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Jonathan R. Rhodes, The University of Queensland, School of Geography, Planning and 

Environmental Management and ARC Centre of Excellence for Environmental Decisions, 

Brisbane, QLD 4072, Australia. Email: j.rhodes@uq.edu.au. 

 

12.1 Introduction 

Much of ecological statistics, including most of the methods in this book, rely on parametric 

statistics. Parametric statistics make specific assumptions about the nature of the probability 

distributions that our data arise from, in contrast to non-parametric statistics that make far fewer 

such assumptions. These assumptions can be an advantage because it allows us to make clearly 

defined and transparent assumptions about the processes generating our data (Royle and Dorazio 

2008). This, in turn, allows us to test explicit hypotheses about the ecological processes that led to 

observed data. However, a disadvantage is that ecological data can fail to meet the assumptions of 

the standard probability distributions (e.g., normal, Poisson and binomial distributions) used in 

parametric statistics. A particularly common problem in this context is a phenomenon known as 

overdispersion that arises when data are more variable than can be accommodated by the parametric 

distribution being used to describe it (McCullagh and Nelder 1989). This chapter is about how to 

deal with overdispersion when using parametric statistics for ecological inference. In particular, I 

show how a class of models known as mixture models (Mengersen et al. 2011) can be used to help 

ensure that our statistical tests are valid when overdispersion is present and to better understand the 

drivers of overdispersion for improved ecological inference. 

To illustrate the idea of overdispersion, imagine you go out to a number of randomly 

selected sites and count the number of individuals of a species at each site. What would these data 
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look like if the distribution of the species was highly spatially aggregated, occurring at high 

densities at a few locations where habitat is suitable, but being absent from other areas where 

habitat is unsuitable? If this were the case, we would expect the data to consist predominantly of 

high values in sites where habitat is suitable, but zero values elsewhere. That is, we would tend to 

observe data at the two extremes of the distribution, with values in between being much less 

common. A consequence of the data lying at the two extremes is that its variance will be higher 

than the theoretical variance for the standard parametric distribution used to model count data, 

which is the Poisson distribution. This happens because the Poisson distribution assumes that the 

data lie predominantly around the center of the distribution, rather than the extremes. In this 

example, it is the spatial aggregation process that leads to overdispersion, but overdispersion in 

ecological data can be caused by a range of ecological, observation and modeling processes 

(Haining et al. 2009, Linden and Mantyniemi 2011). 

A major issue with overdispersion is that it generates bias in statistical tests. Overdispersion 

means that the true variances of the data are larger than the theoretical variances assumed by 

parametric distributions. This leads to incorrect model likelihoods and, because variances are 

underestimated, we will tend to incorrectly reject the null hypothesis (i.e., make Type I errors) more 

often than we should (also see Chapters 2 and 3). Consequently, we need tools that allow us to 

account for overdispersion in our statistical models so that biases in our statistical tests are reduced 

or eliminated. Anderson et al. (1994) illustrate one way to do this using quasi-likelihood methods 

(see Chapter 6) to adjust Akaike’s Information Criteria (AIC) values to correct for overdispersion in 

capture-recapture data. This approach tells us little about the nature of the overdispersion itself, it 

just accounts for it, but the nature of overdispersion can also provide important information about 

underlying ecological processes and/or observation processes (Martin et al. 2005). For example, 

Rhodes et al. (2008b) model the effects of marine pollution on fecundity in the copepod Tigriopus 

japonicus and use a mixture model that explicitly models the processes driving an excess of zeroes 

(and therefore overdispersion) in their data. By being explicit about the processes driving 
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overdispersion they were able to make inferences about the effect of pollution on two different 

processes: the number of individuals that entirely fail to breed (causing an excess of zeroes), and the 

number of young per successful breeder. In this case, overdispersion is not just a nuisance that we 

want to control for, but reflects a key ecological process of interest. Consequently, we often want 

methods to explicitly model the overdispersion process when these processes themselves are of 

direct interest.   

Mixture models are a particular class of statistical model that allow us to control both for 

overdispersion in our statistical tests and to model explicitly the processes that drive overdispersion, 

resulting in improved ecological inference. These models allow for greater variability than standard 

distributions by allowing the parameters (and sometimes the structure) of standard statistical models 

to vary randomly, rather than being fixed. To illustrate the idea of a mixture model, let us go back to 

our hypothetical example of the spatially aggregated count data that we looked at above. The 

standard way to model this type of data would be using a Poisson distribution that has a single 

parameter, λ, representing the mean. However, since our count data have a high frequency of zeroes 

and a high frequency of high values, the true variance of the data will be greater than the theoretical 

variance of the Poisson distribution. To deal with this, we could use a mixture model that assumes 

that the λ parameter can vary randomly and take one of two values: either zero, or a fixed value 

greater than zero, with either case occurring with a given probability. This model explicitly 

accounts for the high frequencies of zeroes and high frequencies of high values, by allowing the 

mean to be either zero or fixed value greater than zero respectively. This mixture model is known as 

a zero-inflated Poisson distribution (Lambert 1992). Importantly, by allowing λ to vary randomly 

we characterize sites as suitable (λ > 0) and unsuitable (λ = 0) and therefore the process that leads to 

the overdispersion is explicitly characterized. A nice property of a mixture of this type, therefore, is 

that not only do we control for overdispersion, but we can make inferences about the processes that 

lead to that overdispersion, such as estimating the proportion of sites where habitat is suitable 

versus unsuitable.      
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Although I have used count data and the problem of estimating the distribution and 

abundance of a species to illustrate the idea of a mixture model, we can apply mixture models to 

other classes of problems. In fact, mixture models represent a highly flexible approach for dealing 

with overdispersion across a very wide range of classes of statistical problems (Mengersen et al. 

2011). In ecology, mixture models have been successfully applied to deal with overdispersion and 

heterogeneity in a range of applications, including: modeling species’ distributions and abundance 

(Tyre et al. 2003, Royle 2004, Wenger and Freeman 2008), survival analysis (Pledger and Schwarz 

2002), population dynamics (Kendall and Wittmann 2010); disease ecology and parasitology 

(Calabrese et al. 2011); community ecology (Colwell et al. 2004); and dispersal ecology (Clark et 

al. 1999). However, there are three common problems in ecology where mixture models are 

particularly useful: (1) accounting for an excess of zeroes in data (arising either due to ecological or 

observation processes); (2) accounting for heterogeneity among sampling units (e.g., individuals or 

social groups); and (3) making explicit inferences about two or more ecological or observation 

processes that jointly give rise to overdispersed data (e.g., short- and long-distance dispersal 

processes that both contribute to the distribution of dispersal distances).  

In this chapter I present mixture models as a powerful and flexible way to deal with 

overdispersion in ecological data and discuss how this approach can be used to account for 

overdispersion and facilitate improved inference by understanding the overdispersion process itself. 

Although mixture models are not new and some mixture models (e.g., the negative-binomial 

distribution) are commonly used in ecology, the routine consideration of mixture models as a 

flexible approach for modeling complex ecological data is rare. The discipline can therefore benefit 

greatly from a better-informed use of mixture models that will lead to improved ecological 

inference. Further, faster computers and new computational methods now make it possible for most 

ecologists to routinely fit complex statistical models to ecological data. Ecologists are therefore in a 

unique position to extend their toolkit to the more general use of mixture models. 
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The remainder of the chapter is divided into four sections. In the first section I define 

overdispersion and provide guidance on how it can be detected. In the second section I discuss 

mixture models in more detail and highlight the main types of mixture models used in ecology. I 

then present two empirical examples. The first example is a survival analysis problem where I use a 

mixture model to deal with heterogeneity among groups. In the second example I present a problem 

where the aim is to estimate species’ abundance from count data that is zero-inflated. In this 

example, I show how mixture models can be used to model both ecological and observational 

sources of the zero inflation. I end with a discussion of the benefits and challenges of using mixture 

models for ecological inference, especially in comparison to alternative approaches, and highlight 

the key things to consider when using mixture models.  

 

12.2 Overdispersion  

12.2.1 What is overdispersion and what causes it? 

Data are defined as overdispersed if the variance of the data is greater than the theoretical variance 

of the probability distribution being used to describe the data generation process (Hinde and 

Demetrio 1998). In other words, overdispersion is always relative to a specified probability 

distribution. Overdispersion is often most apparent in count and presence/absence data because the 

variance of a standard Poisson or binomial distribution is a function of the mean, rather than 

estimated independently from the data. In the case of the Poisson distribution, the variance is equal 

to the mean (i.e., λσ =2 ) and, in the case of the binomial distribution, the variance is equal to the 

number of trials multiplied by the success probability multiplied by the failure probability (i.e., 

[ ]pnp −= 12σ ). If the data fail to conform to these characteristics of the variance, then the true 

variance of the data can be higher than the theoretical variance and therefore overdispersed. Such 

overdispersion in ecological data can arise from ecological processes, observation processes and/or 
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misspecification of the mean (Table 12.1, Haining et al. 2009, Linden and Mantyniemi 2011). It is 

these sources of overdispersion that we will look at next. 

Two important ways in which ecological mechanisms can lead to overdispersion include: (1) 

causing spatial/temporal clustering or aggregation (see also Chapter 10) and/or (2) introducing 

heterogeneity among sampling units. As I highlighted in section 12.1, spatial clustering tends to 

generate data with too many high counts (from locations where the species is present) and/or too 

many zero counts (from locations where the species is absent), resulting in a variance that is greater 

than the theoretical variance of the Poisson distribution. Cunningham and Lindenmayer (2005), for 

example, show that, in the Central Highlands of Victoria, Australia, counts of the threatened 

Leadbeater’s posssum (Gymnobelideus leadbeateri) are overdispersed primarily due to an excess of 

zero values. This is driven by the species’ distribution being highly spatially clustered in only a few 

areas of the landscape where its habitat occurs. In a similar way, temporal clustering can also lead 

to overdispersion. For example, disturbance events that impact on ecosystems such as cyclones 

(hurricanes or typhoons for those not fortunate enough to live in Australia) can be highly temporally 

clustered and therefore overdispersed (Mumby et al. 2011). Heterogeneity among sampling units 

(e.g., genetic or phenotypic variation among individuals) can also result in an excess of high and/or 

low values and therefore overdispersion relative to the Poisson or binomial distributions. A typical 

example of this is where breeding success varies among individuals, leading to highly variable 

reproductive output and overdispersion in data on reproductive output (Quintero et al. 2007, 

Kendall and Wittmann 2010). 

Observation processes commonly result in data inaccuracies that can also lead to 

overdispersion by increasing variability in the data. For example, presence / absence data collected 

where there is imperfect detection (which is almost always the case) can lead to an excess of zeroes 

and overdispersion relative to the binomial distribution (Tyre et al. 2003). However, although zero-

inflation caused by detection error can appear similar to zero inflation caused by ecological 

processes, the inferences we make from the data are normally quite different. This is because, in the 
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presence of detection error, we are usually interested in making ecological inferences after stripping 

out the process (detection error) causing overdispersion. On the other hand, when ecological 

processes are the cause of zero-inflation, we are commonly interested making inferences about 

overdispersion as a component of the ecological processes of interest. 

The final way overdispersion can arise is when the mean is misspecified. Most statistical 

models specify the mean of the appropriate distribution as a function of covariates (e.g., in linear 

regression, the mean of the normal distribution is specified as a function of covariates). In the case 

of the Poisson and binomial distributions, if the function that links the mean to the covariates is 

misspecified in a way that results in the mean being underestimated (e.g., due to important 

covariates, or non-linear terms, being missed), then the variance will also be underestimated. This 

leads to overdispersion because the estimated variance is lower than the true variance of the data. 

Missing covariates are likely to be common in ecology, particularly in applications such as 

modelling the distribution of species where the factors driving distributions are often not well 

understood, or even when they are understood, often cannot be directly measured (Barry and Elith 

2006). 

 

12.2.2 Detecting overdispersion 

Prior to and during the development of statistical models for data that may be overdispersed, it is 

important to be able to identify whether the data are in fact overdispersed or not. There are three 

primary ways in which we can detect overdispersion: (1) inspect histograms of the raw data; (2) 

inspect quantile-quantile plots of the residuals of the model; and/or (3) conduct formal hypothesis 

tests, or model selection. Often, simply inspecting a histogram of the raw data and comparing this 

against expected frequencies based on the relevant standard distribution can reveal important 

information on whether data are overdispersed or not. Table 12.1 illustrates what histograms look 

like relative to the Poisson distribution for different causes of overdispersion in count data, but we 

can construct similar plots for any distribution. However, overdispersion can sometimes be 
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accounted for by the relationship with a covariate included in the model, rendering residuals that are 

not overdispersed. Therefore, a preferred and more sophisticated, approach is to inspect a quantile-

quantile plot of the residuals; is a standard method for visually comparing the distribution of data 

versus the expected distribution. Quantile-quantile plots show the actual ordered residuals from the 

model against the expected ordered residuals of the model; a plot lying close to the 1:1 line 

represents good agreement between the distribution of the data and the expected distribution. 

Quantile-quantile plots of overdispersed data will tend to lie below the 1:1 line at the lower end of 

the distribution and/or lie above the 1:1 line at the higher end of the distribution. This reflects the 

tendency for overdispersed data to contain more extreme values than expected, but the exact pattern 

will depend upon the nature of the overdispersion present. Table 12.1 illustrates what quantile-

quantile plots look like relative to the Poisson distribution for different causes of overdispersion. 

Landwehr et al. (1984) develop a useful simulation approach for constructing quantile-quantile 

plots for logistic regression, but the approach is flexible enough to be applied to any model. The 

inspection of histograms of the raw data and quantile-quantile plots of the residuals represent 

qualitative approaches for detecting overdispersion. One advantage of this approach is that it allows 

a visual representation of the distribution of the data relative to the expected distribution that can 

help in pinpointing how overdispersion arises in the data. However, it is also possible to take a more 

formal approach and explicitly test for overdispersion by conducting hypothesis (score) tests or to 

use multi-model selection methods (see also Chapter 3; Dean 1992, Richards 2008). I will expand 

on and illustrate these approaches in the empirical examples later in the chapter. 

 

12.3 Mixture Models 

In the previous section I discussed the nature of overdispersion and described how to 

identify whether your data are overdispersed or not. Now we are going to turn our attention to 

mixture models as a way of dealing with overdispersion in our statistical models. In this section I 

define what a mixture model is, identify some typical mixture models used in ecology and briefly 
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mention the different ways in which mixture models can be fit to data. A complete technical 

treatment of mixture models is not possible within a single book chapter, but McLachlan and Peel 

(2000), Johnson et al. (2005) and Mengersen et al. (2011) provide more comprehensive and 

technical treatments of mixture models. 

 

 

12.3.1 What is a mixture model? 

To illustrate the idea of a mixture model, let us go back to our hypothetical example of the surveys 

of the highly spatially aggregated species that I described in the Introduction. There I discussed the 

idea that we could formulate a mixture model in a way that allowed the mean to vary randomly 

between having a value of zero and having a value greater than zero. That is to say, some data 

points would come from a distribution with a mean of zero and some will come from a distribution 

with a mean greater than zero. But let us now look at this more formally. First assume that, 

regardless of whether the mean is zero or greater than zero, the data are Poisson distributed (see 

Appendix LIKELIHOODS for the definition of the probability density function for the Poisson 

distribution). Then, when the mean is greater than zero, the probability density function is  
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If we let p be the probability that the mean is zero, so the probability that the mean is greater than 

zero is 1 – p, then the probability density function is 
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This is the probability density function for the zero-inflated Poisson distribution (Lambert 1992); a 

mixture model that has a mean equal to ( )λp−1  and variance equal to ( )( )21 λλ pp +− . The 

variance of the zero-inflated Poisson distribution is always greater than the mean (in contrast to the 

Poisson), since ( )( ) ( )λλλ ppp −>+− 11 2  when p > 0. Therefore, if we were to use a Poisson 

distribution to model these data we would underestimate the variance. Using instead a zero-inflated 

Poisson distribution corrects this problem and allows for overdispersion to be accommodated in our 

model (in this case, in the form of zero-inflation).           

 Equation 12.3 shows that the mixture model is essentially a weighted sum of two probability 

density functions (the mixture components), with weights p and 1 – p (the mixture weights). This is 

what is known as a finite mixture distribution because it is a finite sum of distributions. We can 

generalize this idea to a K-component finite mixture model, ( )Θ|yg , which is any convex 

combination of K probability density functions such that 

( ) ( ) ∑∑
==

==
K

i
i

K

i
iii yfyg

11
1    subject to    || ωω θΘ ,      (12.4) 

where ( )ii yf θ|  is a probability density function, with parameters iθ , representing mixture 

component i, iω is the mixture weight for component i, and ( )kk θθΘ ,...,,,..., 11 ωω= . In ecology, 

mixtures of more than two distributions may be appropriate when we want to capture more than two 

processes generating the data. For example, Kendall and Wittmann (2010) use a finite mixture 

model with more than two components to model multiple process that drive reproductive output in 

birds, mammals and reptiles. Many of the processes they consider (that include, nest building 

success, number of eggs laid or births, chance of nest destruction, and offspring survival) can result 
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in overdispersion in reproduction data, but they explicitly account for them using a finite mixture 

model with more than two components. In general, finite mixture models provide a highly flexible 

approach for modeling non-standard distributions and are well suited to accounting for many kinds 

of overdispersion where model parameters can take a finite number of discrete values (Mengersen 

et al. 2011). 

 Another kind of mixture model arises when one or more of the parameters of a probability 

distribution varies randomly and can take an infinite number of values. In this case, the number of 

mixture components (the number of different possible probability distributions) is not discrete 

anymore and becomes infinite, reflecting the infinite number of possible values for the 

parameter(s). In the example above we assumed that the mean, λ, could take one of two discrete 

values: (1) a value of zero; or (2) a fixed value greater than zero. But, what if the mean can actually 

take any random value between zero and infinity? In this case, rather than just being able to take 

two discrete values, λ could be an infinite number of values, with the appropriate model changing 

from a finite to an infinite mixture. This could arise, for example, if mean abundance or density 

varies randomly across a landscape due to some ecological processes, such as variation in habitat 

quality. This would likely result in a pattern different from zero-inflation, but still cause 

overdispersion in the data. 

If the parameter with random variation (such as the mean) varies according to a discrete 

distribution (e.g., Poisson), the resulting mixture is known as a countable mixture, but if it varies 

randomly according to a continuous distribution (e.g., normal or gamma), the resulting mixture is 

known as a continuous mixture. An example of a continuous mixture is when modeling the spatial 

distribution of a species’ abundance, but where there is continuous random variation in the mean 

abundance of the species across a landscape. Here, random variation in mean abundance would best 

be described by a continuous distribution, so a continuous mixture would be used. An example of a 

countable mixture is when spatially modeling the proportion of individuals of a species calling 

across a landscape, but where the number of individuals present at sites varies randomly across the 
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landscape. Here, variation in the number of individuals must be described by a discrete distribution 

(since the number of individuals must be an integer) and so a countable mixture would be used. 

To more formally define these types of mixture models, consider a distribution that has only 

one parameter, θ , and that this parameter varies randomly according to some probability density 

function, ( )ψ|θh , where ψ is a vector of the parameters of ( )ψ|θh . If the distribution of θ  is 

discrete, then a countable mixture results and the probability density function is         

( ) ( ) ( )∑=
i

ii hyfyg ψψ ||| θθ ,         (12.5) 

where iθ are the discrete values of θ  and the sum is over all possible value of iθ . This can be 

thought of as analogous to a finite mixture model, except the mixture weights, iω , are replaced by 

( )ψ|ih θ  and there are an infinite number of possible mixture components, ( )iyf θ| . If, on the other 

hand, the distribution of θ  is continuous, then a continuous mixture results and the probability 

density function is 

( ) ( ) ( ) θθθ dhyfyg ∫= ψψ ||| ,        (12.6) 

 where the integration is over all possible values of θ . This is similar to a countable mixture, but we 

integrate over continuous values of θ  rather than summing over discrete values of θ . Countable 

and continuous mixture models are important because they provide an explicit and flexible 

framework for modeling heterogeneity across sampling units (Johnson et al. 2005). In the empirical 

examples later in the chapter I will illustrate the use of finite and infinite (countable and continuous) 

mixture models in an ecological context.   

 

12.3.2 Mixture models used in ecology 

Most standard distributions used in ecology have corresponding overdispersed versions based on 

mixture distributions (Table 12.2). The Poisson distribution, which is typically used to model count 

data, has an overdispersed version known as the negative-binomial. This distribution is a Poisson-
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gamma continuous mixture that explicitly models heterogeneity in the Poisson rate parameter 

through a gamma distribution. The zero-inflated Poisson distribution that I discussed above is 

another overdispersed version of the Poisson distribution that is increasingly being used to model 

excess zeroes and observation error in ecological data (Lambert 1992, Martin et al. 2005). The 

binomial distribution, which is typically used to model presence / absence data, has an 

overdispersed version known as the beta-binomial that accounts for heterogeneity in the binomial 

probability among sampling units. This distribution is a beta-binomial continuous mixture that 

models heterogeneity in the binomial probability through a beta distribution. Similarly to the 

Poisson distribution, the binomial distribution also has a zero-inflated version; the zero-inflated 

binomial distribution (Hall 2000, Martin et al. 2005). The beta-binomial distribution can also be 

generalized to an overdispersed multinomial distribution; the Dirichlet-multinomial distribution.  

One of the most commonly used of these mixture models in ecology is the negative-

binomial distribution, which tends to be the default strategy for dealing with overdispersion in count 

data (Linden and Mantyniemi 2011). However, the negative-binomial distribution does not deal 

with overdispersion that arises due to zero-inflation that is common in ecological data (Martin et al. 

2005). This is because, although it models variation in the mean of the Poisson distribution, it does 

not model any process that specifically leads to zero values. Zero-inflated models are more 

appropriate in this case, but the fact that zero-inflation can arise through either ecological and/or 

observation processes complicates the choice of mixture model and inference. Recognition of the 

particular problem of observation error has led to a rapidly growing area of statistical ecology that 

uses mixture models to explicitly account for observation error in both count and presence/absence 

data (MacKenzie et al. 2006, Royle and Dorazio 2008).  

 

12.4 Empirical Examples 

In this section I present two empirical examples to illustrate the use of mixture models to account 

for overdispersion that arises from both ecological processes and observation processes. Throughout 
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the examples I illustrate the process of detecting overdispersion and choosing appropriate models. I 

also emphasize how mixture models allow us to reduce bias in our statistical tests, but also 

importantly that they allow us to make inferences that would otherwise not be possible. In the first 

example, I apply mixture models to data from koala dung decay trials to illustrate how these models 

can be used to disentangle the role of two distinct decay processes that lead to overdispersion in the 

data. In the second example, I use data on lemur counts from eastern Madagascar for two species, to 

illustrate how mixture models can be used to distinguish between, and control for, overdispersion 

that arises from ecological and observation processes in modeling abundance. 

 There are a number of packages available in R for fitting mixture models, including: 

Flexmix; mixtools; and mclust (mixtures of normal distributions only). However, in the 

empirical examples I present here I use R to construct likelihoods for the appropriate mixture 

models and fit these models to data by maximizing the likelihood using the package bbmle. One 

advantage of writing your own likelihood functions is that it allows for greater flexibility, but here it 

also illustrates how we can fit mixture models by maximum likelihood in a way that expands on the 

concepts developed in Chapter 3. However, for many applications, existing mixture model packages 

available in R may be perfectly sufficient. 

 

12.3.1 Using binomial mixtures to model dung decay  

For many species that are highly cryptic, the only realistic way we can determine their 

presence/absence is indirectly through signs that they leave. However, some signs, such as dung and 

snow tracks, decay and disappear over time and the rates at which they decay can vary substantially 

both spatially and temporally. This causes problems when using these types of indirect signs to 

estimate presence or absence, for two main reasons. First, if signs decay very slowly we may detect 

old signs in locations where the species is no longer present and we will make false-positive errors. 

On the other hand, if signs decay very quickly, we may fail to detect signs in areas where the 

species is still present, and we will make false-negative errors. If there are high levels of spatial and 
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temporal variation in decay rates, this will likely introduce bias into our estimates of 

presence/absence, and thus will bias our estimates of how presence/absence depends on habitat 

variables. One way to try to deal with this is to model decay rates of the signs and then adjust for 

those decay rates in our estimates of presence/absence.  

 Koala dung is a primary means by which koala distributions are estimated since our ability 

to detect koalas using direct observations is poor (McAlpine et al. 2008, Rhodes et al. 2008a). This 

is because the species is highly cryptic and occurs at low densities over much of its range. 

Nonetheless, dung decay rates can vary both spatially and temporally, thus introducing biases into 

estimates of presence and absence, so there is a need to understand how spatially and temporally 

variable dung decay rates are. Here, I illustrate how we can use overdispersed binomial mixture 

models to analyses data from koala dung decay trials that were designed to understand and estimate 

dung decay rates under a range of habitat and climatic conditions (Rhodes et al. 2011). 

 The decay trial data were collected in Coffs Harbour, New South Wales, Australia between 

April 1996 and March 1997 (Appendix A). The trials were conducted at five sites, with three plots 

nested within each site, and at each site, plots were located in different topographic positions: one 

on a ridge; one on a mid-slope; and one in a gully. Each month, a group of 10 fresh koala dung 

pellets were laid out in each plot and the number of pellets that had disappeared were counted at 

approximately fortnightly intervals. Data were also available on daily rainfall, daily average 

humidity, and daily average temperatures for the study area. The data therefore consisted of the 

number of pellets that had disappeared (decayed) in each recording interval and a series of possible 

covariates for predicting the probability of dung decay, namely: site, topography, pellet age, 

rainfall, humidity, and temperature.    

 The raw decay data are overdispersed, with many more low values and more high values 

than would be expected under the standard binomial distribution (Fig. 12.1). This is confirmed by 

looking at the relative variances of the raw data versus the expected values based on the binomial 

distribution (0.064 for the raw data versus 0.044 for the binomial distribution). In particular, there 
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are many more zeroes in the data (data points where no pellets disappeared in a time interval), than 

we would expect under the binomial distribution. There is also a slightly greater frequency of high 

values (where all pellets disappeared in a time interval), than would be expected under the binomial 

distribution. However, this difference is small relative to the zero-inflation. 

One way to model the overdispersion would be to use the overdispersed version of the 

binomial distribution, the beta-binomial, which is a continuous mixture model that assumes that the 

binomial probability varies randomly according to the beta distribution (sensu Rhodes et al. 2011). 

This would account for extra-binomial variation that may have arisen due to inherent variation in 

decay rates among groups, possibly due to random variation in environmental conditions or pellet 

susceptibility to decay. However, this approach may fail to adequately account for the high levels of 

zero-inflation, which could have arisen via an entirely different process. It is possible, based on our 

understanding of the decay process, that there is another mechanism operating, related to whether 

the agents that cause pellet decay (e.g., insect, animal and/or bacterial activity) are present or not. If 

agents are not present, then no decay will occur, resulting in zero values in the data. On the other 

hand, if agents are present, decay will occur, but the rate of decay may then still depend on 

environmental variation or variation in susceptibility to decay. One way to proceed to deal with this 

is to use a zero-inflated binomial or zero-inflated beta-binomial mixture model, rather than the 

standard binomial or beta-binomial models to account for the extra process of agents being present 

or absent. 

One thing to note at this point is that here we are paying careful attention to the possible 

processes that may drive patterns in the data, and this is critical in informing the choice of mixture 

model and its interpretation. I will return to this issue in the Discussion, but I mention it here to 

stress that this is an important habit to get into, to ensure that your choices of models are 

ecologically sensible. 

The first thing that we will do now is explore the relative support from the data for four 

possible decay models: (1) binomial; (2) beta-binomial; (3) zero-inflated binomial; and (4) zero-
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inflated beta-binomial. The first model is the standard binomial model, with the other three models 

being mixture models representing different mechanisms through which overdispersion may arise, 

as discussed above. The binomial model has one parameter, s, representing the expected daily pellet 

survival probability (with 1 – s being the decay rate). The beta-binomial model has an additional 

parameter, γ , that controls the level of overdispersion, with low values of γ  representing high 

levels of overdispersion and high values of γ  representing low levels of overdispersion. The two 

zero-inflated models then have a further parameter, q, representing the level of zero-inflation, with 

low values of q representing high levels of zero-inflation and high values of q representing low 

levels of zero-inflation. The formulations of the likelihoods of these models are described in 

Appendix B. In the context of this empirical example, we interpret the parameter q as the 

probability that agents causing decay (e.g., insect, animal and/or bacterial activity) are present. 

In addition to estimating the support for each of these models, we are also interested in 

whether pellet survival rates, s, and the probability that decay agents are present, q, vary with 

environmental factors or remain roughly constant. To incorporate covariates we model s and q as 

functions of covariates, rather than assuming they are constant. Specifically, we model them using 

the standard logit link function, such that the daily survival probability of a pellet in group i on day t 

of interval j is 
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where α  is an intercept, β  is a vector of regression coefficients, and ijtX  is a vector of covariates 

for pellet group i in interval j on day t. We model the probability that decay agents are present in 

pellet group i in interval j is 
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 where η  is an intercept, υ  is a vector of regression coefficients, and ijY  is a vector of covariates 

for pellet group i in interval j. 

We can construct expressions for the likelihoods for each of these models (see Appendix B 

for details) and then use the function mle2 from the package bbmle in R to find the maximum 

likelihood parameter estimates. The mle2 function accepts, as one of its arguments, a function for 

the negative log-likelihood and then finds the parameter values that minimize this function using 

numerical optimization (note that minimizing the negative log-likelihood is identical to maximizing 

the log-likelihood, so this finds the maximum likelihood estimates of the model parameters). 

Although this can also be achieved by using the optim function (see Chapter 3), the mle2 

function provides additional functionality, such as the generation of standard errors for the 

parameter estimates that is very useful. In Appendix C, I provide R code for the likelihood-

functions and example code for fitting the models using the mle2 function. 

 If we fit the models described above with all covariates (site, topography, pellet age, rainfall, 

humidity and temperature) as predictors of ijts , but with q constant initially (i.e., assuming that 

environmental variables determine decay rates, but not the presence or absence of decay agents), the 

best-supported model (based on Akaike’s Information Criteria (AIC) – see Chapter 3) is the beta-

binomial model, but the zero-inflated beta-binomial model also has considerable support (having an 

AIC only 1.2 units larger than the beta-binomial model) (Table 12.3). On the other hand, the 

binomial and zero-inflated binomial models have almost no support from the data, with AIC values 

much greater than either of the two best models. This provides strong evidence that random 

variation in pellet survival is a key process driving overdispersion (i.e., both of the top two models 

contain the beta-binomial mixture representing random variation in pellet survival). However, there 

is some evidence that the presence or absence of decay agents may operate together with random 

variation in survival rates (i.e., the zero-inflated beta-binomial model also has support relative to the 

beta-binomial model). If we plot the quantile-quantile plots of residuals for the binomial and beta-
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binomial models (Figure 12.2), we can see that the beta-binomial model adequately accounts for 

overdispersion in the data, but the binomial model does not (i.e., Figure 12.2A shows the 

characteristic quantile-quantile plot shape for overdispersed data). Moreover, the standard errors of 

the coefficient estimates for the beta-binomial models are larger than for the binomial models, 

which is expected because it is accounting for overdispersion, and standard errors are no longer 

underestimated (Table 12.3). 

 So far we have been able to account for overdispersion and say something about the relative 

support for each hypothesized mechanism driving overdispersion. But now let us look at predictors 

of pellet survival rates and the presence of decay agents. We will do this for the two best supported 

models: the beta-binomial and the zero-inflated beta-binomial models. The variables hypothesized 

to be potentially important drivers of pellet decay include spatial variables (site and topography) 

and temporal variables (pellet age, rainfall, humidity, and temperature). A sensible question 

therefore might be to ask is, “What do the data tell us about the importance of spatial versus 

temporal variables?” For the beta-binomial model we can ask this by constructing models (through 

Equation 12.7) that contain: none of the variables, either the spatial or temporal variables, or both 

and comparing the four resulting models using AIC. For the zero-inflated beta-binomial model, 

however, there is the possibility the variables may determine the expected survival rate, s, and/or 

the probability that decay agents are present, q. In this case, there are sixteen possible combinations 

of models representing the different ways in which the spatial and temporal variables could 

influence s and q (through Equations 12.7 and 12.8) and the support for each of these models can 

also be explored using AIC. Note that, in constructing these models I always include pellet age as a 

covariate for s, but never include it as a covariate for q (since there is no reason to expect pellet age 

to determine whether decay agents are present or not), and the temporal covariates for q are 

quantified based on their mean values within each time interval.              

 So what does this tell us? For the beta-binomial model, there is very strong indication that 

both temporal and spatial variables drive pellet decay (Table 12.4). For the zero-inflated beta-
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binomial model spatial and temporal variables driving pellet decay (variables for s) is still strongly 

supported, but there is also strong evidence that the temporal climatic variables are important 

determinants of whether decay agents are present for not (variables for q; Table 12.4). Interestingly, 

in this case, the best zero-inflated beta-binomial model has a considerably lower AIC than the best 

beta-binomial model (2,345.64 versus 2,360.60). Hence, once we include covariates for both s and 

q, there is compelling evidence for two different processes operating to drive pellet decay; one that 

determines whether decay agents are present and one that determines the decay rate if decay agents 

are present.       

 This example provides an illustration of the power of mixture models to account for 

overdispersion and to allow inferences about the processes that drive that overdispersion. By 

grounding our model construction explicitly in terms of hypotheses about the ecological 

mechanisms that drive overdispersion, we are able to say something useful about the support for 

each of those mechanisms. This may be particularly important here since it appears that the drivers 

of whether decay agents (e.g., insect, animal and/or bacterial activity) are present may be different 

from the drivers of decay rates if decay agents are present. The development of approaches for 

using these types of models to reliably calibrate surveys of indirect signs will depend on being able 

to correctly identify and quantify the processes that drive the decay process. Mixture models are an 

important tool for helping us to do this.               

 

12.3.2 Using Poisson mixtures to model lemur abundance  

Count data are one of the most commonly collected types of data for estimating species’ 

distributions and abundance. However, as I have already pointed out, these data commonly exhibit 

overdispersion that precludes analysis based on standard distributions. Although both ecological 

processes and observation errors can lead to overdispersion in these types of data (Table 12.1), 

correct inference relies on distinguishing between these two sources of overdispersion. In the 

context, Royle (2004) demonstrates how to account for detection errors in count data by using so 
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called N-mixture models. These are countable mixture models that are explicit about zero-inflation 

arising from detection errors and the distribution of the true underlying abundances (which can also 

be represented by a mixture model if necessary). For example, Royle (2004) adopt the Poisson 

distribution to describe the true underlying abundances, but also illustrate how the negative-

binomial may be used instead so that the model accounts for both zero-inflation that arises due to 

detection errors and overdispersion in the underlying abundances. Wenger and Freeman (2008) 

extend the approach to allow the true underlying abundances to be described by zero-inflated 

models. This allows for the possibility of simultaneously representing zero-inflation that arises from 

observation errors and zero-inflation that arises from ecological processes in the same model. 

In this second empirical example, I illustrate the use of N-mixture models to make 

inferences about the abundance of two lemur species (the common brown lemur Eulemur fulvus 

fulvus and the black and white ruffed lemur Varecia variegata variegata) at two sites in the 

Zahamena Reserve in eastern Madagascar. I use this example to illustrate how we can construct 

mixture models to account for and make inferences about overdispersion that arises from both 

observation and ecological sources. You will see as we go through the example that once again, 

thinking carefully about the sources of overdispersion is central to successful model construction. I 

will once again use mixture models to try to distinguish between two sources of overdispersion; one 

that relates to overdispersion arising from observation error and one that relates to overdispersion 

arising from an ecological process. I will show that source of overdispersion has profound 

implications for ecological inference. This is because, in the case of the observation error process, 

we actually want to ‘strip out’ the effect of that process so as to reduce bias in ecological inference, 

while in the case of the ecological process, we are interested in the process itself and it is therefore 

retained as a component of ecological inference.               

 The data I use were collected in 1999 and 2000 at two sites in the Zahamena reserve in 

eastern Madagascar; one in mid-altitude rainforest (Antenina; elevation 900 m) and one in lowland 

rainforest (Namarafana; elevation 450 m). The data consists of direct group counts of lemurs along 
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300 m or 400 m long transect sections at each site. Although data were collected on all lemur 

species at the sites, I will only focus here on counts of groups of Eulemur f. fulvus and Varecia v. 

variegata (Appendix D) and we will aim to quantify differences in abundance for these species 

between the two sites. Once again, let us start by looking at histograms of the data (Figure 12.3). 

Histograms of the raw data reveal substantial zero-inflation, but there is also some suggestion of an 

excess of high values too. Overdispersion is also indicated by the variance of the data relative to the 

variance of the expected values (0.056 versus 0.016 for Eulemur f. fulvus and 0.091 versus 0.018 for 

Varecia v. variegata). However, it is unclear on inspection of the histograms whether the 

overdispersion occurs primarily due to observation error, or as a result of an ecological process, 

such as a highly clumped spatial distribution. Understanding this is critical because it will likely 

make a major difference to our interpretation. We will now begin to explore these issues starting 

with a simple model and then adding complexity. 

The simplest way to model these data is to ignore any observation error and overdispersion 

and use a standard Poisson distribution with one parameter, λ, representing the mean. However, it 

would make sense to try to account for the zero-inflation in some way. A straightforward way to 

accommodate the zero-inflation is to use a zero-inflated Poisson model with two parameters, λ and 

q. If we assume that there is no observation error then we can interpret q as the probability that 

habitat is suitable and then λ is the mean abundance, given that habitat is suitable (remember we 

discussed this idea earlier in the chapter). However, since we also seem to have an excess of high 

values in the data, as well as zero-inflation, it could also make sense to extend this to the zero-

inflated negative-binomial model which has one further parameter, κ , that represents the level of 

overdispersion in the negative-binomial component of the mixture (high values of κ  imply high 

levels of overdispersion and low values κ  imply low levels of overdispersion).  

The likelihoods for the Poisson, zero-inflated Poisson, and zero-inflated negative-binomial 

models are described in Appendix E and can, once again, be fitted to the data using the function 

mle2. As in the first empirical example we can make the model parameters functions of covariates. 
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We are interested in the difference in abundance between sites so it would make sense to introduce 

a covariate for site. However, because total survey effort varies between transect sections, we need 

to control for this by incorporating survey effort as a covariate too. Survey effort can be controlled 

for in a simple way: let λ  (mean abundance, given suitable habitat in the case of the zero-inflated 

models) depend on survey effort, with Sγλ = , where 0>S  is the survey effort and 0>γ is the 

expected count per unit of survey effort (given suitable habitat in the case of the zero-inflated 

models). Then, to introduce the site covariate, we model γ  and q (the probability that habitat is 

suitable) as functions of the site using the standard log and logit link functions respectively, such 

that 

( )ii Xβαγ += exp ,          (12.9) 

 where iγ  is the expected count per unit of survey effort (our index of abundance) for transect 

section i, α  is an intercept, β  is a regression coefficient, and iX  is a categorical covariate 

representing the site within which transect section i is located. Finally, let 

( )
( )i

i
i υX

υXq
++

+
=

η
η

exp1
exp ,          (12.10) 

where qi is the probability that the habitat in transect section i is suitable, η  is an intercept, υ  is a 

regression coefficient, and iX  is a categorical covariate representing the site within which transect 

section i is located. In Appendix F, I provide R code for the likelihood-functions and example code 

for fitting the models using the mle2 function.    

Fitting the Poisson model to the data and inspecting the quantile-quantile plots of the 

residuals reveals high levels of overdispersion in the data for both species, with the characteristic 

pattern of too many low values and too many high values in the data (Figures 12.4A and 12.4C). 

The zero-inflated Poisson model reduces the level of overdispersion, but some points in the 

quantile-quantile plot still lie outside the 95% confidence intervals, suggesting some remaining 
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overdispersion. On the other hand, the zero-inflated negative-binomial model adequately accounts 

for overdispersion, with the quantile-quantile plot lying close to the expected 1:1 line and within the 

95% confidence intervals (Figures 12.4B and 12.4D). Therefore, a model whereby overdispersion is 

represented by both zero-inflation (representing whether habitat is suitable or not) and heterogeneity 

among transect sections (represented by the negative-binomial component of the mixture) appears 

to be adequate for accounting for the overdispersion.  

Although we have accounted for overdispersion here through both zero-inflation and 

heterogeneity among sections and the model seems to fit well, we have not considered the 

possibility that the zero-inflation may arise due to detection error (i.e., where the probability of 

detecting a species, or individual, that it is present, is less than one), rather than through the 

processes of habitat being suitable or not. If detection errors are present, then our estimates of 

abundance will be biased if not accounted for, especially if detection errors vary between the two 

sites. In recent years there has been substantial progress made in the development of methods for 

dealing with detection errors in ecological data (MacKenzie et al. 2006, Royle and Dorazio 2008). 

In general, these methods have, at their core, a mixture model that enables the explicit 

representation of zero-inflation or missed counts, arising from the failure to detect individuals that 

are actually present. For example, MacKenzie et al. (2002) and Tyre et al. (2003) use zero-inflated 

binomial models to estimate occupancy while accounting for a failure to detect occupancy, thus 

reducing bias in occupancy estimates. However, to distinguish false-negatives (i.e., a failure to 

detect individuals that are actually present) from true-negatives (i.e., true absences) requires repeat 

surveys of sites within a short enough time period that the true occupancy or abundance state can be 

assumed to be unchanged. Fortunately, the lemur data consists of repeat surveys of each transect 

sections and therefore we can take advantage of this to explicitly account for detection error and 

reduce bias in abundance estimates. 

 Earlier I mentioned Royle (2004)’s N-mixture model for dealing with detection errors in 

count data and we are going to use this model to examine the implications of detection error on our 
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inferences about abundance at the two sites. The details of the likelihood for an N-mixture model 

are given in Appendix E, but I will describe the model briefly here. The model is a countable 

mixture model based on an observation process defined by a binomial distribution that represents 

the probability of detecting an individual given that it is present. In the binomial distribution, the 

binomial probability, p, represents the probability of detection, while the number of trials, N, 

represents the true number of groups present at a site and this is assumed to vary randomly 

according to a Poisson distribution with mean λ (although other distributions, such as the negative-

binomial are also possible). Covariates for q and λ can be included in a similar way to Equations 

12.9 and 12.10. In these mixture models we are explicit about the observation process, via the 

binomial distribution, and explicit about the true underlying abundance, via the Poisson or negative-

binomial distribution. I provide R code for the likelihood functions of the N-mixture models that I 

use here and example code for fitting these models to the lemur count data using the mle2 function 

in Appendix F.        

The interpretation of N and p is worth a note here before moving on. We interpret N for this 

case study as the number of groups that use a transect section, rather than the usual interpretation 

that would be the number of groups present in a transect section at the time of survey. Due to the 

mobile nature of the species, the number of groups present on a transect section may be different 

from day to day. An important assumption of these models is that the state of the system does not 

change between repeat surveys (an assumption known as the closure assumption) and this is clearly 

broken here possibly leading to bias (Kendall and White 2009, Rota et al. 2009). This is because 

detection errors can occur for two reasons that are confounded in the estimate of p: (1) a group may 

be present at the time of a survey, but not observed and (2) a group that uses the section my not be 

present at the time of the survey. However, if we interpret p as the probability that we detect a 

group that uses a transect section, rather than the probability that we detect a group that is present at 

the time of the survey, this issue is resolved. This is because the number of groups that used a 

transect section over the study period would have been relatively constant and so by making 
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inferences at this level, the closure assumption holds and the confounding of sources of detection 

error does not matter. This also means, however, that we must interpret N as the number of groups 

using a transect section over the study period, rather than being the number of groups present in a 

transect section at the time of the survey.      

 We will now look at to what extent the use of N-mixture models (i.e., assuming that the 

zero-inflation arises due to observation error), as opposed to using the zero-inflated Poisson or zero-

inflated negative-binomial models (i.e., assuming that the zero-inflation arises due to the 

availability of habitat) modify our conclusions about differences in abundance between the two 

sites. If we fit both Poisson and negative-binomial N-mixture models to the lemur data assuming 

that both detection errors and abundance can vary between sites (i.e., we include a site covariate on 

p and λ) and compare these models to the zero-inflated models we see a number of key differences 

(Table 12.6). The first thing to note is that, although the negative-binomial distribution has better 

support than the Poisson distribution for the zero-inflated models (based on AIC), this is not 

necessarily the case for the N-mixture models. The second thing to note is that, although for 

Eulemer f. fulvus the zero-inflated models suggest that abundance is lower at the lowland site that 

the mid-elevation site (although not significantly so, based on the standard error estimate), the N-

mixture models suggest that abundance is greater at the lowland site than at the mid-elevation site. 

This is because, although sighting rates are lower at the lowland site, the N-mixture model estimates 

that probability of detection is much lower at the lowland site than at the mid-elevation site. The 

lower probability of detection more than compensates for the lower sighting rates at the lowland 

site, resulting in a higher estimate of abundance. For Varecia v. variegata the two types of model 

are in agreement, with abundance estimated to be higher in the lowland than the mid-elevation site, 

but the probability of detection is similarly estimated to be lower in the lowland than the mid-

elevation site.   

 This example shows that our assumptions about sources of overdispersion can have 

profound implications for the inferences we make. In developing our inferences in this case, we 
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need to make a decision about whether we believe that zero-inflation arises through observation 

error, or through some ecological processes related to the availability of habitat. It is unlikely in this 

example that observation error is zero; it is almost certainly the case that groups that are present on 

a transect section could have been missed and the mobile nature of the species means that a group 

that uses a transect section may not be present at the time of survey. There are two possible reasons 

for detection errors being higher in the lowland site than the mid-elevation site. The first reason is 

that groups present on the transect sections are not detected more often at the lowland than the mid-

elevation site. The lowland site has a more dense understory and higher canopy than the mid-

elevation site (J. Rhodes, personal observation), which would tend to make lemur observations 

more difficult, so this is consistent with the N-mixture models. However, this could also be driven 

by differences in field personnel between the two sites. The second reason, is that groups that use a 

transect section are more often absent from a transect section at the lowland site than the mid-

elevation site. This could occur, for example, if groups tend to move more frequently at the lowland 

site than the mid-elevation site. Although we have no information about the relative movement 

frequencies at the two sites, the N-mixture models make sense in terms of the likely presence of 

detection errors and variation in forest structure and personnel between the two sites. Nonetheless, 

in this example, a mixture modeling approach has allowed us to be explicit about the mechanisms 

driving overdispersion and, importantly, to understand the implications of the assumptions we have 

made. 

       

12.5 Discussion  

Mixture models should become a critical component of the ecologist’s statistical tool box. 

Ecological data arise from complex interacting processes; they rarely conform nicely to the 

assumptions of standard statistical distributions. When they do not, this often manifests itself as 

overdispersion, playing havoc with our statistical tests and inference. Fortunately, mixture models 

provide a flexible way to deal with overdispersion, but they are useful for much more than simply 
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controlling for overdispersion. This is because they allow us to make inferences about the causes of 

overdispersion, leading to greatly improved ecological inference. In particular, it allows us to have a 

much more mechanistic understanding of the processes that lead to the observed data. In this 

chapter I have outlined what mixture models are and illustrated their use in two quite different 

applications. The applications demonstrate how careful consideration of the mechanisms driving 

overdispersion in the data and can lead to a much richer understanding of the underlying ecological 

and observation processes. Although the applications I have presented come from survival analysis 

and abundance estimation, mixture models are applicable to almost any area of ecology. As such, 

they are an important and widely applicable approach in ecological statistics. 

In this chapter I have focused on some of the more typical and standard mixture models. 

However, it is possible to more generally construct complex mixtures of distributions to represent a 

wide range of ecological mechanisms that may be hypothesized to generate any observed data. For 

example, I mentioned earlier, Kendall and Whittmann (2010)’s stochastic model of breeding 

success that explicitly models the probability of laying eggs, nest survival, clutch size and offspring 

survival as mechanisms leading to the observed data on reproductive output. They apply it to 53 

vertebrate species and to achieve this, they model the number of offspring as a finite mixture 

distribution, with mixing weights defined by the probability that eggs are laid and then model the 

probability of nest survival, given eggs are laid, that is itself mixture model. The model for nest 

survival reflects the contribution of clutch size and offspring survival to the number of offspring 

and is assumed to be a countable mixture with offspring survival defined by a binomial distribution 

and the number of trials specified by a Poisson distribution (in a similar way to an N-mixture 

model). This provides inference about these separate component processes that would otherwise not 

be possible without the use of a mixture model. More broadly, flexible mixture models form the 

basis of so-called state-space models that aim to represent ecological and observation processes in a 

mechanistic fashion (for nice examples see Buckland et al. 2004, Patterson et al. 2008). Specifying 

these models often results in complex mixtures, but because they are explicit about the ecological 
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and observation processes that generate the observed data, they provide a powerful and flexible 

framework for ecological inference that is becoming increasingly popular. 

I have demonstrated how we should ground our choice of mixture model in mechanistic 

hypotheses about the processes that may have led to the data. An alternative is to adopt a, so called, 

quasi-likelihood approach. Rather than characterizing the full likelihood of the data, quasi-

likelihood approaches characterize a quasi-likelihood function that depends only on the mean and 

variance, but behaves in a similar way to the full likelihood (see Chapter 6; McCullagh and Nelder 

1989, Burnham and Anderson 2002). Essentially, what this means is that the quasi-likelihood does 

not characterize the full distribution of the data, but simply adjusts the variance to account for 

overdispersion. In contrast, mixture models use information about the full distribution of the data 

and this is what allows us the make more mechanistic inferences that would not necessarily be 

possible using quasi-likelihood methods. For example, in the koala dung decay example, our 

mixture model uses the amount of zero-inflation in the data to distinguish between the processes 

driving the presence of decay agents versus processes driving decay rates where decay agents are 

present. This type of analysis would not be possible with a quasi-likelihood; inferences about the 

presence of decay agents would not be possible, although it would still control for overdispersion 

allowing us to perform correct statistical tests.                    

Although inference about mechanisms is a major strength of the mixture modeling approach 

it can also be problematic if we have no, or little, a priori information about potential causes of 

overdispersion. However, in cases where we are not specifically interested in the causes of 

overdispersion, or are unable to develop sensible mixture models, then quasi-likelihood approaches 

are often a suitable alternative to mixture models for dealing with overdispersion. In fact, Richards 

(2008) shows that a quasi-likelihood approaches to model selection produce very similar results to 

the negative-binomial mixture model based on Akaike’s Information Criteria (AIC). None the less, 

we still need to think critically about our choice of model and model assumptions because this can 

have important bearing on inference. For example, Ver Hoef and Boveng (2007) show that quasi-
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Poisson (a quasi-likelihood version of the Poisson distribution) and negative-binomial models can 

produce quite different parameter estimates, using an example of harbor seals in Alaska. They show 

that regression coefficient estimates are affected by the choice of model because they make 

different assumptions about how the variance of the data changes with abundance. The quasi-

Poisson model assumes that the variance increases linearly with abundance, while the negative-

binomial model assumes that the variance increases quadratically with abundance. In their case, 

they find that the quasi-Poisson is the better model for their data, and they suggest plotting 

abundance versus variance of data to get an idea of which model may be most appropriate. The 

important take-home message here is that, even if we use a quasi-likelihood approach, we should 

ensure that the assumed variance-mean relationship is sensible for our data. 

Despite the great promise of mixture-models, they should be used carefully and with some 

caution. One issue is that they make strong assumptions about the distribution of the data and if 

these assumptions do not hold this could result in biased parameter estimates. Therefore, I 

recommend that careful a priori consideration be given to the choice of assumed mechanisms as I 

have done in this chapter. First, you should think carefully about what the implications of failing to 

meet those assumptions might be. For example, in the lemur example, inference is strongly 

dependent upon whether you assume that zero-inflation arises from observation or ecological 

processes. Second, because mixture models often contain a large number of unobserved (latent) 

variables, model parameters can often fail to be identifiable. Model parameters are not identifiable 

when the data are insufficient to distinguish between the values for two or more parameters because 

their values are confounded. For example, in the lemur case study I was unable to fit an N-mixture 

model based on a zero-inflated Poisson distribution because there was insufficient information in 

the data to separate zero-inflation that arises due to detection error from zero-inflation that arises 

due to the availability of suitable habitat. This issue can limit the extent to which mixture models 

are able to be applied to specific ecological questions. 
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Mixture models are closely related to the mixed-effects (or random-effects) models that are 

commonly used in ecology (see Chapter 13). Mixed-effects models introduce random variation in 

model parameters (through the specification of random-effects) that can account for additional 

variation in the data in a similar way to mixture models. However, whereas mixture models 

introduce random variation at the level of individual data points, variation in mixed-effects models 

is usually specified at a hierarchical level above that of the individual data points. For example, in a 

mixed-effects model we may have random variation among sites, but not among data points within 

sites as in a mixture model. For this reason, mixed-effects models are most often used to account for 

hierarchical structure, or dependencies, in the data rather than overdispersion. For example, Thomas 

et al. (2006) use individual-level random-effects to model variation in habitat selection among 

individuals in their analysis of caribou location data. The purpose for doing so was to account for 

dependencies in the data within individuals and variation among individuals, rather than dealing 

with and understanding overdispersion per se. Therefore, despite the close links between the two 

approaches, their use in ecology is quite different.                

What should you report in a paper using mixture models? One of the most critical aspects is 

to be clear about how you constructed your mixture models, the mechanisms you hypothesize the 

different components of the mixture represent, and what assumption you have made. In describing 

your models this is critical so that the reader understands what your models represent. In this 

context, Kendall and Whittmann (2010) provides an excellent example where the rationale for the 

model is very clearly described. You should also present evidence that your models have dealt 

adequately with overdispersion in the data using techniques such as quantile-quantile plots as I have 

used in this chapter. Finally, providing inference in terms of the different components of the 

mixture model is important so that readers can relate this inference back to the proposed 

mechanisms. For example, if you use a negative binomial distribution to deal with random variation 

in habitat quality then, in addition to reporting the regression parameters, report and interpret the 

overdispersion parameter in the terms of the hypothesized source of overdispersion. This is will 
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provide readers with a richer understanding of the ecological processes that would be possible if the 

overdispersion parameter was not interpreted in this way.                  
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Summary for online only (120-150 words) 

When the variance of data has a higher variance than that of standard distributions used in statistical 

tests this is known as overdispersion. Overdispersion is ubiquitous in ecological data, leading to the 

underestimation of variances and bias in statistical tests unless the overdispersion is accounted for. 

Consequently, having methods for dealing with overdispersion is an essential component of the 

ecologist’s statistical toolbox. A powerful approach for dealing with overdispersion are mixture 

models; it is powerful because it allows us to be explicit about the processes that drive 

overdispersion in the data and enabling a deeper understanding of ecological processes. In this 

chapter I introduce mixture models and illustrate their approach using examples from survival 

analysis and the analysis of population abundance. I specifically focus on demonstrating how 

mixture models can both account for overdispersion and allows ecological inferences that would not 

otherwise be possible without the use of a mixture model approach.         
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overdispersion, mixture models, detection error, finite mixture, countable mixture, continuous 

mixture, mechanistic model 

 

    



33 

 

References 

Anderson, D. R., K. P. Burnham, and G. C. White. 1994. AIC model selection in overdispersed 
capture-recapture data. Ecology 75:1780-1793. 

Barry, S. and J. Elith. 2006. Error and uncertainty in habitat models. Journal of Applied Ecology 
43:413-423. 

Buckland, S. T., K. B. Newman, L. Thomas, and N. B. Koesters. 2004. State-space models for the 
dynamics of wild animal populations. Ecological Modelling 171:157-175. 

Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference: a practical 
information-theoretic approach. Second edition. Springer-Verlag, New York, USA. 

Calabrese, J. M., J. L. Brunner, and R. S. Ostfeld. 2011. Partitioning the aggregation of parasites on 
hosts into intrinsic and extrinsic components via an extended Poisson-gamma mixture 
model. Plos One 6. 

Clark, J. S., M. Silman, R. Kern, E. Macklin, and J. HilleRisLambers. 1999. Seed dispersal near and 
far: Patterns across temperate and tropical forests. Ecology 80:1475-1494. 

Colwell, R. K., C. X. Mao, and J. Chang. 2004. Interpolating, extrapolating, and comparing 
incidence-based species accumulation curves. Ecology 85:2717-2727. 

Cunningham, R. B. and D. B. Lindenmayer. 2005. Modeling count data of rare species: some 
statistical issues. Ecology 86:1135-1142. 

Dean, C. B. 1992. Testing for Overdispersion in Poisson and Binomial Regression Models. Journal 
of the American Statistical Association 87:451-457. 

Haining, R., J. Law, and D. Griffith. 2009. Modelling small area counts in the presence of 
overdispersion and spatial autocorrelation. Computational Statistics & Data Analysis 
53:2923-2937. 

Hall, D. 2000. Zero-inflated Poisson and binomial regression with random-effects: a case study. 
Biometrics 56:1030-1039. 

Hinde, J. and C. G. B. Demetrio. 1998. Overdispersion: models and estimation. Computational 
Statistics & Data Analysis 27:151-170. 

Johnson, N. L., A. W. Kemp, and S. Kotz. 2005. Univariate Discrete Distributions. John Wiley & 
Sons, Hoboken, USA. 

Kendall, B. E. and M. E. Wittmann. 2010. A stochastic model for annual reproductive success. 
American Naturalist 175:461-468. 

Kendall, W. L. and G. C. White. 2009. A cautionary note on substituting spatial subunits for 
repeated temporal sampling in studies of site occupancy. Journal of Applied Ecology 
46:1182-1188. 

Lambert, D. 1992. Zero-inflated Poisson regression, with an application to defects in 
manufacturing. Technometrics 34:1-14. 

Landwehr, J. M., D. Pregibon, and A. C. Shoemaker. 1984. Graphical methods for assessing 
logistic regression models. Journal of the American Statistical Association 79:61-71. 

Linden, A. and S. Mantyniemi. 2011. Using the negative binomial distribution to model 
overdispersion in ecological count data. Ecology 92:1414-1421. 

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A. Langtimm. 
2002. Estimating site occupancy rates when detection probabilities are less than one. 
Ecology 83:2248-2255. 

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. 
Occupancy Estimation and Modeling Elsevier, Burlington, USA. 

Martin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. A. Field, S. J. Low Choy, A. J. Tyre, 
and H. P. Possingham. 2005. Zero tolerance ecology: improving ecological inference by 
modelling the source of zero observations. Ecology Letters 8:1235-1246. 



34 

 

McAlpine, C. A., J. R. Rhodes, M. E. Bowen, D. Lunney, J. G. Callaghan, D. L. Mitchell, and H. P. 
Possingham. 2008. Can multi-scale models of species’ distribution be generalised from 
region to region? A case study of the koala. Journal of Applied Ecology 45:558-567. 

McCullagh, P. and J. Nelder. 1989. Generalized linear models. second edition. Chapman and Hall, 
London, UK. 

McLachlan, G. and D. Peel. 2000. Finite Mixture Models. John Wiley & Sons, New York, USA. 
Mengersen, K. L., C. P. Robert, and D. M. Titterington, editors. 2011. Mixtures: Estimation and 

Applications. John Wiley & Sons, Chichester, UK. 
Mumby, P. J., R. Vitolo, and D. B. Stephenson. 2011. Temporal clustering of tropical cyclones and 

its ecosystem impacts. Proceedings of the National Academy of Sciences of the United 
States of America 108:17626-17630. 

Patterson, T. A., L. Thomas, C. Wilcox, O. Ovaskainen, and J. Matthiopoulos. 2008. State-space 
models of individual animal movement. Trends in Ecology & Evolution 23:87-94. 

Pledger, S. and C. J. Schwarz. 2002. Modelling heterogeneity of survival in band-recovery data 
using mixtures. Journal of Applied Statistics 29:315-327. 

Quintero, H. E., A. Abebe, and D. A. Davis. 2007. Zero-inflated discrete statistical models for 
fecundity data analysis in channel catfish, Ictalurus punctatus. Journal of the World 
Aquaculture Society 38:175-187. 

Rhodes, J., D. Lunney, C. Moon, A. Matthews, and C. A. McAlpine. 2011. The consequences of 
using indirect signs that decay to determine species' occupancy. Ecography 34:141-150. 

Rhodes, J. R., J. G. Callaghan, C. A. McAlpine, C. de Jong, M. E. Bowen, D. L. Mitchell, D. 
Lunney, and H. P. Possingham. 2008a. Regional variation in habitat-occupancy thresholds: 
a warning for conservation planning. Journal of Applied Ecology 45:549-557. 

Rhodes, J. R., E. P. M. Grist, K. W. H. Kwok, and K. M. Y. Leung. 2008b. A Bayesian mixture 
model for estimating intergeneration chronic toxicity. Environmental Science & Technology 
42:8108-8114. 

Richards, S. A. 2008. Dealing with overdispersed count data in applied ecology. Journal of Applied 
Ecology 45:218-227. 

Rota, C. T., R. J. Fletcher, R. M. Dorazio, and M. G. Betts. 2009. Occupancy estimation and the 
closure assumption. Journal of Applied Ecology 46:1173-1181. 

Royle, J. A. 2004. N-mixture models for estimating population size from spatially replicated counts. 
Biometrics 60:108-115. 

Royle, J. A. and R. M. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology. Academic 
Press, London, UK. 

Thomas, D. L., D. Johnson, and B. Griffith. 2006. A Bayesian random effects discrete-choice model 
for resource selection: population-level selection inference. Journal of Wildlife Management 
70:404-412. 

Tyre, A. J., B. Tenhumberg, S. A. Field, D. Niejalke, K. Parris, and H. P. Possingham. 2003. 
Improving precision and reducing bias in biological surveys: estimating false-negative error 
rates. Ecological Applications 13:1790-1801. 

Ver Hoef, J. M. and P. L. Boveng. 2007. Quasi-Poisson vs. negative binomial regression: how 
should we model overdispersed count data? Ecology (Washington D C) 88:2766-2772. 

Wenger, S. J. and M. C. Freeman. 2008. Estimating species occurrence, abundance, and detection 
probability using zero-inflated distribution. Ecology 89:2953-2959. 

 

 
 
 
 



35 

 

Table 12.1. Main causes of overdispersion and, for each cause, an ecological example illustrated by 
abundance data (counts), together with typically what a histogram of the overdispersed data would 
look like relative to a Poisson distribution fitted to the data and what a quantile-quantile plot of the 
overdispersed data would look like relative to a Poisson distribution fitted to the data. See Haining 
et al. (2009) and Linden and Mantymiemi (2011) for useful further discussion of the causes of 
overdispersion. 
 

Cause of 
Overdispersion 

Ecological Example Histograms of 
Overdispersed Count 
Data Relative to the 

Poisson 

Quantile-quantile Plots 
of Overdispersed 

Count Data Relative to 
the Poisson  

Spatial/temporal 
clustering 

A species only occurs 
in a small part of the 
landscape sampled  

  
Heterogeneity 

among sampling 
units 

The expected 
abundance of a species 
varies randomly across 
a landscape based on 
variation in habitat 

quality 

  
Measurement 

error 
Individuals that are 

truly present sometimes 
fail to be detected  

  
Misspecification 

of the mean 
The relationship 

between abundance and 
habitat quality is 

actually non-linear but 
we model it as linear, 

resulting in 
underestimation of the 
mean for some habitat 

qualities   
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Table 12.2. Commonly used probability distributions and some overdispersed mixture distribution 
equivalents. See Appendix LIKELIHOODS for formal definitions of the likelihood functions for 
these distributions. 
 

Distribution Equivalent Overdispersed Mixture Distributions 
Normal Student’s t-distribution - normal distribution with variance following an 

inverse gamma distribution (continuous mixture) 
Poisson Negative binomial distribution - Poisson distribution with the rate 

parameter following a gamma distribution (continuous mixture) 
Zero-inflated Poisson distribution - Poisson distribution with a Bernoulli 
distribution determining value of rate parameter of either zero or greater 

than zero (finite mixture) 
Binomial Beta-binomial distribution -  binomial distribution with binomial 

probability parameter following a beta distribution (continuous mixture) 
Zero-inflated binomial distribution - binomial distribution with a Bernoulli 

distribution determining value of binomial probability parameter of either 
zero or greater than zero (finite mixture) 

Multinomial Dirichlet-multinomial distribution - multinomial distribution with 
multinomial probability parameters following a Dirichlet distribution 

(continuous mixture) 
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Table 12.3. Akaike’s Information Criteria (AIC) and coefficient estimates for the binomial (Bin), 
beta-binomial (BBin), zero-inflated binomial (ZIBin), and the zero-inflated beta-binomial (ZIBBin) 
models fitted to the koala dung decay data (standard errors shown in parentheses). 
      

Value 
Model 

Bin BBin ZIBin ZIBBin 
AIC 3215.7 2360.6 2771.4 2361.8 

∆AIC 855.1 0.0 410.8 1.2 
α 5.30 (0.110) 5.07 (0.174) 4.18 (0.125) 5.04 (0.181) 

βage 0.02 (0.001) 0.01 (0.001) 0.01 (0.001) 0.01 (0.001) 
βsite -1.19 (0.096) 

0.14 (0.104) 
0.71 (0.083) 

-1.19 (0.162) 
0.31 (0.168) 
0.59 (0.13) 

-0.89 (0.103) 
-0.04 (0.113) 
0.58 (0.094) 

-1.21 (0.164) 
0.31 (0.170) 
0.60 (0.136) 

βmid -0.59 (0.088) -0.53 (0.146) -0.32 (0.102) -0.53 (0.148) 
βgully -0.52 (0.088) -0.59 (0.144) -0.14 (0.099) -0.59 (0.146) 
βrain -0.01 (0.001) -0.01 (0.002) -0.01 (0.002) -0.01 (0.002) 
βhum -0.08 (0.008) -0.08 (0.013) -0.06 (0.008) -0.08 (0.0127) 
βtemp -0.12 (0.014) -0.08 (0.021) -0.13 (0.014) -0.09 (0.022) 

log(γ)  0.52 (0.098)  0.57 (0.119) 
logit(q)   0.13 (0.099) 3.31 (1.316) 

∆AIC = difference between model AIC and model with the lowest AIC; α = intercept; βsite = 
coefficients for the sites; βmid = coefficient for mid-slope; βgully = coefficient for gully; βage = 
coefficient for pellet age; βrain = coefficient for rainfall; βhum = coefficient for humidity; βtemp 
coefficient for temperature; log(γ) = logarithm of the overdispersion parameter in the beta-binomial 
distribution; and logit(q) = logit of the probability that decay agents are present for the zero-inflated 
models. Continuous covariates were centered based on: median age = 71 days, median rainfall = 0 
mm, median humidity = 71.50%, and median temperature = 19.48 Celsius. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



38 

 

Table 12.4. Akaike’s Information Criteria (AIC) values for each alternative beta-binomial model 
fitted to the koala dung decay data. 
 

Model Rank Spatial Variables Temporal variables AIC ∆AIC 
1 X X 2,360.60 0.00 
2 X  2,436.30 102.70 
3  X 2,499.94 139.34 
4   2,583.33 222.73 

X = variables present in the model and ∆AIC = difference between model AIC and model with the 
lowest AIC. Continuous covariates were centered based on: median age = 71 days, median rainfall 
= 0 mm, median humidity = 71.50%, and median temperature = 19.48 Celsius. 
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Table 12.5. Akaike’s Information Criteria (AIC) values for each alternative zero-inflated beta-
binomial model fitted to the koala dung decay data. 

Model 
Rank 

Covariates for s Covariates for q AIC ∆AIC 
Spatial Temporal Spatial Temporal 

1 X X  X 2,345.64 0.00 
2 X X X X 2,354.72 9.08 
3 X X   2,361.77 16.13 
4 X X X  2,366.30 20.66 
5 X  X X 2,414.09 68.45 
6  X X  2,430.38 84.74 
7  X X X 2,431.38 85.74 
8 X   X 2,442.54 96.90 
9 X  X  2,455.50 109.86 
10 X    2,465.30 119.66 
11   X X 2,472.17 126.53 
12  X  X 2,484.54 138.90 
13   X  2,519.61 173.97 
14    X 2,551.20 205.56 
15   X  2,558.11 212.47 
16     2,585.34 239.70 

X = variables present in the model (“Variables for s” represent explanatory variables for the 
survival rates and “Variables for q” represent explanatory variables for the probability that decay 
agents are present) and ∆AIC = difference between model AIC and model with the lowest AIC. 
Continuous covariates for p were centered based on: median age = 71 days, median rainfall = 0 mm, 
median humidity = 71.5%, and median temperature = 19.48 Celsius. Continuous covariates for q 
were centered based on: median rainfall = 2.87 mm, median humidity = 71.02%, and median 
temperature = 19.79 Celsius. 
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Table 12.6. Model coefficients, Akaike’s Information Criteria (AIC) values and the estimated 
difference in abundance between the lowland and mid-elevation site for each of the zero-inflated 
and N-mixture models fitted to the lemur count data (values in parentheses are standard errors).    

Model 

Coefficients for p or q Coefficients for γ 

( )κln  AIC 

−lowlandN̂

elevationmidN −
ˆ  

(groups km-1) 

Intercept Lowland 
site 

Intercept Lowland 
site 

Eulemer f. fulvus 
Zero-

inflated 
Poisson 

1.522 
(0.493) 

19.616 
(2 x 10-10) 

-0.986 
(0.010) 

-1.632 
(0.028) 

 197.77 -0.233 
(0.029) 

Zero-
inflated 

negative-
binomial 

1.770 
(0.659) 

11.935 
(715.179) 

-1.030 
(0.141) 

-1.575 
(0.323) 

1.624 
(0.728) 

194.86 -0.175 
(0.168) 

N-mixture 
(Poisson) 

-2.335 
(0.297) 

-2.767 
(0.741) 

1.253 
(0.284) 

1.244 
(0.682) 

 738.02 8.645 
(2.629) 

N-mixture 
(negative-
binomial) 

-2.336 
(0.297) 

-2.767 
(0.741) 

1.253 
(0.284) 

1.244 
(0.682) 

31.193 
(2 x 10-10) 

740.02 8.645 
(2.629) 

Varecia v. variegata 
Zero-

inflated 
Poisson 

-0.028 
(0.366) 

22.375 
(2 x 10-10) 

-1.044 
(0.129) 

0.143 
(0.171) 

 222.72 0.233 
(0.156) 

Zero-
inflated 

negative-
binomial 

0.157 
(0.423) 

15.460 
(615.348) 

-1.132 
(0.221) 

0.267 
(0.295) 

0.937 
(0.454) 

204.94 0.247 
(0.374) 

N-mixture 
(Poisson) 

-1.805 
(0.230) 

-0.550 
(0.450) 

0.202 
(0.263) 

1.375 
(0.444) 

 746.50 3.617 
(1.172) 

N-mixture 
(negative-
binomial) 

-1.892 
(0.274) 

-0.994 
(0.514) 

0.279 
(0.302) 

1.798 
(0.523) 

1.457 
(0.828) 

 

747.09 6.659 
(1.741) 

p = probability of suitable habitat in the zero-inflated models, q = detection probability in the N-
mixture models, κ  = the overdispersion parameter for the negative-binomial distribution, and 

elevationmidlowland NN −− ˆˆ  = the difference in estimated abundance between the lowland site and mid-
elevation site in units of groups km-1 (standard errors for the differences were estimated using the 
delta method) 
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Figure 12.1. Histogram of observed daily probabilities of a koala pellet decay (black bars) versus 
expected values based on a binomial distribution with the same mean as the observed data (grey 
bars). Daily probabilities of decay relating to each recording interval were calculated as ( ) tns 11− , 
where s = the number of pellets that survived the interval (observed or expected), n = number of 
pellets at the start of the interval, and t = number of days in the interval. 



42 

 

 
Figure 12.2. Quantile-quantile plots for: (A) binomial and (B) beta-binomial models of koala pellet 
decay. Dots represent the quantile-quantile plot, with the solid black line and grey lines representing 
the expected (1:1) relationship and 95% point-wise confidence intervals respectively. The quantile-
quantile plot for the binomial model shows a pattern characteristic of overdispersion, with the lower 
end of the distribution lying below the confidence intervals and the upper end of the distribution 
lying above the confidence intervals. On the other hand, the quantile-quantile plot for the beta-
binomial model lies close to the 1:1 line and within the confidence intervals, indicating little that 
overdispersion has been accounted for. 
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Figure 12.3. Histogram of observed counts km-1 of transect surveyed on each transect section (black 
bars) versus expected values based on a Poisson distribution with the same mean as the observed 
data (grey bars) for: (A) Eulemer f. fulvus and (B) Varecia v. variegata.  
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Figure 12.4. Quantile-quantile plots for the Poisson and zero-inflated negative binomial models for 
counts of Eulemur f. fulvus (A, B) for the Poisson and zero-inflated negative binomial models for 
counts of Varecia v. variegata (C, D). Dots represent the quantile-quantile plot, with solid black 
line and grey lines representing the expected 1:1 relationship and 95% point-wise confidence 
intervals respectively. The quantile-quantile plot for the Poison models show a pattern characteristic 
of overdispersion, with the lower end of the distribution lying below the confidence intervals and 
the upper end of the distribution lying above the confidence intervals. On the other hand, the 
quantile-quantile plots for the zero-inflated negative binomial models lie close to the 1:1 line and 
with points lying within the confidence intervals, indicating that overdispersion has been accounted 
for. 
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