
Myopia is the most common eye disorder worldwide [1,2] 
and is a risk factor for several important ocular pathologies, 
including glaucoma, retinal detachment, and chorioretinal 
degeneration [3-6]. The etiology of myopia is poorly under-
stood, although genetic and environmental influences are 
known to be involved [for recent reviews, see 1,2,6–15].

The extent to which a quantitative trait is determined 
by genetic factors is termed “heritability.” Heritability in the 
“broad sense” (H2), as calculated in twin studies, refers to 
the proportion of the phenotypic variation in the trait due to 
additive, dominant, and gene–gene interaction effects [16] 
while heritability in the “narrow sense” (h2), as calculated in 

family studies, refers to the proportion of phenotypic vari-
ance explained by additive genetic effects alone [17]. Since 
genes and environment never operate in isolation, the utility 
of a heritability estimate may appear questionable [16,18]. 
However, the narrow sense heritability indicates the potential 
of genetic testing for identifying individuals at high risk of 
a specific disease [19]. Refractive error has been shown to 
be highly heritable [1,2,6-15,20-24]: In a recent review [25], 
the broad sense heritability ranged from 0.75 to 0.90 and the 
narrow sense heritability from 0.15 to 0.70.

The availability of techniques to accurately and cost-
effectively survey genetic variation across the genome now 
makes it feasible to quantify the contribution of causal vari-
ants tagged by genotyped or imputed single nucleotide poly-
morphisms (SNPs) to differences in metric traits or disease 
susceptibility between individuals [26,27]. The inter-subject 
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Purpose: Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75–90%, 
families 15–70%. However, because related individuals often share a common environment, these estimates are inflated 
(via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for 
refractive error free from such bias.
Methods: Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (AL-
SPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance 
in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-
wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each 
age=3,404).
Results: The variance in refractive error explained by the SNPs (“SNP heritability”) was stable over childhood: Across 
age 7–15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between 
visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic 
contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during au-
torefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these 
results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was 
<0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 
8–9 years old.
Conclusions: Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive 
error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP geno-
typing arrays, although higher-density genotyping in larger samples and inclusion of interaction effects is expected to 
raise this figure toward twin- and family-based heritability estimates. The same SNPs influenced refractive error across 
much of childhood. Notwithstanding the strong evidence of association between time outdoors and myopia, and time 
reading and myopia, less than 1% of the variance in myopia at age 15 was explained by crude measures of these two risk 
factors, indicating that their effects may be limited, at least when averaged over the whole population.
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variance in a trait that can be explained by all the SNPs has 
been termed SNP heritability (h2

SNP). For an infinitely large 
population in which every polymorphism was genotyped 
without error, SNP heritability h2

SNP would equal heritability 
in the narrow sense h2. For finite-sized samples in which 
only common SNPs can be genotyped or imputed accurately, 
h2

SNP therefore corresponds to a lower-bound estimate of h2. 
Theoretical and empirical work suggests that h2

SNP provides 
a valuable guide to, first, the potential for predicting at-risk 
individuals using currently available genotyping platforms 
and, second, the potential for identifying specific disease-
associated genetic variants in a genome-wide association 
study (GWAS) using existing genotyping and imputation 
methods but applied to larger samples.

An important, fundamental difference between SNP-
heritability estimation methods and prior methods of esti-
mating heritability is that h2

SNP is computed using a sample of 
essentially unrelated individuals. Thus, h2

SNP estimates have 
the attractive feature of not being biased by the confounding 
effects of shared family environment. Furthermore, they are 
not reliant on other assumptions required to obtain compa-
rable estimates in twins [26,27]. As with conventional h2 
estimates, the genetic correlation between two traits (i.e., the 
degree to which the two traits are determined by a shared 
set of additive genetic variants) can also be calculated using 
SNP data.

Prior work suggests that at least 40–50% of the between-
subject variance in height [27,28], axial length [29], and 
corneal curvature [29] can be explained by common SNPs. 
We applied this approach to estimate the SNP heritability of 
refractive error for children participating in a birth cohort 
study. We also calculate genetic correlations between refrac-
tive error measured at different ages, to infer whether the 
same or different genetic variants influence susceptibility to 
refractive error across childhood.

METHODS

Subjects and ethical approval: The Avon Longitudinal Study 
of Parents and Children (ALSPAC) recruited 14,541 pregnant 
women resident in Avon, England, with expected dates of 
delivery 1 April 1991 to 31 December 1992. When the oldest 
children were approximately 7 years of age, an attempt was 
made to bolster the initial sample with eligible cases who had 
failed to join the study originally, resulting in an additional 
713 children being enrolled. The total number of children 
who were alive at 1 year of age was 14,701. The enrollment 
is described in more detail in a cohort profile article [30]. 
This research adhered to the tenets of the Declaration of 
Helsinki. Ethical approval for the study was obtained from the 

ALSPAC Ethics and Law Committee and the Local Research 
Ethics Committees (LRECs). Separate consent was given for 
the collection of refractive data from the participant’s own 
optometrist. The ALSPAC website contains details of all the 
data available through a fully searchable data dictionary.

Phenotypes: ALSPAC participants were invited to a research 
clinic when they were aged approximately 7½, 10½, 11½, 
12½, and 15½ years old. At each visit, refractive error was 
estimated with non-cycloplegic autorefraction (Canon R50 
instrument, Canon USA Inc., Lake Success, NY) as described 
and validated previously [31-33]. After the outlier readings 
were removed, the mean spherical equivalent (SE) refractive 
error was calculated as the autorefraction sphere power plus 
half of the cylinder power and averaged between the two eyes. 
For one set of analyses, refractive errors were transformed to 
normal scores [34] to test whether the non-normal distribu-
tion of the trait biased the results. As discussed below, and 
in the Appendix, autorefraction in the absence of cycloplegia 
is known to lead to inaccuracy, with the degree of measure-
ment error varying with the age of the child, his or her level 
of refractive error, the type of autorefractor used, and other 
subject-specific and random factors [33,35-38].

When the study children were aged 8–9 years, a ques-
tionnaire was completed by their mother that included the 
following questions: (1) “On a weekend day, how much time 
on average does your child spend each day out of doors in 
summer?” (2) “On normal days in school holidays, how much 
time on average does your child spend each day reading books 
for pleasure?” The response options for these questions were 
“None at all,” “1 hour,” “1–2 hours,” and “3 or more hours.”

Genetic and statistical analyses: DNA samples were geno-
typed using Illumina HumanHap550-Quad bead arrays, as 
described [39,40]. Blood sampling and DNA extraction were 
carried out as described [30]. Samples of known non-Euro-
pean ancestry, with missingness >3%, minimal or excessive 
autosomal heterozygosity, cryptic relatedness >10% identity 
by descent (IBD), or with a sex mismatch were excluded. 
EIGENSTRAT analysis and multidimensional scaling anal-
ysis seeded with individuals from HapMap phase 2 revealed 
no additional outliers. SNPs with call rate <95%, minor 
allele frequency (MAF) <1%, or Hardy–Weinberg equilib-
rium (HWE) p value ≤5×10−7 were excluded. After phasing 
haplotypes with ShapeIT v2.r644 [41], IMPUTE2 (V2.2.2) 
[42] was used to impute unobserved marker genotypes for the 
8,237 participants whose samples passed the quality control 
criteria (imputation was performed simultaneously with a 
sample of 8,196 mothers of ALSPAC participants [43], who 
were included to improve phasing and imputation accuracy) 
with the Dec 2013 release of the 1000 Genomes Project 
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haplotypes (Version 1, Phase 3) as the reference set. Data 
for seven participants were excluded from further analysis 
after the subjects withdrew their consent to participate. 
Genomic control lambda (λGC) values computed after GWAS 
analyses for a range of traits using the ALSPAC children data 
set showed minimal evidence of population stratification 
(λGC<1.06).

The statistical approach used for estimating SNP heri-
tability contrasts fundamentally with that of GWAS gene 
discovery analyses, in which millions of SNPs are tested 
one by one, resulting in millions of statistical tests. A SNP-
heritability analysis requires only one statistical test to be 
performed (a linear regression analysis). Specifically, the 
difference in phenotype between pairs of individuals is used 
as the dependent variable, and genetic relatedness between 
the same pairs of individuals is used as the primary explana-
tory variable (modeled as a random effect using restricted 
maximum likelihood; REML). Other explanatory variables 
such as age and sex can be included in the model as fixed 
effects. PLINK 1.90 [44] and GCTA v1.24.4 [45] were used 
to compute the pairwise genetic relationship matrix (for indi-
vidual chromosomes and all chromosomes, respectively). 
There has been debate in the literature about the advantages 
and disadvantages of excluding SNPs in linkage disequilib-
rium when computing the genetic relationship matrix for 
SNP-heritability analysis [46-48]. In light of this debate, the 
genetic relationship matrix was calculated as described by 
Zhu et al. [49]. Thus, SNPs with an imputation reliability score 
<0.6, MAF <0.01, or HWE test p value <10−6 were excluded, 
followed by extraction of SNPs present in HapMap3, which 
left 1,192,778 markers for calculating genetic relatedness in 
a sample of 8,230 individuals. One subject from each of the 
1,028 pairs within the cohort with an estimated genetic rela-
tionship >0.025 (the approximate degree of sharing expected 
on average for second or third cousins) was excluded, leaving 
7,202 “unrelated” individuals. SNP-heritability analyses were 
run either with the raw refractive error readings or after trans-
forming refractive error measurements to normal scores [34], 
to determine whether the non-normal distribution of the trait 
influenced the SNP-heritability estimate. Bivariate analyses 
were run to estimate the genetic correlation between all 
possible pairs of traits [29]. Univariate and bivariate modeling 
was performed with GCTA. Sex was included as a covariate; 
however, for the results reported age was not included since 
its omission had no effect on the parameter estimates.

Simulations were performed to assess the impact 
of refractive error measurement error due to the lack of 
cycloplegia. Briefly, this involved simulating a hypothetical 
trait such that it had a predetermined SNP-heritability level 

(ranging from 0.2 to 0.8 in steps of 0.1) and then assessing 
the SNP heritability before and after measurement error 
“noise” was added to the trait. The choice of the noise level is 
discussed in Appendix 1 and Figure 1 and Figure 2. In prac-
tice, the genotype data and genetic relatedness information 
for the 3,404 subjects in the age 15 years analysis were used 
to simulate phenotypic trait values at a given SNP-heritability 
level (0.2, 0.3, …, 0.8) by randomly selecting 1,000 SNPs 
(MAF range 0.01 to 0.50) from the genome as “causal vari-
ants,” with the effect size for each SNP drawn from a normal 
distribution, using LDAK [46]. In R, the standard deviation 
of the simulated trait was converted to 1.29 D to match the 
standard deviation of refractive error in 15-year-old ALSPAC 
participants (Table 1) and a randomly selected measurement 
error noise value was added, drawn from a normal distribu-
tion with a mean zero and a standard deviation of 0.50 D. 
GCTA was used to calculate the SNP heritability for the 
trait before and after noise was added. Fifty replicates were 
simulated at each heritability level.

The variance in refractive error at ages 10, 11, 12, and 15 
predicted (or explained) by time spent outdoors was assessed 
using a general linear model, using the information reported 
by the mother when the child was aged 8–9 (see the Pheno-
types section, above). Sex was included as a covariate. The 
variance predicted (explained) by time spent reading was 
gauged using the same method.

RESULTS

At each ALSPAC research clinic, non-cycloplegic autore-
fraction measurements were obtained for between 3,404 and 
5,103 participants who also had genotype data available and 
were less related to each other than second to third cousins 
(Table 1). Univariate GCTA modeling suggested the SNP 
heritability for refractive error was 0.19 to 0.27 (weighted 
mean h2

SNP=0.23, SE≈0.08, p<0.001) when estimated using 
untransformed trait values and 0.20 to 0.34 (weighted mean 
h2

SNP=0.28, SE≈0.08, p<0.001) after the trait was transformed 
to a normal distribution (Table 2). These estimates therefore 
represent the proportion of the inter-subject variance in 
refractive error that can be explained by common SNPs in 
linkage disequilibrium (LD) with causal genetic variants 
that influence refractive error. Accordingly, a lower bound 
estimate for the heritability of refractive error—free from 
any bias due to sharing a common home environment—is 
approximately 25%.

Between 2,997 and 4,238 unrelated genotyped 
participants underwent autorefraction at two different ages 
(Table 3). The genetic correlation between refractive error 
assessed at each age varied between 0.77 and 1.00 (SE=0.07) 
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for untransformed trait values, and after refractive error read-
ings were transformed into normal distributions. Estimates 
from closely-spaced clinic visits were generally higher than 
those from more widely-spaced visits, as would be expected, 
and genetic correlation estimates for refractive error assessed 
at or after the age of 10 were all ≥0.94 (Table 3). Thus, at 
each of the ages examined the same set of genetic variants 
explained about 25% of the variance in refractive error, 
instead of one set of genetic variants acting early in childhood 
and a different set of variants acting later in childhood.

To assess the impact of measurement error during autore-
fraction due to the lack of cycloplegia, we simulated cyclo-
plegic and non-cycloplegic autorefraction traits for the 3,404 
children included in the age 15 years analysis (Table 1). In 
each simulation run, 1,000 SNPs were randomly selected as 
“causal variants” and assigned a phenotypic effect such that 
the simulated trait had a predetermined h2

SNP value. Then the 
h2

SNP was calculated using GCTA before and after phenotypic 
measurement error noise was added at the level expected to 

occur because of the lack of cycloplegia (Appendix 1; Figure 
1 and Figure 2). As shown in Figure 3, there was a close 
correspondence between the simulated and observed h2

SNP 
before the measurement noise was added (“cyclo” autore-
fraction simulation in Figure 3; slope=1.059). However, the 
observed h2

SNP was underestimated after measurement error 
noise was added to the trait (“non-cyclo” autorefraction 
simulation in Figure 3; slope=0.851). Applying a conversion 
factor of 1.244 (1.059/0.851=1.244) to account for the level 
of underestimation due to the lack of cycloplegia yielded an 
adjusted weighted mean h2

SNP of 0.35 (SE=0.09). Since the 
measurement error caused by the lack of cycloplegia would be 
at least as bad at younger ages, and since any non-systematic 
source of measurement error such as hyperopes accommo-
dating more than myopes would cause h2

SNP to be further 
underestimated, this adjustment is likely to be conservative.

To help give context to the genetics findings, the vari-
ance explained (or predicted) by time spent reading and by 
time spent outdoors was also estimated (Table 4). Time spent 

Figure 1. Comparison of subjec-
tive refraction recorded by the 
subject’s own optometrist and non-
cycloplegic autorefraction obtained 
at the 15-year ALSPAC research 
clinic. Whether the Avon Longitu-
dinal Study of Parents and Children 
(ALSPAC) clinic record indicated 
that the subject was not wearing 
contact lenses during the autore-
fraction test is indicated by the 
symbol color. Note that the single 
outlying data point for the subjects 
confirmed as not wearing contact 
lenses corresponds to a myopic 
participant recorded as perfectly 
emmetropic by the optometrist, 
suggesting an error in data entry or 
retrieval instead of a highly inac-
curate autorefraction measurement.
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outdoors assessed using a questionnaire completed by the 
mother when the participants were aged 8–9 years predicted 
or explained <0.5% of the variance in refractive error at older 
ages, while the corresponding figure for time spent reading 
for pleasure assessed at a similar age was <1%.

DISCUSSION

The SNP-heritability estimate of approximately 35% obtained 
here gives by far the most compelling support to date for a 
polygenic inheritance component for refractive error. Unlike 
prior heritability studies, the present estimate is free from 
assumptions about, and confounded by, shared environment 
effects, for example, parents and their children, or siblings, 
sharing the same home environment.

Figure 2. Difference between 
non-cycloplegic autorefraction 
obtained at the 15-year ALSPAC 
research clinic and subjective 
refraction recorded by the subject’s 
own optometrist. Two frequency 
distributions are plotted according 
to whether the Avon Longitudinal 
Study of Parents and Children 
(ALSPAC) clinic record indicated 
that the subject was or was not 
wearing contact lenses during the 
autorefraction test. Note the reduc-
tion in outliers and better confor-
mity to a normal distribution when 
contact lens wear was excluded.

Table 1. Subject demographics by clinic visit. Values are mean ± standard deviation.

Clinic visit N Age (years) Refractive error (D) Sex (%male)
Age 7 5103 7.53±0.30 +0.19±0.88 51%
Age 10 4862 10.64±0.25 +0.06±1.10 50%
Age 11 4433 11.74±0.23 −0.04±1.12 49%
Age 12 4438 12.80±0.23 −0.17±1.17 49%
Age 15 3404 15.45±0.31 −0.40±1.29 47%
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What is the relationship between SNP heritability (h2
SNP), 

broad sense heritability (H2), and narrow sense heritability 
(h2)? Simulation studies and GWAS-GCTA analyses with 
large sample sizes for traits such as height [27,50] have helped 
clarify this issue. h2

SNP gives a lower-bound estimate of h2. 
Thus, taking a figure of 54% (95% confidence interval [CI] 
36 to 72%) for the narrow sense heritability of refractive error 
(calculated for a sample of 890 ALSPAC participants who 
had refraction information available for a sibling [51]) the 

gap between our h2
SNP estimate of 35% and the h2 figure of 

54% is likely due, first, to upward bias in the estimation of 
h2 from shared family environment effects and, second, to 
two sources of downward bias in h2

SNP: namely, the limited 
ability of genetic relatedness indices to capture the additive 
genetic effects of rare variants, and statistical “noise” associ-
ated with a modest sample size. For height, studies in larger 
samples and employing higher-density genotyping platforms 
have shown that h2

SNP steadily increases toward h2 [50]. The 

Table 2. SNP-heritability (estimates of variance explained by 
SNPs) for refractive error, at a range of ages.

Research 
clinic 
visit

N
Untransformed trait Transformed trait

h2
SNP SE p-value h2

SNP SE p-value

7 5103 0.250 0.067 9.7e-05 0.342 0.068 1.6e-07
10 4862 0.198 0.069 1.5e-03 0.204 0.069 1.1e-03
11 4433 0.194 0.075 4.0e-03 0.260 0.076 2.0e-04
12 4438 0.270 0.076 1.4e-04 0.323 0.076 5.1e-06
15 3404 0.259 0.097 2.9e-03 0.270 0.096 1.8e-03
Mean   0.233 ~0.08 <0.001 0.281 ~0.08 <0.001

Analyses included sex as a covariate. Estimates are shown for refractive error in Diopters (“untransformed 
trait”) or after refractive error readings were transformed to normal scores (“transformed trait”). P values 
correspond to a test of whether the heritability estimate is different from zero. The mean was calculated 
after weighting by sample size (N), using the formula, Σ(h2N)/ΣN

Table 3. Genetic correlations between refractive error assessed at two different ages.

Age Age 7 Age 10 Age 11 Age 12 Age 15

Age 7 x

0.94 

(0.051) 

n=4238

0.98 

(0.072) 

n=3837

0.91 

(0.063) 

n=3862

0.77 

(0.127) 

n=3007

Age 10

0.87 

(0.083) 

n=4238

x

1.00 

(0.035) 

n=4060

1.00 

(0.037) 

n=4062

1.00 

(0.083) 

n=3146

Age 11

0.89 

(0.089) 

n=3837

1.00 

(0.077) 

n=4060

x

0.99 

(0.032) 

n=3878

0.96 

(0.088) 

n=2997

Age 12

0.78 

(0.089) 

n=3862

1.00 

(0.067) 

n=4062

0.99 

(0.058) 

n=3878

x

1.00 

(0.055) 

n=3127

Age 15

0.77 

(0.124) 

n=3007

1.00 

(0.107) 

n=3146

0.96 

(0.099) 

n=2997

0.94 

(0.070) 

n=3127

X

The standard error of the genetic correlation is shown in brackets. N refers to the sample size. Analyses 
included sex as a covariate. Estimates are shown for refractive error in Dioptres above the diagonal, and 
after refractive error was transformed to a normal score below the diagonal.
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gap between h2 and H2 is generally attributed to non-additive 
sources of genetic variation, which are included in H2 but 
absent from h2. Unlike h2

SNP, estimates of h2 and H2 are likely 
to be inflated due to misallocation of unique or common 
environment variance. Although our results do not allow 

us to address the extent of this upward bias (only giving a 
lower bound estimate for h2 and H2), the large gap between 
the narrow sense heritability and the broad sense heritability 
estimates for refractive error (e.g., 15–70% and 75–90%, 
respectively [25]) implies that dominance and/or interaction 

Figure 3. Comparison of SNP-heri-
tability estimation for a simulated 
refractive error trait before and 
after the addition of measurement 
error “noise.” Traits were simulated 
using a model designed to yield a 
specified SNP-heritability level 
(x-axis). The simulated trait was 
either analyzed directly (“cyclo”) or 
after the addition of noise designed 
to mimic the measurement error 
of non-cycloplegic autorefraction 
(“non-cyclo”). Measurement error 
led to the progressive under-esti-
mation of the true SNP heritability.

Table 4. Variance in refractive error explained by time 
spent reading and time spent outdoors.

Research 
clinic visit

N
Untransformed trait Transformed trait

r2 P-value r2 P-value
Time spent reading at age 8–9 years-old
10 4616 0.003 7.7e-04 0.003 3.7e-04
11 4203 0.009 6.7e-09 0.007 4.1e-07
12 4209 0.008 1.4e-07 0.007 3.0e-07
15 3298 0.008 2.1e-06 0.005 1.9e-04
Time spent outdoors at age 8–9 years-old
10 4626 0.001 3.7e-01 0.001 9.6e-02
11 4215 0.001 4.4e-01 0.001 2.2e-01
12 4225 0.003 4.6e-03 0.002 1.4e-02
15 3298 0.002 2.1e-02 0.001 3.3e-02

Analyses included sex as a covariate. Estimates are shown for refractive error in Diopters (“untransformed 
trait”) or after refractive error readings were transformed to normal scores (“transformed trait”).
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effects are likely to be important in refractive development. 
As with other types of heritability estimate, it is not strictly 
appropriate to compare SNP-heritability estimates across 
populations and/or across generations, since sources of vari-
ance may not be constant in different settings.

Our h2
SNP estimate of about 35% provides an approximate 

upper limit for the capacity to predict the future refractive 
error of premyopic children using existing genotype platforms 
and imputation methods alone. Technical advances and larger 
sample sizes would be expected to raise h2

SNP and improve 
the ability to predict children at risk of myopia. Inclusion 
of gene–gene and/or gene–environment interaction effects 
would be expected to further improve predictive capacity. 
Notably, recent studies employing Bayesian or mixed models, 
similar in spirit to GCTA, have demonstrated the potential of 
genetic prediction from genome-wide common SNPs, which 
means that identifying individual risk SNPs through GWAS 
is not a prerequisite for effectively predicting disease [52].

Crudely collected information on two key environmental 
risk factors for myopia, time spent outdoors and time reading 
for pleasure, had limited capacity to predict or explain future 
refractive error, consistent with previous reports [53,54]. 
However, our finding that these exposures explained <1% of 
the variance in refractive error likely underestimates the true 
effects for several reasons. First, the parental questionnaire 
used to collect the information had a categorical scoring scale 
rather than a continuous scale, which would have weakened 
statistical power to predict fine-scale differences. Second, 
exposure at only one particular age was examined, which 
may not have been representative of the true exposure. Third, 
for some participants the level of exposure may have been 
reported inaccurately. Finally, there may be nonlinear rela-
tionships between the time children engage in these activities 
and refractive error development, such as threshold effects, 
which would not have been taken into account when we 
assessed the variance they explained.

Our study had two main limitations. First, the assess-
ment of refractive error at ALSPAC research clinics was done 
without cycloplegia, which is known to produce a subject-
specific measurement error that can either under- or overes-
timate true refractive error. Lack of cycloplegia will therefore 
have reduced phenotypic accuracy, especially at younger ages 
and in hyperopes, and made our SNP-heritability estimates 
overly conservative (Appendix 1). Note that any systematic 
“over minus” component of the measurement error due to 
lack of cycloplegia during autorefraction would have had no 
impact, since heritability is a measure of explained variance, 
i.e., between-subject differences, whereas a systematic effect 
relates to the mean phenotype in the population. Second, the 

latest age at which ALSPAC participants’ refractive error 
was assessed was 15-years-old, which is before the age at 
which myopia typically stabilizes [55]. Therefore, further 
work will be needed to discover whether the set of genetic 
variants found here to influence refractive development over 
the 7- to 15-year-old age range continues to exert an effect 
into adulthood. Such information will be valuable for genetic 
prediction and for understanding the extent to which genet-
ically-determined causal mechanisms are shared between 
early-onset and later-onset myopia.

Conclusion: The SNP heritability for refractive error was 
estimated to be approximately 35%. This value—calculated 
using only information about refractive error and an index 
of genetic similarity between each pair of individuals in 
the sample—provides the strongest evidence to date that 
refractive error has an important genetic component. In 
comparison, the two main environmental risk factors identi-
fied to date for myopia—time spent reading and time spent 
outdoors—together explained or predicted about 1% of the 
variance in refractive error. Nevertheless, the SNP-herita-
bility figure is lower than that for axial length and corneal 
curvature (h2

SNP about 40–50%) calculated in the same popu-
lation [29] suggesting that environmental effects exert more 
influence in determining refractive error than they do for the 
individual ocular components. The same set of genetic vari-
ants was found to influence refractive error at the various 
ages examined, rather than different sets of genetic variants 
acting at specific ages.

APPENDIX 1. THE LEVEL OF MEASUREMENT 
ERROR NOISE DUE TO LACK OF 
CYCLOPLEGIA DURING AUTOREFRACTION.

Autorefraction without cycloplegia is inaccurate in children. 
The level of inaccuracy depends on the type of instrument 
(e.g., open-field versus closed-field), the age and refrac-
tive error of the subjects, other subject-specific factors, 
and random sources of variation [33,35-38]. In general, 
the degree of inaccuracy is worse in younger compared to 
older children, and typically causes hyperopia to be under-
estimated and myopia to be overestimated. A convenient 
and widely-used, albeit simplistic, method to quantify the 
inaccuracy of non-cycloplegic autorefraction is to assess 
the mean ± standard deviation of the difference between the 
non-cycloplegic measurement and a gold standard measure-
ment (e.g., cycloplegic autorefraction or subjective refraction). 
This approach assumes that there is a systematic measure-
ment error coupled with a random measurement error: it 
therefore ignores the effects of the child’s age and refractive 
error. Reports of non-cycloplegic autorefraction measurement 
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error in population-representative samples vary widely, e.g., 
−0.36±0.41 D for 13-year-old children in the BATS & TEST 
cohorts [35] and −1.23±0.97 D for children aged 7–18 years-
old in the Shunyi district RESC study [38] reflecting the 
age range and refractive error distribution of the respective 
samples. As reported previously [32] we compared non-cyclo-
plegic autorefraction measurements obtained at ALSPAC 
research clinics against subjective refraction findings 
recorded by the participant’s own optometrist, for optometrist 
eye examinations performed within 6 months of the 15-year 
ALSPAC research clinic visit (n=346). The mean difference 
between the two measures was −0.22±0.84 D. Although this 
sample is not representative of the ALSPAC cohort, it does 
at least provide an indication of the degree of measurement 
error. New information provided by ALSPAC allowed us 
to exclude results for 13 of the above subjects whose clinic 
record indicated that an “error” occurred during autorefrac-
tion, and also to examine separately the findings for subjects 
who were confirmed as not wearing contact lenses during 
the autorefraction measurement (Figure 1 and Figure 2); 
typically, this ALSPAC record either confirmed that contact 
lenses were not worn, or was left incomplete by the clinical 
assessor. The measurement error of non-cycloplegic autore-
fraction better approximated a normal distribution in subjects 
confirmed as not wearing contact lenses (contact lens wear 
excluded: standard deviation of difference=0.60 D, n=108; 
contact lens wear not excluded: standard deviation of differ-
ence=0.95 D, n=225) suggesting that outlier autorefraction 
readings – likely due to a handful of subjects not removing 
their contact lenses before autorefraction and thus errone-
ously appearing to be emmetropic by autorefraction – had 
inflated the standard deviation of the subjective refraction 
versus non-cycloplegic autorefraction comparison (Figure 
2). The greater the degree of measurement error noise, the 
greater the underestimation of SNP-heritability (Figure 3), 
therefore we chose to use a normal distribution with a stan-
dard deviation of 0.50 D from which to simulate measurement 
error noise, to provide a conservative adjusted estimate of 
SNP-heritability. To access the data, click or select the words 
“Appendix 1.”
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