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Abstract 

 

Male development depends on the successful development of testes in the embryo, a process 

beginning with the differentiation of Sertoli cells, directed by the Y-linked gene SRY. The 

virilisation of the XY embryo is then directed by steroid hormones, which are produced by fetal 

Leydig cells (FLCs) that reside in the embryonic testis. As only around 20% of XY disorders of sex 

development (DSDs) are able to be explained at the molecular genetic level, I reasoned that genes 

involved in the development and function of FLCs may represent an unappreciated source of 

candidate XY DSD genes. To pinpoint these genes, and to develop a more detailed understanding of 

the regulatory networks supporting the formation of the somatic cell populations of the developing 

testes, I developed methods for isolating Sertoli cell, FLC and non-steroidogenic interstitial cell-

enriched subpopulations using the Sf1-eGFP transgenic mouse line. RNA-sequencing of the 

subpopulations at 12.5 dpc, followed by rigorous bioinformatic filtering, identified genes 

upregulated in Sertoli cells, FLCs and non-steroidogenic interstitial cells. The bioinformatic 

analysis revealed that expression of components of neuroactive ligand signaling pathways were 

prevalent in FLCs and Sertoli cells. In addition, I identified 61 genes expressed preferentially in 

early FLCs with no previous association with FLC specification or differentiation that may be 

functionally significant. I also sought to identify factors that are possibly involved in signaling 

between the Sertoli cells, FLCs and non-steroidogenic interstitial cell populations. This study also 

identified fetal expression of a number of known DSD causing genes in the early somatic cell 

populations of the gonad, providing further evidence for the fetal origins of gonadal phenotypes in 

some DSDs. This dataset offers a platform for investigating the biology of FLCs and understanding 

their role in testicular development. In addition, this dataset provide a foundation for targeted 

studies aimed at identifying the causes of idiopathic XY DSDs. 

 

Conducting a transcriptomic project identified dozens of highly promising gonadogenesis candidate 

genes and highlighted the challenge of determining gene function when overwhelmed with potential 

candidate genes. In addition, many candidate genes for human developmental disorders are being 

identified in rare disease cohorts thanks to whole exome and whole genome sequencing. It is clear 

that traditional gene targeting methods in mice are too complex and time consuming to clear this 

backlog, especially when conditional deletion methods are required. To address the need for first 

pass functional screening methods, I developed a novel technique for assessing gene function, in a 

knockdown context, by injection of modified antisense morpholino oligonucleotides (MOs) into the 
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heart of mid-gestation mouse embryos. Circulation of the MOs through the embryonic vasculature 

allowed targeting of multiple organs. Tissues of interest were explanted, cultured and analysed for 

expression of key markers. As a proof-of-principle, I used MO injection to partially phenocopy 

known gene knockout phenotypes in the fetal gonads (Stra8, Sox9) and pancreas (Sox9). In 

addition, I created a novel double knockdown of Gli1 and Gli2, which revealed defects in FLC 

differentiation. I also investigated the role of Adamts19 and Ctrb1, genes of unknown function in 

sex determination and gonadal development. This proof-of-principle study demonstrated the utility 

of this method as a means of first-pass analysis of gene function during organogenesis before 

undertaking a detailed genetic analysis.  

 

In addition, I used MO knockdown to validate a candidate gene for 46,XY DSD. Using whole 

exome sequencing SART3 was identified as a potential candidate for DSD in 46,XY DSD patients. 

By performing MO knockdown of SART3 in the fetal mouse gonad I modelled the 

haploinsufficiency that results from heterozygous deletion of SART3 and provided evidence 

supporting SART3 as the disease-causing gene in the DSD patients in this study. In addition, this 

work provided data on the function of SART3 in the developing gonad.  

 

Overall, this thesis describes the generation of the most comprehensive somatic cell transcriptome 

of developing testicular somatic cell populations to date and develops a method for screening the 

genes of interest that come out of such a study. These resources will be able to be used for the 

identification and characterisation of genes in gonad development. In addition this work will 

hopefully provide a platform for identifying new candidates for the fetal origins of DSDs 

originating from defects in the FLC population. 
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1 Chapter 1: Review of the Literature 

 

1.1 Sex Determination and Human DSD 

 

All mammals inherit an X or a Y sex chromosome from their father and an X chromosome from 

their mother during fertilisation. The resulting chromosomal sex, XX or XY, leads to the 

transformation of the embryo into a female or a male. Before gonadal sex determination, in both 

XX and XY human embryos, the bipotential gonadal primordium exists that has the potential to 

differentiate into either testes or ovaries. Activation of the Y-linked gene Sry (sex determining 

region Y) initiates testicular development in XY individuals and, when Sry is expressed ectopically 

in XX mice, the testis pathway is initiated (Koopman et al., 1991). When Sry is not present, as in 

XX individuals, or non-functional, as can occur in some XY individuals, the bipotential gonads do 

not follow the testicular pathway and instead develop into ovaries ((Gubbay et al., 1990; Lovell-

Badge and Robertson, 1990); Fig. 1.1).  

 

In males, differentiation of the supporting cell lineage into Sertoli cells results in organisation of the 

developing testis into two main compartments. The first compartment is the testis cords, which 

comprise aggregates of germ cells surrounded by a layer of Sertoli cells, which are in turn encased 

by peritubular myoid cells. Surrounding the cords is the testis interstitium, which includes the 

steroidogenic fetal Leydig cells (FLCs), non-steroidogenic interstitial cells, macrophages and the 

testis vasculature (Fig. 1.1).  

 

In females, the supporting cell lineage differentiates into at least three different fetal ovarian 

somatic cell populations: LGR5-positive cells (leucine rich repeat containing G protein coupled 

receptor 5); FOXL2-positive cells (forkhead box L2) and NR2F2-positive cells (COUP-TFII; 

nuclear receptor subfamily 2, group F, member 2; (Rastetter et al., 2014)). In addition, a dense 

microvasculature network forms along with ovarian cysts, which are clusters of germ cells that form 

at around 13.5 dpc (days post coitum; (Bullejos et al., 2002; Pepling and Spradling, 1998)). 

Dramatic reorganisation of the ovary and the emergence of steroidogenic cells occur at about 1-3 

dpn (days postnatal) when the primordial follicles form (for review see (Richards and Pangas, 

2010); Fig. 1.1). 
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It could be said that the morphogenesis of the bipotential gonads into testes or ovaries dictates the 

phenotypic sex of the male or female individual, as it is the gonads that produce the masculinising 

or feminising hormones that shape the formation of secondary sex characteristics such as the 

development of the external genitalia. Early in gestation the gonad regulates the production of 

hormones independently. However, later in gestation and post partum cues are sent from the 

hypothalamus to the pituitary that prompt the gonads to scale-up hormone production. Upregulation 

of hormones by the hypothalamus-pituitary-gonadal (HPG) axis is essential for full sexual 

maturation. The activation of the HPG axis completes a complex process of sexual development 

that begins with chromosomal sex and then the development of the gonad. This process typically 

resolves into in a male or female phenotypic sex but this system can be disrupted at a number of 

stages (Fig. 1.1; 1.2).  

 

Disorders of sex development (DSDs) are congenital conditions in which chromosomal, gonadal or 

anatomical sex of the individual is atypical. Clinical presentation can range from complete sex 

reversal to conditions such as hypospadias, the incorrect placement of the penile urethral opening. 

The most rare DSDs often are bundled with other clinical features that impact on quality of life. 

While the term DSD includes a wide spectrum of conditions, loss or compromised function of 

genes directing gonadal development is a common cause (for review see Ono and Harley, 2013). 

Mutations are commonly found in genes regulating Sertoli cell development and/or function (e.g. 

SRY, SOX9, SF1/NR5A1) or androgen synthesis by adult Leydig cells and/or adrenal steroidogenic 

cells (e.g. HSD17B, STAR) and genes regulating response to androgen hormones (e.g. AR; (Ostrer, 

2014)). In other cases, mutated genes may encode ligand-receptor pairs that are central to the 

functionality of the HPG axis such as PROK2/PROKR2 and KISS1/KISS1R ((Valdes-Socin et al., 

2014); Fig. 1.2). However, the underlying genetic cause of DSD in many patients is still unknown 

(Ono and Harley, 2013). As a result, many groups are working to identify the genetic changes that 

result in unclassified DSDs by sequencing large cohorts of patients and their families and by 

profiling the transcriptome of embryonic murine gonads. Without a molecular diagnosis it is 

difficult for medical specialists to provide clinical management, if it is required. Additionally, a 

molecular diagnosis provides the possibilty of assessing long-term outcomes for the patient, 

including the likelihood of fertility later in life. A role for the HPG axis and adult Leydig cells 

(ALCs) in DSDs and infertility is well established (for review see The Leydig Cell in Health and 

Disease, 2007), but the role of FLCs in DSDs is less clear cut. In this thesis I postulate that defects 

in FLC specification and function during gestation, or defects in the precursor cells to ALCs, also 

present during fetal life, may underlie some syndromic features of human DSDs. 
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1.2 Identifying genes involved in gonadogenesis 

 

Investigation into the transcriptome of the gonad has identified numerous genes that are integral to 

the process of gonadogenesis, many of these genes, when mutated can cause DSDs. The gonadal 

transcriptome has been investigated using a number of approaches. Initially cDNA subtraction 

screens were performed to identify enriched transcripts (Bowles et al., 2000; McClive et al., 2003; 

Menke and Page, 2002; Nordqvist and Töhönen, 1997). These approaches profiled gonads at 

different timepoints and compared transcripts between multiple libraries made from whole gonads. 

However, in these cases a complex mix of cell types was profiled. Subsequent screens have tried to 

limit the noise created by multiple cell populations and lineages by comparing sorted cell 

populations. Initially, pre-Sertoli cells were isolated and profiled by subtraction screen using a 

porcine Sry-GFP mouse line which only allowed isolation of XY cell populations (Boyer et al., 

2004; Daneau et al., 2002). Microarrays were used to profile whole gonad transcriptomes over 

developmental timecourses (Grimmond et al., 2000; Small et al., 2005), but also to profile enriched 

populations of somatic cells. Initial screens for genes important in gonadogenesis and sex 

determination used cells that were isolated from XX and XY gonads with an Nr5a1 (nuclear 

receptor subfamily 5, group A, member 1/Sf1) promoter driving a GFP-transgene in order to isolate 

pre-Sertoli/granulosa and pre-fetal Leydig cells (Beverdam and Koopman, 2006; Nef et al., 2005). 

Subsequently, a murine Sry promoter driving GFP transgenic line was produced and used to isolate 

XX and XY somatic supporting cells, Sertoli cells and granulosa cells, at 13.5 dpc  for profiling 

(days post coitum; (Bouma et al., 2007)). An additional study profiled XX and XY somatic support 

cells using sorted cells from an Sry-GFP line at 11.5-12.5 dpc (Bouma et al., 2010). Efforts have 

also been made to profile the germ cell population during early gonadogenesis using an Oct3/4-GFP 

line, using which the germ cells can be isolated by FACS, and by comparing genes expressed in the 

Wv/ Wv XX and XY gonads, which lack germ cells, to those expressed in wild-type gonads (Mise et 

al., 2008; Rolland et al., 2011). 

 

More recently, microarrays have been performed comparing cell lineages isolated from XX and XY 

gonads from five transgenic reporter lines. This has allowed the isolation and characterisation of 

highly pure enriched populations supporting cells (Sertoli) and germ cells (Jameson et al., 2012b). 

Also profiled were a heterogeneous population of mixed interstitial/endothelial cells (Jameson et 

al., 2012b). The currently available data sets have provided a detailed characterisation of the Sertoli 
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cell lineage at the resolution allowed by the microarray platform – although caveats must be noted 

about the reliability of microarrays, which lack the resolution of more recent RNAseq approaches. 

Isolation of other cell populations, including the FLC population, has been more challenging due to 

a dearth of suitable reported lines. FLC-specific genes were poorly represented in screens using 

NR5A1-positive Sertoli cell and FLC populations isolated using Sf1-eGFP lines (Beverdam and 

Koopman, 2006; Nef et al., 2005).  The poor characterisation of the FLC lineage and other lineages 

of the testis interstitium has hampered our understanding of the dynamics and development of the 

interstitial space. Additionally, the interstitial/somatic populations profiled in the literature so far 

have been comprised of a heterogeneous mix of FLC and non-steroidogenic interstitial cells 

(NSICs). This heterogeneity has made answering questions about how FLCs, NSICs and other 

interstitial populations are specified difficult. 

 

Importantly, almost all screens to date have discovered genes of interest by comparing the 

transcriptomes of XX and XY cells to identify genes that are differentially expressed in a sexually 

dimorphic pattern. The assumption that sexually dimorphic expression of a gene during 

gonadogenesis will allow identification of the most essential genes required for testicular or ovarian 

development has resulted in the identification of many key players. Nonetheless, it is inevitable that 

this targeted approach has resulted in the exclusion of many important genes. This criteria for 

defining genes of interest will have meant that many genes been missed in previous research. It 

must be considered that sexually dimorphic expression of a gene does not necessarily mean the 

gene has a function in gonadogeneis, just as equal expression in both XX and XY gonads does not 

mean that a gene does not play a potentially critical role in gonad development. By comparing 

genes between groups (cell types) within the XX or XY gonads instead of comparing XX and XY 

groups (sexes), I propose that we will be able to identify important gonadogenesis genes that have 

been missed in previous studies.  
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Figure 1.1. Overview of mouse gonadogenesis. 

The expression of Sry and r5a at 10.5–11.5 dpc in the bipotential gonad initiates testis differentiation. By 13.5 dpc basic 
testis morphology is established: the formation of testis cords, the coelomic blood vessel, and differentiation and 
activation of steroidogenesis in Leydig cells has occurred, and androgens are then produced by the testes. In the ovary 
further differentiation is delayed. In the XX gonad, around 13.5 dpc germ cells have entered meiosis. At this point 
vascularisation and remodelling of the ovary occurs to form germ cell cysts. Later, the cortical and medullar domains 
begin to be established and folliculogenesis takes place. Secondary sexual characteristics include the establishment of 
the male and female genital tract and duct system, sex-specific brain dimorphisms and behaviours and external 
genitalia. The establishment of secondary sexual characteristics involves organ-specific, regulatory gene networks. 
(Modified from (McClelland et al., 2012)) 
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1.3 Testis differentiation 

 

SRY is a SOX-family transcription factor with a DNA–binding high-mobility group-box (HMG) 

domain (Kashimada and Koopman, 2010; for review of SRY molecular dynamics and properties 

see Polanco and Koopman, 2007). In mice, expression of Sry in the developing XY gonad is both 

brief and carefully regulated (for review of SRY transcriptional regulation see Larney et al., 2014). 

In addition to sufficiently early onset of expression of Sry, a threshold level of expression must be 

achieved for complete testis differentiation to occur. In mice, expression of Sry is initiated at 10.5 

dpc, peaks at 11.5 dpc and is extinguished by 12.5 dpc (Hacker et al., 1995; Jeske et al., 1995; 

Koopman et al., 1990). Sry expression occurs in a wave-like pattern beginning in the central region 

of the gonad and expanding out towards the poles (Albrecht and Eicher, 2001; Bullejos and 

Koopman, 2001; Swain et al., 1998; Wilhelm et al., 2009). In humans SRY has a broader 

spatiotemporal expression profile, occurring in multiple tissues such as the adrenal gland and heart, 

and is maintained for longer in the testis, apparently through to adulthood (Clepet et al., 1993). 

Sry/SRY is also expressed in the brain of both mice and humans (Clepet et al., 1993; Lahr et al., 

1995; Mayer et al., 1998). 

 

SRY plays a role in a number of DSDs: loss of function of SRY results in complete male to female 

sex reversal (Jager et al., 1990; Maier et al., 2003), whereas ectopic expression of SRY in XX 

individuals, due to chromosomal translocation of SRY, may result in female to male sex reversal. It 

is estimated that SRY translocation is responsible for 10% of all 46,XX female to male sex reversal 

cases (Nieto et al., 2004). Formation of ovotestes, where ovarian and testicular tissue coexist in the 

same gonad, can also occur in cases of ectopic SRY activity (Margarit et al., 2000; Sharp et al., 

2005). 

 

The supporting cells of the XY gonad cell-autonomously differentiate into Sertoli cells under the 

influence of SRY and its direct target SOX9 (Sry-box containing gene 9; (Sekido and Lovell-

Badge, 2008)). SOX9 appears to directly or indirectly control testis development (Bishop et al., 

2000; Vidal et al., 2001). However, before hallmarks of testis development emerge, differences 

exist between XX and XY gonad. After expression of Sry and the upregulation of Sox9, male-

specific proliferation of the epithelium at the coelomic surface of the genital ridges occurs (Karl and 

Capel, 1998; Schmahl et al., 2000). This sex-specific proliferation is thought to amplify the 

population of cells expressing the transcription factor NR5A1 at high levels. Following proliferation 
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between 8-18 ts (tail somites; 8 ts is approximately 10.5 dpc, 18 ts is approximately 11.5 dpc; 

(Hacker et al., 1995)), the cells expressing NR5A1 at high levels migrate into the gonad proper 

(Schmahl and Capel, 2003; Schmahl et al., 2000). These cells are later capable of differentiating 

into Sertoli cells, the first testicular cell type to arise, which are required for formation of the testis 

cords (Karl and Capel, 1998; Magre and Jost, 1980; Schmahl and Capel, 2003; Schmahl et al., 

2000). A subset of FLC precursors may also exist in this early wave of migration (DeFalco et al., 

2011). Following the migration of NR5A1-high cells into the gonad the coelomic epithelium 

continues to proliferate and cells that express low levels of NR5A1 migrate into the gonad proper 

between 19-25 ts (25 ts is approximately 12.0 dpc; (Hacker et al., 1995)). These cells are believed 

to contribute to non-Sertoli lineages (Schmahl et al., 2000). The molecular mechanism that induces 

coelomic epithelial proliferation is unknown. As testes develop normally in transgenic XX mice 

overexpressing the SRY target Sox9, it appears that male-specific proliferation of the coelomic 

epithelium, and all other aspects of fetal testis development, are under the control, directly or 

indirectly, of SOX9 (Bishop et al., 2000; Vidal et al., 2001). 

 

1.3.1 Sertoli cells 

Like SRY, SOX9 is necessary for testis differentiation: mice lacking Sox9 undergo complete XY 

sex reversal (Barrionuevo et al., 2006; Chaboissier et al., 2004). Additionally, 75% of human 

patients with a heterozygous mutation in SOX9 manifest with complete or partial XY sex reversal 

(Foster et al., 1994; Wagner et al., 1994). In mouse, Sox9 is upregulated in pre-Sertoli/supporting 

cells when a protein complex of SRY and NR5A1 (Steroidogenic factor 1; NR5A1, nuclear receptor 

subfamily 5, group A, member 1) binds to a Sox9 enhancer element known as TESCO (testis-

specific enhancer of Sox9 core element) (Sekido and Lovell-Badge, 2008). Bipotential supporting 

cells can cell-autonomously differentiate into Sertoli cells under the influence of SRY and SOX9. In 

XX-XY chimera studies almost all Sertoli cells were XY whilst other cell types did not exhibit a 

chromosomal bias (Palmer and Burgoyne, 1991; Patek et al., 1991). However, some Sertoli cells 

were always found to be XX (Palmer and Burgoyne, 1991). This indicated that there are paracrine 

pathways by which SRY-positive/SOX9-positive/NR5A1-positive cells can recruit additional cells 

to the Sertoli fate. This mechanism could recruit cells such as XX cells in the chimera experiments, 

or cells that express unusually low levels of Sry in normal XY gonads, to the Sertoli fate.  

 

Two independent mechanisms of Sertoli cell recruitment have been identified: FGF9 (fibroblast 

growth factor 9) and PGD2 (prostaglandin D2) mediated recruitment. Fgf9 expression occurs in a 
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wave emanating from the central zone of the XY gonad similar to Sry and Sox9 (Hiramatsu et al., 

2010). Fgf9-/- mice exhibit XY sex reversal (Colvin et al., 2001; Kim et al., 2006). Conditional 

deletion of Fgfr2 (FGF-receptor 2) in pre-Sertoli cells showed that FGFR2 is required in pre-Sertoli 

cell differentiation, indicating that FGFR2 is the major receptor for FGF9 in the XY gonad 

(Bagheri-Fam et al., 2008; Kim et al., 2007). Sox9-/- XY gonads do not express Fgf9 indicating 

there is a positive feedback loop in place between FGF9 and SOX9 (Kim et al., 2006). The 

expression of the ovarian gene Wnt4 (wingless-related MMTV integration site 4) is increased in 

Fgf9-/- XY gonads (Kim et al., 2006) and it has been shown that WNT4 and β-CATENIN, are able 

to repress the expression of Sox9 in the XY gonad (Chang et al., 2008; Kim et al., 2006; Maatouk et 

al., 2008). Jameson et al. (2012a) then showed that in Wnt4-/-/Fgfr2-/- or Wnt4-/-/Fgf9-/- XY 

gonads sex reversal was rescued.  These data indicate that FGF9/FGFR2 signaling in Sertoli cells 

represses the expression of Wnt4 so that when WNT4 is expressed in the Fgf9-/- or Fgfr2-/- 

situation it can disrupt testicular development (Jameson et al., 2012a). Therefore, testicular 

development relies on the expression of genes such as Sox9 as much as the repression of expression 

of genes, such as Wnt4.  

 

In an independent pathway, PGD2 is also able to induce Sertoli cell differentiation in vivo by 

amplifying the number of cells expressing SOX9 and thereby canalising the male pathway. 

Treatment of XX gonads with PGD2 resulted in upregulation in Sox9 and its direct downstream 

target Amh (the gene encoding anti-Müllerian hormone) which masculinises the XX gonad (Adams 

and McLaren, 2002; Moniot et al., 2009; Wilhelm et al., 2005). Notably, two receptors for PGD2 

are expressed in somatic cells of the 13.5 dpc XY gonad (Moniot et al., 2014). There are two 

prostaglandin D synthase enzymes, L-PGDS (lipocalin-prostaglandin D2 synthase) and H-PGDS 

(hematopoietic-prostaglandin D2 synthase), which regulate synthesis of PGD2. L-Pdgs is expressed 

in the Sertoli cells from 11.5 dpc in the XY mouse gonad, with SOX9 initiating and maintaining the 

expression L-Pgds (Adams and McLaren, 2002; Moniot et al., 2009; Wilhelm et al., 2005). H-

Pgds/H-PDGS is also expressed in somatic cells in the XY gonad from 11.5 dpc, but the expression 

of H-Pdgs precedes that of L-Pdgs by a few hours (Moniot et al., 2014; Moniot et al., 2011). It has 

been suggested that H-PDGS may mediate the earliest PGD2 signaling in the XY gonad. This early 

signalling may be important for initiating nuclear translocation of SOX9 in pre-Sertoli cells. At 11.5 

dpc SOX9 is restricted to the cytoplasm of the pre-Sertoli cells in the in H-Pdgs-/- XY gonads, but 

at 12.5 dpc SOX9 has localised to the nucleus and testicular development proceeds (Moniot et al., 

2011; Moniot et al., 2014). This recovery indicates that H-PDGS is not essential for SOX9 nuclear 

translocation or differentiation of the testis. Similarly there is a subtle delay in Sertoli cell 
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differentiation and SOX9 nuclear localisation in L-Pgds-/- XY gonads (Moniot et al., 2009). 

Notably the initiation of the expression of L-Pgds is unperturbed in Fgf9-/- XY gonads, therefore 

FGF9 is not necessary for transcriptional activation of the L-Pgds gene (Moniot et al., 2009). 

Successful differentiation of Sertoli cells is required for the differentiation of the FLC population, 

which is directed in part by Sertoli-secreted signaling molecules (Barsoum and Yao, 2010; Yao et 

al., 2002). 

 

1.3.2 Fetal Leydig cells 

Leydig cells reside in the testis interstitium and are the primary source of virilsing hormones such 

as androgens, which are responsible for the differentiation of secondary male sexual characteristics. 

The steroid hormones produced by Leydig cells are also important for fertility later in life, as well 

as the reinforcement of male specific characteristics of the testis and individual (for review see Wu 

et al., 2007). The characteristics of the FLC population in human and in mouse are similar during 

fetal life (Svechnikov et al., 2010; Tapanainen et al., 1981). In mammals the ALC population takes 

over the role of hormone production postnatally and is important for the progression of puberty. In 

the primates there also exists a transient population of infantile Leydig cells (ILCs) that become 

active a few months after birth. As ILCs are not present in the mouse, they will not be discussed 

further here. 

 

In mice, the FLC population arises during testis differentiation at around 12.5 dpc. FLCs are most 

abundant just before birth, after which numbers of FLCs decline and the ALC population emerges 

(Hazra et al., 2013). The increase in FLC numbers throughout development is thought to be the 

result of continued differentiation from the interstitium, as the FLC population is largely mitotically 

inactive (Orth, 1982). Hormones produced by the FLCs direct the very early masculinisation of the 

embryo because the production of testosterone and its conversion to the metabolite, 

dihydrotestosterone is independent of cues from the pituitary during gestation (for review see 

Huhtaniemi and Pelliniemi, 1992). This early period of FLC differentiation and activity is critical 

for the masculinisation of the embryo. 

 

The ALC population is gonadotropin-dependent and maintains androgen production throughout life. 

In the mouse the ALC population begins to emerge at about 7 dpn concomitant with proliferation of 

Sertoli cells (Nef et al., 2000; O'Shaughnessy et al., 2012; Vergouwen et al., 1993). The number of 
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ALCs and the steroidogenic capacity of the cells increase dramatically around 25 dpn as a result of 

the pubertal rise in LH (luteinising hormone; (Baker and O'Shaughnessy, 2001; Ma et al., 2004; 

O'Shaughnessy et al., 1998; O'Shaughnessy et al., 2002; Vergouwen et al., 1993; Zhang et al., 

2001)). The production of androgens is required for spermatogenesis and maintenance of masculine 

secondary sexual characteristics and as such, a role for ALC in DSDs and infertility is well 

established (The Leydig Cell in Health and Disease, 2007).  

 

The primary role of Leydig cells is to convert cholesterol into testosterone in a dynamic process 

involving multiple substrates (Habert and Picon, 1984; Warren et al., 1972). Testosterone may be 

synthesised de novo from the primary substrate, cholesterol, or from intermediate products of the 

estrogen-androgen synthesis pathway. The series of reactions, of which there are many intermediate 

state equilibria, is mediated by steroidogenic P450 enzymes (synthesis reviewed in Chapter 10 in 

The Leydig Cell in Health and Disease, 2007). Some of the steroidogenic P450 enzymes are able to 

catalyze multiple steps in the pathway, and facilitate both forward and reverse reactions (Fig. 1.3). 

Different steroidogenic enzymes are often used as a measure of FLC maturity and as a functional 

read-out of differentiation and capacity to produce testosterone. At a basic level the most common 

markers, in order from least to most differentiated, are: Star (steroidogenic acute regulatory 

protein; cytochrome P450, family 11, subfamily a, polypeptide 1 (Scc)), Cyp11a1, Hsd3β (hydroxy-

delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1) and Hsd17β3 

(hydroxysteroid (17-beta) dehydrogenase 3; (see Chapter 10 in The Leydig Cell in Health and 

Disease, 2007)). Insl3 (insulin-like 3), a product of FLCs later in gestation, is often used as a late 

FLC marker but it is not directly involved in steroid biosynthesis (Ivell et al., 2013). Notably, it has 

recently been demonstrated that during gestation the FLC population does not express Hsd17β3, the 

gene encoding the enzyme that mediates the final conversion of androstenedione to testosterone 

(Shima et al., 2013). As a result FLCs can only synthesise androstenedione, but Hsd17β3 has been 

shown to be active in fetal Sertoli cells indicating that it is the Sertoli cells that convert 

androstenedione to testosterone during fetal life (Shima et al., 2013). HSD17β3 is expressed in 

ALCs, therefore they can synthesise testosterone without the aid of the Sertoli cell population (for 

review see The Leydig Cell in Health and Disease, 2007). 

 

In late gestation the production of testosterone by FLCs is greatly increased possibly in response to 

signals from the newly established HPG axis ((Japon et al., 1994; O'Shaughnessy et al., 1998; 

Pakarinen et al., 2002; Zhang et al., 2001); Fig. 1.2).  Formation of the HPG axis initiates from 10.0 

dpc but all the components are not in place until around 16.5 dpc. A key element of the HPG axis is 
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GnRH (gonadotropin-releasing hormone) neurons which migrate from the olfactory placode to the 

hypothalamus during embryonic development, and control the release of LH and FSH (follicle 

stimulating hormone) from the anterior pituitary (Schally et al., 1971), thereby facilitating 

reproductive function. The GnRH neurons arise at 10.0-11.0 dpc in the mouse and are derived from 

progenitor cells in the olfactory placodes (Wray et al., 1989b). Between 12.5-15.5 dpc the GnRH 

neurons migrate, via the vomeronasal complex, through the nasal septum into the forebrain 

ultimately achieving an adult-like distribution in the olfactory bulb and hypothalamus by 16.5 dpc 

(Wray et al., 1989b; Wray et al., 1989a). From 16.5 dpc the components of the hypothalamic-

pituitary-gonadal axis are assembled.  

 

The GnRH-neural circuitry is a key component of the HPG axis; the formation and activation of the 

GnRH-neural circuitry involves a series of neuroactive ligand/receptor pairs. GnRH secretion from 

the mature neurons results in pulsatile release of LH and FSH from the anterior pituitary. LH and 

FSH are present in the pituitary from around 17.5 dpc, but, GnRH is required for the release of LH 

and FSH into the circulatory system ((Aubert et al., 1985; Warren et al., 1984); Fig. 1.2). It is 

predicted that circulatory levels of LH do not reach stimulatory levels until days later, nevertheless, 

around 15.5-16.5 dpc, the LH receptor is expressed on FLCs. It is unclear if these low levels of 

pituitary-secreted LH result in the increased biosynthesis of testicular androgen compounds. 

Therefore the point at which the testis becomes gonadotropin-dependent is controversial (El-Gehani 

et al., 1998; Japon et al., 1994; O'Shaughnessy et al., 1998). Notably, XY rat embryos can undergo 

normal testicular development in the absence of circulating gonadotropes later in gestation, 

indicating that for the most part fetal testicular steroidogenesis in the early FLCs is independent of 

GnRH-stimulated release of LH (O'Shaughnessy et al., 1998).  

 

Mutation of genes involved in the set-up and maintenance of the neuroendocrine circuitry often 

results in DSDs, and it has been assumed that this is primarily associated with HPG axis 

dysfunction (Bianco and Kaiser, 2009; Hardelin and Dode, 2008; Mastorakos et al., 2006). For 

example, in Kallmann syndrome, a form of idiopathic hypogonadotrophic hypogonadism (IHH), 

GnRH neurons fail to migrate normally to the olfactory bulb and the hypothalamus, resulting in 

anosmia (the loss of the sense of smell), and a failure of GnRH secretion which leads to limited 

secretion of LH and FSH (Schwanzel-Fukuda and Pfaff, 1989; Schwanzel-Fukuda et al., 1989). As 

a result the adult Leydig cells of testes in these individuals are not stimulated to produce androgens 

and individuals do not synthesise normal levels of testosterone (Dode and Hardelin, 2009; Sykiotis 

et al., 2010). 
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I hypothesise that the interstitium plays a larger role in human DSDs and infertility than is currently 

appreciated. I propose that differentiation of FLCs and their ability to produce steroid hormones 

during early gestation is likely to contribute to aspects of syndromic features of human DSDs and 

infertility. Recently it has emerged that NR2F2-positive non-steroidogenic interstitial cells (NSICs) 

in the embryonic testis give rise to a proportion of ALCs later in life (Kilcoyne et al., 2014). 

Therefore evidence is accumulating that perturbed differentiation or function of FLCs and NSICs 

during fetal life may have both immediate effects on embryonic masculinisation (FLCs) and long 

term effects on post-birth masculinisation (NSICs to ALCs). As a result there are several key 

questions remaining surrounding the biology of FLCs: the origin/s of the FLC population; how the 

FLC population is induced to differentiate from the interstitium; why FLCs respond to Sertoli 

derived cues when NSICs do not; how the FLC function and communicate with the surrounding 

NSICs and the role of the FLC population and fetal androgen production in DSDs.  
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Figure 1.2. HPG axis and idiopathic hypogonadotropic hypogonadism.  

GnRH neurons migrate from the nasal/olfactory placode to the hypothalamus during embryonic development. The 
secretion of GnRH controls the anterior pituitary mediated release of LH and FSH, which stimulates the production of 
steroid hormones in the gonads, forming a feedback loop. A functional HPG axis is required for proper reproductive 
function. The genetic basis of idiopathic hypogonadotropic hypogonadism (IHH) often involves mutations in genes that 
encode proteins that regulate GnRH neuronal migration, GnRH secretion or GnRH action. Modified from (Bianco and 
Kaiser, 2009). 
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Figure 1.3. The steroidogenic pathway and androgen synthesis.  

Androgen synthesis is the primary function of Leydig cells. Androgens are synthesised de novo from cholesterol, in a 
process that involves multiple enzymes and intermediate products. CYP11A1 mediates conversion of cholesterol to 
pregnenolone (P5), which begins the synthesis process. The synthesis of testosterone is mediated by cytochrome P450 
enzymes and hydroxysteroid dehydrogenases. The P450 enzymes and hydroxysteroid dehydrogenases can be used as 
markers of the steroidogenic cell population and different enzymes can mark the “maturity” or stage of functional 
differentiation of the cell. It should be noted that some enzymes catalyze multiple steps in the steroidogenesis pathway. 
Additionally, some enzymes are capable of mediating both forward and reverse reactions. Note that HSD17β is not 
expressed in FLCs. Modified from (Griswold and Behringer, 2009).  
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1.3.2.1 The origins of FLCs 

The origin of the FLC population remains disputed. Cell lineage tracing and live imaging studies 

suggest that FLCs may arise from multiple origins including the gonad/mesonephros border and the 

coelomic epithelium (DeFalco et al., 2011; Di Giovanni et al., 2011; Karl and Capel, 1998; 

Schmahl et al., 2000). As discussed previously, in the 11.0-12.0 dpc XY gonad there are two 

“waves” of coelomic epithelium proliferation. Some “first wave” cells differentiate into interstitial 

cells, but cells contributing to the interstitium mostly derive from the “second wave” of cells which 

does not contribute to the Sertoli cell population (DeFalco et al., 2011; Schmahl et al., 2000). It was 

proposed that FLC defects in the Pdgfr-α -/- (platelet derived growth factor receptor, alpha) XY 

gonad may result from defects in the “second wave” of coloemic epithelium proliferation, but, it 

was noted that most of these proliferating “second wave” cells are “NR5A1-negative” (Brennan et 

al., 2003). The end fate of these “second wave” cells remained uncertain until a suitable early 

interstitial marker could be identified. Expression of the gene Mafb (v-maf musculoaponeurotic 

fibrosarcoma oncogene family, protein B) marks a subset of the interstitial FLC and NSIC 

populations. Some of the “second wave” of proliferating cells that arise after 18 ts are Mafb-

positive interstitial cells (DeFalco et al., 2011). These Mafb-positive cells presumably represent the 

previously reported NR5A1-low/NR5A1-negative cell population (Brennan et al., 2003; Schmahl et 

al., 2000). Although some of the Mafb-positive cells did differentiate into HSD3β-positive cells, the 

majority although interstitial, were not HSD3β-positive (DeFalco et al., 2011). Therefore it appears 

that these “NR5A1-negative, second wave” cells primarily contribute to the NR5A1-negative NSIC 

population that goes on to form the ALCs after birth (Karl and Capel, 1998; Kilcoyne et al., 2014; 

Schmahl et al., 2000). 

 

There is also evidence that FLCs and ALCs may be derived from the intermediate mesoderm. 

Conditional deletion of the BMP signalling receptor Alk3 (bone morphogenetic protein receptor, 

type 1A; Bmpr1a) in the intermediate mesoderm using Rarb2-Cre (retinoic acid receptor β-Cre) 

resulted in a decrease in the number of Cypa11a1/Insl3-positive cells in 18.5 dpc XY gonads (Di 

Giovanni et al., 2011). In addition, at 30 dpn the number of Cyp11a1-positive immature ALCs was 

reduced, which corresponded to lower testosterone levels and infertility (Di Giovanni et al., 2011). 

As loss of Alk3 resulted in a decrease in FLCs and a pertubation of the NSIC population that goes 

on to form the ALC population postnatally, these data indicate that a proportion of FLCs and NSICs 

(pre-ALCs) may be derived from Alk3-positive intermediate mesoderm.  More strikingly, this work 

indicated that early mesodermal defects resulting in pertubation of the FLC and NSIC populations 

could translate into defects in masculinisation and ALC dysfunction in postnatal life.  
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Therefore, cell lineage tracing and conditional deletion suggests that FLCs and NSICs can share a 

regional origin and can arise from the gonad/mesonephros border, the coelomic epithelium and the 

intermediate mesoderm. Further dissection of the contribution of each of these regions to the NSIC 

and FLC populations has been hampered by a dearth of suitable early FLC markers and markers 

that differentiate between NSICs and pre-FLCs early in gonadogeneis. NR5A1 remains the earliest 

marker of somatic cells, but it marks pre-Sertoli and pre-steroidogenic cells in the developing 

genital ridge and is therefore ill-suited to FLC/NSIC lineage tracing (Hatano et al., 1994; Luo et al., 

1994).  

 

1.3.2.2 NR5A1 in development and DSDs 

NR5A1 is part of the orphan nuclear receptor NR5A family of transcription factors and is required 

for the development and function of the adrenal cortex, gonads, pituitary gonadotrope, ventromedial 

hypothalamus and spleen (Ikeda et al., 1993; Ikeda et al., 1995; Ingraham et al., 1994; Luo et al., 

1994; Morohashi et al., 1999; Sadovsky et al., 1995; Shinoda et al., 1995). Studies in mice and 

humans show that Nr5a1 mutant phenotypes are sensitive to dosage and genetic background (Luo et 

al., 1994). Nr5a1-/- mice initiate early gonadal and adrenal development, but the organs begin to 

regress by 11.5 dpc (Luo et al., 1994; Sadovsky et al., 1995). Transgenic expression of NR5A1 in 

Nr5a1-/- mice has been shown to rescue gonad development and induce ectopic adrenal glands 

(Fatchiyah et al., 2006; Zubair et al., 2009). In Nr5a1-haploinsufficient mice, adrenal and testis 

development was disrupted, but hypoplastic testes did form (Bland et al., 2004; Park et al., 2005). 

These data indicate that mouse adrenal development requires both copies of Nra51 to be active, 

whereas the gonad can partially develop if a single copy is present.  

 

The requirement for a threshold level of Nr5a1 expression in the adrenal region and gonad is 

supported by phenotype of the Cited-2-/- mouse where the adrenal cortical primordium is seriously 

disrupted but abnormal testis differentiation can proceed. In Cited2-/- embryos, Nr5a1 levels are 

approximately one third of wild-type levels. As a result, the Cited2-/- embryo is often used as a 

proxy for attenuated Nr5a1 expression and function. In the Cited2-/- XY gonad, expression of the 

genes encoding Sox9, Cyp11a1 and Nr5a1 is decreased at 11.5 dpc, but expression rebounds to 

around wild-type levels by 13.5 dpc (Val et al., 2007). Closer investigation of the gonadal 

phenotype by Combes et al., (2010) revealed that normal testis morphology was perturbed in XY 

Cited2-/- gonads and did not recover by 14.5 dpc, although the transcriptional program apparently 

recovered by 13.5 dpc (Val et al., 2007). As Wt1 (Wilms tumor 1) is involved in Nr5a1 regulation 
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(Wilhelm and Englert, 2002) it was expected that Cited2+/-/Wt1+/- embryos would show defects in 

adrenal and gonadal development.  Initial reports showed that the adrenal gland of Cited2+/-

/Wt1+/- embryos was small and mis-localised (Val et al., 2007). Complete loss of Cited2 was 

required to achieve partial sex reversal in XY Cited2-/-/Wt1+/- and Cited2-/-/Nr5a11+/- gonads 

(Val et al., 2007). Introduction of a weakened Sry by using a YPOS strain was required to induce full 

sex reversal (Buaas et al., 2009). However, the loss of an Nr5a1 allele resulted in a more severe 

phenotype than loss of a Wt1 allele in the Cited2-/- XY gonad (Buaas et al., 2009; Val et al., 2007). 

These findings further indicated that achieving a threshold level of Nr5a1 is essential for obtaining 

normal testis morphology and adrenal development in mouse. 

 

In humans, NR5A1 mutations are a common underlying feature of 46,XY DSDs. Data from patients 

indicate that inheritance can be dominant or recessive and that NR5A1 mutation can result in a wide 

spectrum of phenotypes including gonadal dysgenesis, hypospadias, adrenal insufficiency, 

androgen synthesis defects and infertility (for review see Ferraz-de-Souza et al., 2011). In humans, 

NR5A1 mutations are predominately heterozygous with rare homozygous exceptions (Achermann et 

al., 1999; Achermann et al., 2002). Usually, heterozygous NR5A1 mutations give rise to 46,XY 

DSD with normal adrenal function, indicating that the testis is more susceptible to NR5A1 dosage. 

Ambiguous genitalia and impaired androgen synthesis are commonly described in 46,XY DSD but 

information on gonadal pathology is limited (Correa et al., 2004; Coutant et al., 2007; Hasegawa et 

al., 2004; Köhler et al., 2008; Lin et al., 2007; Lourenco et al., 2009; Mallet et al., 2004; Reuter et 

al., 2007; Warman et al., 2011). Interestingly, missense mutations in the gene encoding NR5A1 are 

also associated with male infertility (Bashamboo et al., 2010; Lourenco et al., 2009). Overall, 

mutation in NR5A1 appears to be a relatively rare cause of adrenal failure but a common cause of 

46,XY DSD in human, seemingly opposite to the reported phenotypes in mice (Bland et al., 2004; 

Lin et al., 2006).  

 

NR5A1 also plays an important role in postnatal ovarian function and as such mutations in the gene 

encoding NR5A1 have been associated with primary ovarian insufficiency and primary ovarian 

failure in 46,XX women (Bashamboo et al., 2010; Lourenco et al., 2009). However, adrenal 

insufficiency with normal prepubertal ovarian development in an 46,XX individual has also been 

reported (Biason-Lauber and Schoenle, 2000). There has been a case where a heterozygous 

mutation in NR5A1 that was associated with primary ovarian failure in a mother was inherited 

where it resulted in 46,XY DSD in the child (Lourenco et al., 2009). These data indicate that 

NR5A1/NR5A1 plays a complex role in adrenal and sexual development in mice and humans. 



 18 

 

1.3.2.3 The tissue specific enhancers of the Nr5a1 promoter 

Due to its essential role in the development of many tissues, the promoter of the Nr5a1 gene has 

been studied in detail. The expression of Nr5a1 is regulated by a number of tissue-specific 

enhancers that have been identified using reporter mouse lines. Initially, BAC and YAC clones of 

the NR5A1 gene locus reproduced endogenous NR5A1 expression (Karpova et al., 2005; Stallings 

et al., 2002). However, these lines maintained expression of the GFP reporter in the XX gonad after 

11.5 dpc when endogenous NR5A1 protein is no longer expressed (Hatano et al., 1994; Ikeda et al., 

1994; Morohashi et al., 1995; Stallings et al., 2002). Subsequently identification of tissue-specific 

enhancers using transgenic mice was performed using the reductionist approach of testing regions 

of the proximal upstream region in transgenic reporter mice. Wilhelm and Englert (2002) 

demonstrated that a small region of approximately 500 bp could drive transgene expression in the 

bipotential gonad and that WTI/LHX9 (Lim homeobox protein 9) binding sites in this 500 bp region 

were required for Nr5a1 transcription. An Sf1-LacZ reporter mouse was generated using a 674 bp 

fragment of the promoter that included the 500 bp region (Wilhelm and Englert, 2002). Beverdam 

et al., (2006) subsequently used the 674 bp fragment to recapitulate the expression of NR5A1 in the 

Sf1-eGFP line (this line is extensively used in this thesis; Fig. 1.4). The Sf1-eGFP line showed 

expression in the 10.5-11.5 dpc gonad and GFP expression persisted until at least 14.5 dpc in a 

variety of XY somatic cells (this line is profiled in detail in Chapter 3). More recently, the fetal 

Leydig enhancer (FLE) was identified by Shima et al., (2012). This enhancer is responsible for FLC 

expression of NR5A1; it lies 3.1 kb upstream of the transcription start site, outside the 674 bp 

region included in the Sf1-eGFP line. In addition, a ventromedial hypothalamus enhancer was 

identified in intron 6, a pituitary gonadotrope enhancer also in intron 6 and a fetal adrenal enhancer 

was identified in intron 4 ((Shima et al., 2005; Shima et al., 2008; Zubair et al., 2009; Zubair et al., 

2006); Fig. 1.4). 
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Figure 1.4. Tissue-specific enhancers in the Nr5a1 (Sf1) promoter and gene. 

Numerous enhancer regions have been identified within Nr5a1 and its promoter. Regions controlling expression in the 
gonad only (InGE), an enhancer specific for fetal adrenal expression (FadE), an enhancer for VMH neuronal expression 
(VE), a pituitary–specific enhancer (PE) and fetal Leydig cell lineage enhancer (FLE) have been identified. The 674bp 
promoter fragment driving GFP in the Sf1-eGFP mouse used in this thesis (orange region including the InGE enhancer) 
is gonad specific and excludes the fetal Leydig enhancer (FLE) element, which lies 3.1 kb upstream of the transcription 
start site (TSS). This region contains LHX9/WT1/SOX9 binding sites and an E-box element that has been shown to be 
important for gonadal expression of Nr5a1.  
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1.3.2.4 Pathways involved in FLC differentiation 

Several signalling pathways and transcription factors have been implicated in FLC differentiation 

and maintenance. In contrast to Sertoli cells there are no reliable early FLC markers - other than the 

steroidogenic pathway members, most “markers” of the FLC population mark the entire interstitium 

that includes both FLCs and NSICs. Indeed, known positive regulators of FLC differentiation are 

apparently active in the entire interstitium. Therefore, it is unclear what gives the pre-FLC 

population competency to differentiate into steroid-producing cells and it is difficult to separate 

these two distinct cell types early in development. The mechanism that determines the 

differentiation of steroid-producing cells from the cells of the interstitium or the predestination of a 

cell population to become FLCs is poorly understood.  

 

1.3.2.4.1 Positive regulators of FLC differentiation 

For the purposes of categorising FLC knock-out phenotypes, “positive regulators” of FLC function 

are considered those genes that when knocked out result in restriction of the FLC population. 

Positive regulators of FLC differentiation include members of the Hedgehog (Hh) and PDGF 

(platelet derived growth factor) pathways and ARX (Aristaless related homeobox). 

 

In the testis the Hh signalling pathway uses the ligand DHH (desert hedgehog), which is secreted by 

Sertoli cells, to promote FLC differentiation. The signaling centre of the Hh pathway, the primary 

cilium, is observed predominately on the interstitial cells of the fetal testis (Wainwright et al., 

2014). At 13.5 dpc a primary cilium is present on HSD3β-positive FLCs, NSICs, and in peritubular 

myoid cells (Wainwright et al., 2014). Unfortunately, the presence of a cilium does not necessarily 

indicate that these populations are undergoing active Hh signaling (Rohatgi et al., 2009). 

Nonetheless, the expression of components of the Hh signalling pathway, such as the receptor 

Ptch1 (patched homolog-1; (Yao et al., 2002)) and downstream targets of hedgehog signalling, Gli1 

(glioma-associated oncogene family zinc finger 1) and Gli2 (glioma-associated oncogene family 

zinc finger 2), throughout the entire interstitium indicates that Hh signalling is not restricted to the 

FLC population (Barsoum and Yao, 2011). Dhh-/- mice have a FLC differentiation defect, with 

fewer Cyp11a1/Hsd3β-positive and strongly NR5A1-positive interstitial cells present in the Dhh-/- 

XY gonads (Bitgood and McMahon, 1995; Bitgood et al., 1996; Yao et al., 2002). Human patients 
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with mutations in DHH can present with mixed, partial or pure gonadal dysgenesis or as seemingly 

unaffected carriers (Canto et al., 2004; Canto et al., 2005; Umehara et al., 2000). 

 

Treatment of 11.5 dpc gonads with cyclopamine, a small molecular antagonist of Smo (Smoothened 

homolog), that works by blocking GLI-mediated Hh pathway activation in the absence of Hh 

ligand, also resulted in a marked reduction in Cyp11a1-positive cells. However, Gli1 and Gli2 null 

mice display normal FLC differentiation, indicating functional redundancy between the GLI factors 

in FLCs (Barsoum and Yao, 2011). In the complementary experiment, ectopic activation of the 

Hedgehog signalling pathway was achieved by constitutive expression of Smo using the Sf1-Cre 

line (“Hh-activated line”), which is active in cells throughout the ovary (Bingham et al., 2006). 

Ectopic activation of the pathway was sufficient to induce the differentiation of steroidogenic cells 

within an ovarian environment (Barsoum et al., 2009). These ectopic cells upregulated expression 

of NR5A1, and its target Cyp17a1 (cytochrome P450, family 17, subfamily a, polypeptide 1; 

(Barsoum et al., 2009)), but the identity of the cells marked by the Sf1-Cre that differentiated into 

NR5A1/CYP17A1-positive cells  in the XX Hh activated gonads is not clearly established. In the 

XY Hh activated animals the effect of constitutive Hh activation on the NR5A1-positive cell 

population has been studied in detail.  

 

Constitutive activation of the Hh pathway activation in NR5A1-positive cells alters the population 

distribution of NR5A1-positive and HSD3β-positive FLCs during fetal development. FLCs 

typically transition from being interstitial pre-steroidogenic FLCs which are NR5A1-

positive/HSD3β-negative, into FLCs that are NR5A1-positive/HSD3β-positive and, finally, some 

steroidogenic cells become NR5A1-negative/HSD3β-positive. In the Hh activated model, of the 

total population of FLCs, approximately 28% more NR5A1-positive FLCs had acquired HSD3β 

expression than in the control at 13.5 dpc, a pattern that was also observed at 16.5 dpc (18% more) 

and 18.5 dpc (23% more) (Barsoum et al., 2013). These data indicated that constitutive Hh 

signaling could prompt precocious maturation of NR5A1-positive pre-steroidogenic FLCs.  At 35 

dpn there was a decrease in the number of ALCs in the testis, the weight of testis and epididymis 

and the number of sperm in Hh activated testis but levels of FSH, LH and testosterone were 

equivalent to the controls (Barsoum et al., 2013). It is unclear how Hh activation in NR5A1-positive 

cells and precocious development of steroidogenic capacity in FLCs could impact the 

differentiation of ALCs from NR2F2-positive NSICs. 
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Another important signalling pathway involved in FLC and ALC development is the PDGF 

pathway. PDGF receptors, Pdgfrα (platelet derived growth factor receptor, alpha polypeptide) and 

Pdgfrβ (platelet derived growth factor receptor, beta polypeptide) are expressed in Leydig and theca 

cells, while PDGF ligands (Pdgfα, Pdgfb, and Pdgfc (platelet derived growth factor a/b/c)) are 

expressed in the Sertoli cells of the testis cords and the ovarian follicles (Basciani et al., 2002; 

Gnessi et al., 1995; Loveland et al., 1995; Sleer and Taylor, 2007; Yoon et al., 2006). In rat Leydig 

cell primary culture systems PDGF ligands can stimulate testosterone production in an LH-

dependent context (Loveland et al., 1993; Risbridger, 1993). In vivo it was observed that in the 

Pdgfrα-/- testes FLC number is severely diminished. This phenotype was recapitulated by using the 

an Sf1-Cre to achieve a conditional loss of Pdgfrα in FLCs and Sertoli cells (Brennan et al., 2003; 

Schmahl et al., 2008). However, it must be kept in mind that as Pdgfrα-/- testes also have defects in 

proliferation of Sertoli cells and mesonephric cell migration (Brennan et al., 2003), the Leydig cell 

phenotype may be influenced by Sertoli cell dysfunction. It has also been suggested that the 

decrease in FLCs may result from a decrease in FLC progenitor proliferation of Pdgfrα/Nr5a1-

positive cells at 11.5 dpc (Griswold and Behringer, 2009). Such a mechanism has yet to be proven 

but it has been shown that perturbations to the earliest FLC progenitors and NSICs can result in 

decreased FLC and ALC number later in development (Di Giovanni et al., 2011; Kilcoyne et al., 

2014). 

 

In 42 dpn testes conditional loss of Pdgfrα using the Sf1-Cre resulted in a reduced number of ALCs, 

indicating that PDGF signaling through Pdgfrα is also required for a fully functional ALC 

population (Schmahl et al., 2008). Sgpl1 (sphingosine phosphate lyase 1) and Plekha1 (pleckstrin 

homology domain containing, family A member 1) are targets of PDGF signaling and are expressed 

in the testis interstitium (Schmahl et al., 2008). Postnatal Sgpl1-/- and Plekha1-/- testes had a 

reduced number of CYP11A1-positive cells at 42 dpn and greatly reduced production of 

testosterone at 6 weeks and 10 weeks (Schmahl et al., 2008). The authors noted that the Sgpl1-/-  

and Plekha1-/-  testes looked grossly normal before 20 dpn indicating that FLC were most likely 

functional, but reduced numbers of CYP11A1-positive FLCs were detected at 7 dpn (Schmahl et 

al., 2008). Based on these data it was suggested that PDGF signaling may manipulate differentiation 

of steroidogenic cells or the ability of a cell to acquire steroidogenic capacity (Schmahl et al., 

2008).  
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Arx is an X-linked homeobox gene that is expressed in the forebrain, floor plate and developing 

gonads (Kitamura et al., 2002; Miura et al., 1997; Miyabayashi et al., 2013). Its loss is associated 

with X-linked lissencephaly with abnormal genitalia (XLAG or X-linked lissencephaly 2, LISX2; 

OMIM:300215; (Kitamura et al., 2002)) which is one of a spectrum of developmental lissencephaly 

disorders. Affected males have hypothalamic dysfunction and ambiguous genitalia characterised by 

small testes and penis (Bonneau et al., 2002; Dobyns et al., 1999; Kitamura et al., 2002; Ogata et 

al., 2000). Arx is strongly expressed in the interstitium of the testis, in peritubular myoid cells, 

vascular endothelial cells, and interstitial fibroblast-like cells (presumptive NSICs), but has not 

been detected in Sertoli, Leydig and germ cells (Kitamura et al., 2002; Miyabayashi et al., 2013). 

Some ARX-positive cells are also detected within the XX gonad (Miyabayashi et al., 2013). Arx-/- 

XY gonads were characterised by a dysplastic interstitium, where the number of HSD3β-positive 

cells was severely diminished (Kitamura et al., 2002) despite the fact that Arx is expressed HSD3β-

negative interstitial cells. It was noted that the number of HSD3β-positive cells was variable 

between individuals (Kitamura et al., 2002). Together these data suggest that ARX may have an 

indirect role in restricting/bestowing FLC progenitor competency (Miyabayashi et al., 2013). 

Interestingly, a detailed expression analysis by Miyabayashi et al. (2013) demonstrated that 

although ARX-positive cells were predominately NR5A1-negative, a small number of NR5A1-

positive cells were also ARX-positive and could transition into HSD3β-positive FLCs. As HSD3β-

positive cells have been shown to have a very low rate of proliferation compared to other testicular 

cells types (Miyabayashi et al., 2013; Orth, 1982). It was posited that the Arx-/- gonadal phenotype 

was due to either an early pre-steroidogenic pre-FLC pool proliferation defect or some sort of 

restriction of FLC fate attainment in the early FLC progenitor pool which is presumably mediated 

by NSICs.   

 

In some cases early steroidogenic capacity and associated gene expression can be attenuated 

without a change to, or with recovery of, the FLC population number relative to testis size. Tgfbr3 

(transforming growth factor, beta receptor III/betaglycan) is a co-receptor for the TGFβ- 

superfamily of ligands which includes TGFβ, inhibins and BMPs. TGFBR3 is expressed in 

CYP11A1-positive FLCs cells and peritubular myoid cells of XY gonad at 14.5 dpc (Sarraj et al., 

2007).  In Tgfbr3-/- XY gonads the testis cord architecture is disrupted; the basal lamina 

surrounding the cords is discontinuous, the arrangement of the Sertoli cells in the cords was not 

uniform and expression of Sertoli cell marker genes such as Amh is greatly decreased from 13.5 dpc 

(Sarraj et al., 2010). Notably expression of the genes encoding Dhh and Nr5a1 is decreased at 14.5 
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dpc but not at 12.5 dpc in the Tgfbr3-/- XY gonads (Sarraj et al., 2010). Expression of the genes 

encoding markers of the steroidogenic pathway, such as Cyp11a1 and Star, are decreased from 12.5 

dpc when there is an apparent decrease in the CYP11A1-positive cell population. However, 

although FLC function remains apparently compromised, at 14.5 dpc the number of FLCs per 

gonad or interstitial area unit in the Tgfbr3-/- XY gonads had recovered and was equivalent to that 

of the wild-type (Sarraj et al., 2010). Whether the attenuation of steroidogenesis in this model has 

an effect on later testis development, or whether the recovery of the phenotype is due to other TGFβ 

signaling pathway members being able to rescue FLC differentiation, is unknown.  

 

1.3.2.4.2 Negative regulators of FLC function 

For the purposes of categorising FLC knock-out phenotypes, “negative regulators” of FLC function 

are considered those genes that when knocked out result in an expansion of the FLC population. 

Negative regulators of FLC differentiation include the transcription factor TCF21 (POD-1, 

transcription factor 21) and members of the Notch pathway.  

 

Tcf21 is a basic helix-loop-helix transcription factor with multiple roles in embryonic development 

(Quaggin et al., 1998). The Tcf21-/- XY embryo has multiple urogenital defects including feminised 

external genitalia. This phenotype is likely the result of the Tcf21-/- XY embryo having small, 

poorly organised, undescended testis (Cui et al., 2004; Quaggin et al., 1998; Quaggin et al., 1999). 

Embryonically Tcf21 is expressed throughout the testis interstitium, particularly around the 

coelomic epithelium from 10.5 dpc (Cui et al., 2004; Tamura et al., 2001). Fetal Tcf21-/- XY 

gonads have an increased number of FLCs, indicating that Tcf21 may be involved in restriction of 

FLC differentiation (Cui et al., 2004). In vitro studies have demonstrated that TCF21 can suppress 

expression of the gene encoding Nr5a1, indicating that the mechanism by which it restricts FLC 

differentiation may be in restricting expression of Nr5a1 (França et al., 2013). From 11.5 dpc in XY 

Tcf21-/- UGRs there is an expansion of NR5A1-positive cells in the coloemic and gonad-

mesonephric border regions (Cui et al., 2004). With the expansion of NR5A1-positive cells, the 

population of Cyp11a1-postive cells differentiates precociously at 11.5 dpc and is expanded later. It 

was proposed that the ectopic expression of NR5A1 forced a larger population of NSICs to 

aberrantly commit to becoming FLCs (Cui et al., 2004). Whether this expanded population of cells 

is directly derived from the precocious Nr5a1-positive cells or whether they can produce later FLC 

products such as HSD3β and INSL3 is unknown. Notably at 13.5 dpc, nuclear NR5A1 and 
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cytoplasmic Tcf21-LacZ do not appear to colocalise in the same cells in the testis interstitium (Cui 

et al., 2004). 

 

The NOTCH pathway also apparently acts to restrict differentiation of FLC progenitors. The four 

Notch receptors bind delta-like or jagged (e.g. Jag1 (jagged 1)) ligands to activate the pathway. The 

most well defined targets of the NOTCH signaling pathway are the genes encoding the basic helix-

loop-helix transcription factors Hes1 and Hes5 (hairy and enhancer of split 1/5). Notch1 is 

expressed in the vasculature of the XY gonads, whereas expression of Jag1, Notch2 and Notch3 are 

restricted to the interstitium at 13.5 dpc (Notch 2 is expressed in the Sertoli cells at 12.5 dpc; 

(Brennan et al., 2002; Tang et al., 2008)). Hes1 expression is restricted to the interstitium, while 

Hes5 is expressed in the Sertoli cells at 13.5 dpc (Tang et al., 2008), indicating NOTCH signalling 

is activated in the Sertoli and interstitial cell populations. The activation of the NOTCH pathway 

using the Sf1-Cre does not affect the differentiation of the Sertoli cell population, but cord 

formation is stunted (Tang et al., 2008). Deletion of the NOTCH pathway target Hes1 in XY gonads 

was used to model inhibition of the NOTCH pathway. Notably, germ cells and cord structure is 

adversely affected even though Hes1 is not expressed in these populations (Tang et al., 2008). In the 

interstitium, both in vitro (DAPT compound treatment) and in vivo (Hes1-/-) inhibition of the 

NOTCH pathway resulted in an increased number of FLCs in the testis but no change to Sertoli cell 

number (Tang et al., 2008). Likewise, conditional deletion of the ligand Jag1 in interstitial and 

perivascular cells resulted in a decrease in the number of VCAM1-positive (vascular cell adhesion 

molecule 1) NSICs and a dramatic increase in HSD3β-positive cells at 14.5 dpc (Defalco et al., 

2013), mirroring the phenotype of the Hes1-/- testis. Conversely, constitutive activation of the 

NOTCH pathway in Nr5a1-positive FLC and Sertoli cell precursors from 11.5 dpc resulted in 

maintenance of interstitial undifferentiated LHX9-positive progenitor cells (presumptive NSICs) 

and a decrease in HSD3β-positive FLCs. These data indicate that the NOTCH pathway somehow 

mediates transitions between NSIC, pre-FLC and steroidogenic FLC fate. 
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Figure 1.5. The characteristics of FLCs and NSICs at 12.5 dpc as currently published. 

To date we know of few differences between FLCs and NSICs. The major difference defined between FLCs and NSICs 
is the expression of the transcription factors (hexagon) ARX in NSICs and NR5A1 in FLCs (NR5A1 is also expressed 
in SOX9-positive Sertoli cells). NR2F2 and TCF21 are apparently expressed in FLCs and NSICs. Sertoli cells produce 
the secreted factors (circles) PDGFA and DHH that promote FLC differentiation. However, the receptors PDGFRα and 
PTCH1 (rounded rectangles) are expressed on NSICs and FLCs (as are downstream products of Hh signaling GLI1 and 
GLI2). The Notch pathway is active in the fetal testis with NOTCH2/3 expressed on NSICs and FLCs (NOTCH2 is also 
observed in Sertoli cells). The Notch pathway ligand JAG1 is expressed by NSICs and FLCs, as is the downstream 
target HES1 (HES5 is expressed in Sertoli cells). The characteristics of vascular endothelial cells are not well defined; 
markers include PECAM1, NRP1 and VEGFR2 (KDR).     
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1.3.3 The rest of the interstitium 

  

The interstitium of the testis is comprised of the cells excluded from the testis cords. The most well-

defined cell lineage of the testis interstitium is the FLC population. However, the interstitium also 

includes non-steroidogenic interstitial cells (NSICs), vascular endothelial cells, macrophages and 

other cell types and lineages that have yet to be defined, as discussed below.   

 

1.3.3.1 ARX-positive and NR2F2-positive NSICs 

ARX and NR2F2 are emerging as important transcription factors that affect Leydig cell 

differentiation. As discussed above, the role of ARX is unusual among previously identified 

regulators of steroidogenic fate. Nuclear expression of ARX is observed in the peritubular myoid 

cells lining the testis cords and the NR5A1-negative interstitial cells of the testis. In Arx-/- testis, the 

testis cords formed appropriately and SOX9-positive cell number was maintained but there was 

decreased numbers of NR5A1/HSD3β-positive interstitial cells (Miyabayashi et al., 2013). The 

result of this FLC loss at 18.5 dpc in Arx-/- testis is undescended testes, likely due to a decrease in 

Insl3 expression, a decrease in intratesticular testosterone levels and a dysmorphic coelomic vessel 

(Miyabayashi et al., 2013).  Expression of testicular pathway genes such as Dhh, Ptch1 and Pdfrα 

was unaffected in the XY Arx-/- gonad, indicating that these pathways were not perturbed by loss of 

ARX. Conversely, in masculinised XX Wnt4-/-gonads, WT1-positive interstitial cells were 

maintained later in development and Arx expression was expanded (Miyabayashi et al., 2013). 

What makes the effect on FLCs unusual is the fact that ARX is expressed in NSICs. It has been 

speculated that loss of ARX in NSICs must somehow affect the early FLC progenitor pool 

presumably by preventing attainment of steroidogenic capacity.  

 

A similar expression pattern to ARX can be observed for NR2F2 at 18.5 dpc (Kilcoyne et al., 2014; 

Miyabayashi et al., 2013). Recently it has emerged that NR2F2-positive non-FLC interstitial cells in 

the embryonic testis give rise to ALCs later in life (Kilcoyne et al., 2014). Expression of Nr2f2 in 

the interstitium of the testis was noted from 13.5 dpc (Pereira et al., 1995; Pereira et al., 1999) but 

loss of Nr2f2 is embryonic lethal at 10 dpc due to cardiovascular defects (Pereira et al., 1999) 

precluding the study of gonadogenesis without a suitable conditional/inducible system. 

Interestingly, SHH (Sonic hedgehog) was found to regulate expression of Nr2f2 in neurons 

(Krishnan et al., 1997a; Krishnan et al., 1997b). Considering that all Hh ligands act through 
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PTCH1, which is expressed on the surface of FLCs and NSICs, it is plausible that DHH, which is 

required for differentiation of the FLC population, may also have an effect on the NSIC population, 

conceivably by upregulating Nr2f2 expression (Martin and Tremblay, 2010).  

 

Prepubertal ablation of NR2F2 at 14 dpn in XY mice results in infertility, hypogonadism and 

spermatogenic arrest as a result of reduced testosterone biosynthesis (Qin et al., 2008). NR2F2 was 

found to be essential for progenitor ALC formation and maturation into functional ALCs. Leydig 

cell function and reproduction were unaffected by ablation of NR2F2 mature ALCs indicating that 

NR2F2 is not required for the maintenance of ALCs but is required for their formation from 

progenitor cells (Qin and Bishop, 2005). Subsequently it was demonstrated that cells that are 

NR2F2-positive in the 18.5 dpc testis are the cells that give rise to the ALCs (Kilcoyne et al., 2014). 

NR2F2 is the first identified transcription factor intrinsic to ALC function that also plays an 

essential role in the maturation of progenitor ALCs during fetal life. The presence of NR2F2-

positive cells in the developing testis provides the first evidence that levels of testosterone during 

fetal gonadogenesis and masculinisation can “program” the final adult testosterone levels by 

effecting the NR2F2-positive “ALC progenitor cells”, which are the source of testosterone after 

puberty. 

 

Treatment of rat embryos with dibutyl phthalate (DBP) or dexamethasone diethylstilbestrol (DES) 

induces masculinisation defects such as hypospadias and cryptorchidism in a dose-dependent 

manner. Van den Driesche et al. (2012) showed that treatment of rat embryos with DBP or DES 

results in defects in the production of testosterone by the FLC population but that FLC number 

remains unchanged. This phenotype is possibly due to a decrease in transcription of steroidogenic 

genes that are regulated by the transcription factor NR5A1. However, while expression of the genes 

encoding Cyp11a1, Star and Cyp17a1 was reduced in DBP treated testis the expression of the gene 

encoding Hsd3β was unaltered (van den Driesche et al., 2012). The genes Cyp11a1, Star and 

Cyp17a1 all have dual NR5A1/NR2F2 binding sites in their promoter regions while Hsd3β has only 

an NR5A1 binding site (van den Driesche et al., 2012). Therefore it has been proposed binding of 

NR2F2 and NR5A1 may be disrupted by DBP treatment (van den Driesche et al., 2012).  In the rat 

testis, at 15.5 dpc 85% of NR2F2-positive interstitial cells are also HSD3β-positive, by 19.5 dpc 

only approximately 20% of cells are HSD3β/NR2F2-positive. At 21.5 dpc in rat testis NR2F2 is not 

expressed in FLCs in the wild type testis, but exposure to DBP resulted in ectopic expression of 

NR2F2 in the FLCs in a dose dependent manner. Unlike in the rat, in mice exposure to DBP does 
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not result in a decrease of steroidogenic gene expression (van den Driesche et al., 2012). 

Additionally, exposure to DBP does not result in an increase in NR2F2/HSD3β-positive cells at 

18.5 dpc (equivalent to 21.5 dpc in rats). On the other hand exposure to DES results in a 28% 

increase in the number of HSD3β/NR2F2-positive cells at 18.5 dpc. However, in mice the 

expression of NR2F2 in the testis has not been characterised in detail throughout gonadogenesis. 

Therefore, whether NR5A1 and NR2F2 could act together to transcriptionally activate 

steroidogenic genes in murine FLCs has not been substantiated. 

 

1.3.3.2 Vasculature: blood vasculature and lymphatic vasculature 

A functional vasculature network is important for the delivery of oxygen, hormone and nutrients, 

and for the removal of waste. The role of the gonads as endocrine organs also requires a functional 

vasculature network to facilitate the delivery and circulation of hormones to the rest of the embryo. 

In the process of gonadogenesis, the formation of the vasculature is important for the overall 

architecture and development of the testis.  On the other hand, lymphangiogenesis, the formation of 

the lymphatic network, occurs much later in gonadal development after the architecture of the testis 

is mostly established. 

 

Vascular patterning in the gonad is a sex-specific process (Brennan et al., 2002). Testis vasculature 

is formed by migration of endothelial cells into the developing testes (Combes et al., 2009b; Cool et 

al., 2008). At 10.5-11.5 dpc microvessels extend from the mesonephric vasculature plexus into the 

gonadal tissue in both the XX and XY gonad (Coveney et al., 2008a). Unlike the ovary, in the testis 

the early vasculature network develops by a non-angiogenic process whereby the endothelial cells 

migrating from the mesonephric vascular plexus are rearranged into the new network (Brennan et 

al., 2002; Bullejos et al., 2002; Coveney et al., 2008a). By 12.5 dpc a prominent artery known as the 

coelomic vessel can be seen along the anterior–posterior length of the testis, in addition to extensive 

microvasculature network in the testis interstitum. Ectopic masculinised vascular networks 

reminiscent of the coelomic vessel are observed in gonads of XX mice mutant for Rspo1 (R-

spondin homologue 1), Wnt4, Fst (follistatin) and Ctnnb1 (catenin beta 1; (Chassot et al., 2008; 

Jeays-Ward et al., 2003; Liu et al., 2009; Tomizuka et al., 2008; Yao et al., 2004)).  Rspo1 is a 

regulator of WNT4 signalling that involves Ctnnb1, while Fst (follistatin) is downstream of WNT4 

(Tevosian and Manuylov, 2008),  implicating the WNT signalling pathway in vessel formation and 

patterning (Coveney et al., 2008b). Additionally, overexpression of Wnt4 disrupts normal testis 
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vasculature, indicating that WNT4 inhibits formation of gonad vasculature (Jordan et al., 2003). 

Notably, where testis vasculature is disrupted, as in the WNT4 overexpressing mice, Sertoli and 

FLCs still differentiate (Jeays-Ward et al., 2003; Jordan et al., 2003), but several models have 

disruptions in both testis cord formation and vascular network development (Brennan et al., 2003; 

DeFalco et al., 2014; Yao et al., 2006), indicating that the two processes are interdependent.  

 

Vascularisation of the testis has been shown to play an important instructive role in testis cord 

formation (Combes et al., 2009b; Cool et al., 2008; Cool et al., 2011). The vascular endothelial cells 

of the early testis express markers such as PECAM1 (which is also expressed in germ cells), NRP1 

(neuropillin 1) and VEGFR2 (KDR, kinase insert domain protein recptor; vascular endothelial 

growth factor receptor 2; (Cool et al., 2011)). When endothelial migration was suppressed in testes 

by blocking vascular endothelial growth factors with VEGF-Trap or by using an antibody against 

vascular endothelial cadherin, testis cord morphogenesis was impaired (Combes et al., 2009b; Cool 

et al., 2011). Antagonising vessel maturation also reduced proliferation of interstitial mesenchymal 

cells that appear to segregate the precursor territories for testis cords; this proliferation could be 

rescued by the addition of platelet derived growth factor isoform BB (PDGF-BB; (Combes et al., 

2009a; Cool et al., 2008; Cool et al., 2011)).  However, the mechanisms governing testis 

vascularisation and cord segregation are still unclear. Likewise the mechanisms governing the 

invasion of the venous vasculature network into the testis are not well studied. Some evidence 

suggests that the venous vasculature network also is derived from the mesonephros, perhaps 

following the establishment of the arterial vascular network (Brennan et al., 2002; Coveney et al., 

2008a). 

 

Alongside the blood vascular network exists the lymphatic vascular network, which acts to maintain 

tissue fluid homeostasis.  PROX1 (prospero homebox 1) is a marker of lymphatic vessels. Using a 

Prox1-LacZ reporter lymphatic vessels have been detected along the gonad–mesonephric border 

from 13.5 dpc, but the lymphatic vessels only invaded the testis proper at around 18.5 dpc (Brennan 

et al., 2002; Wigle and Oliver, 1999). A more recent study using a Prox1-eGFP reporter mouse 

found that lymphangiogenesis in the testis begins at 17 dpc (Svingen et al., 2012). The invading 

vessels originated from the pre-existing lymphatic network residing along the mesonephric region 

(Svingen et al., 2012). Notably the lymphatic vessels did not penetrate deep into the testis: vessels 

only penetrated immediately inferior to the tunica albuginea (Svingen et al., 2012). This observation 
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was consistent with previous data describing the invasion of the lymphatic vasculature network into 

murine testes (Hirai et al., 2012).  

1.3.3.3 Macrophages 

In the postnatal and adult testis macrophages may compose approximately 25% of the interstitial 

cells population and are important for Leydig cell functionality, but the role of macrophages in the 

fetal testis has remained unexplored until recently (for review see Svingen and Koopman, 2013). 

Postnatally, interstitially residing testicular macrophages form close associations with Leydig cells 

(Christensen and Gillim, 1969; Hutson, 1990; Miller et al., 1983). Indeed macrophages can even 

influence the steroidogenic capacity of ALCs by secreting cholesterol compounds that the ALCs 

can use to synthesise testosterone (Lukyanenko et al., 2000; Lukyanenko et al., 2001; Nes et al., 

2000).  

 

Recently the role of macrophages in fetal testicular development has been explored. De Falco et al. 

(2014) found that from 10.5 dpc macrophages cluster along the gonad–mesonephros vasculature 

plexus. Macrophages later clustered along the expanded vascular plexus, around the coelomic 

vessel and alongside the vascular branches invading and enwrapping the testis. In the fetal testis a 

regular and ordered series of testis cords are formed by 13.5 dpc and migration of endothelial cells 

into the testis is required for the formation of the cords (Combes et al., 2009a; Combes et al., 

2009b).  As discussed previously, this was demonstrated by using a VE-cadherin antibody to block 

endothelial cell migration and vascular organisation which in turn disrupted the formation of the 

testis cords (Combes et al., 2009b). DeFalco et al. (2014) found that macrophages were found to be 

often directly associated with the gonadal endothelial cells and expressed endothelial markers such 

as VEGF (vascular endothelial growth factor).  Indeed, localisation and migration of macrophages 

into the XY gonad was shown to be dependent on the process of VEGF-mediated vascularisation by 

blocking VEGF signaling using a VEGFR (VEGF receptor) small molecule inhibitor (a cord 

phenotype was not reported). In 13.5 dpc testes specifically depleted of macrophages there were 

also fewer resident endothelial cells, a poorly organised coelomic vessel and an enlarged 

mesonephric vascular plexus (DeFalco et al., 2014). In macrophage-depleted testis (approximately 

95% depletion), while basic partitioning of the cord elements from the interstitial space occurred, 

the cords that formed were irregular (DeFalco et al., 2014). Together these data indicate that the 

combined invasion of endothelial cells with associated macrophages is important for testicular 

vascularisation, cord formation and partitioning of the testis.  
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1.4 Ovarian Differentiation 

 

1.4.1 Three patterns and three populations of somatic cells in ovarian development 

In contrast to the cord-level structural organisation seen in the testis at 12.5 dpc, the ovary is a 

mixture of both somatic and clustered germ cells during fetal life. The characterisation of different 

somatic lineages in the ovary is limited. During postnatal life the ovary regionalises and follicular 

granulosa cells surround the matured germ cells, the oocytes.  However, the regionalisation of the 

fetal ovary and the specification of the different cell lineages are poorly understood.  

 

There is a suite of genes that are important for ovarian development including Wnt4 (Vainio et al., 

1999), Rspo1 (Chassot et al., 2008; Parma et al., 2006) and FoxL2 (Ottolenghi et al., 2005; Schmidt 

et al., 2004). All these genes can be used as markers of pre-granulosa cells and as readouts of the 

ovarian pathway. Recently it has been demonstrated that the ovary can be regionally classified by 

expression of granulosa cell marker genes showing that the population of somatic cells at or 

adjacent to the coelomic epithelium are distinct from the cells adjacent to the mesonephros (Chen et 

al., 2012). Chen et al. (2012) identified three spatial expression patterns displayed by somatically-

expressed ovarian genes: (1) expression across the gonad from the mesonephros, which goes on to 

form the ovarian medulla, up to a few cell layers from the coelomic epithelium, which goes on to 

form the ovarian cortex (genes include Fst, FoxL2 and Wnt4); (2) genes expressed throughout the 

developing ovary, including the coelomic epithelium  (genes include Rspo1 and Irx3 (iroquois 

related homebox 3)) and (3) a gradient of expression across the gonad with higher expression at the 

side of the coelomic epithelium and weaker expression towards the mesonephros (genes include 

Bmp2 (bone morphogenetic protein 2); Fig. 1.6A). Based on gene expression, another study has 

classified the somatic cell lineages of the ovary into four somatic lineages: vasculature; vascular-

associated; somatic coelomic epithelial and pre-granulosa cell populations ((Maatouk et al., 2012); 

Fig. 1.6B). More recently, a study identified three distinct somatic cell lineages in the ovary marked 

by mutually exclusive expression of LGR5, FOXL2 or NR2F2 ((Rastetter et al., 2014); Fig. 1.6C).  

 

It is clear that there are two classes of pre-granulosa cells in the fetal mouse ovary (Mork et al., 

2011; Rastetter et al., 2014; Zheng et al., 2014). One class of pre-granulosa cell is characterised by 

the expression of FOXL2 early in development; these cells are destined to become the granulosa 

cells of medullary follicles (Mork et al., 2011) which mature before puberty. These follicles are 
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important for the onset of puberty and early fertility (Zheng et al., 2014). A different class of pre-

granulosa cells do not express FOXL2 and contribute to the cortical follicles. These cortical 

granulosa cell precursors are characterised by expression of LGR5, an RSPO1 receptor (Mork et al., 

2011; Rastetter et al., 2014). In the developing ovary, WNT4 and RSPO1 signaling upregulates 

expression of the gene encoding Lgr5, which is required for germ cell differentiation (Rastetter et 

al., 2014). The cortical follicles progressively mature and constitute the reproductive pool of 

primordial follicles for the individual throughout their reproductive life (for review see Monget et 

al., 2012). Granulosa cells surrounding follicles residing in the medulla and cortex all express 

FOXL2 postnatally (for review see Pisarska et al., 2011).  

 

In the fetal ovary, vasculature-associated somatic cells are marked by MAFB expression (Maatouk 

et al., 2012). In the testis MAFB marks the interstitial and FLC population (DeFalco et al., 2011). 

Presumably, MAFB also marks some somatic cells in the ovary (Jameson et al., 2012b; Maatouk et 

al., 2012).  As NR2F2 is also expressed by the testis interstitium and is important for ALC 

differentiation (Kilcoyne et al., 2014; Qin et al., 2008), it is possible that NR2F2 marks the 

counterparts to the Leydig cells in the developing ovary, the steroidogenic theca cells. The theca 

cells first produce steroids after birth in the preantral follicle (Palermo, 2007). Currently it is 

hypothesised that the follicular granulosa cells, the Sertoli cell counterparts, produce signals that 

stimulate the differentiation of theca cells from the interstitium, similar to how molecules such as 

DHH promote FLC differentiation in the testis (Yao and Capel, 2002; Young and McNeilly, 2010). 

No markers of the embryonic theca progenitor cell population have yet been identified. 

 

Therefore, the fetal mouse ovary contains at least three different somatic cell types that can be 

identified early in ovarian development: precursors for medullary granulosa cells, FOXL2-positve 

cells; precursors for cortical granulosa cells, LGR5-positive cells and presumptive pre-theca cells, 

NR2F2-positive cells. Whether there is overlap between expression of WT1 or MAFB and 

expression of markers such as NR2F2 and LGR5 is unknown. Identifying additional cell-lineage 

specific markers will provide new tools investigate the development and maturation of the ovary. 
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Figure 1.6. The cell lineages of the fetal ovary. 

(A) An in-situ hybridization screen of 13.5 dpc XX embryos for somatic cell marker genes identified three different 
expression domains: (1) genes expressed across the gonad up to a few cell layers from the coelomic epithelium; (2) 
genes expressed through the developing ovary and (3) genes expressed in a graded expression across the gonad with 
weaker expression near the mesonephros (Chen et al., 2012). A series of somatic subpopulations have been defined 
using different marker genes. Three studies have shown that FOXL2-positive and vascular endothelial cells form only a 
subpopulation of the somatic cells of the developing ovary (Maatouk et al., 2012; Mork et al., 2011; Rastetter et al., 
2014). The remaining somatic cell population was classed as (B) WT1-positive with vascular associated MAFB-
positive cells (Maatouk et al., 2012) or (C) LGR5-positive and NR2F2-positive (Rastetter et al., 2014). Whether any 
WT1- and MAFB-positive cells are also LGR5- or NR2F2-positive is unknown. (LAM, laminin; PECAM1, 
platelet/endothelial cell adhesion molecule 1)  
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1.4.2 Pathways that influence ovarian development 

In the absence of SRY and SOX9 expression or in XX individuals, the transcriptional networks 

responsible for ovarian development are triggered. Several genes have been identified as key 

players in ovarian development but no ovarian-determining factor has yet been identified. β-catenin 

signaling is a key player in ovarian determination/differentiation and WNT4, FST and RSPO1 are 

secreted positive effectors of β-catenin signaling and expression. In each of the XX Wnt4 -/-, Fst-/- 

and Rspo1-/- models there are gross functional defects in ovarian development (Chassot et al., 

2008; Vainio et al., 1999; Yao et al., 2004)).  

 

In humans, duplication of a section of chromosome 1p, which includes the WNT4 gene, leads to 

46,XY male-to-female sex reversal (Jordan et al., 2001). In mouse, the Wnt4-/- ovary is 

masculinised but not sex reversed. Wnt4 is expressed in the 11.5 dpc gonad in both sexes but 

expression of Wnt4 is only maintained in the ovary (Vainio et al., 1999). Notably, Wnt4 expression 

is maintained in the mesonephros of both sexes. The expression of NR5A1 in XX and XY Wnt4-/- 

gonads during early gonadogenesis is abnormal (Jeays-Ward et al., 2003). This may contribute to 

phenotypes later in development where ectopic CYP11A1-positive cells and masculinised vascular 

structures form in Wnt4-/- ovaries (Heikkila et al., 2005; Vainio et al., 1999). Postnatally, 

testosterone production can be detected in Wnt4-/- XX animals (Heikkila et al., 2005), but classic 

hallmarks of ovotesticular development such as the differentiation of Sertoli cells do not occur. 

Jameson et al. (2012a) demonstrated that in Wnt4-/-/Fgf9-/- XX gonads masculinised vasculature 

and steroidogenic cells were present at 16.5 dpc; these masculinised features were observed in 

Wnt4-/-  but not Fgf9-/- XX control gonads. These data indicate that FGF9 is not an essential player 

in the ectopic masculinisation of the Wnt4-/- XX gonad. This conclusion was supported by the 

observation that conditional loss of the FGF9 receptor Fgfr2 in endothelial cells did not impact the 

formation of the masculine vasculature network in the XY gonad. In Wnt4-/- XY gonads Sertoli cell 

differentiation and testis cord structure is compromised (Jeays-Ward et al., 2003; Jeays-Ward et al., 

2004; Vainio et al., 1999).  In one mouse model of Wnt4 overexpression in the XY gonad, 

masculine vasculature networks are disrupted and testosterone synthesis is repressed possibly 

through action of WNT4 on Nr5a1 and β-catenin mediated signaling pathways (Jordan et al., 2003).  

 

Rspo1 is expressed in the FOXL2-positive XX somatic cells of the gonad (Chen et al., 2012; Parma 

et al., 2006; Rastetter et al., 2014) while the putative RSPO1 receptor, LGR5 is expressed in the 
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FOXL2-negatitve somatic pre-granulosa cells (Rastetter et al., 2014). In Rspo1-/- ovaries 

differentiation of Sertoli cells does not occur, but there is a failure to upregulate the expression of 

the gene encoding Wnt4 and subsequent WNT4 target gene expression (Tomizuka et al., 2008). 

Additionally, in the Rspo1-/- ovary, the male Wolffian duct fails to regress, ectopic steroidogenic 

cells differentiate and a masculinised vasculature forms, features reminiscent of the Wnt4-/- ovary 

(Tomizuka et al., 2008). In germ cells RSPO1 regulates WNT/β-catenin signaling such that in the 

Rspo1-/- ovary there is also an impediment that prevents germ cells from entering meiosis at 14.5 

dpc as they would in the wild-type (Chassot et al., 2008; Tomizuka et al., 2008). 

 

The β-catenin-associated WNT4/RSPO1 pathway can influence the expression of TGFB pathway 

components such as Fst, which encodes a secreted TGFβ pathway inhibitor. The Fst-/- ovary shares 

many similarities with the Rspo-/- and Wnt4-/- ovary. In Wnt4-/- XX gonads, expression of the gene 

encoding Fst is lost, explaining the similarities between loss-of-function models in this pathway 

(Yao et al., 2004). Like Wnt4-/- XX gonads, the Fst-/- XX gonads also develop a masculinised 

vessel network around 12.5 dpc, but unlike in Wnt4-/- and Rspo1-/- ovaries no Cyp11a1-positive 

ectopic cells are observed (Tomizuka et al., 2008; Vainio et al., 1999; Yao et al., 2004). At birth 

there is widespread germ cell loss in Wnt4-/- XX gonads; in Fst-/- XX gonads, germ cells begin 

apoptosing at around 16.5 dpc, which results in widespread loss of germ cells by birth (Vainio et al., 

1999; Yao et al., 2004).  

 

Due to the importance of the WNT/β-catenin pathway in ovarian development, a knock out of 

Ctnnb1, the gene that encodes β-catenin, in NR5A1-positive cells has been generated by Liu et al. 

(2009) using Sf1-Cre, which is active throughout the ovary (Bingham et al., 2006). The effect of 

removing functional β-catenin in the somatic ovarian cells was a downregulation of the expression 

of the genes encoding Wnt4 and Fst, but not Rspo1 (Liu et al., 2009). Therefore, functionally β-

catenin appears to act upstream of Wnt4 and Fst, but downstream of Rspo1, in agreement with the 

observation that in Rspo1-/- XX gonads Wnt4 and Fst expression is downregulated. No expression 

of testicular pathway genes such as Sox9 was detected, but similar to the Rspo1-/-, Wnt4-/- and Fst-

/- knockouts, β-catenin ablation in the XX gonad resulted in the formation of a masculinised 

vascular network and loss of germ cells (Liu et al., 2009). These data implicate β-catenin in the 

process of vascular remodeling and germ cell survival in all these scenarios. As in the Wnt4-/- and 

Rspo-/- XX gonads, clusters of Cyp17a1-positive steroidogenic cells were also observed in the β-

catenin ablated XX gonads, indicating that this phenotype may also be mediated by β-catenin. 
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Notably, the β-catenin ablated XX gonads did not express Insl3 and although there was retention of 

the Wolffian duct and its derivatives, the external genitalia presented similar to the wild-type XX 

individual.  

 

FOXL2 is the earliest granulosa cell marker to appear in the developing ovary and seems to act 

independently of the WNT/β-catenin signaling pathway. It is expressed from 12.5 dpc in a 

subpopulation of somatic cells during development before being expressed in cortical and 

medullary granulosa cells in adulthood (Loffler et al., 2003; Ottolenghi et al., 2005; Rastetter et al., 

2014; Schmidt et al., 2004). In humans, mutations in FOXL2 cause BPES and premature ovarian 

failure (OMIM:110100/608996; (Crisponi et al., 2001; De Baere et al., 2003)). BPES is 

characterised by dysplasia of the eyelids and can also be associated with premature ovarian failure. 

Notably, there is clinical variation in the presentation of premature ovarian failure associated with 

FOXL2 mutations (De Baere et al., 2003; De Baere et al., 2001). Eyelid and craniofacial 

development is affected in the FoxL2-/- mouse and in XX animals ovarian development and fertility 

are perturbed, recapitulating the phenotypes seen in humans (Ottolenghi et al., 2005; Schmidt et al., 

2004; Uda et al., 2004). In FoxL2-/- XX gonads defects in granulosa cell differentiation leads to 

premature depletion of the pool of primordial follicles which results in oocyte atresia and infertility 

(Schmidt et al., 2004; Uda et al., 2004). 

 

Using a tamoxifen-inducible Cre/loxP system it has been demonstrated by Uhlenhaut et al. (2009) 

that the expression of FOXL2 in the postnatal ovary is required to prevent transdifferentiation of 

ovarian cells into testicular-like cell types. In the ovary of the XX FoxL2-/-, and in the induced 

deletion of FoxL2 (where at 56 dpn/8 weeks FoxL2 was deleted in the ovarian follicles), robust 

upregulation of a series of testis-specific genes, including the genes encoding Sox9 and Dhh, was 

observed (Ottolenghi et al., 2005; Uhlenhaut et al., 2009). In the induced deletion model, the 

expression of SOX9 in the granulosa cell lineage resulted in a downregulation of ovarian-specific 

genes and the granulosa and theca cell lineages differentiated into Sertoli-like and Leydig-like cells 

(Uhlenhaut et al., 2009). Additionally, the transdifferentiated steroidogenic theca cell population 

began synthesising HSD17β3 and were subsequently able to synthesise testosterone at levels 

comparable to XY males (Uhlenhaut et al., 2009). These data show that expression of FOXL2 is 

required for folliculogenesis but also for the suppression of the male pathway in somatic cells and 

maintenance of the postnatal ovary (Ottolenghi et al., 2005; Uhlenhaut et al., 2009).  
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1.5 Germ cell development 

 

Germ cells are the precursors of oocytes and spermatozoa in the fetal gonad. The sexual fate of the 

germ cell is determined by signalling factors that the germ cells are exposed to upon entry to the 

gonad, rather than by their chromosomal constitution (Adams and McLaren, 2002; Bowles et al., 

2010; Bowles et al., 2006; Koubova et al., 2006; McLaren and Southee, 1997). Much of what is 

known about the origin and regulation of germ cell identity is derived from studies in mice, as 

discussed below. As germ cells are not the focus of the work presented in this thesis the following 

provides only a brief overview of germ cell development. 

 

In an ovary, germ cells must enter meiosis during fetal life if they are to initiate oogenesis correctly; 

conversely, meiosis must be avoided in male germ cells in the fetus if they are to embark on the 

spermatogenic pathway. The interplay between FGF9 and retinoic acid (RA) appears to be key to 

the correct specification of the germ cells in the mouse: meiosis is induced by RA in the fetal ovary 

and inhibited by FGF9, which is secreted by Sertoli cells, in the fetal testes (Bowles et al., 2006; 

Bowles et al., 2010; Colvin et al., 1999; Koubova et al., 2006). In the developing testis, meiosis is 

avoided because RA is degraded by the P450 enzyme CYP26B1 (cytochrome P450, family 26, 

subfamily b, polypeptide 1; (MacLean et al., 2007)). Thus, CYP26B1 acts to suppress meiosis 

indirectly by the removal of RA, while FGF9 directly suppresses meiosis and acts to maintain 

pluripotency (Bowles et al., 2006; Bowles et al., 2010; Koubova et al., 2006). This mechanism is 

supported by in vivo evidence from Cyp26b1-/- mice where degradation of RA does not occur in 

XY gonads, resulting in upregulation of RA-responsive Stra8 (stimulated by retinoic acid gene 8) 

and germ cell entry into meiosis (Bowles et al., 2006; MacLean et al., 2007).  

 

A double-knockout of Aldh1a2/Aldh1a3 (aldehyde dehydrogenase family 1, subfamily A2/A3), 

genes encoding key synthesisers of RA in the mesonephros, demonstrated that some meiosis still 

occurred in the fetal ovary (Kumar et al., 2011). These data indicate that either RA does not drive 

meiosis or, more likely, that there is an additional source of RA that remains in these mice. More in-

depth analysis of this model will be required to clarify this point. Regardless, a strong antagonism 

exists between meiosis-promoting (female) factors and meiosis-suppressing (male) factors that push 

the resident germ cells into their respective fates.   
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Relatively little is known about whether these mechanisms are used in humans. Culture experiments 

demonstrate that RA initiates meiosis in the human ovary and can upregulate STRA8 (Childs et al., 

2011; Le Bouffant et al., 2010). However, it appears that the human gonad has the capacity to 

produce RA, evidenced by the strong expression of ALDH1A1 (aldehyde dehydrogenase family 1, 

subfamily A1) in the ovary around the time of meiosis initiation (Childs et al., 2011; Le Bouffant et 

al., 2010). Most striking is the apparent lack of CYP26B1 expression in the fetal human testes and 

the expression of RA receptors, indicating that the testes may be exposed to, and may be able to 

respond to, RA, unlike the situation in the mouse (Childs et al., 2011; Cupp et al., 1999). 

 

Expression of STRA8 is essential for germ cells entry into meiosis (Anderson et al., 2008; Baltus et 

al., 2006; Mark et al., 2008). In the ovary, entry into meiosis occurs around 13.5-14.5 dpc whereas 

in the testis germ cells enter meiosis postnatally. Stra8-/- mice are infertile, with meiosis defects 

evident in the fetal ovary (Baltus et al., 2006) and postnatal testis (Anderson et al., 2008; Mark et 

al., 2008). In the Stra8-/- fetal XX gonads and the postnatal XY gonads, meiosis does not proceed 

past entry into prophase I demonstrating that the expression of Stra8 is necessary for germ cell 

entry into meiosis in the XX and XY gonad (Anderson et al., 2008; Baltus et al., 2006; Mark et al., 

2008). In germ cells of Stra8-/- gonads, expression of Sycp3 (synaptonemal complex protein 3) and 

Rec8 (REC8 meiotic recombination protein) is mislocalised (Anderson et al., 2008; Baltus et al., 

2006), up-regulation of Spo11 (SPO11 meiotic protein covalently bound to DSB homolog) and 

Dmc1 (DMC1 dosage suppressor of mck1 homolog, meiosis-specific homologous recombination) 

does not occur (Anderson et al., 2008) and γ-H2AX-positive (H2A histone family, member X) 

double stranded breaks are not observed. These data indicates that Stra8 plays a role in pre-meiotic 

DNA replication, which is essential for meiotic progression. A comprehensive understanding of the 

mechanisms surrounding germ cell entry into meiosis in the fetal ovary and postnatal testis will be 

important as incorrect meiotic progression can result in infertility and germ cell tumours.  
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1.6 Functional validation of candidate genes in mice 

 

The microarray screens described in section 1.2 have identified large numbers of genes that are 

potentially involved in gonadogenesis. In addition to this data, research groups are embarking on 

RNA-seq projects, and genes underlying human developmental disorders are being identified in rare 

disease cohorts due to the widespread adoption of whole exome sequencing (WES) and whole 

genome sequencing (WGS). Together these data provide many opportunities, but also create many 

challenges. One of the primary challenges facing the community is the functional validation of all 

the candidate genes being identified. Classic (‘knock-out’/‘knock-in’) or newer (CRISPR/Cas9) 

mouse genetic manipulation measures remain costly, time-consuming and high-risk. As a result 

there have been numerous attempts to develop a methodology to assess gene function during 

development of embryos and organs to enable pre-screening candidate genes.  

 

In the field of gonadal development knockdown protocols have been based on modification of 

established ex vivo organ culture methods. The two major considerations have been the type of 

construct delivered and the construct delivery method. Delivery methods have included injection, 

electroporation or liposome-based introduction of the construct into the tissue. These constructs 

have been mostly plasmid-based or shRNA-based (Nakamura et al., 2002; Ryan et al., 2011; 

Svingen et al., 2009b).  Nakamura et al. (2002) microinjected a plasmid construct and then 

electroporated the plasmid construct into the gonad, but it was estimated that only 2% of cells took 

up and expressed the construct. Svingen et al. (2009b) also introduced the plasmid construct/shRNA 

into the gonad by microinjection, the plasmid was coated in magnetic nanoparticles which 

facilitated magnetically mediated gene transfection (“magnetofection”) to induce the construct to 

move into the cell. This approach achieved a variable rate of delivery, the construct was expressed 

in approximately 20% of cells, but these cells were mainly localised around the injection site 

(Svingen et al., 2009b). A major concern with these methodologies was that the delivery of the 

construct was predominately restricted to near the injection site where the damage to the tissue by 

the blunt force of the injection made interpreting phenotype difficult. To get around this problem, 

Ryan et al. (2011) delivered a plasmid by electroporation into the gonad using a “nucleofection” 

protocol, which does not rely on microinjection of the construct into the tissue, but only 

approximately 11% of cells successfully expressed the delivered plasmid.  
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Passive uptake of morpholino oligonucleotides (MOs) has been used by others to knock down gene 

function in the lung and the kidney (Dean et al., 2005; Gross et al., 2003; Hartwig et al., 2010; 

Quaggin et al., 1998; Quaggin et al., 1997; Yates et al., 2010). MOs provide a means of knocking 

down protein expression; they are synthetic oligonucleotides of approximately 25 nucleotides in 

length that hybridise to complementary sequences in mRNAs. There are two main classes of MO; 

translation blocking MOs and splice site MOs. Translation blocking MOs target and block the 

translation start site of mRNA. An immediate decrease in protein may not be observed, as pre-

existing protein must be degraded before protein signal decreases. Splice site MOs hybridise across 

an intron-exon junction sequence in the pre-spliced mRNA, so that an exon is skipped and a 

misspliced protein product is produced (Morcos, 2007). Splice site MOs should lead to the 

production of mRNA that is abnormal and hence susceptible to nonsense mediated decay (Morcos, 

2007). However, it is possible that an abnormal protein retaining some activity will be produced. 

More recently vivo-MOs have been developed, these MOs have been covalently linked to a 

dendrimeric octaguanidine delivery moiety which enables them to be more efficiently delivered 

from the circulation into the cytosol and the nuclei of the cell (Morcos et al., 2008; Moulton and 

Jiang, 2009; Wu et al., 2009). Improved systemic delivery efficiency has been reported for vivo-

MO over standard MOs (Morcos et al., 2008; Moulton and Jiang, 2009). 

 

In the lung, MOs could penetrate the epithelium and mesenchyme of murine lung and lacrimal 

gland explants by passive diffusion from the surrounding culture media (Dean et al., 2005).  MOs 

were added to the media that the explant cultures were bathed in at a concentration of 10 µM or 15 

µM and cultured as appropriate (Dean et al., 2005; Yates et al., 2010). Delivery to the lung and 

lacrimal gland in the explanted tissue could be visualised by addition of a fluorescein-tagged MO 

which could be detected with an antibody post-culture (Dean et al., 2005). Using this approach 

branching morphogenesis defects were detected in targeted explants (Dean et al., 2005; Yates et al., 

2010). Passive uptake of MOs from supplemented media has also been used in the kidney, where a 

concentration of 5µM MO with added Lipofectamine or 20 µM MO only was used to supplement 

the media (Gross et al., 2003; Quaggin et al., 1997; Quaggin et al., 1998). Using this system a 

change in glomeruli number was observed after treatment with a MO against Spry1 (Sprouty 

homolog 1; (Gross et al., 2003)). Subsequent work in the kidney used media supplemented with 10 

µM vivo-morpholino, but others have failed to reliably replicate this work ((Hartwig et al., 2010); 

M. Little, personal communication). Therefore, ex vivo knockdown of gene function in organ 

culture remains a key challenge for the field in functionally validating the roles of genes of interest.  
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1.7 Concluding remarks 

The bipotenial nature of the gonad and its somatic cell lineages makes it an ideal model to study 

processes such as cell differentiation and organ morphogenesis. In turn, the study of gonadogenesis 

in mouse increases our understanding of how and why DSDs arise in human patients, helps to 

provide molecular diagnosis and informs clinical best practice.   

 

The critical importance of endocrine function in reproduction and general health has meant that 

Leydig cells, in the postnatal and adult context, have been studied extensively. On the other hand, 

our understanding of the origins, impact and characteristics of FLCs is far less developed. 

Extrapolation of our knowledge of ALCs to FLCs can take us only so far. It is clear that FLCs are 

important during development, but the impact that perturbation of FLC function or differentiation 

has on masculinisation is still unclear. Characterisation of the early FLC population will likely 

reveal key players in early differentiation and pre-steroidogenic function of the population. In 

addition, identification of early FLC markers that are exclusive to the FLC population (in particular 

exclusive of the NSIC and Sertoli cell populations) will be important for characterisation of early 

FLC function.  

 

In looking at the consequences of endocrine function in fetal development it is becoming clear that 

the NSIC population will also likely play a key role. As we are now aware that precursor ALCs are 

present in the fetal testis this indicates that the origin of some ALC defects may be perturbations 

during fetal life. The NSIC population is poorly characterised. New markers of NSIC sub-

populations and markers that can be used for lineage tracing will be essential to uncovering the role 

that this population plays in fetal and postnatal life.  

 

Considering the central role of these two cell lineages I propose that it is likely that novel DSD 

genes may be uncovered by studying these populations. In the past characterisation of the gonadal 

transcriptome has proved informative in uncovering likely DSD candidate genes. Conversely, the 

undertaking of WGS and WES of patient cohorts will also uncover DSD candidate genes that will 

then require validation. This volume of genes needing functional validation will require more 

efficient screening methods to be developed.  
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2 Chapter 2: Morpholino-based screen for gene function in mouse embryo 

 

2.1 Publications 

McClelland KS, Wainwright EN, Bowles J, Koopman P (2015) Rapid Screening of Gene Function 

by Systemic Delivery of Morpholino Oligonucleotides to Live Mouse Embryos. PLoS ONE 10(1): 

e0114932. doi:10.1371/journal.pone.0114932 

 

2.2 Project Summary: 

 

There is a need for a medium throughput technique to knockdown gene function during 

organogenesis in the mouse embryo as a pre-screening tool in order to prioritise candidate genes for 

more detailed analysis. In this project I developed a novel technique for assessing gene function. 

Modified antisense morpholino oligonucleotides (MOs) were injected into the beating heart of mid-

gestation mouse embryos allowing delivery of the MO around the embryo to knockdown the gene/s 

of interest. This work resulted in the publication contained within entitled “Rapid screening of gene 

function by systemic delivery of morpholino oligonucleotides to live mouse embryos” in PLoS 

ONE.  In this work, we knocked down Stra8, Sox9, Gli1/2, Ctrb1 and Adamts19 in the fetal gonad 

and Sox9 in the fetal pancreas. We also used this technique in work in collaboration with Allen 

Feng (Koopman Lab, IMB) by knocking down Cdx2 in the fetal gonad at 11.5 dpc and extended the 

technique by successfully performing heart injection and gonad culture one day earlier at 10.5 dpc 

(data not shown). In addition we targeted two genes with roles in early gonadogenesis, Wnt4 and 

Nr0b1, and Gli3, a hedgehog pathway member.  

 

Furthermore, I used this technique to investigate the role of putative disease causing genes during 

gonad development. Two genes, identified by our collaborators as putative causative genes on the 

basis of results from whole exome sequencing of DSD patients, namely NR0B2 and SART3, were 

tested.  This work was part of an ongoing collaboration with Stefanie Eggers and Andrew Sinclair 

(Murdoch Childrens Research Institute, Australia). 
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2.3 Chapter Introduction 

 

Data from RNA-seq and microarray screens has identified many candidate gonadal development 

genes which now require functional evaluation in model systems. On top of these data, whole 

exome and whole genome sequencing of rare disease cohorts has identified a plethora of possible 

causative genes for human developmental disorders, and these too require validation. Modelling 

genetic mutations in human development, physiology and disease in the mouse model has provided 

invaluable insights. However, the generation of multiple complete or conditional loss-of-function 

mutations in the mouse is technically complex and time-consuming, even with recent advances in 

genome editing technologies such as the CRISPR/Cas-9 system (for review see Hsu et al., 2014). 

Considering that there is a significant risk that a knockout of a gene may result in embryonic 

lethality or little to no phenotype, the generation of a loss-of-function mouse model for every 

interesting candidate remains impractical. In order to prioritise candidates for further 

characterisation we need to develop a technique to assess the probable effects that the loss-of-

function of a gene-of-interest may have on organogenesis. 

 

To address this need I developed a method to knock down gene function in the mid-gestation mouse 

embryo, and then culture the organs ex vivo. There were two main hurdles to overcome in 

developing this strategy for mouse tissues: delivery of the compound and the nature of the 

compound itself. These challenges are discussed in detail in the paper within this chapter.  

 

I chose to optimise and assess the success of the knockdown protocol by attempting to phenocopy 

established genetic knockout models in the developing gonad and pancreas. The gonad and 

pancreas are suited to vascular delivery of compounds, are easily explanted and cultured, and their 

development is well characterised. In order to assess specificity and off-target effects of the MO I 

assessed the expression of multiple markers in targeted and non-targeted cell types. Developing a 

knockdown system in the gonad provides the additional advantage that sexually dimorphic gene 

expression can be used as a further control for general toxicity and/or off-target effects of the 

construct; the expression of genes with sexually dimorphic patterns can be used as a broad read-out 

of the male or female pathway.  

 



 

 45 

2.4 Published manuscript 

 
 

 
 

 
 

 

Rapid screening of gene function by systemic delivery of 
morpholino oligonucleotides to live mouse embryos 
 
 

 
 

Kathryn S. McClelland, Elanor N. Wainwright, Josephine Bowles* and Peter Koopman 
 

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia 
 

 
 

 
*    Author for correspondence: 

Email: j.bowles@imb.uq.edu.au (JB) 
 

 
 
Running title: Morpholino-based screen for gene function in mouse embryos 
 

 
 

Key words: Functional genomics, gene knockdown, sex determination, testis development, germ 
cells, pancreas, antisense 

  

  



 

 46 

Abstract 

Traditional gene targeting methods in mice are complex and time consuming, especially when 

conditional deletion methods are required. Here, we describe a novel technique for assessing gene 

function by injection of modified antisense morpholino oligonucleotides (MOs) into the heart of 

mid-gestation mouse embryos. After allowing MOs to circulate through the embryonic vasculature, 

target tissues were explanted, cultured and analysed for expression of key markers. We established 

proof-of-principle by partially phenocopying known gene knockout phenotypes in the fetal gonads 

(Stra8, Sox9) and pancreas (Sox9). We also generated a novel double knockdown of Gli1 and Gli2, 

revealing defects in Leydig cell differentiation in the fetal testis. Finally, we gained insight into the 

roles of Adamts19 and Ctrb1, genes of unknown function in sex determination and gonadal 

development. These studies reveal the utility of this method as a means of first-pass analysis of 

gene function during organogenesis before committing to detailed genetic analysis.  
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Introduction  

One of the central challenges in the era of functional genomics is to understand gene function and 

unravel the complex networks in which proteins operate to determine phenotype. With RNA-seq 

data amassing on top of an already large list of genes gleaned from microarray screens, many 

candidate genes now require functional assessment. In addition, possible causative genes for human 

developmental diseases are being identified rapidly in rare disease cohorts as a result of whole 

exome and whole genome sequencing.  

 

Much of the functional genomics effort focuses on the mouse model because of its relevance to 

human development, physiology and disease. Investigation of gene function in mouse has 

traditionally involved the generation and breeding of complete or conditional loss-of-function 

alleles via homologous recombination, involving a complex and time-consuming experimental 

pipeline. Even with advances in genome editing technologies such as the CRISPR/Cas-9 system 

(for review see (Hsu et al., 2014)), the generation of knockout animals for every promising gene 

candidate is impractical. Moreover, it is often the case that, after investing the time and resources 

required to generate a conventional or conditional gene knockout, little or no phenotype results. 

Therefore, there is a pressing need to develop methods that provide insight into developmental gene 

function either as a pre-screen before committing to genome manipulation approaches in vivo, or as 

a means of prioritising candidates for further analysis. 

 

With this goal in mind, a variety of methods for accelerated ex vivo functional analysis have been 

reported. In the field of gonadal development, these methods have included injection, 

electroporation or liposome-based delivery of viral-based or siRNA-based constructs into explanted 

tissue (Nakamura et al., 2002; Ryan et al., 2011; Svingen et al., 2009b), followed by organ culture 

and histological or molecular analysis. Typically, these approaches have caused damage to the 

target tissue as well as being limited in delivery area. For other developing organs, such as mouse 

lung and kidney, morpholino antisense oligonucleotides (MOs) have been added to the culture 

media, but these experiments show high variability due to limited passive uptake of the MO (Dean 

et al., 2005; Gross et al., 2003; Hartwig et al., 2010; Quaggin et al., 1998; Yates et al., 2010).  

 

We aimed to develop a method whereby gene function could be perturbed ex vivo, rapidly and 

without injury to the target organ. Here we show that injection of commercially available MOs into 
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the beating heart of a 11.5 dpc (days post coitum) mouse embryo results in delivery via the 

vasculature to the gonads and pancreas. We demonstrate knockdown of protein expression for a 

number of target genes, leading to predicted downstream effects for known genes and novel 

functional insights for other genes or combinations of genes. This method offers a rapid, 

reproducible, efficient means of rapidly pre-screening gene candidates for likely function, as a 

prelude to more rigorous functional studies in mice.  
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Materials and Methods 

Morpholino design 

Splice site MOs were designed to target exon/intron boundaries of target genes (for sequences see 

Supplemental Table 1). All MOs were vivo-MOs which incorporate a dendrimeric octaguanidine 

delivery moiety end modification, with the exception shown in Fig. 2.1H, I, where a 

carboxyfluorescein-labelled standard control MO (F-MO) was used.  

 

Heart injections 

For ease of sexing embryos, we used the X-linked GFP line (Hadjantonakis et al., 1998), 

maintained on an outbred Swiss albino background (Quackenbush strain). Noon on the day on 

which the mating plug was detected was designated as 0.5 days post coitum (dpc). All animal work 

was conducted according to protocols approved by the University of Queensland Animal Ethics 

Committee. This study was approved by the University of Queensland Animal Ethics Committee 

(Permit Number: IMB/176/13/NHMRC/ARC). 

 

Embryos were explanted at 11.5 dpc and placed into PBS (phosphate buffered saline) at 37°C with 

the amniotic sac intact and the placenta attached. If required, embryos were sexed by GFP 

expression. The amniotic sac was opened, taking care not to damage any major blood vessels. The 

left ventricle of the beating heart of the embryo was injected with a MO-cocktail (20 ng/µL (single 

target) or 15 ng/µL (per MO, two targets) and 6% commercial food dye (Queen Fine Foods Pty. 

Ltd.)). For each embryo either control or MO targeted against gene of interest (Gene Tools, LLC) 

was delivered using a Sutter-pulled glass capillary needle. Injection was continued until the marker 

dye was observed in the head vein (approx. 6-8 heart beats, equivalent to ~20-27 ng MO/embryo 

(single MO) or ~30-40 ng MO/embryo (combination of two MOs); see Supplemental Video 1 and 

Fig. 2.1). Embryos with non-beating or weakly beating hearts, or where injection was unsuccessful 

as judged by lack of circulation of the dye (about 1 in 15 embryos), were excluded from further 

study. Embryos were left to recover for 30 min in pre-warmed PBS in an incubator at 37°C, 5% 

CO2; hearts were still beating at the end of this period. Video of the above procedure was captured 

on an Olympus SZX-12 Stereomicroscope (see Supplemental Video 1). 
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For assessing delivery area using a F-MO: 20 µg/mL F-MO (20-27 ng/embryo) and 2% India ink 

was delivered by heart injection as described above (n=3). After 5 and 30 min recovery the genital 

ridge was imaged on an Olympus BX-51 Upright Fluorescence/Brightfield microscope. 

 

For gonad culture, UGR (urogenital ridge: gonad plus mesonephros) was dissected out and hanging 

drops were prepared by pipetting 40 µL of media (BJGB media (Gibco) with 4% Serum Supreme 

(Lonza), 1% penicillin/streptomycin (Gibco) and 200 mg/mL ascorbic acid (Sigma Aldrich)) 

containing a single UGR onto the inner face of the lid of a 24 well tissue culture plate. PBS (500 

µL) was added to each well and the lid was then inverted to close the plate. After 48 h, cultured 

gonads were washed in PBS for 5 min and processed for qRT-PCR, Western blot or 

immunohistochemistry.  

 

For pancreas culture, the foregut endoderm was isolated and any non-affiliated organs removed. 

The foregut was placed on a Millipore (5 µM TPMT) filter floating on 600 µl of culture medium 

(M199 media (Gibco) with 10% Serum Supreme (Lonza) and 2% penicillin/streptomycin (Gibco)) 

and cultured for 4-6 days at 37°C, 5% CO2 with the media changed every other day. After culture, 

tissues were washed in PBS for 5 min and processed for qRT-PCR or immunohistochemistry. 

 

Quantitative RT-PCR analysis 

Total RNA was extracted and cDNA generated from cultured gonad or pancreas as previously 

described (Bowles et al., 2010). Duplicate assays were carried out on an ABI Prism 7500 Sequence 

Detector System. Tbp (TATA box binding protein) was used as an endogenous control to normalise 

gene expression levels (Svingen et al., 2009a). Taqman gene expression sets were as listed in 

Supplemental Table 2. 

 

Relative transcript abundance was calculated using the 2−ΔCT method. Error bars represent S.E.M. 

calculated from independent biological replicates; statistical significance was assessed using 

unpaired (two-tailed) Student's t-test.  

 

Immunofluorescence 
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Analyses were carried out on fixed, paraffin-embedded 7 µm sections using standard methods. 

Briefly, gonad plus mesonephros complexes or foreguts were fixed in 4% paraformaldehyde in 

phosphate buffered saline overnight at 4°C. Tissues were embedded in 1.5% low melt agarose, 

ethanol dehydrated, paraffin‐embedded and 7 µm sections were cut using a Leica Microtome. Slides 

were dewaxed by 2 x 10 min washes in xylene, re‐hydrated and boiled for 5 min in Antigen 

Unmasking Solution (Vector Laboratories), then incubated at room temperature for 60 min. The 

slides were washed for 3 x 10 min in 0.1% Triton‐X in PBS (PBTX). The sections were incubated 

with primary antibodies, which were diluted in blocking buffer at 4°C overnight (for primary 

antibodies see Supplemental Table 3). Antibodies were removed with three washes in PBTX, and 

the slides re‐blocked for 30 min at room temperature. Secondary antibodies were incubated at room 

temperature for 2 h. The secondary antibodies were removed with three PBS washes before DAPI 

staining and mounting with a 60% glycerol/PBS solution. Secondary antibodies were all from 

Invitrogen Molecular Probes (see Supplemental Table 4). Sections were examined by confocal 

microscopy using a Zeiss LSM‐510 META or LSM‐710 META confocal microscope. 

 

Whole-mount immunofluorescence 

Whole mount immunofluorescence was performed as detailed in (Combes et al., 2009a). 

 

Cell quantification 

For quantification of the number of INS- and PAX6-positive cells in the pancreas, 

and HSD3β, NR5A1, SOX9-positive cells in the XY gonad, de-identified gonads or foreguts were 

serially sectioned at 7 µm and processed as per the immunofluorescence protocol. Quantification 

was performed on all sections per sample using the ImageJ64 “Cell Counter” plugin. Error bars 

depict S.E.M. calculated from independent biological replicates; statistical significance was 

determined using unpaired (two-tailed) Student's t-test. Asterisks indicate level of statistical 

significance in pertinent comparisons. 

 

Western blot 

Western blots were carried out as described previously (Zhao et al., 2008), with slight 

modifications. Briefly, gonad pairs were dissociated with a 13-gauge needle and lysed in 1× SDS 

sample buffer (62.5 mM Tris–HCl (pH 6.8), 2% SDS, 10% glycerol, 50 mM dithiothreitol, and 
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0.01% w/v bromophenol blue), separated on SDS-PAGE and transferred to a PVDF membrane 

(Millipore). SOX9 primary antibody was incubated for 2 h at room temperature and then overnight 

at 4°C with 13.5 dpc testis as a positive control and 13.5 dpc ovary as a negative control. For 

primary antibodies see Supplemental Table 3, for secondary antibodies see Supplemental Table 4. 

Proteins were visualised using Clarity Western ECL Substrate (Bio-Rad) on a ChemiDoc machine 

(Bio-Rad). Raw intensity of bands was determined using Image Lab Software (version 4.0). SOX9 

intensity units were calculated relative to α-TUB or β-ACT loading control and relative 

downregulation calculated with cMO sample set to 1 for individual cMO vs. Sox9MO-treated 

samples on each of 3 blots.  Error bars represent S.E.M. calculated from independent biological 

replicates; statistical significance was assessed using unpaired (two-tailed) Student's t-test.  

 

Flow cytometry and cell sorting  

Flow cytometry and cell sorting was carried out as described previously (Wainwright et al., 2013). 

Briefly, 12.5 dpc Sf1-eGFP (Beverdam and Koopman, 2006) litters were dissected, gonads sexed by 

eye and separated from the mesonephros before being dissociated. Cells were incubated with 

SSEA1-PE antibody (BD Biosciences) to tag germ cells. FACS was performed using a BD FACS 

Aria cell sorter. Pools of germ (SSEA1-positive) and eGFP-positive cells were collected separately 

and total RNA was extracted and cDNA prepared as described (Bowles et al., 2010). Cells from 

three or four independent litters and sorting experiments were used for qRT-PCR analysis. 

 

All Supplementary Tables for reagents are listed in the Appendix.  
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Results  

Method development: Delivering morpholinos to fetal organs 

Initially, we trialled the inclusion of standard ‘naked’ MOs or vivo-MOs (in which the MO is linked 

to a dendrimeric octaguanidine delivery moiety) in the media for ex vivo organ culture from 11.5 

dpc for 48h (data not shown), using a protocol similar to those previously published for lungs and 

kidneys (Hartwig et al., 2010; Yates et al., 2010), but were unable to achieve widespread tissue 

uptake and hence efficacy. Therefore, we developed a novel protocol that relied on a combination 

of two approaches. 

 

First, in order to deliver the compounds uniformly through the organs of interest in the mid-

gestation embryo, we looked to classic experiments in mouse and chick, where India ink was used 

to visualise the early vasculature (for review see (Nagy, 2010)). This approach has also been 

utilised to deliver siRNA and viral constructs to the embryo (Sanes et al., 1986), and to deliver 

lectin to the 11.5 dpc gonad via the vasculature (Cool et al., 2011). These studies relied on injection 

of compounds into the beating embryonic heart, and so we reasoned that this approach might offer a 

way to successfully deliver MOs to vascularised tissues in the mouse embryo.   

 

Second, Vivo-Morpholinos (Gene Tools, LLC) were chosen for injection as they reportedly show 

improved systemic delivery efficacy compared to standard MOs (Morcos et al., 2008; Moulton and 

Jiang, 2009; Wu et al., 2009). Oligonucleotides were designed to span intron/exon boundaries 

within the pre-mRNA to produce non-functional, mis-spliced gene products. A standard 

commercial 25-mer MO (see Materials and Methods) was used as a control for the specificity of 

MO effects.  

 

We trialled our knockdown procedure using the developing ovaries, testes and pancreas as a test-

bed. These organs are well suited to vascular delivery of compounds, are readily explanted, develop 

normally in organ culture, and are well characterised in terms of morphological and molecular 

markers of differentiation and morphogenesis. Examination of organogenesis allows specificity and 

off-target effects of the MO to be assessed by testing for markers of differentiation of the targeted 

cell type and multiple non-targeted other cell types. Inclusion of developing gonads in these studies 
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offers the additional advantage that known differences in sexually dimorphic gene expression can 

be used as a further control for general toxicity and/or off-target effects.  

 

A summary of the workflow is shown in Fig. 2.1A, and the detailed protocol is described in 

Materials and Methods. Conceptuses were explanted at 11.5 dpc and the amniotic sac of individual 

embryos opened, taking care not to disrupt major amniotic blood vessels. A MO/food dye cocktail 

was injected into the left ventricle of the beating heart (Fig. 2.1B,F) until the dye was observed to 

travel around the embryo and into the vessels in the head, typically after 6-10 heart beats (Fig. 

2.1C-E; Supplemental Video 1). After injection, embryos were allowed to recover for ~30 min to 

enable delivery of MO throughout the vasculature. Subsequently, tissues of interest were explanted, 

and cultured ex vivo, before detailed analysis of gene and protein marker expression. In preliminary 

experiments, we used carboxyfluorescein-labelled MO (F-MO) to assess the extent of delivery to 

tissues (n= 3). In the case of the developing gonads, F-MO and India ink were observed in the 

nascent mesonephric vasculature at 5 min post-injection (Fig. 2.1G,H) and were clearly visible in 

the gonadal tissue after 30 min (Fig. 2.1I), suggesting that the dye and MO had accessed the target 

tissue.   
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Figure 2.1. Overview of method: MO delivery by heart injection.  

(A) Experimental pipeline from harvest of embryos through to injection, culture and downstream analyses. 
Visualisation of heart injection protocol can be seen in Supplemental Video 1 and images B-E. The cocktail of dye and 
MO in PBS is delivered via injection into the left ventricle of the beating heart at 11.5 dpc (B). Dye can be visualised 
going around the embryonic vasculature (indicated by white arrows) (C,D) and into the head vasculature (D) before the 
whole embryo is coloured (E). Schematic of ventricle injection (F) and the embryonic gonad which is highly 
vascularised (G). Delivery of India ink and F-MO (indicated by white arrows) shows the compounds reaching the 
mesonephric plexus at 5 min post-injection (H; n= 3); after 30 min F-MO positive cells were observed in the gonad 
proper (I; n= 3). s = seconds; min = minutes; g = gonad; m = mesonephros; F-MO = carboxyfluorescein-labelled 
standard control morpholino oligonucleotide. Scale bars: E = 1 mm, H = 0.5 mm. 
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Proof of principle: STRA8 in the developing ovary 

The germ cells of the gonad are the precursors of sperm (XY) or oocytes (XX): whether they adopt 

the male or female developmental pathway is determined by their somatic environment (for review 

see (McLaren, 2003)). Upregulation of the gatekeeping gene Stra8 (stimulated by retinoic acid gene 

8) at 12.5 dpc is essential for germ cell entry into meiosis in the developing ovary, as demonstrated 

by the blockade of meiosis in XX Stra8-/- gonads (Baltus et al., 2006; for review see (Feng et al., 

2014)). Since Stra8-/- gonads have a well-defined phenotype, we tested MO knockdown of Stra8 as 

a proof-of-principle experiment. 

 

Although Stra8 transcript could still be detected after MO treatment (Fig. 2.3A), expression of 

STRA8 protein was greatly decreased as measured by immunofluorescence in Stra8MO-treated XX 

gonads, indicating successful knockdown (Fig. 2.2A). Strikingly, meiotic markers γ-H2AX (H2A 

histone family, member X; Fig. 2.2A) and SCP3 (synaptonemal complex protein 3; Fig. 2.2B) were 

not localised to the nucleus in XX Stra8MO samples, in contrast to control ovaries, where germ 

cells began to show these hallmark signs of entry into meiosis. Stra8MO knockdown did not have a 

direct effect on qRT-PCR expression of other meiosis markers (Fig. 2.3C-E). However, functional 

aspects of meiosis, such as SCP3 nuclear localisation, were clearly affected by Stra8MO treatment 

(Fig. 2.2A,B).  

 

We tested for possible effects of generalised toxicity in MO-treated gonads by examining 

expression of a range of cell lineage markers. Immunofluorescence and qRT-PCR for markers of 

germ cells—OCT4/POU5F1 (POU domain, class 5, transcription factor 1; Figs 2.2B, 2.3G), 

Mvh/Ddx4 (Deadbox polypeptide 4; Fig. 2.3F) and CDH1 (Cadherin 1; Fig. 2.3H,I) indicated that 

the number of germ cells was unaffected in Stra8MO treated gonads, suggesting no qualitative or 

quantitative detrimental effect on germ cells. Furthermore, expression of the somatic marker 

FOXL2 (Forkhead box L2; Fig. 2.3B,I) was unchanged in Stra8MO XX gonads, indicating that 

gonadogenesis in general was not impaired by MO-treatment. Combined, these data show that the 

reduced meiotic marker expression was likely a specific consequence of MO antagonism of STRA8 

expression, rather than generalised toxicity. 
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In summary, the suppression of markers associated with meiotic entry suggests that germ cells 

failed to successfully enter meiosis in Stra8MO knockdown XX gonads. Thus, the Stra8MO 

knockdown partially phenocopied the Stra8-/- gonad phenotype.  

 

Proof of principle: SOX9 in the developing testis 

To test whether MO treatment can influence phenotype when the protein of interest is already 

abundant at the time of treatment, we performed MO knockdown of SOX9 (SRY (sex determining 

region Y)-box 9) at 11.5 dpc. SOX9 expression stimulates the male pathway by promoting Sertoli 

cell differentiation (Wainwright and Wilhelm, 2010). In Sox9-/- XY embryos, gonadal sex reversal 

occurs as SOX9 is both necessary and sufficient for male sex determination (Barrionuevo et al., 

2006; Bishop et al., 2000). However, in heterozygous Sox9-mutant XY embryos, Sertoli cells are 

able to differentiate and the SOX9 downstream target anti-Müllerian hormone (AMH) is still 

produced (Bi et al., 2001; Chaboissier et al., 2004). Since SOX9 protein is already abundant in the 

XY genital ridge at 11.5 dpc, the time of MO treatment, we asked whether MO treatment might 

result in no effect, full gonadal sex reversal, or an intermediate phenotype.  

 

We found that SOX9 protein abundance was significantly decreased in the Sox9MO treated gonads, 

as assessed by Western blot (Fig. 2.2C, for blots see Fig. 2.5) and immunofluorescence (Fig. 2.4H), 

although the expression of Sox9 transcript was unchanged (Fig. 2.4A). Moreover, the expression of 

bona fide direct SOX9 target genes Amh (Arango et al., 1999) and Ptgds (prostaglandin D2 

synthase; (Wilhelm et al., 2007)) were significantly reduced (Fig. 2.2D; Fig. 2.4B) in Sox9MO 

treated XY gonads compared to XY controls, and AMH protein expression levels were also reduced 

compared to the control XY gonad (Fig. 2.2E). 

 

In Sox9MO-treated gonads, residual SOX9 and therefore AMH expression was sufficient to initiate 

Müllerian duct regression by 13.5 dpc (Fig. 2.4J). Consistent with this finding, we showed that 

SOX9 levels were not sufficiently suppressed as to allow upregulation of the female somatic 

pathway; FOXL2-positive cells were not observed (Fig. 2.4H) and expression of Fst (follistatin), a 

female somatic marker, was not upregulated in XY Sox9MO samples compared to XY cMO 

samples as assessed by qRT-PCR (Fig. 2.4F). 
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The expression of another Sertoli expressed gene, Dhh (desert hedgehog; (Bitgood et al., 1996)) 

was not significantly downregulated (Fig. 2.4C). Accordingly, fetal Leydig cell (FLC) 

differentiation occurred in the knockdown of SOX9 in XY gonads, as assessed by expression of 

FLC markers Cyp11a1 (cytochrome P450, family 11, subfamily a, polypeptide 1; Fig. 2.4E 

Nr5a1/NR5A1 (nuclear receptor subfamily 5, group A, member 1; Fig. 2.4D,I) and HSD3β 

(hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1; Fig. 2.3E). As 

expected, germ cells were unaffected by Sox9MO treatment in both XX and XY gonads, as 

assessed by the expression of Ddx4 (Fig. 2.4G) and CDH1 (cadherin 1; Fig. 2.4I).  

 

In summary, treatment with Sox9MO at 11.5 dpc resulted in a phenotype similar to that of the 

heterozygous Sox9 genetic knockout, with reduced target gene expression but no gonadal sex 

reversal. There was no effect of Sox9MO treatment on germ cells, suggesting the phenotype 

observed was not due to off-target or toxic effects of the MO. 

 

Proof of principle: SOX9 in the developing pancreas 

To demonstrate the utility of MO heart injections for functional assay in other developing organs, 

we knocked down SOX9 in the developing pancreas. In addition to its roles in gonadogenesis, 

SOX9 also plays a role in endocrine cell differentiation in the pancreas (Seymour et al., 2008; 

Seymour et al., 2007). Heterozygous Sox9-mutant mice (most closely phenocopied by the Sox9MO 

effects on gonadal development described above) form fewer endocrine islets, but insulin- and 

glucagon-positive daughter cells still differentiate (Seymour et al., 2008). Additionally, 

heterozygous Sox9-mutant mice have decreased expression of Pdx1 (pancreatic and duodenal 

homeobox 1; expressed in SOX9-positive multipotent progenitor cells) and Ngn3 (neurogenin 3; 
endocrine progenitor cells) (Dubois et al., 2011). We therefore investigated whether treatment with 

Sox9MO at 11.5 dpc would cause a decrease in expression of Pdx1/Ngn3 and genes associated with 

insulin production and/or a decrease in the number of endocrine insulin-positive cells.   

 

We conducted our analyses at 4 days and 6 days post-treatment, the equivalent of 15.5 dpc and 17.5 

dpc, respectively. These timepoints were chosen as at 15.5 dpc the endocrine cell population of the 

pancreas expresses INS in a subset of PAX6-positive cells, whereas at 17.5 dpc, the endocrine cell 

population is more established and has matured. By immunofluorescence we saw a decrease in 

SOX9 expression (Fig. 2.6K,L) in Sox9MO treated pancreata at 15.5 dpc.  Importantly, PAX6-
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positive (Fig. 2.6I,J; Fig. 2.2H) and INS-positive (Fig. 2.2I) endocrine cells were present in 

Sox9MO treated pancreata, indicating that the residual SOX9 expression after MO treatment at 11.5 

dpc is sufficient to allow endocrine cell types to differentiate. We observed a significant decrease in 

the expression of Ins1 (insulin 1) and Ins2 (insulin 2) in Sox9MO treated pancreata at 17.5 dpc 

(Figs 2.2F; Fig. 2.6D), however the number of INS-positive (Insulin I/II) cells was unperturbed 

(Fig. 2.2I). We also investigated the expression of Pax6 (paired box 6), which marks endocrine 

cells, and found no change in Pax6 expression (Fig. 2.2G) or the number of PAX6-positive cells 

(Fig. 2.2H) in response to Sox9MO treatment in the cultured pancreata. We found by qRT-PCR that 

expression of putative direct SOX9 target Pdx1 (Fig. 2.6C; (Dubois et al., 2011)) was unaltered but 

Ngn3 (Fig. 2.6B; (Dubois et al., 2011)) expression was significantly decreased at 17.5 dpc. 

 

SOX9 knockdown partially mimicked the heterozygous Sox9-mutant mouse phenotype as the effect 

we saw on endocrine cells was restricted to expression of Ins1, Ins2 and Ngn3. Expression of Sox9 

was unaltered (Fig. 2.6A), as was expression of non-β cell sub-type markers including Glug 

(glucagon; α-cells, Fig. 2.6E), Ghrl (Ghrelin; ε-cells, Fig. 2.6F), Ppy (Pancreatic polypeptide; PP-

cells, Fig. 2.6G) and Sst (Somatostatin; δ-cells, Fig. 2.6H) at both timepoints.   

 

Together, these results suggest that Ins1, Ins2 and Ngn3 transcription in the pancreas was 

specifically suppressed by Sox9MO treatment which, therefore, partially phenocopied the 

heterozygous Sox9-mutant mice (Dubois et al., 2011; Seymour et al., 2008). The specificity of these 

effects suggests that MO treatment did not result in off-target effects or generalised toxicity in the 

pancreas. Moreover, the effects of MO knockdown were detectable for at least 6 days post 

treatment.  
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Figure 2.2. Partial phenocopy of known gene knockouts in gonad and pancreas. 

(A,B) STRA8 knockdown: IF showed knockdown of STRA8 (A) in Stra8MO-treated XX gonads. Nuclear localisation 
of meiosis markers (γH2AX (A) and SCP3 (B); indicated by white arrows; see inserts) was absent but germ cells were 
present (POU5F1 (B); see inserts) in XX Stra8MO-treated gonads. (C-E) Knockdown of SOX9 in the gonad: Western 
blot for SOX9 (relative to α-TUBULIN or β-ACTIN) showed a downregulation of SOX9 (C) after Sox9MO treatment 
in XY gonads (n= 3). Downregulation of expression of SOX9 target gene Amh (D) expression was observed by qRT-
PCR (n= 8, 15, 11, 4). IF for AMH and HSD3β (E) showed that AMH staining was weaker in XY Sox9MO samples 
compared to XY controls and that HSD3β-positive FLCs were present but staining was weaker in XY Sox9MO-treated 
gonads. (F-I) Knockdown of SOX9 in the pancreas: qRT-PCR of Sox9Mo treated pancreata showed Ins1 (F) was 
downregulated but Pax6 (G) was unchanged (n= 5, 5, 5, 5). Quantification of PAX6/INS-positive cells revealed that 
PAX6-positive (H) and INS-positive (I) cell number was unaltered by Sox9MO treatment (n= 3, 4, 2, 2). Scale bars = 
100 µM; cMO = control morpholino; xMO = morpholino targeting gene x. For Western blots SOX9 levels were 
normalised to α-TUBULIN or β-ACTIN loading controls and Sox9MO-treated XY gonads measured relative to cMO 
treated XY gonads with expression for each blot set to 1. Rel. Ab./control = Relative Abundance of SOX9 to α-
TUBULIN or β-ACTIN. For all qRT-PCR levels are shown relative to Tbp, error = S.E.M. For cell quantification error 
= S.E.M. with individual counts plotted. * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, ns = not statistically 
significant. 
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Figure 2.3. Knockdown of STRA8 does not affect general markers of gonadal or germ cell development. 

Gene expression profiled by qRT-PCR in cMO-treated (XX and XY) versus Stra8MO- treated XX gonads (n= 4, 4, 10, 
14) showed that target gene Stra8 (A) and female marker gene FoxL2 (B) were unchanged. Similarly, meiosis marker 
genes Dmc1 (DMC1 dosage suppressor of mck1 homolog, meiosis-specific homologous recombination; C) Scp3, (D) 
and Rec8 (REC8 meiotic recombination protein; E) and germ cell marker genes Ddx4 (F), Pou5f1 (G) and Cdh1 (H) 
were unperturbed. IF for CDH1 and FOXL2 indicated that germ cells and somatic cells are present in Stra8MO-treated 
XX gonads (I; n= 3). Scale bars = 100 µM; cMO= control morpholino; xMO = morpholino targeting gene x. For all 
qRT-PCR levels are shown relative to Tbp, error = S.E.M., * = p = 0.05, ** = p = 0.001, ns = not statistically 
significant. 
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Figure 2.4. Knockdown of SOX9 using Sox9MO in gonad is specific to Sertoli cells but does not cause sex reversal. 

qRT-PCR showed that knockdown of SOX9 in the gonad (A,B: n= 8, 15, 11, 4; C-G: n= 5, 9, 6, 4) had no apparent 
effect on target gene Sox9 (A), however, downregulation of expression of SOX9 target gene Ptgds (B) was observed. 
Levels of Sertoli gene Dhh (C), somatic gene Nr5a1 (D), FLC marker Cyp11a1 (E) were unperturbed in Sox9MO-
treated gonads. While expressed at very low levels in XY gonads, ovarian marker Fst (F) was significantly decreased in 
XY Sox9MO-treated gonads.  Expression of germ cell marker Ddx4 (G) was unperturbed. IF of XY Sox9MO treated 
gonads showed a decrease in SOX9 expression with no evidence of sex reversal (FOXL2-positive cells) (H; n= 5). 
Germ cells (CDH1) and FLCs (NR5A1) could be observed in XY Sox9MO treated gonads by IF (I). Whole-mount IF 
of gonad mesonephroi staining (J; n= 3): PAX2 (paired box 2), marks the Müllerian duct (MD), Wolffian duct (WD) 
and mesonephric tubules, and CDH1, marks the Wolffian duct and mesonephric tubules. The Müllerian duct is not 
retained in XY Sox9MO-treated mesonephroi indicating that the low level of AMH present can regress the duct as 
normal. Scale bars = 100 µM; cMO = control morpholino; xMO = morpholino targeting gene x. For all qRT-PCR: 
levels are shown relative to Tbp, error = S.E.M., * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, **** = p = 0.00001, ns 
= not statistically significant. 
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Figure 2.5. Raw Western blots showing knockdown of SOX9 in the Sox9MO treated XY gonad. 

(A-F) Western blot for SOX9 (relative to α-TUBULIN or β-ACTIN) showed a downregulation of SOX9 upon Sox9MO 
treatment in XY gonads (n= 3) quantified in Fig. 2C. For Western blots SOX9 levels (B,D,F) were normalised to α-
TUBULIN or β-ACTIN loading controls for each blot (A,C,E) and Sox9MO-treated XY gonads measured relative to 
cMO treated XY gonads with expression for each blot set to 1. 13.5 dpc XY gonads were used as a positive control and 
13.5 dpc XX gonads were used as a negative control for SOX9 antibody specificity. cMO = control morpholino; xMO = 
morpholino targeting gene x.  
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Figure 2.6. Knockdown controls for in Sox9MO treated pancreata. 

qRT-PCR (n=5, 5, 5 ,5) showed that Sox9 (A) expression was unperturbed by Sox9MO-treatment. Expression of Ngn3 
(B; marker of multipotent progenitor cells (MPCs)) was significantly decreased at 17.5 dpc. Expression of Pdx1 (C; 
marker of endocrine progenitor cells (EPCs)) was unaltered, but Ins2 (D) expression was significantly decreased in the 
Sox9MO-treated pancreata at 17.5 dpc. Expression of non-β-cell sub-type markers: α-cells Glug (E), ε-cells Ghrl (F), 
PP-cells Ppy (G) and δ-cells Sst (H) were all unaltered by treatment with Sox9MO. IF at 15.5 dpc showed that as in the 
cMO-treated pancreata (I), PAX6-positive cells (indicated by white arrows) differentiate when treated with Sox9MO 
(J), however, SOX9 expression (K,L; indicated by white arrows) is diminished when treated with Sox9MO. cMO = 
control morpholino; xMO = morpholino targeting gene x. For all qRT-PCR: levels are shown relative to Tbp, error = 
S.E.M., * = p = 0.05, ** = p = 0.001, ns = not statistically significant. 



 

 66 

MO-mediated double knockdown of GLI transcription factors 

We next investigated whether this approach could be used to knock down multiple genes 

simultaneously, as is commonplace in zebrafish and Xenopus studies. To this end we created a 

double knockdown of the downstream Hedgehog pathway activators GLI1 (GLI-Kruppel family 

member 1) and GLI2 (GLI-Kruppel family member 2). The Hedgehog signaling pathway promotes 

the differentiation of the steroidogenic FLC population during testis development. During this 

process, the ligand DHH (Desert hedgehog) is secreted by Sertoli cells. Hedgehog receptor, PTCH1 

(Patched homolog 1), which is induced by Hedgehog signaling, as well as Hedgehog targets GLI1 

and GLI2, are expressed by cells of the entire interstitial space that surrounds the testis cords 

(Barsoum and Yao, 2011; Bitgood et al., 1996; Yao et al., 2002). In Dhh-knockout XY gonads, 

there are greatly reduced numbers of steroidogenic FLCs (Bitgood et al., 1996; Yao et al., 2002). 

However, the differentiation of the FLC population is unaffected in XY gonads of either of Gli1 or 

Gli2 single-knockout embryos, suggesting that GLI factors act redundantly in the testis (Barsoum 

and Yao, 2011).  

 

To address this potential redundancy, we generated a double knockdown of Gli1/Gli2 using MO 

heart injection at 11.5 dpc and examined the effects 48h post-injection equivalent to 13.5 dpc. As a 

result, we detected by qRT-PCR a decrease in expression of steroidogenic pathway genes Nr5a1, 

Star (steroidogenic acute regulatory protein), Cyp11a1 and Hsd3β (Fig. 2.7A-D), indicating a 

reduction in steroidogenic cell number or capacity. The decrease in Nr5a1 expression was 

consistent but not statistically significant. Notably, no change in the expression of these genes was 

detected in single Gli1MO (Fig. 2.7E-H) or Gli2MO (Fig. 2.7I-L) knockdowns. Thus, the 

attenuation of steroidogenic gene expression was specific to the Gli1/2MO double knockdown. No 

difference was observed in levels of the Hedgehog receptor gene Ptch1 by qRT-PCR in the double 

or single knockdowns relative to controls (Fig. 2.8C,F,I), indicating that the extent of GLI 

knockdown was not sufficient to perturb expression of at least one known GLI target.  

 

We quantified the number of steroidogenic cells to determine whether the decrease in steroidogenic 

gene expression was due to a decrease in cell number or to an impediment to cell maturation. There 

was no significant difference in the number of NR5A1-positive/SOX9-negative (immature FLC) or 

HSD3β-positive (FLC) cells between Gli1/2MO treated XY gonads and controls (Fig. 2.7M,N,O), 

suggesting that the observed phenotype is due to a decrease in steroidogenic capacity of the Leydig 
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cell population. Testis cords formed properly and expression of Sertoli cell marker Amh/AMH (Fig. 

2.8A,D,G) and germ cell markers Ddx4/POU5F1 (Fig. 2.7M; Fig. 2.8B,E,H) appeared unaffected 

by the Gli1/2MO treatment (Fig. 2.7C,D), consistent with a lack of off-target or broadly toxic 

effects. Our results support functional redundancy between Gli1 and Gli2 in FLCs, and demonstrate 

proof-of-principle that heart injection of MO can be used to target multiple genes simultaneously to 

assess possible genetic interactions.  
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Figure 2.7. Double knockdown of Gli1/Gli2 in XY gonads. 

(A-D) Knockdown of GLI1/GLI2 in the gonad: qRT-PCR showed that treatment with Gli1/Gli2MO (n= 6, 5, 5, 8) 
resulted in no significant downregulation in steroidogenic regulator Sf1/Nr5a1 (A) but a significant downregulation in 
expression of steroidogenic pathway enzymes Hsd3β (B), Cyp11a1 (C) and Star (D). No change was observed in Nr5a1 
expression in Gli1MO or Gli2MO knockdown (E,I). Similarly, there were no changes in expression of steroidogenic 
pathway enzymes Hsd3β (F,J), Cyp11a1 (G,K) and Star (H,L) in Gli1MO (E-H; n= 6, 6, 7, 5) or Gli2MO (I-L; n= 8, 7, 
4, 3) single knockdowns. IF showed Sertoli cells (AMH (M) and SOX9 (N)) and germ cells (POU5F1 (M)) were 
present in XY Gli1/Gli2MO treated gonads and no FOXL2-positive cells were observed (N). Steroidogenic Hsd3β-
positive (M) and Nr5a1-positive (N) cells were still present in Gli1/Gli2MO treated XY gonads. Quantification (n= 2) 
of steroidogenic cells revealed no change in the number of HSD3β-positive Leydig cells (O; green) or NR5A1-
positive/SOX9-negative pre-Leydig cells (O; red). There was a decrease in the number of SOX9-positve Sertoli cells in 
the Gli1/2MO treated XY gonads (O; yellow). Scale bars = 100 µM; cMO = control morpholino; xMO = morpholino 
targeting gene x. For all qRT-PCR levels are shown relative to Tbp, error = S.E.M. For cell quantification error = 
S.E.M. with individual counts plotted. * = p = 0.05, ** = p = 0.001, ns = not statistically significant. 
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Figure 2.8. Gli1/2MO treatment has no effect of Sertoli or germ cells. 

(A-C) Knockdown of GLI1/GLI2 in the gonad (n= 6, 5, 5, 8): qRT-PCR for Sertoli cells marked by Amh (A), germ 
cells marked by Ddx4 (B) and hedgehog receptor Ptch1 (C) showed no change after Gli1/Gli2MO treatment. The same 
trend was observed in the Gli1MO knockdown (n= 6, 6, 7, 5; Amh (D); Mvh (E); Ptch1 (F)) and the Gli2MO 
knockdown (n= 8, 7, 4, 3; Amh (G); Mvh (H); Ptch1 (I)). cMO = control morpholino; xMO = morpholino targeting gene 
x. For all qRT-PCR levels are shown relative to Tbp, error = S.E.M., * = p = 0.05, ns = not statistically significant. 
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Addressing novel gene function: Adamts19 and Ctrb1 

Finally, we characterised the knockdown of two genes to which functions have not previously been 

ascribed, so as to test the utility of the system for first-pass functional characterisation of novel 

genes. We focused first on the ovarian gene Adamts19 (a disintegrin-like and metallopeptidase 

[reprolysin type] with thrombospondin type 1 motif, 19), identified in a PCR-based cDNA 

subtraction screen, and in which polymorphisms have since been associated with premature ovarian 

failure (POF; (Knauff et al., 2009; Menke and Page, 2002; Pyun et al., 2013). The function of this 

gene remains unknown at the molecular, cellular or whole organism levels.  

 

We performed qRT-PCR on FACS-sorted somatic cells at 12.5 dpc and confirmed that Adamts19 

was expressed in FOXL2-positive somatic cells, and not in the XX germ cells (Fig. 2.9A). MO 

knockdown of Adamts19 resulted in no change in XX granulosa somatic markers Fst or Irx3 

(Iroquois related homeobox 3; Fig. 2.9B,C) and slight but not statistically significant decrease in 

expression of the germ cell marker Ddx4 (Fig. 2.9D).  However, there were no observed gross 

changes in the ratio of the number of FOXL2-positive (somatic) to MVH-positive (germ) cells by 

immunofluorescence (Fig. 2.9H). qRT-PCR expression of male markers Amh (Fig. 2.9E) and 

Cyp11a1 (Fig. 2.9G) and somatic marker Nr5a1 (Fig. 2.9F) were unperturbed by Adamts19MO 

treatment indicating there were no broad off-target effects of MO treatment. These results do not 

indicate a clear role for Adamts19 in the developing ovary. Importantly, these data illustrate that 

treatment with a MO does not always perturb gonadogenesis, pointing to a lack of generalised non-

specific artefacts.  

 

We also examined the Sertoli-expressed gene Ctrb1 (chymotrypsinogen B1), which has been 

implicated in gonadal development. In a screen of XX Wnt4-knockout (wingless-related MMTV 

integration site 4) mice, which exhibit partial sex reversal, expression of Ctrb1 was increased, 

suggesting an association with the testis development pathway (Coveney et al., 2008b). Differential 

expression data sets indicate that Ctrb1 is testis-specific from 12.5 dpc and that it is expressed in the 

Sertoli cell lineage (Jameson et al., 2012b).  

 

Knockdown of Ctrb1 resulted in no change to Sertoli cell markers Sox9 and Amh, but a statistically 

significant increase in the expression of Ptgds in the testis by qRT-PCR (Fig. 2.9I, J, K). In the XX 

Ctrb1MO treated gonad, Ptgds expression was decreased compared to the XX control. No changes 
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were observed in the expression of the steroidogenic gene Cyp11a1, granulosa cell marker Fst or 

germ cell marker Ddx4 (Fig. 2.9L, M, N) in the XY Ctrb1MO treated gonad, suggesting that the 

other testis cell lineages are unperturbed. The increase in Ptgds expression resulting from 

knockdown of Ctrb1 implicates Ctrb1 in processes downstream of SOX9, such as Ptgds regulation 

and as such provides a basis for the instigation of further genetic studies.  
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Figure 2.9. Knockdown of Adamts19 in XX gonads and Ctrb1 in XY gonads. 

(A) qRT-PCR on FACS-sorted somatic and germ cells (n= 3, 4, 3, 4) shows that Adamts19 is expressed in the somatic 
cells of the ovary at 12.5 dpc and at much lower levels in somatic cells of the testis. Knockdown of ADAMTS19 in the 
XX gonad (n= 7, 8, 5, 5) showed no change in female somatic markers Fst (B) and Irx3 (C) and a slight decrease in 
expression of germ cell marker Ddx4 (D). Male markers, Amh (Sertoli cells; E), Nr5a1 (Somatic cells; F) and Cyp11a1 
(Leydig cells; G) were unperturbed. IF showed no discernable difference in the ratios of FOXL2-positive/DDX4-
positive cells in the Adamts19MO-treated XX gonad compared to the control (H). Knockdown of CTRB1 in the XY 
gonad (n= 19, 16, 14, 14) resulted in no change to male somatic markers Sox9 (I) or Amh (J) but an increase in Ptgds 
(K) was observed in the Ctrb1MO-treated XY gonad. Expression of Leydig cell marker Cyp11a1 (L), female somatic 
marker Fst (M) and germ cell marker Ddx4 (N) was unchanged. Germ = germ cells, Som. = somatic cells. Scale bars = 
100 µM; cMO = control morpholino; xMO = morpholino targeting gene x. For all qRT-PCR: levels are shown relative 
to Tbp, error = S.E.M., * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, **** = p = 0.00001, ns = not statistically 
significant. 
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Discussion 

We describe here a novel first-pass screening method that can provide insights into the function of 

candidate organogenesis genes, singly or in combination, either to assist with the design of in-depth 

genetic and biochemical investigations, or to prioritise lists of candidate genes for these 

investigations. By injection of MOs into the heart of mouse embryos, we exploited the embryonic 

vasculature to deliver the MO to the target tissues, which were then explanted, cultured and 

analysed. Using this technique we partially reproduced known gene knockout phenotypes in the 

fetal gonads and pancreas, created a novel double knockdown of GLI1 and GLI2, and screened 

Adamts19 and Ctrb1 for potential function in early gonadal development. These studies reveal the 

utility of this method to obtain insights into gene function during organogenesis rapidly and 

relatively simply. 

 

The method described here provides a significant improvement on previous injection- and 

electroporation-based delivery strategies, which suffered from limited delivery area and/or uptake, 

tendency for tissue damage and lack of reproducibility. Published methods of gain-of-function 

(cDNA) or loss-of-function (shRNA) construct delivery by magnetofection, nucleofection or 

liposome-mediated methods in cultured gonads have shown delivery of the effector construct to 2-

20% of cells in the target tissue (Gao et al., 2011; Nakamura et al., 2002; Ryan et al., 2011; Svingen 

et al., 2009b). In contrast, we visualised delivery of fluorescent MO throughout the tissue of 

interest, saw consistent knockdown of downstream target genes throughout the cultured organ, and 

showed in the XY gonad that the MO could target genes in multiple cell lineages. Secondly, 

injection of the MO into the heart avoids compromising the integrity of the target tissue by direct 

contact with needles and/or electrodes. Finally, relying on systemic delivery rather than direct 

injection of the effector construct avoids experimental error and instead produced consistent gene 

knockdown for the target gene in multiple experiments performed over a two-year period.  

 

Encouragingly, in our proof-of-principle and double-knockdown experiments, it was the capacity of 

a cell population to express downstream target genes and proteins, rather than the number of 

expressing cells, that was altered by MO treatment. The knockdown of the target protein was 

incomplete in all cases; this allowed differentiation of the target cells but their functionality was 

reduced. For example, FLCs still differentiated in normal numbers in the Gli1/Gli2 MO treated XY 

gonads, but they did not produced steroid enzymes at the same capacity as the controls. This 
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indicates that the processes controlled by GLI factors were being perturbed by MO treatment, 

similarly to the Sox9MO treated XY gonads and pancreata. Importantly, the subtle outcomes of MO 

treatment were highly reproducible, as shown by our qRT-PCR analyses, suggesting that the 

information generated provides a robust basis on which to base mechanistic hypotheses and further 

experiments. 

 

In addition to partially reproducing several established null mouse models, using MO injection we 

strengthened the case for creating a complex genetic conditional double knockout of GLI1 and 

GLI2 in FLCs (Barsoum and Yao, 2011). Our findings suggest that there is functional redundancy 

between GLI1 and GLI2 in the developing testis and that further genetic analysis is likely to be 

fruitful.  

 

With any experiments involving MOs, careful attention to controls is required (Eisen and Smith, 

2008). By careful examination of untargeted cell populations in the organ of interest, we were able 

to identify and exclude off-target effects and toxicity. Nonetheless, concerns have been raised 

regarding the difference between MO knockdown phenotypes and other functional analysis 

methods (Schulte-Merker and Stainier, 2014). This difference is at least partly explained by the fact 

that MO knockdown only partially reduces overall activity of the target protein; certainly, in our 

Sox9MO experiments, the phenotypes obtained more closely resembled heterozygous than 

homozygous knockouts. All things considered, it is clear that genetic targeting by homologous 

recombination or CRISPR/Cas9 approaches will remain the gold standard for functional analysis. 

Therefore, we suggest that, once a likely effect is revealed by MO studies, it would be more useful 

to advance to definitive functional experiments, rather than to devote additional resources to 

definitively excluding off-target effects (for example by assaying multiple MOs for each gene of 

interest).  

 

End of published paper 
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Additional work using MO heart injection outlined below: 

For the work herein: 

All reagents are described in Supplemental Tables 1-4. All additional work was performed as 

described in the manuscript (above). Additionally the cell sorting and statistical analysis for Fig. 

2.13A-C and Fig. 2.15I-J was performed as described in Chapter 3 (statistical significance was 

determined using one-way ANOVA with Bonferroni's multiple comparisons test) 

2.5 Hedgehog signalling pathway: GLI3 in the developing gonad 

In the publication in this chapter I created a double knockdown of the downstream Hedgehog 

pathway activators GLI1 and GLI2. The Hedgehog signaling pathway promotes the differentiation 

of the FLC population during testis development. The ligand DHH is secreted by Sertoli cells, 

whilst the receptor (PTCH1) and targets (GLI1 and GLI2) are expressed by cells of the entire 

interstitial space that surrounds the testis cords (Barsoum and Yao, 2011; Bitgood et al., 1996; Yao 

et al., 2002). In Dhh-knockout XY gonads, there are greatly reduced numbers of steroidogenic 

FLCs (Bitgood et al., 1996; Yao et al., 2002). However, in either the Gli1 or Gli2 knockout testis 

the differentiation of the FLC population is unaffected, suggesting that GLI factors act redundantly 

(Barsoum and Yao, 2011).  We demonstrated that, as in the genetic knockout, knockdown of either 

GLI1 or GLI2 had no effect on steroidogenesis, but double knockdown of GLI1 and GLI2 resulted 

in reduced expression of steroidogenic pathway genes. Overall, the same number of FLCs 

differentiated in control and Gli1/Gli2MO treated XY gonads, but in Gli1/Gli2MO-treated XY 

gonads transcription of genes encoding steroidogenic enzymes was attenuated.  

 

The role of GLI3 has not been investigated in testicular development previously. It is thought that 

GLI1 and GLI2 act primarily as transcriptional activators, while GLI3 is a transcriptional repressor 

(Pan et al., 2006). A testicular Gli3 -/- phenotype has not been described, so I used a Gli3MO to 

knock down Gli3 from 11.5 dpc in the gonad. Knockdown of GLI3 alone did not perturb 

gonadogenesis.  Expression of the genes encoding markers of the male pathway such as somatic 

cell marker Nr5a1 (Fig. 2.10A), Sertoli cell marker Amh (Fig. 2.10B) and interstitial cell marker 

Notch2 (Fig. 2.10D) were unperturbed by Gli3MO treatment. In response to a hedgehog ligand such 

as DHH, transcription of Ptch1 is up-regulated (Ingham and McMahon, 2001) and, therefore, 

expression of Ptch1 can be used as a read-out of HH pathway activity.  In Gli3MO-treated XY 

gonads, expression of Ptch1 (Fig. 2.10C) was unchanged, as was the expression of steroidogenic 

cell markers, Star, Cyp11a1 and Hsd3β  (Fig. 2.10E-G), indicating that Hh signaling and FLC 
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development were unperturbed by GLI3 knockdown. As expected, expression of the genes 

encoding ovarian marker FoxL2 (Fig. 2.10H) and germ cell marker Ddx4 (Fig. 2.10I) was unaltered 

by Gli3MO treatment. These data indicate that single knockdown of GLI3 does not perturb FLC 

development and function in XY gonads.  It is possible, however, that GLI3 loss is compensated for 

by the presence of GLI1 and/or GLI2.   
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Figure 2.10. Knockdown of Gli3 in the gonad. 

(A-I) Knockdown of GLI3 in the gonad: qRT-PCR showed that treatment with Gli3MO (n= 5, 5, 4, 3; n= 1 = pool of 3 
single gonads from 3 embryos) resulted in no significant downregulation in steroidogenic regulator Nr5a1 (A) or Sertoli 
cell marker gene Amh (B).  Expression of DHH target and receptor Ptch1 (C) was unaltered and was interstitial marker 
Notch2 (D). Expression of steroidogenic pathway members Star (E), Cyp11a1 (F) and Hsd3β (G) was unaltered in 
Gli3MO gonads. No change was observed in expression of ovarian marker FoxL2 (H) or germ cell marker Ddx4 (I) in 
the Gli3MO knockdown. cMO = control morpholino; xMO = morpholino targeting gene x. For all qRT-PCR levels are 
shown relative to Tbp, error = S.E.M. * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, ns = not statistically significant. 
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2.6 Wnt4: targeting genes that act early in gonadogenesis 

In the publication in this chapter I used MOs against Stra8 and Sox9 as controls for the development 

of the heart injection protocol. In addition we also trialled using a MO to knockdown WNT4, with 

injection of the MO at 11.5 dpc followed by 48 h culture. WNT4 is important for ovarian 

development and it expressed robustly from 11.5 dpc.  Like SOX9, WNT4 was chosen as a 

candidate for MO knockdown to assess if knockdown of candidate genes could phenocopy aspects 

of the knockout when target transcript is already abundant at the time of injection. 

 

Wnt4 is expressed in the 11.5 dpc XX and XY gonad and is later maintained in the ovary and in the 

mesonephros of both sexes (Vainio et al., 1999). The early expression of NR5A1 in XX and XY 

Wnt4-/- gonads is abnormal (Jeays-Ward et al., 2003). In XX Wnt4-/- mice, ovaries are 

masculinised: ectopic steroidogenic cells are present and the ovaries form a vascular network 

reminiscent of the coelomic vessel. On the other hand, in Wnt4-/- XY gonads Sertoli cell 

differentiation and testis cord structure are compromised (Jeays-Ward et al., 2003; Jeays-Ward et 

al., 2004; Vainio et al., 1999).  

 

A published screen of Wnt4-/- XX gonads aimed to detect genes downstream of WNT4 signaling in 

the differentiating ovary (Coveney et al., 2008b). This screen identified Sp5 (trans-acting 

transcription factor 5), a known target of Wnt/β-catenin signaling in zebrafish, as a putative WNT4 

target in the mouse gonad (Coveney et al., 2008b; Weidinger et al., 2005). Additionally, expression 

of Ctrb1, an XY-enriched gene in wild-type gonads, was increased in XX Wnt4-/- gonads compared 

to XX wild-type gonads, indicating it may be a WNT4 target (Coveney et al., 2008b). 

 

WNT4 is robustly expressed at the stage of injection (11.5 dpc) and likely exerts its influence early 

in gonadogenesis, and so it was expected that knockdown of WNT4 would result in only a mild 

gonadal phenotype or no phenotype. As anticipated, gonadogenesis was apparently unperturbed by 

Wnt4MO treatment at 11.5 dpc. qRT-PCR on single gonad samples demonstrated that expression of  

the target gene Wnt4, and ovarian marker genes Fst and FoxL2, was unperturbed by Wnt4MO 

injection (Fig. 2.11A-C). Additionally, expression of WNT4-responsive genes Sp5 and Ctrb1 was 

not altered by Wnt4MO treatment  (Fig. 2.11E,F). Expression of the genes encoding Sertoli cell 

marker Sox9, Leydig cell marker Cyp11a1 and germ cell marker Ddx4 was equivalent between 

Wnt4MO-treated and control gonads (Fig. 2.11D,G,H). Therefore, Wnt4MO did not result in any 
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changes in the expression of WNT4-responsive genes or the differentiation of ectopic steroidogenic 

cells in the XX Wnt4MO treated gonad (Fig. 2.11D,G,H). It is likely that the MO treatment was 

insufficient to perturb the primary function of WNT4. These data highlight the limitations of the 

technique. As a result, I have also extended the utility of the heart injection technique by 

successfully performing heart injection and gonad culture one day earlier at 10.5 dpc, followed by 3 

day hanging drop culture (data not shown; collaboration with Allen Feng, Koopman Lab, IMB, 

UQ). 
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Figure 2.11. Knockdown of Wnt4 in the gonad. 

(A-H) Knockdown of WNT4 in the gonad: qRT-PCR showed that treatment with Wnt4MO (n= 16, 8, 13, 22) resulted 
in no perturbation of Wnt4 (A), ovarian marker genes Fst (B) and FoxL2 (C) or germ cell marker gene Ddx4 (D).  
Expression of Wnt4-/- responsive genes Sp5 (E) and Ctrb1 (F) was unaltered by treatment with Wnt4MO, as was Sertoli 
marker Sox9 (G) and Leydig cell marker Cyp11a1 (H). cMO = control morpholino; xMO = morpholino targeting gene 
x. For all qRT-PCR levels are shown relative to Tbp, error = S.E.M. For cell quantification error = S.E.M. with 
individual counts plotted. * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, ns = not statistically significant. 
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2.7 Novel DSD candidate genes 

The following studies are part of a collaborative project with Stefanie Eggers and Andrew Sinclair 

(MCRI, Melbourne) as part of the NHMRC Program in Human Disorders of Sexual Development. 

The data pertaining to initial DSD candidate gene identification from whole exome sequencing of 

patients and families (Fig. 2.12, 2.14) were generated by Stefanie Eggers as part of her PhD. Initial 

expression analysis of the candidate gene and MO injections were performed by me (Fig 2.13; see 

declaration for more details).  

 

2.7.1 SART3: candidate for 46,XX and 46,XY DSD 

SART3 was identified as a potential DSD candidate gene in two Morroccan/Libyan Jewish families 

from Israel using whole exome sequencing. The two families each had an individual with 46,XY 

DSD and intellectual disability, a 46,XX individual with intellectual disability only, and unaffected 

parents (Fig. 2.12A). Relatedness and inbreeding calculations suggested that the two Israeli families 

were likely to be related and therefore were likely to share haplotypes. Linkage analysis identified a 

linkage peak on chromosome 12, where all four affected children were identical by descent, as the 

critical region. Of the 89 genes contained in this region the gene SART3 was the only gene 

containing a variant that followed the proposed autosomal recessive inheritance pattern in both 

families (parents all het, affected children all homozygous).   In both families, SART3 contained a 

single nucleotide variant, which was predicted to be deleterious, in exon 17 (Fig.2.12B,C). 

Additionally, a heterozygous mutation in SART3 was identified in an unrelated individual with 

46,XY DSD who had hearing impairment but no reported intellectual disability. A previously 

published patient with a deletion of the region including SART3 was also identified; this patient had 

46,XX DSD with intellectual disability and hearing impairment (Petek et al., 2003). These data 

from two unrelated families and a published case suggest that SART3 is the causative DSD gene. 

 

In support of a role for SART3 in testicular development and 46,XY DSD, SART3 is expressed in 

the adult human testes (Liu et al., 2002; Nagase et al., 1995; Yang et al., 1999). The function of 

SART3 in sexual development has not been established, but there is some in vitro evidence from AR 

transactivation luciferase assays that SART3 can bind the androgen receptor (AR) and suppress AR 

transcriptional activation of downstream genes through its nuclear-receptor box (LXXLL-motif) 

(Liu et al., 2004). Dual-luciferase reporter trans-activation assays performed by Stefanie Eggers 

demonstrated that, in vitro, at a low androgen concentration that mimics endogenous female levels, 
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wild-type SART3 abolishes transcriptional activation of AR target genes. On the other hand, at 

higher testosterone concentrations, that mimic endogenous male levels, SART3 allowed the 

activation of downstream targets of AR. However, mutant-SART3 with the exon 17 SNV exhibited 

a concentration-independent repression of AR; this mechanism would indicate that expression of 

mutant-SART3 in the testis might create a pseudo-female state despite the high androgen 

concentration (S. Eggers, personal communication). Additionally, these data indicate that the SNV 

identified in exon 17 is a gain-of-function mutation that acts as a dominant negative, resulting in 

constitutive suppression of the ability of AR to activate downstream targets. This model would 

explain why a gonadal/DSD phenotype is observed in the 46,XY children, but not in the 46,XX 

children who carry the same mutation. Under this model, in XX individuals with the exon 17 SNV 

SART3 mutation, the androgen response would be further suppressed, reinforcing the status quo in 

XX individuals and resulting in normal ovarian development. 
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Figure 2.12. A novel single nucleotide variant (SNV) in exon 17 of SART3 was identified in both families to be 

associated with 46,XY DSD and ID. 

(A) Pedigrees of the two families, showing all eight individuals that were available for this study. Squares and circles 
represent males and females, respectively. Open symbols indicate unaffected individuals, filled squares and circles 
highlight affected individuals. 46,XY DSD/ID patients are shown as black squares, and the two girls affected by 
isolated ID are indicated by light grey circles. (B) Schematic view of the SART3 genomic region on chr12: 
108,915,991-108,955,165 (GRCh37/hg19) including the exon-intron structure (SART3 is located on the reverse strand 
and shown here in its 3’-5’ orientation from left to right). Exon 17 is highlighted in red. (C) Electropherograms 
(forward strand) of both unaffected parents of family ISR1 (father ISR1 I:1 and mother ISR1 I:2) showing the 
heterozygous SNV (c.2507G>A (reverse strand) or C>T (forward strand), both affected children of ISR1 
(46,XYDSD/ID ISR1 II:1 and 46,XX ID ISR1 II:2) showing the homozygous SNV, and one control sample (C1) 
showing the wild-type SART3 exon 17 sequence (data, figure and legend produced by Stefanie Eggers, reproduced with 
permission). 
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Sart3 Expression and Knockdown 

To validate the function of SART3 in gonadogenesis the expression and function of Sart3 were 

examined in the mouse. Published microarray expression data indicated that Sart3 was expressed in 

all major cell lineages in XX and XY gonads (Jameson et al., 2012b). We used FACS-sorted Sf1-

eGFP XY cells to confirm by qRT-PCR that Sart3 is expressed at similar levels in the Sertoli cells, 

FLCs, NSICs and germ cells of the XY gonad from 12.5-14.5 dpc (Fig. 2.13A-C). Similarly, Sart3 

was expressed in the somatic and germ cells of the XX gonad from 12.5-14.5 dpc (Fig. 2.13A-C). 

These data indicated that expression of Sart3 was not sexually dimorphic or restricted to a single 

cell lineage in XX or XY gonads. Immunofluorescence and in situ hybridization in mouse tissues 

during embryonic development and into adulthood showed expression of Sart3/SART3 throughout 

the testis and ovary, and in regions of the hippocampus (CA1-CA3 regions; S. Eggers, personal 

communication). 

 

To determine the function of SART3 during gonad development I used a Sart3MO to examine the 

effect of SART3 knockdown on gonadogenesis. The Sart3MO knockdown modelled 

haploinsufficiency, or heterozygous deletion, of SART3, as described in the 46,XX DSD patient 

(Petek et al., 2003). Therefore, it was expected that knockdown of SART3 would result in an XX 

gonadal phenotype. qRT-PCR demonstrated that expression of the genes encoding Nr5a1 and 

Sertoli cell markers Sox9, Amh, Ptgds, Dhh and Gata4 was unaffected by Sart3MO injection in XX 

and XY gonads (Fig. 2.13D-I). Moreover, by immunofluorescence expression of AMH and testis 

cord structure appeared normal and similar between XY Sart3- and control-MO treated gonads (Fig. 

2.13U), indicating that Sertoli cells were unaffected by SART3 knockdown. Additionally, 

expression of the genes encoding Nr0b1 and female somatic markers Wnt4, FoxL2 and Fst was 

equivalent between the control and Sart3MO injected samples, indicating that female somatic cells 

were unperturbed by SART3 knockdown (Fig. 2.13O-R).  qRT-PCR showed that expression of the 

gene encoding germ cell marker Ddx4/DDX4 was unaffected, as was DDX4 protein expression, 

indicating that germ cells were unperturbed by SART3 knockdown (Fig. 2.13S,T).  

 

Interestingly, the SART3 protein has an LXXLL-motif and so has the ability to interact with 

transcription factors such as NR5A1, and therefore, could potentially regulate steroid 

biosynthesis/response pathways (Liu et al., 2004). Hence, I investigated if the expression of Nr5a1 

and steroidogenic pathway genes was altered by knockdown of SART3. By qRT-PCR there was no 
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change in expression of Nr5a1 between Sart3MO and control treated gonads (Fig. 2.13D). 

However, expression of the gene encoding the early steroidogenic pathway component Star, which 

mediates the transfer of cholesterol across the mitochondrial membrane, was elevated in XX/XY 

Sart3MO treated samples compared to controls (Fig. 2.13J). Additionally, in XX Sart3MO treated 

gonads, expression of the gene encoding the early steroidogenic pathway enzyme Cyp11a1, which 

catalyses the second step of the steroid biosynthesis pathway, was significantly increased, to levels 

equivalent to those observed in XY control gonads (Fig. 2.13K). Expression of the gene encoding 

later steroidogenic pathway enzyme Hsd3β was also elevated to levels similar to the XY control in 

XX Sart3MO treated gonads (Fig. 2.13L). Expression of Insl3, a marker of FLC maturation that is 

not associated with steroidogenesis, was not expressed at biologically meaningful levels in XX 

Sart3MO treated gonads, and Igf1 expression was unchanged (Fig. 2.13M-N). These data indicated 

that the steroidogenic pathway was being ectopically activated as a result of SART3 knockdown in 

XX gonads.  

 

Ectopic activation of the steroidogenic pathway in the ovary has been achieved by constitutive 

expression of Smo: ectopic SMO expression in the ovary allows Hh ligand-independent 

derepression the Hh pathway (Barsoum et al., 2009). Additionally, ES cells can be directed to 

differentiate into a gonadal-like steroidogenic lineage by forced expression of NR5A1 (Jadhav and 

Jameson, 2011). Although there was no change in expression of Nr5a1 by qRT-PCR, NR5A1 

protein appeared to be ectopically expressed in the XX Sart3MO treated gonads (Fig. 2.13D,T).  

Additionally, although there was no change in Dhh expression, numerous HSD3β-positive cells 

were detected in XX Sart3MO treated gonads (Fig. 2.13H,U). These data indicate that knocking 

down SART3 allows DHH-independent ectopic activation of the steroidogenic pathway in the XX 

gonad, probably mediated through ectopic expression of NR5A1. The ectopic activation of 

steroidogenesis in early ovarian development may lead to the subsequent masculinisation of the 

ovary. 
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Figure 2.13. Knockdown of Sart3 in the gonad. 

(A-C) Expression of Sart3 in the XY and XX gonad at 12.5 dpc (A), 13.5 dpc (B) and 14.5 dpc (C) in sorted cell 

lineages shows ubiquitous expression throughout XX and XY gonads (n = 4 (A,C), 3 (B); ns for all comparisons at each 

timepoint). (D-S) Knockdown of SART3 in the gonad: qRT-PCR showed that treatment with Sart3MO (B-E,I,N-Q n= 

14, 19, 8, 10; F-H,J-M n= 14, 19, 8, 8) resulted in no significant downregulation in steroidogenic regulator Nr5a1 (D)  

or  Sertoli cell marker genes Sox9 (E), Ptgds (F), Amh (G), Dhh (H) and Gata4 (I). Expression of steroidogenic pathway 

members Star (J) and Hsd3β (L) was elevated in Sart3MO XX gonads, whilst expression of Cyp11a1 (K) was 

significantly upregulated. Expression of Insl3 (M) was unappreciable and expression of Igf1 (N) was unchanged in 

Sart3MO XX gonads. No change was observed in expression of Nr0b1 (O), ovarian markers Wnt4 (P), Fst (Q) and 

FoxL2 (R) or germ cell marker Ddx4 (S) in the Sart3MO knockdown. IF showed germ cells (DDX4 (T)) and Sertoli 

cells (AMH (U)) were present in XY Sart3MO treated gonads. Ectopic steroidogenic NR5A1-positive (T) and HSD3β-

positive (U) cells were present in Sart3MO treated XX gonads. Scale bars = 100 µM; cMO = control morpholino; xMO 

= morpholino targeting gene x. For all qRT-PCR levels are shown relative to Tbp, error = S.E.M. For cell quantification 

error = S.E.M. with individual counts plotted. * = p = 0.05, ** = p = 0.001, ns = not statistically significant. 
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Conclusions 

I found that Sart3MO knock-down modelled the SART3 heterozygous deletion of SART3 described 

in one 46,XX DSD patient (Petek et al., 2003). However, the exon 17 SNV in SART3 identified in 

the two related families in this study is a putative gain-of-function mutation resulting in 46,XY 

DSD. Therefore, it was anticipated that SART3 knockdown in the murine XX gonad could result in 

ovarian masculinisation. Indeed, XX Sart3MO-treated gonads ectopically expressed NR5A1 

protein, a key regulator of the transcription of steroidogenic pathway components such as Cyp11a1, 

the expression of which was indeed elevated.  Therefore, SART3 knockdown in the XX gonad 

results in ectopic NR5A1 expression, which promotes ectopic expression of the genes encoding 

steroidogenic pathway members Star, Cyp11a1 and Hsd3β, in a DHH-independent manner. 

Increased steroidogenic gene expression in Sart3MO treated gonads was sufficient for some XX 

cells to differentiate into HSD3β protein expressing cells.  These data support the possibility that a 

loss-of-function mutation in SART3 could result in ectopic expression of steroidogenic pathway 

proteins such as HSD3β in the embryonic ovary. Ectopic expression of steroidogenic enzymes 

during gonadogenesis could result in low-level production of testosterone that would allow for 

masculinisation of the ovary and the embryo as seen in 46,XX DSD patients (Fig. 1.3). Although 

the mechanics of the conversion of cholesterol to testosterone have been extensively studied, the 

transcriptional regulation of many enzymes involved in steroid hormone production is poorly 

understood. The effect of mutant SART3 on AR-regulated gene expression, combined with the 

ectopic steroidogenic cell differentiation in the of SART3 knock-down, indicates that SART3 may 

be involved in the regulation of steroidogenesis. 

 

In addition to its expression in the gonads, SART3 expression was also detected in the hippocampal 

regions of the embryonic and adult mouse brain (data not show; S. Eggers, personal 

communication), which raises the possibility that the SART3 mutation may be responsible for the 

intellectual disability seen in 46,XX and 46,XY patients. As SART3 seems to be the likely causative 

gene for both the 46,XY and 46,XX DSD in the four affected children. Others in the lab are 

currently making mouse models of the human mutations using the CRISPR/Cas-9 strategy. That 

project is ongoing.  
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2.7.2 NR0B1 and NR0B2: nuclear receptors with links to DSD 

Nuclear receptors are a family of transcription factors that control cellular functions such as 

steroidogenesis, puberty and cell cycle. NR5A1 (SF1) and NR5A2 (LRH1) are both transcriptional 

regulators of steroidogenesis. NR0B2 (SHP, small heterodimer partner) and NR0B1  (DAX1, 

nuclear receptor subfamily 0, group B, member 1) are nuclear receptors that have been shown to be 

able to repress the transcriptional activity of other nuclear receptors: NR0B1 can repress 

transcriptional activation by NR5A1 (Crawford et al., 1998) and NR0B2 can transcriptionally 

repress NR5A2 (LU, 2000). While mutations in NR0B1 in humans result in 46,XY sex reversal 

(OMIM:300018; (Bardoni et al., 1994)) or adrenal hypoplasia with hypogonadotrophic 

hypogonadism (OMIM:300200), currently no mutations in NR0B2 have been shown to result in 

DSD.  

 

Nr0b1 expression in the mouse indicates a role in early sex determination, as Nr0b1 is expressed in 

both sexes initially before being down-regulated in the testes. Indeed, NR0B1 has been implicated 

in both ovarian and testicular development. In the testis, Nr0b1 is expressed in the Sertoli cells and 

somatic cells underlying the coelomic epithelium (Swain et al., 1998; Swain et al., 1996). Deletion 

of Nr0b1 results in normal gonadal development in XX mice, but in XY mice testis cord formation 

was found to be abnormal due to a failure to properly up-regulate Sox9 expression, although 

expression of Sry appeared normal (Meeks et al., 2003a) (Ludbrook and Harley, 2004). Complete 

male-to-female sex reversal could be achieved when the Nr0b deletion was crossed onto the YPOS 

background, which is characterised by a weakened Sry (Meeks et al., 2003b). Subsequently, it was 

determined that overexpression of Sry in the XY Nr0b1-/-/YPOS mouse seemed to facilitate up-

regulation of Sox9, which corrected testis development (Ludbrook and Harley, 2004).  This was 

confirmed by Bouma et al. (2005) who found that although expression of Sry was normal, 

upregulation of Sox9 did not occur in Nr0b1-/-/YPOS XY gonads, however forced overexpression 

of Sry could initiate upregulation of Sox9 allowing testis development to proceed. 

 

Nr0b2 is expressed in the Sertoli cells during early postnatal development but becomes highly 

expressed in the interstitial and Leydig cells in the adult testis (Volle et al., 2007). In the patient 

BEL-S3 (from the patient cohort of S. Eggers and A.H. Sinclair, MCRI) no mutations were found in 

known DSD genes after whole exome sequencing. When looking for predicted protein-protein 
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interactions between known DSD candidate genes and the proteins for which variants were found in 

a patient, a heterozygous 1-bp c.227del deletion in NR0B2 was identified and confirmed by Sanger 

sequencing (Fig. 2.14A,B). The variant is predicted to cause a frameshift and premature stop-codon. 

The KGGseq tool, which prioritises putative disease causing variants using protein-protein 

interaction and pathway data, reported protein-protein interactions between NR0B2 and the proteins 

products of four DSD genes in the STRING database (a database of known and predicted protein-

protein interactions): SOX3, ESR1, ESR2, and NR5A1 (S. Eggers, personal communication). 

 

A role for NR0B2 has been identified in the postnatal testis. The XY Nr0b2 -/- mouse has increased 

testosterone output, presumably due to an increase in testicular expression of the genes encoding 

Star and Cyp11a1 (Volle et al., 2007). It has been proposed that NR0B2 is able to suppress 

testicular steroid production by inducing expression of Nr5a1 and Nr5a2. These two family 

members recognise many of the same binding sites and are known to modulate the expression of 

several steroidogenic genes (Volle et al., 2007). Postnatally, NR0B2 expression is regulated by 

pulsatile release of LH by the pituitary. The expression of Nr0b2 in Leydig cells of the postnatal 

testis is then mediated by the cAMP/PKA/AMPK pathway (Vega et al., 2014). Therefore, in the 

postnatal and adult state expression of NR0B2 is gonadotropin-dependent.  

 

I first performed MO knockdown of NR0B1. Nr0b1MO was injected at 11.5 dpc, when Nr0b1 is 

already expressed in the XX and XY genital ridge and, therefore, it was expected that there would 

be a weak attenuation of the male pathway. For qRT-PCR analysis, three gonads were pooled for 

analysis after being cultured individually for 48 h.  Expression of the target gene Nr0b1 and the 

gene encoding the nuclear receptor Nr5a1 was unperturbed by Nr0b1MO treatment (Fig. 2.15A,B). 

Similarly, expression of the SRY target Sox9 and its downstream target, Amh, were unaffected by 

Nr0b1MO treatment (Fig. 2.15C,D). Expression of Leydig cell marker genes Cyp11a1 and Hsd3β, 

ovarian marker gene FoxL2 and germ cell marker gene Ddx4 was also unchanged by Nr0b1MO 

treatment (Fig. 2.15E-H). Therefore, treatment with Nr0b1MO did not result in changes in 

expression of key male pathway genes. Lack of phenotype in the Nr0b1MO knock down is likely 

due to the incomplete knockdown of NR0B1 and/or the presence of NR0B1 at the time of injection, 

such that NR0B1 may be able to exert its primary role even in the knockdown.   
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Subsequently I investigated the expression and the role of the DSD candidate gene NR0B2 in the 

murine gonad (this work was conducted as part of the collaboration with S. Eggers and A. Sinclair). 

Expression of Nr0b2 has not been reported in the fetal gonad. qRT-PCR was performed on FACS-

isolated Sf1-eGFP cells from 12.5-14.5 dpc XX and XY gonads. These populations corresponded to 

enriched populations of Sertoli cells, FLCs, NSICs and germ cells in the XY gonad. We 

demonstrated that Nr0b2 was expressed in Sertoli cells and FLCs of the XY gonad from 12.5-14.5 

dpc (Fig. 2.15I). Notably expression of Nr0b2 in the XY gonad was restricted to NR5A1-positive 

cell populations. In the XX gonad, Nr0b2 was only weakly expressed in somatic cells from 12.5-

14.5 dpc (Fig. 2.15J).  

 

To establish if NR0B2 has a role in early gonad development, a NR0B2 knockdown was generated. 

An Nr0b2MO was injected at 11.5 dpc and the gonads were cultured for 48h. Expression of the 

genes encoding close family member Nr0b1 and nuclear receptor Nr5a1 was unchanged by 

treatment with the Nr0b2MO (Fig. 2.15K,L). Expression of Sertoli cell marker genes such as Sox9, 

Amh, Ptgds, Dhh and Cyp26b1, was similarly unperturbed by Nr0b2MO treatment (Fig. 2.15M-Q). 

The gonadotropin-independent expression of steroidogenic genes Star or Cyp11a1 was unchanged 

by Nr0b2MO treatment (Fig. 2.15R,S). Expression of the Hsd3β gene appeared elevated in the 

NR0B2 knockdown XY gonad but this change was not statistically significant (Fig. 2.15T). 

Expression of the gene encoding the ovarian marker FoxL2 was unchanged by Nr0b2MO treatment, 

indicating that NR0B2 knockdown did not affect the somatic cells of the ovary. Expression of germ 

cell marker gene Ddx4 in the XX Nr0b2MO treated gonads was not significantly different from the 

control (Fig. 2.15U,V). More detailed characterisation of the NR0B2 knockdown will be required to 

substantiate any gonadotropin-independent steroidogenic phenotype.  
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Fig. 2.14. Rare functional 1-bp deletion in exon 1 of NR0B2 found in sample BEL-S3. 

(A) Location of NR0B2 (hg19) and exon/intron structure of the gene. Non-coding exons are shown as thin blocks, 
coding exons as thick blocks. Both exons are numbered. The exon habouring the mutation is highlighted in red. (B) 
Electropherogram of part of the NR0B2 exon 1 sequence confirming heterozygous 1-bp deletion in the patient. The 
black squares highlights c.227. (data, figure and legend produced by Stefanie Eggers, reproduced with permission). 
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Figure 2.15. Knockdown of Nr0b1 and Nr0b2 in the gonad. 

(A-H) Knockdown of NR0B1 in the gonad: qRT-PCR of cultured gonads showed that treatment with Nr0b1MO (n= 4, 
5, 3, 4; n= 1 = 3 gonads from separate embryos pooled after culture) resulted in no changes in expression of Nr0b1 (A), 
somatic marker Nr5a1 (B) or Sertoli cell markers Sox9 (C) and Amh (D).  Expression of Leydig cell markers Cyp11a1 
(E) and Hsd3β (F), ovarian marker FoxL2 (G) and germ cell marker Ddx4 (H) was unperturbed by treatment with 
Nr0b1MO. (I-J) Expression of Nr0b2 in sorted Sf1-eGFP cells of the XX (I) and XY (J) gonad from 12.5-14.5 dpc. (K-
V) Knockdown of NR0B2 in the gonad: qRT-PCR of cultured gonads showed that treatment with Nr0b2MO (n= 4, 3, 
4, 4; n= 1 = 2 gonads from separate embryos pooled after culture) resulted in no changes in expression of close family 
member Nr0b1 (K), somatic marker Nr5a1 (L) or Sertoli cell markers Sox9 (M), Amh (N), Ptgds (O), Dhh (P) or 
Cyp26b1 (Q). Expression of Leydig cell markers Star (R) and Cyp11a1 (S) were unperturbed whereas Hsd3β (T) 
expression was elevated in the Nr0b2MO XY gonad. Ovarian marker FoxL2 (U) was unperturbed while germ cell 
marker Ddx4 (V) was somewhat decreased in XX gonads by treatment with Nr0b2MO. cMO = control morpholino; 
xMO = morpholino targeting gene x. For all qRT-PCR levels are shown relative to Tbp, error = S.E.M. For cell 
quantification error = S.E.M. with individual counts plotted. * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, ns = not 
statistically significant. 
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2.8 Chapter Discussion 

This chapter demonstrates that gene knockdown using MO injected into the heart followed by ex 

vivo organ culture can be successfully used for first-pass functional analysis. Initial proof-of-

principle work demonstrated that this technique could partially recapitulate knockout phenotypes in 

the testis and pancreas. This work also demonstrated that this approach could be used to look at 

more complicated knockdowns of multiple genes. This work showed that the caveat to using this 

technique is that, ideally, the MO should be delivered around the time that expression of the 

transcript begins if one is to have the highest chance of successfully knocking down the resultant 

protein. 

 

Additionally, I demonstrated that MO knockdown could be used to uncover the developmental 

origins of DSD phenotypes. qRT-PCR showed that Sart3 is expressed ubiquitously in mouse XX 

and XY gonads. Knockdown of SART3 in the developing gonad provided insight into the possible 

mechanism behind the role of SART3 in the patient phenotype. This analysis informed us about 

what the pathways that were likely to be disrupted in the genetic patient-mutation-model A similar 

analysis was performed for the DSD candidate gene NR0B2. Nr0b2 was primarily expressed in 

FLCs and Sertoli cells in the developing mouse testis. Knockdown of NR0B2 indicated that it might 

have a gonadotropin-independent role in steroidogenesis in the early testis.  

 

For further discussion see Chapter 4.  
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3 Chapter 3: Transcriptomic analysis of the somatic cells of the developing 

testis 

3.1 Publications: 

McClelland KS, Bell K, Larney C, Harley VR, Sinclair A, Oshlack A, Koopman P and Bowles J 

(2015) Purification and transcriptomic analysis of mouse fetal Leydig cells reveals candidate genes 

for disorders of sex development. Biology of Reproduction, doi:10.1095/biolreprod.115.128918 

3.2 Project Summary: 

This project used the Sf1-eGFP transgenic mouse line as the basis for the separation of mouse fetal 

somatic cells into distinct subpopulations using a FACS-based protocol (Beverdam and Koopman, 

2006). This enabled the isolation of three XY gonad somatic cell populations: Sertoli cells; fetal 

Leydig cells (FLCs) and non-steroidogenic interstitial cells (NSICs). Following the validation of 

this novel protocol I performed RNA-seq on the three major somatic populations of the 12.5 dpc 

XY gonad. Bioinformatic analysis identified genes upregulated in each population and I then 

validated a selection of genes of interest.  The body of this work resulted in the published 

manuscript contained within entitled “Purification and transcriptomic analysis of mouse fetal 

Leydig cells reveals candidate genes for specification of gonadal steroidogenic cells”. In this 

manuscript I constructed a molecular portrait of FLCs at the onset of steroidogenesis. This 

manuscript looked most closely at cues produced by the Sertoli cells and received by the FLCs and 

NSICs. I also examined the fetal expression of known DSD genes as fetal expression may underlie 

the origins of DSD phenotyes. In the second part of this chapter I looked more closely at the Sertoli 

cell population and the potential role of IHH genes in gonadal development. In addition to the 

thorough analysis of the XY somatic cell populations a preliminary characterisation of different XX 

somatic cell populations was performed. Lastly, I looked in more detail at the expression of NR2F2 

in the XY gonad as a novel marker of the NSIC population.   
3.3 Collaborators: 

Bioinformatic analysis (differentially expressed gene list generation and read mapping) for this 

project was completed by Katrina Bell and Alicia Oshlack (MCRI, Australia). Christian Larney 

(Koopman Lab, IMB) assisted in generation of various lists used in this project.  
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3.4 Chapter Introduction: 

There are three principal somatic cell types in the developing testis: Sertoli cells, the master 

regulators; FLCs, the producers of masculinising hormones and NSICs, some of which go on to 

differentiate into adult Leydig cells. To date, FLC-expressed genes have been underrepresented in 

microarray screens of somatic gonadal cells. Moreover, in existing screens and expression reports, 

no distinction has been made between candidates expressed throughout the interstitial space, in 

FLCs and NSICs, and those restricted to the early FLCs.  

 

I hypothesise that defects in FLC or interstitial cell specification and differentiation may underlie 

some classes of human DSDs. Currently, few genes and encoded factors are known to direct FLC 

fate determination and differentiation, and even less is known regarding how ALC progenitors are 

specified from interstitial cells during fetal life (Kilcoyne et al., 2014). We separated FLCs and 

NSICs to investigate the features that distinguish the early FLCs from their neighbours. To profile 

these cell populations at 12.5 dpc we used next-generation sequencing (RNA-seq), which offers 

improved detection and sensitivity compared to microarrays (Sultan et al., 2008). 

 

In addition to addressing questions regarding cell fate and differentiation, this study aimed to 

identify genes that may underlie fetal origins of DSD. Most XY DSDs remain unexplained at the 

molecular level and, while the term DSD includes a wide spectrum of conditions, DSDs often occur 

as the result of loss or compromised function of genes involved in gonadal development (for review 

see Ono and Harley, 2013). However, mutations in genes involved in neuroendocrine system are 

also an important cause of certain classes of DSDs such as IHH (idiopathic hypogonadotropic 

hypogonadism). The development of a functional reproductive program and associated sexual 

characteristics relies on a functional hypothalamic–pituitary–gonadal (HPG) axis. The HPG axis is 

controlled by neurons located in the hypothalamus that secrete GnRH (gonadotropin releasing 

hormone). These neurons originate in the nasal placode and migrate into the forebrain along the 

olfactory-vomeronasal nerves (for review see Wray, 2002). This complex migration is mediated by 

a series of neuroactive-ligand-receptor pairs: failures in the migration or function of the GnRH 

neurons result in the heterogeneous group genetic disorders including IHH (for review of IHH 

causative genes see Valdes-Socin et al., 2014). Due to the important role played by GnRH neurons 

in postnatal life, any impact that dysfunction of neuroendocrine genes may have on fetal testicular 

function has been largely overlooked. I demonstrate in this chapter that a number of genes encoding 
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neuroactive-ligands and receptors involved in HPG axis formation and neural development are also 

expressed in the developing testis. I hypothesise that mutations in these genes may alter testis 

development before GnRH-mediated phenotypes impact sexual maturation later in development.  
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Abstract 

Male sex determination hinges on the development of testes in the embryo, beginning with the 

differentiation of Sertoli cells under the influence of the Y-linked gene SRY. Sertoli cells then 

orchestrate fetal testis formation including the specification of fetal Leydig cells (FLCs) that 

produce steroid hormones to direct virilisation of the XY embryo. As the majority of XY disorders 

of sex development (DSDs) remain unexplained at the molecular genetic level, we reasoned that 

genes involved in FLC development might represent an unappreciated source of candidate XY DSD 

genes. To identify these genes, and to gain a more detailed understanding of the regulatory 

networks underpinning the specification and differentiation of the FLC population, we developed 

methods for isolating fetal Sertoli, Leydig and interstitial cell-enriched subpopulations using an Sf1-

eGFP transgenic mouse line. RNA-sequencing followed by rigorous bioinformatic filtering 

identified 84 genes upregulated in FLCs, 704 genes upregulated in non-steroidogenic interstitial 

cells and 1217 genes upregulated in the Sertoli cells at 12.5 dpc. The analysis revealed a trend for 

expression of components of neuroactive ligand interactions in FLCs and Sertoli cells and identified 

factors potentially involved in signaling between the Sertoli cells, FLCs and interstitial cells. We 

identified 61 genes that were not known previously to be involved in specification or differentiation 

of FLCs. This dataset provides a platform for exploring the biology of FLCs and understanding the 

role of these cells in testicular development. In addition, they provide a basis for targeted studies 

designed to identify causes of idiopathic XY DSD. 
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Introduction 

The morphogenesis of the testes involves the co-ordinated differentiation of a number of bipotential 

cell lineages in the gonadal primordium into testis-specific cell types (for review, see (Svingen and 

Koopman, 2013)). This process begins with the expression of the Y-linked gene Sry (sex 

determining region of Chr Y), which directs differentiation of Sertoli cells that assemble into cords 

encapsulating the germ cells. Sertoli cells then influence the differentiation of other cell types 

within the testes, including the fetal Leydig cells (FLCs), which arise in the interstitium and act as 

factories for the production of steroid hormones (androgens) that play a major role in 

masculinisation of the XY individual. Other cell types also arise in the testicular interstitium, the 

nature and function(s) of which are mostly unclear. Some interstitial cells that do not differentiate 

as FLCs are thought to give rise to adult Leydig cells (ALCs), which maintain androgen production 

throughout life (Kilcoyne et al., 2014). The differentiation, function and interaction of the various 

cellular sub-compartments of the developing testis need to be carefully orchestrated, in a spatio-

temporal manner, but how this regulation is achieved remains poorly understood. 

 

Disorders of sex development (DSDs) are congenital birth defects characterised by development of 

atypical chromosomal, gonadal, or anatomical sex. While the term DSD includes a wide spectrum 

of conditions, loss or compromised function of genes directing gonadal development during fetal 

life is a common cause (for review see Ono and Harley, 2013). As many of the known genes at fault 

in XY DSD are those regulating gonadogenesis, we hypothesised that defects in specification and 

differentiation of FLCs or non-steroidogenic interstitial cells may underlie some classes of human 

DSD. Currently, few genes and encoded factors are known to direct FLC fate determination and 

differentiation (Griswold and Behringer, 2009), and even less is known regarding how ALC 

progenitors are specified from interstitial cells during fetal life (Kilcoyne et al., 2014). Hedgehog 

signalling is evidently a positive regulator of FLC differentiation, given that Dhh-/- (Desert 

hedgehog) XY gonads have reduced FLC numbers (Bitgood et al., 1996; Clark et al., 2000; Yao et 

al., 2002), and that constitutively active hedgehog signaling in the ovary is sufficient to induce 

some interstitial cells to differentiate along the steroidogenic pathway (Barsoum et al., 2009). 

Similarly, Pdgfrα-/- (platelet derived growth factor receptor, α-polypeptide) XY gonads show 

abnormal FLC differentiation (Brennan et al., 2003). Additionally, the aristaless-related homeobox 

gene (ARX) plays some role in fetal Leydig cell specification based on the fact that Arx-/- XY 

mouse gonads have reduced FLC numbers.  Interestingly, Arx is not expressed in FLCs, although it 

may be expressed in their progenitors (Kitamura et al., 2002; Miyabayashi et al., 2013).  
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Previous transcriptomic studies aimed at identifying genes important for development of the fetal 

gonads in mice, or for establishing the molecular signatures of the component cell lineages, have 

been performed using microarrays (Beverdam and Koopman, 2006; Bouma et al., 2007; Bouma et 

al., 2010; Jameson et al., 2012b; Nef et al., 2005). While this method reveals the expression 

dynamics of thousands of genes simultaneously, it is limited by the incomplete representation of 

genes on the array and also by the relatively low sensitivity and dynamic range offered (Marioni et 

al., 2008). Additionally, the non-Sertoli gonadal somatic populations studied in previous microarray 

screens have included a mixture of FLCc and non-steroidogenic interstitial cells due to an inability 

to separate these two populations. Hence, using available microarray datasets, it has been difficult 

to address the specific question of how FLCs arise and to determine the molecular characteristics of 

these cells at 12.5 dpc, prior to the expression of steroidogenic pathway genes. 

 

In this study, we designed and implemented a strategy to separate mouse fetal gonadal cells into 

four distinct subpopulations—Sertoli cells, germ cells, FLCs and heterogeneous non-steroidogenic 

interstitial cells (NSICs)—using a FACS-based protocol in combination with a Sf1- enhanced green 

fluorescent protein (eGFP) transgenic mouse line (Beverdam and Koopman, 2006). We used 

massively parallel sequencing (RNA-seq) to carry out differential gene expression analysis and 

construct a molecular portrait of FLCs at 12.5 dpc, just at the onset of steroidogenesis. The aim of 

this study was to identify early lineage markers of the FLC and NSIC populations in order to 

provide insight into the signaling interactions in the early gonad. The output generated by our 

approach reveals potential markers for pre-steroidogenic FLCs, suggests likely signaling 

relationships among Sertoli cells, FLCs and NSICs and reveals new candidate genes that may 

underlie the fetal origins of DSDs. 
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Materials and Methods 

Mouse strains 

Embryos were collected from timed matings of Sf1-eGFP (Nr5a1) strain mice (Beverdam and 

Koopman, 2006), with noon of the day on which the mating plug was observed designated 0.5 days 

post coitum (dpc). All animal protocols were approved by the University of Queensland Animal 

Ethics Committee. 

 

Immunofluorescence 

Section: 

Embryos were fixed in 4% paraformaldehyde in PBS (phosphate buffered saline) overnight at 4°C, 

dehydrated, and embedded in paraffin; 7 µm sections were cut using a Leica Microtome. Slides 

were dewaxed by 2 x 10 min washes in xylene, re‐hydrated and boiled for 5 min in Antigen 

Unmasking Solution (Vector Laboratories), and incubated in the unmasking solution at room 

temperature for 60 min. The slides were washed for 3 x 10 min in 0.1% Triton‐X in PBS (PBTx) 

and incubated with primary antibodies diluted in blocking buffer (10% heat-inactivate serum 

supreme in PBTX) at 4° C overnight followed by washing, and re‐blocking for 30 min at room 

temperature. Slides were incubated with secondary antibodies in blocking buffer at room 

temperature for 2 h, washed and mounted in 60% glycerol/PBS. Sections were imaged by confocal 

microscopy using a Zeiss LSM‐510 META or a LSM‐710 META confocal microscope. For details 

of primary antibodies and secondary antibodies see Supplemental Tables 3 and 4. 

 

FACS cells: 

Protocol modified from online methods for (Hajkova et al., 2008). Briefly, cells were sorted as 

described below from 12.5 dpc gonad-only samples into ice-cold PBS and kept on ice. A volume of 

PBS containing between 3000-10000 “events” (~200 µL) was plated into an area demarcated on a 

Tissue Tack slide (Polysciences Inc., 24216) and allowed to adhere for 15 min before being fixed in 

4% paraformaldehyde for 15 min at room temperature and washed with PBS.  Slides were blocked 

in permeablisation/blocking buffer (P/B buffer, 1% BSA in PBTx) for 30 min at RT and incubated 

at 4° C overnight with the primary antibody diluted in P/B buffer. The slides were washed for 1 x 5 

min P/B buffer and then 3 x 10 min in PBTx and incubated with secondary antibodies diluted in 

P/B buffer for 1 h at room temperature. Slides were DAPI stained, washed and mounted in 60% 
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glycerol/PBS. Fields of cells were imaged by fluorescent microscopy using a Olympus BX-51 

microscope and counted in ImageJ using the CellCounter plug in. For details of primary antibodies 

and secondary antibodies see Supplemental Tables 3 and 4. 

 

FACS sorting of cell populations 

Sf1-eGFP litters (11.5-14.5 dpc) were dissected in cold PBS and gonads sexed by eye, based on the 

presence of testis cords (12.5-14.5 dpc) or by presence of Barr Bodies (11.5 dpc; (Burgoyne et al., 

1983)). For 11.5 dpc samples the mesonephros was left attached, but it was removed for 12.5-14.5 

dpc samples. It should be noted that GFP-transgene expression is restricted to the somatic cells of 

gonad, exclusive of the mesonephros ((Beverdam and Koopman, 2006); this study). As only GFP-

positive cells were profiled at 11.5 dpc there was no mesonephric contamination. Stage-matched 

CD1 gonads, with mesonephros removed, were used as a negative control to determine GFP-

positive populations.  

 

Gonads were enzymatically dissociated using 0.25% Trypsin EDTA (Gibco) or TryplE Express 

(12604-013, Gibco) with 5 U/ml DNase1 (Sigma) for 20 min at 37 °C and then mechanically 

dissociated using 18- and 23-gauge syringes. PBS (1 mL) was added to the cells that were then 

pelleted by centrifugation (900g at 4 °C for 10 min); after supernatant was removed the cells were 

resuspended in 400 µL of ice-cold PBS and stored on ice. Cells were then incubated with anti-

SSEA1-PE (#FAB2155P, R&D Systems; specific for germ cells, FUT4, fucosyltransferase 4) or 

anti-CD31-APC (#551262, Becton Dickinson; specific for germ and endothelial cells, PECAM1, 

platelet/endothelial cell adhesion molecule 1) antibody for 20 min and washed with ice-cold PBS. 

Cells were resuspended in 400 µL PBS for sorting. Anti-SSEA1-PE was used in characterization of 

cell population studies whilst anti-CD31-APC was used to remove germ and endothelial cells prior 

to RNA-seq. Cells were fractionated using a BD FACSAria Cell Sorter; Fig. 3.1 shows FACS plots 

illustrating how gating parameters were derived. Specifically, GFP-negative CD1 stage-matched 

controls (Fig. 3.1A,B) and GFP-positive but antibody-negative controls (Fig. 3.1C) were used to 

place gates for sorting GFP-high, GFP-low, GFP-neg and antibody sorted (SSEA1-PE or CD31-

APC) populations (Fig. 3.1D). These populations were collected in PBS and kept on ice before 

further processing.  
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Quantitative RT-PCR analysis 

Total RNA was extracted (Micro RNeasy kit with carrier RNA, Qiagen) and cDNA generated 

(High Capacity cDNA Reverse Transcription Kit, Invitrogen) from isolated populations of FACS-

sorted cells as previously described (Bowles et al., 2010). Duplicate assays were conducted on an 

ABI Prism 7500 Sequence Detector System. The cycle conditions for quantitiative RT-PCR (qRT-

PCR) were 2 min at 50 °C, then 10 min at 95 °C followed by 40 cycles of 92 °C for 15 s then 60°C 

for 60 s. 

 

Expression levels of mRNA were normalised to Tbp (TATA box binding protein; (Svingen et al., 

2009a)) and relative transcript abundance was determined using the 2−ΔCT method. Tbp was used as 

a normalising gene on the assumption that there were equal amounts of Tbp in each cell population, 

as in the whole gonad (Svingen et al., 2009a). For Taqman Gene Expression Assay reference 

numbers, see Supplemental Table 2. S.E.M. was calculated from independent biological replicates 

(n≥3) and statistical significance was determined using one-way ANOVA with Bonferroni's 

multiple comparisons test to compare the four sample groups with the exception of populations 

sorted at 11.5 dpc where only two groups were compared and so statistical significance was 

determined using unpaired (two-tailed) Student's t-test. 

 

RNA extraction and library preparation for deep sequencing  

Total RNA was extracted (Micro RNeasy kit without carrier RNA, Qiagen) from CD31-treated 

FACS-sorted cells. Each sample represented approximately 10 sorting experiments conducted on 

different days with 4-10 litters of Sf1-eGFP embryos in each experiment. We prepared for each of 3 

cell types (high-GFP, low-GFP, GFP-negative with GC/EC removed), replicate A, replicate B and 

replicate C (C was an equal mix of samples A and B) resulting in 9 samples for sequencing. A 

cDNA library was prepared from each sample using TruSeq Stranded Total RNA Libraries  (RS-

122-2201, Truseq stranded Total RNA LT (with Ribo-Zero Human/Mouse/Rat), Set A; Illumina 

protocol 15031048 Rev C, Sep 2012). The 9 samples were run on 4 lanes of an Illumina HiSeq 

1500, with all samples run over all lanes, generating 100bp paired end reads after ribosomal 

depletion. Sequencing and library preparation was completed by the Monash Health Translation 

Precinct (MHTP) Medical Genomics Facility, Australia. Data has been submitted to GEO, 

accession GSE65498. 
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RNA-seq analysis 

An average of 65 million raw reads were generated per sample. The quality of the sequencing files 

was examined using the FastQC program (FastQC;  www.bioinformatics.babraham.ac.uk/projects/). 

Tophat2 (Kim et al., 2013) was used to map reads to the mouse genome (mm10),  with mouse gene 

model annotations (mm10, downloaded from Ensembl 

(http://www.ensembl.org/info/data/ftp/index.html)) supplied via the -G option. On average over 

85% of the reads mapped to the mouse genome. Read counts were then summarised across genes 

using HTSeq-count (Anders et al., 2014), with Ensembl mm10 gene annotation. No lane-specific 

technical effects were observed; therefore all lane files per sample were merged into one file per 

sample for differential gene expression analysis. 

 

Differential gene expression analysis 

The count data was analysed within the R statistical computing environment. Only genes with at 

least 1 count per million in three or more samples were retained for further analysis. This reduced 

the number of features to 14,307 for the differential gene expression analysis (complete data in 

Supplemental Data 1). The count data of reads per gene features were analysed using TMM 

(Robinson and Oshlack, 2010) and Voom (Law et al., 2014) for normalisation and limma (Smyth, 

2004) for differential expression analysis, which applies empirical Bayes methods to compute 

moderated t-tests and p-values adjusted for multiple testing using the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995). Lists of the differentially expressed genes between each pair 

(contrast) of the three cell types were generated and annotated based on Ensembl mm10 annotation. 

Genes that were upregulated in one cell type compared to the other two cell types (adjusted p value 

<0.05 and log fold change of at least 1 or 0.6 for each contrast), formed the upregulated gene lists 

for each of the cells types. The adjusted p value of the moderated F-statistic (F), which combines 

the t-statistics for all the contrasts into an overall test of significance for each gene, was used to rank 

the cell specific gene lists for discussion. The full gene lists for all comparisons are listed in 

Supplemental Data 2. 

 

To validate the RNA-seq data, we used the normalised sequence counts per million (cpm) to 

indicate of expression of various marker genes (Supplemental Data 1). S.E.M. was calculated from 

the 3 sequencing replicates and statistical significance was determined using one-way ANOVA 

with Bonferroni's multiple comparisons test. 
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Previously reported genes 

Genes that have testicular expression previously reported as having expression in the testis in 

articles on PubMed are listed in Supplemental Table 5. 

 

Eurexpress database ISH mining 

We searched the 14.5 dpc data set from Eurexpress Transcriptome Atlas Database for Mouse 

Embryo (http://www.eurexpress.org) for in situ hybridization (ISH) data that might verify testicular 

expression for genes of interest identified in our RNA-seq analysis. Representative section images 

were downloaded and the testis region selected in Photoshop. Gene IDs and Eurexpress IDs are 

listed in Supplemental Table 7. 

 

Gene ontology analysis 

Gene ontology analysis was performed using the DAVID Bioinformatics Package (v6.7) 

(http://david.abcc.ncifcrf.gov; (Huang et al., 2009a; Huang et al., 2009b)). The following three GO 

terms were used to categorise each population: 

Transmembrane factor: SP_PIR_KEYWORDS transmembrane (GO:0016021; TM) 

Secreted factor: SP_PIR_KEYWORDS secreted (GO:0005576; SF) 

Transcription Factor: GOTERM_MF_FAT transcription factor activity (GO:0003700; TF) 

 

For details of additional GO terms used see Supplemental Data 3 and Tables 3.2; 3.5 and 3.7. The 

genes identified in each GO term category were then mapped back to the differentially expressed 

gene lists and ranked by F-statistic.  

 

Genes putatively regulated by NR5A1 

List of genes putatively regulated by NR5A1 is from Baba et al. (2014). Full list of overlapping 

genes in Supplemental Table 6 and Table 3.8. 
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11.5 dpc expression of FLC genes 

From our list of genes preferentially expressed in Leydig cells at 12.5 dpc, we sought to determine 

if any might potentially also mark Leydig cells at 11.5 dpc. To do this, we considered the data 

available for these genes at 11.5 dpc (Jameson et al., 2012b). Genes found to be enriched in Leydig 

cells at 12.5 dpc that also show differing expression between the interstitial and supporting cell 

compartments of 11.5 dpc testes are putative pre-FLC marker genes. Data was obtained from GEO 

(GSE27715) and analysed with R and Bioconductor. Raw data were normalised using oligo 

(Carvalho and Irizarry, 2010) and differential expression analysis was carried out with limma 

(Smyth, 2004). Int. Exp (interstitial) and Sup. Exp (supporting) show median normalised expression 

of the gene in each of these two cell types, while Int. Rank (interstitial) and Sup. Rank (supporting) 

indicate the position of the gene in a list ranked by expression in that cell type (0=lowest 

expression, 100=highest expression; Supplemental Data 4). For our final list of genes of interest we 

noted those genes with expression in interstitial cells more than four times that in supporting cells 

(log fold change ≥ 2). Of particular interest in predicting putative markers for FLCs are the 10 

genes with low expression in supporting cells (Sup Exp ≤ 6; marked in grey in Table 3.4).  

 

Genes identified in OMIM 

 A full list of genes associated with human disease from the OMIM database (accessed 12 

November, 2014, http://omim.org/) is listed in Supplemental Table 8. 

 

All Supplementary Tables for reagents are listed in the Appendix. 
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Results 

Evaluation of GFP as a proxy for NR5A1/SF1 expression in Sf1-eGFP mouse fetal testes 

We have previously used a 674 bp-fragment of the Sf1/Nr5a1 (steroidogenic factor 1/nuclear 

receptor subfamily 5, group A, member 1) promoter to drive GFP expression in a subpopulation of 

somatic cells of the developing gonad in Sf1-eGFP transgenic mice (throughout this study we will 

refer to the this mouse line using the common name SF1/Sf1-eGFP).  (Beverdam and Koopman, 

2006). In that study, we profiled gene expression in the GFP-positive cell population at 10.5 and 

11.5 dpc with the aim of identifying genes expressed in the Sertoli/granulosa cell lineage that may 

play a role in male or female sex determination. In the present study, we exploited a published 

observation that the NR5A1-positive cell population of the early male gonad can be subdivided into 

a high-NR5A1 expressing population that differentiates into pre-Sertoli cells, and a low-NR5A1 

expressing population that differentiates into a subset of the interstitial cells (presumptive FLCs) 

between 11.25 and 11.75 dpc (Schmahl et al., 2000). Specifically, we sought to determine whether 

FLCs could be isolated from fetal testes based on GFP expression level in Sf1-eGFP transgenic 

mice. We reasoned that this strategy might allow molecular characterisation of the FLC lineage at 

12.5 dpc, a time point that would allow identification of genes involved in FLC specification prior 

to large-scale upregulation of steroidogenesis genes. 

 

In our previous study we established colocalisation of NR5A1 and GFP at 11.5 dpc and we 

confirmed this here (Fig. 3.3A,B,G; (Beverdam and Koopman, 2006)). We showed that 

NR5A1/GFP-positive cells were SOX9-positive and ARX/DDX4-negative at 11.5 dpc (DEAD box 

polypeptide 4; MVH; Fig. 3.3A,B,G). We then demonstrated that endogenous expression profile of 

NR5A1 was mirrored by GFP expression in XY gonads at 12.5 dpc. Immunofluorescence analysis 

showed that cells with nuclear NR5A1 expression showed cytoplasmic expression of the GFP 

transgene (Fig. 3.2, first column). As this analysis was performed using single confocal slices on 

sectioned embryos not all cells in an image would be expected to have both nuclear and 

cytoplasmic staining. We then used lineage-specific marker antibodies to determine which cell 

types express GFP/NR5A1 in our transgenic line. GFP/NR5A1-positive cells lined the testis cords 

and NR5A1-positive nuclei in “strongly” GFP-positive cells co-localised with nuclear SOX9 at 12.5 

dpc and later, indicating that the transgene was expressed in Sertoli cells (Fig. 3.2A; Fig. 3.3B,D,F). 

We deduced that interstitial “weakly” GFP-positive cells were pre-steroidogenic FLCs by virtue of 

their nuclear expression of NR5A1 (Fig. 3.2A-C, first column; (Hatano et al., 1994; Morohashi et 

al., 1995)). This was confirmed by immunofluorescence for ARX, a nuclear marker of non-FLC 
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interstitial cells at 12.5 dpc: ARX did not colocalise with the NR5A1-positive nuclei of GFP-

positive interstitial cells (Fig. 3.2B). Additional analysis at 13.5-14.5 dpc showed that GFP/ 

NR5A1-positive cells in the interstitium that were exclusive of ARX-positive nuclei expressed 

cytoplasmic HSD3β, confirming that FLCs expressed the GFP transgene (Fig. 3.3C,E,H,J). We also 

confirmed that the transgene was not expressed in germ cells: GFP/ NR5A1-positive cells were 

negative for germ cell marker DDX4 (Fig. 3.2C; Fig. 3.3G,I,K). These results demonstrate that 

GFP, like endogenous NR5A1, is expressed in the Sertoli cell and FLC populations in Sf1-eGFP 

transgenic testes at 12.5 dpc and beyond. 

 

Isolation and characterisation of fetal testis cell populations 

The above observations suggested that it might be possible to separate three populations of somatic 

cells from 12.5 dpc Sf1-eGFP transgenic testes based on GFP fluorescence: strongly GFP-positive 

(“high-GFP”) Sertoli cells, weakly GFP-positive (“low-GFP”) FLCs, and a GFP-negative 

population of NSICs (non-steroidogenic interstitial cells). In addition, a fourth cell population, the 

germ cells, could be isolated using well-characterised antibodies to cell surface markers. To this 

end, we explanted and dissociated Sf1-eGFP testes, incubated the cells with antibodies to either 

SSEA-1 (recognizing germ cells only) or CD31 (recognizing germ and endothelial cells), and used 

fluorescence-activated cell sorting (FACS) to separate the four cell populations (Fig. 3.4A).  

 

We profiled expression of key marker genes by qRT-PCR in the four populations of cells, to 

investigate their composition. As expected, the high-GFP population (Fig. 3.4, dark green) robustly 

expressed Sertoli cell hallmarks including Nr5a1, Sox9, Amh (anti-Müllerian hormone) and Ptgds 

(prostaglandin D2 synthase; Fig. 3.4B-E). These cells expressed low levels of Leydig cell markers 

Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450, family 11, subfamily 

a, polypeptide 1; Fig. 3.4F,G). This pattern of marker expression was established at 11.5 dpc (Fig. 

3.5A,B) and retained until at least 14.5 dpc (Fig. 3.4J-L; Fig. 3.5C-E,H-M). Therefore, we conclude 

that the high-GFP expressing population is enriched for Sertoli cells. Surprisingly, Ptch1 was 

expressed at similar levels in the high-GFP (putative Sertoli) and low-GFP (putative FLC) 

populations (Fig. 3.4H): despite reports that Ptch1 expression is characteristic of FLCs (McDowell 

et al., 2012; Yao et al., 2002), high quality expression data agree with our findings and indicate that 

Ptch1 is expressed at similar levels in Sertoli and testicular interstitial cell populations at 12.5 dpc 

((Jameson et al., 2012b); this study). 
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The low-GFP expressing population (Fig. 3.4, light green) was characterised by reduced expression 

of Nr5a1 at 12.5 dpc and weak expression of Sox9, Amh and Ptgds (Fig. 3.4B-E). At this stage of 

testis development, expression of steroidogenic genes begins at a low level in the FLCs. 

Accordingly, expression of early FLC marker Star was similar between GFP-positive populations, 

however, elevated levels of early steroidogenic pathway member Cyp11a1 were detected in the 

low-GFP population (Fig. 3.4F,G). These and other steroidogenic markers became more highly 

expressed in the low-GFP population at 13.5 and 14.5 dpc (Fig. 3.4L; Fig. 3.5D,E,K-M). Therefore, 

we conclude that the low-GFP expressing population is enriched for FLCs at 12.5 dpc. 

 

The germ cell-depleted, GFP-negative, putative non-steroidogenic interstitial cell population (Fig. 

3.4, grey) showed minimal expression of Nr5a1, Sertoli cell markers Amh, Ptgds and Dhh, and FLC 

markers Star, Cyp11a1 and Hsd3β (hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid 

delta-isomerase 1) indicating that it was devoid of Sertoli and FLCs (Fig. 3.4B-G,J-L; Fig. 3.5C-

E,H-M). Amongst the genes we examined, only the DHH receptor Ptch1 (patched homolog 1) and 

Arx were expressed in the GFP-negative population (Fig. 3.4H,I; Fig. 3.5F,G,H,N,O). These data 

indicated that the germ cell-depleted, GFP-negative population was enriched for NSICs that did not 

express NR5A1/Nr5a1 or any other Sertoli or FLC markers. 

 

While germ cells were not the focus of this analysis, we also examined the expression of Ddx4 to 

examine the efficiency of germ cell depletion from the GFP-negative fraction. As expected, 

expression of Ddx4 was robust in this cell population from 12.5-14.5 dpc (Fig. 3.5P-R), but some 

expression was also in the GFP-negative fraction at 12.5 dpc (Fig. 3.5P), indicating a low level of 

germ cell contamination.  

 

To validate the purity of the high-GFP and low-GFP cell populations using the high-GFP/low-GFP 

FACS separation strategy described above, we performed immunofluorescence on FACS-sorted 

cell populations for NR5A1, Sertoli cell marker SOX9, germ cell marker DDX4 and vascular 

endothelial cell marker iB4 (isolectin B4; Fig. 3.1E-G). We found that virtually all cells in both the 

high-GFP and low-GFP populations were NR5A1-positive, as expected, while the GFP-negative 

population was devoid of NR5A1-positive cells (Fig. 3.1E). Results of this analysis were consistent 

with those obtained by qRT-PCR and indicate that virtually all cells in the high-GFP population 
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(putative Sertoli cells) were SOX9-positive, therefore, this population was a relatively pure 

population of Sertoli cells (Fig. 3.4C; Fig. 3.1F). On the other hand, about 7.6% of cells isolated in 

the low-GFP population (putative FLCs) were SOX9-positive, indicating that a low level of Sertoli 

cell contamination was present in the FLC population (Fig. 3.4G; Fig. 3.1F). Although our strategy 

attempted to remove the majority of germ and endothelial cells using a CD31 antibody, we found 

that about 22% of cells in the GFP-negative fraction were DDX4-positive germ cells and that 

approximately 6.4% of the GFP-negative population of cells were iB4-positive endothelial cells 

(Fig. 3.4A; Fig. 3.1G). We also tested for staining of Leydig cell markers CYP11A1 and HSD3β, 

but, as in section immunofluorescence, these markers proved uninformative at 12.5 dpc. These data 

indicated that the population purity of the three FACS isolated somatic cell populations was 

sufficient to represent the different enriched fetal testis cell populations.   
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Figure 3.1: Isolation of populations and assessment of population purity. 

(A-D) Representative FACS plots of dissociated CD1 and Sf1-eGFP gonadal cells labeled with/without a PE-tagged 
antibody to SSEA-1, a marker of germ cells. Four distinct populations can be isolated: P2, high-GFP (green); P3, low-
GFP (blue); P4, GFP-negative (purple); P5, SSEA1-positive germ cells (orange). (A) 12.5 dpc XY gonad CD1 (GFP-
negative), PE-negative (antibody-negative) control. (B) 12.5 dpc XY gonad CD1 (GFP-negative), PE-positive 
(antibody-positive) control. (C) 12.5 dpc XY gonad Sf1-eGFP (GFP-positive), PE-negative (antibody-negative) control. 
(D) 12.5 dpc XY gonad Sf1-eGFP (GFP-positive), PE-negative (antibody-positive) sample used for cell collection. (E-
G) The purity of sorted cell populations was estimated using immunofluorescence. Double staining with anti-NR5A1 
and anti-GFP antibodies showed that NR5A1-positive cells were captured in both GFP-positive populations (E; n= 7, 9, 
9). Anti-SOX9/GFP double staining demonstrated that the high-GFP population was almost completely SOX9-positive 
with little contamination from other cell types. There was a low level of contamination in the low-GFP population; 
approximately 7.6% of low-GFP population cells were SOX9/GFP-positive (F; n= 5, 3, 9)). After depletion of germ 
cells and endothelial cells from the GFP-negative population, using an antibody to CD31, approximately 22% of the 
cells in the GFP-negative cell population were DDX4-positive escaped germ cells (G; n=4,3). Additionally, 6.4% of the 
GFP-negative population was identified as iB4-positive endothelial cells (G; n= 5). 
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Figure 3.2. GFP-positive cells mark FLCs and SCs in Sf1-eGFP 12.5 dpc XY gonads. 

(A-C) Immunofluorescence of Sf1-eGFP gonads demonstrates that nuclear NR5A1 is expressed in the same cells that 
express cytoplasmic GFP in the 12.5 dpc XY gonad. (A) GFP/NR5A1-positive cells line the cords; nuclear SOX9 and 
NR5A1 colocalise in GFP-positive cells, indicating that GFP marks Sertoli cells. (B) Some GFP/NR5A1 cells reside 
interstitially, these NR5A1-positive cells do not co-stain with ARX, a marker of non-FLCs, indicating that interstitial 
GFP/ NR5A1-positive cells are pre-steroidogenic FLCs. (C) DDX4-positive germ cells are GFP/ NR5A1-negative. 
Scale bar = 100 µM.  
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Figure 3.3. GFP-positive cells mark FLC and Sertoli cell populations in Sf1-eGFP XY gonads. 

IF of Sf1-eGFP XY gonads at 18ts (~11.5dpc) shows that NR5A1 and GFP colocalise. At 11.5 dpc ARX-positive cells 
were NR5A1/GFP-negative cells in the gonad (A) whereas SOX9 colocalises with numerous NR5A1/GFP-positive 
cells (B). NR5A1/GFP-positive cells are exclusive of ARX-positive cells at 13.5 dpc (C) and 14.5 dpc (E). SOX9-
positive cells are GFP-positive and line the cords at 13.5 dpc (D) and 14.5 dpc (F). Interstitial NR5A1/GFP-positive 
cells colocalise with HSD3β at 13.5 dpc (H) and 14.5 dpc (J).  NR5A1/GFP-positive cells are exclusive of DDX4-
positive cells at 11.5 dpc (G), 13.5 dpc (I) and 14.5 dpc (K). m = mesonephros; scale bar = 100 µM.  
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Figure 3.4. High-GFP population represents Sertoli cells and the low-GFP population represents FLCs in 12.5 dpc 

XY Sf1-eGFP gonads. 

(A) Schematic of FACS protocol for the XY Sf1-eGFP gonads; four cell populations were isolated by FACS using a 
germ (GC) or germ cell/endothelial cell (GC/EC) depleted sorting method. (B-I) At 12.5 dpc, qRT-PCR for somatic 
marker Nr5a1 (B) and Sertoli cell markers, Sox9 (C), Amh (D) and Ptgds (E) showed that the high-GFP expressing cell 
population was enriched for Sertoli cells. The low-GFP expressing cell population expressed low levels of Sertoli cell 
markers. Early FLC marker Star (F) was similar in the two GFP-positive populations, however, Cyp11a1 (G) was 
elevated in the low-GFP population. Interstitial markers Ptch1 (H) and Arx (I) are the only markers expressed in the 
GFP-negative population. The same trend was observed at 13.5 dpc: high-GFP expressing cells expressed Nr5a1 (J) and 
high levels of Sox9 (K), whereas, low-GFP expressing cells were confirmed to be enriched for FLCs, as they express 
high levels of Cyp11a1 (L). For all qRT-PCR: levels are shown relative to Tbp, error = S.E.M., * = p = 0.05, ** = p = 
0.001, *** = p = 0.0001, **** = p = 0.00001, ns = not statistically significant. For 12.5 dpc, n values for  (Nr5a1, Sox9 
n= 4, 5, 4, 4 (GC/EC); Star n= 4, 5, 5, 5 (GC/EC); Cyp11a1 n= 3, 4, 4, 4 (GC); Amh, Ptgds, Arx n= 4, 4, 4, 4; Ptch1 n= 
3, 5, 5, 5 (GC/EC)). For 13.5 dpc, n values for  (Nr5a1 n= 8, 8, 5, 5; Sox9 n= 7, 7, 4, 4; Cyp11a1 n= 8, 8, 4, 4 (GC)). 
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Figure 3.5. High-GFP cell population represents Sertoli cells and the low-GFP population represents FLCs in XY 

Sf1-eGFP gonads. 

qRT-PCR identifies the low-GFP expressing population as enriched for FLCs and the high-GFP expressing population 
as enriched for Sertoli cells. At 11.5 dpc, in XX and XY Sf1-eGFP gonads, two populations of GFP-expressing cells 
were isolated by FACS using a germ cell depleted sorting method (n= 4, 4, 4, 4): qRT-PCR for somatic marker Nr5a1 
(A) and Sertoli cell marker Sox9 (B), showed that the high GFP expressing cell population was enriched for Sertoli cell 
markers and the low GFP-expressing population expressed low levels of Nr5a1. qRT-PCR on sorted cells from XY Sf1-
eGFP gonads at 13.5 dpc showed that Sertoli cell marker Amh (C) were enriched in the high-GFP population, whilst 
FLC markers Star (D) and  Hsd3β (E) were enriched in the low-GFP population. Interstitial marker Ptch1 (F) was 
expressed in all somatic cells whereas Arx (G) was expressed in the low-GFP and GFP-negative populations. At 14.5 
dpc these patterns were maintained. qRT-PCR showed that: Nr5a1 (H) was expressed in both GFP-positive populations; 
Sox9 (I) and Amh (J) were enriched in the high-GFP population and FLC markers Star (K), Cyp11a1 (L) and Hsd3β 
(M) were enriched in the low-GFP population. Interstitial marker Ptch1 (N) was expressed most highly in somatic cell 
populations while Arx (O) was expressed in the low-GFP and GFP-negative populations. Ddx4 was used as a marker of 
germ cells to examine the efficacy of antibody selection in GC/EC depletion at 12.5 dpc (P) and GC-depletion at 13.5 
(Q) and 14.5 dpc (R); some germ cell contamination was detected in the GFP-negative population. n values for C,E: n= 
8, 8, 3, 3; D,G: n= 3, 3, 3, 3; F,Q,P: n= 4, 4, 4, 4; H,I: n= 8, 8, 4, 3; J,K,L,M,N,O,R: n= 4, 4, 4, 3.  For all qRT-PCR: 
levels are shown relative to Tbp, error = S.E.M., * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, **** = p = 0.00001, ns 
= not statistically significant.  
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Generation and quality of RNA-seq data 

We next analysed the transcriptomes of the sorted testicular cell populations by RNA-seq. Cells 

were collected from 12.5 dpc Sf1-eGFP XY gonads, depleted of germ and endothelial cells using a 

CD31 antibody, and fractionated into three populations using the methods described above (Fig. 

3.4A). Triplicate samples of each somatic cell population were generated, RNA was isolated and 

reverse-transcribed, and the resulting cDNA deep-sequenced using a paired end 100bp stranded 

sequencing format on Illumina HiSeq 1500. An average of 65 million raw reads were generated per 

sample. Supplemental Data 1 provides a spreadsheet of cpm RNA-seq data for all Ensembl gene 

IDs detected at >1cpm in 3 or more samples (data can be accessed from GEO; GSE65498). 

 

To validate the RNA-seq data, we examined the normalised sequence counts per million (cpm) as 

an indicator of expression of various marker genes (Fig. 3.6A-I; Supplemental Data 1). The results 

of this analysis were consistent with results obtained by qRT-PCR, with the exception of Star, 

where transcripts were detected in the NSIC population at low levels in the RNA-seq data  (Fig. 

3.4B-I; Fig. 3.6A-I). These data indicated that the RNA-seq output accurately represented the 

transcriptomes of the different enriched fetal testis cell populations.   

 

Differentially expressed gene analysis 

Genes were identified as being up-regulated in a cell population if they showed >1 log fold change 

and adjusted p-value < 0.05 in the differential expression (DE) analysis compared to either of the 

other cell types. As expected, the GFP-negative fraction isolated by FACS was negative for Sertoli 

and FLC markers. However, each of the GFP-positive populations contained some transcripts 

characteristic of other populations, consistent with results obtained qRT-PCR (Fig. 3.4B-L; Fig. 3.5; 

Fig. 3.6). That is, some FLCs were likely to have contaminated the Sertoli cell-enriched fraction 

(Fig. 3.4G, low level expression of Cyp11a1) and some Sertoli cells were likely to have been 

present in the FLC-enriched fraction (Fig. 3.4C, low level expression of Sox9). For this reason, the 

log fold cutoff off was lowered to >0.6 for these samples, to reduce the potential of obtaining false 

negatives when compiling lists of cell type-specific genes. In this way, we identified a group of 

genes upregulated in each enriched cell population: 84 FLC-enriched genes, 704 NSIC-enriched 

genes and 1217 Sertoli cell-enriched genes (Supplemental Data 2). Validation of a subset of the 

genes from the lists of upregulated transcripts demonstrates that a gene in these lists is likely to be 

expressed in a single testicular cell population at 12.5 dpc.  
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Validation of the FLC-enriched gene dataset  

As a first step in validating the 84 candidate FLC genes, we compared them to results of published 

studies. Of these genes, 72% (61 genes) were previously unreported in the two published 

microarray datasets that have provided lists of candidate FLC genes at 12.5 dpc ((Jameson et al., 

2012b; McDowell et al., 2012); Fig. 3.7A; Table 3.1). A number of genes had been identified as 

being expressed in whole adult testis, although for most no further gonadal or fetal gonadal 

characterisation has been performed (Supplemental Table 5). Four of the 84 genes (Htra3, Vcam1, 

Bmp2 and Kcnk3) overlapped with a list of 567 genes identified as putatively regulated by NR5A1 

by performing RNA-seq on Y-1 cells treated with Nr5a1-siRNA (2014) consistent with Nr5a1’s 

pivotal role in FLC specification and differentiation. 

 

We next analysed temporal and cell-specific gene expression of candidate FLC genes by qRT-PCR 

on sorted Sf1-eGFP cell populations at 12.5-14.5 dpc. These analyses confirmed FLC-enriched 

expression of Tacr3, Tac2, Prlr, Sox18, Mc2r and Adcy7 compared to NSICs (Fig. 3.7B,C,E-G,I). 

Prlr was expressed in the FLC-population with expression increasing from 12.5 dpc (Fig. 3.7E). 

Robo2 and Clca1 appeared to be expressed equally in FLCs and NSICs by qRT-PCR (Fig. 3.7D,H). 

Expression of Tacr3 was elevated in the FLC-enriched population at 12.5 dpc and was subsequently 

expressed in the FLC and NSIC populations  (Fig. 3.7B). Interestingly, Tac2, Sox18 and Adcy7 

were expressed more highly in the FLC than in the NSIC population at 12.5 dpc only before 

becoming either expressed in multiple populations or downregulated (Fig. 3.7C,F,I). 

 

Lastly, we examined the in situ hybridization (ISH) staining patterns of the FLC genes identified by 

RNA-seq, at 14.5 dpc when FLCs have upregulated steroid production, using the Eurexpress whole 

embryo section in situ hybridization (ISH) database (Diez-Roux et al., 2011). Of the 8 expression 

profiles analysed in this way (Adcy7, Clca1, Itga9, Nrg1, Nts, Prlr, Srpx2 and Tacr3), all showed 

the expected expression in the interstitial space, similar to the known FLC marker Cyp11a1 (Fig. 

3.8A,D-K), and distinct from the cord-associated expression of the Sertoli cell marker Amh (Fig. 

3.8C). Taken together, these validation steps confirmed that the putative FLC gene dataset 

generated in this study represents an accurate subset of the FLC transcriptome.  
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Figure 3.6. RNA-seq counts for specific genes recapitulate qRT-PCR results. 

Counts per million reads (cpm) from RNA-seq data recapitulate qRT-PCR results for the Sertoli cell, NSIC and FLC 
populations. Nr5a1 (A) was enriched in Sertoli cell as were Sertoli marker genes Sox9 (B) and Dhh (C). Ptch1 (D) was 
enriched in somatic cells whilst FLC marker Inhba (E; inhibin beta-A), was upregulated in FLCs, although Star (F) was 
not robustly upregulated at this timepoint. Arx (G) was enriched in NSIC and FLCs similar to qRT-PCR results.  Germ 
cell markers Tbx4 (H; T-box 4) and Ddx4 (I) were present in the NSICs indicating some GC contamination.  
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Figure 3.7. qRT-PCR validation of cell lineage expression of novel candidate genes from 12.5-14.5 dpc. 

(A) Comparison between our dataset of genes upregulated in the FLC enriched population and the McDowell et al., 
(2012) and Jameson et al., (2012b) datasets is represented, only 6 genes are present in all three datasets. See Table 1 for 
lists of genes in each category. (B-O) qRT-PCR for candidate genes identified as being differentially expressed between 
cell types on sorted cell populations from the 12.5-14.5 dpc Sf1-eGFP XY gonad.  Novel genes identified as being 
highly expressed in enriched FLC: (B) Tacr3, (C) Tac2, (D) Robo2, (E) Prlr, (F) Sox18, (G) Mc2r, (H) Clca1 and (I) 
Adcy7. Novel genes highly expressed in enriched NSICs: (J) Frem2, (K) Fras1 and (L) Car2. Novel genes identified as 
being highly expressed in enriched Sertoli cells: (M) Trank1, (N) Gstm7 and (O) Adamt16. (B,C,E,G,L,M,N: 12.5/13.5 
dpc, n= 3, 3, 3, 3, 14.5 dpc, n= 4, 4, 4, 3; D,F,H,I,J,K,O: 12.5/13.5 dpc, n= 3, 3, 3, 3, 14.5 dpc, n= 3, 4, 4, 3) For all 
qRT-PCR: levels are shown relative to Tbp, error = S.E.M. 
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Table 3.1. Genes represented in three different characterisations of the FLC population 

 

  

FLC genes is found in: Gene lists:  

This study, Jameson 
(Jameson et al., 2012b) 
and McDowell 
(McDowell et al., 2012) 

Inhba, Ppp1r14a, Prlr, Prokr2, Robo2, Vsnl1 

This study and Jameson 
(Jameson et al., 2012b) 

C7, Casq2, Cbln1, Grin2a, Hhip, Hspa12a, Itga9, Kcnj3, Mc2r, Nts, Stc1, 
Vcam1 

This study and 
McDowell (McDowell 
et al., 2012) 

Crhr1, Htra3, Itih5, Srpx2, Vgll3 

Jameson (Jameson et 
al., 2012b) and 
McDowell (McDowell 
et al., 2012) 

Aebp1, AI427809, Cyp11a1, Cyp17a1, Fads1, Gramd1b, Hsd3b1, Lhcgr, Npy, 
Star 

This study only Adamts5, Adcy7, Arhgap6, Armcx6, Art3, Bmp2, Btnl9, Chst1, Chst2, Clca1, 
Clec1b, Col23a1, Cyp1b1, Ffar2, Gja5, Gm11549, Gm13659, Gm14396, 
Gm5067, Gpr153, Gpr174, Gpr20, Grrp1, Hoxd10, Hoxd11, Hsd11b2, Irf8, 
Itga4, Kcnk3, Kcns2, Lars2, Lrrtm3, Mc4r, Mme, Mmp28, Myh11, Myh7, Myl4, 
Myoc, Ngfr, Nrg1, Oit3, Otof, Pcp4l1, Pdyn, Plcxd3, Pnmal1, Ptpro, Rad51ap2, 
Serpina3g, Sertm1, Slitrk2, Sox18, Speer7-ps1, Sstr4, Syt15, Tac2, Tacr3, Tg, 
Trac, Vipr1 

Jameson only (Jameson 
et al., 2012b) 

A430107O13Rik, Ace2, Adam12, Alas1, Armcx2, Atp1a3, Clca2, Col6a1, 
Copz2, Cxcr7, Cyp51, Enpep, Ephx1, Fat3, Fdps, Fdx1, Gpc3, Gpm6a, Grk5, 
Hsd17b7, Jag1, Mobkl3, Osr2, Pltp, Prkar2b, Pros1, Rbp4, Ren1, Sc4mol, 
Scarb1, Sct, Slc6a15, Smoc2, Ssfa2, Tgfbr3, Tnc, Tpm2, Trib2, Zeb2 

McDowell only 
(McDowell et al., 2012) 

1200009O22Rik, 4930474M22Rik, 5031410I06Rik, Abcc9, Adamts7, Alcam, 
Arx, B3galt1, Cd36, Cdkn2c, Dlc1, Fbn1, Glipr2, Gpx3, Gria4, Gsta2, 
Gucy1b3, Inha, Insl3, Itgb8, Itm2a, Lrrk2, Ltbp4, Ng23, Nuak1, Pi15, Ptrf, 
Scd1, Sec24d, Slc29a1, Speer4d, Thbd, Tm7sf2 

 

 

Table 3.1: Genes represented in three different characterisations of the FLC population (see Fig. 3.7A). 

List of FLC genes identified in this study, the McDowell data set (McDowell et al., 2012) and the Jameson dataset 
(Jameson et al., 2012b) at 12.5 dpc indicating unique and overlapping genes between data sets. This data is displayed in 
a Venn diagram in Fig. 3.7A. 
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Mining of the FLC-enriched gene dataset  

We sought to generate a transcriptional portrait of the FLCs based on the RNA-sequencing dataset. 

We performed gene ontology (GO) analysis, using the DAVID Bioinformatics Package, for each of 

the three outputs of the differentially expressed gene analysis. Ten of the identified genes for each 

of three ontologies (transmembrane factors, secreted factors and transcription factors) for each 

sorted cell population are listed in Fig. 3.9. Among the 84 candidate FLC genes, we identified 35 

genes encoding transmembrane components (p= 2.33E-03), of these there was an 

overrepresentation of genes involved in neurogenesis/neurotransmission (Table 3.2), with 8 

encoding receptors, or receptor components, for neuroactive ligands (Tacr3, Mc4r, Prlr, Crhr1, 

Mc2r, Sstr4, Grin2a and Vipr1; p= 2.96E-03). Additionally, five receptors were identified as being 

involved in cell adhesion (Robo2, Itga4, Itga9, Vcam1, Arhgap6; p= 9.86E+01). Secreted factors 

were also overrepresented, with 14 secreted factors upregulated in the enriched FLC population 

including Tac2, Hhip, Pdyn and Inhba (p= 9.98E-02). Finally we identified four genes encoding 

transcription factors in the FLC enriched population: Hoxd10, Hoxd11, Irf8 and Sox18 (p= 

1.00E+02).  

 

We queried the Online Mendelian Inheritance in Man (OMIM) Database and found that 30 of the 

candidate FLC genes are associated with human disease phenotypes (26 where the molecular basis 

is known; eight listed in Table 3.3; full list Supplemental Data 8). Analysis of published literature 

revealed that genetic deletion of some of the genes upregulated in the FLC-enriched population 

results in embryonic lethality (Table 3.3) from a variety of causes including cardiac (Nrg1; (Meyer 

and Birchmeier, 1995)), respiratory (Hhip; (Chuang et al., 2003)) and vascular defects (Ngfr; 

(Schack et al., 2001)). Among these, gene knockout of Robo2, Prokr2 and Tacr3 in mice resulted in 

defects in postnatal urogenital and reproductive system development (Grieshammer et al., 2004; 

Matsumoto et al., 2006; Yang et al., 2012). Interestingly, these three genes encode transmembrane 

receptors important for neuroactive-ligand signalling.  

 

Finally, we sought to determine if any FLC genes at 12.5 dpc might also mark pre-FLCs at 11.5 dpc 

and might therefore be useful in clarifying the developmental origin of FLCs. We re-analysed a 

previously-published microarray dataset (Jameson et al., 2012b) and considered whether genes we 

found to be enriched in FLCs at 12.5 dpc were also robustly upregulated in the “interstitial” 

population (which includes pre-FLCs) compared with the “supporting” (pre-Sertoli) population at 
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11.5 dpc: we reasoned that such genes may mark FLCs even before they attain sterodogenic 

capacity. This analysis resulted in the identification of 10 genes of interest: Prokr2; Itga9; Ptpro; 

Ngfr; Clca1; Adamts5; Nrg1; Arhgap6; Myl4 and Hsd11b2 (Table 3.4; Supplemental Data 4). 

These genes, characterising non-Sertoli NR5A1-positive cells prior to FLC maturation (which 

occurs between 12.5 and 13.5 dpc), may act as early markers for the FLC lineage and, therefore, 

may aid our understanding of FLC specification and differentiation. 
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Figure 3.8: In situ hybridisation for genes identified by RNA-seq to be over-expressed in FLCs, NSICs and Sertoli 

cells. 

ISHs for newly identified candidate genes at 14.5 dpc from Eurexpress Transcriptome Atlas Database for Mouse 
Embryo (http://www.eurexpress.org). Marker genes Cyp11a1 (A) shows FLC expression pattern, Nr2f2 (B; nuclear 
receptor subfamily 2, group F, member 2) shows an interstitial pattern and Amh (C) shows a Sertoli cell expression 
pattern. Novel FLC genes, Adcy7 (D), Clca1 (E), Itga9 (F), Nrg1 (G), Nts (H), Prlr (I), Srpx2 (J) and Tacr3 (K; also 
shows adrenal expression (data not shown)) show expression in cells distributed outside the testis cords indicating that 
FLC-expressed genes are being detected. Novel NSIC genes, Car2 (L), Slc6a18 (M) and Ermap (N) show expression in 
cells distributed outside the testis cords indicating the NSIC expressed genes are being detected. Novel Sertoli cell 
genes, Trank1 (O), Adamts16 (P) and Gstm7 (Q) show expression in cells distributed around the border of the testis 
cords indicating Sertoli cell expression. The testis region is demarcated by a dotted line. Scale = 0.5 mm. k= kidney; 
ad= adrenal; L= liver; m= mesonephros; Eurexpress probe IDs can be found in Supplemental Table 7.  
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Table 3.2. Subset of clusters of from DAVID GO Analysis on enriched FLCs (Enrichment > 3). 

 

 

Table 3.2. Subset of clusters of from DAVID GO Analysis on enriched FLCs (Enrichment > 3). 

Clusters identified by DAVID analysis in the FLC enriched gene list with an “Enrichment Value” of ≥3

 
Annotation GO clusters 

Benjamani P-
value 

Neuro Enrichment: 5.72   

  G-protein coupled receptor 7.02E-08 

  Transducer 6.72E-08 

  Receptor 1.19E-07 

  
GO:0007186 G-protein coupled receptor protein signaling 
pathway 6.01E-06 

  GO:0007166 Cell surface receptor linked signal transduction 2.06E-05 

  PIRSF800006 Rhodopsin-like G protein-coupled receptors 1.82E-05 

  Cell membrane 2.95E-05 

  mmu04080 Neuroactive ligand-receptor interaction 1.49E-04 

  GO:0042923 Neuropeptide binding 7.19E-04 

  GO:0008188 Neuropeptide receptor activity 7.19E-04 

  GO:0001653 Peptide receptor activity 1.77E-03 

  GO:0008528 Peptide receptor activity, G-protein coupled 1.77E-03 

  GO:0042165 Neurotransmitter binding 1.10E-02 

  GO:0030594 Neurotransmitter receptor activity 1.10E-02 

  GO:0042277 Peptide binding 1.64E-02 

  Palmitate 4.69E-02 

  Lipoprotein 5.73E-02 

Cell membrane Enrichment: 4.88   

  Cell membrane 2.95E-05 

  Transmembrane 3.59E-05 

  GO:0005886 Plasma membrane 6.09E-04 

  Membrane 7.03E-04 

  GO:0016021 Integral to membrane 3.95E-03 

  GO:0031224 Intrinsic to membrane 2.84E-03 

Secreted Enrichment: 4.64   
  Signal 1.22E-07 

  Secreted 1.12E-03 

  Cleavage on pair of basic residues 6.84E-03 

  GO:0005576 Extracellular region 3.78E-02 
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Table 3.3. Subset of genes upregulated in 12.5 dpc FLCs (p < 0.05). 
ID Gene Name Chr Phenotype OMIM 

assoc.  Reference 

ENSMUSG00000052516 Robo2 Roundabout homolog 2  16 urogenital and organ patterning defects 610878 (Grieshammer et al., 2004) 

ENSMUSG00000056025 Clca1 Chloride channel calcium activated 1 3 - -  - 

ENSMUSG00000028172 Tacr3 Tachykinin receptor 3/neuromedin K receptor 
(Nk3r) 3 postnatal defects; males have small testes and low FSH 614840* (Topaloglu et al., 2009; 

Yang et al., 2012) 

ENSMUSG00000062991 Nrg1 Neuregulin 1 8 embryonic lethal at 10.5 dpc; cardiac defect 603013 (Meyer and Birchmeier, 
1995) 

ENSMUSG00000024087 Cyp1b1 Cytochrome P450, family 1, subfamily b, 
polypeptide 1 17 no lethal developmental defects 231300 (Buters et al., 1999) 

ENSMUSG00000027820 Mme Membrane metallo endopeptidase/NEP 3 no lethal developmental defects - (Lu et al., 1997) 

ENSMUSG00000026824 Kcnj3 Potassium inwardly-rectifying channel, 
subfamily J, member 3 2 no lethal developmental defects - (Bettahi et al., 2002) 

ENSMUSG00000064325 Hhip Hedgehog-interacting protein 8 lethal at P0; respiratory defects - (Chuang et al., 2003) 

ENSMUSG00000050963 Kcns2 K+ voltage-gated channel, subfamily S, 2 15 - - - 

ENSMUSG00000031654 Cbln1 Cerebellin 1 precursor protein 8 no lethal developmental defects : postnatal cerebellum defects - (Hirai et al., 2005) 

ENSMUSG00000050558 Prokr2 Prokineticin receptor 2 2 no gross FLC phenotype; postnatal atrophy of the reproductive 
system and olfactory bulb defects 244200* 

(Dode et al., 2006; 
Matsumoto et al., 2006; 
Svingen et al., 2011) 

ENSMUSG00000027009 Itga4 Integrin alpha 4 2 embryonic lethal; placentation defect and cardiac haemorrhage - (Yang et al., 1995) 

ENSMUSG00000020682 Mmp28 Matrix metallopeptidase 28 (Epilysin) 11 no lethal developmental defects - (Manicone et al., 2009) 

ENSMUSG00000039115 Itga9 Integrin alpha 9 9 no lethal developmental defects ; postnatal thorax and lymphatic 
valve defects - (Bazigou et al., 2009; 

Huang et al., 2000) 

ENSMUSG00000030223 Ptpro Protein tyrosine phosphatase, receptor type, O 6 no lethal developmental defects ; sensory and glomerular defects 
postnatally 614196 

(Gonzalez-Brito and 
Bixby, 2009; Wharram et 
al., 2000) 

ENSMUSG00000050368 Hoxd10 Homeobox D10 2 nervous system, hind-limb and musculoskeletal defects 192950 (Carpenter et al., 1997) 

ENSMUSG00000047259 Mc4r Melanocortin 4 receptor 18 no lethal developmental defects ; obesity 601665 (Huszar et al., 1997) 

ENSMUSG00000022894 Adamts5 A disintegrin-like and metallopeptidase with 
thrombospondin type 1 motif, 5  16 no lethal developmental defects ; postnatal cartilage aggrecanase  - (Glasson et al., 2005; 

Stanton et al., 2005) 

ENSMUSG00000027962 Vcam1 Vascular cell adhesion molecule 1 3 embryonic lethal at 12.5 dpc; required for chorioallantoic fusion and 
placentation - (Gurtner et al., 1995) 

ENSMUSG00000025092 Hspa12a Heat shock protein 12A 19 - - - 

ENSMUSG00000040283 Btnl9 Butyrophilin-like 9 11 - - - 

ENSMUSG00000014813 Stc1 Stanniocalcin 1 14 no lethal developmental defects - (Chang et al., 2005) 

ENSMUSG00000031659 Adcy7 Adenylate cyclase 7 8 embryonic lethal; -/+ survive - (Hines et al., 2006) 
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Table 3.3. Subset of genes upregulated in 12.5 dpc FLCs (p < 0.05). 

Phenotype indicates the embryonic or postnatal phenotype of the null animal. Information from published reports where there was postnatal survival mutations were classified as: 
“no lethal developmental defects” (indicates that the null offspring were obtained as adults at the expected Mendelian ratios) or “fertile” (indicates that the mice were able to 
reproduce normally).  References are the primary report of the null or mutant mouse and any subsequent clarifying reports. (Chr., chromosome; OMIM assoc. = OMIM reference 
number if the gene is associated with any type of human disorder (* indicates a genitourinary, endocrine or DSD phenotype); FSH, follicle stimulating hormone). 

ENSMUSG00000000120 Ngfr P75 NTR/ nerve growth factor receptor 11 40% perinatal loss of -/- between 15.5dpc-birth due to vascular 
defects - (Schack et al., 2001) 

ENSMUSG00000031355 Arhgap6 Rho gtpase activating protein 6 X no lethal developmental defects - (Prakash et al., 2000) 
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Table 3.4. Genes identified at 12.5 dpc in FLCs that are putative marker genes of pre-FLCs at 11.5 

dpc 

 

 

 

 

 

Table 3.4. Genes identified at 12.5 dpc in FLCs that are putative marker genes of pre-FLCs at 11.5 dpc. 

Genes found to be enriched in Leydig cells at 12.5 dpc that also show differing expression between the interstitial and 
supporting cell compartments of 11.5 dpc testes are putative pre-FLC marker genes. This table summarises top results 
from the full dataset, noting those genes with expression in interstitial cells more than four times that in supporting cells 
(logFC ≥ 2). Of particular interest in predicting putative markers for FLCs are the 10 genes with low expression in 
supporting cells (Sup Exp ≤ 6; marked in grey). The logFC, P.Value, and adj.P.Val columns indicate results from 
differential expression analysis. Int. Exp (interstitial) and Sup. Exp (supporting) show median normalised expression of 
the gene in each of these two cell types, while Int. Rank (interstitial) and Sup. Rank (supporting) indicate the position of 
the gene in a list ranked by expression in that cell type (0=lowest expression, 100=highest expression).   
  

 
Genes  logFC P.Value adj.P.Val Int. Exp Sup Exp Int. Rank Sup. Rank 
Cyp1b1 5.03 2.83E-15 9.22E-12 11.77 6.87 98 35 
Prokr2 4.54 2.23E-11 1.30E-08 10.34 4.90 88 6 
Itga9 4.49 6.39E-09 1.40E-06 8.42 3.92 61 0 
Ptpro 4.38 3.10E-06 2.21E-04 9.27 4.99 75 7 
Hoxd10 4.02 9.18E-14 1.48E-10 10.58 6.71 90 32 
Ngfr 3.71 4.10E-12 3.11E-09 9.73 5.81 82 17 
Robo2 3.58 4.34E-07 4.55E-05 10.38 6.08 89 21 
Clca1 3.46 6.34E-10 2.09E-07 8.48 5.11 62 9 
Adamts5 3.28 3.75E-13 4.49E-10 8.35 5.11 60 9 
Nrg1 3.11 2.74E-08 4.67E-06 8.23 4.95 58 7 
Hoxd11 3.02 6.18E-11 3.06E-08 8.86 6.11 69 22 
Arhgap6 2.88 1.96E-03 2.89E-02 8.68 4.84 66 6 
Cbln1 2.75 4.93E-16 2.29E-12 11.07 7.97 94 56 
Mc2r 2.72 1.54E-07 1.96E-05 9.61 6.55 80 29 
Myl4 2.52 8.50E-05 2.98E-03 8.12 5.72 56 16 
Hsd11b2 2.52 1.51E-05 7.82E-04 8.91 5.19 70 10 
Mme 2.08 2.46E-04 6.60E-03 9.56 7.66 79 50 
Vcam1 2.04 1.18E-06 1.03E-04 7.99 6.03 54 21 
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NSICs vs FLC transcriptomes: Clues to the origin of FLCs 

 

It is clear that signaling from Sertoli cells to interstitial cells plays a critical role in the specification 

of FLCs (Griswold and Behringer, 2009). Early expression of NR5A1 in pre-FLCs precedes 

steroidogenesis and is likely important for their future steroidogenic capacity. However, it is not 

clear why only some interstitial cells respond to signals such as DHH by initiating steroidogenesis; 

this is especially puzzling because non-FLCs of the interstitium are apparently capable of 

responding to DHH as they express the receptor PTCH1 (Yao et al., 2002). Here we confirm that 

NSICs express PTCH1  (Fig. 3.3H, Fig. 3.5F,N): previous studies have demonstrated that PTCH1, 

along with receptors for other Sertoli-produced factors such as PDGFα, are expressed in a pan-

interstitial manner (Brennan et al., 2003). We reasoned that knowledge of early markers that do 

discriminate NSICs from FLCs may help explain why only FLCs differentiate in response to 

Sertoli–derived cues. 

 

NSICs that express NR2F2 at 18.5 dpc are considered progenitor cells for the ALC population 

(Kilcoyne et al., 2014) but it is not known whether these cells also express NR5A1 (Barsoum and 

Yao, 2010). To help clarify this issue, we examined whether NR2F2-positive cells in the fetal testis 

were also positive for NR5A1. At 11.5 dpc most NR2F2-positive cells also expressed ARX, a 

smaller proportion expressed NR5A1 and some triple-positive cells were seen (Fig. 3.10A). From 

12.5 to 14.5 dpc, NR2F2 cells were ARX-positive but negative for NR5A1 (Fig. 3.10B-D) with few 

exceptions (grey arrow, Fig. 3.10B-D). Unless NR2F2 cells begin to express NR5A1 at later 

timepoints, these data would suggest that ALC progenitors do not express NR5A1 during fetal life.  

 

We looked at the heterogeneity of the isolated NSIC population by performing DAVID analysis on 

the upregulated genes 704 genes. We established that the NSIC population contained both blood 

cells and macrophages, which have been shown to be important for testis morphogenesis and 

vascularisation (DeFalco et al., 2014). We identified a subset of genes involved in haematopoiesis 

(29 genes; p= 1.26E-04), leukocyte activation (24; p= 3.02E-04) and immune response (32; p= 

1.99E-05) in the gene list (Supplemental Data 3).  

 

Subsequently, we performed qRT-PCR on sorted Sf1-eGFP cell populations to verify the NSIC-

enriched expression of genes upregulated in the NSIC list. We detected expression of Car2 in 
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NSICs but not FLCs by qRT-PCR (Fig. 3.7L) while expression of Car2, Slc6a18 and Ermap by 

ISH was consistent with the predicted interstitial expression pattern for the candidate genes (Fig. 

3.8B,L-N) and distinct from the cord-associated expression of the Sertoli cell marker Amh (Fig. 

3.8C). Therefore, at least Car2 appears to be a novel marker for NSICs that warrants further 

investigation. 

 

Next we looked to identify additional factors that set NSICs apart from FLCs. We observed an 

overrepresentation of genes associated with developmental processes (Table 3.5) in the NSIC-

enriched population. Interestingly, the NSIC population was marked by expression of transcription 

factors, including Hoxd3; Hoxb2; Olig1 and Gata5 (57 genes; p = 1.49E-05; Table 3.5), suggesting 

that this population is involved in active developmental processes at this critical stage of gonadal 

development; we found very few transcription factors characteristic of the FLC population. In 

addition, GO analysis identified numerous transmembrane component genes not expressed in the 

FLC population that may be involved in Sertoli-NSIC cell signalling (including Frem2, Prokr1, 

Ntrk2, Cdh16 and Adam22; 177 genes; p= 2.22E-04; Table 3.5; Fig. 3.9). 203 of the genes 

identified as being upregulated in the NSIC-enriched population have been associated with a 

phenotype in OMIM and for 162 of these the molecular basis is known (eight listed in Table 3.6; 

full list Supplemental Table 7). 

 

One of the transmembrane components identified in NSICs but not FLCs was Frem2/FREM2 

(Fras1 related extracellular matrix protein 2), a cell surface receptor that is a known DSD gene 

causing Fraser Syndrome (OMIM:219000; Table 3.6; (Jadeja et al., 2005)). Expression of Frem2 

has not been reported previously in the fetal gonad. By qRT-PCR we established that Frem2, and its 

close family member Fras1 (Fraser syndrome 1 homolog), which is also involved in Fraser 

syndrome, are expressed in the NSIC-enriched population of the testis at 12.5-13.5 dpc (Fig. 

3.7J,K). These data established that there is a large group of factors, some of which are known to be 

relevant to human DSD, which set NSICs apart from FLCs during early development. These genes 

may be relevant to the fate decisions made by NSICs at the time of FLC specification.   
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Figure 3.9. Subset of transcription factors, transmembrane factors and secreted factors identified by gene ontology 

analysis in each cell population. 

Using DAVID pathway analysis the transcription factors (TF), transmembrane factors (TM) and secreted factors (SF) 
present in each cell enriched population were identified. A subset of genes identified in each category are listed (for full 
listing of GO terms and data see Supplemental Data 3; for overrepresentation analysis for FLCs and NSICs see Tables 
3.2 and 3.5).  
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Figure 3.10. NR2F2-positive cells are predominately ARX-positive, NR5A1/GFP/HSD3β-negative interstitial cells. 

(A,B) Immunofluorescence for NF2R2 at 11.5 dpc shows that mesonephric cells are NR2F2-positive and that a few 
NR2F2-positive cells can be observed in the XY gonad. (B-D) From 12.5-14.5 dpc NR2F2 is expressed in 
predominately ARX-positive/NR5A1-negative cells of the interstitium. White arrow indicates NR5A1-positive nuclei; 
yellow arrow indicates ARX/NR2F2-positive nuclei; grey arrow indicates ARX/NR5A1/NR2F2-positive nuclei. m = 
mesonephros; scale bar = 100 µM. 
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Table 3.5. Subset of clusters of from DAVID GO Analysis on enriched NSICs (Enrichment > 
3) 

Annotation GO clusters 
Benjamani 
P-value 

Signal Peptide Enrichment: 19.48   
  Disulfide bond 1.84E-20 
  Glycoprotein 2.35E-17 
  Signal 6.89E-16 
Transmembrane Enrichment: 6.94   
  Glycoprotein 2.35E-17 
  Transmembrane 2.22E-04 
  Membrane 4.71E-04 
  GO:0031224 Intrinsic to membrane 2.43E-02 
  GO:0016021 Integral to membrane 6.00E-02 
Development Enrichment: 5.83   
  Homeobox 3.81E-11 
  GO:0043565 Sequence-specific DNA binding 6.61E-06 
  GO:0048706 Embryonic skeletal system development 2.53E-05 
  GO:0048704 Embryonic skeletal system morphogenesis 3.58E-05 
  GO:0009952 Anterior/posterior pattern formation 2.93E-04 
  GO:0048568 Embryonic organ development 3.11E-04 
  GO:0003002 Regionalization 3.85E-04 
  GO:0048705 Skeletal system morphogenesis 5.84E-04 
  DNA binding 2.18E-04 
  GO:0007389 Pattern specification process 1.47E-03 
  GO:0048562 Embryonic organ morphogenesis 2.63E-03 
  GO:0043009 Chordate embryonic development 4.79E-03 
  GO:0048598 Embryonic morphogenesis 5.20E-03 
  GO:0009792 Embryonic development ending in birth or egg hatching 5.38E-03 
  GO:0001501 Skeletal system development 1.32E-02 
Immune system Enrichment: 5.14   
  GO:0030097 Hemopoiesis 1.26E-04 
  GO:0048534 Hemopoietic or lymphoid organ development 2.03E-04 
  GO:0002520 Immune system development 3.19E-04 
  GO:0030099 Myeloid cell differentiation 1.25E-01 
Cell Adhesion Enrichment: 4.56   
  GO:0022610 Biological adhesion 6.60E-04 
  GO:0007155 Cell adhesion 6.60E-04 
  GO:0016337 Cell-cell adhesion 3.91E-03 
  Cell adhesion 5.42E-03 
Blood Enrichment: 3.93   
  Erythrocyte 2.44E-07 
  GO:0015669 Gas transport 3.31E-04 
  GO:0005833 Hemoglobin complex 2.45E-04 
  Oxygen transport 1.71E-04 
  GO:0015671 Oxygen transport 7.31E-04 
  GO:0005344 Oxygen transporter activity 1.02E-03 
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  GO:001982 Oxygen binding 2.09E-03 
  Blood 6.13E-04 
  Oxygen carrier 6.13E-04 
  Embryo 1.09E-03 
  PIRSF500045 Hemoglobin, vertebrate type 1.88E-02 
  Chromoprotein 1.30E-03 
  PIRSF036518 Globin 2.67E-02 
  GO:0046906 Tetrapyrrole binding 7.07E-02 
  Heme 1.79E-02 
  GO:0020037 Heme binding 9.62E-02 
  Metalloprotein 4.50E-02 
  Heterotetramer 1.41E-01 
  GO:0044445 Cytosolic part 4.26E-01 
  Iron 2.96E-01 
  GO:0005506 Iron ion binding 6.94E-01 
Transcription Enrichment: 3.68   
  Homeobox 3.81E-11 
  GO:0043565 Sequence-specific DNA binding 6.61E-06 
  GO:0003700 Transcription factor activity 1.49E-05 
  DNA-binding 1.20E-04 
  GO:0030528 Transcription regulator activity 5.52E-02 
  GO:0051252 Regulation of RNA metabolic process 9.63E-02 
  GO:0006355 Regulation of transcription, DNA-dependent 1.19E-01 
  GO:0003677 DNA binding 2.52E-01 
  GO:0045449 Regulation of transcription 3.86E-01 
  Transcription regulation 2.93E-01 
  Transcription 3.98E-01 
  GO:0006350 Transcription 8.41E-01 
  Nucleus 1.00E+00 
Homodimerisation Enrichment: 3.34   
  GO:0042802 Identical protein binding 1.29E-03 
  GO:0046983 Protein dimerization activity 1.30E-01 
  GO:0042803 Protein homodimerization activity 1.43E-01 
Cell motility Enrichment: 3.35   
  GO:0016477Cell migration 7.01E-03 
  GO:0051674 Localization of cell 3.19E-02 
  GO:0048870 Cell motility 3.15E-02 
Immunity Enrichment: 3.11   
  GO:0002252 Immune effector process 1.60E-05 
  GO:0009611 Response to wounding 2.63E-05 
  GO:0006955 Immune response 1.99E-05 
  GO:0006952 Defense response 3.11E-04 
  GO:0002443 Leukocyte mediated immunity 3.28E-04 
  GO:000695 Inflammatory response 1.52E-03 
  GO:0050778 Positive regulation of immune response 1.57E-03 
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Table 3.5. Subset of clusters of from DAVID GO Analysis on enriched NSICs (Enrichment > 3). 

Clusters identified by DAVID analysis in the NSIC enriched gene list with an “Enrichment Value” of ≥3. 

  GO:0002253 Activation of immune response 1.72E-03 
  GO:0006959 Humoral immune response 6.98E-03 
  mmu04610 Complement and coagulation cascades 5.55E-03 
  GO:0002449 Lymphocyte mediated immunity 9.02E-03 
  GO:0048584 Positive regulation of response to stimulus 1.84E-02 

  
GO:0002460 Adaptive immune response based on somatic recombination 
of immune receptors built from immunoglobulin superfamily domains 2.32E-02 

  GO:0002250 Adaptive immune response 2.32E-02 
  GO:0016064 Immunoglobulin mediated immune response 3.12E-02 
  GO:0019724 B cell mediated immunity 3.41E-02 

  
GO:0002541 Activation of plasma proteins involved in acute 
inflammatory response 1.20E-01 

  
GO:0002455 Humoral immune response mediated by circulating 
immunoglobulin 1.20E-01 

  GO:0006956 Complement activation 1.20E-01 
  GO:0045087 Innate immune response 1.81E-01 
  mmu05322 Systemic lupus erythematosus 2.01E-01 
  Immune response 1.21E-01 
  Complement pathway 1.41E-01 
  GO:0002526 Acute inflammatory response 2.64E-01 
  GO:0006958 Complement activation, classical pathway 2.78E-01 
  PIRSF002477 Complement subcomponent C1q chain A 5.89E-01 
  GO:0051605 Protein maturation by peptide bond cleavage 4.34E-01 
  Innate immunity 3.15E-01 
  GO:0016485 Protein processing 7.83E-01 
  GO:0051604 Protein maturation 8.40E-01 
  Hydroxylation 6.43E-01 
  mmu05020 Prion diseases 8.08E-01 
  Collagen 8.05E-01 
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Table 3.6. Subset of genes upregulated in 12.5 dpc NSICs (p < 0.05). 
ID Gene Name Chr Phenotype OMIM assoc.  Reference 

ENSMUSG00000025105 Bnc1 Basonuclin 1 7 subferiltle; postnatal spermatid expression - (Zhang et al., 2012) 

ENSMUSG00000037016 Frem2 
Fras1 related extracellular matrix 
protein 2 3 

syndactyly, cryptophthalmos and urogential defects, 
ambiguous genitalia 219000* (Jadeja et al., 2005) 

ENSMUSG00000026365 Cfh Complement component factor h 1 no lethal developmental defects; fertile 
126700/609814/23540
0/610698 

(Coffey et al., 2007; 
Pickering et al., 2002) 

ENSMUSG00000073530 Pappa2 Pappalysin 2 1 
post natal growth retardation;  fertile, with compromised 
fecundity N/A (Conover et al., 2011) 

ENSMUSG00000027840 Wnt2b 
Wingless-type MMTV integration 
site family, member 2B 3 no lethal developmental defects; fertile; olfactory bulb defect - 

(Tsukiyama and 
Yamaguchi, 2012) 

ENSMUSG00000038587 Akap12 A kinase anchor protein12 10 delayed fertility; urogenital hyperplasia - (Akakura et al., 2008) 

ENSMUSG00000023039 Krt7 Keratin 7 15 no lethal developmental defects; fertile - (Sandilands et al., 2013) 

ENSMUSG00000027996 Sfrp2 Secreted frizzled-related protein 2 3 
Sfrp2-/- viable and fertile; Sfrp2-/- /Sfrp1-/- gonadal defects, 
embryonic lethal at 16.5 dpc,  - 

(Cox et al., 2006; Satoh 
et al., 2006; Warr et al., 
2009) 

ENSMUSG00000030774 Pak1 
p21 protein (Cdc42/Rac)-activated 
kinase 1 7 no lethal developmental defects; fertile - (Asrar et al., 2009) 

ENSMUSG00000018659 Pnpo Protogenin homolog 11 -  610090 - 

ENSMUSG00000036030 Prtg Pyridoxine 5'-phosphate oxidase 9 - - - 

ENSMUSG00000029223 Uchl1 
Ubiquitin carboxy-terminal 
hydrolase L1 5 no lethal developmental defects; fertile; develops ataxia 615491/613643 (Saigoh et al., 1999) 

ENSMUSG00000040537 Adam22 
α disintegrin and metallopeptidase 
domain 22 5 no lethal developmental defects; fertile - (Sagane et al., 2005) 

ENSMUSG00000035000 Dpp4 Dipeptidylpeptidase 4 (CD26) 2 no lethal developmental defects - (Marguet et al., 2000) 

ENSMUSG00000025889 Snca Synuclein, alpha 6 no lethal developmental defects 
127750/168601/ 
605543 (Abeliovich et al., 2000) 

ENSMUSG00000021182 Ccdc88c Coiled-coil domain containing 88C 12 - 236600 - 

ENSMUSG00000009628 Tex15 6 Testis expressed gene 15 8 germ cell expression; males infertile - (Yang et al., 2008) 

ENSMUSG00000041605 5730559C18Rik RIKEN cDNA 5730559C18 gene 1 - - - 

ENSMUSG00000034248 Slc25a37 Solute carrier family 25, member 37 14 - - - 

ENSMUSG00000005360 Slc1a3 Solute carrier family 1, member 3 15  612656   

ENSMUSG00000042066 Tmcc2 
Transmembrane and coiled-coil 
domains 2 1 no lethal developmental defects N/A (Watase et al., 1998) 

ENSMUSG00000031881 Cdh16 ^ Cadherin 16 8 - - 
(Wertz and Herrmann, 
1999) 

ENSMUSG00000038193 Hand2 
Heart and neural crest derivatives 
expressed transcript 2 8 embryonic lethal at 10.5 dpc; cardiac defects - (Srivastava et al., 1997) 

ENSMUSG00000050244 Heatr1 HEAT repeat containing 1 13 - N/A - 
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ENSMUSG00000024151 Msh2 ^ MutS homolog 2 (E. coli) 17 no lethal developmental defects; fertile 
120435/ 
276300/158320 (Paul et al., 2007) 

ENSMUSG00000063506 Arhgap22 Rho GTPase activating protein 22 14 - - - 

ENSMUSG00000032186 Tmod2 Tropomodulin 2 9 no lethal developmental defects; fertile - (Cox et al., 2003) 

 

Table 3.6. Subset of genes upregulated in 12.5 dpc NSICs (p < 0.05). 

Classification used the same criteria as Table 3.3. We manually removed high-ranking known haematopoiesis-related genes to display 25 genes (8 genes removed; see Supplemental 
Data 2). References are the primary report of the null or mutant mouse and any subsequent clarifying reports. (Chr., chromosome; ^ indicates reported expression in germ cells; 
OMIM assoc. = OMIM reference number if the gene is associated with any type of human disorder (* indicates a genitourinary, endocrine or DSD phenotype)). 
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Sertoli cells: Signalling to the FLCs and NSICs 

 

Understanding of the process of interstitial cell specification requires knowledge of all potential 

paracrine factors produced by newly-specified Sertoli cells. In addition to published microarray data 

from enriched Sertoli cells we used RNA-seq to survey the Sertoli cells in greater detail (Jameson et 

al., 2012b). Our RNA-seq analysis identified 1217 genes upregulated in the Sertoli cell-enriched 

population (Supplemental Data 2) and these included a number of previously described fetal Sertoli 

cell genes (Aard, Dhh, Mro, Ptk2b, Cst9, Col9a3, Aldh1a1, Amh) thereby validating our approach. 

We identified Trank1, Gstm7 and Adamts16 as novel genes expressed in the Sertoli cell population 

by qRT-PCR and ISH (Fig. 3M-O; Fig. 4C,O-Q). DAVID analysis identified genes that encoded 

transmembrane factors (330 genes; p= 3.19E-10) and 44 genes with transcription factor activity (p= 

6.7E-1) were up-regulated in the Sertoli cell-enriched population (Fig. 3.9). !

 

Interestingly, as in the FLC-enriched population list, we found a number of GnRH (gonadotropin-

releasing hormone) signalling pathway components  (11; including Ptk2b, Src, Adcy9 and Plcb2; p= 

3.50E-01) and neurogenesis related genes (20; including Islr2, Robo1, Hes5, Sema6c and Serpine2; 

p= 2.30E-02). This abundance of neuroactive signalling related genes further hints at a potential 

role for neuroactive ligand/receptor pairs in gonadogenesis.  

 

Signals, such as DHH, from the Sertoli cells to the interstitium are essential for FLC development. 

In our group of Sertoli-enriched genes we identified an overrepresentation of 128 secreted factors (p 

= 2.24E-17; Fig. 3.8) including Dhh. We looked for known ligand pairs for the 35 FLC receptors 

identified in our RNA-seq data and the reprocessed Jameson et al (2012b) data. We identified 

expression of the genes encoding known ligands to the neuroactive receptors (Mc2r, Mc4r, Crhr, 

Vipr1, Prlr, Sstr4, Tacr3), a related receptor (Adcy7) and two neurogenesis related receptors 

(Prokr2/Robo2) in our RNA-seq data and/or the re-analysed Jameson data set (Fig. 3.11).  !

 !
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Figure 3.11. Schematic of putative receptor-ligand interactions focusing on the receptors overexpressed on FLCs 

and NSICs. 

Receptors associated with neuroactive ligand signaling and/or DSD are represented. Ligands were identified from the 
literature and expression of ligands in cell types of the testis at 12.5 dpc was determined using data from this study and 
reprocessed Jameson et al. (Jameson et al., 2012b) data. The resulting schematic details proposed receptor-ligand 
interactions inferred from data at 12.5 dpc in the XY gonad. GJA5 shuttles glutamate which is a for ligand for the 
NMDA receptor of which GRIN2A is a subunit. The POMC-complex is produced by Sertoli cells and its derivatives 
activate MC2R and MC4R. CRH is a ligand for CRHR1 while GHRH and ADCYAP1 (or PACAP) are ligands for 
VIPR1. ADCYAP1 can also activate ADCY7. PRL and SST are the ligands for PRLR and SSTR4 respectively and are 
expressed by VECs (vascular endothelial cells). TAC2 is predominately expressed by FLCs but also be Sertoli cells, 
whilst VECs and Sertoli cells express TAC4. Both TAC2 and TAC4 can activate TACR3. PROK1 and PROK2 can 
activate PROKR2. SLIT1/2/3 can activate ROBO2 and are expressed in the testis. The ligand GRIP1 is responsible for 
activating FREM2 and  its close family member FRAS1. 
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Discussion 

 

We used RNA-seq to define the transcriptome of FLCs, and compare it to those of NSICs and 

Sertoli cells in mice at 12.5 dpc, in order to identify novel early markers of individual cell types in 

the developing testis, with particular focus on the FLC population. We anticipated that a detailed 

portrait of the genes expressed in FLC just prior to the onset of steroidogenesis, in comparison to a 

similar picture of the Sertoli and NSIC transcriptomes, would prove informative in terms of 

understanding how FLCs come to be specified and how they differentiate to become functional 

hormone-producing cells. Although previous studies have profiled somatic cells early in 

gonadogenesis (Jameson et al., 2012b; McDowell et al., 2012), the present study provides the first 

RNA-seq analysis of enriched FLC, NSICs and Sertoli cell populations in the XY gonad.  

 

The method we developed for separating cell types has yielded the purest and most validated 

population of pre-FLCs yet reported. Determining which cell types a given gene is expressed in has 

hitherto been typically a labour intensive task (Svingen et al., 2011; Wainwright et al., 2013). Aside 

from providing the basis for our transcriptomic analysis, the system we developed will be useful in 

future studies designed to assign expression of any novel gene to a particular cell lineage using 

qRT-PCR.  

 

We found that 61 of the overexpressed genes in the FLC-enriched population were previously 

unreported in the fetal gonad and therefore represent novel candidates for involvement in FLC 

specification. By checking previously published 11.5 dpc microarray data for genes we identified as 

FLC-upregulated at 12.5 dpc, we identified 10 robustly-expressed putative pre-steroidogenic FLC 

marker genes. One of these is Prokr2 which we have previously shown to be expressed in the XY 

11.5 dpc genital ridge (Svingen et al., 2011) thereby validating this approach. Some of these 10 

genes may prove useful in identifying pre-FLCs before they begin to express characteristic 

steroidogenic enzyme genes. 

 

Hormones produced by the FLCs direct the masculinisation of the embryo. Even though key 

components of the hypothalamic-pituitary-gonadal (HPG) axis are in place from around 16.5 dpc, 

the production of hormones by FLCs is thought to be independent of the HPG axis (Baker and 
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O'Shaughnessy, 2001; Japon et al., 1994; O'Shaughnessy et al., 1998; Pakarinen et al., 2002; Zhang 

et al., 2001). The GnRH-neural circuitry is a key component of the HPG; the formation and 

activation of the GnRH-neural circuitry involves a series of neuroactive ligand/receptor pairs; 

mutation of genes involved in this circuitry often results in DSD, which it has been assumed, is 

primarily associated with HPG axis dysfunction (Bianco and Kaiser, 2009; Hardelin and Dode, 

2008; Mastorakos et al., 2006). Oddly, we found that a number of genes associated with these 

processes, which occur after the differentiation of FLCs, are expressed in the Sertoli cells and FLCs 

at 12.5 dpc. Of the 35 genes that encode receptors, in the FLC upregulated list, DAVID analysis 

identified eight factors associated with neuroactive-ligand signaling (Mc2r, Mc4r, Grin2a, Crhr1, 

Vipr1, Prlr, Sstr4, Tacr3, Fig. 6). In addition, we identified Adcy7, which encodes a receptor that is 

a regulator of intracellular cAMP concentration and that shares the ligand PACAP, encoded by the 

gene Adcyap1, with VIPR1 (Acquaah-Mensah et al., 2012; Halvorson, 2014). Also of interest was 

the expression of the Gja5, which encodes a gap junction protein CX40 involved in shuttling 

glutamate, an activator of the N-methyl-D-aspartate (NMDA) glutamate receptor, of which 

GRIN2A is a subunit (Fig. 3.6; (Bai, 2014; Monyer et al., 1994; Monyer et al., 1992)). Furthermore, 

Robo2 and Prokr2 were of interest as both are implicated in neuronal processes and GnRH 

signaling (Cole et al., 2008; Kidd et al., 1998; Lu et al., 2007; Matsumoto et al., 2006). Assessment 

of the known ligands for the 11 receptors of interest indicated that putative ligand pairs were 

expressed in the FLCs, Sertoli cells or vascular endothelial cells (Fig. 3.6; this study; (Jameson et 

al., 2012b)). Whether the testicular expression of these genes plays a role in gonadogenesis is yet to 

be determined, but the observation that they dominate the subgroup of FLC-upregulated genes that 

are not associated with steroidogenesis may be significant.  

 

These findings also have implications for identifying the causes of DSD. Of the neuro-active genes 

identified, some that are upregulated in FLCs have previously been associated with DSDs that have 

urogenital phenotypes, for example PROKR2 and TACR3. Mutations in PROKR2 (OMIM: 244200; 

(Dode et al., 2006)) and TACR3 (OMIM: 614840; (Gianetti et al., 2010; Topaloglu et al., 2009)) are 

associated with hypogonadotrophic hypogonadism in humans and mice. As many of the factors 

associated with neuroactive-ligand receptor activation and other neuronal processes are expressed 

robustly in the FLCs or the Sertoli cells of the developing testis (this study; (Svingen et al., 2009a)) 

it is tempting to speculate that gonadal production of these factors may precede HPG-driven 

production and explain male bias in individuals affected by hypogonadotrophic hypogonadism 

(Dode et al., 2006; Dodé et al., 2003; Hardelin and Dode, 2008; Svingen et al., 2011).  
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 Prokr2-/-  mice have reproductive defects and we have previously shown that there was no change 

in expression of FLC marker HSD3β/Hsd3β in Prokr2-/- embryos compared to wild-type littermates 

(Matsumoto et al., 2006; Svingen et al., 2011). However, embryonic Prokr2-/- testes display 

vasculature dysmorphology, a phenotype often associated with FLC impairment (Miyabayashi et 

al., 2013; Svingen et al., 2011). Tacr3-/- mice have a variety of reproductive and fertility defects 

and a postnatal hormone profile similar to several other GnRH-deficient mouse models (Lapatto et 

al., 2007; Matsumoto et al., 2006; Yang et al., 2012). Our results suggest that more detailed analysis 

of the postnatal and embryonic gonadal phenotype of the Tacr3-/- mouse to assess the effect of 

TACR3 loss before HPG axis activation occurs.  

 

We identified that Frem2 and Fras1, known DSD genes, are overexpressed in the NSIC population 

of the XY gonad from 12.5-13.5 dpc. Mutations in Frem2 and Fras1 result in Fraser Syndrome 

(OMIM:219000; (Jadeja et al., 2005; Shafeghati et al., 2008)) a multisystem disorder with 

ambiguous genitalia in 20% of patients (for review see Smyth and Scambler, 2005). Frem2 

knockout mice also have multiple developmental defects, however the ambiguous genitalia 

phenotype seen in patients has not been characterised in mouse (Jadeja et al., 2005). We postulate 

that a requirement for expression of Frem2 and Fras1 in NSICs early in gonadogenesis may 

contribute to the ambiguous genitalia phenotype seen in this model. This finding supports the idea 

that NSICs, not just Sertoli and FLCs, may play an important role in masculisation during fetal life. 

 

It has recently been shown that some non-FLC of the interstitium differentiate into ALCs 

postnatally (Kilcoyne et al., 2014), establishing that a functional fetal NSIC population is important 

for postnatal masculinsation of the individual. We find that early in gonadogenesis the NSIC 

population is characterised by expression of NR2F2 and a set of  transcription factors and 

transmembrane receptors that are distinct from the FLC population. The differences we have 

identified between transcriptomic profiles in FLC and NSIC enriched populations may provide 

leads as to how pre-FLCs are selected or how NSICs resist selection from within the total interstitial 

population. 

 

Functional investigation into individual genes shown to be upregulated in the various cell types, and 

processes highlighted as likely to be active within and between cells, will be needed if we are to 
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gain a clearer understanding of gonadogenesis and postnatal sexual development, particularly as 

they relate to steroid production. We envisage that this dataset will be a resource to identify genes 

involved in normal gonadogenesis, in mouse and human, and to pinpoint genes likely to underlie 

some cases of human DSD.  

 

End of published manuscript 

 

The following files are appended to the preceding manuscript submission: 

Supplemental Data 1: RNA-seq expression data  

(see Supplemental Data 1 in Appendices). 

Somatic cells isolated from the Sf1-eGFP testis (Sertoli, FLC and NSICs) at 12.5 dpc. This 

workbook contains the cpm data from this gonad cell lineage RNA-seq paper.  Only genes with at 

least 1 count per million in three or more samples were retained (features= 14,307). This data can 

be accessed on GEO (GSE65498) as an editable workbook which provides results for all retained 

ENSMUSG transcripts. The counts for a transcript can be graphed using this editable file in the 

“graph cpm” sheet. 

 

Supplemental Data 2: Genes upregulated in enriched cell populations at 12.5 dpc  

(see Supplemental Data 2 in Appendices). 

This workbook contains the genes that were upregulated in each enriched cell population:  

1) Genes upregulated in a Sertoli specific manner ("Sertoli_Specific_UP")  

2) Genes upregulated in a FLC specific manner ("FLC_Specific_UP") 

3) Genes upregulated in a NSIC manner ("NSIC_Specific_UP_incl_gc") 

4) Genes upregulated in a NSIC manner with any gene that is annotated as a germ cell genes in the 

Jameson et al. (2012) dataset removed ("NSIC_Specific_UP_no_gc")  

This workbook also contains the results of the direct comparisons between “Leydig vs Sertoli” (5), 

“Leydig vs NSIC” (6) and “Sertoli vs NSIC”(7).!
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Supplemental Data 3: List of previously published data on testis expression for 84 FLC-

enriched genes  

(listed as Supplemental Table 5 in Appendices).  

List of genes that have been previously reported to be expressed in the adult or fetal mouse testis or 

in human testis/DSD in PubMed as of Nov 12, 2014.  

 

Supplemental Data 4: GO of genes upregulated in enriched cell populations at 12.5 dpc. 

(see Supplemental Data 3 in Appendices) 

Gene ontology analysis was performed using the DAVID Bioinformatics Package (v6.7) 

(http://david.abcc.ncifcrf.gov; (Huang et al., 2009a; Huang et al., 2009b)) The genes identified for 

each TF, TM and SF GO term category were then mapped back to the respective file in 

Supplemental Data 2 and ranked by the moderated F-statistic. The top 10 genes are listed in Fig. 4. 

The cluster and chart results for each population are also listed in their entirety in this file.  

 

Supplemental Data 5: Genes putatively regulated by NR5A1 

(listed as Supplemental Table 6 in Appendices and Table 3.8 in this Chapter).  

We identified overlap between the upregulated and downregulated gene lists produced by Baba et 

al., (2014) and our three lists of genes upregulated in FLCs, NSICs and Sertoli cells (Supplemental 

Data 2). Genes that overlap in the data sets are putatively regulated by NR5A1 and are listed under 

each cell type as either being putatively up- or down-regulated by NR5A1 in this file. 

!

Supplemental Data 6: Genes “on” at 11.5dpc in gonadal microarray screens that are detected 

as upregulated in the FLC enriched population by RNA-seq at 12.5 dpc.  

(see Supplemental Data 4 in Appendices) 

Leydig cell enriched genes at 12.5 dpc that also show differential expression between interstitial 

and supporting cell of 11.5 dpc XY gonad are putative pre-FLC marker genes. Supplemental Table 

7 summarises top results. The logFC, P.Value, and adj.P.Val columns indicate results from 

differential expression analysis. Int. Exp (interstitial) and Sup. Exp (supporting) show median 

normalised expression of the gene in each of these two cell types, while Int. Rank (interstitial) and 
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Sup. Rank (supporting) indicate the position of the gene in a list ranked by expression in that cell 

type (0=lowest expression, 100=highest expression).  

 

Supplemental Data 7: Genes detected as upregulated in each population that have an 

annotation in OMIM.  

(see Supplemental Table 8 in Appendices) 

The following information is drawn from the Online Mendelian Inheritance in Man, OMIM® data 

base currated by McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University 

(Baltimore, MD), accessed on 12 November 2014. URL: http://omim.org/. This workbook shows 

whether there is any known association between upregulated genes in each population and an 

OMIM phenotype. The nomenclature and symbols used in the list are indicated on the first page of 

the workbook.  
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Additional work: 

For the work herein: 

All reagents are described in Supplemental Tables 1-4. All additional work was performed as 

described in the manuscript (above). Statistical significance was determined using one-way ANOVA 

with Bonferroni's multiple comparisons test with the exception of Fig. 3.14G-Q” where only two 

groups were compared therefore statistical significance was assessed as described in Chapter 2 

with an unpaired (two-tailed) Student's t-test. 

3.6 Sertoli cells: The master regulators of testis morphogenesis  

The analysis of the FLC, Sertoli cell and NSIC transcriptomes presented in the manuscript provides 

insight into the signalling dynamics within the testis, in particular, signalling to and within the 

interstitium. The analysis in the manuscript aims to provide insight into how signalling molecules 

are able to target pre-FLCs and to characterise the early FLC population. In addition to the analysis 

in the manuscript I also examined the Sertoli cell transcriptome in more detail. The following 

analysis looks more broadly at the characteristics of the early Sertoli cell population and FGF 

signalling. 

 

The Sertoli cell population coordinates much of testicular development. The earliest Sertoli cells 

express SRY which directly upregulates SOX9 (Sekido et al., 2004). The transcription factor SOX9 

directly or indirectly coordinates testis development as a whole (Bishop et al., 2000; Vidal et al., 

2001). Additional cells can be recruited to the SOX9-positive, Sertoli cell fate by mechanisms 

involving FGF9 and PGD2 (Adams and McLaren, 2002; Colvin et al., 2001; Kim et al., 2006; 

Moniot et al., 2009; Schmahl et al., 2004; Wilhelm et al., 2005).  

 

Shortly after SOX9 expression and Sertoli cell recruitment, at around 12.0 dpc, the Sertoli cells 

aggregate into primitive tubules encasing the germ cells. These tubes form de novo and are 

insulated from the interstitial environment by a layer of peritubular myoid cells. Once organised 

into testis cords the Sertoli cells start producing masculinising factors, such as AMH and DHH, 

which direct the development of the testis and the reproductive tract. This analysis characterises the 

Sertoli cell population shortly after testis cords have been formed, when AMH and DHH are being 

produced.  
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IHH is a genetic condition that can be associated with either normal sense of smell, normosmic IHH 

(nIHH), or anosmia, the loss of the sense of smell, which is termed Kallmann syndrome (KS). Most 

of the known genes that are mutated in individuals with IHH encode ligand-receptor pairs that are 

central to the functionality of the HPG axis such as PROK2/PROKR2 and TAC3/TACR3, which 

the manuscript presented herein has shown to be expressed in early FLCs. IHH can have a 

polygenic inheritance pattern and can occur in association with other distinct clinical features. As 

discussed in the manuscript presented above, IHH occurs much more frequently in XY individuals. 

In this section I find that key factors associated with FGF signalling in IHH are also expressed in 

the Sertoli cells of the embryonic testis. This observation suggests the possibility that some 

testicular IHH phenotypes may precede compromised GnRH-driven HPG axis activity.  

 

Mining of the Sertoli cell-enriched gene dataset  

Within the manuscript in this chapter I demonstrated that the high-GFP population of cells sorted 

from the Sf1-eGFP XY gonad was SOX9-positive (Fig. 3.1F) and was enriched for expression of 

genes encoding Sertoli cells markers such as Sox9, Amh and Ptgds by qRT-PCR (Fig. 3.4; Fig. 3.5; 

Fig. 3.6A-C). The RNA-seq analysis described in the manuscript identified 1217 genes upregulated 

in the Sertoli cell-enriched population (SData 2), including a many previously described fetal 

Sertoli cell genes (including Aard, Dhh, Mro, Ptk2b, Cst9, Col9a3, Aldh1a1 and Amh). In addition, 

I identified Trank1, Gstm7 and Adamts16 as novel genes expressed in the Sertoli cell population, by 

qRT-PCR and ISH (Fig. 3.7M-O; Fig. 3.8C,O-Q).  

 

In this additional analysis I used the Eurexpress database to confirm that a further 16 genes of 

interest, identified in the RNA-seq analysis, were expressed in the testis cords at 14.5 dpc. Ptgds 

and Col9a3 are Sertoli cell marker genes and were used as controls (Fig. 3.11A,B). Robust 

expression in the Sertoli cells was detected for the following genes: Tle6, Gstm1, Ppt1, Kctd14, 

Tyro3, Adhfe1, Arhgdig, Pak3, Hs6st1, Gsta4, Smoc1, Hctr1, Clcn2, Npr1, Rgs11 and Stc2 (Fig. 

3.11C-R).  

 

Initial DAVID analysis presented in the manuscript herein identified the genes that encoded 

transmembrane factors, secreted factors and transcription factors that were up-regulated in the 

Sertoli cell-enriched population (Fig. 3.9; Supplemental Data 2). Further gene ontology analysis of 

upregulated genes revealed that many genes overexpressed in the Sertoli cells were also identified 
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as being expressed in neuronal synapses (39; GO:0045202; p = 1.25E-02; Table 3.7), in line with 

finding that neurogenesis related genes were overrepresented (20; p= 2.30E-02). 60 of the 

transmembrane protein-encoding genes identified were also found to be involved in cell adhesion 

(GO:0007155; p = 2.09E-02). Of note was an overrepresentation of factors identified with 

glutathione S-transferase activity (10; Gstm1/2/6/7, Gsta3/4, Gstt2/3 and Clic5; GO:000436; p = 

4.76E-03). Additionally, an overrepresentation of genes encoding factors involved in enzyme and 

peptidase inhibition was observed (23; GO:0004857; p = 3.56E-02; 19; GO:0030414; p = 3.07E-

03; Table 3.7).  

 

SF1/NR5A1 plays an important role for both Sertoli cell and FLC function. Accordingly, I 

identified that 6.24% (76 genes) of the 1217 genes identified as upregulated in the Sertoli cell-

enriched population were putative NR5A1 targets ((Baba et al., 2014); Table 3.8). The ChIP-seq 

performed by Baba et al. (2014) on Y-1 cells treated with an Nr5a1 siRNA aimed to identify 

NR5A1-regulated genes. However, genes such as Amh, which are known to be regulated by NR5A1 

but are specific to Sertoli-like cell lines, were not identified as NR5A1 targets in the Y-1 cell 

analysis. The published screen identified 243 genes with decreased expression and 324 genes with 

increased expression that were “putatively regulated by NR5A1”. Therefore, in total, 13.4% of the 

genes found to be “putatively regulated by NR5A1” in the Baba et al. study were present in our 

Sertoli cell-enriched data set.  

 

For some of the Sertoli cell upregulated genes, previously published knock-out mouse models were 

found to have defects in fertility or fecundity (Dhh, Gatm, Serpine2, Wnt6, Tyro3; see Table 3.9). 

233 genes upregulated in the Sertoli-enriched population are listed as disease-causing in OMIM 

(194 where the molecular basis is known; eight listed in Table 3.9; full list Supplemental Table 8), 

including known DSD genes that are expressed during testicular development such as DHH 

(OMIM:233420; (Canto et al., 2004), OMIM:607080; (Umehara et al., 2000)), AMH 

(OMIM:261550; (Knebelmann et al., 1991)), SOX9 (OMIM:114290; (Foster et al., 1994)), NR0B1 

(OMIM:300018; (Muscatelli et al., 1994)) and  HSD17B3 (OMIM:2643000; (Geissler et al., 1994)).  

 

I identified two additional genes that were overexpressed in Sertoli cells at 12.5 dpc and that, when 

mutated in humans, result in hypogonadotropic hypogonadism with or without anosmia: SPRY4 

(sprouty homolog 4; OMIM:615266; (Miraoui et al., 2013)) and HS6ST1 (heparan sulfate 6-O-
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sulfotransferase 1; OMIM:614880; (Tornberg et al., 2011)). Both Spry4 and Hs6st1 are associated 

with FGF signalling (Fig. 3.11. A).  RNA-seq counts data confirmed that Hs6st1 is expressed 

predominately in the Sertoli cell population (Fig. 3.12B). Additionally, ISH confirmed that Hs6st1 

was expressed in Sertoli cells at 14.5 dpc (Fig. 3.12K; 3.13B; (Sedita et al., 2004)). Hs6st1 encodes 

a heparan sulfotransferase enzyme. Heparan 6-O-sulfation by HS6ST1 has been shown to be 

essential for FGF receptor dimerisation and subsequent signalling (Loo and Salmivirta, 2002; 

Tornberg et al., 2011). In IHH patients, mutation in the gene encoding HS6ST1 are found in 
combination with mutations in genes such as FGFR1 (FGF-receptor 1; (Miraoui et al., 2013)).  

 

A fully functional FGF8-FGFR1 (fibroblast growth factor 8) signalling pathway is essential for 

correct development and activity of the GnRH-neurons of the HPG axis. Mutations in FGF8 

(OMIM:612702; (Falardeau et al., 2008)) and FGFR1 (OMIM:147950; (Dodé et al., 2003)) are 

associated with IHH and GnRH deficiency. Mutations in IHH patients have been identified in 

FGF17 (fibroblast growth factor 17), an FGF8 family member, and the “FGF8-synexpression 

group”, which includes, IL17RD (interleukin 17 receptor D), DUSP6 (dual specificity phosphatase 

6), SPRY4 and FLRT3 ((Miraoui et al., 2013); Fig. 3.13A). IL17RD, DUSP6 and SPRY4 all act to 

inhibit the MAPK signalling pathway activation downstream of FGF signalling ((for review see 

Miraoui et al., 2013); fibronectin leucine rich transmembrane protein 3; Fig. 3.13A). I identified 

that Spry4 was upregulated in the Sertoli cell population (Fig. 3.13 C). In addition, the genes 

encoding Dusp6 and Il17rd were also expressed in the 12.5 dpc testis (Fig. 3.13D-E). Flrt3, 

encodes an enhancer of FGF signalling but was not found to be expressed in the 12.5 dpc testis 

(data not shown).  

 

FGFR1 to -4 are expressed in XY gonad and can be activated by FGF9 in vitro (Ornitz et al., 1996; 

Schmahl et al., 2004). In the early Sertoli cells the primary mode of FGF-signalling is FGF9 

through FGFR2. XY Fgfr2-/- mice are partially sex reversed and conditional deletion of Fgfr2 

results in a phenocopy of the Fgf9-/- which sex reverses (Bagheri-Fam et al., 2008; Kim et al., 

2007). On the other hand, Fgfr3-/- and Fgfr4-/- males that survive to reproductive age are fertile 

and Fgfr1 chimeras have normal testis development and fertility (Colvin et al., 1996; Deng et al., 

1997; Deng et al., 1996; Weinstein et al., 1998). The RNA-seq data show that Fgfr1 is expressed at 

similar levels to Fgfr2 in the 12.5 dpc testis, while Fgfr3 and Fgfr4 are minimally expressed  (Fig. 

3.13F-I). The RNA-seq data also demonstrate that in addition to Fgf9, there are three other FGF 

ligands expressed preferentially in the Sertoli cell population at 12.5 dpc: Fgf13 (fibroblast growth 
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factor 13), Fgf16 (fibroblast growth factor 16) and Fgf18 (fibroblast growth factor 18; Fig. 3.13J-

M). A role for signalling through FGFR1 or by FGF13/16/18 has not yet been demonstrated in the 

fetal testis.  As most of the components of FGF signalling that are associated with IHH are 

expressed in the early testis, this suggests that disruption of global FGF signalling in the embryo 

may impact early testis development before HPG axis-mediated phenotypes arise later in 

development. 
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Figure 3.12. In situ hybridisation for genes identified by RNA-seq to be over- expressed in Sertoli cells. 

ISHs for newly identified candidate genes at 14.5 dpc from Eurexpress Transcriptome Atlas Database for Mouse 
Embryo (http://www.eurexpress.org). Marker genes Ptgds (A) and Col9a3 (B) shows a Sertoli cell expression pattern. 
NovelSertoli cell genes, Tle6 (C), Gstm1 (D), Ppt1 (E), Kctd14 (F), Tyro3 (G), Adhfe1 (H), Arhgdig (I), Pak3 (J), 
Hs6st1 (K), Gsta4 (L), Smoc1 (M), Hctr1 (N), Clcn2 (O), Npr1 (P), Rgs11 (Q) and Stc2  (R) show expression in cells 
distributed within and around the border of the testis cords indicating that Sertoli cell-expressed genes are being 
detected. (k= kidneym= mesonephros; Eurexpress probe IDs can be found in Supplemental Table 7). 
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Table 3.7. Subset of clusters from DAVID GO Analysis on enriched Setroli cells (Enrichment 
>3) 

Annotation GO clusters 
Benjamani 
P-value 

Signal Peptide Enrichment: 17.86   
  Glycoprotein 5.44E-25 
  Signal 1.82E-20 
  Disulfide bond 2.29E-17 
  Secreted 2.24E-17 
  GO:0005576 Extracellular region 4.20E-14 
  GO:0044421 Extracellular region part 2.70E-03 
Membrane Enrichment: 9.55   
  Transmembrane 2.09E-02 
  Membrane 2.09E-02 
!! GO:0031224 Intrinsic to membrane 1.42E-02 
  GO:0016021 integral to membrane 4.78E-01 
Cell adhesion Enrichment: 3.88   
  GO:0022610 Biological adhesion 2.09E-02 
  GO:0007155Cell adhesion 2.09E-02 
  Cell adhesion 1.42E-02 
  GO:0016337 Cell-cell adhesion 4.78E-01 
Enzyme inhibitor Enrichment: 3.57   
  Protease inhibitor 2.43E-04 
  GO:0030414 Peptidase inhibitor activity 3.70E-03 
  GO:0004866 Endopeptidase inhibitor activity 2.95E-03 
  GO:0004869 Cysteine-type endopeptidase inhibitor activity 1.95E-02 
  GO:0004857 Enzyme inhibitor activity 3.56E-02 
  Thiol protease inhibitor 1.98E-02 
  Serine protease inhibitor 8.28E-02 
  GO:0004867 Serine-type endopeptidase inhibitor activity 3.12E-01 
  PIRSF001630 Serpin 9.95E-01 
Glutathione 
metabolism Enrichment: 3.37   
  GO:0004364 Glutathione transferase activity 4.76E-03 
  mmu00980 Metabolism of xenobiotics by cytochrome P450 4.66E-03 
  mmu00982 Drug metabolism 4.95E-03 
  PIRSF000503 Glutathione transferase 5.19E-02 
  mmu00480 Glutathione metabolism 1.25E-01 
  Dimer 1.54E-01 

  
GO:0016765 Transferase activity, transferring alkyl or aryl (other than 
methyl) groups 4.74E-01 

 

Table 3.7. Subset of clusters from DAVID GO Analysis on “upregulated” enriched Sertoli cell genes (Enrichment > 

3). 

Clusters identified by DAVID analysis in the Sertoli cell enriched “upregulated” gene list with an “Enrichment Value” 
of ≥3.  
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 Table 3.8. Genes putatively regulated by NR5A1 in Sertoli cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Table 3.8. List of genes that are putatively regulated by NR5A1 in the “upregulated” Sertoli cell enriched list. 

76 genes were identified that overlapped between the upregulated and downregulated gene lists produced by Baba et al., 
(2014) and our list of 1217 genes upregulated in Sertoli cells. Genes that overlap in the data sets are listed as either 
being putatively up- or down-regulated by NR5A1. 

  
Genes putatively upregulated by  
NR5A1 
  

Genes putatively downregulated by 
NR5A1 
  

Abca2 Man2b2 2200002J24Rik Nr0b2 
Adam10 Mapk4 5330417C22Rik Nr5a1 
Adamts9 Masp1 Ablim2 Pik3ap1 
Adh1 Mgst1 Aldh1a1 Plod2 
Akr1c14 Mxd4 Aldh1a7 Ppp1r16b 
Ank Olfml3 Arhgdig Pqlc1 
Aplp2 P2rx4 Cst8 Prss35 
Aqp5 Pink1 Ctsh Pvrl1 
Ctsf Secisbp2l Dok7 Rab20 
Cx3cl1 Sema3b Eno1 Rgs10 
Dbp Serpini1 Fam195a Sema4a 
Enpp5 Slc27a6 Fam63a Slc27a3 
Epdr1 Smpdl3a Fdxr Tle6 
Fam189a2 St3gal4 Foxa3 Trim62 
Fkbp9 Stim1 G6pdx Ttyh3 
Fuca1 Tapbp Gjb2   
Gpr37 Tcn2 Hspb1   
Gsta4 Thra Inhbb   
Gstt3 Ube2e2 Me1   
Man2b1 Ucp2 Nfil3   
  Vamp5     
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Table 3.9. Subset of genes upregulated in 12.5 dpc Sertoli cells (p < 0.05). 
ID Gene Name Chr Phenotype OMIM assoc.  Reference 

ENSMUSG00000068522 Aard 
Alanine and arginine rich 
domain containing protein 16 - N/A - 

ENSMUSG00000058135 Gstm1 Glutathione S-transferase, mu 1 2 no apparent developmental defects; fertile - (Yochum et al., 2010) 

ENSMUSG00000028657 Ppt1 Palmitoyl-protein thioesterase 1 3 
viable and fertile; after birth developed neuronal ceroid 
lipofuscinosis 256730 (Gupta et al., 2001) 

ENSMUSG00000040562 Gstm2 Glutathione S-transferase, mu 2 4 - - - 

ENSMUSG00000060147 Serpinb6a 
Serine (or cysteine) peptidase 
inhibitor, clade B, member 6a 3 viable and fertile; normal fecundity 613453 (Scarff et al., 2004) 

ENSMUSG00000023000 Dhh Desert hedgehog 13 viable but infertile; reduced germ cells and FLCs 
607080*; 
233420* 

(Bitgood et al., 1996; 
Yao et al., 2002) 

ENSMUSG00000027199 Gatm Glycine amidinotransferase 15 viable; impaired spermatogenesis 612718 (Choe et al., 2013) 

ENSMUSG00000064036 Mro Maestro 2 no apparent developmental defects; fertile - (Smith et al., 2008) 

ENSMUSG00000004035 Gstm7 Glutathione S-transferase, mu 7 18 - N/A - 

ENSMUSG00000026249 Serpine2 
Serine (or cysteine) peptidase 
inhibitor, clade E, member 2 3 viable; males are infertile and reduced fecundity - (Murer et al., 2001) 

ENSMUSG00000033227 Wnt6 
Wingless-type MMTV integration 
site family, member 6 1 XX have compromised pregnancy and reduced fecundity - (Wang et al., 2013) 

ENSMUSG00000059456 Ptk2b 
PTK2 protein tyrosine kinase 2 
beta 1 viable and fertile - (Okigaki et al., 2003) 

ENSMUSG00000027445 Cst9 Cystatin 9 14 
normal sex ratio, sex-differentiation, gamete production and 
fertility N/A (Hasegawa et al., 2006) 

ENSMUSG00000027570 Col9a3 Collagen, type IX, alpha 3 2 - 600969; 603932 - 

ENSMUSG00000042155 Klhl23 Kelch-like 23 2 - N/A - 

ENSMUSG00000001313 Rnd2 Rho family GTPase 2 2 - - - 

ENSMUSG00000025955 Akr1cl 
Aldo-keto reductase family 1, 
member C-like (4921521F21Rik) 11 - N/A - 

ENSMUSG00000031284 Pak3 
p21 protein (Cdc42/Rac)-activated 
kinase 3 1 viable and fertile 300558 (Asrar et al., 2009) 

ENSMUSG00000032418 Me1 Malic enzyme 1 (Mod-1) X viable and fertile   -  (Lee et al., 1980) 

ENSMUSG00000027298 Tyro3 TYRO3 protein tyrosine kinase 3 9 
sKO: viable and fertile; Tyro 3/Axl/Mer KO viable and infertile 
with multiple major organ defects - (Lu et al., 1999; Sun et 

al., 2010) 

ENSMUSG00000053279 Aldh1a1 
Aldehyde dehydrogenase family 
1, subfamily A1 2 viable and fertile (redundant with Aldh1a2/3) - (Fan et al., 2003) 

ENSMUSG00000062296 Trank1 
Tetratricopeptide repeat and 
ankyrin repeat containing 1 19 - N/A - 

ENSMUSG00000035262 Amh Anti-Mullerian hormone 9 
failure of Mullerian duct regression, male infertility, 
partially penetrant Leydig cell hyperplasia 261550* (Behringer et al., 1994; 

Mishina et al., 1996) 
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Table 3.9. Subset of genes upregulated in 12.5 dpc Sertoli cells (p < 0.05). 

Classification used the same criteria as Table 3.3. References are the primary report of the null or mutant mouse and any subsequent clarifying reports. (Chr., chromosome; OMIM 
assoc. = OMIM reference number if the gene is associated with any type of human disorder (* indicates a genitourinary, endocrine or DSD phenotype, bold indicates previously 
described Sertoli cell genes). 

ENSMUSG00000037031 Tspan15 Tetraspanin 15 10 - - - 

ENSMUSG00000021136 Smoc1 
SPARC related modular calcium 
binding 1 10 embryonic optic and limb defects; viable to PN21 206920 (Okada et al., 2011) 
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Figure 3.13. DSD genes Hs6st1 and Spry4 are expressed in Sertoli cells and many members of the signaling pathway 

are also expressed in 12.5 dpc testis. 

(A) Cartoon depiction of the FGF-Network associated genes that are mutated in patients with Hypogonadotrophic 
Hypogonadism (modified from (Miraoui et al., 2013)). The network is comprised of an FGF-Receptor (grey) and FGF 
ligand (green). IL17RD, DUSP6 and SPRY4 (orange) are inhibitors of the MAPK pathways downstream of FGF 
signaling and are expressed in the 12.5 dpc testis. HS6ST1 (purple) encodes a HS-modifying enzyme. KAL1 and 
FLRT3 (blue solid) are known enhancers of FGF signaling in which human mutation causes DSD but that are not 
expressed in the testis. There is no verified homolog of KAL1 in mouse. (B-H) Counts per million reads (cpm) from 
RNA-seq data show expression of network genes that are detected in our RNA-seq analysis Hs6st1 (B) and Spry4 (C) 
shows a Sertoli cell enriched expression pattern. Negative regulators of the pathway Dusp6 (D) and Il17rd (E) are 
expressed in the 12.5 dpc somatic testis. FGF-family members are also expressed, including Fgfr1 (F) and the dominant 
receptor ligand pair in Sertoli cells Fgfr2 (G) and Fgf9 (J). Fgfr3 (H) and Fgfr4 (I) are expressed minimally in the 12.5 
dpc testis. Other FGF ligands are also expressed in the Sertoli cells of the 12.5 dpc testis: Fgf13 (K); Fgf16 (L) and 
Fgf18 (M). Error: S.E.M., * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, **** = p = 0.00001, ns = not statistically 
significant. 
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3.7 The ovary: investigating subpopulations of somatic cells  

In contrast to the cord-level structural organisation seen in the testis at 12.5 dpc, the ovary is a 

mixture of somatic and clustered germ cells during fetal life. During postnatal life the ovary 

regionalises and follicular granulosa cells surround the matured germ cells, oocytes.  However, the 

regionalisation of the fetal ovary and the specification of the different cell lineages is poorly 

understood.  

 

There are a suite of genes that are important for ovarian development including Wnt4 (Vainio et al., 

1999), Rspo1 (Chassot et al., 2008; Parma et al., 2006) and FoxL2 (Ottolenghi et al., 2005; Schmidt 

et al., 2004). All these genes can be used as markers of pre-granulosa cells and as readouts of the 

ovarian pathway. Some regionalisation of ovarian gene expression has been reported in the 13.5 dpc 

mouse ovary. Chen et al. (2012) identified three spatial expression patterns displayed by 

somatically-expressed ovarian genes. In one category were genes including Fst, FoxL2 and Wnt4, 

with expression of genes such as Rspo1 and Irx3 being regionally distinct. Expression of genes such 

as Bmp2 formed a third regionalised expression domain. 

 

Recent studies have shown that the fetal mouse ovary contains a three distinct somatic cell types. 

Theses are classified as: precursors for medullary granulosa cells, which are FOXL2-positive cells; 

precursors for cortical granulosa cells, which are FOXL2-negative/LGR5-positive cells and 

presumptive precursors for steroidogenic theca cells, which are FOXL2-negative/NR2F2-positive 

(Chen et al., 2012; Mork et al., 2011; Rastetter et al., 2014; Zheng et al., 2014). Interestingly, 

although Wnt4 and Rspo1 are expressed in FOXL2-positive cells, Lgr5 is not expressed in Rspo1-/- 

or Wnt4-/- ovaries (Rastetter et al., 2014). The study described herein was conducted before the 

identification of Lgr5 and Nr2f2 as linage markers in the fetal ovary. As a result, this analysis 

primarily focuses on separating FOXL2-positive and FOXL2-negative somatic cell lineages, based 

on expression of GFP in the Sf1-eGFP ovary (Mork et al., 2011; Zheng et al., 2014). 
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Evaluation of GFP in Sf1-eGFP mouse fetal ovaries 

In the manuscript contained within this chapter, we exploited a published observation that the 

somatic cells of the early XY gonad differentially express NR5A1 (Schmahl et al., 2000). We 

determined that FLCs (“low-GFP”), Sertoli cells (“high-GFP”) and NSICs (“GFP-negative”) could 

be isolated based on the expression level of GFP in the XY Sf1-eGFP transgenic gonad. In 

characterising the XY somatic cell populations I also isolated “high-GFP”, “low-GFP” and “GFP-

negative” XX somatic cell populations and profiled them to determine if we could separate FOXL2- 

positive and FOXL2-negative pre-granulosa cells. 

 

The 674 bp-fragment of the Nr5a1 promoter used to drive GFP expression in the Sf1-eGFP 

transgenic gonad marks a subpopulation of somatic cells of the developing XX and XY gonads at 

10.5-11.5 dpc (Beverdam and Koopman, 2006).  Previously, Beverdam et al. (2006) profiled gene 

expression in the GFP-positive ovarian cell population at 10.5 and 11.5 dpc to characterise the pre-

granulosa cell and identify genes that may play a role in female sex determination. However, the 

expression of GFP in the XX gonad beyond 11.5 dpc was not reported in that publication 

(Beverdam and Koopman, 2006). 

 

Previously we showed colocalisation of NR5A1 and GFP at 11.5 dpc in XY gonads (Figure 

3.2A,B,G; (Beverdam and Koopman, 2006)); I confirmed that NR5A1 and GFP also colocalise at 

11.5 dpc in the XX gonad (Fig. 3.14A). Immunofluorescence analysis showed that weak expression 

of nuclear NR5A1 persisted in cytoplasmic GFP-transgene-positive cells at 12.5 dpc; however, the 

expression of GFP in the XX gonad did not mirror the endogenous expression profile of NR5A1 

beyond 12.5 dpc. (Fig. 3.14B-D). After 12.5 dpc, NR5A1-protein expression in the ovary wanes 

although Nr5a1 expression is maintained at a transcript level ((Hatano et al., 1994; Ikeda et al., 

1994; Morohashi et al., 1995); Fig. 3.14B-B,L-L’’). At 13.5-14.5 dpc, as expected I observed a loss 

of endogenous NR5A1 protein expression, however, the expression of the cytoplasmic GFP-

transgene persisted (Fig. 3.14C,D). The GFP transgene is not expressed in germ cells ((Beverdam 

and Koopman, 2006); this study). I used an antibody to FOXL2 to determine if FOXL2-positive 

pre-granulosa cells persisted in expressing GFP. Co-staining for FOXL2 and GFP demonstrated that 

a proportion of GFP-positive cells co-localised with nuclear FOXL2 at 12.5-13.5 dpc, indicating 

that the transgene was expressed in FOXL2-positive pre-granulosa cells (Fig. 3.14E,F). GFP 

expression in NR2F2-positive and/or LGR5-positive XX somatic cells remains to be established. 
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The presence of numerous GFP-positive/FOXL2-negative cells indicates that the Sf1-eGFP 

transgene may mark multiple ovarian somatic cell lineages, therefore I investigated the expression 

profile of the high-GFP and low-GFP population by qRT-PCR.  

 

Isolation and characterisation of fetal ovary somatic cell populations 

As in the XY gonad, cell populations from 11.5-14.5 dpc Sf1-eGFP transgenic ovaries were isolated 

based on GFP fluorescence: a strongly GFP-positive (“high-GFP”) cell population, a weakly GFP-

positive (“low-GFP”) cell population and a GFP-negative population. Germ cells were removed 

using antibodies to cell surface markers. Dissociated cells were incubated with antibodies to either 

SSEA-1 (recognising germ cells only) or CD31 (recognising germ and endothelial cells), and FACS 

was then used to separate the four cell populations (Fig. 3.4A).  I profiled the expression of key 

ovarian somatic cell marker genes by qRT-PCR in XX and XY sorted cells. In the analysis of the 

XX cell populations I primarily characterised the “high-GFP” and “low-GFP” cell populations, 

which represent Sertoli cells and FLCs in the XY gonad, to investigate if the GFP transgene could 

be used to separate FOXL2-positive and FOXL2-negative somatic subpopulations in the XX gonad.  

 

At 11.5 dpc, the XX high-GFP population (Fig. 3.14, dark green stripe) expressed higher levels of 

the genes encoding Wt1 and Nr0b1, which are expressed in the somatic cells of  the XX and XY 

gonad (Fig. 3.14G,H). Expression of the genes encoding ovarian granulosa cell markers Wnt4 and 

Rspo1 in the high-GFP cell population indicated that the high-GFP expressing population of the XX 

gonad was enriched for granulosa cells, the female equivalent of Sertoli cells (Fig. 3.14I,J).  

Interestingly, expression of the gene encoding Cyp11a1 was significantly upregulated in the high-

GFP somatic cells of the ovary compared to the low-GFP XX population and the XY gonad at 11.5 

dpc (Fig. 3.14K).  

 

In the XX cell populations, the high-GFP population robustly expressed genes characteristic of the 

FOXL2-positive pre-granulosa cell population including FoxL2 itself, along with granulosa cell 

marker genes Nr0b1, Wnt4, Fst and Rspo1 (Fig. 3.14M-Q). At 13.5-14.5 dpc the high-GFP 

population continued to express higher levels of FoxL2 and Fst than expressed by the low-GFP cell 

population (Fig. 3.14M’,Q’,M’’,Q’’). However, expression of Nr0b1 and Wnt4 was equivalent 

between the low-GFP and high-GFP expressing cell populations (Fig. 3.14N’,N’’,O’,O’’) and 

expression of Rspo1 in the low-GFP cell population was increased from 13-5-14.5 dpc (Fig. 
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3.14P’’). The high-GFP population expressed levels of Nr5a1 equivalent to that observed in FLCs 

from 12.5 dpc (Fig. 3.14L,L’,L’’). These data indicate that the high-GFP expressing population is 

enriched for FoxL2-expressing pre-granulosa cells at 12.5 dpc. 

 

The low-GFP cell population of the XX gonad consisted of somatic cells characterised by low-level 

expression of the genes encoding FoxL2, other classic ovarian markers and Nr5a1 (Fig. 3.14L-

Q,L’-Q’,L’’-Q’’). Recently, FOXL2-negative populations of somatic ovarian cells have been 

identified (Rastetter et al., 2014), these data suggest that the XX low-GFP somatic cell population 

may instead express the newly identified pre-granulosa somatic ovarian marker Lgr5. This was not 

investigated in this study. Therefore, the low-GFP expressing population is enriched for FOXL2-

negative pre-granulosa somatic cells. 

 

The germ cell-depleted, GFP-negative, putative interstitial cell population (Fig. 3.14, grey) showed 

minimal expression of Nr5a1 and FoxL2 indicating that, like the low-GFP fraction, it consisted of 

FOXL2-negative somatic cells (Fig. 3.14S,T,V). In the XY gonad the germ cell-depleted, GFP-

negative population was enriched for NSICs. As NSICs in the XY gonad express NR2F2, I propose 

that the XX GFP-negative population may represent an Nr2f2-positive non-supporting somatic cells 

population 

 

As in the XY gonad, germ cells were not the focus of this analysis. However, I also examined the 

expression of Ddx4 in the XX sorted cells to determine the efficiency of germ cell depletion from 

the GFP-negative fraction. As expected, expression of Ddx4 was robust in the antibody-selected cell 

population at 12.5-13.5 dpc (Fig. 3.14R,U). Low-level expression of Ddx4 was detected in the GFP-

negative fraction (Fig. 3.14R,U), indicating a low level of germ cell contamination.  

 

The robust expression of FoxL2 at 12.5-13.5 dpc in the high-GFP population indicates that the Sf1-

eGFP line can be used to separate FOXL2-positive and FOXL2-negative somatic cells. It will be 

particularly interesting to profile the expression of Lgr5 and Nr2f2 in the sorted cell populations to 

determine if the isolated low-GFP and GFP-negative populations represent distinct cell lineages. 

Therefore, the Sf1-eGFP transgenic may also prove useful in characterising the subpopulations of 

the somatic cells of the ovary. 
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Figure 3.14. Some GFP-positive cells are FOXL2-positive at 12.5 dpc XX gonads. High-GFP population represents 

FoxL2-high cells and the low-GFP population represents FoxL2-low in 12.5 dpc XX Sf1-eGFP gonads. 

(A-F) IF of Sf1-eGFP gonads demonstrates that nuclear NR5A1 is expressed in the same cells that express cytoplasmic 
GFP in the 11.5-12.5 dpc XX gonad. (A) GFP/NR5A1-positive cells are present in the XX 11.5 dpc gonad. (B) Some 
NR5A1-positive cells persist at 12.5 dpc and colocalise with GFP-positive cells. (C-D) GFP-expression is maintained at 
13.5-14.5 dpc but nuclear endogenous NR5A1-expression is absent. (E-F) Nuclear FOXL2 staining resides in GFP-
positive cells, indicating that GFP marks FOXL2-positive cells, although not all GFP-positive cells have a FOXL2-
positive nuclei. (G-V) As described in Fig. 3.3. four cell populations were isolated by FACS using a germ (GC) or germ 
cell/endothelial cell (GC/EC) depleted sorting method. This analysis predominately focused on the high-GFP and low-
GFP populations. (G-K) At 11.5 dpc, qRT-PCR for somatic marker Nr5a1 (Fig. 3.3B) and Sertoli cell marker Sox9 
(Fig. 3.3C), showed that the high-GFP expressing cell population in XY gonads was enriched for Sertoli cells. In sorted 
cell populations from the 11.5 dpc XX gonad the high-GFP population expressed higher levels of somatic (granulosa) 
cell markers Wt1 (G), Nr0b1 (H), Wnt4 (I) and Rspo1 (J). Surprisingly, expression of Cyp11a1 (K) was also 
significantly higher in the high-GFP population of  the XX gonad at 11.5 dpc. In sorted cell populations from the 12.5 
dpc XX gonad the high-GFP population expressed similar levels of Nr5a1 (L) and higher levels of somatic (granulosa) 
cell markers FoxL2 (M), Nr0b1 (N), Wnt4 (O), Rspo1 (P) and Fst (Q). From 13.5-14.5 dpc higher levels of somatic 
(granulosa) cell markers FoxL2 (M’, M’’) and Fst (Q’,Q’’) in the high-GFP population was maintained, however, 
expression of Nr0b1 (N’,N’’), Wnt4 (O’,O’’) and Rspo1 (P’,P’’) were similar between the high-GFP and low-GFP 
populations. Expression of Nr5a1 remained equivalent at 13.5-14.5 dpc (Fig. 3.3J,3.4H,L’,L”). Removal of germ cells 
with a CD31 antibody resulted in removal of the majority of Ddx4- expessing cells at 12.5-13.5 dpc (R,U). Examination 
of Nr5a1 (S) and FoxL2 (T,V) expression in the GFP-negative and germ cell faction by qRTPCR showed that 
Nr5a1/FoxL2-positive cells are restricted to the GFP-positive populations. n values for G-K,M’’-Q’’,R,U: n= 4, 4, 4, 4; 
M,N,Q: n= 3, 3, 3, 3; L: n=4, 5, 4, 5; O,P: n= 3, 3, 5, 5; L’: n= 8, 8, 5, 5; M’,O’: n= 8, 8, 9, 9; N’,P’,Q’: n= 4, 4, 5, 5; 
L”,V: n= 8, 8, 4, 4; S: n=5, 4, 4; T: n= 3, 3, 3, 4.  For all qRT-PCR: levels are shown relative to Tbp, error = S.E.M., * = 
p = 0.05, ** = p = 0.001, *** = p = 0.0001, **** = p = 0.00001, ns = not statistically. Scale bar: 100 µM. 
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3.8 NR2F2 in the developing testis: a brief expression report 

Expression of Nr2f2 in the interstitium of the testis has been noted from 13.5 dpc (Pereira et al., 

1999; Pereira et al., 1995), however, whether NR2F2 is expressed in the FLC or NSIC populations 

in the early gonad is unknown. Recently, it has been demonstrated that NR2F2 is expressed in the 

NSIC population of the 18.5 dpc testis and that these fetal NR2F2-positive interstitial cells give rise 

to ALCs (Kilcoyne et al., 2014).  The existence of interstitial NR2F2-positive cells in the 

developing testis provides the first suggestion that molecular events occurring during fetal 

gonadogenesis and masculinisation can affect the final levels of testosterone in the adult individual 

by affecting the NR2F2-positive ALC progenitor cells, ALCs being the source of testosterone after 

puberty. Nr2f2-/- embryos die at 10 dpc from cardiovascular defects (Pereira et al., 1999), and so 

examination of NR2F2 in gonadogenesis requires a suitable conditional/inducible system. 

Conditional ablation of NR2F2 two weeks after birth results in infertility, hypogonadism, and a 

severe reduction in testosterone production (Qin et al., 2008). Ablation of NR2F2 in mature ALCs 

did not result in any dysfunction in Leydig cells or any reproductive defects (Qin et al., 2008).  

Therefore, expression of NR2F2 is required for formation and maturation, but not maintenance, of 

functional ALCs.  

 

In XX animals, Nr2f2-/+ ovaries have a reduced ability to produce sex steroids (Takamoto et al., 

2005). Together these data support the hypothesis that NR2F2 is important for general postnatal 

steroidogenic cell function in the testis and the ovary. Whether NR2F2 has a critical role in fetal 

gonadogenesis is yet to be determined. At the time this study was conducted it had not been 

published that NR2F2 was expressed in the embryonic XX gonad. Therefore, this analysis focuses 

on the XY gonad. Subsequently it has been shown that NR2F2 marks a distinct somatic cell 

population in the ovary at 14.5 dpc (Rastetter et al., 2014).  

 

In the manuscript I showed that NR2F2 cells were ARX-positive but negative for NR5A1 (Fig. 

3.10B-D) with few exceptions where NR2F2/ARX-positive cells were also NR5A1-positive (grey 

arrow, Fig. 3.10B-D). I performed qRT-PCR on 12.5-14.5 dpc XY Sf1-eGFP sorted cell 

populations. Expression of the gene encoding Nr2f2 was expressed at higher levels in the NSIC 

population compared to the FLC population at 12.5 dpc only (Fig. 3.15A). To confirm that NR2F2-

positive cells were NSICs at 12.5 dpc I examined expression of NR2F2, NR5A1 and GFP in the 

Sf1-eGFP mouse. As observed in Fig. 3.10 there were a few NR2F2/NR5A1-positive cells that were 
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also GFP-positive (yellow arrow, Fig. 3.15B-E). The majority of the NR2F2-positive cells were not 

marked by the Sf1-eGFP transgene (grey arrow, Fig. 3.15B-E). I examined whether 

NR5A1/NR2F2-positive cells could be HSD3β positive. While NR2F2/NR5A1-positive cells were 

observed (Fig. 3.10; Fig. 3.15B-E) NR2F2-positive and HSD3β-positive cells appeared to be 

mutually exclusive (Fig. 3.15F,G). 
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Figure 3.15. NR2F2-positive cells are predominately NR5A1/HSD3B-negative interstitial cells. 

(A) qRT-PCR for Nr2f2  in Sf1-eGFP aorted XY gonadal cells from 12.5-14.5 dpc indicated that Nr2f2 was expressed 
significantly higher in NSICs compared to FLCs at 12.5 dpc only (a, ****; b, **; c, ****; all other comparisons were 
“ns”). IF for NF2R2 demonstrates that the majority of NR2F2-positive cells are NR5A1-negative. (B-E) At 11.5 dpc 
some NR2F2 cells can be observed in the XY gonad (B).  From 12.5-14.5 dpc in XY gonads, only a few 
NR2F2/ARX/NR5A1-positive cells are present; the majority of NR2F2-positive cells are NR5A1-negative/GFP-
negative (C-E). (F,G) A few NR2F2-positive cells are GFP-positive but no HSD3β-positive cells are NR2F2-positive. 
Scale bar: 100 µM. Arrows= yellow: NR5A1/NR2F2-positive; white: NR5A1-positive; gray: NR2F2-positive. For all 
qRT-PCR: levels are shown relative to Tbp, error = S.E.M., * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, **** = p = 
0.00001, ns = not statistically. 
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3.9 Chapter Conclusion 

This chapter demonstrates the utility of the Sf1-eGFP line in understanding somatic gonad cell 

lineage development. These data show that in the Sf1-eGFP XY gonad Sertoli cell, FLC and NSIC 

populations can be isolated at 12.5 dpc. In the Sf1-eGFP XX gonad, FOXL2-positive and FOXL2-

negative somatic cell populations can be isolated at 12.5 dpc. Having isolated the three somatic cell 

populations in the XY gonad at 12.5 dpc I performed RNA-seq. Using differentially expressed gene 

analysis I identified a suite of genes whose expression precedes the upregulation of steroidogenic 

pathway components in the FLC population. These data showed that neuroactive ligand-receptor 

components were overrepresented in the FLC lineage at 12.5 dpc. The expression of these 

components in the fetal testis preceded the expression of neuroactive ligand-receptor components in 

the HPG axis. This observation indicated that in cases of DSD caused by mutation of genes 

involved in the HPG axis, a fetal testicular phenotype may precede the gonadotropin-dependent 

HPG-axis driven phenotype that arises later in development.   

 

In addition, this analysis provided the first comparative characterisation of FLCs and enriched 

NSICs. This analysis highlighted that the NSIC population has a distinct transcriptomic profile 

when compared to FLCs. The subtractive approach taken to isolate the NSIC population meant that 

it also contained cell types such as blood cells and macrophages; these ontologies were identified by 

DAVID analysis. The NSIC lineage has recently been shown to give rise to the ALC lineage that 

produces testosterone postnatally (Kilcoyne et al., 2014). I found that DSD gene Frem2 was 

expressed in 12.5 dpc NSICs, which may help to explain the Fraser Syndrome testicular phenotype 

of ambiguous genitalia.  

 

ARX marks the NSIC enriched cell lineage in the fetal testis. Interestingly the expression of ARX is 

not restricted to the XY gonad, expression of ARX is also observed throughout the XX gonad 

(Kitamura et al., 2002; Miyabayashi et al., 2013). ARX is expressed in a small population of 

NR5A1-positive/HSD3β-positive FLCs cells but predominately marks the NSIC population (this 

study; (Miyabayashi et al., 2013)). In this chapter I provide the first in depth characterisation of a 

new NSIC-enriched cell lineage marker, NR2F2. I show that expression of NR2F2 is very similar to 

the behaviour of ARX. The majority of NR2F2-positive cells colocalises with ARX from 12.5 dpc 

.A small population of NR2F2-positive cells are apparently NR5A1-positive FLCs. Additionally, 

NR2F2 has been shown to be expressed in XX somatic cells (Rastetter et al., 2014).   
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4 Chapter 4: Concluding Remarks 

 

How the testis interstitium influences testicular development and how FLCs differ from NSICs have 

been long-standing questions in the field.  In order to understand the role of the different interstitial 

cell types, I characterised the transcriptomes of the various somatic cell populations of the testis 

using RNA-seq. In addition, my project aimed to provide a methodology to handle and prioritise the 

outputs from transcriptomic screens and rare disease cohort studies. To do this, I developed an ex 

vivo gene knockdown strategy suitable for screening genes of interest for potential roles in 

organogenesis. Collectively, this work revealed transcriptomic differences between the FLC and 

NSIC populations and provided a method with which to assess functionality of the genes-of-interest 

coming out of this comparative screen. This work aims to help us develop a greater understanding 

of the influence of the testis interstitium on gonadogenesis.   

 

In this project, in order to gain insight into the function of novel target genes in organogenesis, I 

developed a first-pass screening method that enables the knockdown of genes, singularly or in 

combination. This methodology can be used to assist in assessing whether or not performing a 

complex genetic loss-of-function experiment is likely to be informative and to prioritise candidates 

for functional validation. By injecting the MO into the heart, this technique utilised the vascular 

network of the embryo, thereby delivering the MO to target tissues; these were then explanted, 

cultured and analysed. I demonstrated that MO injection could partially reproduce known gene 

knockout phenotypes in the fetal gonads and pancreas, and be used to obtain preliminary data 

regarding the function of DSD candidate genes during gonadogenesis. The discussion of the proof-

of-principle experiments designed to knockdown known gonadogenesis genes, and novel genes 

identified from DSD patient cohorts, is outlined in detail in Chapter 2. We anticipate that this 

relatively simple method will allow those in the field to dissect gene function during organogenesis 

more swiftly. 

 

In the lead up to the XY gonad somatic cell transcriptomics project I performed an in-depth analysis 

of the Sf1-eGFP mouse line, generated previously in our lab. I identified three key differences 

between GFP expression and endogenous SFI expression in transgenic Sf1-eGFP gonads. These 

differences indicate that the 674 bp fragment used to direct GFP expression in the Sf1-eGFP line is 

insufficient to faithfully replicate the endogenous expression pattern of NR5A1. The fact that a 



 

 170 

known fetal Leydig enhancer 3.1 kb upstream of the Nr5a1 transcription site (Shima et al., 2012) is 

not present in the Sf1-eGFP construct may explain why, unlike endogenous NR5A1, GFP does not 

become robustly expressed in FLCs as they differentiate. Similarly, I propose that the normal 

endogenous downregulation of NR5A1 in Sertoli cells and XX somatic cells, neither of which 

occurs in our mouse line, is controlled by a mechanism that involves Nr5a1 regulatory sequences 

outside the 674bp Nr5a1 promoter fragment used in this model. Despite the fact that the Sf1-eGFP 

mouse line does not recapitulate endogenous NR5A1 expression at later timepoints, it proved 

suitable for our purpose - the FACS-based separation of Sertoli cell (“NR5A1/GFP-high”) and pre-

FLCs (“NR5A1/GFP-low”) at 12.5 dpc. 

 

I used the Sf1-eGFP line to isolate enriched populations of four distinct fetal testis cell lineages 

using a FACS-based technique: Sertoli, Leydig, interstitial and germ cells were each isolated. This 

technique allowed the isolation of the purest and best-validated population of pre-FLCs yet 

reported. In the fetal gonad, identifying which cell type/s express a novel gene-of-interest is a 

labour-intensive task (Svingen et al., 2011; Wainwright et al., 2013). In addition to being used for 

transcriptomic analysis, as demonstrated here, this sorting method will facilitate the rapid 

determination of expression of novel genes in the XY gonad using qRT-PCR.  

 

Among the most important criteria for assessing whether a pathway is potentially functional in the 

system is demonstrating that a resident cell population is producing the secreted protein, expression 

of specific receptors in the surrounding cell population/s, and evidence that signaling activity is 

taking place in the cell or its neighbours. Therefore, transcriptomic approaches such as RNA-seq 

provide the ideal starting point from which to uncover signaling dynamics and design future 

functional studies. The comprehensive molecular characterisation of each somatic cell population 

revealed which genes are expressed in both the FLC and NSIC populations early in gonadogenesis. 

My transcriptomic analysis found that in the FLC and Sertoli cell populations numerous factors that 

are essential for the development and functionality of the neuroendocrine system are expressed. 

Although the genes encoding receptors associated with neuroactive ligand signaling are known to 

be essential for proper sexual development they have not been implicated previously in early 

testicular development. Using my RNA-seq dataset in combination with reanalysed microarray data 

(Jameson et al., 2012b) for each neuroactive ligand receptor identified I was able to show that at 

12.5-13.5 dpc in the XY gonad the relevant secreted ligand was expressed (Fig. 3.11). These data 

provide the ideal starting point from which to uncover signaling dynamics and design functional 
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studies to investigate the role of the various signaling pathways in gonadogenesis. My results also 

revealed that the NSIC population, which has been shown to contribute to the ALC population 

postnatally (Kilcoyne et al., 2014), is transcriptomically distinct from the FLC population. These 

data suggest that NSICs may play an important functional role in fetal testis development. The 

differences we have identified between transcriptomic profiles in FLC- and NSIC-enriched 

populations may provide leads as to how pre-FLCs are specified, or how NSICs resist specification 

within the total interstitial population.  

 

Many of the neuropeptide factors involved in neuroendocrine development are also involved in 

mediating cellular function in the testis. This has led to an interest in so called “neuroendocrine 

gonadal peptides” which are produced locally by the testis and act as mediators of gonadal function. 

The role of neuroendocrine peptides in the adult testis and reproductive system is well established, 

but a role for these factors in fetal gonadogenesis has not been clearly established. In part this is due 

to the fact that most of the early work on neuroendocrine gonadal peptides was done in in vitro 

systems, and has not been followed up with work in in vivo systems. Nevertheless, this early work 

indicates that neuroendocrine components could operate in the fetal testis.  Indeed, a review by 

Gnessi et al. (1997) argued that in the developing testis an “intratesticular network of regulators … 

might participate first in the development of the male gonad and later in the initiation and 

maintenance of testicular function”. It was argued that a fetal role was likely to exist for many of 

the neuroendocrine components that are essential for reproductive function later in life. My findings 

support this theory by demonstrating that there are a number of neuroendocrine components 

expressed in the developing testis. Functional validation of these novel genes will need to be 

investigated to assess whether they may play unappreciated roles early in gonadogenesis.  

 

I also investigated if any DSD-causing genes were expressed in the fetal testis. Expression of 

known DSD genes in fetal somatic cell populations might indicate that the gene has an 

unappreciated role in fetal development of the testis. The transcriptomic analysis of the XY somatic 

cell populations identified a number of DSD genes (TACR3, SPRY4, HS6ST1, FREM2) that have 

not previously been associated with gonadogenesis. I propose that mutations in these genes may 

have a role in fetal testis development and that mutation of these genes may therefore result in early 

masculinisation defects.  
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Collectively, these results provide a comprehensive characterisation of the various somatic cell 

types of the testis, in particular the FLC and NSIC populations. This work highlights that the 

interstitium is a complex mix of cells that can affect testicular development and masculinisation 

during fetal development and beyond. This work splits the interstitial cell population into FLCs and 

the broad category of the remaining interstitium, which in this analysis contains cells such as 

macrophages in addition to NSICs. While this work is the first to separate FLCs from the rest of the 

interstitium and compare the characteristics of the FLC versus the NSIC population, further 

fractionation of the interstitial space in future characterisation studies would provide us with a 

deeper understanding of the important cellular processes that shape masculinisation of the embryo. 

Expression and functional validation will be needed to gain a clearer understanding of how the 

interstitium responds to cues and how different sub-populations gain identity. In addition, these 

results provide a methodology to tackle functional characterisation of genes of interest. 

Understanding how cells residing in the fetal interstitium contribute to masculinisation will help us 

to understand the impact of this population on health and disease/dysfunction in conditions ranging 

from DSD to infertility.  
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Appendices 

Supplemental Tables Associated With This Thesis  

 

Supplemental Table 1: Splice site MO sequences targeting exon/intron boundaries of target genes.  

Morpholino sequences for targets described in manuscript. 

 

Gene target Antisense Sequence 

Adamts19 5'AGCTGTGGATGCTTACCAGGCCACC  

Ctrb1 5'CAACGTAGCCTGGGACTCACTTGAC  

Gli1 5'GGGATTGCCCCAGTGCTCACCTTCA  

Gli2 5'CCACTGTCACAGGAGGCAAGAGAAA  

Gli3 5’AATCCCTATAAAACACCACAGTGCC 

Nr0b1 (Dax1) 5’GCCTGAGGCTCCTGTAGCTCGTTCT 

Nr0b2 5’AGCTCATGGTTAGTATCTTGTTCCT 

Sart3 5’GGACCTAAAAGACAAGAAGCGATCT 

Sox9 5’GACCACTCGCGCCTTGCTCACCAGA  

Stra8 5’ACTATCCCCAAGTCCCTGTACCTTT  

Wnt4 5’CCTAGACCAACCCTCCTCACCTTGT 

Standard Control 5'CCTCTTACCTCAGTTACAATTTATA 
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Supplemental Table 2: Taqman gene expression sets for qRT-PCR. 

TaqMan Gene Expression Assay catalogue numbers described in this thesis. Tbp (*) was used an a normalising gene in 
all experiments. 
 

 

  

Gene Catalogue Code Gene Catalogue Code 
Adamts 16 Mm00468144_m1 Nr5a1 (Sf1) Mm00446826_m1 

Adamts19 Mm00558559_m1 Pax6 Mm00443081_m1 
Adcy7 Mm00545780_m1 Pdx1 Mm00435565_m1 

Amh Mm03023963_m1 Pdzk1 Mm00451926_m1 

Arx Mm00545903_m1 Pou5f1 (Oct3/4) Mm00658129_gH 
Car2 Mm00501576_m1 Ppy Mm00435889_m1 

Cdh1 (E-cad) Mm01247357_m1 Prlr Mm04336676_m1 

Clca1 Mm00777368_m1 Ptch1 Mm00436026_m1 

Cyp11a1 (Scc) Mm00490735_m1 Ptgds Mm01330613_m1 

Ddx4 (Mvh) Mm00802445_m1 Rec8 Mm00490939_m1 
Dhh Mm01310203_m1 Robo2 Mm00620713_m1 

Dmc1 Mm00494485_m1 Rspo1 Mm00507076_m1 

FoxL2 Mm00843544_s1 Scp3 Mm00488519_m1 
Fras1 Mm00663578_m1 Sox18 Mm00656049_gH 

Frem2 Mm00556222_m1 Sox9 Mm00448840_m1 

Fst Mm00514982_m1 Sst Mm00436671_m1 

Ghrl Mm00445450_m1 Star Mm00441558_m1 

Glug Mm00801712_m1 Stra8 Mm00486473_m1 
Gstm7 Mm00499573_g1 Tac2 Mm01160362_m1 

Hsd3b Mm01261921_mH Tacr3 Mm00445346_m1 

Ins1 Mm01950294_s1 Tbp* Mm00446973_m1 

Ins2 Mm00731595_gH Trank1 Mm01245649_m1 

Irx3 Mm00500463_m1 Wnt4 Mm00437341_m1 

Mc2r Mm00434865_s1 Wt1 Mm01337048_m1 

Notch2 Mm00803077_m1 Xlr3 Mm00496001_m1 

Nr0b1 (Dax1) Mm00431729_m1     
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Supplemental Table 3: Primary Antibodies for Immunofluorescence and Western Blot 

Dilutions and catalogue numbers for primary antibodies described in this thesis. 

 

 

 

 

 

 

 

 

 

 

Primary 
Antibody Company Catalogue Code Species Dilution 
A-TUB Sigma  T5168 mouse 1:5000 (WB) 
AMH Santa Cruz Biotechnology sc-6886 (MIS C-20)  goat 1:200 

ARX 
Gift from K. Morohashi, Kyushu Uni, Japan: 
(Miyabayashi et al., 2013) 
  

rabbit 1:200 

CDH1 (ECAD) BD Pharmingen  610182 610182 mouse 1:200 

DDX4 (MVH) mAB Abcam  ab27591 mouse 1:500 

FOXL2 

Gift from Dagmar Wilhelm, Monash University, 
Australia: (Polanco et al., 2010) 
  rabbit 1:800 

GFP Abcam ab5450 goat 1:400 

gH2AX Millipore  05-636 mouse 1:200 

HSD3B Transgenic Inc  KAL-KO607 rabbit 1:600 
iB4-biotin 
conjugate Sigma Aldrich L2140 biotin 1:200 

INS Sigma Aldrich 12018 mouse 1:200 
NR2F2 
(COUPTFII) Perseus Proteomics Inc. PP-H7147-00  mouse 1:400 
NR5A1 Transgenic Inc   KAL-KO610 rat 1:600 
PAX2 Invitrogen 71-6000 rabbit 1:200 

PAX6 
Covance Research 
Products Inc PRB278P rabbit 1:200 

POU5F1 (OCT4) Santa Cruz Biotechnology  sc-5279 mouse 1:200 
SCP3 Abcam ab15093 ab15093 rabbit 1:200 

SOX9 Abnova  H00006662-M01 mouse 
1:200 (IF) /   
1:1000 (WB) 

STRA8 Abcam  ab49405 rabbit 1:200 
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Supplemental Table 4: Secondary Antibodies for Immunofluorescence and Western Blot 

Dilutions and catalogue numbers for secondary antibodies described in this thesis. 

 

 

Conjugate Invitrogen Catalogue Code (all used at 1:200) 

anti-goat 488 A11055 

anti-mouse 488 A11001/A11017 

anti-mouse 594 A11032/A11005 

anti-mouse 647 A31571 

anti-mouse HRP Sigma: A8924 

anti-rabbit 488 A11034 

anti-rabbit 568 A10042 

anti-rabbit 594 A11037 

anti-rabbit 647 A31573 

anti-rat 488 A11006 

anti-rat 594 A11007 

  

Probe Company Dilution 

DAPI Molecular Probes 2 ng/µl in PBS at 1:5000 
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Supplemental Table 5: List of previously published data on testis expression for 84 FLC-enriched genes.  

List of genes that have been previously reported to be expressed in the adult or fetal mouse testis or in human 

testis/DSD in PubMed. This list is current as of 12 Nov 2014. In most cases where fetal expression was detected this 

was not at 12.5 dpc and no further expression analysis was performed. (* indicates that there is a published expression 

pattern for this gene at 12.5 dpc) 

 
  

Human 
testis 

DSD 
association Adult testis  

Fetal  
testis 

Not reported 
  

Art3 Lars2 Adamts5 Adcy7 Arhgap6 Itga9 

Ffar2   Btnl9  Cbln1 Armcx6 Kcns2 

Hoxd10   Cyp1b1 Crhr1 Bmp2 Lrrtm3 
Mmp28   Gpr153 Gja5 C7 Mme 

Ptpro   Hspa12a Hhip Casq2 Myh7 

Rad51ap2   Kcnj3 Hsd11b2 Chst1 Oit3 
Vipr1   Kcnk3 Htra3 Chst2 Pcp4l1 

  
Myh11 Inhba* Clca1 Plcxd3 

  
Myl4 Itih5* Clec1b Pnmal1 

  
Myoc Mc2r Col23a1 Robo2 

  
Nts Mc4r Gm11549 Serpina3g 

  
Otof Ngfr* Gm13659 Sertm1 

  
Pdyn Nrg1 Gm14396 Sox18 

  
Slitrk2 Ppp1r14a Gm5067 Speer7-ps1 

  
Syt15 Prlr Gpr174 Sstr4 

  
Tac2 Prokr2* Gpr20 Stc1 

  
Tacr3 Srpx2 Grin2a Tg 

   
Vcam1* Grrp1 Trac 

 
Vgll3 Irf8   

   
Vsnl1 Itga4   
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Supplemental Table 6: Genes putatively regulated by NR5A1 

We identified overlap between the upregulated and downregulated gene lists produced by Baba et al., (2014) and our 

three lists of genes upregulated in FLCs, NSICs and Sertoli cells (SData File 2). Genes that overlap in the data sets are 

putatively regulated by NR5A1 and are listed under each cell type as either being putatively up- or down-regulated by 

NR5A1. Sertoli cell genes are listed in Table 3.8. 

  

Genes putatively upregulated by  

NR5A1 

Genes putatively downregulated by 

NR5A1 

FLCs: FLCs: 

Htra3 Bmp2 

Vcam1 Kcnk3 

  

NSICs: NSICs: 

B4galnt1 9630033F20Rik 

C1s Bspry 

Car2 Cyth4 

Ecm1 Gypa 

Foxp2 Myo15b 

Hr Trib3 

Ifitm3 9630033F20Rik 

Lrp11 Bspry 

Ly6a Cyth4 

Ogn Gypa 

Prss23 Myo15b 

S100a6 Trib3 

Slc9a3r1  
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Supplemental Table 7: Eurexpress IDs. 

List of Eurexpress and Ref Seq IDs for the ISHs in this thesis. (*= Trank1 is annotated in the Eurexpress database as 
Lba1 (lupus brain antigen 1)). 
 
 
 

Gene Population  Eurexpress ID MGI ID Ref Seq ID 
Cyp11a1 FLC euxassay_006083 MGI:88582 NM_019779 
Nr2f2 NSIC euxassay_011662 MGI:1352452 NM_183261 
Amh SC euxassay_019122 MGI:88006 NM_007445 
Adcy7 FLC euxassay_018247 MGI:102891 NM_007406 
Clca1 FLC euxassay_011993 MGI:1316732 NM_009899 
Itga9 FLC euxassay_011292 MGI:104756 NM_133721 
Nrg FLC euxassay_007625 MGI:96083 XM_893383 
Nts FLC euxassay_007634 MGI:1328351 NM_024435 
Prlr FLC euxassay_007856 MGI:97763 NM_011169 
Srpx2 FLC euxassay_002179 MGI:1916042 NM_026838 
Tacr3 FLC euxassay_004597 MGI:892968 NM_021382 
Car2 NSIC euxassay_004081 MGI:88269 NM_009801 
Slc6a18 NSIC euxassay_007790 MGI:1336892 NM_011730 
Ermpa NSIC euxassay_005148 MGI:1349816 NM_013848 
Adamts16 SC euxassay_001489 MGI:2429637 NM_172053 
Adhfe1 SC euxassay_001519 MGI:1923437 NM_175236 
Arhgdig SC euxassay_000468 MGI:108430 NM_008113 
Clcn2 SC euxassay_008248 MGI:105061 NM_009900 
Gsta4 SC euxassay_004740 MGI:1309515 NM_010357 
Gstm1 SC euxassay_000731 MGI:95860 NM_010358 
Gstm7 SC euxassay_018910 MGI:1915562 XM_289885 
Hcrtr1 SC euxassay_017929 MGI:2385650 AF394596 
Hs6st1 SC euxassay_006185 MGI:1354958 NM_015818 
Kctd14 SC euxassay_012606 MGI:1289222 NM_001010826 
Npr1 SC euxassay_007624 MGI:97371 NM_008727 
Pak3 SC euxassay_017534 MGI:1339656 NM_008778 
Ppt1 SC euxassay_013980 MGI:1298204 NM_008917 
Rgs11 SC euxassay_000824 MGI:1354739 XM_128488 
Smoc1 SC euxassay_003378 MGI:1929878 NM_022316 
Stc2 SC euxassay_003589 MGI:1316731 NM_011491 
Tle6 SC euxassay_001017 MGI:2149593 NM_053254 
Trank1* SC euxassay_013745 MGI:1341834 XM_001005347 
Tyro3 SC euxassay_006322 MGI:104294 NM_019392 
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 Supplemental Table 8: Genes detected as upregulated in each population that have an annotation in OMIM.  

The following information is drawn from the Online Mendelian Inheritance in Man, OMIM® data base currated by 
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), accessed on 12 
November 2014. URL: http://omim.org/. This workbook shows whether there is any known association between 
upregulated genes in each population and an OMIM phenotype. The nomenclature and symbols used in the list are 
indicated below 

The following information is drawn from the Online Mendelian Inheritance in Man, OMIM® data base currated by 
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), accessed on 12 
November 2014. URL: http://omim.org/ 

Note that not every gene with a phenotype identified has a corresponding MIM number in the OMIM data base. 

Additional information from the descriptions from the OMIM database can be interpreted as follows: 

Brackets, "[ ]", indicate "nondiseases," mainly genetic variations that lead to apparently abnormal laboratory test values 
(e.g., dysalbuminemic euthyroidal hyperthyroxinemia). 

Braces, "{ }", indicate mutations that contribute to susceptibility to multifactorial disorders (e.g., diabetes, asthma) or to 
susceptibility to infection (e.g., malaria). 

A question mark, "?", before the disease name indicates an unconfirmed or possibly spurious mapping. 

The number in parentheses after the name of each disorder indicates the following: (1) the disorder was positioned by 
mapping of the wildtype gene; (2) the disease phenotype itself was mapped; (3) the molecular basis of the disorder is 
known; (4) the disorder is a chromosome deletion or duplication syndrome.  

Each OMIM entry is given a unique six-digit number. The first digit of the number provides the following information 
summarized below: 

1----- (100000- ) 2----- (200000- ) Autosomal loci or phenotypes (entries created before May 15, 1994) 

3----- (300000- ) X-linked loci or phenotypes 

4----- (400000- ) Y-linked loci or phenotypes 

5----- (500000- ) Mitochondrial loci or phenotypes 

6----- (600000- ) Autosomal loci or phenotypes (entries created after May 15, 1994) 
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Supplemental Table 8.1: OMIM FLC genes 
Symbol MIM number OMIM Description 
SRPX2 300643 ?Rolandic epilepsy, mental retardation, and speech dyspraxia (3) 

MME 
 

[Neutral endopeptidase deficiency] (1); Membranous glomerulonephritis, antenatal 
(1) 

NRG1 603013 {?Schizophrenia, susceptibility to} (1) 

BMP2 
235200, 
112600 {HFE hemochromatosis, modifier of} (3); Brachydactyly, type A2 (3) 

MYH11 132900 Aortic aneurysm, familial thoracic 4 (3) 
HSD11B2 218030 Apparent mineralocorticoid excess (3) 

GJA5 
614049, 
108770 Atrial fibrillation, familial, 11 (3); Atrial standstill, digenic (GJA5/SCN5A) (3) 

C7 610102 C7 deficiency (3) 

MYH7 

192600, 
613426, 
608358, 
160500, 
181430, 
613426 

Cardiomyopathy, familial hypertrophic, 1 (3); Cardiomyopathy, dilated, 1S (3); 
Myopathy, myosin storage (3); Laing distal myopathy (3); Scapuloperoneal 
syndrome, myopathic type (3); Left ventricular noncompaction 5 (3) 

OTOF 
601071, 
601071 Deafness, autosomal recessive 9 (3); Auditory neuropathy, autosomal recessive, 1 (3) 

GRIN2A 245570 Epilepsy, focal, with speech disorder and with or without mental retardation (3) 
MYOC 137750 Glaucoma 1A, primary open angle (3) 

CYP1B1 
231300, 
604229 

Glaucoma 3A, primary open angle, congenital, juvenile, or adult onset (3); Peters 
anomaly (3) 

MC2R 202200 Glucocorticoid deficiency, due to ACTH unresponsiveness (3) 
TACR3 614840 Hypogonadotropic hypogonadism 11 with or without anosmia (3) 
PROKR2 244200 Hypogonadotropic hypogonadism 3 with or without anosmia (3) 
SOX18 607823 Hypotrichosis-lymphedema-telangiectasia syndrome (3) 

IRF8 
614893, 
614894 

Immunodeficiency 32A, mycobacteriosis, autosomal dominant (3); 
Immunodeficiency 32B, monocyte and dendritic cell deficiency, autosomal recessive 
(3) 

TRAC 615387 Immunodeficiency 7, TCR-alpha/beta deficient (3) 

PRLR 
615554, 
615555 Multiple fibroadenomas of the breast (3); ?Hyperprolactinemia (3) 

PTPRO 614196 Nephrotic syndrome, type 6 (3) 
MC4R 601665 Obesity, autosomal dominant (3) 
LARS2 615300 Perrault syndrome 4 (3) 
KCNK3 615344 Pulmonary hypertension, primary, 4 (3) 
PDYN 610245 Spinocerebellar ataxia 23 (3) 

TG 
274700, 
608175 

Thyroid dyshormonogenesis 3 (3); {Autoimmune thyroid disease, susceptibility to, 
3} (3) 

CASQ2 611938 Ventricular tachycardia, catecholaminergic polymorphic, 2 (3) 

HOXD10 
192950, 
192950 Vertical talus, congenital (3); Charcot-Marie-Tooth disease, foot deformity of (3) 

ROBO2 610878 Vesicoureteral reflux 2 (3) 
HTRA3 193235 Vitreoretinopathy, neovascular inflammatory (3) 
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Supplemental Table 8.2: OMIM NSIC genes 
Symbol MIM number OMIM Description 
NEFH 105400 ?{Amyotrophic lateral sclerosis, susceptibility to} (3) 

UCHL1 613643, 615491 
?{Parkinson disease 5, susceptibility to} (3); ?Neurodegeneration with 
optic atrophy, childhood onset (3) 

ACTN2 612158 ?Cardiomyopathy, dilated, 1AA (3) 
ALX1 613456 ?Frontonasal dysplasia 3 (3) 
PHC1 615414 ?Microcephaly 11, primary, autosomal recessive (3) 

HOXA2 612290, 612290 
?Microtia, hearing impairment, and cleft palate (AR) (3); ?Microtia with 
or without hearing impairment (AD) (3) 

PCK1 261680 ?Phosphoenolpyruvate carboxykinase-1, cytosolic, deficiency (1) 
STAG3 615723 ?Premature ovarian failure 8 (3) 
KCNJ8 

 
?Prinzmetal angina (1) 

TAF4B 615841 ?Spermatogenic failure 13 (3) 
AMPD3 612874 [AMP deaminase deficiency, erythrocytic] (3) 

GCNT2 
110800, 110800, 
110800 

[Blood group, Ii] (3); Cataract 13 with adult i phenotype (3); Adult i 
phenotype without cataract (3) 

KEL 110900 [Blood group, Kell] (3) 
GYPA 611162 [Blood group, MN] (3); {Malaria, resistance to} (3) 
ERMAP 111750, 111620 [Blood group, Scianna system] (3); [Blood group, Radin] (3) 
RGS5 145500 [Blood pressure regulation QTL] (2) 

AFP 615970, 615969 
[Hereditary persistence of alpha-fetoprotein] (3); Alpha-fetoprotein 
deficiency (3) 

RHD 
 

[Rh-negative blood type] (3) 
XPNPEP2 300909 {Angioedema induced by ACE inhibitors, susceptibility to} (3) 
HMGA1 125853 {Diabetes mellitus, noninsulin-dependent, susceptibility to} (3) 

PTPN22 
222100, 180300, 
152700 

{Diabetes, type 1, susceptibility to} (3); {Rheumatoid arthritis, 
susceptibility to} (3); {Systemic lupus erythematosus susceptibility to} 
(3) 

HBEGF 
 

{Diphtheria, susceptibility to} (1) 

CFH 
235400, 609814, 
610698, 126700 

{Hemolytic uremic syndrome, atypical, susceptibility to, 1} (3); 
Complement factor H deficiency (3); {Macular degeneration, age-
related, 4} (3); Basal laminar drusen (3) 

PTPRC 609532, 608971 
{Hepatitic C virus, susceptibility to} (3); Severe combined 
immunodeficiency, T cell-negative, B-cell/natural killer-cell positive (3) 

CCL3 609423 {HIV infection, resistance to} (2) 
CCR2 

 
{HIV infection, susceptibility/resistance to} (3) 

IFITM3 614680 {Influenza, severe, susceptibility to} (3) 

TLR2 
246300, 114500, 
607948 

{Leprosy, susceptibility to} (3); {Colorectal cancer, susceptibility to} 
(3); {Mycobacterium tuberculosis, susceptibility to} (3) 

CDKN2A 
155601, 155755, 
606719 

{Melanoma, cutaneous malignant, 2} (3); Melanoma and neural system 
tumor syndrome (3); Pancreatic cancer/melanoma syndrome (3); 
Orolaryngeal cancer, multiple, (3) 

SLC11A1 607948, 610446 
{Mycobacterium tuberculosis, susceptibility to infection by} (3); {Buruli 
ulcer, susceptibility to} (3) 

GCLM 608446 {Myocardial infarction, susceptibility to} (3) 
MIAT 608446 {Myocardial infarction, susceptibility to} (3) 
ADRB3 601665 {Obesity, susceptibility to} (3) 

CX3CR1 
609423, 607339, 
613784 

{Rapid progression to AIDS from HIV1 infection} (3); {Coronary artery 
disease, resistance to} (3); {Macular degeneration, age-related, 12} (3) 

SLC22A4 180300 {Rheumatoid arthritis, susceptibility to} (3) 
DAO 181500 {Schizophrenia} (2) 
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DAZL 
 

{Spermatogenic failure, susceptibility to} (3) 
ALOX5AP 601367 {Stroke, susceptibility to} (3) 
ITGAM 609939 {Systemic lupus erythematous, association with susceptibility to, 6} (3) 
MYB 

 
{T-cell acute lymphoblastic leukemia} (3) 

GNAT2 613856 Achromatopsia-4 (3) 
SLC39A4 201100 Acrodermatitis enteropathica (3) 
IGHM 601495 Agammaglobulinemia 1 (3) 
BLNK 613502 Agammaglobulinemia 4 (3) 
PRRX1 202650 Agnathia-otocephaly complex (3) 

HR 
203655, 209500, 
146550 

Alopecia universalis (3); Atrichia with papular lesions (3); Hypotrichosis 
4 (3) 

RHAG 268150 Anemia, hemolytic, Rh-null, regulator type (3); Rh-mod syndrome (3) 

ALAS2 300751, 300752 
Anemia, sideroblastic, X-linked (3); Protoporphyria, erythropoietic, X-
linked (3) 

PAX6 

106210, 604229, 
106210, 148190, 
136520, 120430, 
165550, 120200, 
120430, 206700 

Aniridia (3); Peters anomaly (3); Cataract with late-onset corneal 
dystrophy (3); Keratitis (3); Foveal hypoplasia 1 (3); ?Morning glory 
disc anomaly (3); Optic nerve hypoplasia (3); Coloboma, ocular (3); 
Coloboma of optic nerve (3); Gillespie syndrome (3) 

MYBPC1 614335, 614915 
Arthrogryposis, distal, type 1B (3); Lethal congenital contracture 
syndrome 4 (3) 

TTPA 277460 Ataxia with isolated vitamin E deficiency (3) 
NLRC4 616050 Autoinflammation with infantile enterocolitis (3) 

PITX2 
180500, 137600, 
180550, 604229 

Axenfeld-Rieger syndrome, type 1 (3); Iridogoniodysgenesis, type 2 (3); 
Ring dermoid of cornea (3); Peters anomaly (3) 

OCLN 251290 Band-like calcification with simplified gyration and polymicrogyria (3) 
CTHRC1 614266 Barrett esophagus/esophageal adenocarcinoma (3) 

CYP7B1 613812, 270800 
Bile acid synthesis defect, congenital, 3 (3); Spastic paraplegia 5A, 
autosomal recessive (3) 

SIX1 608389, 605192 Brachiootic syndrome 3 (3); Deafness, autosomal dominant 23 (3) 

BMPR1B 112600, 609441 
Brachydactyly, type A2 (3); Chrondrodysplasia, acromesomelic, with 
genital anomalies (3) 

C1QA 613652 C1q deficiency (3) 
C1QB 613652 C1q deficiency (3) 
C1QC 613652 C1q deficiency (3) 
C1S 613783 C1s deficiency (3) 
RBM20 613172 Cardiomyopathy, dilated, 1DD (3) 
SLC16A12 612018 Cataract, juvenile, with microcornea and glucosuria (3) 

NEFL 607684, 607734 
Charcot-Marie-Tooth disease, type 2E (3); Charcot-Marie-Tooth disease, 
type 1F (3) 

VIL1 
 

Cholestasis, progressive canalicular (1) 
NCF1 233700 Chronic granulomatous disease due to deficiency of NCF-1 (3) 
NCF2 233710 Chronic granulomatous disease due to deficiency of NCF-2 (3) 

CYBB 306400, 300645 
Chronic granulomatous disease, X-linked (3); Immunodeficiency 34, 
mycobacteriosis, X-linked (3) 

DNAAF3 606763 Ciliary dyskinesia, primary, 2 (3) 
RSPH1 615481 Ciliary dyskinesia, primary, 24 (3) 
CIRH1A 604901 Cirrhosis, North American Indian childhood type (3) 

RUNX2 
119600, 119600, 
119600, 156510 

Cleidocranial dysplasia (3); Cleidocranial dysplasia, forme fruste, with 
brachydactyly (3); Cleidocranial dysplasia, forme fruste, dental 
anomalies only (3); Metaphyseal dysplasia with maxillary hypoplasia 
with or without brachydactyly (3) 
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MSH2 
120435, 158320, 
276300 

Colorectal cancer, hereditary nonpolyposis, type 1 (3); Muir-Torre 
syndrome (3); Mismatch repair cancer syndrome (3) 

MSH6 
614350, 608089, 
276300 

Colorectal cancer, hereditary nonpolyposis, type 5 (3); Endometrial 
cancer, familial (3); Mismatch repair cancer syndrome (3) 

CDHR1 613660, 613660 Cone-rod dystrophy 15 (3); Retinitis pigmentosa 65 (3) 
ALG13 300884 Congenital disorder of glycosylation, type Is (3) 

MSX2 
604757, 168500, 
168550 

Craniosynostosis, type 2 (3); Parietal foramina 1 (3); Parietal foramina 
with cleidocranial dysplasia (3) 

GRHL2 608641, 616029 
Deafness, autosomal dominant 28 (3); Ectodermal dysplasia/short stature 
syndrome (3) 

ESRRB 608565 Deafness, autosomal recessive 35 (3) 
ILDR1 609646 Deafness, autosomal recessive 42 (3) 
SYNE4 615540 Deafness, autosomal recessive 76 (3) 
TPRN 613307 Deafness, autosomal recessive 79 (3) 
GLIS3 610199 Diabetes mellitus, neonatal, with congenital hypothyroidism (3) 

EPCAM 613217, 613244 
Diarrhea 5, with tufting enteropathy, congenital (3); Colorectal cancer, 
hereditary nonpolyposis, type 8 (3) 

LRP2 222448 Donnai-Barrow syndrome (3) 
EFEMP1 126600 Doyne honeycomb degeneration of retina (3) 
SALL4 607323, 147750 Duane-radial ray syndrome (3); IVIC syndrome (3) 
NHP2 613987 Dyskeratosis congenita, autosomal recessive 2 (3) 

SPTA1 
130600, 266140, 
270970 Elliptocytosis-2 (3); Pyropoikilocytosis (3); Spherocytosis, type 3 (3) 

SPTB 
 

Elliptocytosis-3 (3); Spherocytosis, type 2 (3); Anemia, neonatal 
hemolytic, fatal and near-fatal (3) 

CDH1 

608089, 167000, 
114480, 137215, 
176807 

Endometrial carcinoma, somatic (3); Ovarian carcinoma, somatic (3); 
{Breast cancer, lobular} (3); Gastric cancer, familial diffuse, with or 
without cleft lip and/or palate (3); {Prostate cancer, susceptibility to} (3) 

ITGB4 
226730, 226650, 
131800 

Epidermolysis bullosa, junctional, with pyloric atresia (3); Epidermolysis 
bullosa, junctional, non-Herlitz type (3); Epidermolysis bullosa of hands 
and feet (3) 

SLC1A3 612656 Episodic ataxia, type 6 (3) 
KCNA1 160120 Episodic ataxia/myokymia syndrome (3) 
BPGM 222800 Erythrocytosis due to bisphosphoglycerate mutase deficiency (3) 

GJB3 
133200, 612644, 
220290 

Erythrokeratodermia variabilis et progressiva (3); Deafness, autosomal 
dominant 2B (3); Deafness, autosomal recessive (3); Deafness, 
autosomal dominant, with peripheral neuropathy (3); Deafness, digenic, 
GJB2/GJB3 (3) 

F13A1 
613225, 608446, 
188050 

Factor XIIIA deficiency (3); {Myocardial infarction, protection against} 
(3); {Venous thrombosis, protection against} (3) 

PLCG2 614468, 614878 
Familial cold autoinflammatory syndrome 3 (3); Autoinflammation, 
antibody deficiency, and immune dysregulation syndrome (3) 

RAD51C 613390, 613399 
Fanconi anemia, complementation group O (3); {Breast-ovarian cancer, 
familial, susceptibility to, 3} (3) 

GPR98 
604352, 605472, 
605472 

Febrile seizures, familial, 4 (3); Usher syndrome, type 2C (3); Usher 
syndrome, type 2C, GPR98/PDZD7 digenic (3) 

TWIST2 227260 Focal facial dermal dysplasia 3, Setleis type (3) 
TDGF1 

 
Forebrain defects (3) 

FREM2 219000 Fraser syndrome (3) 
ALDOB 229600 Fructose intolerance (3) 

TBXAS1 231095, 614158 
Ghosal hematodiaphyseal syndrome (3); ?Thromboxane synthase 
deficiency (1) 

ITGB3 
273800, 608446, 
187800 

Glanzmann thrombasthenia (3); Thrombocytopenia, neonatal 
alloimmune (3); {Myocardial infarction, susceptibility to} (3); Purpura, 
posttransfusion (3); Bleeding disorder, platelet-type, 16, autosomal 
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dominant (3) 

SATB2 612313 Glass syndrome (3) 
FGD2 607398 Glucocorticoid deficiency 2 (3) 
GGT1 

 
Glutathioninuria (1),  

AMT 605899 Glycine encephalopathy (3) 
GLDC 605899 Glycine encephalopathy (3) 

NCF4 613960 
Granulomatous disease, chronic, autosomal recessive, cytochrome b-
positive, type III (3) 

NBEAL2 139090 Gray platelet syndrome (3) 
RAB27A 607624 Griscelli syndrome, type 2 (3) 
MLPH 609227 Griscelli syndrome, type 3 (3) 

GCLC 230450, 608446 
Hemolytic anemia due to gamma-glutamylcysteine synthetase deficiency 
(3); {Myocardial infarction, susceptibility to} (3) 

GPX1 614164 Hemolytic anemia due to glutathione peroxidase deficiency (1) 

ZIC3 
306955, 306955, 
314390 

Heterotaxy, visceral, 1, X-linke (3); Congenital heart defects, 
nonsyndromic, 1, X-linked (3); VACTERL association, X-linked (3) 

NODAL 270100 Heterotaxy, visceral, 5 (3) 

L1CAM 

307000, 303350, 
303350, 307000, 
307000, 304100 

Hydrocephalus due to aqueductal stenosis (3); MASA syndrome (3); 
CRASH syndrome (3); Hydrocephalus with Hirschsprung disease (3); 
Hydrocephalus with congenital idiopathic intestinal pseudoobstruction 
(3); Corpus callosum, partial agenesis of (3) 

CCDC88C 236600, 616053 
Hydrocephalus, nonsyndromic, autosomal recessive (3); 
?Spinocerebellar ataxia 40 (3) 

GATA3 146255 Hypoparathyroidism, sensorineural deafness, and renal dysplasia (3) 
APCDD1 605389 Hypotrichosis 1 (3) 

LIPH 

604379, 604379, 
612797, 125853, 
614025 

Hypotrichosis 7 (3); Woolly hair, autosomal recessive 2 with or without 
hypotrichosis (3), [High density lipoprotein cholesterol level QTL 12] 
(3); {Diabetes mellitus, noninsulin-dependent} (3); Hepatic lipase 
deficiency (3) 

ST14 602400 Ichthyosis, congenital, autosomal recessive 11 (3) 
CLDN1 607626 Ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis (3) 
PIK3CD 615513 Immunodeficiency 14 (3) 

GATA2 
614172, 614038, 
614286, 601626 

Immunodeficiency 21 (3); Emberger syndrome (3); {Myelodysplastic 
syndrome, susceptibility to} (3); {Leukemia, acute myeloid, 
susceptibility to} (3) 

CORO1A 615401 Immunodeficiency 8 (3) 

GDF6 
118100, 613094, 
613703, 615360 

Klippel-Feil syndrome 1, autosomal dominant (3); Microphthalmia, 
isolated 4 (3); Microphthalmia with coloboma 6, digenic (3); Leber 
congenital amaurosis 17 (3) 

GDF3 
613702, 613703, 
613704 

Klippel-Feil syndrome 3, autosomal dominant (3); Microphthalmia with 
coloboma 6 (3); Microphthalmia, isolated 7 (3) 

LEFTY2 
 

Left-right axis malformations (3) 
TAL1 

 
Leukemia-1, T-cell acute lymphocytic (3) 

IKZF1 
 

Leukemia, acute lymphoblastic (3) 
LMO1 

 
Leukemia, T-cell acute lymphoblastic (2) 

LYL1 
 

Leukemia, T-cell acute lymphoblastoid (2) 
FERMT3 612840 Leukocyte adhesion deficiency, type III (3) 
CSF1R 221820 Leukoencephalopathy, diffuse hereditary, with spheroids (3) 
DCX 300067, 300067 Lissencephaly, X-linked (3); Subcortical laminal heteropia, X-linked (3) 

SCN5A 

603830, 601144, 
113900, 113900, 
603829, 608567, 
601154, 272120, 

Long QT syndrome-3 (3); Brugada syndrome 1 (3); Heart block, 
progressive, type IA (3); Heart block, nonprogressive (3); Ventricular 
fibrillation, familial, 1 (3); Sick sinus syndrome 1 (3); Cardiomyopathy, 
dilated, 1E (3); {Sudden infant death syndrome, susceptibility to} (3); 
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614022 Atrial fibrillation, familial, 10 (3) 

SLC7A7 222700 Lysinuric protein intolerance (3) 
CUBN 261100 Megaloblastic anemia-1, Finnish type (3) 
ORC1 224690 Meier-Gorlin syndrome 1 (3) 
FOXP1 613670 Mental retardation with language impairment and autistic features (3) 
SPN 615828 Mental retardation, autosomal dominant 24 (3),  
IL1RAPL1 300143 Mental retardation, X-linked 21/34 (3) 
RAB39B 300271 Mental retardation, X-linked 72 (3) 
RARB 615524 Microphthalmia, syndromic 12 (3) 

SOX2 206900, 206900 
Microphthalmia, syndromic 3 (3); Optic nerve hypoplasia and 
abnormalities of the central nervous system (3) 

OTX2 
610125, 613986, 
610125 

Microphthalmia, syndromic 5 (3); Pituitary hormone deficiency, 
combined, 6 (3); Retinal dystrophy, early-onset, and pituitary 
dysfunction (3) 

HNF4A 
125850, 125853, 
616026 

MODY, type I (3); {Diabetes mellitus, noninsulin-dependent} (3); 
Fanconi renotubular syndrome 4, with maturity-onset diabetes of the 
young (3) 

TRIM37 253250 Mulibrey nanism (3) 

RET 

171400, 155240, 
162300, 209880, 
171300, 191830, 
142623 

Multiple endocrine neoplasia IIA (3); Medullary thyroid carcinoma (3); 
Multiple endocrine neoplasia IIB (3); Central hypoventilation syndrome, 
congenital (3); Pheochromocytoma (3); Renal agenesis (3); 
{Hirschsprung disease, susceptibility to, 1} (3) 

IRF1 613659, 211980 

Myelodysplastic syndrome, preleukemic (3); Myelogenous leukemia, 
acute (3); Gastric cancer, somatic (3); Nonsmall cell lung cancer, 
somatic (3) 

MPO 254600, 104300 
Myeloperoxidase deficiency (3); {Alzheimer disease, susceptibility to} 
(3); {Lung cancer, protection against, in smokers} (3) 

TYROBP 221770 Nasu-Hakola disease (3) 

SLC34A1 612286, 613388 
Nephrolithiasis/osteoporosis, hypophosphatemic, 1 (3); Fanconi 
renotubular syndrome 2 (3) 

SLC9A3R1 612287 Nephrolithiasis/osteoporosis, hypophosphatemic, 2 (3) 
NPHS1 256300 Nephrotic syndrome, type 1 (3) 
NALCN 615419 Neuroaxonal neurodegeneration, infantile, with facial dysmophism (3) 
FAM134B 613115 Neuropathy, hereditary sensory and autonomic, type IIB (3) 
RAC2 608203 Neutrophil immunodeficiency syndrome (3) 
NTRK2 613886 Obesity, hyperphagia, and developmental delay (3) 
SIM1 601665 Obesity, severe (3) 
PLEKHM1 611497 Osteopetrosis, autosomal recessive 6 (3) 

SLC4A1 

612653, 611162, 
179800, 611590, 
110500, 112010, 
112050, 601551, 
601550 

Ovalocytosis (3); Spherocytosis, type 4 (3); [Malaria, resistance to] (3); 
Renal tubular acidosis, distal, AD (3); Renal tubular acidosis, distal, AR 
(3); [Blood group, Diego] (3); [Blood group, Waldner] (3); [Blood 
group, Wright] (3); [Blood group, Froese] (3); [Blood group, Swann] (3) 

PAX2 
120330, 191830, 
616002 

Papillorenal syndrome (3); Renal hypoplasia, isolated (3); 
Glomerulosclerosis, focal segmental, 7 (3) 

ALX4 
609597, 613451, 
615529 

Parietal foramina 2 (3); Frontonasal dysplasia 2 (3); {Craniosynostosis 5, 
susceptibility to} (3) 

SNCA 
605543, 127750, 
168601 

Parkinson disease 4 (3); Dementia, Lewy body (3); Parkinson disease 1 
(3) 

KIT 

172800, 606764, 
154800, 601626, 
273300 

Piebaldism (3); Gastrointestinal stromal tumor, familial (3); Mast cell 
disease (3); Leukemia, acute myeloid (3); Germ cell tumors (3) 

PKHD1 263200 Polycystic kidney and hepatic disease (3) 
SLA 613811 Pontocerebellar hypoplasia type 2D (3),  
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HFM1 615724 Premature ovarian failure 9 (3) 
FECH 177000 Protoporphyria, erythropoietic, autosomal recessive (3) 
PNPO 610090 Pyridoxamine 5'-phosphate oxidase deficiency (3) 

PKLR 266200, 102900 
Pyruvate kinase deficiency (3); Adenosine triphosphate, elevated, of 
erythrocytes (3) 

MET 605074, 114550 
Renal cell carcinoma, papillary, 1, familial and somatic (3); 
Hepatocellular carcinoma, childhood type (3),  

HNF1B 
137920, 125853, 
144700 

Renal cysts and diabetes syndrome (3); Diabetes mellitus, noninsulin-
dependent (3); {Renal cell carcinoma} (3) 

SLC4A5 604278 Renal tubular acidosis, proximal, with ocular abnormalities (3) 
ESCO2 268300, 269000 Roberts syndrome (3); SC phocomelia syndrome (3) 

HESX1 
182230, 182230, 
182230 

Septooptic dysplasia (3); Pituitary hormone deficiency, combined, 5 (3); 
Growth hormone deficiency with pituitary anomalies (3) 

TBX4 147891 Small patella syndrome (3) 
B4GALNT1 609195 Spastic paraplegia 26, autosomal recessive (3) 
FOXP2 602081 Speech-language disorder-1 (3) 
SYCP3 270960 Spermatogenic failure 4 (3); {Pregnancy loss, susceptibility to} (3) 

SPTBN2 600224, 615386 
Spinocerebellar ataxia 5 (3); Spinocerebellar ataxia, autosomal recessive 
14 (3) 

SYNE1 610743, 612998 
Spinocerebellar ataxia, autosomal recessive 8 (3); Emery-Dreifuss 
muscular dystrophy 4, autosomal dominant (3) 

DLL3 277300 Spondylocostal dysostosis 1, autosomal recessive (3) 
DDR2 271665 Spondylometaepiphyseal dysplasia, short limb-hand type (3) 
CSF2RB 614370 Surfactant metabolism dysfunction, pulmonary, 5 (3) 
WNT3 273395 Tetra-amelia, autosomal recessive (3) 

PROC 176860, 612304 
Thrombophilia due to protein C deficiency, autosomal dominant (3); 
Thrombophilia due to protein C deficiency, autosomal recessive (3) 

TRH 275120 Thyrotropin-releasing hormone deficiency (1) 

SALL1 107480, 107480 
Townes-Brocks syndrome (3); Townes-Brocks branchiootorenal-like 
syndrome (3) 

TEC 
 

Transient erythroblastopenia of childhood (2) 
FGF5 190330 Trichomegaly (3) 
GALNT3 211900 Tumoral calcinosis, hyperphosphatemic, familial (3) 

WNT7A 276820, 228930 
Ulna and fibula, absence of, with severe limb deficiency (3); Fuhrmann 
syndrome (3) 

TBX3 181450 Ulnar-mammary syndrome (3) 
ECM1 247100 Urbach-Wiethe disease (3) 

IRF6 
119300, 119500, 
608864 

van der Woude syndrome (3); Popliteal pterygium syndrome 1 (3); 
Orofacial cleft 6 (3) 

GRHL3 606713 Van der Woude syndrome 2 (3) 

WAS 
301000, 313900, 
300299, 313900 

Wiskott-Aldrich syndrome (3); Thrombocytopenia, X-linked (3); 
Neutropenia, severe congenital, X-linked (3); Thrombocytopenia, X-
linked, intermittent (3) 
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Supplemental Table 8.3: OMIM Sertoli genes 
Symbol MIM number OMIM Description 
AAGAB 148600 Keratoderma, palmoplantar, punctate type IA (3) 
AASS 238700, 268700 Hyperlysinemia (3); Saccharopinuria (1) 
ABAT 613163 GABA-transaminase deficiency (3) 

ABCA12 601277, 242500 
Ichthyosis, congenital, autosomal recessive 4A (3); Ichthyosis, autosomal 
recessive 4B (harlequin) (3) 

ACSM3 
 

{?Hypertension, essential} (1) 
ACVR1B 

 
Pancreatic cancer, somatic (3) 

ADAM10 615537, 615590 
Reticulate acropigmentation of Kitamura (3); {Alzheimer disease 18, 
susceptibility to} (3) 

AFF2 309548 Mental retardation, X-linked, FRAXE type (3) 

AHCY 613752 
Hypermethioninemia with deficiency of S-adenosylhomocysteine 
hydrolase (3) 

AK3 
 

,  

ALDH2 610251, 610251 

Alcohol sensitivity, acute (3); {Hangover, susceptibility to} (3); 
{Sublingual nitroglycerin, susceptibility to poor response to} (3); 
{Esophageal cancer, alcohol-related, susceptibility to} (3) 

ALDOA 611881 Glycogen storage disease XII (3) 
AMH 261550 Persistent Mullerian duct syndrome, type I (3) 
AMHR2 261550 Persistent Mullerian duct syndrome, type II (3) 
AQP5 600231 Palmoplantar keratoderma, Bothnian type (3) 
ARHGAP2
6 607785 Leukemia, juvenile myelomonocytic (3) 
ART4 616060 [Blood group, Dombrock] (3) 

ASAH1 228000, 159950 
Farber lipogranulomatosis (3); Spinal muscular atrophy with progressive 
myoclonic epilepsy (3) 

ASL 207900 Argininosuccinic aciduria (3) 
ASS1 215700 Citrullinemia (3) 

ATP1A2 
602481, 104290, 
602481 

Migraine, familial hemiplegic, 2 (3); Alternating hemiplegia of childhood 
(3); Migraine, familial basilar (3) 

ATP2A2 124200, 101900 Darier disease (3); Acrokeratosis verruciformis (3) 
ATP2B3 302500 ?Spinocerebellar ataxia, X-linked 1 (3) 
ATP8A2 615268 ?Cerebellar ataxia, mental retardation, and dysequilibrium syndrome 4 (3) 

ATP8B1 
211600, 243300, 
147480 

Cholestasis, progressive familial intrahepatic 1 (3); Cholestasis, benign 
recurrent intrahepatic (3); Cholestasis, intrahepatic, of pregnancy, 1 (3) 

ATXN1 164400 Spinocerebellar ataxia 1 (3) 
BCAT2 

 
?Hypervalinemia or hyperleucine-isoleucinemia (1) 

BCHE 
 

Apnea, postanesthetic (3) 
BHLHE41 612975 [Short sleeper] (3) 
BLOC1S3 614077 Hermansky-Pudlak syndrome 8 (3) 
BLVRA 614156 Hyperbiliverdinemia (3) 
CACNA1
C 601005, 611875 Timothy syndrome (3); Brugada syndrome 3 (3) 

CD151 609057, 179620 
Nephropathy with pretibial epidermolysis bullosa and deafness (3); [Blood 
group, Raph] (3) 

CD2AP 607832 Glomerulosclerosis, focal segmental, 3 (3) 
CD320 613646 Methylmalonic aciduria due to transcobalamin receptor defect (3) 
CDH19 601390 Van Maldergem syndrome 1 (3),  

CDH23 
601067, 601386, 
601067 

Usher syndrome, type 1D (3); Deafness, autosomal recessive 12 (3); Usher 
syndrome, type 1D/F digenic (3) 

CEBPA 601626 Leukemia, acute myeloid (3) 
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CHCHD10 615911 Frontotemporal dementia and/or amyotrophic lateral sclerosis 2 (3) 

CISH 
607948, 611162, 
614383 

{Tuberculosis, susceptibility to} (3); {Malaria, susceptibility to} (3); 
{Bacteremia, susceptibility to} (3) 

CLCN2 
607628, 607628, 
607628, 615651 

{Epilepsy, juvenile myoclonic, susceptibility to, 8} (3); {Epilepsy, 
juvenile absence, susceptibility to, 2} (3); {Epilepsy, idiopathic 
generalized, susceptibility to, 11} (3); Leukoencephalopathy with ataxia 
(3) 

CNGA1 613756 Retinitis pigmentosa 49 (3) 
COCH 601369 Deafness, autosomal dominant 9 (3) 
COL17A1 226650 Epidermolysis bullosa, junctional, non-Herlitz type (3) 
COL18A1 267750 Knobloch syndrome, type 1 (3) 
COL27A1 615155 ?Steel syndrome (3) 

COL2A1 

108300, 156550, 
200610, 183900, 
184250, 132450, 
271700, 604864, 
151210, 215150, 
608805, 150600, 
609508, 609162 

Stickler syndrome, type I (3); Kniest dysplasia (3); Achondrogenesis, type 
II or hypochondrogenesis (3); SED congenita (3); SMED Strudwick type 
(3); Epiphyseal dysplasia, multiple, with myopia and deafness (3); 
Spondyloperipheral dysplasia (3); SED, Namaqualand type (3); 
Osteoarthritis with mild chondrodysplasia (3); Vitreoretinopathy with 
phalangeal epiphyseal dysplasia (3); Platyspondylic skeletal dysplasia, 
Torrance type (3); Otospondylomegaepiphyseal dysplasia (3); Avascular 
necrosis of the femoral head (3); Legg-Calve-Perthes disease (3); Stickler 
sydrome, type I, nonsyndromic ocular (3); Czech dysplasia (3) 

COL8A2 136800, 609140 
Corneal dystrophy, Fuchs endothelial, 1 (3); Corneal dystrophy, posterior 
polymorphous 2 (3) 

COL9A1 614135, 614134 Epiphyseal dysplasia, multiple, 6 (3); Stickler syndrome, type IV (3) 

COL9A2 
600204, 603932, 
614284 

Epiphyseal dysplasia, multiple, 2 (3); {Intervertebral disc disease, 
susceptibility to} (3); Stickler syndrome, type V (3) 

COL9A3 600969, 603932 
Epiphyseal dysplasia, multiple, 3 (3); Epiphyseal dysplasia, multiple, with 
myopathy (3); {Intervertebral disc disease, susceptibility to} (3) 

CORIN 614595 Preeclampsia/eclampsia 5 (3) 

CP 
604290, 604290, 
604290 

[Hypoceruloplasminemia, hereditary] (3); Cerebellar ataxia (3); 
Hemosiderosis, systemic, due to aceruloplasminemia (3) 

CST3 105150, 611953 
Cerebral amyloid angiopathy (3); Macular degeneration, age-related, 11 
(3) 

CTNNA3 615616 Arrhythmogenic right ventricular dysplasia, familial, 13 (3) 
CTSF 615362 Ceroid lipofuscinosis, neuronal, 13, Kufs type (3) 
CYBA 233690 Chronic granulomatous disease, autosomal, due to deficiency of CYBA (3) 

CYP26B1 614416 
Craniosynostosis with radiohumeral fusions and other skeletal and 
craniofacial anomalies (3) 

DAG1 613818 Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 9 (3) 
DBP 

 
,  

DHH 607080, 233420 
46XY partial gonadal dysgenesis, with minifascicular neuropathy (3); 
46XY sex reversal 7 (3) 

DNMT3B 242860 
Immunodeficiency-centromeric instability-facial anomalies syndrome 1 
(3) 

DOK1 616060 , [Blood group, Dombrock] (3) 

DOK7 254300, 208150 
Myasthenia, limb-girdle, familial (3); Fetal akinesia deformation sequence 
(3) 

DSC2 610476, 610476 

Arrhythmogenic right ventricular dysplasia 11 (3); Arrhythmogenic right 
ventricular dysplasia 11 with mild palmoplantar keratoderma and woolly 
hair (3) 

DSG2 610193, 612877 
Arrhythmogenic right ventricular dysplasia 10 (3); Cardiomyopathy, 
dilated, 1BB (3) 

DSP 

612908, 605676, 
607450, 607655, 
609638 

Keratosis palmoplantaris striata II (3); Dilated cardiomyopathy with 
woolly hair and keratoderma (3); Arrhythmogenic right ventricular 
dysplasia 8 (3); Skin fragility-woolly hair syndrome (3); Epidermolysis 
bullosa, lethal acantholytic (3) 
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DST 614653, 615425 
?Neuropathy, hereditary sensory and autonomic, type VI (3); 
Epidermolysis bullosa simplex, sutosomal recessive 2 (3) 

DTNA 604169 
Left ventricular noncompaction 1, with or without congenital heart defects 
(3) 

DUOX2 607200 Thryoid dyshormonogenesis 6 (3) 
EBP 302960 , Chondrodysplasia punctata, X-linked dominant (3) 

EDN1 615706, 612798 
Auriculocondylar syndrome 3 (3); Question mark ears, isolated (3); {High 
density lipoprotein cholesterol level QTL 7} (3) 

ENO1 
 

Enolase deficiency (1) 

ENPP1 

125853, 601665, 
208000, 613312, 
615522 

{Diabetes mellitus, non-insulin-dependent, susceptibility to} (3); {Obesity, 
susceptibility to} (3); Arterial calcification, generalized, of infancy, 1 (3); 
Hypophosphatemic rickets, autosomal recessive, 2 (3); Cole disease (3) 

EPS8 615974 ?Deafness, autosomal recessive 102 (3) 

ERBB2 
211980, 137800, 
613659 

Adenocarcinoma of lung, somatic (3); Glioblastoma, somatic (3); Gastric 
cancer, somatic (3); Ovarian cancer, somatic, (3) 

ERBB3 607598 Lethal congenital contractural syndrome 2 (3) 
ERBB4 615515 Amyotrophic lateral sclerosis 19 (3) 

ESPN 609006 
Deafness, autosomal recessive 36 (3); Deafness, neurosensory, without 
vestibular involvement, autosomal dominant (3) 

FAM83H 130900 Amelogenesis imperfecta, type III (3) 
FGF16 309630 Metacarpal 4-5 fusion (3) 
FGF9 612961 Multiple synostoses syndrome 3 (3) 
FOLR1 613068 Neurodegeneration due to cerebral folate transport deficiency (3) 
FUCA1 230000 Fucosidosis (3) 
GALE 230350 Galactose epimerase deficiency (3) 
GAMT 612736 Cerebral creatine deficiency syndrome 2 (3) 

GATA4 

607941, 614429, 
614430, 615542, 
187500 

Atrial septal defect 2 (3); Ventricular septal defect 1 (3); Atrioventricular 
septal defect 4 (3); ?Testicular anomalies with or without congenital heart 
disease (3); Tetralogy of Fallot (3) 

GATM 612718 Cerebral creatine deficiency syndrome 3 (3) 
GCDH 231670 Glutaricaciduria, type I (3) 

GDNF 
209880, 171300, 
613711 

Central hypoventilation syndrome (3); {Pheochromocytoma, modifier of} 
(3); {Hirschsprung disease, susceptibility to, 3} (3) 

GJA1 

164200, 186100, 
241550, 600309, 
257850, 218400 

Oculodentodigital dysplasia (3); Syndactyly, type III (3); Hypoplastic left 
heart syndrome 1 (3); Atrioventricular septal defect 3 (3); 
Oculodentodigital dysplasia, autosomal recessive (3); Craniometaphyseal 
dysplasia, autosomal recessive (3) 

GJB1 302800 Charcot-Marie-Tooth neuropathy, X-linked dominant, 1 (3) 

GJB2 

220290, 601544, 
124500, 148350, 
148210, 602540, 
149200 

Deafness, autosomal recessive 1A (3); Deafness, autosomal dominant 3A 
(3); Vohwinkel syndrome (3); Keratoderma, palmoplantar, with deafness 
(3); Keratitis-ichthyosis-deafness syndrome (3); Hystrix-like ichthyosis 
with deafness (3); Bart-Pumphrey syndrome (3) 

GLB1 
230500, 230600, 
230650, 253010 

GM1-gangliosidosis, type I (3); GM1-gangliosidosis, type II (3); GM1-
gangliosidosis, type III (3); Mucopolysaccharidosis type IVB (Morquio) 
(3) 

GM2A 272750 GM2-gangliosidosis, AB variant (3) 
GNB3 145500 {Hypertension, essential, susceptibility to} (3) 

GPR179 614565 
Night blindness, congenital stationary (complete), 1E, autosomal recessive 
(3) 

GPR56 606854, 615752 
Polymicrogyria, bilateral frontoparietal (3); Polymicrogyria, bilateral 
perisylvian (3) 

HFE 

235200, 612635, 
176200, 176100, 
104300, 614193 

Hemochromatosis (3); {Microvascular complications of diabetes 7} (3); 
{Porphyria variegata, susceptibility to} (3); {Porphyria cutanea tarda, 
susceptibility to} (3); {Alzheimer disease, susceptibility to} (3); 
[Transferrin serum level QTL2] (3) 



 

 216 

HK1 235700, 605285 
, Hemolytic anemia due to hexokinase deficiency (3); Neuropathy, 
hereditary motor and sensory, Russe type (3),  

HK2 
 

,  
HMGCS2 605911 HMG-CoA synthase-2 deficiency (3) 
HOGA1 613616 Hyperoxaluria, primary, type III (3) 
HPS3 614072 Hermansky-Pudlak syndrome 3 (3) 
HS6ST1 614880 {Hypogonadotropic hypogonadism 15 with or without anosmia} (3) 
HSD17B3 264300 Pseudohermaphroditism, male, with gynecomastia (3) 

HSPB1 608634, 606595 
Neuropathy, distal hereditary motor, type IIB (3); Charcot-Marie-Tooth 
disease, axonal, type 2F (3) 

HTRA1 
610149, 610149, 
600142 

{Macular degeneration, age-related, 7} (3); {Macular degeneration, age-
related, neovascular type} (3); CARASIL syndrome (3) 

IDH1 137800 {Glioma, susceptibility to, somatic} (3) 
IFNGR2 614889 Immunodeficiency 28, mycobacteriosis (3) 
IGSF1 300888 Hypothyroidism, central, and testicular enlargement (3) 
IL10RA 613148 Inflammatory bowel disease 28, early onset, autosomal recessive (3) 
ITGA6 226730 Epidermolysis bullosa, junctional, with pyloric stenosis (3) 
KBTBD13 609273 Nemaline myopathy 6, autosomal dominant (3) 
KCNE1 612347, 613695 Jervell and Lange-Nielsen syndrome 2 (3); Long QT syndrome 5 (3) 

KCNQ1 

192500, 220400, 
607554, 609621, 
192500 

Long QT syndrome 1 (3); Jervell and Lange-Nielsen syndrome (3); Atrial 
fibrillation, familial, 3 (3); Short QT syndrome 2 (3); {Long QT syndrome 
1, acquired, susceptibility to} (3) 

KCNT1 614959, 615005 
Epileptic encephalopathy, early infantile, 14 (3); Epilepsy, nocturnal 
frontal lobe, 5 (3) 

KIF21A 135700, 135700 
Fibrosis of extraocular muscles, congenital, 1 (3); Fibrosis of extraocular 
muscles, congenital, 3B (3) 

KLK1 615953 [Kallikrein, decreased urinary activity of] (3) 

KRT8 215600, 215600 
Cirrhosis, cryptogenic (3); {Cirrhosis, noncryptogenic, susceptibility to} 
(3) 

LAMA3 
615235, 226700, 
226650, 245660 

Cardiomyopathy, dilated, 1JJ (3), Epidermolysis bullosa, junctional, 
Herlitz type (3); Epidermolysis bullosa, generalized atrophic benign (3); 
Laryngoonychocutaneous syndrome (3) 

LDHB 614128 Lactate dehydrogenase-B deficiency (3) 
LMF1 246650 Lipase deficiency, combined (3) 

LPL 238600, 144250 
Lipoprotein lipase deficiency (3); Combined hyperlipidemia, familial (3); 
[High density lipoprotein cholesterol level QTL 11] (3) 

LRP4 212780, 614305 Cenani-Lenz syndactyly syndrome (3); Sclerosteosis 2 (3) 

LTBP2 
613097, 613086, 
251750, 614819 

Tooth agenesis, selective, 6 (3), Glaucoma 3, primary congenital, D (3); 
Microspherophakia and/or megalocornea, with ectopia lentis and with or 
without secondary glaucoma (3); Weill-Marchesani syndrome 3, recessive 
(3) 

LZTS1 133239 Esophageal squamous cell carcinoma (3) 
MAMLD1 300758 Hypospadias 2, X-linked (3) 
MAN2B1 248500 Mannosidosis, alpha-, types I and II (3) 
MANBA 248510 Mannosidosis, beta (3) 
MAP2K1 615279 Cardiofaciocutaneous syndrome 3 (3) 
MASP1 257920 3MC syndrome 1 (3) 
MBP 

 
,  

MEF2A 608320 {Coronary artery disease, autosomal dominant, 1} (3) 
MID2 300928 ?Mental retardation, X-linked 101 (3) 
MINPP1 188470 Thyroid carcinoma, follicular (3) 
MMD2 

 
, Miyoshi muscular dystrophy 2 (2) 
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MPI 602579 Congenital disorder of glycosylation, type Ib (3) 
MTM1 310400 Myotubular myopathy, X-linked (3) 

MYBPC3 
115197, 615396, 
615396 

Cardiomyopathy, familial hypertrophic, 4 (3); Cardiomyopathy, dilated, 
1MM (3); Left ventricular noncompaction 10 (3) 

MYH14 600652, 614369 
Deafness, autosomal dominant 4A (3); Peripheral neuropathy, myopathy, 
hoarseness, and hearing loss (3),  

MYH6 
613251, 614089, 
613252, 614090 

Cardiomyopathy, familial hypertrophic, 14 (3); Atrial septal defect 3 (3); 
Cardiomyopathy, dilated, 1EE (3); {Sick sinus syndrome 3} (3) 

MYO7A 
276900, 600060, 
601317 

Usher syndrome, type 1B (3); Deafness, autosomal recessive 2 (3); 
Deafness, autosomal dominant 11 (3) 

NAGLU 252920 Mucopolysaccharidosis type IIIB (Sanfilippo B) (3) 
NOS1 615413 Spermatogenic failure 12 (3),  

NQO1 
 

{Benzene toxicity, susceptibility to} (3); {Leukemia, post-chemotherapy, 
susceptibility to} (3); {Breast cancer, poor survival after chemotherapy 
for} (3) 

NR0B1 300200, 300018 
Adrenal hypoplasia, congenital, with hypogonadotropic hypogonadism (3); 
46XY sex reversal 2, dosage-sensitive (3) 

NR0B2 601665 Obesity, mild, early-onset (3) 

NR3C2 177735, 605115 
Pseudohypoaldosteronism type I, autosomal dominant (3); Hypertension, 
early-onset, autosomal dominant, with exacerbation in pregnancy (3) 

NR5A1 
612965, 612964, 
613957 

46XY sex reversal 3 (3); Premature ovarian failure 7 (3); Adrenocortical 
insufficiency (3); Spermatogenic failure 8 (3) 

NSDHL 308050, 300831 CHILD syndrome (3); CK syndrome (3) 
NT5E 211800 Calcification of joints and arteries (3) 
OPLAH 260005 5-oxoprolinase deficiency (3) 
P2RX2 608224 Deafness, autosomal dominant 41 (3) 
PAK3 300558 Mental retardation, X-linked 30/47 (3) 
PAPSS2 612847 Brachyolmia 4 with mild epiphyseal and metaphyseal changes (3) 
PDE11A 610475 Pigmented nodular adrenocortical disease, primary, 2 (3) 

PDE8B 614190, 609161 
Pigmented nodular adrenocortical disease, primary, 3 (3); Striatal 
degeneration, autosomal dominant (3) 

PGAM2 261670 Glycogen storage disease X (3) 
PGAP2 614207 Hyperphosphatasia with mental retardation syndrome 3 (3) 
PGAP3 615716 Hyperphosphatasia with mental retardation syndrome 4 (3) 
PGM3 615816 Immunodeficiency 23 (3) 
PGP 

 
,  

PHF8 300263 Mental retardation syndrome, X-linked, Siderius type (3) 

PHGDH 601815, 256520 
Phosphoglycerate dehydrogenase deficiency (3); Neu-Laxova syndrome1 
(3) 

PINK1 605909 Parkinson disease 6, early onset (3) 
PITPNM3 600977 Cone-rod dystrophy 5 (3) 
PLA2G5 228980 Fleck retina, familial benign (3) 

PLA2G6 
256600, 610217, 
612953 

Infantile neuroaxonal dystrophy 1 (3); Neurodegeneration with brain iron 
accumulation 2B (3); Parkinson disease 14 (3) 

PLCB2 
 

Platelet PLC beta-2 deficiency (1) 

PLEC 
226670, 131950, 
612138, 613723 

Muscular dystrophy with epidermolysis bullosa simplex (3); 
Epidermolysis bullosa simplex, Ogna type (3); Epidermolysis bullosa 
simplex with pyloric atresia (3); Muscular dystrophy, limb-girdle, type 2Q 
(3) 

PLOD2 609220 Bruck syndrome 2 (3) 
PPT1 256730 Ceroid lipofuscinosis, neuronal, 1 (3) 
PRSS12 249500 Mental retardation, autosomal recessive 1 (3) 
PSAP 249900, 610539, , Metachromatic leukodystrophy due to SAP-b deficiency (3); Gaucher 
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611721, 611722 disease, atypical (3); Combined SAP deficiency (3); Krabbe disease, 
atypical (3) 

PTPRF 616001 ?Breasts and/or nipples, aplasia or hypoplasia of, 2 (3) 
PVRL1 225060, 225060 Cleft lip/palate-ectodermal dysplasia syndrome (3); Orofacial cleft 7 (3) 

REEP1 610250, 614751 
Spastic paraplegia 31, autosomal dominant (3); Neuronopathy, distal 
hereditary motor, type VB (3) 

REEP2 615625, 615625 
?Spastic paraplegia 72, autosomal recessive (3); ?Spastic paraplegia 72, 
autosomal dominant (3) 

RGS2 
 

, Rieger syndrome, type 2 (2) 
RGS9BP 608415 Bradyopsia (3) 
RHBDF2 148500 Tylosis with esophageal cancer (3) 
RILP 612437 Epilepsy, progressive myoclonic 1B (3) 
RIN2 613075 Macrocephaly, alopecia, cutis laxa, and scoliosis (3) 
RNF135 614192 Macrocephaly, macrosomia, facial dysmorphism syndrome (3) 
RNF213 607151 {Moyamoya disease 2, susceptibility to} (3) 
ROBO3 607313 Gaze palsy, horizontal, with progressive scoliosis (3) 
RP9 180104 ?Retinitis pigmentosa 9 (3) 

RUNX1 601626, 601399 
Leukemia, acute myeloid (3); Platelet disorder, familial, with associated 
myeloid malignancy (3) 

SEMA4A 610282, 610283 Retinitis pigmentosa 35 (3); Cone-rod dystrophy 10 (3) 
SEMA7A 614745 [Blood group, John-Milton-Hagen system] (3) 
SERPINI1 604218 Encephalopathy, familial, with neuroserpin inclusion bodies (3) 
SGSH 252900 Mucopolysaccharidisis type IIIA (Sanfilippo A) (3) 

SH3TC2 601596, 613353 
Charcot-Marie-Tooth disease, type 4C (3); Mononeuropathy of the median 
nerve, mild (3) 

SIAE 613551 {Autoimmune disease, susceptibility to, 6} (3) 
SIL1 248800 Marinesco-Sjogren syndrome (3) 
SLC13A2 

 
,  

SLC13A5 615905 Epileptic encephalopathy, early infantile, 25 (3) 
SLC17A9 616063 Porokeratosis 8, disseminated superficial actinic type (3) 
SLC30A2 608118 Zinc deficiency, transient neonatal (3) 
SLC34A2 265100, 610441 Pulmonary alveolar microlithiasis (3); ?Testicular microlithiasis (3) 
SLC52A3 211530, 211500 Brown-Vialetto-Van Laere syndrome 1 (3); Fazio-Londe disease (3) 
SLC6A14 300306 {Obesity, susceptibility to, BMIQ11} (3) 

SLC6A4 607834, 164230 
{Anxiety-related personality traits} (3); {Obsessive-compulsive disorder} 
(3) 

SLC6A8 300352 Cerebral creatine deficiency syndrome 1 (3) 
SMOC1 206920 Microphthalmia with limb anomalies (3) 
SMPX 300066 Deafness, X-linked 4 (3) 
SOBP 613671 Mental retardation, anterior maxillary protrusion, and strabismus (3) 
SORT1 613589 [Low density lipoprotein cholesterol level QTL6] (3) 

SOX10 
613266, 611584, 
609136 

Waardenburg syndrome, type 4C (3); Waardenburg syndrome, type 2E, 
with or without neurologic involvement (3); PCWH syndrome (3) 

SOX9 
114290, 114290, 
114290 

Campomelic dysplasia with autosomal sex reversal (3); Acampomelic 
campomelic dysplasia (3); Campomelic dysplasia (3) 

SPINT2 270420 Diarrhea 3, secretory sodium, congenital, syndromic (3) 
SPRY4 615266 Hypogonadotropic hypogonadism 17 with or without anosmia (3) 
SRC 

 
Colon cancer, advanced, somatic (3) 

STEAP3 615234 ?Anemia, hypochromic microcytic, with iron overload 2 (3) 

STIM1 
612783, 160565, 
185070 

Immunodeficiency 10 (3); Myopathy, tubular aggregate,  (3); Stormorken 
syndrome (3) 
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SYT2 616040 
Myasthenic syndrome, presynaptic, congenital, with or without motor 
neuropathy (3) 

TAPBP 604571 Bare lymphocyte syndrome, type I (3) 
TCN2 275350 Transcobalamin II deficiency (3) 
TCTN2 613885 Meckel syndrome 8 (3) 
THRA 614450 Hypothyroidism, congenital, nongoitrous, 6 (3) 

TLR3 613002, 609423 
{Herpes simplex encephalitis, susceptibility to, 2 (3); {HIV1 infection, 
resistance to} (3) 

TMIE 600971 Deafness, autosomal recessive 6 (3) 

TNNC1 611879, 613243 
Cardiomyopathy, dilated, 1Z (3); Cardiomyopathy, familial hypertrophic, 
13 (3) 

TNNI3 
613690, 115210, 
611880, 613286 

Cardiomyopathy, familial hypertrophic, 7 (3); Cardiomyopathy, familial 
restrictive, 1 (3); Cardiomyopathy, dilated, 2A (3); Cardiomyopathy, 
dilated, 1FF (3) 

TNNT2 
115195, 601494, 
612422, 601494 

Cardiomyopathy, familial hypertrophic, 2 (3); Cardiomyopathy, dilated, 
1D (3); Cardiomyopathy, familial restrictive, 3 (3); Left ventricular 
noncompaction 6 (3) 

TRIM32 254110, 615988 
Muscular dystrophy, limb-girdle, type 2H (3); ?Bardet-Biedl syndrome 11 
(3) 

TRPV3 614594 Olmsted syndrome (3) 
TSPAN7 300210 Mental retardation, X-linked 58 (3) 
TUBB2B 610031 Polymicrogyria, symmetric or asymmetric (3) 
UCP2 607447 {Obesity, susceptibility to, BMIQ4} (3) 
UNC119 615518 ?Cone-rod dystrophy (3); ?Immunodeficiency 13 (3) 
USP9X 300919 Mental retardation, X-linked 99 (3) 
VAMP1 108600 Spastic ataxia 1, autosomal dominant (3) 
VAT1 

 
,  

VNN1 
 

[High density lipoprotein cholesterol level QTL 8] (3) 
WDR72 613211 Amelogenesis imperfecta, type IIA3 (3) 

XYLT1 264800, 615777 
{Pseudoxanthoma elasticum, modifier of severity of} (3); Desbuquois 
dysplasia 2 (3) 

ZBTB18 612337 ?Mental retardation, autosomal dominant 22 (3) 
ZBTB20 259050 Primrose syndrome (3) 
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Supplemental Data associated with this thesis 

 

Refer to accompanying .xls, .pdf and movie files associated with the thesis. 

 

Supplemental Video 1. Demonstration of heart injection of constructs in 11.5 dpc embryo. 

This video demonstrates the injection of a construct (marked by blue dye) into the left ventricle of 

the beating embryo heart at 11.5 dpc. After several heartbeats the dye can be seen in more distal 

parts of the embryo and finally in the head vein indicating successful injection. After injection the 

embryo is incubated with the heart still beating for 30 min before dissection for organ culture. For 

more detailed information see Fig. 2.1 and Materials and Methods Chapter 2. 

 

Supplemental Data 1: RNA-seq expression data. 

Somatic cells isolated from the Sf1-eGFP testis (Sertoli, FLC and NSICs) at 12.5 dpc. This 

workbook contains the cpm data from this gonad cell lineage RNA-seq paper.  Only genes with at 

least 1 count per million in three or more samples were retained (features= 14,307). The "cpm" 

sheet of the workbook provides results for all retained ENSMUSG transcripts. The counts for a 

transcript can be graphed using this data file in the “graph cpm” sheet. 

 

Supplemental Data 2: Genes upregulated in enriched cell populations at 12.5 dpc. 

This workbook contains the genes that were upregulated in each enriched cell population.:  

1) Genes upregulated in a Sertoli specific manner ("Sertoli_Specific_UP")  

2) Genes upregulated in a FLC specific manner ("FLC_Specific_UP") 

3) Genes upregulated in a NSIC manner ("NSIC_Specific_UP_incl_gc") 

4) Genes upregulated in a NSIC manner with any gene that is annotated as a germ cell genes in the 

Jameson et al. (2012) dataset removed ("NSIC_Specific_UP_no_gc")  

This workbook also contains the results of the direct comparisons between “Leydig vs Sertoli” (5), 

“Leydig vs NSIC” (6) and “Sertoli vs NSIC”(7). 

 

Supplemental Data 3: GO of genes upregulated in enriched cell populations at 12.5 dpc. 
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Gene ontology analysis was performed using the DAVID Bioinformatics Package (v6.7) 

(http://david.abcc.ncifcrf.gov; (Huang et al., 2009a; Huang et al., 2009b)) The genes identified for 

each TF, TM and SF GO term category were then mapped back to the respective file in 

Supplemental Data 2 and ranked by the moderated F-statistic. The top 10 genes are listed in Fig. 

3.9. The cluster and chart results for each population are also listed in their entirety in this file.  

 

Supplemental Data 4: Genes “on” at 11.5dpc in gonadal microarray screens that are detected 

as upregulated in the FLC enriched population by RNA-seq at 12.5 dpc. Leydig cell enriched 

genes at 12.5 dpc that also show differential expression between interstitial and supporting cell of 

11.5 dpc XY gonad are putative pre-FLC marker genes. Table 3.4 summarises top results. The 

logFC, P.Value, and adj.P.Val columns indicate results from differential expression analysis. Int. 

Exp (interstitial) and Sup. Exp (supporting) show median normalised expression of the gene in each 

of these two cell types, while Int. Rank (interstitial) and Sup. Rank (supporting) indicate the 

position of the gene in a list ranked by expression in that cell type (0=lowest expression, 

100=highest expression).  
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Abstract
Traditional gene targeting methods in mice are complex and time consuming, especially
when conditional deletion methods are required. Here, we describe a novel technique for
assessing gene function by injection of modified antisense morpholino oligonucleotides
(MOs) into the heart of mid-gestation mouse embryos. After allowing MOs to circulate
through the embryonic vasculature, target tissues were explanted, cultured and analysed
for expression of key markers. We established proof-of-principle by partially phenocopying
known gene knockout phenotypes in the fetal gonads (Stra8, Sox9) and pancreas (Sox9).
We also generated a novel double knockdown ofGli1 andGli2, revealing defects in Leydig
cell differentiation in the fetal testis. Finally, we gained insight into the roles of Adamts19
and Ctrb1, genes of unknown function in sex determination and gonadal development.
These studies reveal the utility of this method as a means of first-pass analysis of gene func-
tion during organogenesis before committing to detailed genetic analysis.

Introduction
One of the central challenges in the era of functional genomics is to understand gene function
and unravel the complex networks in which proteins operate to determine phenotype. With
RNA-seq data amassing on top of an already large list of genes gleaned from microarray
screens, many candidate genes now require functional assessment. In addition, possible causa-
tive genes for human developmental diseases are being identified rapidly in rare disease cohorts
as a result of whole exome and whole genome sequencing.

Much of the functional genomics effort focuses on the mouse model because of its relevance
to human development, physiology and disease. Investigation of gene function in mouse has
traditionally involved the generation and breeding of complete or conditional loss-of-function
alleles via homologous recombination, involving a complex and time-consuming experimental
pipeline. Even with advances in genome editing technologies such as the CRISPR/Cas-9 system
(for review see [1]), the generation of knockout animals for every promising gene candidate is
impractical. Moreover, it is often the case that, after investing the time and resources required
to generate a conventional or conditional gene knockout, little or no phenotype results.
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Therefore, there is a pressing need to develop methods that provide insight into developmental
gene function either as a pre-screen before committing to genome manipulation approaches in
vivo, or as a means of prioritizing candidates for further analysis.

With this goal in mind, a variety of methods for accelerated ex vivo functional analysis have
been reported. In the field of gonadal development, these methods have included injection,
electroporation or liposome-based delivery of viral-based or siRNA-based constructs into ex-
planted tissue [2–4], followed by organ culture and histological or molecular analysis. Typical-
ly, these approaches have caused damage to the target tissue as well as being limited in delivery
area. For other developing organs, such as mouse lung and kidney, morpholino antisense oligo-
nucleotides (MOs) have been added to the culture media, but these experiments show high var-
iability due to limited passive uptake of the MO [5–9].

We aimed to develop a method whereby gene function could be perturbed ex vivo, rapidly
and without injury to the target organ. Here we show that injection of commercially available
MOs into the beating heart of a 11.5 dpc (days post coitum) mouse embryo results in delivery
via the vasculature to the gonads and pancreas. We demonstrate knockdown of protein expres-
sion for a number of target genes, leading to predicted downstream effects for known genes
and novel functional insights for other genes or combinations of genes. This method offers a
rapid, reproducible, efficient means of rapidly pre-screening gene candidates for likely func-
tion, as a prelude to more rigorous functional studies in mice.

Materials and Methods
Morpholino design
Splice site MOs were designed to target exon/intron boundaries of target genes (for sequences
see S1 Table). All MOs were vivo-MOs which incorporate a dendrimeric octaguanidine deliv-
ery moiety end modification, with the exception shown in Fig. 1H, I, where a carboxyfluores-
cein-labelled standard control MO (F-MO) was used.

Heart injections
For ease of sexing embryos, we used the X-linked GFP line (Hadjantonakis et al., 1998), main-
tained on an outbred Swiss albino background (Quackenbush strain). Noon on the day on
which the mating plug was detected was designated as 0.5 days post coitum (dpc). All animal
work was conducted according to protocols approved by the University of Queensland Animal
Ethics Committee. This study was approved by the University of Queensland Animal Ethics
Committee (Permit Number: IMB/176/13/NHMRC/ARC).

Embryos were explanted at 11.5 dpc and placed into PBS (phosphate buffered saline) at
37°C with the amniotic sac intact and the placenta attached. If required, embryos were sexed
by GFP expression. The amniotic sac was opened, taking care not to damage any major blood
vessels. The left ventricle of the beating heart of the embryo was injected with a MO-cocktail
(20 ng/μL (single target) or 15 ng/μL (per MO, two targets) and 6% commercial food dye
(Queen Fine Foods Pty. Ltd.)). For each embryo either control or MO targeted against gene of
interest (Gene Tools, LLC) was delivered using a Sutter-pulled glass capillary needle. Injection
was continued until the marker dye was observed in the head vein (approx. 6–8 heart beats,
equivalent to ~20–27 ng MO/embryo (single MO) or ~30–40 ng MO/embryo (combination of
two MOs); see S1 Video and Fig. 1). Embryos with non-beating or weakly beating hearts, or
where injection was unsuccessful as judged by lack of circulation of the dye (about 1 in 15 em-
bryos), were excluded from further study. Embryos were left to recover for 30 min in pre-
warmed PBS in an incubator at 37°C, 5% CO2; hearts were still beating at the end of this period.

Morpholino-Based Screen for Gene Function in Mouse Embryos
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Video of the above procedure was captured on an Olympus SZX-12 Stereomicroscope
(see S1 Video).

For assessing delivery area using a F-MO: 20 μg/mL F-MO (20–27 ng/embryo) and 2%
India ink was delivered by heart injection as described above (n = 3). After 5 and 30 min recov-
ery the genital ridge was imaged on an Olympus BX-51 Upright Fluorescence/
Brightfield microscope.

For gonad culture, UGR (urogenital ridge: gonad plus mesonephros) was dissected out and
hanging drops were prepared by pipetting 40 μL of media (BJGB media (Gibco) with 4%
Serum Supreme (Lonza), 1% penicillin/streptomycin (Gibco) and 200 mg/mL ascorbic acid
(Sigma Aldrich)) containing a single UGR onto the inner face of the lid of a 24 well tissue cul-
ture plate. PBS (500 μL) was added to each well and the lid was then inverted to close the plate.
After 48 h, cultured gonads were washed in PBS for 5 min and processed for qRT-PCR, West-
ern blot or immunohistochemistry.

For pancreas culture, the foregut endoderm was isolated and any non-affiliated organs re-
moved. The foregut was placed on a Millipore (5 μM TPMT) filter floating on 600 μl of culture
medium (M199 media (Gibco) with 10% Serum Supreme (Lonza) and 2% penicillin/strepto-
mycin (Gibco)) and cultured for 4–6 days at 37°C, 5% CO2 with the media changed every other
day. After culture, tissues were washed in PBS for 5 min and processed for qRT-PCR
or immunohistochemistry.

Fig 1. Overview of method: MO delivery by heart injection. (A) Experimental pipeline from harvest of embryos through to injection, culture and
downstream analyses. Visualisation of heart injection protocol can be seen in S1 Video and images B–E. The cocktail of dye and MO in PBS is delivered via
injection into the left ventricle of the beating heart at 11.5 dpc (B). Dye can be visualised going around the embryonic vasculature (indicated by white arrows)
(C, D) and into the head vasculature (D) before the whole embryo is coloured (E). Schematic of ventricle injection (F) and the embryonic gonad which is
highly vascularised (G). Delivery of India ink and F-MO (indicated by white arrows) shows the compounds reaching the mesonephric plexus at 5 min post-
injection (H; n = 3); after 30 min F-MO positive cells were observed in the gonad proper (I; n = 3). s = seconds; min = minutes; g = gonad; m = mesonephros;
F-MO = carboxyfluorescein-labelled standard control morpholino oligonucleotide. Scale bars: E = 1 mm, H = 0.5 mm.

doi:10.1371/journal.pone.0114932.g001
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Quantitative RT-PCR analysis
Total RNA was extracted and cDNA generated from cultured gonad or pancreas as previously
described (Bowles et al., 2010). Duplicate assays were carried out on an ABI Prism 7500 Se-
quence Detector System. Tbp (TATA box binding protein) was used as an endogenous control
to normalize gene expression levels [10]. Taqman gene expression sets were as listed in S2
Table.

Relative transcript abundance was calculated using the 2−ΔCT method. Error bars represent
S.E.M. calculated from independent biological replicates; statistical significance was assessed
using unpaired (two-tailed) Student’s t-test.

Immunofluorescence
Analyses were carried out on fixed, paraffin-embedded 7 μm sections using standard methods.
Briefly, gonad plus mesonephros complexes or foreguts were fixed in 4% paraformaldehyde in
phosphate buffered saline overnight at 4°C. Tissues were embedded in 1.5% low melt agarose,
ethanol dehydrated, paraffin-embedded and 7 μm sections were cut using a Leica Microtome.
Slides were dewaxed by 2 x 10 min washes in xylene, re‐hydrated and boiled for 5 min in Anti-
gen Unmasking Solution (Vector Laboratories), then incubated at room temperature for 60
min. The slides were washed for 3 x 10 min in 0.1% Triton-X in PBS (PBTX). The sections
were incubated with primary antibodies, which were diluted in blocking buffer at 4°C overnight
(for primary antibodies see S3 Table). Antibodies were removed with three washes in PBTX,
and the slides re‐blocked for 30 min at room temperature. Secondary antibodies were incubat-
ed at room temperature for 2 h. The secondary antibodies were removed with three PBS washes
before DAPI staining and mounting with a 60% glycerol/PBS solution. Secondary antibodies
were all from Invitrogen Molecular Probes (see S4 Table). Sections were examined by confocal
microscopy using a Zeiss LSM-510 META or LSM-710 META confocal microscope.

Whole-mount immunofluorescence
Whole mount immunofluorescence was performed as detailed in [11].

Cell quantification
For quantification of the number of INS- and PAX6-positive cells in the pancreas, and HSD3β,
NR5A1, SOX9-positive cells in the XY gonad, de-identified gonads or foreguts were serially
sectioned at 7 μm and processed as per the immunofluorescence protocol. Quantification was
performed on all sections per sample using the ImageJ64 “Cell Counter” plugin. Error bars de-
pict S.E.M. calculated from independent biological replicates; statistical significance was deter-
mined using unpaired (two-tailed) Student’s t-test. Asterisks indicate level of statistical
significance in pertinent comparisons.

Western blot
Western blots were carried out as described previously [12], with slight modifications. Briefly,
gonad pairs were dissociated with a 13-gauge needle and lysed in 1× SDS sample buffer (62.5
mM Tris—HCl (pH 6.8), 2% SDS, 10% glycerol, 50 mM dithiothreitol, and 0.01% w/v bromo-
phenol blue), separated on SDS-PAGE and transferred to a PVDF membrane (Millipore).
SOX9 primary antibody was incubated for 2 h at room temperature and then overnight at 4°C
with 13.5 dpc testis as a positive control and 13.5 dpc ovary as a negative control. For primary
antibodies see S3 Table, for secondary antibodies see S4 Table. Proteins were visualized using
Clarity Western ECL Substrate (Bio-Rad) on a ChemiDoc machine (Bio-Rad). Raw intensity of
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bands was determined using Image Lab Software (version 4.0). SOX9 intensity units were cal-
culated relative to α-TUB or β-ACT loading control and relative downregulation calculated
with cMO sample set to 1 for individual cMO vs. Sox9MO-treated samples on each of 3 blots.
Error bars represent S.E.M. calculated from independent biological replicates; statistical signifi-
cance was assessed using unpaired (two-tailed) Student’s t-test.

Flow cytometry and cell sorting
Flow cytometry and cell sorting was carried out as described previously [13]. Briefly, 12.5 dpc
Sf1-eGFP [14] litters were dissected, gonads sexed by eye and separated from the mesonephros
before being dissociated. Cells were incubated with SSEA1-PE antibody (BD Biosciences) to
tag germ cells. FACS was performed using a BD FACS Aria cell sorter. Pools of germ (SSEA1-
positive) and eGFP-positive cells were collected separately and total RNA was extracted and
cDNA prepared as described [15]. Cells from three or four independent litters and sorting ex-
periments were used for qRT-PCR analysis.

Results
Method development: Delivering morpholinos to fetal organs
Initially, we trialled the inclusion of standard ‘naked’MOs or vivo-MOs (in which the MO is
linked to a dendrimeric octaguanidine delivery moiety) in the media for ex vivo organ culture
from 11.5 dpc for 48h (data not shown), using a protocol similar to those previously published
for lungs and kidneys [7,9], but were unable to achieve widespread tissue uptake and hence effi-
cacy. Therefore, we developed a novel protocol that relied on a combination of
two approaches.

First, in order to deliver the compounds uniformly through the organs of interest in the
mid-gestation embryo, we looked to classic experiments in mouse and chick, where India ink
was used to visualise the early vasculature (for review see [16]). This approach has also been
utilised to deliver siRNA and viral constructs to the embryo [17], and to deliver lectin to the
11.5 dpc gonad via the vasculature [18]. These studies relied on injection of compounds into
the beating embryonic heart, and so we reasoned that this approach might offer a way to suc-
cessfully deliver MOs to vascularised tissues in the mouse embryo.

Second, Vivo-Morpholinos (Gene Tools, LLC) were chosen for injection as they reportedly
show improved systemic delivery efficacy compared to standard MOs [19–21]. Oligonucleo-
tides were designed to span intron/exon boundaries within the pre-mRNA to produce non-
functional, mis-spliced gene products. A standard commercial 25-mer MO (see Materials and
Methods) was used as a control for the specificity of MO effects.

We trialled our knockdown procedure using the developing ovaries, testes and pancreas as a
test-bed. These organs are well suited to vascular delivery of compounds, are readily explanted,
develop normally in organ culture, and are well characterised in terms of morphological and
molecular markers of differentiation and morphogenesis. Examination of organogenesis allows
specificity and off-target effects of the MO to be assessed by testing for markers of differentia-
tion of the targeted cell type and multiple non-targeted other cell types. Inclusion of developing
gonads in these studies offers the additional advantage that known differences in sexually di-
morphic gene expression can be used as a further control for general toxicity and/or off-
target effects.

A summary of the workflow is shown in Fig. 1A, and the detailed protocol is described in
Materials and Methods. Conceptuses were explanted at 11.5 dpc and the amniotic sac of indi-
vidual embryos opened, taking care not to disrupt major amniotic blood vessels. A MO/food
dye cocktail was injected into the left ventricle of the beating heart (Fig. 1B, F) until the dye was
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observed to travel around the embryo and into the vessels in the head, typically after 6–10
heart beats (Fig. 1C–E; S1 Video). After injection, embryos were allowed to recover for
~30 min to enable delivery of MO throughout the vasculature. Subsequently, tissues of interest
were explanted, and cultured ex vivo, before detailed analysis of gene and protein marker ex-
pression. In preliminary experiments, we used carboxyfluorescein-labelled MO (F-MO) to as-
sess the extent of delivery to tissues (n = 3). In the case of the developing gonads, F-MO and
India ink were observed in the nascent mesonephric vasculature at 5 min post-injection
(Fig. 1G, H) and were clearly visible in the gonadal tissue after 30 min (Fig. 1I), suggesting that
the dye and MO had accessed the target tissue.

Proof of principle: STRA8 in the developing ovary
The germ cells of the gonad are the precursors of sperm (XY) or oocytes (XX): whether they
adopt the male or female developmental pathway is determined by their somatic environment
(for review see [22]). Upregulation of the gatekeeping gene Stra8 (stimulated by retinoic acid
gene 8) at 12.5 dpc is essential for germ cell entry into meiosis in the developing ovary, as dem-
onstrated by the blockade of meiosis in XX Stra8-/- gonads (Baltus et al., 2006; for review see
[23]). Since Stra8-/- gonads have a well-defined phenotype, we tested MO knockdown of Stra8
as a proof-of-principle experiment.

Although Stra8 transcript could still be detected after MO treatment (Part A in S1 Fig.), ex-
pression of STRA8 protein was greatly decreased as measured by immunofluorescence in
Stra8MO-treated XX gonads, indicating successful knockdown (Fig. 2A). Strikingly, meiotic
markers γ-H2AX (H2A histone family, member X; Fig. 2A) and SCP3 (synaptonemal complex
protein 3; Fig. 2B) were not localised to the nucleus in XX Stra8MO samples, in contrast to con-
trol ovaries, where germ cells began to show these hallmark signs of entry into meiosis.
Stra8MO knockdown did not have a direct effect on qRT-PCR expression of other meiosis
markers (Part C–E in S1 Fig.). However, functional aspects of meiosis, such as SCP3 nuclear
localisation, were clearly affected by Stra8MO treatment (Fig. 2 A, B).

We tested for possible effects of generalised toxicity in MO-treated gonads by examining ex-
pression of a range of cell lineage markers. Immunofluorescence and qRT-PCR for markers of
germ cells—OCT4/POU5F1 (POU domain, class 5, transcription factor 1; Fig. 2B, Part G in
S1 Fig.),Mvh/Ddx4 (Deadbox polypeptide 4; Part F in S1 Fig.) and CDH1 (Cadherin 1; Part H,
I in S1 Fig.) indicated that the number of germ cells was unaffected in Stra8MO treated gonads,
suggesting no qualitative or quantitative detrimental effect on germ cells. Furthermore, expres-
sion of the somatic marker FOXL2 (Forkhead box L2; Part B, I in S1 Fig.) was unchanged in
Stra8MO XX gonads, indicating that gonadogenesis in general was not impaired by MO-
treatment. Combined, these data show that the reduced meiotic marker expression was likely a
specific consequence of MO antagonism of STRA8 expression, rather than generalised toxicity.

In summary, the suppression of markers associated with meiotic entry suggests that germ
cells failed to successfully enter meiosis in Stra8MO knockdown XX gonads. Thus, the
Stra8MO knockdown partially phenocopied the Stra8-/- gonad phenotype.

Proof of principle: SOX9 in the developing testis
To test whether MO treatment can influence phenotype when the protein of interest is already
abundant at the time of treatment, we performed MO knockdown of SOX9 (SRY (sex deter-
mining region Y)-box 9) at 11.5 dpc. SOX9 expression stimulates the male pathway by promot-
ing Sertoli cell differentiation [24]. In Sox9-/- XY embryos, gonadal sex reversal occurs as SOX9
is both necessary and sufficient for male sex determination [25,26]. However, in heterozygous
Sox9-mutant XY embryos, Sertoli cells are able to differentiate and the SOX9 downstream
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Fig 2. Partial phenocopy of known gene knockouts in gonad and pancreas. (A, B) STRA8 knockdown:
IF showed knockdown of STRA8 (A) in Stra8MO-treated XX gonads. Nuclear localisation of meiosis markers
(γH2AX (A) and SCP3 (B); indicated by white arrows; see inserts) was absent but germ cells were present
(POU5F1 (B); see inserts) in XX Stra8MO-treated gonads. (C–E) Knockdown of SOX9 in the gonad: Western
blot for SOX9 (relative to α-TUBULIN or β-ACTIN) showed a downregulation of SOX9 (C) after Sox9MO
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target anti-Müllerian hormone (AMH) is still produced [27,28]. Since SOX9 protein is already
abundant in the XY genital ridge at 11.5 dpc, the time of MO treatment, we asked whether MO
treatment might result in no effect, full gonadal sex reversal, or an intermediate phenotype.

We found that SOX9 protein abundance was significantly decreased in the Sox9MO treated
gonads, as assessed by Western blot (Fig. 2C, for blots see S3 Fig.) and immunofluorescence
(Part H in S2 Fig.), although the expression of Sox9 transcript was unchanged (Part A in
S2 Fig.). Moreover, the expression of bona fide direct SOX9 target genes Amh [29] and Ptgds
(prostaglandin D2 synthase; [30]) were significantly reduced (Fig. 2D, Part B in S2 Fig.) in
Sox9MO treated XY gonads compared to XY controls, and AMH protein expression levels
were also reduced compared to the control XY gonad (Fig. 2E).

In Sox9MO-treated gonads, residual SOX9 and therefore AMH expression was sufficient to
initiate Müllerian duct regression by 13.5 dpc (Part J in S2 Fig.). Consistent with this finding,
we showed that SOX9 levels were not sufficiently suppressed as to allow upregulation of the fe-
male somatic pathway; FOXL2-positive cells were not observed (Part H in S2 Fig.) and expres-
sion of Fst (follistatin), a female somatic marker, was not upregulated in XY Sox9MO samples
compared to XY cMO samples as assessed by qRT-PCR (Part F in S2 Fig.).

The expression of another Sertoli expressed gene, Dhh (desert hedgehog; [31]) was not sig-
nificantly downregulated (Part C in S2 Fig.). Accordingly, fetal Leydig cell (FLC) differentiation
occurred in the knockdown of SOX9 in XY gonads, as assessed by expression of FLC markers
Cyp11a1 (cytochrome P450, family 11, subfamily a, polypeptide 1; Part E in S2 Fig.), Nr5a1/
NR5A1 (nuclear receptor subfamily 5, group A, member 1; Part D, I in S2 Fig.) and HSD3β
(hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1; Fig. 2E). As ex-
pected, germ cells were unaffected by Sox9MO treatment in both XX and XY gonads, as as-
sessed by the expression of Ddx4 (Part G in S2 Fig.) and CDH1 (cadherin 1; Part I in S2 Fig.).

In summary, treatment with Sox9MO at 11.5 dpc resulted in a phenotype similar to that of
the heterozygous Sox9 genetic knockout, with reduced target gene expression but no gonadal
sex reversal. There was no effect of Sox9MO treatment on germ cells, suggesting the phenotype
observed was not due to off-target or toxic effects of the MO.

Proof of principle: SOX9 in the developing pancreas
To demonstrate the utility of MO heart injections for functional assay in other developing or-
gans, we knocked down SOX9 in the developing pancreas. In addition to its roles in gonado-
genesis, SOX9 also plays a role endocrine cell differentiation in the pancreas [32,33].
Heterozygous Sox9-mutant mice (most closely phenocopied by the Sox9MO effects on gonadal
development described above) form fewer endocrine islets, but insulin- and glucagon-positive
daughter cells still differentiate [32]. Additionally, heterozygous Sox9-mutant mice have

treatment in XY gonads (n = 3). Downregulation of expression of SOX9 target gene Amh (D) expression was
observed by qRT-PCR (n = 8, 15, 11, 4). IF for AMH and HSD3β (E) showed that AMH staining was weaker in
XY Sox9MO samples compared to XY controls and that HSD3β-positive FLCs were present but staining was
weaker in XY Sox9MO-treated gonads. (F–I) Knockdown of SOX9 in the pancreas: qRT-PCR of Sox9Mo
treated pancreata showed Ins1 (F) was downregulated but Pax6 (G) was unchanged (n = 5, 5, 5, 5).
Quantification of PAX6/INS-positive cells revealed that PAX6-positive (H) and INS-positive (I) cell number
was unaltered by Sox9MO treatment (n = 3, 4, 2, 2). Scale bars = 100 μM; cMO = control morpholino; xMO =
morpholino targeting gene x. For Western blots SOX9 levels were normalised to α-TUBULIN or β-ACTIN
loading controls and Sox9MO-treated XY gonads measured relative to cMO treated XY gonads with
expression for each blot set to 1. Rel. Ab./control = Relative Abundance of SOX9 to α-TUBULIN or β-ACTIN.
For all qRT-PCR levels are shown relative to Tbp, error = S.E.M. For cell quantification error = S.E.M. with
individual counts plotted. * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, ns = not statistically significant.

doi:10.1371/journal.pone.0114932.g002
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decreased expression of Pdx1 (pancreatic and duodenal homeobox 1; expressed in SOX9-posi-
tive multipotent progenitor cells) and Ngn3 (neurogenin 3; endocrine progenitor cells) [34].
We therefore investigated whether treatment with Sox9MO at 11.5 dpc would cause a decrease
in expression of Pdx1/Ngn3 and genes associated with insulin production and/or a decrease in
the number of endocrine insulin-positive cells.

We conducted our analyses at 4 days and 6 days post-treatment (the equivalent of 15.5 dpc
and 17.5 dpc, respectively). By immunofluorescence we saw a decrease in SOX9 expression
(Part K, L in S4 Fig.) in Sox9MO treated pancreata at 15.5 dpc. Importantly, PAX6-positive
(Part I, J in S4 Fig.; Fig. 2H) and INS-positive (Fig. 2I) endocrine cells were present in Sox9MO
treated pancreata, indicating that the residual SOX9 expression after MO treatment at 11.5 dpc
is sufficient to allow endocrine cell types to differentiate. We observed a significant decrease in
the expression of Ins1 (insulin 1) and Ins2 (insulin 2) in Sox9MO treated pancreata at 17.5 dpc
(Fig. 2F, Part D in S4 Fig.), however the number of INS-positive (Insulin I/II) cells was unper-
turbed (Fig. 2I). We also investigated the expression of Pax6 (paired box 6), which marks endo-
crine cells, and found no change in Pax6 expression (Fig. 2G) or the number of PAX6-positive
cells (Fig. 2H) in response to Sox9MO treatment in the cultured pancreata. We found by
qRT-PCR that expression of putative direct SOX9 target Pdx1 (Part C in S4 Fig.; [34]) was un-
altered but Ngn3 (Part B in S4 Fig.; [34]) expression was significantly decreased at 17.5 dpc.

SOX9 knockdown partially mimicked the heterozygous Sox9-mutant mouse phenotype as
the effect we saw on endocrine cells was restricted to expression of Ins1, Ins2 and Ngn3. Expres-
sion of Sox9 was unaltered (Part A in S4 Fig.), as was expression of non-β cell sub-type markers
including Glug (glucagon; α-cells, Part E in S4 Fig.), Ghrl (Ghrelin; ε-cells, Part F in S4 Fig.),
Ppy (Pancreatic polypeptide; PP-cells, Part G in S4 Fig.) and Sst (Somatostatin; δ-cells, Part H
in S4 Fig.) at both timepoints.

Together, these results suggest that Ins1, Ins2 and Ngn3 transcription in the pancreas was
specifically suppressed by Sox9MO treatment which, therefore, partially phenocopied the het-
erozygous Sox9-mutant mice [32,34]. The specificity of these effects suggests that MO treat-
ment did not result in off-target effects or generalised toxicity in the pancreas. Moreover, the
effects of MO knockdown were detectable for at least 6 days post treatment.

MO-mediated double knockdown of GLI transcription factors
We next investigated whether this approach could be used to knock down multiple genes si-
multaneously, as is commonplace in zebrafish and Xenopus studies. To this end we created a
double knockdown of the downstream Hedgehog pathway activators GLI1 (GLI-Kruppel fami-
ly member 1) and GLI2 (GLI-Kruppel family member 2). The Hedgehog signaling pathway
promotes the differentiation of the steroidogenic FLC population during testis development.
During this process, the ligand DHH (Desert hedgehog) is secreted by Sertoli cells. Hedgehog
receptor, PTCH1 (Patched homolog 1), which is induced by Hedgehog signaling, as well as
Hedgehog targets GLI1 and GLI2, are expressed by cells of the entire interstitial space that sur-
rounds the testis cords [31,35,36]. InDhh-knockout XY gonads, there are greatly reduced num-
bers of steroidogenic FLCs [31,36]. However, the differentiation of the FLC population is
unaffected in XY gonads of either of Gli1 or Gli2 single-knockout embryos, suggesting that GLI
factors act redundantly in the testis [35].

To address this potential redundancy, we generated a double knockdown of Gli1/Gli2 using
MO heart injection at 11.5 dpc and examined the effects 48h post-injection equivalent to 13.5
dpc. As a result, we detected by qRT-PCR a decrease in expression of steroidogenic pathway
genes Nr5a1, Star (steroidogenic acute regulatory protein), Cyp11a1 and Hsd3β (Fig. 3A–D), in-
dicating a reduction in steroidogenic cell number or capacity. The decrease in Nr5a1
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Fig 3. Double knockdown ofGli1/Gli2 in XY gonads. (A–D) Knockdown of GLI1/GLI2 in the gonad: qRT-PCR showed that treatment with Gli1/Gli2MO
(n = 6, 5, 5, 8) resulted in no significant downregulation in steroidogenic regulator Sf1/Nr5a1 (A) but a significant downregulation in expression of
steroidogenic pathway enzymes Hsd3β (B), Cyp11a1 (C) and Star (D). No change was observed in Nr5a1 expression in Gli1MO or Gli2MO knockdown (E, I).
Similarly, there were no changes in expression of steroidogenic pathway enzymesHsd3β (F, J), Cyp11a1 (G, K) and Star (H, L) in Gli1MO (E–H; n = 6, 6, 7,
5) or Gli2MO (I–L; n = 8, 7, 4, 3) single knockdowns. IF showed Sertoli cells (AMH (M) and SOX9 (N)) and germ cells (POU5F1 (M)) were present in XY Gli1/
Gli2MO treated gonads and no FOXL2-positive cells were observed (N). Steroidogenic Hsd3β-positive (M) andNr5a1-positive (N) cells were still present in
Gli1/Gli2MO treated XY gonads. Quantification (n = 2) of steroidogenic cells revealed no change in the number of HSD3β-positive Leydig cells (O; green) or
SF1-positive/SOX9-negative pre-Leydig cells (O; red). There was a decrease in the number of SOX9-positve Sertoli cells in the Gli1/2MO treated XY gonads
(O; yellow). Scale bars = 100 μM; cMO = control morpholino; xMO = morpholino targeting gene x. For all qRT-PCR levels are shown relative to Tbp, error = S.
E.M. For cell quantification error = S.E.M. with individual counts plotted. * = p = 0.05, ** = p = 0.001, ns = not statistically significant.

doi:10.1371/journal.pone.0114932.g003
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expression was consistent but not statistically significant. Notably, no change in the expression
of these genes was detected in single Gli1MO (Fig. 3E–H) or Gli2MO (Fig. 3I–L) knockdowns.
Thus, the attenuation of steroidogenic gene expression was specific to the Gli1/2MO double
knockdown. No difference was observed in levels of the Hedgehog receptor gene Ptch1 by
qRT-PCR in the double or single knockdowns relative to controls (Part C, F, I in S5 Fig.), indi-
cating that the extent of GLI knockdown was not sufficient to perturb expression of at least one
known GLI target.

We quantified the number of steroidogenic cells to determine whether the decrease in
steroidogenic gene expression was due to a decrease in cell number or to an impediment to
cell maturation. There was no significant difference in the number of NR5A1-positive/SOX9-
negative (immature FLC) or HSD3β-positive (FLC) cells between Gli1/2MO treated XY gonads
and controls (Fig. 3M, N, O), suggesting that the observed phenotype is due to a decrease in
steroidogenic capacity of the Leydig cell population. Testis cords formed properly and expres-
sion of Sertoli cell marker Amh/AMH (Part A, D, G in S5 Fig.) and germ cell markers Ddx4/
POU5F1 (Fig. 2M, Part B, E, H in S5 Fig.) appeared unaffected by the Gli1/2MO treatment
(Fig. 3C, D), consistent with a lack of off-target or broadly toxic effects. Our results support
functional redundancy between Gli1 and Gli2 in FLCs, and demonstrate proof-of-principle
that heart injection of MO can be used to target multiple genes simultaneously to assess possi-
ble genetic interactions.

Addressing novel gene function: Adamts19 and Ctrb1
Finally, we characterised the knockdown of two genes to which functions have not previously
been ascribed, so as to test the utility of the system for first-pass functional characterisation of
novel genes. We focused first on the ovarian gene Adamts19 (a disintegrin-like and metallopep-
tidase [reprolysin type] with thrombospondin type 1 motif, 19), identified in a PCR-based cDNA
subtraction screen, and in which polymorphisms have since been associated with premature
ovarian failure (POF; [37–39]. The function of this gene remains unknown at the molecular,
cellular or whole organism levels.

We performed qRT-PCR on FACS-sorted somatic cells at 12.5 dpc and confirmed that
Adamts19 was expressed in FOXL2-positive somatic cells, and not in the XX germ cells
(Fig. 4A). MO knockdown of Adamts19 resulted in no change in XX granulosa somatic mark-
ers Fst or Irx3 (Iroquois related homeobox 3; Fig. 4B, C) and slight but not statistically signifi-
cant decrease in expression of the germ cell marker Ddx4 (Fig. 4D). However, there were no
observed gross changes in the ratio of the number of FOXL2-positive (somatic) to MVH-
positive (germ) cells by immunofluorescence (Fig. 4H). qRT-PCR expression of male markers
Amh (Fig. 4E) and Cyp11a1 (Fig. 4G) and somatic marker Nr5a1 (Fig. 4F) were unperturbed
by Adamts19MO treatment indicating there were no broad off-target effects of MO treatment.
These results do not indicate a clear role for Adamts19 in the developing ovary. Importantly,
these data illustrate that treatment with a MO does not always perturb gonadogenesis, pointing
to a lack of generalized non-specific artefacts.

We also examined the Sertoli-expressed gene Ctrb1 (chymotrypsinogen B1), which has been
implicated in gonadal development. In a screen of XXWnt4-knockout (wingless-related
MMTV integration site 4) mice, which exhibit partial sex reversal, expression of Ctrb1 was in-
creased, suggesting an association with the testis development pathway [40]. Differential ex-
pression data sets indicate that Ctrb1 is testis-specific from 12.5 dpc and that it is expressed in
the Sertoli cell lineage [41].

Knockdown of Ctrb1 resulted in no change to Sertoli cell markers Sox9 and Amh, but a sta-
tistically significant increase in the expression of Ptgds in the testis by qRT-PCR (Fig. 4I, J, K).
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Fig 4. Knockdown of Adamts19 in XX gonads andCtrb1 in XY gonads. (A) qRT-PCR on FACS-sorted somatic and germ cells (n = 3, 4, 3, 4) shows that
Adamts19 is expressed in the somatic cells of the ovary at 12.5 dpc and at much lower levels in somatic cells of the testis. Knockdown of ADAMTS19 in the
XX gonad (n = 7, 8, 5, 5) showed no change in female somatic markers Fst (B) and Irx3 (C) and a slight decrease in expression of germ cell marker Ddx4 (D).
Male markers, Amh (Sertoli cells; E), Nr5a1 (Somatic cells; F) andCyp11a1 (Leydig cells; G) were unperturbed. IF showed no discernable difference in the
ratios of FOXL2-positive/DDX4-positive cells in the Adamts19MO-treated XX gonad compared to the control (H). Knockdown of CTRB1 in the XY gonad
(n = 19, 16, 14, 14) resulted in no change to male somatic markers Sox9 (I) or Amh (J) but an increase in Ptgds (K) was observed in the Ctrb1MO-treated XY
gonad. Expression of Leydig cell marker Cyp11a1 (L), female somatic marker Fst (M) and germ cell marker Ddx4 (N) was unchanged. Germ = germ cells,
Som. = somatic cells. Scale bars = 100 μM; cMO = control morpholino; xMO =morpholino targeting gene x. For all qRT-PCR: levels are shown relative to
Tbp, error = S.E.M., * = p = 0.05, ** = p = 0.001, *** = p = 0.0001, **** = p = 0.00001, ns = not statistically significant.

doi:10.1371/journal.pone.0114932.g004
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In the XX Ctrb1MO treated gonad, Ptgds expression was decreased compared to the XX con-
trol. No changes were observed in the expression of the steroidogenic gene Cyp11a1, granulosa
cell marker Fst or germ cell marker Ddx4 (Fig. 4L, M, N) in the XY Ctrb1MO treated gonad,
suggesting that the other testis cell lineages are unperturbed. The increase in Ptgds expression
resulting from knockdown of Ctrb1 implicates Ctrb1 in processes downstream of SOX9, such
as Ptgds regulation and as such provides a basis for the instigation of further genetic studies.

Discussion
We describe here a novel first-pass screening method that can provide insights into the func-
tion of candidate organogenesis genes, singly or in combination, either to assist with the design
of in-depth genetic and biochemical investigations, or to prioritize lists of candidate genes for
these investigations. By injection of MOs into the heart of mouse embryos, we exploited the
embryonic vasculature to deliver the MO to the target tissues, which were then explanted, cul-
tured and analysed. Using this technique we partially reproduced known gene knockout phe-
notypes in the fetal gonads and pancreas, created a novel double knockdown of GLI1 and
GLI2, and screened Adamts19 and Ctrb1 for potential function in early gonadal development.
These studies reveal the utility of this method to obtain insights into gene function during or-
ganogenesis rapidly and relatively simply.

The method described here provides a significant improvement on previous injection-
and electroporation-based delivery strategies, which suffered from limited delivery area and/
or uptake, tendency for tissue damage and lack of reproducibility. Published methods of gain-
of-function (cDNA) or loss-of-function (shRNA) construct delivery by magnetofection,
nucleofection or liposome-mediated methods in cultured gonads have shown delivery of the ef-
fector construct to 2–20% of cells in the target tissue [2–4,42]. In contrast, we visualized deliv-
ery of fluorescent MO throughout the tissue of interest, saw consistent knockdown of
downstream target genes throughout the cultured organ, and showed in the XY gonad that the
MO could target genes in multiple cell lineages. Secondly, injection of the MO into the heart
avoids compromising the integrity of the target tissue by direct contact with needles and/or
electrodes. Finally, relying on systemic delivery rather than direct injection of the effector con-
struct avoids experimental error and instead produced consistent gene knockdown for the tar-
get gene in multiple experiments performed over a two-year period.

Encouragingly, in our proof-of-principle and double-knockdown experiments, it was the ca-
pacity of a cell population to express downstream target genes and proteins, rather than the
number of expressing cells, that was altered by MO treatment. The knockdown of the target
protein was incomplete in all cases; this allowed differentiation of the target cells but their func-
tionality was reduced. For example, FLCs still differentiated in normal numbers in the Gli1/
Gli2MO treated XY gonads, but they did not produced steroid enzymes at the same capacity as
the controls. This indicates that the processes controlled by GLI factors were being perturbed
by MO treatment, similarly to the Sox9MO treated XY gonads and pancreata. Importantly, the
subtle outcomes of MO treatment were highly reproducible, as shown by our qRT-PCR analy-
ses, suggesting that the information generated provides a robust basis on which to base mecha-
nistic hypotheses and further experiments.

In addition to partially reproducing several established null mouse models, using MO injec-
tion we strengthened the case for creating a complex genetic conditional double knockout of
GLI1 and GLI2 in FLCs [35]. Our findings suggest that there is functional redundancy between
GLI1 and GLI2 in the developing testis and that further genetic analysis is likely to be fruitful.

With any experiments involving MOs, careful attention to controls is required [43]. By care-
ful examination of untargeted cell populations in the organ of interest, we were able to identify
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and exclude off-target effects and toxicity. Nonetheless, concerns have been raised
regarding the difference between MO knockdown phenotypes and other functional analysis
methods [44]. This difference is at least partly explained by the fact that MO knockdown only
partially reduces overall activity of the target protein; certainly, in our Sox9MO experiments,
the phenotypes obtained more closely resembled heterozygous than homozygous knockouts.
All things considered, it is clear that genetic targeting by homologous recombination or
CRISPR/Cas9 approaches will remain the gold standard for functional analysis. Therefore,
we suggest that, once a likely effect is revealed by MO studies, it would be more useful to ad-
vance to definitive functional experiments, rather than to devote additional resources to defini-
tively excluding off-target effects (for example by assaying multiple MOs for each gene of
interest).

Supporting Information
S1 Video. Demonstration of heart injection of constructs in 11.5 dpc embryo. This video
demonstrates the injection of a construct (marked by blue dye) into the left ventricle of the
beating embryo heart at 11.5 dpc. After several heartbeats the dye can be seen in more distal
parts of the embryo and finally in the head vein indicating successful injection. After injection
the embryo is incubated with the heart still beating for 30 min before dissection for organ cul-
ture. For more detailed information see Fig. 1 and Materials and Methods.
(MP4)

S1 Fig. Knockdown of STRA8 does not affect general markers of gonadal or germ cell de-
velopment. Gene expression profiled by qRT-PCR in cMO-treated (XX and XY) versus
Stra8MO- treated XX gonads (n = 4, 4, 10, 14) showed that target gene Stra8 (A) and female
marker gene FoxL2 (B) were unchanged. Similarly, meiosis marker genes Dmc1 (DMC1 dosage
suppressor of mck1 homolog, meiosis-specific homologous recombination; C) Scp3, (D) and
Rec8 (REC8 meiotic recombination protein; E) and germ cell marker genes Ddx4 (F), Pou5f1
(G) and Cdh1 (H) were unperturbed. IF for CDH1 and FOXL2 indicated that germ cells
and somatic cells are present in Stra8MO-treated XX gonads (I; n = 3). Scale bars = 100 μM;
cMO = control morpholino; xMO = morpholino targeting gene x. For all qRT-PCR levels are
shown relative to Tbp, error = S.E.M., ! = p = 0.05, !! = p = 0.001, ns = not
statistically significant.
(TIF)

S2 Fig. Knockdown of SOX9 using Sox9MO in gonad is specific to Sertoli cells but does not
cause sex reversal. qRT-PCR showed that knockdown of SOX9 in the gonad (A, B: n = 8, 15,
11, 4; C–G: n = 5, 9, 6, 4) had no apparent effect on target gene Sox9 (A), however, downregula-
tion of expression of SOX9 target gene Ptgds (B) was observed. Levels of Sertoli gene Dhh (C),
somatic gene Nr5a1 (D), FLC marker Cyp11a1 (E) were unperturbed in Sox9MO-treated go-
nads. While expressed at very low levels in XY gonads, ovarian marker Fst (F) was significantly
decreased in XY Sox9MO-treated gonads. Expression of germ cell marker Ddx4 (G) was unper-
turbed. IF of XY Sox9MO treated gonads showed a decrease in SOX9 expression with no evi-
dence of sex reversal (FOXL2-positive cells) (H; n = 5). Germ cells (CDH1) and FLCs (NR5A1)
could be observed in XY Sox9MO treated gonads by IF (I). Whole-mount IF of gonad meso-
nephroi staining (J; n = 3): PAX2 (paired box 2), marks the Müllerian duct (MD), Wolffian
duct (WD) and mesonephric tubules, and CDH1, marks the Wolffian duct and mesonephric
tubules. The Müllerian duct is not retained in XY Sox9MO-treated mesonephroi indicating
that the low level of AMH present can regress the duct as normal. Scale bars = 100 μM; cMO =
control morpholino; xMO = morpholino targeting gene x. For all qRT-PCR: levels are shown
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relative to Tbp, error = S.E.M., ! = p = 0.05, !! = p = 0.001, !!! = p = 0.0001, !!!! = p =
0.00001, ns = not statistically significant.
(TIF)

S3 Fig. RawWestern blots showing knockdown of SOX9 in the Sox9MO treated XY gonad.
(AF) Western blot for SOX9 (relative to α-TUBULIN or β-ACTIN) showed a downregulation
of SOX9 upon Sox9MO treatment in XY gonads (n = 3) quantified in Fig. 2C. For Western
blots SOX9 levels (B, D, F) were normalised to α-TUBULIN or β-ACTIN loading controls for
each blot (A, C, E) and Sox9MO-treated XY gonads measured relative to cMO treated XY go-
nads with expression for each blot set to 1. 13.5 dpc XY gonads were used as a positive control
and 13.5 dpc XX gonads were used as a negative control for SOX9 antibody specificity. cMO =
control morpholino; xMO = morpholino targeting gene x.
(TIF)

S4 Fig. Knockdown controls for in Sox9MO treated pancreata. qRT-PCR (n = 5, 5, 5, 5)
showed that Sox9 (A) expression was unperturbed by Sox9MO-treatment. Expression of Ngn3
(B; marker of multipotent progenitor cells (MPCs)) was significantly decreased at 17.5 dpc. Ex-
pression of Pdx1 (C; marker of endocrine progenitor cells (EPCs)) was unaltered, but Ins2 (D)
expression was significantly decreased in the Sox9MO-treated pancreata at 17.5 dpc. Expres-
sion of non-β-cell sub-type markers: α-cells Glug (E), ε-cells Ghrl (F), PP-cells Ppy (G) and δ-
cells Sst (H) were all unaltered by treatment with Sox9MO. IF at 15.5 dpc showed that as in the
cMO-treated pancreata (I), PAX6-positive cells (indicated by white arrows) differentiate when
treated with Sox9MO (J), however, SOX9 expression (K, L; indicated by white arrows) is di-
minished when treated with Sox9MO. cMO = control morpholino; xMO = morpholino target-
ing gene x. For all qRT-PCR: levels are shown relative to Tbp, error = S.E.M., ! = p = 0.05, !! =
p = 0.001, ns = not statistically significant.
(TIF)

S5 Fig. Gli1/2MO treatment has no effect of Sertoli or germ cells. (A-C) Knockdown of
GLI1/GLI2 in the gonad (n = 6, 5, 5, 8): qRT-PCR for Sertoli cells marked by Amh (A), germ
cells marked by Ddx4 (B) and hedgehog receptor Ptch1 (C) showed no change after Gli1/
Gli2MO treatment. The same trend was observed in the Gli1MO knockdown (n = 6, 6, 7, 5;
Amh (D);Mvh (E); Ptch1 (F)) and the Gli2MO knockdown (n = 8, 7, 4, 3; Amh (G);Mvh (H);
Ptch1 (I)). cMO = control morpholino; xMO =morpholino targeting gene x. For all qRT-PCR
levels are shown relative to Tbp, error = S.E.M., ! = p = 0.05, ns = not statistically significant.
(TIF)

S1 Table. Splice site MO sequences targeting exon/intron boundaries of target genes.Mor-
pholino sequences for targets described in manuscript.
(DOCX)

S2 Table. Taqman gene expression sets for qRT-PCR. TaqMan Gene Expression Assay cata-
logue numbers described in manuscript.
(DOCX)

S3 Table. Primary Antibodies for Immunofluorescence and Western Blot. Dilutions and
catalogue numbers for primary antibodies described in manuscript.
(DOCX)

S4 Table. Secondary Antibodies for Immunofluorescence andWestern Blot. Dilutions and
catalogue numbers for secondary antibodies described in manuscript.
(DOCX)
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ABSTRACT

Male sex determination hinges on the development of testes in
the embryo, beginning with the differentiation of Sertoli cells
under the influence of the Y-linked gene SRY. Sertoli cells then
orchestrate fetal testis formation including the specification of
fetal Leydig cells (FLCs) that produce steroid hormones to direct
virilization of the XY embryo. As the majority of XY disorders of
sex development (DSDs) remain unexplained at the molecular
genetic level, we reasoned that genes involved in FLC develop-
ment might represent an unappreciated source of candidate XY
DSD genes. To identify these genes, and to gain a more detailed
understanding of the regulatory networks underpinning the
specification and differentiation of the FLC population, we
developed methods for isolating fetal Sertoli, Leydig, and
interstitial cell-enriched subpopulations using an Sf1-eGFP
transgenic mouse line. RNA sequencing followed by rigorous
bioinformatic filtering identified 84 genes upregulated in FLCs,
704 genes upregulated in nonsteroidogenic interstitial cells, and
1217 genes upregulated in the Sertoli cells at 12.5 days
postcoitum. The analysis revealed a trend for expression of
components of neuroactive ligand interactions in FLCs and
Sertoli cells and identified factors potentially involved in
signaling between the Sertoli cells, FLCs, and interstitial cells.
We identified 61 genes that were not known previously to be
involved in specification or differentiation of FLCs. This dataset
provides a platform for exploring the biology of FLCs and
understanding the role of these cells in testicular development. In
addition, it provides a basis for targeted studies designed to
identify causes of idiopathic XY DSD.

differentiation, gonadogenesis, Leydig cell, neuroactive, RNA-seq,
Sertoli cell, sex determination, steroidogenesis, transcriptome

INTRODUCTION

The morphogenesis of the testes involves the coordinated
differentiation of a number of bipotential cell lineages in the
gonadal primordium into testis-specific cell types (for review,
see [1]). This process begins with the expression of the Y-

linked gene Sry (sex determining region of Chr Y), which
directs differentiation of Sertoli cells that assemble into cords
encapsulating the germ cells. Sertoli cells then influence the
differentiation of other cell types within the testes, including
the fetal Leydig cells (FLCs), which arise in the interstitium
and act as factories for the production of steroid hormones
(androgens) that play a major role in masculinization of the XY
individual. Other cell types also arise in the testicular
interstitium, the nature and function(s) of which are mostly
unclear. Some interstitial cells that do not differentiate as FLCs
are thought to give rise to adult Leydig cells (ALCs), which
maintain androgen production throughout life [2]. The
differentiation, function, and interaction of the various cellular
subcompartments of the developing testis need to be carefully
orchestrated in a spatiotemporal manner, but how this
regulation is achieved remains poorly understood.

Disorders of sex development (DSDs) are congenital birth
defects characterized by development of atypical chromosom-
al, gonadal, or anatomical sex. Although the term DSD
includes a wide spectrum of conditions, loss or compromised
function of genes directing gonadal development during fetal
life is a common cause (for review see [3]). As many of the
known genes at fault in XY DSD are those regulating
gonadogenesis, we hypothesized that defects in specification
and differentiation of FLCs or nonsteroidogenic interstitial
cells (NSICs) may underlie some classes of human DSD.
Currently, few genes and encoded factors are known to direct
FLC fate determination and differentiation [4], and even less is
known regarding how ALC progenitors are specified from
interstitial cells during fetal life [2]. Hedgehog signaling is
evidently a positive regulator of FLC differentiation, given that
Dhh!/! (Desert hedgehog) XY gonads have reduced FLC
numbers [5–7], and that constitutively active hedgehog
signaling in the ovary is sufficient to induce some interstitial
cells to differentiate along the steroidogenic pathway [8].
Similarly, Pdgfra!/! (platelet derived growth factor receptor, a-
polypeptide) XY gonads show abnormal FLC differentiation
[9]. Additionally, the aristaless-related homeobox gene (ARX)
plays some role in FLC specification based on the fact that
Arx!/! XY mouse gonads have reduced FLC numbers.
Interestingly, Arx is not expressed in FLCs, although it may
be expressed in their progenitors [10, 11].

Previous transcriptomic studies aimed at identifying genes
important for development of the fetal gonads in mice, or for
establishing the molecular signatures of the component cell
lineages, have been performed using microarrays [12–16].
Although this method reveals the expression dynamics of
thousands of genes simultaneously, it is limited by the
incomplete representation of genes on the array and also by
the relatively low sensitivity and dynamic range offered [17].
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Additionally, the non-Sertoli gonadal somatic populations
studied in previous microarray screens have included a mixture
of FLCs and NSICs because of an inability to separate these
two populations. Hence, using available microarray datasets, it
has been difficult to address the specific question of how FLCs
arise and to determine the molecular characteristics of these
cells at 12.5 days postcoitum (dpc), prior to the expression of
steroidogenic pathway genes.

In this study, we designed and implemented a strategy to
separate mouse fetal gonadal cells into four distinct subpop-
ulations—Sertoli cells, germ cells, FLCs, and heterogeneous
NSICs—using a fluorescence-activated cell sorting (FACS)-
based protocol in combination with a Sf1-enhanced green
fluorescent protein (eGFP) transgenic mouse line [12]. We
used massively parallel sequencing (RNA-seq) to carry out
differential gene expression analysis and construct a molecular
portrait of FLCs at 12.5 dpc, just at the onset of steroidogen-
esis. The aim of this study was to identify early lineage markers
of the FLC and NSIC populations in order to provide insight
into the signaling interactions in the early gonad. The output
generated by our approach reveals potential markers for
presteroidogenic FLCs, suggests likely signaling relationships
among Sertoli cells, FLCs, and NSICs, and reveals new
candidate genes that may underlie the fetal origins of DSDs.

MATERIALS AND METHODS

Mouse Strains

Embryos were collected from timed matings of Sf1-eGFP (Nr5a1)-strain
mice [12], with noon of the day on which the mating plug was observed,
designated 0.5 dpc. All animal protocols were approved by the University of
Queensland Animal Ethics Committee.

Immunofluorescence

Section. Embryos were fixed in 4% paraformaldehyde in PBS overnight at
48C, dehydrated, and embedded in paraffin; 7-lm sections were cut using a
Leica microtome. Slides were dewaxed by 2 3 10 min washes in xylene,
rehydrated, boiled for 5 min in Antigen Unmasking Solution (Vector
Laboratories), and incubated in the unmasking solution at room temperature
for 60 min. The slides were washed for 3 3 10 min in 0.1% Triton-X in PBS
(PBTx) and incubated with primary antibodies diluted in blocking buffer (10%
heat-inactivated serum supreme in PBTx) at 48C overnight, followed by
washing and reblocking for 30 min at room temperature. Slides were incubated
with secondary antibodies in blocking buffer at room temperature for 2 h,
washed, and mounted in 60% glycerol/PBS. Sections were imaged by confocal
microscopy using a Zeiss LSM-510 META or LSM-710 META confocal
microscope. For details of primary and secondary antibodies see Supplemental
Tables S1 and S2 (Supplemental Data are available online at www.biolreprod.
org).

FACS cells. The protocol was modified from online methods [18]. Briefly,
cells were sorted as described below from 12.5-dpc gonad-only samples into
ice-cold PBS and kept on ice. A volume of PBS containing between 3000 and
10 000 ‘‘events’’ (;200 ll) was plated into an area demarcated on a Tissue
Tack slide (24216; Polysciences Inc.) and allowed to adhere for 15 min before
being fixed in 4% paraformaldehyde for 15 min at room temperature and
washed with PBS. Slides were blocked in permeabilization/blocking buffer
(P/B buffer; 1% bovine serum albumin in PBTx) for 30 min at RT and
incubated at 48C overnight with the primary antibody diluted in P/B buffer. The
slides were washed for 1 3 5 min in P/B buffer and then 3 3 10 min in PBTx
and incubated with secondary antibodies diluted in P/B buffer for 1 h at room
temperature. Slides were DAPI stained, washed, and mounted in 60% glycerol/
PBS. Fields of cells were imaged by fluorescent microscopy using a Olympus
BX-51 microscope and counted in ImageJ using the CellCounter plug-in. For
details of primary and secondary antibodies see Supplemental Tables S1 and
S2.

FACS Sorting of Cell Populations

Sf1-eGFP litters (11.5–14.5 dpc) were dissected in cold PBS and gonads
sexed by eye, based on the presence of testis cords (12.5–14.5 dpc) or by
presence of Barr bodies (11.5 dpc; [19]). For 11.5-dpc samples the

mesonephros was left attached, but it was removed for 12.5–14.5-dpc samples.
It should be noted that GFP-transgene expression is restricted to the somatic
cells of gonad, exclusive of the mesonephros ([12]; this study). As only GFP-
positive cells were profiled at 11.5 dpc, there was no mesonephric
contamination. Stage-matched CD1 gonads, with mesonephros removed, were
used as a negative control to determine GFP-positive populations.

Gonads were enzymatically dissociated using 0.25% Trypsin EDTA
(Gibco) or TryplE Express (12604-013; Gibco) with 5 U/ml DNase1 (Sigma)
for 20 min at 378C and then mechanically dissociated using 18- and 23-gauge
syringes. PBS (1 ml) was added to the cells that were then pelleted by
centrifugation (900 3 g at 48C for 10 min); after supernatant was removed the
cells were resuspended in 400 ll of ice-cold PBS and stored on ice. Cells were
then incubated with anti-SSEA1-PE (#FAB2155P; R&D Systems; specific for
germ cells, fucosyltransferase 4 [FUT4]) or anti-CD31-APC (#551262; Becton
Dickinson; specific for germ and endothelial cells, platelet/endothelial cell
adhesion molecule 1 [PECAM1]) antibody for 20 min and washed with ice-
cold PBS. Cells were resuspended in 400 ll PBS for sorting. Anti-SSEA1-PE
was used in characterization of cell population studies and anti-CD31-APC was
used to remove germ and endothelial cells prior to RNA-seq. Cells were
fractionated using a BD FACSAria Cell Sorter; Supplemental Figure S1 shows
FACS plots illustrating how gating parameters were derived. Specifically, GFP-
negative CD1 stage-matched controls (Supplemental Fig. S1, A and B) and
GFP-positive but antibody-negative controls (Supplemental Fig. S1C) were
used to place gates for sorting GFP-high, GFP-low, GFP-neg, and antibody-
sorted (SSEA1-PE or CD31-APC) populations (Supplemental Fig. S1D). These
populations were collected in PBS and kept on ice before further processing.

Quantitative RT-PCR Analysis

Total RNA was extracted (Micro RNeasy kit with carrier RNA; Qiagen)
and cDNA generated (High Capacity cDNA Reverse Transcription Kit;
Invitrogen) from isolated populations of FACS-sorted cells as previously
described [20]. Duplicate assays were conducted on an ABI Prism 7500
Sequence Detector System. The cycle conditions for quantitative RT-PCR
(qRT-PCR) were 2 min at 508C, then 10 min at 958C, followed by 40 cycles of
928C for 15 sec then 608C for 60 sec.

Expression levels of mRNA were normalized to Tbp (TATA box binding
protein; [21]) and relative transcript abundance was determined using the 2!DCT

method. Tbp was used as a normalizing gene on the assumption that there were
equal amounts of Tbp in each cell population as in the whole gonad [21]. For
Taqman Gene Expression Assay reference numbers, see Supplemental Table
S3. SEM was calculated from independent biological replicates (n " 3) and
statistical significance was determined using one-way ANOVA with Bonferro-
ni multiple comparisons test to compare the four sample groups, with the
exception of populations sorted at 11.5 dpc, where only two groups were
compared and so statistical significance was determined using unpaired (two-
tailed) Student t-test.

RNA Extraction and Library Preparation for Deep
Sequencing

Total RNA was extracted (Micro RNeasy kit without carrier RNA; Qiagen)
from CD31-treated FACS-sorted cells. Each sample represented approximately
10 sorting experiments conducted on different days with 4–10 litters of Sf1-
eGFP embryos in each experiment. We prepared, for each of 3 cell types (high-
GFP, low-GFP, GFP-negative with GC/EC removed), replicate A, replicate B,
and replicate C (C was an equal mix of samples A and B), resulting in nine
samples for sequencing. A cDNA library was prepared from each sample using
TruSeq Stranded Total RNA Libraries (RS-122-2201, Truseq stranded Total
RNA LT [with Ribo-Zero Human/Mouse/Rat], Set A; Illumina protocol
15031048 Rev C, September 2012). The nine samples were run on four lanes of
an Illumina HiSeq 1500, with all samples run over all lanes, generating 100-bp
paired end reads after ribosomal depletion. Sequencing and library preparation
were completed by the Monash Health Translation Precinct Medical Genomics
Facility, Australia. Data have been submitted to GEO, accession GSE65498.

RNA-Seq Analysis

An average of 65 million raw reads were generated per sample. The quality
of the sequencing files was examined using the FastQC program (FastQC;
www.bioinformatics.babraham.ac.uk/projects/). Tophat2 [22] was used to map
reads to the mouse genome (mm10), with mouse gene model annotations
(mm10, downloaded from Ensembl [http://www.ensembl.org/info/data/ftp/
index.html]) supplied via the -G option. On average over 85% of the reads
mapped to the mouse genome. Read counts were then summarized across genes
using HTSeq-count [23], with Ensembl mm10 gene annotation. No lane-
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specific technical effects were observed; therefore, all lane files per sample
were merged into one file per sample for differential gene expression analysis.

Differential Gene Expression Analysis

The count data were analyzed within the R statistical computing
environment. Only genes with at least one count per million (cpm) in three
or more samples were retained for further analysis. This reduced the number of
features to 14 307 for the differential gene expression analysis (complete data in
Supplemental Data S1). The count data of reads per gene feature were analyzed
using TMM [24] and voom [25] for normalization and limma [26] for
differential expression analysis, which applies empirical Bayes methods to
compute moderated t-tests and P values adjusted for multiple testing using the
Benjamini-Hochberg method [27]. Lists of the differentially expressed genes
between each pair (contrast) of the three cell types were generated and
annotated based on Ensembl mm10 annotation. Genes that were upregulated in
one cell type compared to the other two cell types (adjusted P value ,0.05 and
log fold change of at least 1 or 0.6 for each contrast) formed the upregulated
gene lists for each of the cell types. The adjusted P value of the moderated F
statistic (F), which combines the t statistics for all the contrasts into an overall
test of significance for each gene, was used to rank the cell-specific gene lists
for discussion. The full gene lists for all comparisons are in Supplemental Data
S2.

To validate the RNA-seq data, we used the normalized sequence cpm to
indicate expression of various marker genes (Supplemental Data S1). SEM was
calculated from the three sequencing replicates and statistical significance was
determined using one-way ANOVA with Bonferroni multiple comparisons test.

Previously Reported Genes

Genes that have testicular expression previously reported as having
expression in the testis in articles on PubMed are listed in Supplemental Data
S3.

Eurexpress Database In Situ Hybridization Mining

We searched the 14.5-dpc dataset from Eurexpress Transcriptome Atlas
Database for Mouse Embryo (http://www.eurexpress.org) for in situ hybrid-
ization (ISH) data that might verify testicular expression for genes of interest
identified in our RNA-seq analysis. Representative section images were
downloaded and the testis region selected in Photoshop. Gene IDs and
Eurexpress IDs are listed in Supplemental Table S4.

Gene Ontology Analysis

Gene ontology (GO) analysis was performed using the DAVID
Bioinformatics Package (v6.7) (http://david.abcc.ncifcrf.gov; [28, 29]). The
following three GO terms were used to categorize each population:

Transmembrane factor: SP_PIR_KEYWORDS transmembrane (GO:0016021;
TM)
Secreted factor: SP_PIR_KEYWORDS secreted (GO:0005576; SF)
Transcription factor: GOTERM_MF_FAT transcription factor activity
(GO:0003700; TF)

For details of additional GO terms used, see Supplemental Data S4 and
Supplemental Tables S5 and S6. The genes identified in each GO term category
were then mapped back to the differentially expressed gene lists and ranked by
F statistic.

Genes Putatively Regulated by NR5A1

The list of genes putatively regulated by NR5A1 is from Baba et al. [30].
The full list of overlapping genes is in Supplemental Data S5.

11.5-dpc Expression of FLC Genes

From our list of genes preferentially expressed in Leydig cells at 12.5 dpc,
we sought to determine if any might potentially also mark Leydig cells at 11.5
dpc. To do this, we considered the data available for these genes at 11.5 dpc
[15]. Genes found to be enriched in Leydig cells at 12.5 dpc that also show
differing expression between the interstitial and supporting cell compartments
of 11.5-dpc testes are putative pre-FLC marker genes. Data were obtained from
GEO (GSE27715) and analyzed with R and Bioconductor. Raw data were
normalized using oligo [31] and differential expression analysis was carried out
with limma [26]. Int. Exp (interstitial) and Sup. Exp (supporting) show median

normalized expression of the gene in each of these two cell types, and Int. Rank
(interstitial) and Sup. Rank (supporting) indicate the position of the gene in a
list ranked by expression in that cell type (0¼ lowest expression, 100¼ highest
expression; Supplemental Data S6). For our final list of genes of interest we
noted those genes with expression in interstitial cells more than four times that
in supporting cells (log fold change " 2). Of particular interest in predicting
putative markers for FLCs are the 10 genes with low expression in supporting
cells (Sup. Exp $ 6; marked in gray in Supplemental Table S7).

Genes Identified in Online Mendelian Inheritance in Man
Database

A full list of genes associated with human disease from the Online
Mendelian Inheritance in Man (OMIM) database (accessed 12 November 2014;
http://omim.org/) is shown in Supplemental Data S7.

RESULTS

Evaluation of GFP as a Proxy for NR5A1/SF1 Expression in
Sf1-eGFP Mouse Fetal Testes

We previously used a 674-bp fragment of the Sf1/Nr5a1
(steroidogenic factor 1/nuclear receptor subfamily 5, group A,
member 1) promoter to drive GFP expression in a subpopu-
lation of somatic cells of the developing gonad in Sf1-eGFP
transgenic mice (throughout this study we will refer to the this
mouse line using the common name SF1/Sf1-eGFP) [12]. In
that study, we profiled gene expression in the GFP-positive cell
population at 10.5 and 11.5 dpc with the aim of identifying
genes expressed in the Sertoli/granulosa cell lineage that may
play a role in male or female sex determination. In the present
study, we exploited a published observation that the NR5A1-
positive cell population of the early male gonad can be
subdivided into a high-NR5A1-expressing population that
differentiates into pre-Sertoli cells and a low-NR5A1-express-
ing population that differentiates into a subset of the interstitial
cells (presumptive FLCs) between 11.25 and 11.75 dpc [32].
Specifically, we sought to determine whether FLCs could be
isolated from fetal testes based on GFP expression level in Sf1-
eGFP transgenic mice. We reasoned that this strategy might
allow molecular characterization of the FLC lineage at 12.5
dpc, a time point that would allow identification of genes
involved in FLC specification prior to large-scale upregulation
of steroidogenesis genes.

In our previous study we established colocalization of
NR5A1 and GFP at 11.5 dpc and we confirmed this here
(Supplemental Fig. S2, A, B, and G; [12]). We showed that
NR5A1/GFP-positive cells were SOX9 positive and ARX/
DDX4 negative at 11.5 dpc (DEAD box polypeptide 4; MVH;
Supplemental Fig. S2, A, B, and G). We then demonstrated
that endogenous expression profile of NR5A1 was mirrored by
GFP expression in XY gonads at 12.5 dpc. Immunofluores-
cence analysis showed that cells with nuclear NR5A1
expression showed cytoplasmic expression of the GFP
transgene (Fig. 1, first column). As this analysis was performed
using single confocal slices on sectioned embryos, not all cells
in an image would be expected to have both nuclear and
cytoplasmic staining. We then used lineage-specific marker
antibodies to determine which cell types expressed GFP/
NR5A1 in our transgenic line. GFP/NR5A1-positive cells lined
the testis cords and NR5A1-positive nuclei in ‘‘strongly’’ GFP-
positive cells colocalized with nuclear SOX9 at 12.5 dpc and
later, indicating that the transgene was expressed in Sertoli
cells (Fig. 1A; Supplemental Fig. S2, B, D, and F). We
deduced that interstitial ‘‘weakly’’ GFP-positive cells were
presteroidogenic FLCs by virtue of their nuclear expression of
NR5A1 (Fig. 1, A–C, first column; [33, 34]). This was
confirmed by immunofluorescence for ARX, a nuclear marker
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of non-FLC interstitial cells at 12.5 dpc: ARX did not
colocalize with the NR5A1-positive nuclei of GFP-positive
interstitial cells (Fig. 1B). Additional analysis at 13.5–14.5 dpc
showed that GFP/NR5A1-positive cells in the interstitium that
were exclusive of ARX-positive nuclei expressed cytoplasmic
HSD3b, confirming that FLCs expressed the GFP transgene
(Supplemental Fig. S2, C, E, H, and J). We also confirmed that
the transgene was not expressed in germ cells: GFP/NR5A1-
positive cells were negative for germ cell marker DDX4 (Fig.
1C; Supplemental Fig. S2, G, I, and K). These results
demonstrate that GFP, like endogenous NR5A1, is expressed
in the Sertoli cell and FLC populations in Sf1-eGFP transgenic
testes at 12.5 dpc and beyond.

Isolation and Characterization of Fetal Testis Cell
Populations

The above observations suggested that it might be possible
to separate three populations of somatic cells from 12.5 dpc
Sf1-eGFP transgenic testes based on GFP fluorescence:
strongly GFP-positive (‘‘high-GFP’’) Sertoli cells, weakly
GFP-positive (‘‘low-GFP’’) FLCs, and a GFP-negative popu-
lation of NSICs. In addition, a fourth cell population, the germ

cells, could be isolated using well-characterized antibodies to
cell surface markers. To this end, we explanted and dissociated
Sf1-eGFP testes, incubated the cells with antibodies to either
SSEA-1 (recognizing germ cells only) or CD31 (recognizing
germ and endothelial cells), and used FACS to separate the
four cell populations (Fig. 2A).

We profiled expression of key marker genes by qRT-PCR in
the four populations of cells to investigate their composition.
As expected, the high-GFP population (Fig. 2, dark green)
robustly expressed Sertoli cell hallmarks including Nr5a1,
Sox9, Amh (anti-Müllerian hormone), and Ptgds (prostaglandin
D2 synthase; Fig. 2, B–E). These cells expressed low levels of
Leydig cell markers Star (steroidogenic acute regulatory
protein) and Cyp11a1 (cytochrome P450, family 11, subfamily
a, polypeptide 1; Fig. 2, F and G). This pattern of marker
expression was established at 11.5 dpc (Supplemental Fig. S3,
A and B) and retained until at least 14.5 dpc (Fig. 2, J–L;
Supplemental Fig. S3, C–E and H–M). Therefore, we
concluded that the high-GFP-expressing population is enriched
for Sertoli cells. Surprisingly, Ptch1 was expressed at similar
levels in the high-GFP (putative Sertoli) and low-GFP (putative
FLC) populations (Fig. 2H): despite reports that Ptch1
expression is characteristic of FLCs [6, 35], high-quality

FIG. 1. GFP-positive cells mark FLCs and SCs in Sf1-eGFP 12.5 dpc XY gonads. A–C) Immunofluorescence of Sf1-eGFP gonads demonstrates that
nuclear NR5A1 is expressed in the same cells that express cytoplasmic GFP in the 12.5-dpc XY gonad. A) GFP/NR5A1-positive cells line the cords;
nuclear SOX9 and NR5A1 colocalize in GFP-positive cells, indicating that GFP marks Sertoli cells. B) Some GFP/NR5A1 cells reside interstitially; these
NR5A1-positive cells do not costain with ARX, a marker of non-FLCs, indicating that interstitial GFP/NR5A1-positive cells are presteroidogenic FLCs. C)
DDX4-positive germ cells are GFP/NR5A1 negative. Bar ¼ 100 lm.
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expression data agree with our findings and indicate that Ptch1
is expressed at similar levels in Sertoli and testicular interstitial
cell populations at 12.5 dpc ([16]; this study).

The low-GFP-expressing population (Fig. 2, light green)
was characterized by reduced expression of Nr5a1 at 12.5 dpc
and weak expression of Sox9, Amh, and Ptgds (Fig. 2, B–E). At
this stage of testis development, expression of steroidogenic
genes begins at a low level in the FLCs. Accordingly,
expression of early FLC marker Star was similar between

GFP-positive populations; however, elevated levels of early
steroidogenic pathway member Cyp11a1 were detected in the
low-GFP population (Fig. 2, F and G). These and other
steroidogenic markers became more highly expressed in the
low-GFP population at 13.5 and 14.5 dpc (Fig. 2L;
Supplemental Fig. S3, D, E, and K–M). Therefore, we
conclude that the low-GFP expressing population is enriched
for FLCs at 12.5 dpc.

FIG. 2. The high-GFP population represents Sertoli cells and the low-GFP population represents FLCs in 12.5-dpc XY Sf1-eGFP gonads. A) Schematic of
FACS protocol for the XY Sf1-eGFP gonads; four cell populations were isolated by FACS using a germ (GC)- or germ cell/endothelial cell (GC/EC)-depleted
sorting method. B–I) At 12.5 dpc, qRT-PCR for somatic marker Nr5a1 (B) and Sertoli cell markers, Sox9 (C), Amh (D), and Ptgds (E) showed that the high-
GFP-expressing cell population was enriched for Sertoli cells. The low-GFP expressing cell population expressed low levels of Sertoli cell markers. Early
FLC marker Star (F) was similar in the two GFP-positive populations; however, Cyp11a1 (G) was elevated in the low-GFP population. Interstitial markers
Ptch1 (H) and Arx (I) are the only markers expressed in the GFP-negative population. The same trend was observed at 13.5 dpc: high-GFP expressing cells
expressed Nr5a1 (J) and high levels of Sox9 (K), whereas low-GFP expressing cells were confirmed to be enriched for FLCs, as they expressed high levels of
Cyp11a1 (L). For all qRT-PCR: levels are shown relative to Tbp; error¼ SEM; *P¼0.05, **P¼0.001, ***P¼0.0001, ****P¼0.00001, ns¼not statistically
significant. For 12.5 dpc, for Nr5a1, Sox9 n¼ 4, 5, 4, 4 (GC/EC); Star n¼ 4, 5, 5, 5 (GC/EC); Cyp11a1 n¼ 3, 4, 4, 4 (GC); Amh, Ptgds, Arx n¼ 4, 4, 4, 4;
Ptch1 n¼ 3, 5, 5, 5 (GC/EC). For 13.5 dpc, for Nr5a1 n ¼ 8, 8, 5, 5; Sox9 n¼ 7, 7, 4, 4; Cyp11a1 n¼ 8, 8, 4, 4 (GC).
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FIG. 3. Validation by qRT-PCR of cell lineage expression of novel candidate genes from 12.5 to 14.5 dpc. A) Comparison between our dataset of genes
upregulated in the FLC-enriched population and the McDowell et al. [35] and Jameson et al. [15] datasets is represented; only six genes are present in all
three datasets. See Table 1 for lists of genes in each category. B–O) The qRT-PCR for candidate genes identified as being differentially expressed between
cell types on sorted cell populations from the 12.5–14.5-dpc Sf1-eGFP XY gonad. Novel genes identified as being highly expressed in enriched FLC: Tacr3
(B), Tac2 (C), Robo2 (D), Prlr (E), Sox18 (F), Mc2r (G), Clca1 (H), and Adcy7 (I). Novel genes highly expressed in enriched NSICs: Frem2 (J), Fras1 (K), and
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The germ cell-depleted, GFP-negative, putative NSIC
population (Fig. 2, gray) showed minimal expression of
Nr5a1; Sertoli cell markers Amh, Ptgds, and Dhh; and FLC
markers Star, Cyp11a1, and Hsd3b (hydroxy-delta-5-steroid
dehydrogenase, 3 beta- and steroid delta-isomerase 1),
indicating that it was devoid of Sertoli cells and FLCs (Fig.
2, B–G and J–L; Supplemental Fig. S3, C–E and H–M).
Among the genes we examined, only the DHH receptor Ptch1
(patched homolog 1) and Arx were expressed in the GFP-
negative population (Fig. 2, H and I; Supplemental Fig. S3, F–
H, N, and O). These data indicated that the germ cell-depleted,
GFP-negative population was enriched for NSICs that did not
express NR5A1/Nr5a1 or any other Sertoli or FLC markers.

Although germ cells were not the focus of this analysis, we
also examined the expression of Ddx4 to examine the
efficiency of germ cell depletion from the GFP-negative
fraction. As expected, expression of Ddx4 was robust in this
cell population from 12.5 to 14.5 dpc (Supplemental Fig. S3,
P–R), but some expression was also in the GFP-negative
fraction at 12.5 dpc (Supplemental Fig. S3P), indicating a low
level of germ cell contamination.

To validate the purity of the high-GFP and low-GFP cell
populations using the high-GFP/low-GFP FACS separation
strategy described above, we performed immunofluorescence
on FACS-sorted cell populations for NR5A1, Sertoli cell
marker SOX9, germ cell marker DDX4, and vascular
endothelial cell marker iB4 (isolectin B4; Supplemental Fig.
S1, E–G). We found that virtually all cells in both the high-
GFP and low-GFP populations were NR5A1 positive, as
expected, whereas the GFP-negative population was devoid of
NR5A1-positive cells (Supplemental Fig. S1E). Results of this
analysis were consistent with those obtained by qRT-PCR and
indicate that virtually all cells in the high-GFP population
(putative Sertoli cells) were SOX9-positive; therefore, this
population was a relatively pure population of Sertoli cells
(Fig. 2C; Supplemental Fig. S1F). On the other hand, about
7.6% of cells isolated in the low-GFP population (putative
FLCs) were SOX9-positive, indicating that a low level of
Sertoli cell contamination was present in the FLC population
(Fig. 2G; Supplemental Fig. S1F). Although our strategy
attempted to remove the majority of germ and endothelial cells
using a CD31 antibody, we found that about 22% of cells in the
GFP-negative fraction were DDX4-positive germ cells and that
approximately 6.4% of the GFP-negative population of cells
were iB4-positive endothelial cells (Fig. 2A; Supplemental Fig.
S1G). We also tested for staining of Leydig cell markers
CYP11A1 and HSD3b, but, as in section immunofluorescence,
these markers proved uninformative at 12.5 dpc. These data
indicated that the population purity of the three FACS isolated
somatic cell populations was sufficient to represent the
different enriched fetal testis cell populations.

Generation and Quality of RNA-Seq Data

We next analyzed the transcriptomes of the sorted testicular
cell populations by RNA-seq. Cells were collected from 12.5-
dpc Sf1-eGFP XY gonads, depleted of germ and endothelial
cells using a CD31 antibody, and fractionated into three
populations using the methods described above (Fig. 2A).
Triplicate samples of each somatic cell population were
generated, RNA was isolated and reverse transcribed, and the

resulting cDNA deep sequenced using a paired-end 100-bp
stranded sequencing format on Illumina HiSeq 1500. An
average of 65 million raw reads were generated per sample.
Supplemental Data S1 provide a spreadsheet of cpm RNA-seq
data for all Ensembl gene IDs detected at .1 cpm in 3 or more
samples (data can be accessed from GEO; GSE65498).

To validate the RNA-seq data, we examined the normalized
sequence cpm as an indicator of expression of various marker
genes (Supplemental Fig. S4, A–I; Supplemental Data S1). The
results of this analysis were consistent with results obtained by
qRT-PCR, with the exception of Star, where transcripts were
detected in the NSIC population at low levels in the RNA-seq
data (Fig. 2, B–I; Supplemental Fig. S4, A–I). These data
indicated that the RNA-seq output accurately represented the
transcriptomes of the different enriched fetal testis cell
populations.

Differentially Expressed Gene Analysis

Genes were identified as being upregulated in a cell
population if they showed .1 log fold change and adjusted
P value ,0.05 in the differential expression analysis compared
to either of the other cell types. As expected, the GFP-negative
fraction isolated by FACS was negative for Sertoli and FLC
markers. However, each of the GFP-positive populations
contained some transcripts characteristic of other populations,
consistent with results obtained by qRT-PCR (Fig. 2, B–L;
Supplemental Figs. S3 and S4). That is, some FLCs were likely
to have contaminated the Sertoli cell-enriched fraction (Fig.
2G, low-level expression of Cyp11a1) and some Sertoli cells
were likely to have been present in the FLC-enriched fraction
(Fig. 2C, low-level expression of Sox9). For this reason, the log
fold cutoff off was lowered to .0.6 for these samples, to
reduce the potential of obtaining false negatives when
compiling lists of cell type-specific genes. In this way, we
identified a group of genes upregulated in each enriched cell
population: 84 FLC-enriched genes, 704 NSIC-enriched genes,
and 1217 Sertoli cell-enriched genes (Supplemental Data S2).
Validation of a subset of the genes from the lists of upregulated
transcripts demonstrates that a gene in these lists is likely to be
expressed in a single testicular cell population at 12.5 dpc.

Validation of the FLC-Enriched Gene Dataset

As a first step in validating the 84 candidate FLC genes, we
compared them to results of published studies. Of these genes,
72% (61 genes) were previously unreported in the two
published microarray datasets that have provided lists of
candidate FLC genes at 12.5 dpc ([15, 35]; Fig. 3A; Table 1).
A number of genes had been identified as being expressed in
whole adult testis, although for most no further gonadal or fetal
gonadal characterization has been performed (Supplemental
Data S3). Four of the 84 genes (Htra3, Vcam1, Bmp2, and
Kcnk3) overlapped with a list of 567 genes identified as
putatively regulated by NR5A1 by performing RNA-seq on Y-
1 cells treated with Nr5a1-siRNA [30] consistent with Nr5a1’s
pivotal role in FLC specification and differentiation.

We next analyzed temporal and cell-specific gene expres-
sion of candidate FLC genes by qRT-PCR on sorted Sf1-eGFP
cell populations at 12.5–14.5 dpc. These analyses confirmed
FLC-enriched expression of Tacr3, Tac2, Prlr, Sox18, Mc2r,

3

Car2 (L). Novel genes identified as being highly expressed in enriched Sertoli cells: Trank1 (M), Gstm7 (N), and Adamt16 (O) (B, C, E, G, L, M, N: 12.5/
13.5 dpc, n¼3, 3, 3, 3, 14.5 dpc, n¼4, 4, 4, 3; D, F, H, I, J, K, O: 12.5/13.5 dpc, n¼3, 3, 3, 3, 14.5 dpc, n¼3, 4, 4, 3). For all qRT-PCR, levels are shown
relative to Tbp; error ¼ SEM.
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FIG. 4. ISH for genes identified by RNA-seq to be overexpressed in FLCs, NSICs, and Sertoli cells. ISHs for newly identified candidate genes at 14.5 dpc
from Eurexpress Transcriptome Atlas Database for Mouse Embryo (http://www.eurexpress.org). Marker genes: Cyp11a1 (A) shows FLC expression pattern,
Nr2f2 (B; nuclear receptor subfamily 2, group F, member 2) shows an interstitial pattern, and Amh (C) shows a Sertoli cell expression pattern. Novel FLC
genes Adcy7 (D), Clca1 (E), Itga9 (F), Nrg1 (G), Nts (H), Prlr (I), Srpx2 (J), and Tacr3 (K; also shows adrenal expression [data not shown]) show expression in
cells distributed outside the testis cords indicating that FLC-expressed genes are being detected. Novel NSIC genes Car2 (L), Slc6a18 (M), and Ermap (N)
show expression in cells distributed outside the testis cords indicating the NSIC expressed genes are being detected. Novel Sertoli cell genes Trank1 (O),
Adamts16 (P), and Gstm7 (Q) show expression in cells distributed around the border of the testis cords indicating Sertoli cell expression. The testis region
is demarcated by a dotted line. Bar¼ 0.5 mm. k, kidney; ad, adrenal; L, liver; m, mesonephros; Eurexpress probe IDs can be found in Supplemental Data
S4.
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and Adcy7 compared to NSICs (Fig. 3, B, C, E–G, and I). Prlr
was expressed in the FLC population with expression
increasing from 12.5 dpc (Fig. 3E). Robo2 and Clca1 appeared
to be expressed equally in FLCs and NSICs by qRT-PCR (Fig.
3, D and H). Expression of Tacr3 was elevated in the FLC-
enriched population at 12.5 dpc and was subsequently
expressed in the FLC and NSIC populations (Fig. 3B).
Interestingly, Tac2, Sox18, and Adcy7 were expressed more
highly in the FLC than in the NSIC population at 12.5 dpc only
before becoming either expressed in multiple populations or
downregulated (Fig. 3, C, F, and I).

Lastly, we examined the ISH staining patterns of the FLC
genes identified by RNA-seq at 14.5 dpc, when FLCs have
upregulated steroid production, using the Eurexpress whole
embryo section ISH database [36]. Of the eight expression

profiles analyzed in this way (Adcy7, Clca1, Itga9, Nrg1, Nts,
Prlr, Srpx2, and Tacr3), all showed the expected expression in
the interstitial space, similar to the known FLC marker
Cyp11a1 (Fig. 4, A and D–K), and distinct from the cord-
associated expression of the Sertoli cell marker Amh (Fig. 4C).
Taken together, these validation steps confirmed that the
putative FLC gene dataset generated in this study represents an
accurate subset of the FLC transcriptome.

Mining of the FLC-Enriched Gene Dataset

We sought to generate a transcriptional portrait of the FLCs
based on the RNA-sequencing dataset. We performed GO
analysis, using the DAVID Bioinformatics Package, for each of
the three outputs of the differentially expressed gene analysis.

FIG. 5. Subset of transcription factors, transmembrane factors, and secreted factors identified by GO analysis in each cell population. Using DAVID
pathway analysis the transcription factors (TF), transmembrane factors (TM), and secreted factors (SF) present in each cell-enriched population were
identified. A subset of genes identified in each category are listed (for full listing of GO terms and data see Supplemental Data S4; for overrepresentation
analysis for FLCs and NSICs see Supplemental Tables S5 and S6).

TABLE 1. Genes represented in three different characterizations of the FLC population (see Fig. 3A).

FLC genes found in Gene lists

This study, Jameson et al. [15], and McDowell et al. [35] Inhba, Ppp1r14a, Prlr, Prokr2, Robo2, Vsnl1
This study and Jameson et al. [15] C7, Casq2, Cbln1, Grin2a, Hhip, Hspa12a, Itga9, Kcnj3, Mc2r, Nts, Stc1, Vcam1
This study and McDowell et al. [35] Crhr1, Htra3, Itih5, Srpx2, Vgll3
Jameson et al. [15] and McDowell et al. [35] Aebp1, AI427809, Cyp11a1, Cyp17a1, Fads1, Gramd1b, Hsd3b1, Lhcgr, Npy, Star
This study only Adamts5, Adcy7, Arhgap6, Armcx6, Art3, Bmp2, Btnl9, Chst1, Chst2, Clca1, Clec1b,

Col23a1, Cyp1b1, Ffar2, Gja5, Gm11549, Gm13659, Gm14396, Gm5067, Gpr153,
Gpr174, Gpr20, Grrp1, Hoxd10, Hoxd11, Hsd11b2, Irf8, Itga4, Kcnk3, Kcns2, Lars2,
Lrrtm3, Mc4r, Mme, Mmp28, Myh11, Myh7, Myl4, Myoc, Ngfr, Nrg1, Oit3, Otof,
Pcp4l1, Pdyn, Plcxd3, Pnmal1, Ptpro, Rad51ap2, Serpina3g, Sertm1, Slitrk2, Sox18,
Speer7-ps1, Sstr4, Syt15, Tac2, Tacr3, Tg, Trac, Vipr1

Jameson only [15] A430107O13Rik, Ace2, Adam12, Alas1, Armcx2, Atp1a3, Clca2, Col6a1, Copz2, Cxcr7,
Cyp51, Enpep, Ephx1, Fat3, Fdps, Fdx1, Gpc3, Gpm6a, Grk5, Hsd17b7, Jag1, Mobkl3,
Osr2, Pltp, Prkar2b, Pros1, Rbp4, Ren1, Sc4mol, Scarb1, Sct, Slc6a15, Smoc2, Ssfa2,
Tgfbr3, Tnc, Tpm2, Trib2, Zeb2

McDowell only [35] 1200009O22Rik, 4930474M22Rik, 5031410I06Rik, Abcc9, Adamts7, Alcam, Arx,
B3galt1, Cd36, Cdkn2c, Dlc1, Fbn1, Glipr2, Gpx3, Gria4, Gsta2, Gucy1b3, Inha,
Insl3, Itgb8, Itm2a, Lrrk2, Ltbp4, Ng23, Nuak1, Pi15, Ptrf, Scd1, Sec24d, Slc29a1,
Speer4d, Thbd, Tm7sf2

List of FLC genes identified in this study, the McDowell et al. dataset [35], and the Jameson et al. dataset [15] at 12.5 dpc indicating unique and
overlapping genes between datasets.
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Ten of the identified genes for each of three ontologies
(transmembrane factors, secreted factors, and transcription
factors) for each sorted cell population are listed in Fig. 5.
Among the 84 candidate FLC genes, we identified 35 genes
encoding transmembrane components (P ¼ 2.33E!03); of
these, there was an overrepresentation of genes involved in
neurogenesis/neurotransmission (Supplemental Table S5), with
eight encoding receptors, or receptor components, for neuro-
active ligands (Tacr3, Mc4r, Prlr, Crhr1, Mc2r, Sstr4, Grin2a,
and Vipr1; P ¼ 2.96E!03). Additionally, five receptors were
identified as being involved in cell adhesion (Robo2, Itga4,

Itga9, Vcam1, and Arhgap6; P ¼ 9.86Eþ01). Secreted factors
were also overrepresented, with 14 secreted factors upregulated
in the enriched FLC population including, Tac2, Hhip, Pdyn,
and Inhba (P ¼ 9.98E!02). Finally, we identified four genes
encoding transcription factors in the FLC enriched population:
Hoxd10, Hoxd11, Irf8, and Sox18 (P ¼ 1.00Eþ02).

We queried the OMIM Database and found that 30 of the
candidate FLC genes are associated with human disease
phenotypes (26 where the molecular basis is known; eight
listed in Table 2; full list in Supplemental Data S7). Analysis of
published literature revealed that genetic deletion of some of

TABLE 2. Subset of genes upregulated in 12.5-dpc FLCs (P , 0.05).

ID Gene symbol Gene name Chra Phenotypeb OMIM assoc.c Referenced

ENSMUSG00000052516 Robo2 Roundabout homolog 2 16 Urogenital and organ patterning
defects

610878 [40]

ENSMUSG00000056025 Clca1 Chloride channel calcium
activated 1

3 — — —

ENSMUSG00000028172 Tacr3 Tachykinin receptor 3/neuromedin
K receptor (Nk3r)

3 Postnatal defects; males have
small testes and low FSH

614840* [42, 65]

ENSMUSG00000062991 Nrg1 Neuregulin 1 8 Embryonic lethal at 10.5 dpc;
cardiac defect

603013 [37]

ENSMUSG00000024087 Cyp1b1 Cytochrome P450, family 1,
subfamily b, polypeptide 1

17 No lethal developmental defects 231300 [71]

ENSMUSG00000027820 Mme Membrane metallo
endopeptidase/NEP

3 No lethal developmental defects — [72]

ENSMUSG00000026824 Kcnj3 Potassium inwardly-rectifying
channel, subfamily J, member 3

2 No lethal developmental defects — [73]

ENSMUSG00000064325 Hhip Hedgehog-interacting protein 8 Lethal at P0; respiratory defects — [38]
ENSMUSG00000050963 Kcns2 Kþ voltage-gated channel,

subfamily S, 2
15 — — —

ENSMUSG00000031654 Cbln1 Cerebellin 1 precursor protein 8 No lethal developmental defects;
postnatal cerebellum defects

— [74]

ENSMUSG00000050558 Prokr2 Prokineticin receptor 2 2 No gross FLC phenotype;
postnatal atrophy of the
reproductive system and
olfactory bulb defects

244200* [41, 46, 64]

ENSMUSG00000027009 Itga4 Integrin alpha 4 2 Embryonic lethal; placentation
defect and cardiac hemorrhage

— [75]

ENSMUSG00000020682 Mmp28 Matrix metallopeptidase 28
(Epilysin)

11 No lethal developmental defects — [76]

ENSMUSG00000039115 Itga9 Integrin alpha 9 9 No lethal developmental defects;
postnatal thorax and lymphatic
valve defects

— [77, 78]

ENSMUSG00000030223 Ptpro Protein tyrosine phosphatase,
receptor type, O

6 No lethal developmental defects;
sensory and glomerular defects
postnatally

614196 [79, 80]

ENSMUSG00000050368 Hoxd10 Homeobox D10 2 Nervous system, hind limb, and
musculoskeletal defects

192950 [81]

ENSMUSG00000047259 Mc4r Melanocortin 4 receptor 18 No lethal developmental defects;
obesity

601665 [82]

ENSMUSG00000022894 Adamts5 A disintegrin-like and
metallopeptidase with
thrombospondin type 1 motif, 5

16 No lethal developmental defects;
postnatal cartilage aggrecanase

— [83, 84]

ENSMUSG00000027962 Vcam1 Vascular cell adhesion molecule 1 3 Embryonic lethal at 12.5 dpc;
required for chorioallantoic
fusion and placentation

— [85]

ENSMUSG00000025092 Hspa12a Heat shock protein 12A 19 — — —
ENSMUSG00000040283 Btnl9 Butyrophilin-like 9 11 — — —
ENSMUSG00000014813 Stc1 Stanniocalcin 1 14 No lethal developmental defects — [86]
ENSMUSG00000031659 Adcy7 Adenylate cyclase 7 8 Embryonic lethal; !/þ survive — [87]
ENSMUSG00000000120 Ngfr P75 NTR/nerve growth factor

receptor
11 40% perinatal loss of !/!

between 15.5 dpc and birth
due to vascular defects

— [39]

ENSMUSG00000031355 Arhgap6 Rho gtpase activating protein 6 X No lethal developmental defects — [88]

a Chr., chromosome.
b Phenotype indicates the embryonic or postnatal phenotype of the null animal. Information from published reports where there was postnatal survival
mutations were classified as ‘‘no lethal developmental defects’’ (indicates that the null offspring were obtained as adults at the expected Mendelian ratios)
or ‘‘fertile’’ (indicates that the mice were able to reproduce normally). FSH, follicle-stimulating hormone.
c OMIM assoc. ¼ OMIM reference number if the gene is associated with any type of human disorder (* indicates a genitourinary, endocrine, or DSD
phenotype).
d References are the primary report of the null or mutant mouse and any subsequent clarifying reports.
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the genes upregulated in the FLC-enriched population results in
embryonic lethality (Table 2) from a variety of causes,
including cardiac (Nrg1 [37]), respiratory (Hhip [38]), and
vascular defects (Ngfr [39]). Among these, gene knockout of
Robo2, Prokr2, and Tacr3 in mice resulted in defects in
postnatal urogenital and reproductive system development [40–
42]. Interestingly, these three genes encode transmembrane
receptors important for neuroactive-ligand signaling.

Finally, we sought to determine if any FLC genes at 12.5
dpc might also mark pre-FLCs at 11.5 dpc and might therefore
be useful in clarifying the developmental origin of FLCs. We
reanalyzed a previously published microarray dataset [15] and
considered whether genes we found to be enriched in FLCs at
12.5 dpc were also robustly upregulated in the ‘‘interstitial’’
population (which includes pre-FLCs) compared with the
‘‘supporting’’ (pre-Sertoli) population at 11.5 dpc: we reasoned
that such genes may mark FLCs even before they attain
steroidogenic capacity. This analysis resulted in the identifica-
tion of 10 genes of interest: Prokr2, Itga9, Ptpro, Ngfr, Clca1,
Adamts5, Nrg1, Arhgap6, Myl4, and Hsd11b2 (Supplemental
Table S7 and Supplemental Data S6). These genes, character-
izing non-Sertoli NR5A1-positive cells prior to FLC matura-
tion (which occurs between 12.5 and 13.5 dpc), may act as
early markers for the FLC lineage and, therefore, may aid our
understanding of FLC specification and differentiation.

NSICs Versus FLC Transcriptomes: Clues to the Origin of
FLCs

It is clear that signaling from Sertoli cells to interstitial cells
plays a critical role in the specification of FLCs [4]. Early
expression of NR5A1 in pre-FLCs precedes steroidogenesis
and is likely important for their future steroidogenic capacity.
However, it is not clear why only some interstitial cells respond
to signals such as DHH by initiating steroidogenesis; this is
especially puzzling because non-FLCs of the interstitium are
apparently capable of responding to DHH as they express the
receptor PTCH1 [6]. Here we confirm that NSICs express
PTCH1 (Fig. 2H and Supplemental Fig. S3, F and N): previous
studies have demonstrated that PTCH1, along with receptors
for other Sertoli-produced factors such as PDGFa, are
expressed in a pan-interstitial manner [9]. We reasoned that
knowledge of early markers that do discriminate NSICs from
FLCs may help explain why only FLCs differentiate in
response to Sertoli-derived cues.

NSICs that express NR2F2 at 18.5 dpc are considered
progenitor cells for the ALC population [2], but it is not known
whether these cells also express NR5A1 [43]. To help clarify
this issue, we examined whether NR2F2-positive cells in the
fetal testis were also positive for NR5A1. At 11.5 dpc most
NR2F2-positive cells also expressed ARX, a smaller propor-
tion expressed NR5A1, and some triple-positive cells were
seen (Supplemental Fig. S5A). From 12.5 to 14.5 dpc, NR2F2
cells were ARX positive but negative for NR5A1 (Supple-
mental Fig. S5, B–D) with few exceptions (gray arrow,
Supplemental Fig. S5, B–D). Unless NR2F2 cells begin to
express NR5A1 at later time points, these data would suggest
that ALC progenitors do not express NR5A1 during fetal life.

We looked at the heterogeneity of the isolated NSIC
population by performing DAVID analysis on the upregulated
genes (704 genes). We established that the NSIC population
contained both blood cells and macrophages, which have been
shown to be important for testis morphogenesis and vascular-
ization [44]. We identified a subset of genes involved in
hematopoiesis (29 genes; P¼ 1.26E!04), leukocyte activation

(24; P¼ 3.02E!04), and immune response (32; P¼ 1.99E!05)
in the gene list (Supplemental Data S4).

Subsequently, we performed qRT-PCR on sorted Sf1-eGFP
cell populations to verify the NSIC-enriched expression of
genes upregulated in the NSIC list. We detected expression of
Car2 in NSICs but not FLCs by qRT-PCR (Fig. 3L), whereas
expression of Car2, Slc6a18, and Ermap by ISH was
consistent with the predicted interstitial expression pattern for
the candidate genes (Fig. 4, B and L–N) and distinct from the
cord-associated expression of the Sertoli cell marker Amh (Fig.
4C). Therefore, at least Car2 appears to be a novel marker for
NSICs that warrants further investigation.

Next, we looked to identify additional factors that set NSICs
apart from FLCs. We observed an overrepresentation of genes
associated with developmental processes (Supplemental Table
S6) in the NSIC-enriched population. Interestingly, the NSIC
population was marked by expression of transcription factors,
including Hoxd3, Hoxb2, Olig1, and Gata5 (57 genes; P ¼
1.49E!05; Supplemental Table S6), suggesting that this
population is involved in active developmental processes at
this critical stage of gonadal development; we found very few
transcription factors characteristic of the FLC population. In
addition, GO analysis identified numerous transmembrane
component genes not expressed in the FLC population that
may be involved in Sertoli-NSIC cell signaling (including
Frem2, Prokr1, Ntrk2, Cdh16, and Adam22; 177 genes; P ¼
2.22E!04; Supplemental Table S6 and Fig. 5). Two hundred
three of the genes identified as being upregulated in the NSIC-
enriched population have been associated with a phenotype in
OMIM, and for 162 of these the molecular basis is known
(eight listed in Table 3; full list in Supplemental Data S7).

One of the transmembrane components identified in NSICs
but not FLCs was Frem2/FREM2 (Fras1-related extracellular
matrix protein 2), a cell surface receptor that is a known DSD
gene causing Fraser syndrome (OMIM: 219000; Table 3; [45]).
Expression of Frem2 has not been reported previously in the
fetal gonad. By qRT-PCR we established that Frem2 and its
close family member Fras1 (Fraser syndrome 1 homolog),
which is also involved in Fraser syndrome, are expressed in the
NSIC-enriched population of the testis at 12.5–13.5 dpc (Fig.
3, J and K). These data established that there is a large group of
factors, some of which are known to be relevant to human
DSD, which set NSICs apart from FLCs during early
development. These genes may be relevant to the fate decisions
made by NSICs at the time of FLC specification.

Sertoli Cells: Signaling to the FLCs and NSICs

Understanding of the process of interstitial cell specification
requires knowledge of all potential paracrine factors produced
by newly specified Sertoli cells. In addition to published
microarray data from enriched Sertoli cells, we used RNA-seq
to survey the Sertoli cells in greater detail [15]. Our RNA-seq
analysis identified 1217 genes upregulated in the Sertoli cell-
enriched population (Supplemental Data S2), and these
included a number of previously described fetal Sertoli cell
genes (Aard, Dhh, Mro, Ptk2b, Cst9, Col9a3, Aldh1a1, and
Amh), thereby validating our approach. We identified Trank1,
Gstm7, and Adamts16 as novel genes expressed in the Sertoli
cell population by qRT-PCR and ISH (Fig. 3, M–O, and Fig. 4,
C and O–Q). DAVID analysis identified genes that encoded
transmembrane factors (330 genes; P ¼ 3.19E!10), and 44
genes with transcription factor activity (P ¼ 6.7E!1) were
upregulated in the Sertoli cell-enriched population (Fig. 5).

Interestingly, as in the FLC-enriched population list, we
found a number of gonadotropin-releasing hormone (GnRH)-
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TABLE 3. Subset of genes upregulated in 12.5-dpc NSICs (P , 0.05).a

ID Gene symbol Gene name Chr.b Phenotype OMIM assoc.c Referenced

ENSMUSG00000025105 Bnc1 Basonuclin 1 7 Subferiltle; postnatal
spermatid expression

— [89]

ENSMUSG00000037016 Frem2 Fras1 related
extracellular matrix
protein 2

3 Syndactyly,
cryptophthalmos and
urogential defects,
ambiguous genitalia

219000* [45]

ENSMUSG00000026365 Cfh Complement
component factor h

1 No lethal
developmental
defects; fertile

126700/609814/235400/610698 [90, 91]

ENSMUSG00000073530 Pappa2 Pappalysin 2 1 Postnatal growth
retardation; fertile,
with compromised
fecundity

N/A [92]

ENSMUSG00000027840 Wnt2b Wingless-type MMTV
integration site
family, member 2B

3 No lethal
developmental
defects; fertile;
olfactory bulb defect

— [93]

ENSMUSG00000038587 Akap12 A kinase anchor
protein12

10 Delayed fertility;
urogenital
hyperplasia

— [94]

ENSMUSG00000023039 Krt7 Keratin 7 15 No lethal
developmental
defects; fertile

— [95]

ENSMUSG00000027996 Sfrp2 Secreted frizzled-related
protein 2

3 Sfrp2!/! viable and
fertile; Sfrp2!/! /
Sfrp1!/! gonadal
defects, embryonic
lethal at 16.5 dpc

— [96–98]

ENSMUSG00000030774 Pak1 p21 protein (Cdc42/
Rac)-activated kinase
1

7 No lethal
developmental
defects; fertile

— [99]

ENSMUSG00000018659 Pnpo Protogenin homolog 11 — 610090 —
ENSMUSG00000036030 Prtg Pyridoxine 50-

phosphate oxidase
9 — — —

ENSMUSG00000029223 Uchl1 Ubiquitin carboxy-
terminal hydrolase L1

5 No lethal
developmental
defects; fertile;
develops ataxia

615491/613643 [100]

ENSMUSG00000040537 Adam22 a disintegrin and
metallopeptidase
domain 22

5 No lethal
developmental
defects; fertile

— [101]

ENSMUSG00000035000 Dpp4 Dipeptidylpeptidase 4
(CD26)

2 No lethal
developmental
defects

— [102]

ENSMUSG00000025889 Snca Synuclein, alpha 6 No lethal
developmental
defects

127750/168601/605543 [103]

ENSMUSG00000021182 Ccdc88c Coiled-coil domain
containing 88C

12 — 236600 —

ENSMUSG00000009628 Tex15e Testis expressed gene
15

8 Germ cell expression;
males infertile

— [104]

ENSMUSG00000041605 5730559C18Rik RIKEN cDNA
5730559C18 gene

1 — — —

ENSMUSG00000034248 Slc25a37 Solute carrier family 25,
member 37

14 — — —

ENSMUSG00000005360 Slc1a3 Solute carrier family 1,
member 3

15 612656

ENSMUSG00000042066 Tmcc2 Transmembrane and
coiled-coil domains 2

1 No lethal
developmental
defects

N/A [105]

ENSMUSG00000031881 Cdh16e Cadherin 16 8 — — [106]
ENSMUSG00000038193 Hand2 Heart and neural crest

derivatives expressed
transcript 2

8 Embryonic lethal at
10.5 dpc; cardiac
defects

— [107]

ENSMUSG00000050244 Heatr1 HEAT repeat containing
1

13 — N/A —

ENSMUSG00000024151 Msh2e MutS homolog 2 (E.
coli)

17 No lethal
developmental
defects; fertile

120435/276300/158320 [108]

ENSMUSG00000063506 Arhgap22 Rho GTPase activating
protein 22

14 — — —
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signaling pathway components (11, including Ptk2b, Src,
Adcy9, and Plcb2; P ¼ 3.50E!01) and neurogenesis-related
genes (20, including Islr2, Robo1, Hes5, Sema6c, and
Serpine2; P ¼ 2.30E!02). This abundance of neuroactive
signaling-related genes further hints at a potential role for
neuroactive ligand/receptor pairs in gonadogenesis.

Signals, such as DHH, from the Sertoli cells to the
interstitium are essential for FLC development. In our group
of Sertoli-enriched genes we identified an overrepresentation of
128 secreted factors (P¼ 2.24E!17; Fig. 4) including Dhh. We
looked for known ligand pairs for the 35 FLC receptors
identified in our RNA-seq data and the reprocessed Jameson et
al. [15] data. We identified expression of the genes encoding
known ligands to the neuroactive receptors (Mc2r, Mc4r, Crhr,
Vipr1, Prlr, Sstr4, and Tacr3), a related receptor (Adcy7), and

two neurogenesis-related receptors (Prokr2/Robo2) in our
RNA-seq data and/or the reanalyzed Jameson dataset (Fig. 6).

DISCUSSION

We used RNA-seq to define the transcriptome of FLCs and
compare it to those of NSICs and Sertoli cells in mice at 12.5
dpc in order to identify novel early markers of individual cell
types in the developing testis, with particular focus on the FLC
population. We anticipated that a detailed portrait of the genes
expressed in FLC just prior to the onset of steroidogenesis, in
comparison to a similar picture of the Sertoli and NSIC
transcriptomes, would prove informative in terms of under-
standing how FLCs come to be specified and how they
differentiate to become functional hormone-producing cells.
Although previous studies have profiled somatic cells early in
gonadogenesis [15, 35], the present study provides the first

FIG. 6. Schematic of putative receptor-ligand interactions focusing on the receptors overexpressed on FLCs and NSICs. Receptors associated with
neuroactive ligand signaling and/or DSD are represented. Ligands were identified from the literature and expression of ligands in cell types of the testis at
12.5 dpc was determined using data from this study and reprocessed Jameson et al. [15] data. The resulting schematic details proposed receptor-ligand
interactions inferred from data at 12.5 dpc in the XY gonad. GJA5 shuttles glutamate, which is a ligand for the NMDA receptor of which GRIN2A is a
subunit. The POMC complex is produced by Sertoli cells and its derivatives activate MC2R and MC4R. CRH is a ligand for CRHR1, whereas GHRH and
ADCYAP1 (or PACAP) are ligands for VIPR1. ADCYAP1 can also activate ADCY7. PRL and SST are the ligands for PRLR and SSTR4 respectively and are
expressed by vascular endothelial cells (VECs). TAC2 is predominately expressed by FLCs but also by Sertoli cells, whereas VECs and Sertoli cells express
TAC4. Both TAC2 and TAC4 can activate TACR3. PROK1 and PROK2 can activate PROKR2. SLIT1/2/3 can activate ROBO2 and are expressed in the testis.
The ligand GRIP1 is responsible for activating FREM2 and its close family member FRAS1.

TABLE 3. Continued.

ID Gene symbol Gene name Chr.b Phenotype OMIM assoc.c Referenced

ENSMUSG00000032186 Tmod2 Tropomodulin 2 9 No lethal
developmental
defects; fertile

— [109]

a Classification used the same criteria as Table 2. We manually removed high-ranking known hematopoiesis-related genes to display 25 genes (8 genes
removed; see Supplemental Data S2).
b Chr., chromosome.
c OMIM assoc. ¼ OMIM reference number if the gene is associated with any type of human disorder (* indicates a genitourinary, endocrine, or DSD
phenotype).
d References are the primary report of the null or mutant mouse and any subsequent clarifying reports.
e Indicates reported expression in germ cells.
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RNA-seq analysis of enriched FLC, NSIC, and Sertoli cell
populations in the XY gonad.

The method we developed for separating cell types has
yielded the purest and most validated population of pre-FLCs
yet reported. Determining which cell types a given gene is
expressed in has hitherto been typically a labor-intensive task
[46, 47]. Aside from providing the basis for our transcriptomic
analysis, the system we developed will be useful in future
studies designed to assign expression of any novel gene to a
particular cell lineage using qRT-PCR.

We found that 61 of the overexpressed genes in the FLC-
enriched population were previously unreported in the fetal
gonad and therefore represent novel candidates for involve-
ment in FLC specification. By checking previously published
11.5-dpc microarray data for genes we identified as FLC-
upregulated at 12.5 dpc, we identified 10 robustly expressed
putative presteroidogenic FLC marker genes. One of these is
Prokr2, which we have previously shown to be expressed in
the XY 11.5-dpc genital ridge [46], thereby validating this
approach. Some of these 10 genes may prove useful in
identifying pre-FLCs before they begin to express character-
istic steroidogenic enzyme genes.

Hormones produced by the FLCs direct the masculinization
of the embryo. Even though key components of the
hypothalamic-pituitary-gonadal (HPG) axis are in place from
around 16.5 dpc, the production of hormones by FLCs is
thought to be independent of the HPG axis [48–52]. The
GnRH-neural circuitry is a key component of the HPG; the
formation and activation of the GnRH-neural circuitry involves
a series of neuroactive ligand/receptor pairs; mutation of genes
involved in this circuitry often results in DSD, which, it has
been assumed, is primarily associated with HPG axis
dysfunction [53–55]. Oddly, we found that a number of genes
associated with these processes, which occur after the
differentiation of FLCs, are expressed in the Sertoli cells and
FLCs at 12.5 dpc. Of the 35 genes that encode receptors, in the
FLC upregulated list, DAVID analysis identified 8 factors
associated with neuroactive-ligand signaling (Mc2r, Mc4r,
Grin2a, Crhr1, Vipr1, Prlr, Sstr4, and Tacr3; Fig. 6). In
addition, we identified Adcy7, which encodes a receptor that is
a regulator of intracellular cAMP concentration and that shares
the ligand PACAP, encoded by the gene Adcyap1, with VIPR1
[56, 57]. Also of interest was the expression of Gja5, which
encodes a gap junction protein CX40 involved in shuttling
glutamate, an activator of the N-methyl-D-aspartate (NMDA)
glutamate receptor, of which GRIN2A is a subunit (Fig. 6; [58–
60]). Furthermore, Robo2 and Prokr2 were of interest, as both
are implicated in neuronal processes and GnRH signaling [41,
61–63]. Assessment of the known ligands for the 11 receptors
of interest indicated that putative ligand pairs were expressed in
the FLCs, Sertoli cells, or vascular endothelial cells (Fig. 5; this
study; [15]). Whether the testicular expression of these genes
plays a role in gonadogenesis is yet to be determined, but the
observation that they dominate the subgroup of FLC-
upregulated genes that are not associated with steroidogenesis
may be significant.

These findings also have implications for identifying the
causes of DSD. Of the neuroactive genes identified, some that
are upregulated in FLCs have previously been associated with
DSDs that have urogenital phenotypes, for example PROKR2
and TACR3. Mutations in PROKR2 (OMIM: 244200; [64]) and
TACR3 (OMIM: 614840; [65, 66]) are associated with
hypogonadotrophic hypogonadism in humans and mice. As
many of the factors associated with neuroactive-ligand receptor
activation and other neuronal processes are expressed robustly
in the FLCs or the Sertoli cells of the developing testis (this

study; [21]) it is tempting to speculate that gonadal production
of these factors may precede HPG-driven production and
explain male bias in individuals affected by hypogonadotrophic
hypogonadism [46, 55, 64, 67].

Prokr2!/! mice have reproductive defects, and we have
previously shown that there was no change in expression of
FLC marker HSD3b/Hsd3b in Prokr2!/! embryos compared to
wild-type littermates [41, 46]. However, embryonic Prokr2!/!

testes display vasculature dysmorphology, a phenotype often
associated with FLC impairment [10, 46]. Tacr3!/! mice have
a variety of reproductive and fertility defects and a postnatal
hormone profile similar to that of several other GnRH-deficient
mouse models [41, 42, 68]. Our results suggest that more
detailed analysis of the postnatal and embryonic gonadal
phenotype of the Tacr3!/! mouse is needed to assess the effect
of TACR3 loss before HPG axis activation occurs.

We identified that Frem2 and Fras1, known DSD genes, are
overexpressed in the NSIC population of the XY gonad from
12.5 to 13.5 dpc. Mutations in Frem2 and Fras1 result in
Fraser syndrome (OMIM: 219000; [45, 69]) a multisystem
disorder with ambiguous genitalia in 20% of patients (for
review see [70]). Frem2 knockout mice also have multiple
developmental defects; however, the ambiguous genitalia
phenotype seen in patients has not been characterized in
mouse [45]. We postulate that a requirement for expression of
Frem2 and Fras1 in NSICs early in gonadogenesis may
contribute to the ambiguous genitalia phenotype seen in this
model. This finding supports the idea that NSICs, not just
Sertoli and FLCs, may play an important role in masculiniza-
tion during fetal life.

It has recently been shown that some non-FLC of the
interstitium differentiate into ALCs postnatally [2], establishing
that a functional fetal NSIC population is important for
postnatal masculinization of the individual. We find that early
in gonadogenesis the NSIC population is characterized by
expression of NR2F2 and a set of transcription factors and
transmembrane receptors that are distinct from those of the
FLC population. The differences we have identified between
transcriptomic profiles in FLC- and NSIC-enriched populations
may provide leads as to how pre-FLCs are selected or how
NSICs resist selection from within the total interstitial
population.

Functional investigation into individual genes shown to be
upregulated in the various cell types, and processes highlighted
as likely to be active within and between cells, will be needed if
we are to gain a clearer understanding of gonadogenesis and
postnatal sexual development, particularly as they relate to
steroid production. We envisage that this dataset will be a
resource to identify genes involved in normal gonadogenesis,
in mouse and human, and to pinpoint genes likely to underlie
some cases of human DSD.
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REVIEW

Male sex determination: insights into molecular
mechanisms
Kathryn McClelland, Josephine Bowles and Peter Koopman

Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the
embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-
determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the
differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis
development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis
determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme.
Asian Journal of Andrology (2012) 14, 164–171; doi:10.1038/aja.2011.169; published online 19 December 2011

Keywords: gonadal; knockout; mice; sex determination; sex-determining region Y protein; sex disorders; sex reversal; sexual
development; testis

INTRODUCTION
Perceptions of sex and sexuality pervade modern culture. However, it
is important to recognize that not all members of our society fit com-
fortably the socially constructed ideas of masculinity and femininity.
These people are likely to struggle with a variety of medical and psy-
chosocial issues surrounding their sexuality.1,2 It is estimated that
1.7% of all live births have a disorder of sex development (DSD).3,4

These conditions are congenital and are characterized by chromo-
somal or gonadal sex that does not match outward appearance of
maleness or femaleness, or anatomical sex that is in some way ambigu-
ous or intermediate between male and female.4 Some of these condi-
tions are associated with infertility, predisposition to gonadal tumours
and/or other syndromic features.5,6 Clearly, discovery of the under-
lying molecular causes of DSDs is an important goal in biomedical
research.

Genomic and structure/function studies of human DSDs have

revealed a number of genes as being important for sex development,

while studies in the mouse have further extended our understanding of

the mechanism of action of these genes; these approaches are comple-

mentary. Identifying the molecular mechanisms behind sex deter-

mination and differentiation will lead to more accurate diagnosis

and prognosis, and assist in providing more informed options for

psychological, endocrinological, surgical and other clinical manage-

ment of DSDs, many of which remain uncharacterized at a molecular

level. In a broader context, understanding the events of early testis

development may also illuminate some of the underlying causes of

male infertility.

In this review, we examine the molecular mechanisms behind male
sex determination and differentiation, and how impairment of these
mechanisms underlies a subset of human DSDs. In particular, we

highlight the interplay between the molecular pathways that promote
male and female development, and the role of gene dosage and pheno-
type sensitivity in mice and humans.

SRY AND THE BEGINNINGS OF MALENESS
We each inherit an X or a Y sex chromosome from our father and an X
chromosome from our mother during fertilisation. The resulting
chromosomal sex (XX or XY) leads to the transformation of the
embryo into a male or a female. Before gonadal sex determination
in both XX and XY embryos, a bipotential gonadal primordium exists
that has the potential to differentiate into either testes or ovaries.
Activation of the Y-linked gene Sry (sex-determining region Y) initiates
testicular development. When Sry is expressed ectopically in XX mice,
the testis pathway is initiated.7 When Sry is not present, as in XX
individuals, or non-functional in XY individuals, the bipotential
gonads generally do not follow the testicular pathway and instead
develop into ovaries.8,9

SRY plays a role in a number of DSDs: mutation or loss of function
of SRY results in complete male to female sex reversal,10,11 whereas
ectopic expression of SRY in XX individuals due to chromosomal
translocation of SRY may result in female to male sex reversal.
Indeed, SRY translocation is responsible for 10% of all 46,XX female
to male sex reversal.12 Formation of ovotestes, where ovarian and
testicular tissues coexist in the same organ, can also occur in cases of
ectopic SRY activity.13,14

SRY is a transcription factor with a DNA-binding high-mobility
group box domain.15,16 In mice, expression of Sry is both brief and
carefully regulated; however, the factors controlling this burst of
expression remain unknown. One of the factors postulated to play a
role in activation of Sry is Wilms’ tumour 1 (WT1), which can act as a
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transcriptional activator17,18 or repressor.19 WT1 has two active iso-
forms in the gonad, with either an insertion or an omission of three
amino acids, lysine (K), tyrosine (T) and serine (S), between two zinc
finger motifs.20,21 Each isoform has distinct functions during mouse
testis determination. Knockout mice show that WT11KTS, although
unlikely to be directly regulating Sry expression, is required for main-
tenance of the gonad.20 However, this WT1 isoform has been shown
to be able to transactivate the human SRY promoter in vitro.22

Conversely, WT11KTS-null mice exhibit complete XY sex reversal,
presumably due to abnormally low Sry expression.20 In agreement
with the mouse model, WT1 haploinsufficiency, resulting in reduced
levels of WT11KTS, results in XY sex reversal in human patients.23 It
is proposed that WT11KTS is involved in cell-autonomous regu-
lation of Sry in vivo, as indicated by reduced SRY levels in cells of
WT11KTS-null mouse gonads.24 It is important when interpreting
these results to take into account the fact that knocking out one WT1
isoform leads to an increase in expression of the other, which may have
an impact on the observed phenotype and interaction with SRY.

In addition to sufficiently early onset of expression of Sry, a thresh-
old level of expression must be achieved for complete testis differen-
tiation to occur. In mice, expression of Sry is initiated at 10.5 days
post-coitum (d.p.c.), peaks at 11.5 d.p.c. and is extinguished by 12.5
d.p.c.25–27 Sry expression occurs in a wave-like pattern, beginning
in the central region of the gonad and expanding out towards the
poles.28–31 In humans, SRY has a broader spatiotemporal expression
profile, occurring in multiple tissues such as the adrenal and heart, and
being maintained for longer in the testis, apparently through to adult-
hood.32 Sry/SRY is also expressed in the brain of mice and humans.32–34

In mice, SRY is expressed in a subset of nigrostriatal doperminergic
neurons in the brain and appears to affect the specific motor behaviours
they control.35 However, although SRY is suspected of being involved in
sexual dimorphism of the brain, a specific role for SRY outside sex
determination has yet to be conclusively demonstrated.

Before turning to the cellular role of SRY, it is important to discuss
briefly the course of events that occur as the testis differentiates. The
gonads arise from a pair of bipotential primordia known as the genital
ridges. In males, differentiation of the bipotential supporting cell lin-
eage into Sertoli cells results in organisation of the developing testis
into two main compartments: the testis cords, which comprise aggre-
gates of germ cells surrounded by a layer of Sertoli cells in turn encased
by peritubular myoid cells, and the testis interstitium which includes
the steroidogenic Leydig cells and the testis vasculature. The develop-
ment of secondary sexual characteristics in the embryo, such as
external genitalia, is directed by the testes. Thus, the morphogenesis
of the bipotential gonads into testes dictates the phenotypic sex of the
male individual (Figure 1).

In mice, the first known cellular difference between the XX and XY
gonad after expression of Sry is the male-specific proliferation of the
epithelium at the coelomic surface of the genital ridges.36,37 This sex-
specific proliferation is thought to amplify the population of cells
capable of differentiating into Sertoli cells, the first testicular cell
type to differentiate,38 and is required for the formation of testis
cords.36,37,39 Thus far, the molecular mechanism that induces coelo-
mic epithelial proliferation is unknown. We do know a direct molecu-
lar target of SRY: the gene encoding the transcription factor Sox9 (Sry
box-containing gene 9).40 Because testes develop normally in transgenic
XX mice overexpressing Sox9, it appears that male-specific prolifera-
tion of the coelomic epithelium and all other aspects of foetal
testis development are under the control, directly or indirectly, of
SOX9.41,42

SOX9 AND THE DIFFERENTIATION OF THE SERTOLI CELL
Sox9 is upregulated when a protein complex of SRY and steroidogenic
factor 1 ((SF1) nuclear receptor subfamily 5, group A, member 1)
binds to a Sox9 enhancer element known as testis-specific enhancer
of Sox9 core element (TESCO).40 Like SRY, SOX9 is necessary for
testis differentiation: mice lacking Sox9 undergo complete XY sex
reversal,43,44 while 75% of human patients with a heterozygous muta-
tion in SOX9 manifest with complete or partial XY sex reversal.45,46

The proposed mechanism for XY gonadal transcription of Sox9
during sex determination consists of three distinct phases, according
to Sekido and Lovell-Badge.40 Firstly, SF1 initiates low-level transcrip-
tion of Sox9 in XX and XY genital ridges. Secondly, SF1, in a complex
with SRY, activates male-specific transcription of Sox9 in the male
genital ridge via TESCO. High levels of SOX9 are then maintained
in the XY gonad via an autoregulatory feedback loop.40,47 Indeed, in
vitro studies using SF1, SRY and SOX9 mutant proteins, modelled on
clinical human mutations from 46,XY DSD patients, support this
model. These proteins failed to activate the human homologue of
TESCO, providing a potential mechanism by which mutations
resulting in partially functional proteins can present as DSDs.48

Figure 1 Overview of mouse gonadogenesis. The expression of Sry and Sox9 at
10.5–11.5 d.p.c. in the bipotential gonad initiates testis differentiation. By 13.5
d.p.c., basic testis morphology is established; the formation of testis cords, the
coelomic blood vessel, and differentiation and activation of steroidogenesis in
Leydig cells has occurred, and androgens are then produced by the testes. In the
ovary, further differentiation is delayed. Around 13.5 d.p.c., germ cells have
entered meiosis and vascularisation, and remodelling of the ovary to form germ
cell cysts occurs. Later, the cortical and medullar domains begin to be estab-
lished and folliculogenesis takes place. Secondary sexual characteristics include
the establishment of the male and female genital tract and duct system, sex-
specific brain dimorphisms and behaviours, and external genitalia. The estab-
lishment of secondary sexual characteristics involves organ-specific, regulatory
gene networks. d.p.c., days post-coitum; FLC, foetal Leydig cell; Sox9, Sry box-
containing gene 9; Sry/SRY, sex-determining region Y.
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It is believed that bipotential supporting cells cell-autonomously
differentiate into Sertoli cells under the influence of SRY and SOX9:
this conclusion was drawn from XX–XY chimaera studies in which it
was found that, when testes formed, almost all Sertoli cells were XY,
while other cell types did not exhibit a chromosomal bias.49,50

However, some Sertoli cells were always found to be XX,49 indicating
the existence of paracrine pathways by which SRY- and SOX9-positive
cells can recruit additional cells (such as XX cells in the chimaera
experiments, or cells that express unusually low levels of Sry in normal
XY gonads) to the Sertoli fate.

Two independent mechanisms of Sertoli cell recruitment are
known: fibroblast growth factor 9 (FGF9) and prostaglandin D2
(PGD2) recruitment. Kim et al.51 demonstrated using Fgf9-null mice,
which exhibit XY sex reversal,52 that FGF9 is required only for the
maintenance of SOX9 expression, not its initiation. However, ectopic
application of FGF9 to XX gonads induces SOX9 expression.51,53

Hiramatsu et al.54 showed that Fgf9 expression occurs in a wave eman-
ating from the central zone of the gonad similar to Sry and Sox9.
Inhibition of FGF signalling repressed the expansion of the Sox9-pos-
itive domain in the XY gonad. Furthermore, removal of the central
segment or isolation of the central domain of the testis before the
expansion of Fgf9 signalling resulted in failure of tubulogenesis in
the anterior and posterior segments. Based on these findings,
Hiramatsu et al.54 proposed a system where FGF9 was produced in
the central domain of the gonad by newly specified Sertoli cells, from
which it was secreted and rapidly diffused towards the gonadal poles
where it recruited cells to the Sertoli fate by reinforcing the expression
of Sox9. This mechanism is supported by evidence from Fgfr2-null
(FGF-receptor 2) mice whose phenotype is similar to Fgf9-null mice,
displaying male-to-female sex reversal and suggesting FGFR2 is the
receptor for FGF9 in the XY gonad. Indeed, conditional deletion of
Fgfr2 in pre-Sertoli cells shows that FGFR2 is required in pre-Sertoli
cell differentiation.55

Independently, PGD2, an early product of the testis, is also able to
induce Sertoli cell differentiation in vivo by amplifying SOX9 activity
and canalizing the male pathway. Treatment of XX gonads with PGD2
resulted in upregulation in Sox9 and its direct downstream target Amh
(the gene encoding anti-Müllerian hormone), masculinizing the XX
gonad.56–58 However, Pgds (prostaglandin D2 synthase)-null testes,
after a delay in Sertoli cell differentiation, develop normally, indicating
that this mechanism is a nonessential backup system for Sertoli cell
recruitment.56 The requirement of theses backup systems and the need
to continually reinforce the male programme may stem from the weak
but critical role of SRY and the need to actively suppress the under-
lying female programme. Existence of these recruitment mechanisms
ensures that as many cells as required are pulled into the Sertoli fate to
allow successful differentiation of the gonad.

THE ROLE OF THE TESTIS VASCULATURE
Vascular patterning in the gonad is a sex-specific process.59 Testis
vasculature is formed by migration of endothelial cells into the devel-
oping testes.60,61 By 12.5 d.p.c., a prominent artery known as the
coelomic blood vessel can be seen along the anterior–posterior length
of the testis, in addition to extensive microvasculature. Ectopic coe-
lomic vessel-like structures were observed in gonads of XX mice
mutant for Rspo1 (R-spondin homologue 1), Wnt4 (wingless-related
MMTV integration site 4), Fst (follistatin) and Ctnnb1 (catenin (cad-
herin-associated protein), beta 1).62–66 Rspo1 is a regulator of WNT4
signalling which involves Ctnnb1, while Fst is downstream of WNT4,67

implicating the WNT signalling pathway in vessel formation and

patterning. Additionally, overexpression of Wnt4 disrupts normal tes-
tis vasculature, indicating that WNT4 inhibits formation of gonad
vasculature.68 Notably, where testis vasculature is disrupted, as in
the WNT4 overexpressing mice, Sertoli and foetal Leydig cells still
differentiate.65,68

Recently, it has been discovered that the vascularisation of the testis
plays an important instructive role in testis cord formation.60,61 When
endothelial migration was suppressed in testes by blocking vascular
endothelial growth factors with VEGF-Trap or by using an antibody
against vascular endothelial cadherin, testis cord morphogenesis was
impaired.60,69 Antagonizing vessel maturation also reduced prolifera-
tion of interstitial mesenchymal cells that appear to segregate the
precursor territories for testis cords; this proliferation could be res-
cued by the addition of platelet derived growth factor isoform BB
(PDGF-BB).61,69,70 However, the mechanisms governing testis vascu-
larisation and cord segregation are still unclear.

LEYDIG CELLS: THE KEY TO PHENOTYPIC MASCULINISATION
Foetal Leydig cells (FLCs) produce steroid hormones that reinforce
male-specific differentiation of the testis (for review, see Ref. 71). The
FLC populations in humans and mice are similar during foetal life,72,73

although observation of the induction of steroidogenesis largely lim-
ited to steroid level quantification. The origins of FLCs in humans
remain unclear. In the mouse, FLCs arise by about 12.5 d.p.c. (for
review, see Ref. 74), and recent work involving cell lineage tracing
and live imaging suggests that they arise from multiple origins includ-
ing the coelomic epithelium and the gonad/mesonephros border.53

Several pathways and molecules have been implicated in their differ-
entiation and maintenance. SF1 marks presteroidogenic and pre-
Sertoli cells in the developing genital ridge75,76 and acts as a key regu-
lator of genes encoding steroid hydroxylases, which later distinguish
FLCs.77 Members of the hedgehog signalling pathway, desert hedge-
hog (DHH), which is secreted by Sertoli cells, and its receptor patched
homologue 1 (PTCH1), which is expressed by the interstitium, have
been shown to be positive regulators of FLC differentiation.78 Dhh-
null mice have a FLC differentiation defect.78 Human patients with
mutations in DHH present with mixed, partial or pure gonadal dys-
genesis through to seemingly unaffected carriers.79–81 In addition,
chemical inhibition of hedgehog signalling at 11.5 d.p.c. completely
abolished expression of steroidogenic enzymes, confirming that
DHH/PTCH1 signalling is essential for FLC differentiation.78 Gli1
(glioma-associated oncogene family zinc finger 1) and Gli2 (glioma-
associated oncogene family zinc finger 2) are downstream targets of
hedgehog signalling and are expressed exclusively in the testis inter-
stitium in a manner similar to PTCH1.82 However, Gli1- and Gli2-null
mice display normal FLC differentiation, perhaps indicating func-
tional redundancy between the GLI factors in FLCs.82 Ectopic activa-
tion of the hedgehog signalling pathway in SF1-positive ovarian cells
is sufficient to differentiate these cells into functional FLCs within an
ovarian environment.83 These ectopic cells upregulated SF1 and were
able to partially masculinize the phenotype of the XX embryo.83

Additionally, Pdgfr-a (platelet-derived growth factor receptor, alpha
polypeptide) and Arx (Aristaless-related homeobox) have been iden-
tified as being critical for FLC differentiation in knockout mouse
models.84,85

GERM CELLS: THE ORIGIN OF SPERM
Germ cells are the precursors of oocytes and spermatozoa in the foetal
gonad. The sexual fate of the germ cell is determined by signalling
factors that the germ cells are exposed to upon entry to the gonad,
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rather than by their chromosomal constitution.58,86–89 Much of what
is known about the origin and regulation of the germ cells is derived
from studies in mice, as discussed below.

In an ovary, germ cells must enter meiosis during foetal life if
they are to initiate oogenesis correctly; conversely, meiosis must be
avoided in male germ cells in the foetus if they are to embark on the
spermatogenic pathway. The interplay between FGF9 and retinoic
acid (RA) appears to be key to the correct specification of the germ
cells in the mouse: meiosis is induced by RA in the foetal ovary and
inhibited by FGF9, which is secreted by Sertoli cells, in the foetal
testes.86–88,90 In the developing testis, meiosis is avoided because RA
is degraded by the P450 enzyme CYP26B1 (cytochrome P450, family
26, subfamily b, polypeptide 1).91 Thus, CYP26B1 acts to suppress
meiosis indirectly by the removal of RA, while FGF9 directly sup-
presses meiosis and acts to maintain pluripotency.86–88 This mech-
anism is supported by in vivo evidence from Cyp26B1-null mice
where degradation of RA does not occur in XY gonads, resulting
in upregulation of RA-responsive Stra8 (stimulated by retinoic acid
gene 8) and germ cell entry into meiosis.87,91

Recently, a double-knockout of Aldh1a2/Aldha1a3 (aldehyde dehy-
drogenase family 1, subfamily A2/A3), genes encoding key synthesizers
of RA in the mesonephros, demonstrated that some meiosis still
occurred in the foetal ovary.92 These data indicate that either RA does
not drive meiosis or, more likely, that there is an additional source of
RA that remains in these mice. More in-depth analysis of this model
will be required to clarify this point. Regardless, a strong antagonism
exists between meiosis-promoting (female) factors and meiosis-sup-
pressing (male) factors that push the resident germ cells into their
respective fates.

Relatively, little is known about whether these mechanisms are
used in humans. Culture experiments demonstrate that the RA initi-
ates meiosis in the human ovary and can upregulate STRA8.93,94

However, it appears that the human gonad has the capacity to produce
RA, evidenced by the strong expression of ALDHA1A1 (aldehyde
dehydrogenase family 1, subfamily A1) in the ovary around the time
of meiosis initiation.93,94 Most striking is the apparent lack of
CYP26B1 expression in the foetal human testes and the expression
of RA receptors, indicating that the testes may be exposed to, and
may be able to respond to, RA, unlike the situation in the mouse.93,95

Male germ cells are fated to enter G1/G0 arrest in the foetal testes.89

Retinoblastoma 1 is a cell cycle regulator necessary for male germ cells
to enter arrest at the appropriate time. In XY retinoblastoma 1-null
mice, the germ cell population fails to enter G1/G0 arrest appropri-
ately.96 To compensate cell cycle suppressors, cyclin-dependent kinase
inhibitors 1b and 2b are upregulated and after a delay can induce
arrest.96

OVOTESTES: WHAT THEY REVEAL ABOUT MALE–FEMALE
ANTAGONISM IN THE EMBRYO
The study of ovotestes in mouse models has provided numerous
insights into the antagonism between the male and female pathways
during sex determination. When the Y chromosome derived from
Mus poschiavinus, YPOS, is backcrossed to a C57/BL6 (B6) background,
varying degrees of sex reversal are observed in the XY progeny.97 This
phenomenon is thought to be due to defective interaction between Sry
on YPOS and autosomal sex-determining genes in B6.98 Detailed
expression studies have shown that a delay in the commencement of
Sry expression, and subsequently, Sox9 expression is the likely cause of
B6-YPOS partial sex reversal.98–100 Wilhelm et al.30 found that although
Sry was expressed throughout the genital ridge in B6-YPOS mice, the

upregulation of Sox9 and activation of downstream testis differenti-
ation pathways only took place in the central zone where Sry expres-
sion was initiated.25,28,29,31 These findings indicate that expression of
Sry in the poles, which in ovotestes differentiate into ovarian tissue,
does not reach the required expression threshold early enough. This
failure to upregulate Sox9 in pre-Sertoli cells allows the expression of
key ovarian differentiation genes and the engagement of the ovarian
programme. Therefore, male–female antagonism underlies the suc-
cessful differentiation of the gonad. When the balance of factors is
altered, even slightly, the underlying battle between the testicular
and ovarian fate is revealed.

MOLECULAR BALANCING ACTS: EXAMPLES OF ANTAGONISM
BETWEEN MALE AND FEMALE PATHWAYS
In order to understand the molecular mechanisms behind male sex
determination, we must also understand what is occurring molecu-
larly in the antagonistic female programme at the time of sex deter-
mination. It has become clear that the ovarian programme, although it
is considered the ‘default’, is an active genetic programme in its own
right.101 The antagonism between the male and female pathways has
been illustrated using genetic approaches (Figure 2). In an early study
of male–female antagonism, the male pathway was suppressed by
knocking out Fgf9; as a result, the female pathway was promoted,
indicated by the upregulation of WNT4.51 Conversely, when the
female pathway was suppressed by knocking out Wnt4, the male path-
way was stimulated.102 This phenomenon correlates to cases in DSD
patients where WNT4 loss or mutation results in XX masculinisation
and duplication results in XY feminisation.68,103 This male–female
antagonism is further supported by ex vivo work. Treatment of XX
gonads with ectopic FGF9 suppressed normal WNT4 expression and
induced ectopic upregulation of Sox9.51 Thus, readouts of the male

Figure 2 Model of molecular interactions and proposed levels of antagonism in
testis and ovary. For details see text. In the embryonic XY gonad, Sry is activated
via a mechanism involving WT1 (indirect regulation illustrated by dotted arrow/
line). SRY then directly upregulates Sox9, direct regulation illustrated by solid
arrow/line) which maintains its own expression; positive feedback loops exists
between PGD2/SOX9 and FGF9/SOX9. In the XX gonad, FOXL2 is active as are
RSPO1, b-catenin and WNT4, which is required for expression of Fst. During
embryonic development, antagonism is though to exist between FGF9/WNT4,
SOX9/WNT4 and SOX9/FOXL2. Postnatally, antagonism exists between SOX9/
FOXL2 and DMRT1/FOXL2. DAX1, Nr0b1, nuclear receptor subfamily 0, group
B, member 1; DMRT1, doublesex and mab-3-related transcription factor 1;
FGF9, fibroblast growth factor 9; FOG2, ‘Friend of Gata1’ type 2; FOXL2, forkhead
box L2; Fst/FST, follistatin; GATA4, GATA-binding protein 4; PGD2, pros-
taglandin D2; RSPO1, R-spondin homologue 1; SF1, steroidogenic factor 1;
Sox9/SOX9, Sry box-containing gene 9; Sry/SRY, sex-determining region Y;
WNT4, wingless-related MMTV integration site 4; WT1, Wilms’ tumour 1.
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pathway, SOX9 and FGF9 can increase in response to a weakening of
the female programme and vice versa.

Recent studies have shown that the balance between the antagon-
istic testicular and ovarian differentiation programmes is also import-
ant postnatally. Gonad-specific transcription factors doublesex and
mab-3-related transcription factor 1 (DMRT1) and forkhead box L2
(FOXL2) have roles in maintenance of the testes and ovaries respec-
tively.104 In humans, DMRT1 hemizygosity may result in hypogona-
dism, often with streak gonads.105 FOXL2/FoxL2 is a key ovarian
marker, and its mutation is associated with premature ovarian failure
in human patients and knockout mice.104,106,107 Dmrt1-null males
were found to have numerous FOXL2-positive cells in the seminifer-
ous tubules 4 months after birth.108 A Sertoli cell-specific knockout of
Dmrt1 confirmed that loss of DMRT1 in Sertoli cells and not germ
cells allows ectopic FOXL2 expression.108 However, FOXL2 may also
be able to repress DMRT1, as shown by strong upregulation of
DMRT1, when FOXL2 is ablated postnatally,109 suggesting the exis-
tence of a mutual antagonism necessary for maintaining sex differ-
entiation throughout life.

FOXL2 has also been shown to antagonize SOX9 in the adult ovary
and is postulated to also play a role in the embryonic testes.
Conditional deletion of FoxL2 at 8 weeks resulted in transdifferentia-
tion of granulosa cells in the adult ovary to Sertoli-like cells expressing
SOX9 even in the presence of oocytes and theca cells, the steroidogenic
cells of the ovary, differentiated into Leydig-like cells.109 In the adult
ovary, it was demonstrated using chromatin immunoprecipitation
that FOXL2 can repress TESCO activity,109 providing a possible
mechanism for the role of FOXL2 in maintaining ovarian function
postnatally. FoxL2 is also upregulated in XY embryonic gonads of
Sox9-conditional null mice indicating that a similar mechanism exists
during embryonic sex differentiation.43 However, importantly,
expression of male and female factors in the gonad is exclusive, as
observed in the ovotestes,30 such that FOXL2 and SOX9 are never
coexpressed in the same cell. Nevertheless, while the factors mentioned
in the above section are responsive to each other’s loss, direct interaction
and antagonism between any of these factors is yet to be demonstrated.

SF1: HIGHLIGHTING THE ROLE OF GENE DOSAGE
DIFFERENCES IN THE MOUSE AND HUMAN
SF1 is a striking example of a factor whose effects on gonadal pheno-
type are sensitive to dosage and genetic background.75 Sf1-null mice
undergo early gonadal and adrenal development, but the organs
regress by 11.5 d.p.c.75,110 Transgenic expression of SF1 in Sf1-null
mice was able to rescue gonad development, but not adrenal develop-
ment.111 Additionally, Sf1-haploinsufficient mice have disrupted
adrenal development but develop testes normally.112 Together, these
results indicate that SF1 is involved in gonad and adrenal organ main-
tenance and that, in the mouse, the adrenal is more sensitive to Sf1
dosage than the gonad. However, there is evidence that the reverse is
true in humans. Two patients with heterozygous mutations in SF1
have been shown to exhibit gonadal dysgenesis but normal adrenal
function, indicating that, in humans, testis development is more sen-
sitive to Sf1 dosage than adrenal gland development.113,114

DAX1: A QUESTION OF GENE DOSAGE AND GENETIC
BACKGROUND
Dax1 (Nr0b1, nuclear receptor subfamily 0, group B, member 1) expres-
sion in the mouse indicates a role in early sex determination, with Dax1
being expressed in both sexes initially before being downregulated in
the testes.31,115 Duplications of chromosomal region Xp21.2–21.1,

which includes DAX1, are sufficient to impair testis differentiation
in 46,XY human patients and induce male-to-female sex reversal (dos-
age-sensitive sex reversal).116–118 These data imply that DAX1 acts as
an antitestis gene, antagonizing the action of SRY. Similarly, over-
expression of Dax1 in mice can induce male-to-female sex reversal.
However, only mice highly overexpressing Dax1 and which also have a
weakened male sex-determining pathway driven by a YPOS chro-
mosome, show complete male-to-female sex reversal.

31

A common
interpretation of these data is that mice and humans may have different
sensitivity thresholds for DAX1 dosage.

An alternative explanation is that genetic background and the pres-
ence of genetic modifiers can explain whether or not gonad sex
reversal occurs. Genetic background is a key determinant in the pene-
trance of a number of sex reversal phenotypes, with heterozygous
mutants often displaying different phenotypes depending on their
genetic background. Bouma et al.119 compared sex development in
Gata4 (GATA-binding protein 4)120,121 and Fog2 (‘Friend of Gata1’
type 2; Zfpm2, zinc finger protein, multitype 2)120,121 heterozygous
mutants on B6/YAKR, B6, D2/YAKR and D2 backgrounds, which have
decreasing sensitivity to sex reversal. They found that ovaries or ovo-
testes developed in these mutants, but only on the B6/YAKR back-
ground. All other strains developed testes normally. These studies
demonstrate the importance of genetic background, and also clearly
indicate a role for GATA4 and FOG2 in foetal testis development. A
similar background dependance was observed in the generation of
sex-reversed Dax1 mutant mice.31,122–124 Given that genetic back-
ground and the presence of genetic modifiers can explain whether
or not gonad sex reversal occurs, it follows that effects attributed to
differences in dosage sensitivity between humans and mice might also
be explained by genetic background.

Given the expectation that Dax1 acts as an antitestis gene, deletion
of Dax1 in mice produced a surprising result: ovaries formed normally
in Dax1-null XX mice, but in XY mice with a deletion of Dax1, testis
cord formation was abnormal.123 Moreover, in XY Dax12/2/YPOS

mice, complete male-to-female sex reversal was observed.124 Sub-
sequent studies revealed the cause of the male-to-female sex reversal:
Sox9 is not upregulated in XY Dax1-null mice, despite normal express-
ion of Sry.125 Nonetheless, strong overexpression of Sry in XYPOS

Dax1-null mice was able to upregulate Sox9, correcting testis develop-
ment and producing fertile males.125 These results are somewhat in
accord with findings in humans, with respect to DAX1 mutations.
46,XY patients with deletion of, or mutations in, DAX1, exhibit the
male phenotype, but have hypogonadotrophic hypogonadism and
disorganized testis cords, indicating that DAX1 is not essential for
the initial stages of human gonad development, but is required for
testis development.117,124,125 As there is evidence that DAX1 can work
in both ‘antitestis’ and ‘protestis’ capacities, it is possible that correct
function in the testis occurs only within a ‘window’ of activity invol-
ving two concentration thresholds. In this scenario, DAX1 activity
beyond an upper threshold, for example, in cases of DAX1 duplication,
may act to antagonize testis differentiation, while DAX1 activity below
a lower threshold, for example, in cases of mutation, may allow
ovarian differentiation to occur.126

CONCLUSIONS AND PERSPECTIVES
From the above discussion, it is clear that initial specification of
Sertoli cells is a result of SRY expression, with the effects of SRY
mediated largely if not entirely by SOX9. A complete understanding
of male sex determination and testis morphogenesis, therefore,
largely depends on a deeper understanding of the molecular and
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cellular roles of SOX9, and therefore, on the discovery and
characterisation of all transcriptional targets of SOX9. Further, it
remains to be clarified how the Sertoli cell directs events during
morphogenesis; that is, what signalling molecules are produced by
these cells and how they influence the differentiation of the other
testicular cell lineages. How the other cell lineages, once masculi-
nized, then contribute to testis morphogenesis is also a question that
requires further investigation. A greater understanding of the
molecular interactions involved in the process of testis differenti-
ation will provide new avenues for DSD diagnosis and management.

Commitment to the male fate and then maintenance of that fate is
achieved only by overcoming the progress of the female pathway, and
antagonistic interplay is seen during foetal life, as well as postnatally.
Mutual antagonism is likely to be facilitated by transcription factors
such as SOX9 and FOXL2, but assays to determine the molecular
interactions that underpin these antagonistic relationships have yet
to be completed. Understanding what factors facilitate antagonism
between the male and female programmes will lead to a greater under-
standing of what pushes individuals into or out of the two typical sex
phenotypes specified by XX and XY chromosomes.

Additionally, as demonstrated here, sex-determining genes often
respond in a dosage-dependent manner that may also be influenced
by genetic background. As a result, human DSDs and mouse models
may not always phenocopy each other, highlighting the need for a
collaborative approach to DSD identification and diagnosis between
researchers and clinicians. Human patient cases demonstrate, especially,
that gene dosage and genetic background can be important factors in
phenotype severity. However, despite this, the investigation of gene
dosage effects and the effects of genetic background on sex determining
genes in the mouse is a question that few researchers have addressed and
that warrants further detailed investigation. Tools, such as inducible
knockout and single-copy transgenesis strategies, are now available to
study these phenomena in the mouse. Thus, better integration of lessons
from both human cases and mouse models must be a priority. Finally, it
is clear that integration of clinical findings and mouse models will con-
tribute to a better understanding not only of the causes of human DSDs
but also of the basic biology of sex determination in the male.

Abbreviations: DSD, disorder of sex development; DNA, deoxy-
ribonucleic acid; HMG, high-mobility group-box; WT1/WT1/Wt1,
Wilms Tumor 1; K, lysine; T, tyrosine; S, serine; Sry, sex determining
region of Chr Y; SOX9/SOX9/Sox9, SRY-box containing gene 9; SF1/
SF1/Sf1 (Nr5a1), steroidogenic factor 1 (nuclear receptor subfamily 5,
group A, member 1); TESCO, testis-specific enhancer of Sox9
core element; FGF9/FGF9/Fgf9, fibroblast growth factor 9; PDG2/
PDG2/Pdg2, prostaglandin D2 synthase; FGF, fibroblast growth
factor; FGFR2/FGFR2/Fgfr2, Fgf-receptor 2; AMH/AMH/Amh, anti-
Mullerian hormone; PGDS/PGDS/Pgds, prostaglandin D2 synthase;
dpc, days post coitum; WNT4/WNT4/Wnt4, wingless-related MMTV
integration site 4; FLC, fetal Leydig cell; DHH/DHH/Dhh, desert
hedgehog; PTCH1/PTCH1/Ptch1, patched homolog 1; GLI1/2/GLI1/
2/Gli1/2, glioma-associated oncogene family zinc finger 1/2; PDGFR-
a/PDGFR-a/PDGFR-a, platelet derived growth factor receptor, alpha
polypeptide; ARX/ARX/Arx, aristaless related homeobox; RA, retinoic
acid; STRA8/STRA8/Stra8, stimulated by retinoic acid gene 8; RB1/
RB1/Rb1, retinoblastoma 1; Cdkn1b/2b/Cdkn1b/2b/Cdkn1b/2b, cyclin
dependent kinase inhibitors 1b/2b; CYP26B1/CYP26B1/Cyp26b1,
cytochrome P450, family 26, subfamily b, polypeptide 1; Aldh1a1/2/
3/Aldh1a1/2/3/Aldh1a1/2/3, aldehyde dehydrogenase family 1, sub-
family A1/A2/A3; YPOS, Y chromosome derived from Mus poschia-
vinus; b-catenin/CTTNB1/Ctnnb1, catenin (cadherin associated

protein), beta 1; FOXL2/FOXL2/FoxL2, forkhead box L2; DMRT1/
DMRT1/Dmrt1, doublesex and mab-3 related transcription factor 1;
FOG2/FOG2/Fog2, Zfpm2, zinc finger protein, multitype 2; GATA4/
GATA4/Gata4, GATA binding protein 4; DAX1/DAX1/Dax1, Nr0b1,
nuclear receptor subfamily 0, group B, member 1; FST/FST/Fst, follis-
tatin; RSPO1/RSPO1/Rspo1, R-spondin homolog; PDGF-BB, platelet
derived growth factor isoform BB.
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ABSTRACT

MicroRNAs are important regulators of developmental gene
expression, but their contribution to fetal gonad development is
not well understood. We have identified the evolutionarily
conserved gonadal microRNAs miR-202-5p and miR-202-3p as
having a potential role in regulating mouse embryonic gonad
differentiation. These microRNAs are expressed in a sexually
dimorphic pattern as the primordial XY gonad differentiates into
a testis, with strong expression in Sertoli cells. In vivo, ectopic
expression of pri-miR-202 in XX gonads did not result in
molecular changes to the ovarian determination pathway.
Expression of the primary transcript of miR-202-5p/3p remained
low in XY gonads in a conditional Sox9-null mouse model,
suggesting that pri-miR-202 transcription is downstream of
SOX9, a transcription factor that is both necessary and sufficient
for male sex determination. We identified the pri-miR-202
promoter that is sufficient to drive expression in XY but not XX
fetal gonads ex vivo. Mutation of SOX9 and SF1 binding sites
reduced ex vivo transactivation of the pri-miR-202 promoter,
demonstrating that pri-miR-202 may be a direct transcriptional
target of SOX9/SF1 during testis differentiation. Our findings
indicate that expression of the conserved gonad microRNA, miR-
202-5p/3p, is downstream of the testis-determining factor SOX9,
suggesting an early role in testis development.

microRNAs, mouse gonad development, testis differentiation,
transcriptional regulation, transgenic mice

INTRODUCTION

Differentiation of the gonads during mammalian embryo-
genesis is a critical developmental process because it
determines the phenotypic sex of the fetus. Gonads develop
from the indifferent or bipotential genital ridges, which can
differentiate into two morphologically and functionally distinct
organs, testes, or ovaries. This decision depends on whether or
not the Y chromosomal, male-determining Sry gene is
expressed. The expression of Sry initiates a cascade of gene
expression and regulation resulting in the formation of a testis
[1]. Subsequently, hormones produced by the testis orchestrate
the differentiation of the rest of the body to a male phenotype.
The critical transcriptional target of SRY is Sox9, which is both
necessary and sufficient for male sex determination and
development. In humans, loss of a fully functional SOX9
results in the disorder campomelic dysplasia, which is
frequently characterized by sex reversal in XY individuals [2,
3].

In the absence of a completely functional Sry, the female
program of gene expression marked by Wnt4, Rspo1, and
Foxl2 is initiated, and an ovary will develop, which in turn
results in a female phenotype. There is a fine balance between
the testicular- and ovarian-specific network of gene expression,
and disturbance can result in a tipping of the balance in one
direction or the other [4].

MicroRNAs are a class of single-stranded noncoding RNAs
of approximately 22 nucleotides (nt) in length that post-
transcriptionally regulate mRNAs. Most microRNAs (miR-
NAs) are transcribed by RNA polymerase II as the long
primary transcript termed pri-miRNA. In the nucleus, the
microprocessor complex consisting of the RNase-III enzyme
Drosha and its RNA-binding partner DGCR8 processes the pri-
miRNA into a precursor miRNA of ;70 nt, the pre-miRNA
hairpin [5, 6]. The pre-miRNA is then processed in the
cytoplasm to a ;22-nt double-stranded RNA by the RNAase
III enzyme Dicer [6]. One of the strands or both strands (3p and
5p) are incorporated into the RNA-induced silencing complex
RISC. The miRNA-loaded RISC then regulates its target
mRNA by affecting mRNA translation and/or stability usually
by binding to 30 untranslated regions (30UTR) (reviewed in
[7]). MicroRNAs are important regulators of developmental
gene expression, but their role in fetal gonad development is
poorly understood.

Several studies have indicated that miRNAs are likely to
regulate the mammalian reproductive system. Microarray and
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cloning approaches have identified known and novel miRNAs
in the fetal and postnatal testis and ovary in a variety of species
[8–12]. The contribution of miRNAs in general has been
studied using Dicer1-null mice, in which the processing of
canonical miRNAs is abolished. While mutant embryos
generated from Dicer1-null oocytes failed to proceed to a
two-cell embryo, mice homozygous for a hypomorphic allele
developed normally except for female infertility associated
with corpus luteum insufficiency [13]. Furthermore, mice with
Dicer1 deleted specifically in germ cells showed arrest of
spermatogenesis [14–18].

Deletion of Dicer1 in the Sertoli cell lineage at 13.5 days
post coitum (dpc), using Dicer1fl/fl:Amhcre mice, resulted in
progressive postnatal testis degeneration and infertility from a
failure of Sertoli cell maturation [19, 20]. In addition, genetic
ablation of Dicer1 alleles in SF1-positive gonadal somatic cells
from 10 dpc resulted in postnatal testis degeneration [21].
While these studies demonstrate that miRNAs have a
significant role in postnatal testicular somatic cell function,
the mouse models do not address the role of miRNAs in fetal
Sertoli cells, because it is unclear at what stage Dicer1 protein
is lost. Moreover, when Dicer1 alleles were excised at 13.5
dpc, a significant decrease in the expression of miRNAs was
evident only at postnatal day 5 [19].

We previously screened the small RNA population of
differentiating XY and XX gonads, using high-throughput
sequencing to identify microRNAs that may regulate mouse
embryonic gonad development [22]. We detected the micro-
RNAs miR-140-5p/miR-140-3p being expressed in differenti-
ating testes. Investigation of pre-miR-140 null mice identified
the fact that Leydig cell development was perturbed with an
increase in Leydig cell number, supporting a role for micro-
RNAs in early gonad development [22]. To further characterize
the role of microRNAs in regulating developmental events
during sex determination and gonadal development, we
investigated the expression and regulation of the conserved
gonadal microRNAs miR-202-5p and miR-202-3p and found
them to be expressed in a testis-enriched pattern, with strong
expression in Sertoli cells, the organizing cells of the XY
gonad. We showed that pri-miR-202 is likely to be a direct
transcriptional target of SOX9, suggesting an early role in
testis-specific organogenesis.

MATERIALS AND METHODS

Mouse Strains

Embryos were collected from timed matings of outbred CD1 mice, with
noon of the day on which the mating plug was observed designated 0.5 dpc. For
more accurate staging, the tail somite (ts) stage of the embryo was determined
by counting the number of somites posterior to the hind limb [23]. Using this
method, 10.5 dpc corresponds to approximately 8 ts, 11.5 dpc to 18 ts, and 12.5
dpc to 30 ts. Zfy PCR was used to determine the sex of the embryos before
morphological gonad differentiation [24]. Generation of cytokeratin 19
Ck19;Sox9-null mice have been described previously [25]. Generation of
Cited2-null mice on a C57BL/6 background has been described previously
[26]. Cited2-null mouse samples were between 24 and 27 ts. The bacterial
artificial chromosome (BAC) transgenic mouse vector used to drive pri-miR-
202 under the control of the regulatory regions of Wt1, and the BAC Wt1:202-
IRESeGFP transgenic lines were generated as described previously [27]. Seven
positive transgenic mice were generated that stably transmitted the Wt1:202-
IRES-eGFP transgene (Tg) through the germ line. However, analysis detected
expression only of the Tg in one mouse line. This line was subsequently
characterized further. Tg mice were analyzed on a mixed Agouti and C57BL/6
background. Genotyping primers used are provided in Supplemental Table S1
(all Supplemental Data are available online at www.biolreprod.org). Protocols
and use of animals were approved by the Animal Welfare Unit of the
University of Queensland, which is registered as an institution that uses animals
for scientific purposes under the Queensland Animal Care and Protection Act
(2001).

In Situ Hybridization

Probes used were pri-miR-202 (entire AK144366 transcript), miR-202-3p
(miRCURY locked nucleic acid [LNA] detection probe, 39487-01; Exiqon),
miR-202-5p (miRCURY LNA detection probe, 39486-01; Exiqon), Scrambled
(miRCURY LNA detection probe, 99004-01; Exiqon). Section in situ
hybridization (sISH) for pri-miR-202 was performed as previously described
[28] with hybridization of the probe at 658C. The color reaction was performed
for equal amounts of time on XY and XX sections at the same time point. For
microRNA section in situ hybridization with digoxigenin (DIG)-labeled LNA
probes, whole embryos were fixed in 4% (w/v) paraformaldehyde (PFA) at 48C
overnight, then washed with 13 PBS, incubated in 30% sucrose solution for 6 h
and then snap frozen in OCT (Tissue Tek). LNA sISH was performed with 10-
lm sagittal sections as described previously [28, 29], unless otherwise stated.
After proteinase K digestion and 4% PFA fixation, slides were incubated in
imidazole (Sigma-Aldrich) buffer (1.6 ml imidazole, 148.35 ml of water, 450 ll
of HCl [32%] and 9.6 ml of 5M NaCl). A 2-h fixation with 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (Sigma-Aldrich) solution diluted in
imidazole buffer, at a final concentration of 0.16 M, pH8 [29]. Hybridization
of the probes was performed at 208C below the probe melting temperature, as
recommended by the manufacturer (Exiqon); 568C for miR-202-3p, 478C for
miR-202-5p, and 478C for Scrambled. RNA probe was detected by incubation
with BM Purple, alkaline phosphatase substrate (Roche). Slides were mounted
in 70% glycerol and imaged with a BX-51 microscope (Olympus). Section ISH
followed by immunohistochemistry was performed as described previously
[30].

For fluorescence sISH, embryos were dissected at 13.5 dpc and fixed in 4%
(w/v) PFA at 48C overnight and washed with 13 PBS and embedded in
paraffin. Paraffin sections (7 lm) were mounted on Superfrost Plus slides
(Menzel-Glaser) and processed as previously described [28]. Fluorescence
detection of the DIG-labeled probe was achieved by incubation in detection
buffer (100 mM Tris HCl, pH8, 100 mM NaCl, 10 mM MgCl

2
) twice for 20

min each and then incubation in 10 ll of 2-hydroxy-3-naphtoic acid-20-
phenylanilide phosphate (HNPP; Roche) and 10 ll of Fast Red TR (Roche)
solution per milliliter of detection buffer for 2 h at room temperature.

For whole-mount ISH, dissected gonads/mesonephroi were fixed in 4%
PFA in PBTX (PBS containing 0.1% Triton X-100) for several hours at 48C.
Whole-mount ISH with DIG-labeled RNA probes was carried out as described
elsewhere [31].

Immunofluorescence

Paraffin sections (7 lm) of mouse embryos were processed as described
previously [27]. The primary antibodies against endogenous mouse antigens
used for this study were goat anti-green fluorescent protein (GFP; code
AB5450; Abcam) at 1:200 dilution; rabbit anti-mouse vasa homologue (MVH;
code 13840; Abcam) at 1:400 dilution; rabbit anti-FOXL2 [27] at 1:600
dilution; goat anti-Mullerian hormone (AMH; code SC-5279; Santa Cruz
Biotechnology) at 1:400 dilution; rabbit anti-SOX9 at 1:200 dilution [32];
rabbit anti-SCC [33] and anti-isolectin B4 (code L2140; Sigma Aldrich) at
1:200 dilution. The secondary antibodies used were donkey anti-goat Alexa
488 (code A11055; Invitrogen) at 1:200 dilution; donkey anti-goat horseradish
peroxidase (code 705-035-003; Abacus ALS); goat anti-rabbit Alexa 594 (code
A11034; Invitrogen) at 1:200 dilution; donkey anti-rabbit Alexa 568 (code
A10042; Invitrogen) at 1:200 dilution; biotinylated anti-rabbit (Amersham);
and 40,6-diamidino-2-phenylindole (DAPI; 2 ng/ll in PBS; Molecular Probes)
at 1:1000 dilution to visualize nuclear DNA in immunofluorescence, using a
confocal microscope (LSM 510 Meta; Zeiss).

Quantitative RT-PCR

Quantitative RT-PCR (qRT-PCR) using SYBR green (Invitrogen) was
performed as described previously [34]. Quantitative RT-PCR at all time points
was performed with gonad-only samples, with mesonephroi removed. Sox9-
null samples were normalized to the endogenous housekeeping genes Rn18s
[34]. Cited2-null samples were normalized to Sdha, n ¼ 3 [34]. WT1-202 Tg
samples were normalized to Tbp, n ¼ 3–4 [34]. TaqMan miRNA qRT-PCR
reactions were performed according to the manufacturer (Applied Biosystems)
instructions for miR-202-5p (no. 4395709), miR-202-3p (no. 4373311), and
sno202 (no. 4380914). Reverse transcriptase reactions were set up with 50 ng
of RNA per sample. Quantitative PCR reactions were normalized to the small
nucleolar RNA sno202 [35] and used to calculate the relative fold change in
accordance with the delta-delta CT method [36]. Where appropriate,
comparisons of gene expression levels were analyzed using unpaired two-
tailed Student t-tests (PRISM version 5.0 software; GraphPad). The SYBR
green primers used are provided in Supplemental Table S1.
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Cell Sorting

Two 13.5 dpc Sf1-eGFP [37] litters were dissected in cold PBS, and the sex
was determined by the presence or absence of testis cords before the gonad was
separated from the mesonephros. Gonads were enzymatically dissociated into a
single cell suspension in 0.25% Trypsin-EDTA (Gibco) with 5 U/ml DNase1
(Sigma) for 20 min at 378C while rocking. Cells were further dissociated using
an 18-gauge and then 23-gauge syringe. Cells were pelleted by centrifugation at
3000 rpm at 48C. The dissociation solution was removed, and cells were
resuspended in 400 ll of ice-cold PBS and stored on ice. Cells were incubated
with 2 ll of SSEA1-PE antibody (BD Biosciences) for 20 min to tag germ cells,
and germ and eGFP-positive cells were sorted using a BD FACSAria cell sorter
at the Queensland Brain Institute of the University of Queensland, Brisbane,
Australia. Collected cell populations were kept on ice before RNA extraction.
Cells from two independent sorting experiments were pooled for analysis.

Electrophoretic Mobility Shift Assay

Electrophoretic mobility shift assay was performed as described previously
[28] using recombinant, bacterially expressed glutathione S-transferase (GST)
fusion proteins of the full-length mouse SOX9 and FGFR2. The oligonucle-
otides harboring the SOX site are provided in Supplemental Table S1.

Gonad Explant Culture and Transient Transfection Analysis

Promoter fragments were cloned into the pGL2 vector. Primers used to
amplify promoters and to perform site-directed mutagenesis are listed in
Supplemental Table S1. Transient transfection assays in gonad explant cultures
were performed using previously described methods [38]. Briefly, gonads were
harvested from 13.5- to 14.5-dpc embryos of CD1 mice. Transfections were
performed by injecting a DNA cocktail containing 4 lg/ll pGL2 construct plus
2 lg/ll SV40-Renilla plasmid DNA. Less than 1 ll of DNA was injected,
spread over three sites within the gonad. Following injection, 20 ll of sterile
PBS was placed on the gonad for electroporation. Immediately thereafter, 5
square electrical pulses of 65 volts, 50 ms each at 100-ms intervals, were
delivered through platinum electrodes from an electroporator. After electropo-
ration, gonads were placed back into culture for 24 h. Explant cultures were
maintained at 378C with 5% CO

2
/95% air in a 50-ll droplet of Dulbecco

minimal Eagle medium supplemented with 10% fetal calf serum and 50 mg/ml
ampicillin [39]. Upon harvest, transfected gonad explants were washed three
times with PBS and then placed in 40–100 ll of passive lysis buffer (Promega)
and manually disrupted with a pipet tip and subjected to three freeze/thaw
cycles to optimize cell lysis. Reporter activity was measured using 20 ll of cell
lysate, using the dual reporter detection system according to manufacturer’s
recommendations (Promega). Each construct was injected in at least three
gonads of each sex, and each experiment was repeated at least four times. Data
were subjected to one-way ANOVA and a Dunnett multiple comparisons post
hoc test, where all the columns were tested relative to the control promoter.

MicroRNA Target Prediction

Messenger RNA targeted by the most prevalent strands of miR-140-3p
(miR-140*) and miR-202-5p were predicted using TargetScan 5.2 Custom [40],
MirWalk [41] and RNA22 [42]. For TargetScan only genes with an exact
match to positions 2–8 of the mature miRNA were considered as truly targeted
(8 mer and 7 mer-m8 site types). Genes predicted to be targeted by at least two
of these programs were considered as a conservative set of miR-202-5p targets.
Genes predicted to be targeted by both miR-140-3p and miR-202-5p by any of
these programs were considered shared targets of these miRNAs.

RESULTS

miR-202 Is a Conserved microRNA Expressed in Mouse
Embryonic Gonads

We have previously screened the small RNA population of
differentiating XY and XX gonads by using high-throughput
sequencing to identify microRNAs that may regulate embry-
onic gonad development [22]. This strategy was used to
identify the microRNA miR-140-3p/5p, which modulates
Leydig cell differentiation in the fetal XY gonad, validating
the fact that the screen identified functionally important
microRNAs. This approach also revealed miR-202-5p/3p as
potential candidates to regulate fetal testis differentiation [22].

Furthermore, we found the primary transcript pri-miR-202 to
be testis-enriched expressed during mouse gonad development
in a microarray designed to detect long noncoding RNAs [43].
While some pre-miRNAs are processed from introns of
protein-encoding genes, pri-miR-202 is transcribed as the
independent noncoding transcript AK144366. The sequence of
the microRNA miR-202 is conserved in vertebrates (Fig. 1A)
and was previously shown to be expressed in adult testes of
human, mouse, Xenopus, Atlantic halibut [10, 11, 44, 45], and
fetal testes of chicken [9]. In order to determine whether miR-
202 is expressed in mouse embryonic gonads, we performed
section ISH for the primary transcript of miR-202, pri-miR-202
(Fig. 1B). Pri-miR-202 was detected in both XY and XX
gonads at 11.5 dpc. As the gonads differentiate, strong
expression of pri-miR-202 was evident in the testis around
the edge of the cords. Testis cords are composed of clusters of
germ cells surrounded by Sertoli cells, suggesting that pri-miR-
202 is expressed in Sertoli cells. Detection of weak pri-miR-
202 expression in the ovary at 12.5 and 13.5 dpc demonstrated
that it is dimorphically expressed as the gonads differentiate.
Fluorescent ISH with XY gonads at 13.5 dpc detected pri-miR-
202 in nuclear subdomains (Fig. 1C), as would be expected for
a primary miRNA transcript. Section ISH, combined with
immunohistochemistry staining for the cytoplasmic Sertoli cell
marker AMH showed that pri-miR-202 and AMH colocalize
within the same cells (Fig. 1D). Therefore, pri-miR-202 is
expressed within the nuclei of Sertoli cells. Expression of pri-
miR-202 was not detected at earlier stages of embryonic
development (Supplemental Fig. S1).

Expression of miR-202-5p and miR-202-3p Is Sexually
Dimorphic

Having detected embryonic expression of pri-miR-202 in
fetal gonads, we next investigated whether pri-miR-202 is
processed to mature miRNAs, and quantified the relative
expression levels between XY and XX gonads. Quantitative
RT-PCR with gonad-only tissue detected expression of both
miR-202-3p and miR-202-5p in embryonic gonads, with
increasing levels of expression as the gonads differentiated
(Fig. 2A). By 13.5 dpc, the expression of both strands was
significantly higher in testes than in ovaries. This expression
pattern was congruent with that observed in our high-
throughput sequencing approach using RNA from mouse
embryonic gonads from 11.5 to 13.5 dpc (Supplemental Fig.
S2, [22]), which also indicated that in the embryonic gonad,
miR-202-5p is the predominantly expressed miRNA strand
from the pre-mir-202 hairpin.

LNA section ISH was then used to confirm that miR-202-3p
is processed within the same cell type as the primary transcript
(Fig. 2B). In the XY gonad, miR-202-3p was detected in the
cytoplasm of cells toward the edge of the testis cords, a pattern
consistent with expression in Sertoli cells. The opposing
hairpin strand, miR-202-5p, was also detected by LNA ISH in
Sertoli cells; however, signal was also detected at other sites in
the embryo that we were unable to validate by high-throughput
sequencing (data not shown), suggesting that the miR-202-5p
probe may not be specific. To further confirm the expression of
miR-202-5p in somatic but not germ cells, we performed qRT-
PCR with sorted gonadal cells from 13.5-dpc Sf1-eGFP
embryos [37]. Germ cells were isolated using an anti-SSEAI
antibody and pooled Sertoli and Leydig cells based on the
expression of eGFP driven by the Sf1 promoter [37].
Quantitative RT-PCR with the Sertoli cell marker Sox9 and
the germ cell marker Mvh showed that while some germ cells
were present in the eGFP-positive cell population, the germ cell
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population was free of Sertoli and Leydig cells (Fig. 2C, left
and middle panels). Quantitative RT-PCR for miR-202-5p
demonstrated that this miRNA was highly enriched (500-fold
higher) in the eGFP-positive cell fraction compared to that in
isolated germ cells (Fig. 2C, right panel), further corroborating
our ISH results. Therefore, miR-202-5p/miR-202-3p are
expressed in a sexually dimorphic pattern during embryonic
gonad development and localize to Sertoli cells in the testis.

In Vivo Overexpression of pri-miR-202 in XX Gonads

To investigate the function of pri-miR-202 in vivo, we
generated a mouse model in which pri-miR-202 was overex-
pressed in embryonic gonadal somatic cells. This mouse model
was used to determine whether overexpression of pri-miR-202
disturbs the ovarian pathways of gene expression. We
overexpressed pri-miR-202 together with eGFP driven by an
internal ribosome entry site (IRES) under the control of the
regulatory region of the Wilms tumor suppressor gene Wt1. We
chose the regulatory region of Wt1 because this gene is
expressed in the somatic cells of XX and XY genital ridges

from approximately 10.5 dpc [46]. This strategy was used
previously to show that ectopic expression of Sox10 in an XX
gonad was able to direct testicular development [27]. All
transgenic XX and XY mice were fertile and survived to
adulthood.

Investigation of transgenic testes by immunofluorescence
showed that eGFP is expressed in Sertoli cells at 13.5 dpc as
expected (Supplemental Fig. S3A). However, surprisingly,
although the primary transcript pri-miR-202 was increased
approximately 2-fold (Supplemental Fig. S3B, left panel), the
level of the processed, mature microRNA miR-202-5p was not
significantly changed (Supplemental Fig. S3B, right panel).
Accordingly, we did not observe any phenotypic changes in
developing transgenic testes at 13.5 dpc as determined by
immunofluorescence for the Sertoli cell marker AMH, the
germ cell marker MVH, the Leydig cell marker SCC, and the
endothelial cell marker isolectin B4 (Supplemental Fig. S3C).

Analysis of transgene expression by immunofluorescence-
detected eGFP in the XX gonad at 11.5, 13.5, and 15.5 dpc in
heterozygous transgenic mice (Fig. 3A), demonstrating that the
transgene is also expressed during XX embryonic gonad

FIG. 1. pri-miR-202 is expressed in the nuclei of Sertoli cells in the embryonic XY gonad. A) The sequences of miR-202-5p (green) and miR-202-3p (red)
are conserved in vertebrates: Hsa, human; Mmu, mouse; Gga, chicken; Dre, zebrafish. B) Section ISH in XYand XX gonads for pri-miR-202 at 11.5, 12.5,
and 13.5 dpc demonstrated expression in testis cords. Bar¼100 lm. C) Section fluorescent ISH of 13.5-dpc testes for pri-miR-202 (red) and DAPI marking
the nuclei (blue). Arrow indicates pri-miR-202 in nuclear subdomains within the testis cords. At low magnification, dotted line marks gonad, and at high
magnification, dotted line marks testis cords. Bars¼100 lm (left panel) and 50 lm (right panel). D) Section ISH of XY gonads at 13.5 dpc for pri-miR-202
(purple) with immunohistochemistry for AMH (brown). Arrows indicate nuclear pri-miR-202 and cytoplasmic AMH within the same cell. Asterisks mark
germ cells with no AMH or pri-miR-202 expression. At low magnification, dotted line marks gonad, and at high magnification (region marked by rectangle
in left panel), dotted line marks testis cords. Bars¼ 100 lm (left panel) and 50 lm (right panel).
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development. Colocalization of eGFP with markers of XX
somatic cells (FOXL2) and germ cells (MVH) at 13.5 dpc
demonstrated that this expression was restricted to the somatic
cell lineage in the XX gonad, as expected (Fig. 3B).
Quantitative RT-PCR at 13.5 dpc detected significantly
increased expression of pri-miR-202 and miR-202-5p in the
heterozygous (Tg/Wt) and homozygous (Tg/Tg) transgenic XX
gonads compared to that in wild-type XX gonads (Wt/Wt). The
expression of pri-miR-202 in XX Tg/Wt gonads and the
expression of the predominant mature microRNA miR-202-5p
in XX Tg/Tg gonads were comparable to the level in wild-type
testes (Fig. 3C).

To determine whether ovarian development was perturbed
in Tg/Tg XX mice, we examined several markers of XX and
XY gonad development. FOXL2, a marker of ovarian somatic
cells, was expressed at wild-type levels in Tg/Wt, Tg/Tg XX
gonads at 11.5, 13.5, and 15.5 dpc (Fig. 4A). Furthermore, the
ovarian somatic cell genes Wnt4 and Rspo1 showed no
significant change in expression in XX Tg/Wt, Tg/Tg gonads
compared to XX Wt/Wt at 13.5 dpc (Fig. 4B), suggesting that
ovarian somatic cell determination proceeds normally. In
addition, the expression of Sertoli cell genes Sox9 and Amh,
and the Leydig cell gene Hsd3b, were unchanged in Tg/Wt, Tg/
Tg XX gonads compared to wild-type at 13.5 dpc (Fig. 4B),
showing that the cells did not differentiate into testicular
somatic cells. Furthermore, there was no change in the

expression of the germ cell marker Mvh, suggesting that germ
cells are present at wild-type numbers. Taken together, no
changes to molecular sex determination pathways and gonad
development were detected in transgenic gonads.

To further assess miR-202-5p function, we queried for
potential target genes using TargetScan, miRWalk, and RNA22
[40–42]. This analysis identified a total of 36 genes that were
predicted to be targeted by at least two algorithms (Supple-
mental Table S2). Interestingly, 11 of the 36 target genes were
also putative target genes of miR-140-3p (Supplemental Table
S2, right column), a microRNA we previously showed to be
expressed in Sertoli cells of the developing testis [22].

Expression of pri-miR-202 Is Perturbed in the Absence of
SOX9 and SF1

Expression of pri-miR-202 in Sertoli cells during XY gonad
differentiation suggested that regulation of pri-miR-202
transcription might be downstream of the transcription factor
SOX9. To test this hypothesis, pri-miR-202 expression was
investigated in a mouse model where SOX9 expression is
absent. The expression of pri-miR-202 was examined in testes
of mouse embryos in which Sox9 was conditionally inactivated
from 10.5 dpc; these embryos were generated by mating
Sox9flox/flox mice with mice expressing Cre recombinase under
the control of the cytokeratin 19 promoter [25]. Expression of

FIG. 2. The miRNAs miR-202-5p/3p are expressed in a dimorphic manner, as gonads differentiate. A) TaqMan qRT-PCR detected expression of miR-202-
3p and miR-202-5p in XY (blue) and XX (pink) gonads at 11.5, 12.5, and 13.5 dpc. n¼3; error bars represent SEM. *P , 0.05 by unpaired Student t-test. B)
Section ISH for pri-miR-202, miR-202-3p (LNA modified probe), and scrambled (LNA modified probe) in XY gonads at 13.5 dpc. Arrows indicate
colocalization on adjacent sagittal sections between pri-miR-202 nuclear staining and miR-202-3p cytoplasmic staining. At low magnification, dotted line
marks gonad tissue, and at high magnification, dotted line marks testis cords. Bars¼100 lm (left panels) and 20 lm (right panels). C) Quantitative RT-PCR
for the Sertoli cell marker Sox9 (left panel), the germ cell marker Mvh (middle panel), and miR-202-5p (right panel) relative to Tbp and sno202,
respectively, of isolated germ cells and eGFP-positive cells from 13.5 dpc Sf1-eGFP testes. Error bars represent technical SEM.
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pri-miR-202 was examined in testes between 15 ts (approxi-
mately 11.2 dpc) and 27 ts (approximately 12.5 dpc). At all
stages tested, the expression of pri-miR-202 in Sox9-null XY
gonads was weaker than that seen in wild-type XY gonads
(Fig. 5A). These mice display complete sex reversal, with
occasional ovotestis formation [25]. Importantly, the expres-
sion of pri-miR-202 was reduced in those samples prior to
morphological sex reversal (15, 16, and 18 ts). Therefore, these
data suggest that pri-miR-202 transcription is downstream of
SOX9.

Because SOX9 directly up-regulates a number of genes in
testes in conjunction with SF1 [47, 48], we investigated the
expression of pri-miR-202 in Cited2 (Glu/Asp-rich carboxyl-
terminal domain 2) null mice. Sf1-null mice display complete
gonad agenesis with gonads regressing after sex determination
[49], thus prohibiting investigation of downstream targets of
SF1 in this mouse model. CITED2 interacts with the
transcription factor WT1 and together they function to ensure
elevated Sf1 levels. Cited2-null mice exhibit a delay in the
testis determination program that results from the failure of

enhanced Sf1 expression and not as a direct consequence of
loss of Cited2 [50]. Sf1 expression levels recover by 12.5 dpc
(30 ts) in Cited2-null gonads [51], so we examined the
expression of pri-miR-202 at 24–27 ts in XY gonads. Relative
to the wild-type, the expression of pri-miR-202 was signifi-
cantly reduced in Cited2-null testes, suggesting that pri-miR-
202 transcription is downstream of SF1 (Fig. 5B).

SOX9 and SF1 Regulate pri-miR-202 Expression via a 4-kb
Promoter

Because pri-miR-202 transcription is evidently downstream
of SOX9, we reasoned that SOX9 might directly transactivate
the pri-miR-202 promoter. A ;4-kb region proximal to the pri-
miR-202 transcription start site (Fig. 6A), WT promoter 1 (WT
prom 1), was cloned into a luciferase reporter plasmid to study
the putative promoter activity. This vector was electroporated
into fetal gonad explants and ex vivo luciferase assays were
performed. The ;4-kb promoter region showed 5- to 6-fold
transactivation in 13.5 dpc XY gonads compared to 13.5 dpc

FIG. 3. Wt1:202-IRES-eGFP transgenic mice express pri-miR-202 in ovarian somatic cells. A) Immunofluorescence on paraffin sections for eGFP (green)
detected transgene expression in transgenic mice from 11.5 to 15.5 dpc. Bar¼ 100 lm. B) In the XX gonad at 13.5 dpc, eGFP (green) colocalizes with
FOXL2 (red) in a subset of somatic cells (upper panels) but not MVH (red) in germ cells (bottom panels). White dashed lines indicate gonad tissue and cell
nuclei are visualized with DAPI (blue). Bars¼ 100 lm (left panels) and 50 lm (right panels). C) Quantitative RT-PCR detected expression of pri-miR-202
and miR-202-5p at 13.5 dpc, with increasing expression in XX heterozygous Tg/Wt and XX homozygous Tg/Tg gonads compared to XX wild-type (WT).
Expression of pri-miR-202 was normalized to that of Tbp, and expression of miR-202-5p was normalized to that of the small nucleolar RNA sno202. n¼3–
6. Error bars represent SEM. *P , 0.05; **P , 0.01.
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XX gonads (Fig. 6B), suggesting that this region contains at
least some of the regulatory elements required for pri-miR-202
transactivation. For the majority of assays, transactivation of
WT promoter 1 in XX gonads was too low to be detected.

Bioinformatics analysis of the 4-kb proximal promoter
identified several SOX and SF1 consensus binding sites (Fig.
6A), (A/T)(A/T)CAA (A/T)G and GTCAAGGTCA respec-
tively [47, 48]. Based on mammalian conservation and

FIG. 4. Sexual development of the gonad is normal in XX Wt1:202-IRES-eGFP mice. A) Immunofluorescence on paraffin sections for FOXL2 detected
somatic cells at 11.5, 13.5, and 15.5 dpc XX Wt1:202-IRES-eGFP mice. Arrows indicate FOXL2 positive cells and asterisks indicate nonspecific
fluorescence of blood cells. Bars¼100 lm for 11.5 dpc (top panel) and 200 lm for 12.5 and 13.5 dpc (middle and bottom panel). B) Quantitative RT-PCR
did not detect any change in expression of male somatic cell marker Sox9, fetal Leydig cell marker Hsd3b and germ cell marker Mvh or female somatic
cell markers Wnt4 and Rspo1. Error bars represent SEM, n¼ 3–4. ns, not significant.
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proximity to putative SF1 binding sites, several putative SOX
sites were selected for analysis of in vitro SOX9 binding,
including a SOX site 0.1 kb proximal to the transcription start
site SOX-0.1 (Fig. 6, A and C).

Electrophoretic mobility shift assays were performed to
identify whether SOX9 could bind directly to these elements
(only SOX-0.1 is shown). Nondenaturing polyacrylamide gel
electrophoresis identified a shift in the migration of wild-type
(WT) SOX-0.1 DNA fragment with GST-tagged SOX9 that
was not evident with GST-tagged fibroblast growth factor
receptor 2 (FGFR2) protein, suggesting that GST-SOX9 bound
to the SOX-0.1 element (Fig. 6D). Mutation of the SOX
consensus site (MUT SOX-0.1) prevented this binding,
suggesting that it was a sequence-specific interaction (Fig.
6D). Therefore, these data show that SOX9 binds to SOX-0.1
in vitro.

Site-directed mutagenesis was then used to introduce the
mutated SOX-0.1 into the 4-kb putative pri-miR-202 promoter
luciferase reporter vector that was previously used for the ex
vivo gonad luciferase assays. In addition, three other promoter
reporters were generated: the full-length 4-kb promoter with a
mutated SF1-0.1 site and two truncated regions of the 4-kb
wild-type promoter (WT promoter 2 and 3), 3.5 kb and 0.5 kb
(Fig. 6A). Subsequently, ex vivo gonad luciferase assays of XY
gonads were performed using these modified promoter regions.
Truncation of the 4-kb wild-type promoter region resulted in a
loss of promoter activity, suggesting that critical regulatory
elements were contained within the full-length 4-kb region.
Furthermore, mutation of the SOX-0.1 site or the SF1-0.1 site
abolished transactivation of the wild-type promoter, suggesting
that SOX9 and SF1 directly regulates the pri-miR-202
promoter via these regulatory elements (Fig. 6E).

DISCUSSION

Mammalian sex is determined by a balance of male- and
female-inducing factors, most notably SRY, SOX9, and FGF9,
promoting testicular differentiation, and WNT4, RSPO1 and
FOXL2, promoting ovarian differentiation. Because micro-
RNAs are known to function in fine-tuning of gene expression

and enforcing developmental decisions, we investigated
whether microRNA gene regulation plays a role in sex
determination in the mouse model system. Here, we examined
the expression, regulation, and function of the microRNAs
miR-202-5p and miR-202-3p in mouse embryonic gonads,
identifying these miRNAs as candidates that regulate embry-
onic testis development. In addition, we showed that the
expression of these miRNAs are likely to be regulated directly
by the testis-determining factor SOX9, demonstrating that
SOX9 function is not only important for the regulation of
protein-encoding genes but also nonencoding RNAs.

Conserved Testicular Expression of miR-202-5p/3p

The miRNA miR-202-5p/3p is a member of the let-7 family.
The let-7 family members are highly conserved across species
both in sequence and function, with an increase of let-7
expression generally associated with cell differentiation (for
review see [52]). We found that miR-202-5p/3p is upregulated
in Sertoli cells during mouse testis differentiation. Interesting-
ly, previous studies have suggested that miR-202 is expressed
in both somatic and germ cells postnatally [10], suggesting that
its expression is upregulated in germ cells at later stages during
development. The testis-enriched expression during gonad
differentiation is conserved in birds, with chicken showing
high miR-202-5p/3p expression in developing testes compared
to ovaries [9]. Furthermore, the association of pri-miR-202
with the male gonad differentiation program was investigated
in an avian model of sex reversal where estrogen synthesis was
manipulated in ovo. In this sex reversal system, the expression
of miR-202-5p decreased in feminized ZZ gonads and
increased in masculinized ZW gonads, demonstrating that
miR-202-5p expression is associated with male gonad devel-
opment.

In addition, the expression of miR-202-5p/3p has been
detected in immature and mature gonads in a number of
vertebrate species, including Atlantic halibut, pig, human,
mouse, and Xenopus [10, 11, 13, 45, 53]. Thus, the
evolutionarily conserved expression pattern of miR-202-5p/3p

FIG. 5. pri-miR-202 expression is reduced in Sox9-null and Cited2-null XY gonads. A) pri-miR-202 expression in cytokeratin 19;Sox9-null mice. Each
datum point is representative of n¼ 1 and is shown relative to a tail somite-matched wild-type sample. Expression is normalized to that of 18S. Error bars
represent technical error. B) pri-miR-202 expression in XY Cited2-null mice at 12.25 dpc. n ¼ 3; expression is normalized to Sdha and is represented
relative to wild-type expression. *P , 0.05, by unpaired students t-test. Error bars represent SEM.
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suggests that it plays a role during fetal testis differentiation
and possibly has a function in postnatal testis and ovary.

Transcriptional Regulation of pri-miR-202 Expression

The transcription of microRNAs as long primary transcripts
by RNA polymerase II is regulated by transcription factors.
SOX9 is a master regulator of Sertoli cell differentiation in
mouse and humans, being both necessary and sufficient for
testis determination [3, 54, 55]. A number of direct target genes
for SOX9 have been identified and shown to have important

functions in Sertoli cell differentiation, maintenance, and male
sex determination, such as anti-Müllerian hormone, which
promotes regression of the Müllerian duct [47, 56], and
prostaglandin D synthase, which functions in a positive
feedback loop to ensure Sox9 expression and therefore Sertoli
cell differentiation [28, 32]. SOX9 has previously been shown
to regulate the expression of another miRNA, pri-miR-140,
which is contained within an intron of the Wwp2 gene [57, 58].
Therefore, direct transcriptional regulation of microRNA gene
expression may be an important contribution to the function of
SOX9 protein.

FIG. 6. pri-miR-202 promoter activity requires SOX9 binding element. A) In silico analysis of the putative pri-miR-202 promoter shows several potential
SOX binding sites (blue) and SF1 binding sites (purple) with emphasis on SOX-0.1 and SF1-0.1 sites. Regions included in promoter constructs used in B
and E (WT prom 1 2 and 3, SOX-0.1 MUT and SF1-0.1 MUT) are indicated. B) Ex vivo gonad luciferase assays with 4 kb wild-type promoter in XYand XX
13.5 dpc gonads. In most assays, transactivation was not detected in XX gonads, and XX transactivation reflects the few assays that detected activity above
baseline. C) Conservation of the DNA sequence in mammals of the SOX-0.1 element. D) Electrophoretic mobility shift assay with wild-type (WT) or
mutated (MUT) SOX-0.1 element from the pri-miR-202 promoter. Radioactively labeled DNA was incubated with either GST-SOX9 or GST-FGFR2 as
control. Black arrow indicates bound probe, red arrow indicates free probe. E) Ex vivo gonad luciferase assays in XY 13.5 dpc gonads with 4-kb wild-type
promoter (WT prom 1), 3.5-kb wild-type promoter (WT prom 2), 0.5-kb wild-type promoter (WT prom 3), SOX-0.1 mutant promoter, and SF1-0.1 mutant
promoter. Dual luciferase activity of each promoter was normalized to testes electroporated with pGL2-basic control vector. Following normalization, the
fold change of each promoter construct was calculated relative to the WT promoter 1 activity. None of the promoter constructs expressed measurable
luciferase activity in XX gonads (data not shown). Error bars represent SEM. Data was subjected to a one-way ANOVA and a Dunnett multiple comparison
post hoc test relative to the control WT promoter 1. *P , 0.05; **P , 0.01, n ¼ 4.
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Investigation of pri-miR-202 expression in the Ck19;Sox9-
null mouse model demonstrated that pri-mR-202 expression
was dependent on SOX9. There were several limitations to
using this mouse model. The number of samples available was
limited, with only 1 in 64 embryos generated carrying the
correct Sox9-null XY genotype [25]. Furthermore, the dynamic
increase in expression of Sox9 [59] and pri-miR-202 from 11.5
to 12.5 dpc prohibited similarly staged samples such as 15, 16,
and 18 ts from being pooled as previously published [60].
However, at all time points there was a clear trend showing that
pri-miR-202 expression was reduced, and notably, expression
was reduced in samples prior to morphological sex reversal.

Characterization of the putative pri-miR-202 promoter ex
vivo suggested that SOX9 and SF1 transactivate pri-miR-202
through this genomic region, with mutation of a specific SOX
and SF1 binding site ameliorating this transactivation. These
results were further supported in vivo in the Cited2-null mouse
model. These mice have been previously shown to have
reduced Sf1 expression [50, 51], which was associated with
reduced pri-miR-202 expression. However, a truncation of the
wild-type promoter region, which still contained the identified
SOX and SF1 binding sites, also reduced transactivation,
demonstrating that additional regulatory elements are required
for full promoter activity. Bioinformatics analysis identified, in
addition to the SOX and SF1 binding sites, GATA4, FOXL2,
SMAD, and KRAB binding sites, all factors that have been
shown to play a role in mammalian gonad development [61–
63]. Given that pri-miR-202 is expressed in the developing
ovary at 11.5 dpc but is downregulated thereafter, it is possible
that the putative FOXL2 binding sites are important for the
repression of this noncoding RNA in ovarian somatic cells. In
addition, we identified a putative paired-SOX binding site
within this deleted region. Paired-SOX sites have been shown
to be important for full activation by SOX9 [64]. However,
electrophoretic mobility shift assays did not confirm SOX9
binding to this DNA sequence in vitro (data not shown),
suggesting that SOX9 binding to this paired-SOX site does not
play a role in the transcriptional activation of pri-miR-202. In
summary, our data from the expression analysis of Sox9 and
Sf1 loss-of-function mouse models and mutation of the pri-
miR-202 promoter support the conclusion that SOX9/SF1
positively regulates pri-miR-202 expression during testicular
development.

Function of miR-202-5p/3p

Previous studies have addressed the global function of
microRNAs by deletion of Dicer1 in the Sertoli cell lineage at
13.5 dpc, using the Amh-Cre, or at 10 dpc by using the Sf1-Cre
[19, 20, 65, 66]. In both mouse models, a phenotype was
evident only in the postnatal testis [19, 20, 65, 66].
Interestingly, the expression of Sertoli cell-specific miRNAs
in Dicer1;Amh-Cre testes were significantly reduced only at
P5, despite ablation of Dicer1 12 days earlier [19], suggesting
that miRNAs are inherently stable in Sertoli cells and/or
DICER1 protein itself has a long half-life in Sertoli cells,
making it difficult to study the function of miRNAs in fetal sex
determination and early gonad development. Therefore, the
function of microRNAs in somatic gonad development should
be addressed by a candidate-based approach.

To date, no direct physiological function for miR-202-5p/3p
has been identified. Our present data suggest that ectopic
expression of pri-miR-202 in XX transgenic mice does not
overtly influence sex determination, although it may prove to
have an important role in testis differentiation and function. A
possible explanation for the lack of observable effect is that the

endogenous targets of miR-202-5p/3p may not be present in
ovarian somatic cells and thus, rather than inhibiting ovary-
determining pathways, miR-202-5p/3p may regulate testis-
specific gene networks. Bioinformatics analysis, using the
stringent criterion that a gene must be identified as a potential
target by at least two algorithms, revealed 36 genes as target
genes of miR-202-5p (Supplemental Table S2). Eleven of the
36 miR-202-5p target genes were also predicted to be targeted
by miR-140-3p (Supplemental Table S2), which is coexpressed
with miR-202-5p in Sertoli cells in the early XY gonad [22].
However, none of these targets has a known role in sex
determination and early gonad development. In the gain-of-
function experiment we have tested whether pri-miR-202 can
act as a dominant testis-determining factor, which precludes
analysis of a possible function in enforcing the male
determination program or in supporting decisions of testis
differentiation. Therefore, the generation of pri-miR-202-null
mice is required before the function of miR-202-5p/3p can be
defined in XY gonadal somatic cells.

Our transgenic mouse model resulted in the overexpression
of pri-miR-202 not only in somatic cells of the ovary but also in
Sertoli cells within the developing testis. Intriguingly, while we
detected an increase in the level of the primary transcript in
transgenic testes, this did not result in an increase in the
processed, mature miRNA, suggesting a testis-specific negative
feed-forward loop. This regulation could be at the Drosha level,
as has been described for a number of proteins and signaling
pathways such as the DE-AD-box RNA helicases p68 and p72
[67], BMP signaling [68], and LIN28 (for review see [69]), at
the level of miRNA export by exportin-5, similar to what has
been described for miR-105, miR-128, and miR-31 [70], or
through the control of cleavage by Dicer. The exact mechanism
of the here-identified testis-specific processing is currently not
known and needs further, more detailed investigation,
including its specificity for processing of miR-202.

In the emerging paradigm of miRNA regulation of gene
expression, it appears that microRNAs can be grouped into
three categories. First, miRNAs may act as a switch to regulate
a sharp developmental decision, usually through one main
target gene. Second, miRNAs may regulate networks of genes
to enforce stochastic developmental decisions. Third, miRNAs
may regulate gene networks that buffer perturbation of normal
physiological processes (reviewed in [71, 72]). To that end, it
would be interesting to cross pri-miR-202-overexpressing
transgenic mice onto a partial XX sex reversed genetic
background, such as Wnt4-null mice, to determine whether
pri-miR-202 can enforce testicular differentiation in the context
of a weaker ovarian program.

Alternatively to its physiological role, miR-202-5p/3p
expression has been shown to be associated with pathological
conditions, suggesting a function in a disease setting. Human
miR-202-5p was one of 10 microRNAs upregulated in ovarian
endometriomas compared with normal endometrium [73]. In
addition, miR-202-3p was found to directly repress the
expression of the proto-oncogene myelocytomatosis virus-
related oncogene, neuroblastoma-derived (avian) Mycn, sug-
gesting a function for miR-202-5p/3p as a tumor suppressor
[74]. Should miR-202-5p/3p function to provide robustness to
gene networks by attenuating aberrant transcripts; perhaps
investigation of miR-202-5p/3p in mouse models of ovarian
and testicular cancer will clarify its biological function.

In summary, we have determined that pri-miR-202 and miR-
202-5p/miR-202-3p are upregulated during fetal testis differ-
entiation with strong expression in Sertoli cells. In vivo,
expression of pri-miR-202 in XX gonads does not disrupt XX
embryonic sex determination and differentiation. Furthermore,
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we have demonstrated that a 4-kb putative promoter region of
pri-miR-202 is sufficient to drive dimorphic expression
between XY and XX gonads ex vivo and that pri-miR-202
may be a direct transcriptional target of SOX9/SF1. From the
reported data, we conclude that upregulation of miR-202-5p/
miR-202-3p marks XY gonad differentiation and functions
downstream of the testis-determining factors SOX9 and SF1.
However, definition of the function of pri-miR-202 in the XY
gonad requires the generation of pri-miR-202-null mice.
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