1).

The viscous drag force has major effects on the nu-
merical solution of the differential equation describing
the motion. We will discuss details of the calculation
of the viscous drag later, and restrict the current discus-
sion to these effects on the solution. Since, typically,
trapped particles are microscopic and are trapped in a
viscous environment, the interaction between the parti-
cle and the fluid is characterised by very low Reynolds
numbers. In this case, the viscous drag is linearly re-
lated to the velocity:

Fdrag = Dv, (5)

where D is a 3 × 3 drag tensor. Commonly, it is simply
stated that since the Reynolds number is very low, we
can neglect the inertial term in equation (1) (recalling
that the Reynolds number is the ratio of inertial effects
to viscous effects in fluid motion), reducing equation (1)
to

0 = F(t). (6)

Substituting (5), we obtain the first-order differential
equation

−D
dr
dt
= Foptical + Fweight + Fbuoyancy

+FBrownian + Fother. (7)

Note that differential equation (7) assumes that the par-
ticle is always moving at terminal velocity, with viscous
drag balancing the sum of the other forces. When is this
condition satisfied? If a particle is initially at rest in a
fluid, and a force F is suddenly turned on, the approach

to terminal velocity v0 = −D−1F will be characterised
by a time constant τ such that

v(t) = v0(1 − exp(−t/τ)). (8)

The time constant τ is

τ = m|v0|/|F|, (9)

which, for a spherical particle, becomes

τ = 2ρparticlea
2/(9η), (10)

where a is the radius of the particle, and η is the (dy-
namic) viscosity of the surrounding medium. Notably,
this is independent of the force. For a particle of ra-
dius a = 1 μm in water, this gives a time constant of
τ ≈ 2.4 × 10−7s. If we are calculating the motion of
the particle using a time step Δt large compared to this
(e.g., Δt > 10τ), we can safely use equation (7). If we
are using a time step similar to or smaller than τ, we
should, strictly speaking, use equation (1). In practice,
if the force only changes by a small amount over the
time step Δt, the particle will already be moving at close
to terminal velocity, and equation (7) will yield accept-
able results. Haghshenas-Jaryani et al. (2014) consider
a case where the difference between equations (1) and
(7) matters over short times.

Motion at the very low Reynolds numbers typical in
optical traps is outside our everyday experience. Purcell
(1977) gives an excellent and accessible overview.

Brownian motion presents a serious difficulty: nu-
merical solution of differential equations such as (1) and
(7) typically depend on using a time step sufficiently
short so that the time-varying quantities in the equations
(the forces, the position, and the velocity) only vary by
a small amount over the time step. However, no matter
how short a time step is chosen, classical Brownian mo-
tion (i.e., Brownian motion in a continuous fluid Ein-
stein (1956)) always varies by a large amount. There-
fore, it is simplest to remove Brownian motion from our
differential equations, and treat it separately. We will re-
turn to this point after discussion of optical forces, vis-
cous forces, and Brownian motion.

The final force in our differential equations, Fother,
can represent many possible forces. For example, ad-
hesion forces between particles or particles and the mi-
croscope slide, electrostatic forces, magnetic forces, and
more. Needless to day, some of these forces can be chal-
lenging to model accurately. In some cases, a similar
approach to that suggested above for Brownian motion
will be useful: remove the force from the differential
equation, and treat it separately.
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Finally, for non-spherical particles and some spher-
ical particles, it is necessary to consider rotational mo-
tion as well as translational motion. In this case, our dif-
ferential equation will include optical torques, viscous
drag torque (which will be linearly related to the angular
velocity by a rotational drag tensor), and other torques.
These can be treated in a similar manner to their trans-
lational counterparts. Rotational Brownian motion can
be treated in a similar manner to translational Brown-
ian motion. Weight and buoyancy can often be ignored,
since for many particles, they produce no torque about
the centre of the particle. One complication is that it
is often desirable to perform the calculations of optical
force and torque in a coordinate system fixed to the par-
ticle, necessitating transformations between the particle
frame and the stationary frame. Due to the analogous
nature of rotational motion compared with translational
motion, the rotational equations of motion can be read-
ily written following the translational equations of mo-
tion, replacing masses with moments of inertia, forces
with torques, and translational drag tensors with rota-
tional drag tensors. It should be noted that for particles
with a chiral shape, rotational and translational motion
can be coupled through viscous drag Moffatt (1977); in
this case, an addition coupling tensor will be included
in both the translational and rotational equations of mo-
tion. For descriptions of simulations involving rota-
tional motion, including equations of motion, see Cao
et al. (2012); Bui et al. (2013).

3. Optical forces and torques

The computational modeling and simulation of op-
tical tweezers is essentially a light scattering problem
(Nieminen et al., 2001, 2014). The trapping beam in-
teracts with the trapped particle—this is the scattering
aspect of the problem—and a force results. As there
are a large number of computational approaches to light
scattering (Kahnert, 2003), there are a large number of
computational approaches to calculating optical forces
(Nieminen et al., 2014; Jones et al., 2015). A complete
review of all of the methods would be a monumental
(and book-length, if not multi-volume) task, and we will
not attempt it here. Instead, we will discuss the elements
of calculation of optical forces that are most important
for deciding which method will be used for such calcu-
lations, and refer readers to appropriate technical litera-
ture for particular methods.

We will begin with an overview of the T-matrix
method and why it is often the method of first choice
for simulations. Note that for a spherical particle, the
T-matrix method is essentially equivalent to generalised

Lorenz–Mie theory (GLMT) (Gouesbet, 2010). Then,
after noting cases where the T-matrix method might not
be the best choice, or even feasible, we review some ba-
sic principles of calculating optical forces that can affect
the choice of alternative methods.

In general, it is safe to conclude that where calcu-
lation of the T-matrix is feasible, the T-matrix method
appears to be the ideal method. The T-matrix method
is not a method of calculating light scattering by a par-
ticle, but a formalism in which the already calculated
scattering properties of the particle can be expressed
in the form of the T-matrix. The extended boundary
condition method (EBCM) is widely used to calculate
the T-matrix, being the original method used by Wa-
terman (1965, 1971). Thus, “T-matrix method” is of-
ten used synonymously with EBCM, but the distinction
between them should be recognised (Nieminen et al.,
2014; Gouesbet, 2010; Gouesbet and Lock, 2015).

In the T-matrix method, we represent the incident and
scattered fields in terms of discrete sets of vector-valued
basis functions ψ(inc)

n and ψ(scat)
n , where n is a mode index

labelling the functions, each ψn being a solution of the
vector Helmholtz equation. Using these bases, we can
write the incident field amplitude as

E(inc)
0 =

∞∑

n

anψ
(inc)
n , (11)

where an are the mode amplitudes (or expansion coef-
ficients) of the incident wave, and the scattered wave
amplitude as

E(scat)
0 =

∞∑

k

pkψ
(scat)
k , (12)

where pk are the mode amplitudes of the scattered wave.
For computational practicality, these sums must be trun-
cated at some finite nmax. For a basis set of vector
spherical wavefunctions, as usually used in the T-matrix
method, the truncation criterion given by Brock is suit-
able, giving a relative error due to truncation of about
10−6 (Nieminen et al., 2011).

With truncation, the mode amplitudes of the incident
and scattered waves can be written as column vectors a
and p, and their relationship can be expressed in matrix
form as

p = Ta, (13)

where T is the T-matrix, or transition matrix, or system
transfer matrix. This assumes that the electromagnetic
properties of the particle are linear and constant (i.e.,
the particle doesn’t change over time). With this de-
scription of scattering, the scattering properties of the
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particle and the details of the incident field are sepa-
rated, leading to high efficiency for repeated calcula-
tion. Once the T-matrix T has been calculated, it can
be used repeatedly for calculation under different illu-
mination conditions (as long as the wavelength remains
the same). Thus, as the particle moves within the optical
trap, the T-matrix T remains constant, and the incident
field, described by a changes. The changes in a can be
found by using the transformation properties of the ba-
sis functions ψ(inc)

n under translation and rotation. It is
important to note that the requirement that the particle
not change over time means that it is necessary to use a
coordinate system in which the particle is fixed. Thus,
calculations of the optical force and the torque are per-
formed in the particle rest frame.

Further efficiency results from analytical integration
of the momentum flux, using known results for products
of integrals of the basis functions over a sphere. This re-
duces the formulae for optical forces and torques from
integrals to sums of products of the mode amplitudes
(Nieminen et al., 2014). This avoids the need to calcu-
late the fields over a grid of points in order to perform
such integral numerically, and also avoiding numerical
error due to the resolution of the computational grid.

However, it is not always feasible to calculate the
T-matrix of the particle. The most common methods
for calculating the T-matrix of a particle are gener-
alised Lorenz–Mie theory (GLMT), when the particle
is a uniform isotropic sphere (but note that GLMTs
exist for non-spherical particles as well (Gouesbet
and Lock, 2015)) and the extended boundary condi-
tion method (EBCM), also known as the null-field
method, developed by Waterman (1965, 1971). How-
ever, other methods are possible (Mackowski, 2002;
Kahnert et al., 2003; Nieminen et al., 2003; Goues-
bet, 2010; Mishchenko et al., 2010; Loke et al., 2007,
2009). A comparison of EBCM, point-matching (Niem-
inen et al., 2003), and the discrete dipole approximation
(DDA) (Loke et al., 2009) is given by Qi et al. (2014).

Where it is impractical or impossible to calculate the
T-matrix, other methods can be sought. In many ways,
the calculation of optical forces and torques is a sim-
ple scattering problem. Often, there is a single par-
ticle, comparable in size to the wavelength, and suf-
ficiently far from other particles and surfaces so that
multiple scattering can be ignored (it should be noted
that “multiple scattering” is a rather artificial concept
(Mishchenko, 2014), and it is possible to treat scatter-
ing by a single object in a multiple scattering formalism
(e.g., using DDA) or scattering by a group of objects
in a single scattering formalism (Gouesbet and Grehan,
1999)). The incident field is monochromatic and co-

herent. The complication is that the incident field is
not a plane wave, but a focussed beam. This, and the
desired outputs being the force and torque rather than
the fields, or scattering cross-sections, or scattering pat-
terns, means that existing computational implementa-
tions of particular methods might be unsuitable.

There are some general theoretical points that merit
discussion, since they can affect the choice of compu-
tational method or details of how a method is imple-
mented. In order to calculate the forces, there are two
different approaches that we can take. First, we can use
conservation of momentum, and find the difference be-
tween the incoming momentum flux and the outgoing
momentum flux of the light. This difference is the rate
at which momentum is transferred to the particle—that
is, the force exerted on the particle. Second, we can di-
rectly calculate the force using the Lorentz force law (or
the Helmholtz force law, or other force law). These two
approaches are summarized in figure 1.

Figure 1: The optical force can be calculated from the momentum flux
or by an electromagnetic force law.

At this point, one might be surprised to discover
that there are multiple expressions given in the litera-
ture for the momentum flux of light, and also multi-
ple electromagnetic force laws. This is the Abraham-
Minkowski controversy, where we encounter compet-
ing expressions for the momentum density of an elec-
tromagnetic field (Pfeifer et al., 2007). With more than
one possible expression for the momentum density, how
can we choose the correct one, or at least the best one to
use?

The key is to note that while there are different ex-
pressions for the electromagnetic momentum density in
material media, the different versions all correspond to
identical expressions for the total momentum density
in the material medium associated with the electromag-
netic wave. Where the electromagnetic momenta dif-
fer, the difference is matched by opposing differences
in what is labelled material momentum or interaction
momentum. Since we must calculate the total force,
whether or not it is described as purely electromagnetic
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or the sum of an electromagnetic and a material force,
the difference in how the total momentum is divided into
electromagnetic and material (and possibly other) com-
ponents is not fundamental. However, it is convenient to
be able to calculate a single quantity rather than multiple
quantities that, when added, equal that single quantity.
Noting that for cases where the electromagnetic proper-
ties of the medium can be described completely with a
constant permittivity and permeability, the Minkowski
momentum is the total momentum (Pfeifer et al., 2007),
this is the simplest choice of momentum density.

With each possible choice of momentum density,
there is an associated electromagnetic force law. If we
begin by choosing a force law, we can derive an expres-
sion for the momentum density and momentum flux of
the electromagnetic field. Doing this in reverse, we can
begin with an expression for the momentum, and ob-
tain an electromagnetic force law. The most commonly
encountered force laws are the Lorentz force law, giv-
ing the force acting on charges and currents, and the
Helmholtz force law which includes forces acting on
induced dipole moments. These connection between
these force laws can be seen if we consider the induced
dielectric polarisation in a particle. We can represent
this either by the dipole moment per unit volume, or by
equivalent charges. For a uniformly polarized sphere,
the dipole moment per unit volume is uniform through-
out the sphere, but we can replace this by an equivalent
surface charge density. In the more general case, we ob-
tain a volume charge density from the variation of the
dielectric polarisation in the particle, as shown in fig-
ure 2. The Helmholtz force law gives the force acting
on the dipole moment per unit volume, and the Lorentz
force law the force acting on the equivalent charges. In
both cases, the total force is identical.

Figure 2: The optical force can be calculated from the momentum flux
or by an electromagnetic force law.

If we choose to find the force from conservation of
momentum, we need to choose a closed surface over
which to integrate the momentum flux. There are three
principle choices: a surface conforming to the surface of
the trapped particle, a surface of simple geometry close
to the particle enclosing it, and a spherical surface in
the far field, as shown in figure 3. The latter two of

these are often the best choices. If a surface in the far
field is chosen, it can be possible to make far-field ap-
proximations to simplify calculation of the momentum
flux. If a nearby surface of simple geometry is chosen,
the same surface can be used for particles of different
shapes, simplifying implementation.

If there are multiple particles within the trap, we will
usually need to calculate the optical force acting on each
particle. This is important, for example, when consid-
ering optical binding (Chaumet and Nieto-Vesperinas,
2001; Chvatal et al., 2015). In this case, we cannot find
the individual forces by integration of the total field in
the far field. We can instead use surface surrounding
each individual particle, integration over each of which
will yield the force acting on the enclosed particle. In
a multiple-particle T-matrix formulation, it is still pos-
sible to use the usual single-particle summation formu-
lae (Nieminen et al., 2014) to find the force, if we use
incident and scattered field mode amplitudes for each
particle individually.

Figure 3: Choices of surface over which to integrate momentum flux.
We can choose a surface conforming to the surface of the particle, or
a surface of simple geometry enclosing the particle. Alternatively, we
can choose a spherical surface in the far field, which can simplify the
calculation by allowing us to make far-field approximations.

While there are many possible methods, they largely
fall into three groups: finite element methods (FEM),
finite difference methods, of which the most notable
variants are the finite-difference time-domain method
(FDTD) and the finite-difference frequency-domain
method (FDFD), and approximate methods, notably
Rayleigh scattering and geometric optics or ray optics.

In the finite element method (FEM), the computa-
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tional space is subdivided into finite elements (Volakis
et al., 1998). The values relevant to the PDE inside or at
the surface of each element are approximated by some
known function, perhaps linear or a higher order func-
tion (Volakis et al., 1998). The interaction between each
element or an element and its surrounding elements is
described by a matrix that depends on the particular
definition and the chosen division of the computational
space. For scattering problems, FEM might be used to
refer to a number of methods that involve solving ei-
ther sparse or dense systems of equations. The most
important FEM as far as optical tweezers is concerned
is the the discrete dipole approximation (DDA). The
physical interpretation of DDA involves representing
a large scattering particle by multiple smaller interact-
ing dipoles whose polarisability is known (Mishchenko,
2014). The interaction between each dipole is described
by a dense matrix; the resulting linear system approxi-
mates the scattering by the combined object. Yurkin and
Hoekstra (2007) provide a good overview of DDA in-
cluding recent developments and comparisons to other
methods. Unlike other FEM, DDA doesn’t require the
space surrounding the scatter to be discretised, unless
the surrounding space is inhomogeneous or contains
other objects. DDA is more suitable for smaller isolated
particles and particles with smaller (relative) refractive
indexes due to the requirement to solve a dense linear
system.

The finite-difference time-domain (FDTD) method
refers to a method described by Yee (1966) for solv-
ing systems of coupled partial differential equations.
Although it was originally formulated for solving the
Maxwell equations, FDTD can also be applied to other
systems of differential equations. The original formula-
tion of FDTD for the Maxwell equations involved cal-
culating the electric and magnetic fields at locations on a
structured grid spanning the computational space. Spa-
tial derivatives in the Maxwell equations are calculated
using second order finite difference approximations in-
volving the adjacent locations on the structured grid.
The fields are advanced through time using a leapfrog
scheme with second order accuracy, where the electric
and magnetic fields are updated at alternate half inte-
ger time steps. Since Yee’s original method, there have
been numerous improvements and specialisations such
as unconditionally stable methods or single step meth-
ods (Inan and Marshall, 2011; Raedt et al., 2003). One
disadvantage of the FDTD method is difficulty in repre-
senting objects with smooth surfaces using a structured
Cartesian grid; when the surface doesn’t conform to the
Cartesian grid, this introduces staircasing error (Inan
and Marshall, 2011). The simplest approach is to in-

crease the grid resolution. However, this results in a ma-
jor increase in the computational requirements. Other
alternatives include using non-Cartesian grids such as
spherical or circular grids, sub-gridding certain regions
or incorporating a local distortion near curved object
boundaries (Hastings et al., 2001). Use of non-Cartesian
grids requires calculation of the Jacobian and correcting
the FDTD update equations appropriately, special atten-
tion should also be given to discontinuities in the mesh.

The finite-difference frequency-domain (FDFD)
method is very similar to FDTD except it assumes
time harmonic solutions for the incident and scattered
fields (Loke et al., 2007). FDFD is very similar to FEM
where only interactions between adjacent elements are
considered. This results in a linear system describing
the scatter. Unlike FDTD, FDFD performs the scatter-
ing calculation for only a particular frequency, while
FDTD is able to calculate the scattering of multiple
frequencies simultaneously.

The choice to use a particular computational method
to model optical tweezers greatly depends on the regime
the problem falls into. For very large and very small
particles the ray optics and Rayleigh approximations are
able to model particles with reasonable accuracy. DDA
approaches the Rayleigh limit for small particles but is
able to simulate larger particles with fairly high accu-
racy but scales relatively poorly with memory and time.
The FDTD and FDFD methods are able to simulate an
extended range of particles but rely on being able to dis-
cretise the computational space to describe fine details
of the scatterer or rapidly changing fields. FDFD as-
sumes a particular form for the wave solutions, but is
only able to simulate a single frequency; in comparison,
FDTD can easily deal with illumination such as short
pulses, and can include non-linear effects including fre-
quency doubling, frequency mixing, etc. A summary of
these comparisons is presented graphically in figure 4.
The performance and capabilities of the different meth-
ods depend on the type of problem being solved, so
this comparison should be treated as a qualitative guide,
rather than an exact quantitative comparison. This com-
parison is based on our own experience with these meth-
ods.

4. Viscous drag

Viscous drag is a key factor in the dynamics of a par-
ticle in an optical trap. It determines the speed at which
the optical forces and torques will move or rotate the
particle, and it also affects Brownian motion. For simu-
lation of optical tweezers, we wish to obtain the transla-
tional viscous drag tensor for the particle (and the rota-
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Figure 4: Comparison of different computational methods for sim-
ulating optical tweezers. Further from the centre is better; e.g., the
Rayleigh approximation, GLMT and EBCM are the best of these
methods for calculation forces on very small particles. The particle
complexity includes both the particle geometry and composition (in-
homogeneity, anisotropy, non-linearity). The accuracy and computa-
tional requirements depend on the type of problem being solved, so
this comparison should be treated as a qualitative guide, rather than
an exact quantitative comparison.

tional drag tensor, if we need to include rotation in the
simulation). For the case of a spherical particle, this is
straightforward, since there is a simple analytical solu-
tion: Stokes drag on a sphere. This gives

D = 6πηaI, (14)

where I is the identity tensor. If the rotational drag ten-
sor is required, this is equal to

Drot = 8πηa3I. (15)

For cylinders, convenient formulae are given by de la
Torre and Bloomfield (1981). For more general cases, it
can be necessary to resort to solving the fluid flow and
calculating the drag tensors. At low Reynolds numbers,
the fluid flow is described by the Stokes equation:

η∇2v = ∇p, (16)

where v is the velocity field of the fluid flow, and p is
the pressure field. The two most promising approaches
appear to be using the general solution in spherical co-
ordinates (Lamb, 1924; Pak and Lauga, 2014) and direct
finite-difference solution.

4.1. Wall effects

It should also be noted that nearby surfaces affect the
viscous drag on a particle. In general, this is a diffi-
cult problem (Happel and Brenner, 1991). However, the
simple case of a sphere near a plane wall has a known
solution. The approximate solution by Faxén (1922) is
often used. However, it is only accurate when the par-
ticle is a large distance away from the wall, and fails
when the distance between the wall and the closest part
of the particle is less than 1 particle radius. That is, it
cannot be used when it is most needed. The exact so-
lution presents serious difficulties in calculation. For-
tunately, a simple and very accurate approximation for-
mula is available (Chaoui and Feuillebois, 2003).

5. A recipe for simulation, part 2: Brownian motion

Brownian motion in a viscous fluid, in the absence of
other forces, can be easily modelled. The probability
distributions for displacements of a spherical particle in
each of the x, y, and z directions over a time interval
Δt are normal (Gaussian), with variance equal to 2DΔt,
where

D =
kBT
6πηa

(17)

is the diffusion coefficient, and kB is Boltzmann’s con-
stant, T is the absolute temperature, η is the (dynamic)
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viscosity, and a is the radius of particle. Thus, it is
straightforward to simulate Brownian motion using a
Monte Carlo method. To calculate a displacement over
Δt, we can generate 3 normally distributed random num-
bers, Rx, Ry, and Rz with variance equal to 1, giving us

Δx = (2DΔt)1/2Rx (18)

for the displacement in the x-direction, and similar re-
sults in the y and z directions. This can then be repeated
for subsequent time steps, with new random numbers
Rx, Ry, and Rz generated for each time step.

Notably, classical Brownian motion of this type is
self-similar across all time scales, i.e., fractal (Einstein,
1956; Nelson, 1967), and consequently, the accuracy of
a Monte Carlo simulation like this is independent of the
choice of step size Δt. Therefore, if we aim to simulate
a series of measurements of particle position, it is suffi-
cient to calculate the particle position at only the times
at which the position is measured, and Δt is the time in-
terval between the measurements. There is no need to
calculate the position for intermediate times.

However, in the presence of other forces, this
changes. It becomes necessary for the distance the par-
ticle moves in a single time step to be small enough so
that the other forces do not change too much. Since the
optical force can change greatly over half a wavelength,
the distance must be a small fraction of the wavelength.
Noting that a particle of radius 1 μm will move, on aver-
age, a distance of 1 μm in 2.1 s due to Brownian motion
in water at 300 K, and the distance scales with the square
root of Δt, we would need a time step of approximately
10−4s if we want the distance moved to be less than 1%
of the wavelength.

We can investigate the effect of our choice of time
step quantitatively. We can generate a series of discrete
Brownian steps for a a time step Δt0, and calculate the
motion of the particle. Then, we can double the time
step, and sum successive pairs of Brownian steps, to
obtain half the number of steps, each twice as long in
time. This can be repeated, allowing us to investigate
the convergence of the calculation with decreasing time
step. The displacement over the time step due to Brow-
nian motion can be used to find an average velocity due
to Brownian motion over the time step; this can be ex-
pressed as an average force over the time step and in-
cluded in a predictor–corrector method such as Runge–
Kutta. An example is shown if figure 5 for a particle of
radius 1 μm, comparing the convergence of trajectories
as the time step is reduced. The comparison includes
both Euler’s method and a fixed-step 4th-order Runga–
Kutta method. The results indicate that a time step of
10−4s (for a distance less than 1% of the wavelength)

gives a reasonably small error. If higher accuracy is de-
sired, a shorter time step can be chosen. Due to the
square root dependence of the distance, the scaling is
relatively poor.

We recommend that a similar analysis of convergence
be performed, especially if simulations are sufficiently
lengthy so that a just-small-enough for acceptable error
time-step should be chosen.
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Figure 5: Convergence of final position of particle undergoing Brow-
nian motion in an optical trap as a function of time step.

For very short time steps, the Stokes drag formula
can be inappropriate (Franosch et al., 2011; Kheifets
et al., 2014), and for very short time steps, the transi-
tion to ballistic motion becomes apparent (Huang et al.,
2011). As long as the time step is not too short, this will
not present any difficulty. If simulations of a particle
trapped in gas are being performed, then the transition
between ballistic and continuous regimes is important
(Li et al., 2010) at larger time steps.

5.1. Nonspherical particles

If the particle is nonspherical, the translation and ro-
tational drag tensors will be different in different direc-
tions, and the variance of the Brownian motion will be
different in different directions.

It is simplest to calculate the random Brownian steps
in the rest frame of the particle, and then transform the
motion to the stationary frame.

The question of suitable time steps was left open ear-
lier. From the discussion of Brownian motion above, we
see that Brownian motion can be the main factor limit-
ing our choice of time step. However, it is wise to check
that the optical force will not move the particle too far
during the time step. A maximum time step based on
the optical force can be found, and another based on
the Brownian motion. The smaller of the two can then
be used as the actual time step for the computation. If
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Brownian motion can be neglected, then it can be conve-
nient to use an adaptive step size solver for initial value
problems. If we wish to calculate simulated measured
at specific times, we can choose time steps so that these
specific times match times at which we calculate the po-
sition of the particle in the trap. Alternatively, it may be
possible to interpolate between the calculations.

6. Open questions

A number of open questions and unsolved problems
in simulation of optical tweezers remain. We present a
selection of them here, in the spirit of presenting useful
and interesting challenges to those who wish to tackle
them. Interesting work has been performed on some of
these topics, giving a hint of many interesting results yet
to be uncovered.

• Optical force on complex particles. While opti-
cal forces and torques exerted on a wide range of
particles can be readily calculated, those on large
and complex particles remain challenging.

• Nonlinear particles. Particles with non-linear
electromagnetic properties have the potential for
many interesting behaviours in optical traps (Pobre
and Saloma, 1997, 2006; Devi and De, 2016).

• Deformable particles. These present a double
challenge. First, it is necessary to calculate not
just the optical and viscous forces acting on the
particle, but also the stresses and consequent de-
formation of the particle. Second, the deforma-
tion results in change in the optical force. The de-
formable particles of most interest are red blood
cells (Li et al., 2005; Dao et al., 2003; Rancourt-
Grenier et al., 2010) and other cells (Guck et al.,
2005), but simpler objects such as vesicles, which
are sometimes used as simple analogs of cells, are
also of interest (Noguchi and Takasu, 2002).

• Wall effects on viscous drag on non-spherical
particles.

The movement of non-spherical particles near sur-
faces is important in many biological systems. One
interesting example is the motion of sperm, which
dramatically change in their swimming behaviour
near surfaces. (Elgeti et al., 2010; Nosrati et al.,
2015). Optical tweezers offers an opportunity to
explore this behaviour, either by trapping sperm
and measuring swimming forces (as done for free-
swimming sperm by Nascimento et al. (2008))

or by trapping and moving analogs near surfaces.
Simulations would be very helpful for identifying
changes in motion that result from changed be-
haviour of sperm near surfaces; such simulations
would need to account for wall effects on the mo-
tion.

• Interaction between trapped particles and com-
plex biological environments.

The work on deformation of red blood cells noted
above can be considered a special case of this.
More generally, a trapped particle can interact with
membranes, macromolecules, cells, complex flu-
ids, etc. Modelling its interaction with such an
environment can be challenging. Where the be-
haviour of living cells needs to be included (e.g.,
swimming behaviour of bacteria or sperm, inges-
tion of the trapped particle by a macrophage, etc.),
realistic models of the behaviour are required. This
is a very complex problem that remains largely un-
touched.

• Heating and thermal effects, including convec-
tive flow.

While heating is often ignored in optical trapping
simulations—wavelengths and beam powers are
often chosen to be such that absorption and con-
sequent heating in minimal, to avoid damage to
live biological specimens—there can be signifi-
cant heating when absorbing particles are trapped.
Heating introduces a wide range of effects, from
changes in the viscosity of the surrounding fluid
due to increased temperature, convection currents,
and effects such as thermophoresis (Flores-Flores
et al., 2015). If there are liquid–liquid or liquid–gas
interfaces present, the dependence of surface ten-
sion on temperature can produce strong flows due
to Marangoni convection (Miniewicz et al., 2016).
In general, the temperature distribution drives the
convective flows, and the convective flows can alter
the temperature distribution, and also the position
of the particle within the trap (thus altering the ab-
sorption of light and the temperature distribution).
This coupling makes the solution of the problem
difficult; an iterative method might be required.
The time scales involved can be investigated—
if conduction dominates energy transport, then it
may be possible to ignore the effect of convection
on the temperature distribution, and the problem,
while still challenging, is greatly simplified.
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