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Claudia Poch,1 X Marta I. Garrido,2,3,4 José Manuel Igoa,5 Mercedes Belinchón,5 Irene García-Morales,6,7

and Pablo Campo5

1Department of Biological and Health Psychology, Autonoma University of Madrid, 28049 Madrid, Spain, 2Centre for Advanced Imaging, 3Queensland
Brain Institute, and 4Australian Research Centre of Excellence for Integrative Brain Function, The University of Queensland, Brisbane, Queensland 4072
Australia, 5Department of Basic Psychology, Autonoma University of Madrid, Madrid, Spain, 6Hospital Ruber Internacional, Epilepsy Unit, Neurology
Department, 28034 Madrid, Spain, and 7University Hospital of San Carlos, Epilepsy Unit, Neurology Department, 28040 Madrid, Spain

Accumulating evidence suggests that visual object understanding involves a rapid feedforward sweep, after which subsequent recurrent
interactions are necessary. The extent to which recurrence plays a critical role in object processing remains to be determined. Recent
studies have demonstrated that recurrent processing is modulated by increasing semantic demands. Differentially from previous studies,
we used dynamic causal modeling to model neural activity recorded with magnetoencephalography while 14 healthy humans named two
sets of visual objects that differed in the degree of semantic accessing demands, operationalized in terms of the values of basic psycho-
linguistic variables associated with the presented objects (age of acquisition, frequency, and familiarity). This approach allowed us to
estimate the directionality of the causal interactions among brain regions and their associated connectivity strengths. Furthermore, to
understand the dynamic nature of connectivity (i.e., the chronnectome; Calhoun et al., 2014) we explored the time-dependent changes of
effective connectivity during a period (200 – 400 ms) where adding semantic-feature information improves modeling and classifying
visual objects, at 50 ms increments. First, we observed a graded involvement of backward connections, that became active beyond 200 ms.
Second, we found that semantic demands caused a suppressive effect in the backward connection from inferior frontal cortex (IFC) to
occipitotemporal cortex over time. These results complement those from previous studies underscoring the role of IFC as a common
source of top-down modulation, which drives recurrent interactions with more posterior regions during visual object recognition.
Crucially, our study revealed the inhibitory modulation of this interaction in situations that place greater demands on the conceptual
system.
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Introduction
Current conceptions of visual object processing consider that the
ventral visual pathway (Ungerleider and Mishkin, 1982) is re-
sponsible for the transformation from visual image to meaning-
ful object (Lupyan et al., 2010; Carlson et al., 2014; Mur, 2014).
Anatomically, this route consists of an interconnected network of
cortical regions moving rostrally from the occipitotemporal cor-
tex (OTC) to the anterior-inferior temporal cortex, extending
into the inferior frontal cortex (IFC; Kravitz et al., 2013). Infor-
mation flow across this stream is supported by distinct associative

white matter fibers. Although tractography cannot determine the
direction of axonal projections in a tract (Acosta-Cabronero et
al., 2011), studies of dynamic interactions showed that after an
initial feedforward projection, recurrent processing constitutes a
mechanism for the integration of higher-level semantic informa-
tion with visual information (Bar et al., 2006; Chan et al., 2011;
O’Reilly et al., 2013; Clarke et al., 2014; Mur and Kriegeskorte,
2014). The extent to which recurrent interactions critically con-
tribute to object understanding is modulated by task-induced
processing demands (Harel et al., 2014; Tang et al., 2014), and in
particular by the specificity of semantic processing required by
the task (Clarke et al., 2011, 2014; O’Reilly et al., 2013; Cichy et al.,
2014; Harel et al., 2014). So that higher-order anterior areas are
required for fine-grained differentiation processes (Moss et al.,
2005; Clarke and Tyler, 2014; Clarke et al., 2014), which exert
top-down influence upon posterior regions, instantiating recur-
rent interactions (Tang et al., 2014). Most of these studies have
inferred top-down influences by indirect means (i.e., delays in the
response latency between conditions). Here, we applied dynamic
causal modeling (DCM) for evoked responses (David et al.,
2006), to model the activity of brain regions recorded with mag-
netoencephalography (MEG) while participants named visual
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objects at the basic level, which were subsequently separated into
a high- and low-demanding subsets according to values of psy-
cholinguistic variables (i.e., familiarity, frequency, and age of ac-
quisition) associated with the objects to be named (Krishnan et
al., 2014). DCM allows us to understand how information prop-
agates through brain regions (Kahan and Foltynie, 2013) by esti-
mating the directionality of the causal interactions among brain
regions and their associated connectivity strengths (Bianchi et al.,
2013). The effects of psycholinguistic variables reflect differences
in processing demands, which correlate with differences in the
neurophysiologic processes underlying particular cognitive oper-
ations (Ellis et al., 2006; Graves et al., 2007). As the focus was on
the role of recurrent connections, we compared functional archi-
tectures with and without backward connections (Garrido et al.,
2007), and tested their contribution during visual naming of
high- and low-semantically demanding items. Crucially, we ex-
plored the time-varying patterns of coupling among regions (the
chronnectome; Calhoun et al., 2014), and estimated the effective
connectivity during a period (beyond 200 ms) where adding
semantic-feature information improves modeling and classifying
visual objects (Clarke et al., 2014) at 50 ms increments. By com-
paring the models, we tested the contribution of feedforward and
feedback interactions (Penny et al., 2010) at different moments in
time (Calhoun et al., 2014).

Materials and Methods
Subjects
Fourteen adult subjects (9 female; mean age 36.64 years, SD � 8.42 years;
mean formal education 16 years, SD � 1.84 years), without any history of
neurological or psychiatric illness, volunteered for participation in the
study, and gave written consent in accordance with the Declaration of
Helsinki, after the nature of the procedures involved had been explained
to them. Participants were right handed according to the Edinburgh
Handedness Inventory (Oldfield, 1971). Of note, data from 10 of the
participants were part of a previous study (Campo et al., 2013).

Naming task
Participants were required to name aloud black and white line drawings
of common objects at the basic level (Clarke et al., 2011, 2014), thus
ensuring that participants processed the objects at an individual level
(Mur, 2014). The study used images from a visual confrontation naming
task that was created in a previous study (Campo et al., 2013) by com-
bining images from the Cambridge 64-item naming task (Bozeat et al.,
2000) and the 175-item Philadelphia Naming Test (Roach et al., 1996).
Images belonging to both tests were presented only once. From the pool
of items, two subsets of 64 items of visual objects that differed in their
semantic demands, operationalized in terms of the values of basic psy-
cholinguistic variables associated with the objects to be named; specifi-
cally age of aquisition (AoA), frequency of occurrence, and concept
familiarity (Krishnan et al., 2014 used a similar approach). These vari-
ables are significantly correlated among them, especially in large sets of
pictorial stimuli (Graves et al., 2007; Wilson et al., 2009; Strijkers et al.,
2010; Woollams, 2012). This fact, along with the consideration that their
influence has been commonly accounted for by the degree of represen-
tation and connection in a distributed-representation network (Steyvers
and Tenenbaum, 2005; Ellis et al., 2006; Patterson, 2007), led us to eval-
uate the modulation of connectivity using two different sets of objects
showing a typical distribution across those psycholinguistic dimensions.
Thus, items were sorted by concept familiarity, according to Spanish
available norms (Sanfeliú and Fernández, 1996; Cuetos et al., 1999; Se-
bastián et al., 2000), and differed not only in terms of familiarity, but also
on AoA, and frequency of occurrence (all p � 0.001). Concept familiarity
was rated on a five-point scale from 1 � unfamiliar to 5 � highly familiar.
Frequency was taken from the Alameda and Cuetos’ (1995) dictionary of
frequencies, which is based on a corpus of written texts comprising 2
million words (Cuetos et al., 1999). Both sets contain an equal number of
living (32 exemplars) and nonliving objects (32 exemplars), which were

also matched on picture complexity. As a measure of perceptual com-
plexity we used JPEG size (Müller et al., 2008). Characteristics of the
stimuli for both conditions are shown in Table 1. Conditions were la-
beled as “high-demanding” and “low-demanding” (Graves et al., 2007).
The task was adapted for scanning purposes, such that in each trial par-
ticipants first saw a fixation cross located centrally for 1000 ms, which
was followed by a picture lasting in the display 1000 ms. Then, a question
mark was shown indicating that participants have to overtly name the
presented object as accurately as possible (Laaksonen et al., 2012). The
next trial began when participants provided an answer or after 5000 ms
elapsed. Picture naming performance was calculated in terms of the pro-
portion of correct responses.

Data acquisition and analysis
Magnetoencephalography recordings. MEG data were obtained using a
whole-head 306 channel Vector-view system (Elekta-Neuromag), con-
sisting of 102 magnetometers and 204 orthogonal planar gradiometers.
The signal was recorded continuously at a sampling rate of 600 Hz with
an online bandpass filter from 0.1 to 200 Hz. The head position relative to
the sensor array was measured at the beginning of the session using four
head position indicator coils. Before the recording session, the anatom-
ical landmarks (nasion, and left and right periauricular) and extra points
of the head shape were obtained using a 3D digitizer (Fastrak Polhemus).
In addition, vertical electro-oculogram was recorded, with electrodes
located supraorbitally and infraorbitally.

Static band channels were detected using the MaxFilter program
(v2.2.10; Elektra-Neuromag), and were interpolated. The number of ex-
cluded channels varied between one and four (M � 2, SD � 1), which
were found in nine participants. Artifacts were suppressed by applying a
temporally extended signal–space separation method (Taulu and Hari,
2009), using a 10 s correlation window with a correlation limit of 0.9.

Magnetoencephalography data preprocessing and source localization.
Data were preprocessed and subsequently analyzed using Statistical Para-
metric Mapping (SPM8) academic software (Wellcome Trust Centre for
Neuroimaging, UCL; http://www.fil.ion.ucl.ac.uk/spm/; Litvak et al.,
2011 provides a detailed description) implemented in MATLAB (Math-
Works). Data analyses were conducted using the 204 planar gradiometer
channels. The continuous time series for each participant was processed
with a Butterworth bandpass filter at 3–30 Hz and then were epoched
off-line to obtain 500 ms data segments corresponding to a �100 to
400 ms peristimulus time. We analyzed epoched data during this
period for each trial, for each condition (i.e., high-demanding and low-
demanding), for each participant. Trials including eye blinks, or other
myogenic or mechanical artifacts were removed using the thresholding
criteria implemented in SPM8 [trials containing signal strength exceed-
ing 3000 fT/cm (Furl et al., 2014)] and �100 at electrooculogram chan-
nels were excluded). Epochs were baseline corrected from �100 to 0 ms,
and then averaged.

The next step was to estimate the cortical origin of the neuronal re-
sponse. For source reconstruction, a multiple sparse priors routine (as
implemented in SPM8) was used (Friston et al., 2008), which uses 512

Table 1. Characteristics of the stimuli comprising the 64 low-demanding and 64
high-demanding conditions

Variable Low-demanding High-demanding

Frequency of use
Mean 156.47 46.30
SD 196.24 65.51

Concept familiarity
Mean 4.06 2.04
SD 0.54 0.60

Age of acquisition (estimated in years)
Mean 4.21 5.11
SD 0.92 1.31

Note: concept familiarity was rated on a five-point scale from 1 � unfamiliar to 5 � highly familiar. Frequency was
taken from the Alameda and Cuetos’ (1995) dictionary of frequencies, which is based on a corpus of written texts
comprising 2 million words (Cuetos et al., 1999). Values according to Spanish available norms (Sanfeliú and Fernán-
dez, 1996; Cuetos et al., 1999; Sebastián et al., 2000). Both sets contain an equal number of living (32 exemplars) and
nonliving objects (32 exemplars).
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patches of activation that are iteratively reduced until an optimal number
and location of active patches are found using a Bayesian greedy search. A
8196 vertex template cortical mesh in canonical Montreal Neurological
Institute (MNI) anatomical space served as a brain model for the estima-
tion of the current source distribution (Mattout et al., 2007). Coregistra-
tion to the MNI was done using the three anatomical landmarks, as well
as the extra-digitalized points (i.e., headshape). This dipole mesh was
used to calculate the forward solution using a digitalized single-shell
model. The inverse solution was calculated over a time window from 0 to
400 ms after stimulus onset for each condition, and averaged over par-
ticipants. As pointed by Strijkers et al. (2010), MEG studies of overt
picture naming have shown that reliable measures of brain activity can be
taken at least until 400 ms after picture onset (Hart et al., 1998; Maess et
al., 2002; Clarke et al., 2011, 2013, 2014; Mousas et al., 2015). Further-
more, as two previous studies have estimated the onset of semantic pro-
cessing of visual objects to be �200 ms (Hart et al., 1998; Clarke et al.,
2014), we explored this time interval at 50 ms increments, from 200 to
400 ms. Source reconstructions were interpolated into MNI voxel space
and analyzed using statistical parametric mapping (Kilner and Friston,
2010), as described by Moran et al. (2013). A contrast of high-demanding
versus low-demanding based on the evoked related fields (ERF) was
conducted at p � 0.005 (uncorrected) using a paired t test.

Effective connectivity analysis: dynamic causal modeling. DCM is a
hypothesis-driven method that relies on the specification of a plausible
biophysical and physiological model of interacting brain regions

(Stephan and Friston, 2007), and is therefore appropriate for situations
where there is a priori knowledge and experimental control over the
system of study (Cardin et al., 2011; Seghier et al., 2011). Bayesian model
selection (BMS) is used to compare different models or to find the model
with best evidence (Penny et al., 2004). This allows one to compare
alternative hypotheses (models) of how measured data are caused (Fris-
ton, 2011). Thus, a critical factor is the architecture of the models, that is,
the nodes and their interconnections (Rudrauf et al., 2008). As men-
tioned above, the selection of sources or nodes of the network architec-
tures was based on inverse solutions (i.e., multiple sparse priors; Friston
et al., 2008), therefore optimized for the particular subjects studied.
Sources were chosen by the apparent signal propagation along the cere-
bral cortex observed in source reconstruction results (Rudrauf et al.,
2008), which were reliably present across participants in both conditions
(Kawabata Duncan et al., 2014; Woodhead et al., 2014; Fig. 1a). Six
sources were identified and then modeled as equivalent current dipoles
positioned symmetrically in each hemisphere, in a canonical brain
(MNI) space, with prior mean location coordinates (x, y, z) at: OTC:
�49, �62, �15 (left); 49, �62, �15 (right); anteromedial temporal lobe
(AmTL): �35, �15, �30 (left); 35, �15, �30 (right); and IFC: �42, 30,
�2 (left); 42, 30, �2 (right) (Fig. 1a; Campo et al., 2013). These sources
were optimized at an individual level during DCM inversion using dis-
tributed dipoles, and the forward solution from the source localization
(Moran et al., 2014). These anatomical regions are in fine agreement with
the results from previous MEG studies of visual object naming (Clarke et

Figure 1. a, Axial views of the source localization for the grand-mean responses averaged over high- (left) and low-demanding conditions (right) projected into MNI voxel space and superim-
posed on the template structural MRI image. Sources of activity (middle), modeled as dipoles (estimated posterior moments and locations) superimposed on an MRI of a standard brain in MNI space,
and their coordinates as included in the DCM analysis. b, Outline of the four DCM models for the first phase of effective connectivity analysis shown on axial brain schematics. The best model was
selected using random-effects BMS (see Materials and Methods). c, Illustration of the models estimated and compared in the second phase of DCM analyses, which differed in the modulatory effects
(i.e., forward, backward, and lateral) by the semantic demands. Modulated connections are shown with dashed arrows. Driving inputs are shown by stripped arrows. F, Forward; F-L, forward and
lateral; B, backward; B-L, backward and lateral; FB, forward and backward; FB-L, forward, backward, and lateral.
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al., 2011, 2013, 2014; Campo et al., 2013; Mousas et al., 2015). DCM
analyses were performed using the most recent version of SPM12.

We followed the procedure described by Woodhead et al. (2014) as the
structure of their experiment is very similar to ours. Accordingly, we first
developed four competing model configurations that varied in number
of sources and regional location. Configuration 1, included sources in left
and right OTC only; Configuration 2, with left and right OTC, and AmTL
sources; Configuration 3, with left and right OTC, and IFC sources; and
Configuration 4, with left and right OTC, AmTL, and IFC sources (Fig.
1b). In all cases models were left hemisphere–right hemisphere symmet-
ric (David et al., 2011), and the OTC bilaterally served as input region
(Salmelin and Kujala, 2006; Heim et al., 2009; Schurz et al., 2014). All
possible forward, backward, and homotopic lateral connections between
sources were included in the models (Fig. 1b). These interconnections
followed anatomical-functional evidences (for a similar approach, see
Rudrauf et al., 2008). Specifically, occipitotemporal regions have been
shown to be functionally connected with IFC during visual object pro-
cessing (Bar et al., 2006), and anatomically by means of the inferior
fronto-occipital fasciculus (Catani and Thiebaut de Schotten, 2008; Dick
and Tremblay, 2012). AmTL has been shown to be functionally con-
nected with occipitotemporal regions and with IFC (Pascual et al., 2015),
underpinned by structural connections by means of the inferior longitu-
dinal fascicle, and the uncinate fascicle, respectively (Catani and Thie-
baut de Schotten, 2008; Duffau et al., 2013; Von Der Heide et al., 2013;
Bouhali et al., 2014; Fan et al., 2014). Additionally, interhemispheric
connections between homotopic regions have been extensively docu-
mented (Seacord et al., 1979; Clarke, 2003; Turken and Dronkers, 2011;
Berlucchi, 2014). These models were inverted per participant for all trials
(high- and low-demanding conditions) over the first 400 ms. We per-
formed a random-effect (RFX) BMS procedure (Penny et al., 2004) to
select the architecture that best explained the electromagnetic responses,
based on the posterior exceedance probability (xp). This method quan-
tifies how likely a specific model generated the data of a random subject
in the context of a group of subjects, and is preferred when optimal
models can vary across participants (Seghier et al., 2010; Stephan et al.,
2010). Having established the model structure that provided the best fit
to the data, in a second step, we estimated the modulatory effects on
effective connectivity between sources for a different subset of connec-
tions (i.e., forward backward or both) induced by semantic demand (i.e.,
high vs low; Seghier et al., 2011; Woodhead et al., 2014). This was accom-
plished by Bayesian model averaging (BMA) over five successive 50 ms
time windows, 1–200, 1–250, 1–300, 1–350, and 1– 400 ms, covering the
period where adding semantic-feature information improves modeling
and classifying visual objects (Clarke et al., 2014). A requirement of the
DCM analysis is that all time windows incorporate the time at which the
stimulus was presented (Woodhead et al., 2014). This dynamic view of
coupling has recently been coined as “chronnectome” (Calhoun et al.,
2014).

Results
Behavioral results
Differences in performance accuracy between conditions were
analyzed by a paired t test. Participants were more accurate on the
low-demanding condition (M � 97.09, SD � 2.44) than in the
high-demanding condition (M � 93.06, SD � 3.02; t(13) � 4.57,
p � 0.001).

Source space analysis
We observed that both conditions consistently activated several
regions in the ventral stream, but no differences were found be-
tween them (p � 0.005, uncorrected; Fig. 1a).

BMS
BMS (RFX) revealed that the optimal architecture (i.e., the model
with the highest xp) included sources in the left and right OTC,
AmTL, and IFC sources (xp � 0.979; Fig. 1b).

Time-varying changes in effective connectivity
between conditions
The winning architecture obtained in the previous step was used
as the basic structure to estimate the modulatory effects of se-
mantic demands on effective connectivity. As our main interest
was to determine the role of recurrent dynamics, six competing
models differed in the presence or absence of modulatory effects
on backward connections. This allowed us to test whether the
observed evoked responses were best explained by a model oper-
ating in a forward manner or whether inclusion of backwards
connections improved the explanation of the data (Garrido et al.,
2007; Furl et al., 2014). Additionally, modulation of lateral
connections linking homologous areas was also included. Differ-
ences between conditions were evaluated by allowing connec-
tions to be modulated (David et al., 2011). Accordingly, six
competing models, each representing a different way on how
connections between sources are modulated, were fitted to each
participant’s ERF data (Auksztulewicz and Friston, 2015): for-
ward; forward plus lateral; backward; backward plus lateral; for-
ward and backward; forward and backward plus lateral (Fig. 1c).
Finally, to explore the dynamics in the effective connectivity
within the network as a function of task demands, this is, time-
varying changes on functional architecture configuration and on
the connectivity strengths (Calhoun et al., 2014; Clarke et al.,
2014; Fedorenko and Thompson-Schill, 2014; Murray et al.,
2014; Woodhead et al., 2014), models were specified and inverted
separately from stimulus onset to a variable poststimulus time,
ranging from 200 to 400 ms, in 50 ms steps (Garrido et al., 2007;
Woodhead et al., 2014). BMS was done at the family level (Penny
et al., 2010). In this case, the xp values represent the evidence of
each family of models instead of the evidence of each individual
model (Seghier et al., 2011). We defined three families that
grouped models according to the dominant direction of modu-
latory effects with no overlap: forward (Fwd), backward (Bwd),
and forward and backward (Fwd-Bwd; Garrido et al., 2007;
Schurz et al., 2014; Fig. 2b). A BMA procedure (Penny et al.,
2010) was then used to compute posterior means of connectivity
parameters for each subject (Seghier et al., 2011). BMA estimate
the average strength of the connectivity parameters of all the
models tested, weighted by their posterior probabilities, so that
the contribution of models with weak evidence is minimized
(Seghier et al., 2011). This procedure generates a distribution of
the model parameters that is proportional to the likelihood of
each model given the data (Richardson et al., 2011). From the
different sets of parameters estimated by DCM, we focused on
modulatory parameters that measure the changes in effective
connectivity induced by the experimental conditions (Cardin et
al., 2011; Kawabata Duncan et al., 2014). Hence, parameters val-
ues for the modulations calculated during the BMA were ob-
tained for each subject and extracted to make statistical
inferences at the group level with repeated-measures ANOVA.

Family selection results
BMS (RFX) revealed that the family that provides the best expla-
nation of the data varied across time. In the 1–200 ms time win-
dow, the family Fwd was clearly superior to all other families
(xp � 0.931). In the following three time-windows (1–250,
1–300, and 1–350 ms) the family Fwd-Bwd was considered the
winning family (xp � 0.782, xp � 0.439, xp � 0.875, respectively;
Fig. 2b). However, in the time window 1–300 ms, despite the fact
that family Fwd-Bwd had the greatest xp, it could not be consid-
ered as clearly superior to the other families. Note that the best
three models belonged to each of the three families, representing
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79% of xp (Fig. 2a). This indicated that it was not possible to
clearly distinguish between families (David et al., 2011). Thus, in
this case, the three families were considered as winning families,
and were used to extract the modulatory connections calculated
during a BMA procedure (Seghier et al., 2011; for a similar pro-
cedure, see David et al., 2011). In the 1– 400 ms time-window,
family Fwd had again the greatest evidence (xp � 0.779; Fig. 2b).

Modulatory effects of semantic demands: model
parameters results
We conducted a series of repeated-measures ANOVA with mod-
ulatory parameters as the dependent measures, and condition
(high-demanding vs low-demanding), hemisphere (left and
right), and latency (200, 250, 300, 350, and 400 ms) as the within-
subject factors. Note that for backward connections, latency only
had three levels (250, 300, and 350 ms). Analyses were performed
using SPSS 18.0. Effects were considered statistically significant
when p � 0.05 after Bonferroni correction. Accordingly, SPSS
Bonferroni adjusted p values are quoted (Rytsar et al., 2011).

The only modulatory effect that reached significance was ob-
served in the backward connection from IFG to OTC (Fig. 3).
Specifically, a main effect of Condition was observed (F(1,13) �
5.12, p � 0.05; � 2 � 0.283). Further comparisons indicated that
there was a significant increase in the negative coupling in the
backward connection from IFC to OTC in the high- (Mean �
�0.085, SEM � 0.029) as compared with the low-demanding
condition (Mean � 0.044, SEM � 0.032; p � 0.05 corrected).
Although the coupling in the backward connection from IFC to
OTC was negative in the high- compared with low-demanding
condition over time, this was especially marked in the 1–350 ms
time window, when there was a significant increase in the nega-

tive coupling in the backward connection from left IFC to left
OTC in the high- (Mean � �0.23, SEM � 0.087) compared with
low-demanding condition (Mean � 0.068, SEM � 0.086; t(13) �
2.32, p � 0.05). Additionally, we observed a trend for a negative
correlation between the backward connection from left IFC to
left OTC and performance in the high-demanding condition in
the 1–350 ms time window (r � �0.49, p � 0.075).

Discussion
Using DCM for evoked magnetic fields (David et al., 2006) we
were able to determine the extent to which semantic demands
modulate the dynamics in the recurrent interactions during vi-
sual object naming. Semantic demands were operationalized by
differences in significant psycholinguistic variables of the objects
to be named (Graves et al., 2007). Interestingly, we observed a
variation in the modulatory effects over time. Specifically, the
DCM family with modulatory effects on forward connection only
(family Fwd) had greater evidence than families including mod-
ulatory effects on backward connections (families Bwd and Fwd-
Bwd) in the 1–200 ms time window (DiCarlo et al., 2012). In the
following three consecutive time windows (1–250, �300, �350
ms), modulatory effects on recurrent connections became active,
as family Fwd-Bwd appeared as the most likely, especially in the
1–350 ms time-window. Modulatory effects on backward con-
nections were no longer relevant in the 1– 400 ms time-window,
when family Fwd had again the greater evidence (Fig. 2). In ad-
dition, we also observed that the contribution of interhemi-
spheric connections appears to be relevant, as in each time
window the configurations that better explain the data include
this type of connection (Clarke, 2003). These interactions could
contribute to coordinate and integrate specific activity generated

Figure 2. Random-effects BMS in five time windows. The bar graphs plot the exceedance probability at the (a) model level and (b) family level. F, Forward; F-L, forward and lateral; B, backward;
B-L, backward and lateral; FB, forward and backward; FB-L, forward, backward, and lateral.
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by both hemispheres (Mima et al., 2001; Seghier et al., 2011); for
instance a conceptual versus physical hemispheric specialization
(Harel et al., 2014). The observed time course of feedforward and
backward connections is largely consistent with the notion of an
initial feedforward sweep (Thorpe et al., 1996; Riesenhuber and
Poggio, 1999) enabling a coarse semantic processing (Wu et al.,
2015), followed (�200 ms) by a recurrent processing supporting
the formation of increasingly complex semantic representations
(Lamme and Roelfsema, 2000; Hochstein and Ahissar, 2002;
Schendan and Maher, 2009; Clarke et al., 2011, 2014; Ghodrati et
al., 2014; Harel et al., 2014; Khaligh-Razavi and Kriegeskorte,
2014). Of particular interest to current findings, a recent MEG
study of visual object recognition showed a similar timing of
feedforward and backward interactions, with the latter being ob-
served at 210 –250 ms, but not earlier, when feedforward were
predominant (Ahlfors et al., 2015). A similar modulation of the
contribution of backward connections to evoked responses as a
function of peristimulus time was demonstrated by Garrido et al.
(2007) during a mismatch negativity task, when backward con-
nections became essential after 220 ms. Additional support
comes from a study that interfered visual recognition at 100 and
220 ms by applying transcranial magnetic stimulation over the
occipital cortex (Camprodon et al., 2010). Domain or basic level
naming was impaired at different moments, concluding that the
220 ms time window corresponded to a recurrent stage of visual
processing (Roelfsema et al., 2002; Heinen et al., 2005; Wokke et
al., 2012; Wu et al., 2015).

When focusing on specific interactions between sources, cru-
cially, we observed that semantic demands significantly modu-
lated the involvement of the positive (i.e., excitatory) recurrent
processing from IFC to OTC over time (Fig. 3). Recurrent inter-
actions involving IFC and posterior brain regions have been re-
ported in several studies of visual object processing (Freedman et
al., 2003; Bar et al., 2006; Ghuman et al., 2008; Schendan and
Maher, 2009; Buffalo et al., 2010; Gilbert and Li, 2013; Harel et al.,
2014; Murray et al., 2014). Top-down influences of IFC are con-
sidered to modulate the activity in posterior regions by biasing
processing only to the most likely candidates, and thus facilitate
detailed recognition of objects (Fenske et al., 2006; Schendan and
Maher, 2009; Clarke et al., 2011; Trapp and Bar, 2015). Specifi-
cally, Bar et al. (2006; Chaumon et al., 2014) showed an enhanced
phase synchronization between orbitofrontal cortex and the fusi-
form gyrus during an object recognition task. Differentially from

this study, we used a method (DCM) that allowed us to examine
the directionality of the causal interactions among brain regions,
and to determine whether they are inhibitory or excitatory (Car-
din et al., 2011). Our results showed that increased semantic de-
mands caused a negative modulation in the excitatory backward
connection from IFC to OTC over time, which was more evident
in the left hemisphere in the 1–350 ms time window. Interest-
ingly, we found that performance on the high-demanding condi-
tion showed a trend (r � �0.49, p � 0.075) to be negatively
correlated with the backward connection from left IFC to left
OTC in the 1–350 ms time window, such that more negative
modulation was associated with better performance. Inhibitory
effects in top-down signals from high level areas to lower level
areas have been observed during visual processing of meaningful
stimuli (Chen et al., 2009; Cardin et al., 2011) and lexical decision
(Deng et al., 2012; Xu et al., 2015), that could result in more
efficient processing (Ghuman et al., 2008). Recently, O’Reilly et
al. (2013) described a biological model of the ventral visual path-
way that provides evidence about the importance of recurrent
inhibitory mechanisms in visual object recognition in situations
that impoverished the image, that is, situations in which recog-
nition is more difficult (Tang et al., 2014). Less frequent, atypical,
unfamiliar and/or late-acquired concepts are thought to form
weaker semantic associations and have less-detailed representa-
tions than more frequent/familiar or early acquired ones (Hirsch
and Funnell, 1995; Lambon Ralph et al., 1998; Rogers et al., 2004;
Woollams et al., 2008; Jefferies et al., 2009; Lambon Ralph et al.,
2010; Hoffman et al., 2012; Woollams, 2012; Campo et al., 2014).
Therefore, the role of the suppressive effect of the backward con-
nection from prefrontal to posterior object-sensitive regions in
the high-demanding condition could be to disambiguate the
identity of the object to select one object concept from other
exemplars (Walther and Koch, 2007; Gerlach and Marques,
2014), thus biasing processing only to the most likely candidates
(Schendan and Kutas, 2002; Moss et al., 2005; Schendan and
Maher, 2009; Clarke et al., 2011; Deng et al., 2012; Bruffaerts et
al., 2013; Wright et al., 2015). This is, in the high-demanding
condition object individuation (Gerlach and Marques, 2014) re-
quires a greater inhibition of unintended exemplars (Deng et al.,
2012). Compatible with this idea are the results from another
study by Clarke et al. (2013), in which they suggested that the
selection and retrieval of weakly correlated semantic information

Figure 3. Schematic representation of the BMA results in the time windows where recurrent interactions became active: 1–250, 1–300, and 1–350 ms. Arrows represent the fixed effective
connectivity that is present in the system regardless of the modulatory effect. Normal arrows represent positive (i.e., excitatory) connections; dashed arrows represent negative (i.e., inhibitory)
connections. Values represent the modulatory effect of semantic demands on connection strength. Values for the high-demanding condition are represented by normal font and for the low-
demanding condition by italics. Thick lines represent significant modulatory effect of semantic demands. Note that the significant modulation between IFC and OTC was observed over time. Driving
inputs are shown by stripped arrows. LH, Left hemisphere; RH, right hemisphere.
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places greater demands on the conceptual system, driving an in-
creased recruitment of frontal regions.

In summary, we used a method (i.e., DCM) that allows to
understand how information propagates through brain regions
(Kahan and Foltynie, 2013) by estimating the directionality of the
causal interactions among brain regions and their associated con-
nectivity strengths (Bianchi et al., 2013). Crucially, we explored
the variation in the modulatory effects of semantic demands dur-
ing visual-object naming across time, thus providing a dynamic
measure of connectivity (Calhoun et al., 2014). We focused on
interactions between brain regions across the ventral pathway
(i.e., long-range interactions; Bressler and Richter, 2015),
whereas recent studies have explored feedback influences as a
function of behavioral demands among several occipital areas
(Bastos et al., 2015). First, we observed a graded involvement of
backward connections, which is largely consistent with the no-
tion of an initial feedforward sweep enabling a coarse semantic
processing, followed (�200 ms) by a recurrent processing sup-
porting the formation of increasingly complex semantic repre-
sentations (Hochstein and Ahissar, 2002; Schendan and Maher,
2009; Clarke et al., 2011, 2014; Harel et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014). Second, we found that semantic de-
mands caused a suppressive effect in the excitatory backward
connection from IFC to OTC over time, which was remarkably
evident in the 1–350 ms time window. Thus, current results com-
plement those from previous studies underscoring the role of IFC
as a common source of top-down modulation, which drives
recurrent interactions with more posterior regions during visual-
object recognition (Bar et al., 2006; Trapp and Bar, 2015). Cru-
cially, our results revealed the inhibitory nature of this interaction
in situations that place greater demands on the conceptual system
(O’Reilly et al., 2013).
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informatizado del español. Barcelona: Ediciones de la Universitat de
Barcelona.

Seghier ML, Zeidman P, Neufeld NH, Leff AP, Price CJ (2010) Identifying
abnormal connectivity in patients using dynamic causal modeling of
FMRI responses. Front Syst Neurosci 4:142. CrossRef Medline

Seghier ML, Josse G, Leff AP, Price CJ (2011) Lateralization is predicted by
reduced coupling from the left to right prefrontal cortex during semantic

decisions on written words. Cereb Cortex 21:1519 –1531. CrossRef
Medline

Stephan KE, Friston KJ (2007) Models of effective connectivity in neural
systems. In: Handbook of brain connectivity: understanding complex
systems (Jirsa VK, McIntosh AR, eds), pp 303–326. Berlin: Springer.

Stephan KE, Penny WD, Moran RJ, den Ouden HE, Daunizeau J, Friston KJ
(2010) Ten simple rules for dynamic causal modeling. Neuroimage 49:
3099 –3109. CrossRef Medline

Steyvers M, Tenenbaum JB (2005) The large-scale structure of semantic
networks: statistical analyses and a model of semantic growth. Cogn Sci
29:41–78. CrossRef Medline

Strijkers K, Costa A, Thierry G (2010) Tracking lexical access in speech pro-
duction: electrophysiological correlates of word frequency and cognate
effects. Cereb Cortex 20:912–928. CrossRef Medline

Tang H, Buia C, Madhavan R, Crone NE, Madsen JR, Anderson WS, Kreiman
G (2014) Spatiotemporal dynamics underlying object completion in
human ventral visual cortex. Neuron 83:736 –748. CrossRef Medline

Taulu S, Hari R (2009) Removal of magnetoencephalographic artifacts with
temporal signal-space separation: demonstration with single-trial
auditory-evoked responses. Hum Brain Mapp 30:1524 –1534. CrossRef
Medline

Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual
system. Nature 381:520 –522. CrossRef Medline

Trapp S, Bar M (2015) Prediction, context, and competition in visual rec-
ognition. Ann N Y Acad Sci 1339:190 –198. CrossRef Medline

Turken AU, Dronkers NF (2011) The neural architecture of the language
comprehension network: converging evidence from lesion and connec-
tivity analyses. Front Syst Neurosci 5:1. CrossRef Medline

Ungerleider JT, Mishkin M (1982) Two cortical visual systems. In: Analysis
of visual behavior (Ingle DJ, Goodale MA, Mansfiled RJW, eds), pp 549 –
586. Cambridge, MA: MIT.

Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR (2013) Dissecting
the uncinate fasciculus: disorders, controversies and a hypothesis. Brain
136:1692–1707. CrossRef Medline

Walther DB, Koch C (2007) Attention in hierarchical models of object rec-
ognition. Prog Brain Res 165:57–78. CrossRef Medline

Wilson SM, Isenberg AL, Hickok G (2009) Neural correlates of word pro-
duction stages delineated by parametric modulation of psycholinguistic
variables. Hum Brain Mapp 30:3596 –3608. CrossRef Medline

Wokke ME, Sligte IG, Steven Scholte H, Lamme VA (2012) Two critical
periods in early visual cortex during figure-ground segregation. Brain
Behav 2:763–777. CrossRef Medline

Woodhead ZV, Barnes GR, Penny W, Moran R, Teki S, Price CJ, Leff AP
(2014) Reading front to back: MEG evidence for early feedback effects
during word recognition. Cereb Cortex 24:817– 825. CrossRef Medline

Woollams AM (2012) Apples are not the only fruit: the effects of concept
typicality on semantic representation in the anterior temporal lobe. Front
Hum Neurosci 6:85. CrossRef Medline

Woollams AM, Cooper-Pye E, Hodges JR, Patterson K (2008) Anomia: a
doubly typical signature of semantic dementia. Neuropsychologia 46:
2503–2514. CrossRef Medline

Wright P, Randall B, Clarke A, Tyler LK (2015) The perirhinal cortex and
conceptual processing: effects of feature-based statistics following dam-
age to the anterior temporal lobes. Neuropsychologia. Advance online
publication. CrossRef Medline

Wu CT, Crouzet SM, Thorpe SJ, Fabre-Thorpe M (2015) At 120 ms you can
spot the animal but you don’t yet know it’s a dog. J Cogn Neurosci 27:
141–149. CrossRef Medline

Xu M, Wang T, Chen S, Fox PT, Tan LH (2015) Effective connectivity of
brain regions related to visual word recognition: an fMRI study of Chinese
reading. Hum Brain Mapp. Advance online publication. CrossRef
Medline

8776 • J. Neurosci., June 10, 2015 • 35(23):8768 – 8776 Poch et al. • Time-Varying Change of Connectivity during Visual Naming

http://dx.doi.org/10.3389/fpsyg.2013.00124. eCollection 2013
http://www.ncbi.nlm.nih.gov/pubmed/23554596
http://dx.doi.org/10.1093/cercor/bht260
http://www.ncbi.nlm.nih.gov/pubmed/24068551
http://dx.doi.org/10.1098/rstb.2007.2090
http://www.ncbi.nlm.nih.gov/pubmed/17400539
http://dx.doi.org/10.1016/j.neuroimage.2004.03.026
http://www.ncbi.nlm.nih.gov/pubmed/15219588
http://dx.doi.org/10.1371/journal.pcbi.1000709
http://www.ncbi.nlm.nih.gov/pubmed/20300649
http://dx.doi.org/10.1523/JNEUROSCI.6519-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21632945
http://dx.doi.org/10.1038/14819
http://www.ncbi.nlm.nih.gov/pubmed/10526343
http://dx.doi.org/10.1162/08989290260045756
http://www.ncbi.nlm.nih.gov/pubmed/12126495
http://dx.doi.org/10.1037/0033-295X.111.1.205
http://www.ncbi.nlm.nih.gov/pubmed/14756594
http://dx.doi.org/10.1523/JNEUROSCI.3476-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18337409
http://dx.doi.org/10.1016/j.neuroimage.2011.05.029
http://www.ncbi.nlm.nih.gov/pubmed/21616155
http://dx.doi.org/10.1016/j.tics.2006.09.007
http://www.ncbi.nlm.nih.gov/pubmed/17015028
http://dx.doi.org/10.3758/BF03200541
http://dx.doi.org/10.1016/S0028-3932(01)00176-2
http://www.ncbi.nlm.nih.gov/pubmed/11900745
http://dx.doi.org/10.1016/j.neuroimage.2008.09.061
http://www.ncbi.nlm.nih.gov/pubmed/19010426
http://dx.doi.org/10.1002/hbm.22281
http://www.ncbi.nlm.nih.gov/pubmed/23670980
http://dx.doi.org/10.1016/0006-8993(79)90821-7
http://www.ncbi.nlm.nih.gov/pubmed/109166
http://dx.doi.org/10.3389/fnsys.2010.00142
http://www.ncbi.nlm.nih.gov/pubmed/20838471
http://dx.doi.org/10.1093/cercor/bhq203
http://www.ncbi.nlm.nih.gov/pubmed/21109578
http://dx.doi.org/10.1016/j.neuroimage.2009.11.015
http://www.ncbi.nlm.nih.gov/pubmed/19914382
http://dx.doi.org/10.1207/s15516709cog2901_3
http://www.ncbi.nlm.nih.gov/pubmed/21702767
http://dx.doi.org/10.1093/cercor/bhp153
http://www.ncbi.nlm.nih.gov/pubmed/19679542
http://dx.doi.org/10.1016/j.neuron.2014.06.017
http://www.ncbi.nlm.nih.gov/pubmed/25043420
http://dx.doi.org/10.1002/hbm.20627
http://www.ncbi.nlm.nih.gov/pubmed/18661502
http://dx.doi.org/10.1038/381520a0
http://www.ncbi.nlm.nih.gov/pubmed/8632824
http://dx.doi.org/10.1111/nyas.12680
http://www.ncbi.nlm.nih.gov/pubmed/25728836
http://dx.doi.org/10.3389/fnsys.2011.00001
http://www.ncbi.nlm.nih.gov/pubmed/21347218
http://dx.doi.org/10.1093/brain/awt094
http://www.ncbi.nlm.nih.gov/pubmed/23649697
http://dx.doi.org/10.1016/S0079-6123(06)65005-X
http://www.ncbi.nlm.nih.gov/pubmed/17925240
http://dx.doi.org/10.1002/hbm.20782
http://www.ncbi.nlm.nih.gov/pubmed/19365800
http://dx.doi.org/10.1002/brb3.91
http://www.ncbi.nlm.nih.gov/pubmed/23170239
http://dx.doi.org/10.1093/cercor/bhs365
http://www.ncbi.nlm.nih.gov/pubmed/23172772
http://dx.doi.org/10.3389/fnhum.2012.00085
http://www.ncbi.nlm.nih.gov/pubmed/22529789
http://dx.doi.org/10.1016/j.neuropsychologia.2008.04.005
http://www.ncbi.nlm.nih.gov/pubmed/18499196
http://dx.doi.org/10.1016/j.neuropsychologia.2015.01.041
http://www.ncbi.nlm.nih.gov/pubmed/25637774
http://dx.doi.org/10.1162/jocn_a_00701
http://www.ncbi.nlm.nih.gov/pubmed/25208739
http://dx.doi.org/10.1002/hbm.22792
http://www.ncbi.nlm.nih.gov/pubmed/25788100

	Time-Varying Effective Connectivity during Visual Object Naming as a Function of Semantic Demands
	Introduction
	Materials and Methods
	Results
	Behavioral results
	Source space analysis
	BMS
	Time-varying changes in effective connectivity between conditions
	Family selection results

	Modulatory effects of semantic demands: model parameters results
	Discussion
	References

