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Abstract 

Describing and examining the prevalence of poverty and disadvantage, how they change over 

time and how these differ across geographic and population clusters is important to enable 

better use of poverty and disadvantage research findings in evidence-based policymaking. 

This study reviews some of the methodological and substantive contributions to 

understanding the spatial and temporal dynamics of poverty within Australia. The review 

reveals one important methodological gap: there is limited research in developing statistical 

indicators that simultaneously account for the (i) prevalence, nature and geographical 

heterogeneity of multidimensional poverty and disadvantage in Australia, and (ii) its temporal 

dynamics at the micro-level. Hence, further research on seamlessly integrating 

multidimensional measurement of temporal dynamics of poverty with the statistical technique 

of small area estimation is warranted.  
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1.     Introduction 

Social, economic and other indicators of disadvantage provide useful inputs for targeting 

poverty policies. The data used to measure poverty are typically derived from household 

surveys of living standards. However, sample sizes of survey datasets used for poverty 

estimation are rarely large enough to provide reliable estimates for disaggregated analysis. 

For example in Australia, certain population groups, such as those disadvantaged or at higher 

risk of being socially-excluded, are not adequately represented in surveys (Productivity 

Commission 2013). Similarly, sample sizes beyond state/territorial level, are often too small 

to allow reliable estimation of poverty and disadvantage. Hence, solely relying on survey data 

to provide localised poverty estimates is contentious due to the limited sample size at finer 

levels of disaggregation.  This issue is problematic if we assume that there is a wide spatial 

disparity in poverty rates and that policies can be implemented more effectively when 

adequate information is available to give a detailed localised picture.   

National statistical systems are often confronted by both financial and administrative 

constraints and thus, only few of them have implemented surveys that can yield reliable 

estimates at fine levels of disaggregation (Marhuenda et al. 2013; Martinez et al. 2014). 

Small area estimation methodology provides an alternative approach for producing precise 

estimates at the local-level instead of inflating the sample sizes of household surveys. Over 

the years, we have seen a number of applications of various small area estimation tools in the 

measurement of disadvantage. In fact, some national statistical agencies compile small area 

estimates regularly. For example, the United States Census Bureau produce small area 

income and poverty estimates for school districts, counties, and states annually (US Census 

Bureau 2014). Similarly, United Kingdom’s Office for National Statistics publishes estimates 

of average household income for local areas since 2004 (Bond and Campos 2010; Rahman et 

al. 2013). Additionally, the World Bank has conducted several poverty mapping projects in 

many developing countries such as Cambodia, Lao PDR, the Philippines, Thailand and 

Vietnam (Haslett et al. 2010).  

In Australia, there are numerous studies that have examined different indicators of 

disadvantage across different population groups at the national level. There have been several 

initiatives to examine these measures of disadvantage at the local level (e.g., income poverty 

– Miranti et al. 2011; unemployment rate – ABS 2010; disability – Elazar 2004; ABS 2005 

and 2006). The effort exerted to examine the multiple facets of poverty at the local level is 

the response to the need to understand disadvantage in terms of other dimensions aside from 
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income deprivation. More recently, experts of poverty measurement such as Alkire, Foster 

and Santos (Alkire and Foster 2011; Alkire and Santos 2014) and proposed a composite 

measure of poverty and have actively encouraged many countries to compile such type of 

measures. In Australia, Scutella et al. also proposed a composite index of disadvantage 

(Scutella and Wilkins 2010; Scutella, Wilkins and Kostenko 2013). Using this measure, 

Azpitarte (2014) finds that Australia’s economic growth between 2001 and 2008 can be 

considered more pro-income-poor than pro-multidimensionally-poor. In other words, the 

income gains of the people identified as multidimensionally-poor were far below the average 

income gains of the income poor. On the other hand, one of the important gaps in our current 

understanding of these phenomena is in examining the spatial and temporal dynamics of 

social exclusion and disadvantage. In this context, spatial dynamics refers to the variation of 

poverty status across different population groups or geographic areas while temporal 

dynamics refers to how a person moves into and out of poverty over time. Some of the 

existing small area estimates of socioeconomic disadvantage in Australia do not carefully 

distinguish those who are trapped in an uninterrupted spell of poverty from those who move 

into and out of the different dimensions of disadvantage periodically. These limitations have 

undermined the influence of poverty research on policy planning (Saunders and Naidoo 

2009).  

This study is a literature review that provides some methodological background and 

motivation behind SAE. It focuses on the application of SAE in the measurement of 

socioeconomic disadvantage in the Australian context and reviews the current developments 

in this area. We find that there is a relative paucity of the use of this statistical approach 

outside official statistics and there is also limited application in the analysis of 

multidimensional poverty dynamics. Thus, we conclude by discussing a general framework 

that can be used for measuring the dynamics of multiple dimensions of socioeconomic 

disadvantage at the local level in Australia.  

 

2. Small Area Estimation Concepts  

2.1 What is Small Area Estimation? 

Small area or small domain are terms used by statisticians to refer to any sampling grouping 

in which surveys provide insufficient sample data to accurately estimate a specific 

characteristic of interest for the target population (Pfeffermann 2002; Rao 2003:1).  In this 

context, small areas may correspond to any socioeconomic, demographic or geographic 
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groups that are not well-represented in surveys.  Over the years, a class of estimation tools 

commonly referred as small area estimation (SAE) methodology, has been proposed to 

address the issue of survey estimation with small sample sizes. It is a methodology for 

producing estimates at a greater level of precision than can be obtained from solely relying on 

survey data. To accomplish this, SAE relies on the concept of ‘borrowing strength’ from 

auxiliary data. In particular, SAE techniques take advantage of various relationships in the 

various data sources and make efficient use of the additional information available to be able 

to increase the sample size artificially.  For example, there is routinely collected information 

from census or other administrative large data source that is of a sufficient size to allow 

disaggregation, but this usually either contains no information on the outcome of interest, or 

measures this information poorly.  Some SAE techniques combine the information from 

(small sample) survey data with (large sample) census data to take advantage of the detail in 

the household sample surveys, and the comprehensive coverage of the census. 

There are several ways to borrow strength from auxiliary data in order to improve the survey 

estimators at the local-level. For instance, some use implicit methods which basically rely on 

simpler statistical tools when the small areas share similar characteristics and such 

information can be easily derived from an existing auxiliary data. Other researchers resort to 

explicit models to take unobserved heterogeneity into account. Furthermore, many analytical 

tools for SAE are specifically designed for a certain type of characteristics of interest for the 

target population, e.g., totals, counts, means, and proportions while other SAE techniques can 

be applied more generally (Rao 2005; Pfeffermann 2013). Nevertheless, all SAE 

methodologies aim to produce statistically valid and reliable estimators for a characteristic of 

interest. Statistically speaking, an estimator is considered valid if the average value of this 

estimator under repeated sampling is equal to the value of the target population’s 

characteristic of interest. Analogously, an estimator is said to be reliable if it yields 

approximately the same value if one takes repeated samples of the population. Precise 

estimators are those that satisfy both validity and reliability conditions. The performance of a 

small area estimator can be evaluated by comparing its statistical precision with that of the 

direct survey estimator (Ghosh and Rao 1994; Rao 2003; Pfeffermann 2002; Pfefferman 

2013).   
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2.2   Where do we get auxiliary data?  

In the SAE literature, the term auxiliary data is used to refer to data from which strength is 

borrowed to be able to improve the statistical precision of survey estimators at the local-level. 

The quality of small area estimates can be greatly enhanced when the auxiliary data have the 

following characteristics. Firstly, the auxiliary data comprehensively cover the entire 

population for which the small area estimates are required. Secondly, the auxiliary data are of 

high quality to reliably allow the identification of all units in the small areas. Thirdly, is 

correspondence between the auxiliary data and small area population characteristic of interest 

being estimated. Finally, there is a strong correlation between the auxiliary data and the small 

area characteristic of interest. The greater this correlation, the more ‘strength’ can be 

borrowed through exploiting this relationship (Gonzalez 1973).    

ABS (2006) schematically provides a detailed description of the relationships between the 

small area and auxiliary information. These are 

a. Cross-sectional relationships – correlations between units with similar characteristics, 

even though they are not observed in the same area. For example, although there may 

be localised differences between small areas, the age-sex characteristics will be 

similar across areas.  

b. Time series relationships – strength can be borrowed through pooling small area 

sample data across time, and then using the series autocorrelations across time to 

increase the effective sample size in each area. For example,  repeated or longitudinal 

surveys, or censuses across time  

c. Spatial relationships – most small areas are divided by arbitrary boundaries and 

therefore different units bear a relationship to each other based on the distance and 

direction between them, and this can be used for increasing the effective sample size 

of the broader areas. For example, in the context of health and environmental effects 

of ozone pollution, exposure to pollutants is related to the location and will vary with 

space.  

d. Multivariate relationships – by jointly modelling two or more variables 

simultaneously, we can borrow information between units and take advantage of this 

additional information to obtain more robust and reliable estimates.   For example, in 

modelling social class and income, a multivariate approach is more efficient in terms 

of producing more accurate predictions due to the strong correlations between the 

constituent variables.       
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3.      What are the approaches to small area estimation?  

3.1    Notation 

Following on from Ghosh and Rao (1994), Rao (2003), and Pfeffermann (2002; 2013) and 

others, let U be the population of size N. Consider that U is divided into M exclusive and 

exhaustive areas, such that U1 υ U2 υ …. υ UM, with Ni  units in area i. This implies that 

∑ 𝑁𝑖
𝑀
𝑖=1 = 𝑁.    

Next suppose we select a sample (randomly)  S of size n from this population. Also suppose 

that samples are available for m ≤ M of these areas.  Let  S1 υ S2  … υ Sm define the overall 

sample, where Si of size ni is the sample from area i. Following on from this, we have 

∑ 𝑛𝑖
𝑚
𝑖=1 = 𝑛.    

Let us now define y to be the characteristic of interest, and denote 𝑦𝑖𝑗 to be the response 

value for unit j belonging to area i, where  𝑖 = 1, 2, … , 𝑀 and 𝑗 = 1, 2, … , 𝑁𝑖.   For this 

characteristic of interest, we can see that the sample mean for area i is given by  𝑦̅𝑖 =

∑
𝑦𝑖𝑗

𝑛𝑖

𝑛𝑖
𝑗=1 . 

For the ‘small’ area, let us assume we are interested in the area quantity, 𝜃𝑖, for example the 

area mean, given by 𝜃𝑖 = 𝑌̅𝑖 =  ∑
𝑦𝑖𝑗

𝑁𝑖

𝑁𝑖
𝑗=1 . 

 

3.2    The Direct Estimator 

The direct estimator is the (unbiased) population quantity using only the data available for the 

sample target area.  For our area quantity, the mean area response, the direct estimator is 

estimated  by 

 

                                                   𝜃𝐷 = 𝑦̅𝑖 = ∑
𝑦𝑖𝑗

𝑛𝑖

𝑛𝑖
𝑗=1                                                        (1) 

 

with variance 𝑉𝐷[𝑦̅𝑖|𝑛𝑖] = (𝑆𝑖
2/𝑛𝑖) [1 − (

𝑛𝑖

𝑁𝑖
)], where 𝑆𝑖

2 is the sample variance, and given by 

𝑆𝑖
2 =

∑ (𝑦𝑖𝑗
𝑁𝑖
𝑗=1

−𝑌̅𝑖)2

𝑁𝑖−1 
. 

The issue is that this variance 𝑉𝐷[𝑦̅𝑖|𝑛𝑖]  is large, since the sampling variances 𝑆𝑖
2 are usually 

large, especially for those small areas with small samples, 𝑛𝑖.  

Direct estimators are often referred to as design-based small area techniques because they 

rely on survey sampling theory and inference (Pfeffermann 2002; 2013). 
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3.3    The Synthetic Estimator 

The synthetic estimator can be derived by partitioning the sample S into B ‘broad’ areas, such 

that B ≤ M. These broad areas, b =1, 2, .. B, are chosen so that they are mutually exclusive 

and exhaustive, and a reliable direct estimator can be found for this larger, broad area. Let us 

assume that each broad area b is made up of constituent smaller areas.   

We now need to ‘link’ the small areas to the larger broad areas. Let us denote 𝑋𝑖𝑗𝑘 =

(𝑥1𝑖𝑗𝑏 , 𝑥2𝑖𝑗𝑏 , … , 𝑥𝑝𝑖𝑗𝑏) to be covariate values associated with unit j belonging to area i, in 

broad area b. 

 Without loss of generality, we can assume that the broad area covariates can be derived from 

summing the small areas.   

Then a synthetic estimator for the small area i, in broad area b is given by 

 

                                              𝜃𝑆 = 𝑦̅𝑖𝑆 =
∑ ∑

𝑥𝑖𝑗𝑏

𝑥𝑏𝑗 
𝑦𝑏𝑗

𝐵
𝑏=1

𝑁𝑖
𝑗=1

𝑁𝑖
                                              (2) 

 

This form of the synthetic estimator is called the synthetic-ratio estimator (Ghosh and Rao 

1994). 

More common is to write this as a regression-type estimator, of the i
th

 small area population 

quantity, where 

 

                                                                𝑌𝑖𝑆 = 𝑋𝑖
𝑇′

𝛽                                                        (3) 

 

where 𝑋𝑖  is the known auxiliary information in a small area 𝑖, and 𝛽  is the estimate of the 

population regression coefficients.  

The synthetic estimator is more biased than the direct estimator, and Ghosh and Rao (1994) 

showed that this bias is given by 

 

                                           𝐸(𝑦̅𝑖𝑆) − 𝑌̅𝑖 ≅  ∑ 𝑋𝑖𝑏
𝐵
𝑏=1 (

𝑌𝑏

𝑋𝑏
−

𝑌𝑖𝑏

𝑋𝑖𝑏
)                     (4) 

 

which is only zero (meaning unbiased) if  
𝑌𝑏

𝑋𝑏
=

𝑌𝑖𝑏

𝑋𝑖𝑏
. 

However, the variance of this (synthetic) estimator is much smaller than the direct estimator, 

since it only depends on the variances of the reliable information from the broader areas. 
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Therefore, the synthetic estimator is fundamentally a biased estimator, but when the small 

areas within each broader area are homogenous with respect to the quantity being measured it 

will be more efficient, through having a smaller mean squared error.    

Rao (2003) and Pfeffermann (2002) derive two forms of the synthetic estimator, namely the 

ratio estimator and the calibration estimator. Under general conditions, both estimators are 

equivalent (Pfeffermann 2002; 2013). The ratio estimator works by proportionately sharing 

the estimated quantity computed using a larger broad area across the small areas contained 

within this broad area. This apportioning is done according to some ratio based on auxiliary 

information. On the other hand, the calibration estimator works by adjusting the original 

survey design weights (usually given to be the inverse of the sample selection probabilities). 

These design weights are then replaced by adjusted weights that are close to the original 

design weights but are calibrated to some auxiliary variable for the population (Deville and 

Särndal 1992; Pfeffermann 2002; Estevao and Särndal 2006). In the simplest example, the 

calibration works by adjusting the survey design weights to known population age by gender 

totals for each small area (see for example ABS 2005; Brown et al 1999). The survey weights 

are then calibrated so that the estimate of the population count by age and gender agree with 

the known population totals. The calibration estimator is equivalent to the (generalized) 

regression estimator since it ensures consistency with auxiliary totals (Deville and Särndal 

1992; Singh and Mohl 1996, Bell 2000).  

More specifically, noting that the overall objective of the small area estimation strategy is to 

estimate a true quantity of a small area, say, the area mean 𝑌̅𝑖 = ∑
𝑦𝑖𝑗

𝑁𝑖
⁄

𝑁𝑖
𝑗=1 . 

If there is no auxiliary information available the ordinary direct estimator results, using only 

the available sample data 

 

                    𝑦̅𝑖 = ∑
𝑦𝑖𝑗

𝑛𝑖
⁄𝑛𝑖

𝑗=1  and variance 𝑉𝑎𝑟𝐷[𝑦̅𝑖|𝑛𝑖] = (
𝑆̃𝑖

2

𝑛𝑖
⁄ ) [1 −  

𝑛𝑖

𝑁𝑖
] = 𝑆𝑖

𝐷2
,        (5) 

 

where  

 

                                                      𝑆̃𝑖
2 =  

∑ (𝑦𝑖𝑗 − 𝑌̅𝑖)
𝑁𝑖
𝑗=1

2

(𝑁𝑖 − 1)
⁄                                     (6)                  
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For small 𝑛𝑖 the variance will be large, unless the variability in the 𝑦𝑖𝑗 values is sufficiently 

small.  

Let us now suppose that in addition to measuring the 𝑦𝑖𝑗 values we have some auxiliary 

variables 𝑥𝑖𝑗  collected from alternative sources such that the small area population means 

𝑋̅𝑖 = ∑
𝑥𝑖𝑗

𝑁𝑖
⁄

𝑁𝑖
𝑗=1  are known.  Pfeffermann (2002) showed that an efficient unbiased 

estimator using this auxiliary information is the regression estimator, 

 

                                                     𝑦̅𝑟𝑒𝑔,𝑖 = 𝑦̅𝑖 = (𝑋̅𝑖 − 𝑥̅𝑖)
𝑇𝛽𝑖                                            (7) 

                                                   𝑉𝑎𝑟𝐷(𝑦̅𝑟𝑒𝑔,𝑖) = 𝑆𝑖
𝐷2

(1 − 𝑅𝑖
2)                                            (8) 

 

Where 𝑥̅𝑖 = ∑
𝑥𝑖𝑗

𝑛𝑖
⁄𝑛𝑖

𝑗=1 , 𝛽𝑖 is the vector of regression coefficients, and 𝑅𝑖
2  is the vector of 

multiple correlation coefficients between the 𝑦-values and the auxiliary variables 𝑋1, 𝑋2,…, 

𝑋𝑝.  Adding the auxiliary information in the estimation of the population quantities has the 

benefit of reducing the variability by a factor of (1 − 𝑅𝑖
2), and illustrates the importance of 

having auxiliary information with good predictive power (Pfeffermann 2002). In practice, 

however, the coefficients  𝛽𝑖 are not known and the alternative of replacing them with  𝛽̂𝑖s 

computed by using the sample information is not effective because of the lack of adequate 

sample sizes for small areas. If the assumption is made that the  𝛽𝑖 coefficients are similar 

across groups of small areas, then the synthetic regression estimator is given by 

 

                                                 𝑦̅𝑟𝑒𝑔,𝑖
𝑠𝑦𝑛

= (𝑦̅ − 𝑥̅𝑇𝑏) + 𝑋̅𝑖
𝑇𝑏                                               (9) 

 

where   𝑏 =
∑ ∑ (𝑥𝑖𝑗−𝑥̅𝑖)(𝑦𝑖𝑗−𝑦̅𝑖)𝑛

𝑗=1
𝑚
𝑖=1

∑ ∑ (𝑥𝑖𝑗−𝑥̅𝑖)
𝑇

(𝑥𝑖𝑗−𝑥̅𝑖)𝑛
𝑗=1

𝑚
𝑖=1

 is a pooled estimator computed from all the sample 

information.  

When there is a single auxiliary variable, and zero intercepts, then if X and Y are highly 

correlated, the ratio relationship  

 

                                                            
𝑦̅𝑖

𝑋̅𝑖
=

𝜇𝑦

𝜇𝑥
=

𝑦̅

𝑥̅
                                                         (10) 
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And the synthetic ratio estimator is derived as 

 

                                                         𝑦̅𝑟𝑎𝑡𝑖𝑜,𝑖
𝑠𝑦𝑛

= 𝑋̅𝑖
𝑦̅

𝑥̅
.                                                       (11) 

 

The ratio estimator can be written as a generalized regression estimator,  

 

                                      𝑦̅𝑟𝑎𝑡𝑖𝑜,𝑖
𝑠𝑦𝑛

=  𝑦̅ + (𝑋̅𝑖 − 𝑥̅)𝑏𝑟, where 𝑏𝑟 =
𝑦̅

𝑥̅
.                              (12) 

 

Both of these synthetic estimators rely on the assumption that reliable direct population 

estimates of the characteristic of interest for the larger, broad area (with sufficiently larger 

sample size) from the survey exists, and this can be used to derive the small area quantities. 

The estimators are unbiased if the relationship applies to both the broad area and the small 

areas within.   

 

3.4     Composite Estimators 

A composite estimator is essentially a way to balance between the bias of synthetic estimator 

with instability of the direct estimator.  The approach is based on the theoretical result that as 

the sample size in a small area increases, the direct estimate becomes more appealing (Purcell 

and Kish 1979). This is because, on the one hand, when the area level sample sizes are too 

small, the synthetic estimator will do better than the traditional direct estimator. On the other 

hand, when the sample sizes are large enough, then the direct estimator is better performing 

when compared to the synthetic estimator.   A suitable compromise between these two is to 

take a weighted average of both estimators. This is similar to taking a linear combination of 

the direct estimator (𝑦̅𝑖𝐷) and synthetic estimator (𝑦̅𝑖𝑆), and hence it is sometimes referred to 

as a combined estimator (Pfeffermann 2013). 

This composite estimator is given by  

 

                                           𝑦̅𝑖𝐶 = 𝑤𝑖𝑦̅𝑖𝐷 + (1 − 𝑤𝑖)𝑦̅𝑖𝑆                                                (13) 

 

and the compositing weight,  0 ≤ 𝑤𝑖 ≤ 1 , is suitably chosen to according to some optimal 

criteria (Ghosh and Rao 1994; Rao 2003). Ideally, this optimal value, can found through 

minimizing the mean square error (MSE) of the composite estimator.  This is given by,  
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                                                  𝑤𝑖
𝑜𝑝𝑡 =  

𝑀𝑆𝐸(𝑦̅𝑖𝑆)

𝑀𝑆𝐸(𝑦̅𝑖𝑆)+𝑀𝑆𝐸(𝑦̅𝑖𝐷)
,                                           (14) 

 

provided the assumption is made that the covariance between the synthetic and direct 

estimators is negligible. 

Although composite estimation appears to be a good way of compromising between the 

potential bias of synthetic estimation and the imprecision of direct estimation, there are some 

issues.  Firstly, there is no general consensus as to the choice of weights.  Also, the 

computation of the mean square error of the composite estimator is not straightforward 

(Pfeffermann 2013). Secondly, the weights do not take account of the size of between area 

variation relative to the within area variation for the characteristic of interest. In fact, all 

population characteristics are given the same weight, regardless of their differences with 

respect to the between area homogeneity.  

These limitations, combined with the other limitations of the implicit small area estimation 

approaches, can be avoided through models that incorporate the random area-specific effects.  

Such models are called explicit small area estimation models, and are considered in detail 

next. 

Small area models that include random effects to cope with the between area variation offer 

some specific advantages. First, differences in the small areas that cannot be fully explained 

by the auxiliary data can be accounted for specifically and this can lead increased reliability 

and improved accuracy. Second, framing the small area problem in this approach allows the 

use of model diagnostics that can be used to find suitable models that fit the data well, and 

also allow the use of selection criteria to choose between competing models. Third, area 

specific measures of precision can be used to detect departures from the model, or where the 

model is poorly estimating particular small areas. Fourth, these small area modeling concepts 

are flexible to deal with both linear and nonlinear data structures, and can be extended to 

logistic and other generalized models with random area effects.  

There are a number of recent advances for small area modelling approaches (Chambers and 

Tzavidis 2006; Chandra and Chambers 2009) to estimate small areas with complex data 

structures and dependence. However, the success of the models are strongly influenced by the 

choice of auxiliary variables and availability of good quality auxiliary data (Pfeffermann 

2013). Rao (2013: 75) state that “attention should be given to the compilation of auxiliary 

variables that are good predictors of the study variables”. 
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Explicit small area models can be classified into two main types: (1) Aggregate (or area) 

level models that relate the small area parameters of interest to the area-specific auxiliary 

variables.  Or (2) Unit level (nested error) model that relate the unit values of the response 

variable to unit specific auxiliary variables. 

 

3.5      Area level small area models 

This model is used when the covariate information is only known at the area level. These 

models include area level random effects to relate the direct estimates to area-specific 

covariates (Fay and Herriot 1979).  

This is defined as  

 

                                        𝑦̃𝑖 = 𝜃𝑖 + 𝑒𝑖 (known as the sampling model);  

                                       𝜃𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑢𝑖  (known as the linking model).                              (13) 

 

And put together we have 

 

                                𝑦̃𝑖 = 𝑦̃𝑖 =;  𝑦̃𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑢𝑖 + 𝑒𝑖,   𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚.                        (14) 

 

Here 𝑦̃ denotes the direct sample estimate of the population characteristic of interest, 𝜃𝑖 (for 

instance, the sample mean of the small area i, 𝑦̅𝑖) ,and  𝑒𝑖 are the sampling errors and the 𝑢𝑖 

are the area level random effects.  

 

These sampling errors are assumed to be independent with zero mean and  known variance, 

such that 𝐸(𝑒𝑖| 𝜃𝑖) = 0 and 𝑉(𝑒𝑖| 𝜃𝑖) = 𝜎𝑒 
2  . 

The area level random effects are assumed to be also independent with zero mean and known 

variance, such that 𝐸(𝑢𝑖) = 0 and 𝑉(𝑢𝑖) = 𝜎𝑢
2 . 

 

Pfeffermann (2013) showed that under general conditions, this model yields a best linear 

unbiased estimator of the small area characteristic of interest, 𝜃𝑖, given by 

 

                                𝜃𝑖 = 𝛾𝑖𝑦̃𝑖 + (1 − 𝛾𝑖)𝑋𝑖
𝑇𝛽̂ = 𝑋𝑖

𝑇 𝛽̂ + 𝛾𝑖(𝑦̃𝑖 − 𝑋𝑖
𝑇 𝛽̂) =  𝑋𝑖

𝑇 𝛽̂ +  𝑢̂𝑖 .    (15) 

 

Fay and Herriot (1979) showed that the coefficient 𝛾𝑖 is given by 
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                                                           𝛾𝑖 =
𝜎𝑢

2

 𝜎𝑢
2+ 𝜎𝑒

2 
=  

(
𝜎𝑢

2

𝜎𝑒
2)

(
𝜎𝑢

2

𝜎𝑒
2)+1

                  (16) 

 

which is a function of the ratio (
𝜎𝑢

2

𝜎𝑒
2) of the respective variances of the prediction errors of 

𝑋𝑖
𝑇𝛽̂ and 𝑦̃𝑖, and is sometimes referred to as a shrinkage coefficient. The model is derived 

from area specific auxiliary data to relate to the small areas, and then combine with these 

with the underlying sampling model.  This is analogous to the composite estimator discussed 

above, but here the optimal weight is 𝛾𝑖 and is based on the (known) variances of the 

sampling and linking models (Fay and Heriot 1979; Datta 2009). 

 

The assumption that these model variances (𝜎𝑒 
2 and 𝜎𝑢 

2 ) are known is considered a limitation 

of the basic area level model (Rao 2003). The reason given is that assuming that the sampling 

variances are known can in fact be too restrictive. In addition, the linking model assumes a 

linear relationship, but this often not true and defined for a transformation of  𝜃𝑖̂. The effect 

this has is that for small areas with particularly small sample sizes, the relationship will not 

hold. In the original development, Fay and Heriot (1979) replaced  𝜃𝑖with the logarithmic 

transformation. Extensions to these area models that allow correlated sampling errors, and 

also allow correlations to exist amongst the areas are available (e.g. the 1990 US Census 

Coverage Adjustment (Isaki, Tsay and Fuller 2000)).      

 

3.6    Unit level small area models 

This model uses individual observations 𝑦𝑖𝑗 to relate to unit specific covariates (auxiliary 

information)  𝑋𝑖𝑗, originally proposed by Batesse, Harter and Fuller (1988).  

The model has the form 

 

                                                        𝑦̃𝑖𝑗 = 𝑋𝑖𝑗
𝑇 𝛽 + 𝑢𝑖 + 𝜖𝑖𝑗            (17) 

 

where the 𝑢𝑖’s are random area effects and the  𝜖𝑖𝑗 are residual terms, which are mutually 

independent identically distributed, such that 𝐸(𝜖𝑖𝑗| 𝑦𝑖𝑗) = 0 and 𝑉(𝜖𝑖𝑗| 𝑦𝑖𝑗) = 𝜎𝜖 
2 ;  𝐸(𝑢𝑖) =

0 and 𝑉(𝑢𝑖) = 𝜎𝑢
2 . 
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These 𝑋𝑖𝑗  unit-specific auxiliary data are available for all areas, 𝑖 = 1, 2, … , 𝑚 and units, 

𝑗 = 1, 2, . . 𝑁𝑖 since, 𝑁𝑖 is the number of population units in the i
th

 area.  

𝛽 represents the vector of regression parameters.  

The unit responses, 𝑦𝑖𝑗 , are related to the auxiliary covariates 𝑋𝑖𝑗 through the above nested 

error regression equation. 

 

Under this nested error model, the true small area estimates (let us assume we are interested 

in the area means) are specified as 

  

                                                             𝑌̅𝑖 = 𝑋̅𝑖
𝑇𝛽 + 𝑢𝑖 + 𝜖𝑖̅.                             (18) 

 

Now since the mean error terms,   𝜖𝑖̅ = ∑
𝜖𝑖𝑗

𝑁𝑖
⁄

𝑁𝑖
𝑗=1 ≅ 0, for large 𝑁𝑖 then these area means 

become 

 

                                                       𝜃𝑖 = 𝑋̅𝑖
𝑇𝛽 +  𝑢𝑖 = 𝐸[𝑌̅𝑖|𝑢𝑖].                     (19) 

 

For known variances (𝜎𝑢
2, 𝜎𝜖

2) the best linear unbiased predictor (BLUP) of 𝜃𝑖 is given by 

 

                                              𝜃𝑖 = 𝛾𝑖{𝑦̅𝑖 + (𝑋̅𝑖 − 𝑥̅𝑖)
𝑇𝛽̂} + (1 − 𝛾𝑖)𝑋̂𝑖

𝑇𝛽̂        (20) 

 

where 𝑥̅𝑖 =  ∑ 𝑥𝑖𝑗/𝑛𝑖
𝑛𝑖
𝑗=1  represent the sample means of the auxiliary variable information for 

the small area i, and 𝛽̂ is the estimate of the regression parameters computed from all the 

observations. Additionally, the ‘shrinkage’ term for this model is  

 

                                                               𝛾𝑖 =  
𝜎𝑢

2

𝜎𝑢
2+

𝜎𝜖 
2

𝑛𝑖
⁄

.        (21) 

 

The benefit of this model specification is that for a small area k with no sample, but with 

known covariate information, then small area model-based estimator is simply 

 

                                                             𝜃𝑘 =  𝑋̅𝑘
𝑇𝛽.̂            (22) 
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This BLUP, 𝜃𝑖 has some fine properties that simplify the estimation and aid interpretation. It 

can be seen that 𝜃𝑖 is in fact a composite estimator with the direct estimator given by 

{𝑦̅𝑖 + (𝑋̅𝑖 − 𝑥̅𝑖)
𝑇𝛽̂} and the model-based synthetic estimator, 𝑋̂𝑖

𝑇𝛽̂. The weights are assigned 

more optimally based on the ratio, 𝜎𝑢
2/𝜎𝜖

2, unlike the design-based composite estimators 

which have an ad hoc choice of weights (Pfeffermann 2013). Another property of the BLUP 

in this format is that there is no need to specify the distribution of the variance terms. This is 

because in practice the BLUP is replaced by the empirical best linear unbiased predictor 

(EBLUP) which is found by replacing the unknown variances with their sample estimates 

everywhere they appear in the expression of the BLUP. Under a Bayesian approach the 

BLUP is the linear Bayes predictor, and we have the empirical Bayes (EB) predictor when we 

substitute the unknown terms with sample estimates.  Note that when the weight 𝛾𝑖 is zero the 

resulting estimator,  𝜃𝑖 =  𝑋𝑖
𝑇𝛽̂, is the synthetic estimator which does not account for local 

variation other than the variation reflected in the auxiliary variables 𝑋𝑖. 

 

3.7   Spatial (Geographically-based) Small Area Estimation 

There are alternative ways of deriving small area estimates, using spatial or geographical 

techniques. These spatial techniques use data from similar areas  (or domains) to estimate the 

statistics in the small areas through an indirect process that seeks to link the outcomes to a set 

of explanatory (auxiliary) variables through assuming a model that relates the small areas 

(Tanton et al., 2011). The ideas of borrowing strength from similar areas as used in statistical 

small area estimation also underlie the spatial small area estimation.    

In contrast to the statistical approaches discussed above, spatial techniques are grounded in 

economic and geographic theories, and their methodologies are based on trying to essentially 

reconstruct the small area data in an indirect or synthetic manner so that they have the 

specific characteristics (usually based on larger area data as constraints, referred to as 

benchmarks (Tanton et al. 2011)). Spatial microsimulation has been widely used in Australia 

in estimating the effects of policy change on the size and distributions of different population 

characteristics such income deprivation (Tanton et al. 2009; Tanton 2011; Miranti et al. 

2011), housing stress (MacNamara et al. 2007), disability (Elazar 2004; ABS 2005), at small 

area level when contemporaneous census and/or survey information is unavailable.   

This can be done through synthetic reconstruction or reweighting methods. Synthetic 

reconstruction attempts to recreate indirect synthetic micro-populations at the small area level 

in such a way that known higher level constraints are met. This is similar in approach to the 
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iterative proportional fitting algorithm (Stephan and Deming 1940). In the classical iterative 

fitting algorithm, the (population) cell estimates in a contingency table are found by adjusting 

the sample data subject to marginal control totals. Reweighting is a fairly newer approach and 

works by using reliable data to calibrate the sampling design weights to a new set of weights 

based on some distance criteria. This is similar to the generalized regression (GREG) 

estimator which is also a calibration (synthetic) estimator (Deville and Särndal 1992; Singh 

and Mohl 1996). In Australia, Bell (2000) developed an algorithm (known as GREGWT) that 

provides calibrated weights for the creation of synthetic micro-populations. This works by 

minimizing the chi-squared distance between the basic design weights and the new adjusted 

weights so that the new weights modify the design weights as little as possible, subject to the 

calibration constraints or benchmarks. This has been used by the ABS for estimating small 

area statistics in a number of surveys (such as the Labour Force Survey (Department of 

Education Employment and Workplace Relations 2009), the Household Expenditure Survey 

(ABS 2002); and the Survey of Disability Ageing and Carers (ABS 2005)). 

Data fusion or matching is also another approach of microsimulation, although rarely referred 

to as a small area estimation technique. In this approach data from multiple sources are 

brought together into a single source through matching on the basis of variables which 

uniquely identify individuals (and households). This exact matching is not possible when 

these unique identifiers are not available. In reality due reasons of confidentiality and 

privacy, for instance, records from different sources are probabilistically matched if they 

share a set of common characteristics (e.g. sex, age, marital status, geographic location). The 

Australian Census Longitudinal Dataset (ACLD) (ABS 2013) is an example of a 

microsimulation through data fusion/matching. 

 

3.8 A prediction approach – differences between model based and design based 

approaches in statistics 

 There are two broad schools of inferential and sampling statistics, which until recently were 

diametrically opposites. From a design of experiments point of view, random variables in the 

randomization were not overly concerned with the responses, 𝑦𝑖. But of interest here are the 

indicator variables, 𝑍𝑖, that tell us whether a unit 𝑖 is in the sample or not. In a randomization 

theory (i.e. design based) approach to inferential statistics, the only relationship between units 

sampled and units not sampled is through the sampling process. In other words, the 

assumption is that if we were to use a different random starting point to generate our sample, 

we could have the included the previously non-sampled units.  
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 The other approach is to assume that the random variables follow a probability distribution.  

Then the sample values 𝑦𝑖 are realisations of the random variables. Therefore, we would 

usually assume that 𝑌𝑖~ 𝑌1,𝑌2, … . , 𝑌𝑛 are independent and identically distributed from a 

normal distribution. Subsequently we can use the properties of independent random variables 

and the normal distribution to find expected values of various statistics.  The other approach 

to sampling is based on assuming that the sample values 𝑦𝑖 are realisations of the random 

variables 𝑌𝑖, and these follow a probability distribution.  These random variables are therefore 

generated from some model, and the actual values are one realization of the random variables 

(for a finite population). The joint probability distribution of  𝑌1, 𝑌2, … . , 𝑌𝑁 is the link between 

the units in the sample, {𝑦𝑖 , 𝑖 ∈ 𝑆}  and the non-sampled units  {𝑦𝑖, 𝑖 ∈ 𝑆′} .  The difference 

here is that a sample is drawn, and we can use the sampled data to predict the unobserved 

values of the nonsampled units. Although, both approaches can be theoretically equivalent, 

the model-based strategies can perform poorly when the model is not properly specified, 

whereas the design-based approaches rely on knowing the sampling probabilities of every 

unit in the population (or at every unit having a nonzero chance of being included).   

 

3.9 Issues around the Empirical Best Linear Unbiased Prediction (EBLUP) and 

Empirical Bayes (EB) Estimation 

The implicit techniques using the auxiliary data to link related small areas are fairly simple to 

estimate using standard approaches that explain the differences between the areas. But in 

regards to explicit small area models that make specific allowance for the heterogeneity 

between areas, there is usually the need to introduce random effects at each specific area to 

account for the between area variation and borrow strength across related areas. These 

models rely on empirical best linear unbiased prediction (EPLUP) or empirical Bayes (EB) 

estimation of the unknown unobserved heterogeneity terms, or random effects.  The case of 

unknown random effect terms is difficult to handle in the context of small area models, 

without additional assumptions. First, there is the assumption of linearity, but this might not 

necessarily hold if there is a nonlinear relationship, particularly when the area sample size is 

small. Second, there is the assumption of uncorrelated errors, but in the case when the small 

areas straddle more than one boundary in the sample design, there is a violation of 

independence. Thirdly, normality of the random effects is assumed, but this usually depends 

on transforming the 𝑦𝑖s, e.g. by modelling log (𝑦𝑖)   (see Fay and Heriot 1979; Rao 2003: 77). 
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However, the main issue is that the EBLUP/EB assume known variances and hence, the mean 

square error (MSE) estimator, which gives a measure of the prediction accuracy, obtained by 

replacing the unknown random effect terms by their sample estimates ignores the error 

resulting from the variance estimation. This estimator therefore underestimates the true mean 

square error (Pfeffermann 2002; 2013). These model-based procedures do overcome the 

problems associated with design-based procedures since the randomization based estimation 

of precision e.g. confidence intervals and standard errors, rely on large sample normality 

assumptions, but this will not hold in areas with small or no sample size. However, these 

models can only produce sufficiently accurate small area predictors when there is available 

auxiliary data with good predictive power. The robustness of inferences to model mis-

specification and the correct estimation of the mean square error has been where there have 

been continued developments in small area modelling.  Prasad and Rao (1990), Datta and 

Lahiri (2000), Das, Jiang and Rao (2004), Datta, Rao and Smith (2005) have developed MSE 

estimators that are approximately unbiased through simplifying the model assumptions, 

making the model more robust to non-normality, and computing an additional term to correct 

for bias. However, these still rely on making some distributional assumptions.  

 

4.     Small Area Estimation of Disadvantage  

4.1   State of the art of localised poverty measurement 

A new development of small area modelling that has received wide attention in recent years 

has been in poverty estimation. This is because the estimation of poverty indicators is small 

regions is important for both national and international policy (Fabrizi et al. 2014; Molina 

and Rao 2010). But the information that is available for the estimation of these indicators is 

mostly available from national surveys that are designed to provide accurate estimates at the 

national and regional level. In order to be able to target policies and programs to alleviate 

poverty, what is routinely required is lower level information which is often limited, at best, 

or simply unavailable from these national official surveys.  Therefore, poverty estimation 

uses small area techniques to borrow strength from different areas through linking models 

based on auxiliary information that is available from census or administrative data (Molina 

and Rao 2010). 

Since as far back as the 1970s, the US has provided small area statistics for poverty estimates 

at a local government (county) level. This has been primarily been through the Fay Heriot 

model (Fay and Herriot 1979) which was used to provide updated income per capita 

estimates for small places. This information was used by the US Census Bureau to determine 
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the fund allocations for local government places and administer federal programs (Bell et al. 

2007). Currently an area based model  has been used to produce model-based estimates of the 

number of school age children living in poverty under the Small Area Income and Poverty 

Estimates (SAIPE) program (Citro and Kalton 2000; Huang and Bell (2006)). In Europe, the 

EURAREA project aimed to provide small area statistics of key indicators of poverty – the 

proportion of unemployed people, the proportion of singe person households, and the average 

equivalized household net income at a county or provincial level across six participating 

European countries (Poland, Finland, Italy, Spain, United Kingdom, and Norway) 

(www.statistics.gov.uk/euarea).  Both projects use outcomes of poverty that are linear (or 

more realistically a logarithmic transformation is performed to linearize the target parameter). 

This assumption of linearity has been a cause for concern, especially amongst researchers and 

policy makers evaluating and measuring poverty and/or inequality.  Elbers, Lanjouw and 

Lanjouw (2003) developed estimators of population parameters that are nonlinear functions 

of the underlying variable, and produce small area estimates based on a unit level model that 

combines both survey and census data through taking advantage of the detail in the survey 

and the comprehensive coverage of the census. They then used the recent advances in 

geographical information systems (GIS) software to produce finely disaggregated maps 

which describe the spatial patterns and distribution of poverty and inequality (i.e. poverty 

mapping). This work formed part of a programme of estimation of poverty indicators in small 

regions in different countries and was sponsored by the World Bank. Hence the Elbers, 

Lanjouw and Lanjouw (2003) approach is often referred to as the World Bank method. 

Underlying the work of Elbers, Lanjouw and Lanjouw (2003) is a class of poverty measures 

defined by Foster, Green and Thorbecke (FGT) (1984; 2010).  Denote 𝑡 to be the poverty line 

(fixed). This is defined as the threshold under which a person is considered to be ‘under 

poverty’. Then the family of FGT poverty measures for each small area 𝑖,  are defined by 

 

𝐹𝛼𝑖 = ∑ 𝐹𝛼𝑖𝑗
𝑁𝑖
𝑗=1 ,   for 𝑖 = 1, … , 𝑚                                                (23) 

and   𝐹𝛼𝑖𝑗 =  [
𝑡−𝑦𝑖𝑗

𝑡
]

𝛼

𝐼(𝑦𝑖𝑗 ≤ 𝑡) ,  for 𝑗 = 1, 2 … 𝑁𝑖, 𝛼 = 0, 1, 2,                 (24) 

 

where 𝐼(𝑦𝑖𝑗 ≤ 𝑡) is an indicator variable that takes value one if  𝑦𝑖𝑗 ≤ 𝑡 (person is under 

poverty), or value zero if 𝑦𝑖𝑗 > 𝑡 (person is not under poverty).  

When 𝛼 = 0, we have the head count ratio (or poverty incidence measure). This gives the 

proportion of individuals that are under poverty in a given small area 𝑖. For 𝛼 = 1, the 
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measure of poverty is called the poverty gap. This gives the relative distance of the each 

individual to the poverty line. Finally, when = 2 , the measure is called the poverty severity. 

This gives the squared distance from the poverty line, and has the effect of giving larger 

weight to individuals that are far from the poverty line.  

Elbers, Lanjouw and Lanjouw (2003) assume that 𝑦𝑖𝑗satisfy the unit level (nested error model 

(Battese, Harter and Fuller 1988) such that  𝑦𝑖𝑗 = 𝑋𝑖𝑗
𝑇 𝛽 + 𝑢𝑖 +  𝜖𝑖𝑗, with 𝑢𝑖 random effects 

and 𝜖𝑖𝑗 residual terms, which are mutually independent with zero means and variances 𝜎𝑢 
2  

and 𝜎𝜖
2 respectively. For sampled units 𝑗 ∈ 𝑠𝑖, the 𝐹𝛼𝑖𝑗 poverty measure is known. However, 

for the non-sampled units 𝑘 ∈ 𝑟𝑖, the missing values have to be imputed, and then use the 

decomposition  

 

𝐹𝛼𝑖= ∑ 𝐹𝛼𝑖𝑗𝑗∈𝑠𝑖
+ ∑ 𝐹𝛼𝑖𝑘𝑘∈𝑟𝑖

.          (25) 

 

These predictions are then obtained by Monte Carlo simulation from the conditional normal 

distribution of the unobserved outcomes given the observed outcomes under the nested error 

model. Molina and Rao (2010) proposed an empirical best predictor method that accounts for 

the random effects of the non-sampled units, and these resulting estimators have smaller 

predicted mean squared errors than those using the Elbers, Lanjouw and Lanjouw (2003) 

method. 

These two methods still rely on normality assumptions and can be less robust. M-quantile 

estimation has been proposed to provide small area estimates of poverty measures by relaxing 

the parametric model assumptions, and is robust to outliers and model mis-specification 

(Breckling and Chambers, 1988; Chambers and Tzavidis 2006; Tzavidis et al 2010).  Further 

extensions  are presented by (Esteban et al. 2012; Marhuenda et al. 2013) by using spatio-

temporal models with random effects that take account of time and space variability between 

small areas. These models extend on the original model proposed by Rao and Yu (1994) and 

Singh et al. (2005) that borrows information across areas and over time, and which includes 

terms to account for the unexplained area and temporal variation.  In all these cases, the most 

important, and difficult aspect of the modelling lies in the estimating of the uncertainty since 

for any statistic to be useful it has to be accompanied by a measure of the variability.  

The current development in the small area estimation literature is moving away from the 

estimation of the mean square error (i.e. the variability) using linearization under normality 

assumptions (Prassad and Rao 1990; Datta and Lahiri 2000), since no closed-form solution 
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exists. Owing to the developments in computing technology, resampling approaches are 

being developed. Jiang, Lahiri and Wan (2002) proposed using a jack-knife procedure to 

estimate the mean squared error with relying on linearizing the function. Other jack-knife 

based resampling extensions have been proposed by Chen and Lahiri (2003) and Lohr and 

Rao (2009) to simplify the estimation process. Bootstrapping procedures have also been 

developed initially by Hall and Maiti (2006). These can either be with a parametric bootstrap 

(Molina and Rao 2010) or non-parametric bootstrap (Tzavidis et al 2008; 2010). But, all these 

resampling methods are in fact model-dependent since they rely on the repeated computation 

of the empirical best predictors under the chosen model (Pfeffermann 2013).      

 

4.2   Measuring Disadvantage in Australia 

While Australia prides itself as an egalitarian nation due to relatively high levels of economic 

mobility (Martinez and Perales 2014), a recent global report shows that the proportion of 

Australians who live with less than half of the median income, which is estimated to be 14% 

is higher than the OECD average of 11% (OECD 2014). Additionally, some studies suggest 

that economic inequality in the country is rising and the country may soon enter economic 

slowdown due to its jobless growth (Martinez and Perales 2014; OECD 2014). Together, 

these issues could have adverse consequences on the lives of the most vulnerable.  

From a policy perspective, it is important to have a good understanding of social exclusion 

and disadvantage because such knowledge can be used as important inputs for policy 

planning. To gain a holistic and more nuanced insight into poverty, there are several things 

that need to be taken into consideration. First, it is important to note that poverty, social 

exclusion or disadvantage goes beyond income deprivation. There are several initiatives that 

have responded to the need to probe beyond conventional income-based measures of 

disadvantage. For instance, researchers from the Melbourne Institute of Applied Economic 

and Social Research in collaboration with the Brotherhood of St Laurence have developed a 

method to measure disadvantage through focusing on ‘social exclusion’ (Scutella et al. 2009; 

Scutella and Wilkins 2010; Scutella, et al. 2013). Their measure of social exclusion is based 

on Amartya Sen’s capability framework of inequality (Sen 1976; 1979).  This measure 

identifies disadvantage as an accumulation of the lack of resources in different domains 

across life (UNDP 2004; Sen 2006). A person is therefore deprived (or socially excluded) 

through being unable to participate in life fully as a result of the lack these circumstances. In 

particular, the measure of social exclusion devised divides disadvantage into seven, inter-

related, domains namely – material resources; employment; education and skills; health and 
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disability; social connection; community and personal safety. This is similar 

conceptualization and operationalization of index of multidimensional poverty in other 

countries (Alkire and Foster 2011; Alkire and Santos 2014). Each life domain is then 

captured through a series of indicators based on information from the Households, Income 

and Labour Dynamics in Australia (HILDA) survey.  These indicators are given below in 

Table 1. The data from these individual indicators and life domains are then transformed into 

a single measure of multidimensional poverty (or social exclusion) through weighting the 

different constituent indicators and summing across the various domains (using an approach 

originally devised by Scutella, Wilkins and Horn (2009)). Based on this, individuals can be 

classified into different groups according to the number of dimensions in which they are 

disadvantaged (Martinez and Perales 2014).  

Another important development in poverty research in Australia is the application of small 

area estimation. Differences in terms of the magnitude of economic disadvantage exist 

between population clusters and across spatial areas exist. It is essential that policy makers 

can access reliable data at the local-level to be able to target areas where significant pockets 

of poverty exist.  However, the household surveys that are commonly used to provide such 

measures are rarely representative at the local-level. As discussed in the previous sections, 

small area estimation is a statistical technique that can be used to address this methodological 

problem.  

There are several studies that have attempted to provide measures of poverty and 

disadvantage at the level of administrative regions or for hard-to-reach population clusters 

(e.g. indigenous or culturally or linguistically diverse (CALD) people). For instance, the ABS 

has done some statistical small area modelling of disability (Elazar 2004; ABS 2005) and 

labour force participation (Department of Education, Employment and Workplace Relations 

2009) but to some extent, these can be considered as ‘experimental’ statistics (ABS 2010) 

and hence, they are not regularly undertaken. More recently, the National Centre for Social 

and Economic Modelling (NATSEM) has produced small area statistics of income poverty in 

Australia. However, although small area estimation has been used in this context for 

Australian research, the focus has been on the use of spatial (geographically-based) 

techniques through spatial microsimulation modeling (see for example, Chin et al., 2005; 

Tanton et al 2007; Harding et al 2006; Vidyattama et al 2012; Tanton 2014). As discussed 

earlier, these methods are different from the statistical modelling approaches that relate the 

small area information to larger areas through borrowing strength across areas.  
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It is also important to note that poverty is a highly dynamic phenomenon because people 

move into and out of it (Martinez 2015). For some groups of people, social exclusion and 

disadvantage are temporary obstacles while for others these are persistent features of their 

living conditions. It is important to distinguish these groups because an efficient policy 

intervention needs to be contextualized on how a person experiences poverty over time. 

However, most of the indicators described above are usually presented as static measures and 

do not capture the temporal dynamics of poverty. A restrictive formulation of disadvantage 

prevents the careful examination of the concept of persistence through being able to capture 

the dynamics of people’s experiences of disadvantage (Productivity Commission 2013).  

In summary, while the poverty measurement literature in Australia recognizes the importance 

of multiple and inter-related factors that determine a person’s capacity to fully participate in 

society (Townsend 1987), there are areas that warrant further investigation. In particular, 

there is a need to do more research on how to incorporate temporal and spatial dynamics 

simultaneously when measuring multidimensional poverty.  

 

4.3   Issues facing small area estimation of disadvantage in Australia 

There are two key issues that need to be considered when measuring small area statistics of 

disadvantage – (i) methodological concerns and (ii) data limitations. Firstly, from a 

methodological viewpoint, how to best measure the multiple dimensions of poverty remains 

debatable. In particular, while the multi-dimensional approach set out by the Melbourne 

Institute and Brotherhood of St Laurence is a step in the right direction, the various domains 

are conveniently given the same (equal) weight. Despite its simplicity, there is evidence that 

the measure of social exclusion is an unequally weighted sum of the level of exclusion in 

each of the dimensions (Townsend 1987; Hick 2012). In fact, some poverty measurement 

experts even contend the developing composite indices of disadvantage will always be 

problematic due to the absence of any objective valuation method that can be used to come 

up with the optimal set of weights (Ravallion 2012). Obviously, there is a lot of work that has 

to be done to address these theoretical concerns. This may require a careful examination of 

how existing variables collected in surveys, censuses and administrative registers can be used 

to construct a measure of disadvantage. 
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Table 1. Dashboard of Social Exclusion and Disadvantage Indicators Available in HILDA Survey 
Domain  Indicator Description  

Material 

resources 
 Household income 1 if income is less than 60% of median equivalised income, 0 otherwise 

 Financial hardship 

 

 

 

 Household net worth 

 Household consumption expenditure 

1 if experienced 3+ indicators of financial hardship (could not pay electricity, gas or telephone bills on time; could not pay 

the mortgage or rent on time; pawned or sold something; went without meals; was unable to heat the home; asked for 

financial help from friends or family; asked for help from welfare or community organization), 0 otherwise 

1 if net worth is less than 60% of median equivalised household net worth, 0 otherwise 

1 if consumption expenditure is less than 60% of median equivalised household consumption expenditure, 0 otherwise 

Employment  Long-term unemployment 1 if currently unemployed, looked for work for the past 4 weeks and has been unemployed for the preceding 12 months, 0 

otherwise 

 Unemployment 1 if unemployed, 0 otherwise 

 Marginal attachment to the labour force 1 if not employed but looking for work or not employed and not looking for work because of the belief of being unlikely to 

find work, 0 otherwise 

 Underemployment 1 if working for less than 35 hours per week, 0 otherwise 

 Living in jobless household 1 if no household member is employed and at least one household member is aged 15 to 64, 0 otherwise 

Education and 

skills 
 Low literacy 

 Low numeracy 

 Poor English-language proficiency 

1 if respondent scored low in literacy, 0 otherwise 

1 if respondent scored low in numeracy, 0 otherwise 

1 if respondent speaks a language other than English at home and reports that he/she does not speak English well, 0 

otherwise 

 Low level of formal education 1 if respondent is not currently studying full-time and her highest educational qualification is less than high school 

completion, 0 otherwise 

 Limited work experience 1 if respondent has spent fewer than three years in paid employment, 0 otherwise 

Health and 

disability 
 Poor general health 1 if respondent indicated that he/she has poor general health (0-50 on a 0-100 scale), 0 otherwise 

 Poor physical health 1 if respondent indicated that he/she has poor physical health, (0-50 on a 0-100 scale), 0 otherwise 

 Poor mental health 1 if respondent indicated that he/she has poor mental health, (0-50 on a 0-100 scale), 0 otherwise 

 Presence of disable child 1 if respondent is living in a household that has a disabled (0-50 on a 0-100 scale), 0 otherwise 

Social support  Little social support 

 Low participation in common social 

activities 

1 if respondent reported that he/she receives little social support (0-30 on a 0-70 scale), 0 otherwise 

1 if respondent gets together with friends / relatives less than once a month, 0 otherwise 

Community 

participation 
 Low neighbourhood satisfaction 1 if respondent satisfaction with his neighbourhood was low (0-5 on a 0-10 scale), 0 otherwise 

 Low community connection 1 if respondent satisfaction with feeling part of local community was low (0-5 on a 0-10 scale), 0 otherwise 

 Non-participation to community activities 1 if respondent is not currently a member of a sporting, hobby or community-based club or association, 0 otherwise 

 Non-participation to voluntary work 1 if respondent is not engaged in any voluntary activity in a typical week, 0 otherwise 

Personal safety   Victim of violent crime 

 Poor perceived personal safety  

1 if respondent reported being a victim of physical violence in the last 12 months, 0 otherwise 

1 if respondent reported being a victim of property crime in the last 12 months, 0 otherwise 

1 if respondent satisfaction with safety feelings low (0-5 on a 0-10 scale), 0 otherwise 

Notes: Adapted from Scutella et al. (2013). 
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Regarding data availability, this review of literature has shown that the type of data available 

to researchers is an important factor in deciding which small area estimation technique should 

be used. Subsequently, this choice affects the estimation and interpretation of results. 

Furthemore, the success of any small area estimation initiative depends on the availability of 

good auxiliary data.  Hence, it is important to devote a great deal of attention to the 

compilation of the auxiliary variables. Related to this, since small area estimation relies on 

model-based inference, it is important to establish what constitutes a good prediction model. 

This depends on being able to have tools in model selection and validation, particularly in 

terms of providing estimates that are robust to model misspecification. The difficulty lies in 

the fact that it is difficult to verify the soundness of model assumptions and it is not easy to 

ascertain goodness of fit. Specifically, the majority of small areas estimation models contain 

assumptions of unobservable random effects which are difficult to verify in practice. 

As research on small area estimation continues to flourish, it is important that effort is also 

exerted on the development of analytical tools that can facilitate effective communication 

between producers of statistics and policymakers. Poverty mapping has facilitated this 

process through visualizing the spatial distribution and providing a detailed description of the 

small area measures. Nevertheless, more research is needed so that this statistical technique 

can be more useful for formulating policies and programs, allocation and evaluation of 

localised expenditure, regional planning and decision making. 

 

5.     Summary and Conclusion 

While the literature of social exclusion and disadvantage in Australia has progressively 

moved towards the adoption of a multidimensional lens (Martinez and Perales 2014), there 

are very few studies that take into account the spatial and temporal dynamics of disadvantage, 

simultaneously. The concept of spatial dynamics takes the variations in poverty levels 

between different geographic and socio-demographic groups into consideration while the 

concept of temporal dynamics differentiates the transiently poor from the chronically poor. 

Examining these unique patterns is important because the policy response necessary to 

address these problems may be very different from each other.  

Small area estimation of multidimensional poverty dynamics provides an analytical tool to 

better describe and examine the prevalence of social exclusion and disadvantage, change over 

time and how these differ across geographic and population clusters. These measures 

simultaneously take into account the multifaceted and dynamic components of 

socioeconomic disadvantage. While there are numerous studies that applied various small 
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area estimation strategies to come up with localised poverty estimates in Australia (e.g. ABS 

2005; Harding, et al. 2006; ABS 2010; Miranti et al. 2011), this review of literature has 

identified very few studies that looked into the dynamics of multidimensional nature of 

disadvantage. Thus, a seamless integration of multidimensional measurement of poverty 

dynamics with small area estimation, in the Australian context, is an area that needs further 

research.  

There are several opportunities and challenges that further research on small area estimation 

of multidimensional poverty dynamics needs to theorize, address and capitalize on. For 

instance, there are several large-scale longitudinal datasets that can be exploited because they 

are collected regularly. The HILDA Survey is an example of such data source, it is conducted 

annually and contains rich set of information on various measures of social exclusion and 

disadvantage for a panel sample of households and individuals. Together with the 

(longitudinal) Census and other administrative datasets collected by the Commonwealth 

Government, these data sources provide opportunities to study multidimensional poverty at 

the local level. However, access to unit-level records of some of these datasets is restricted 

due to confidentiality issues. Thus, many of the small area estimation of poverty studies in 

Australia has relied on either simplistic survey calibration techniques or microsimulation-

based methods that do not require unit-level records for the auxiliary data. However, some of 

the more sophisticated small area estimation techniques that may be more appropriate for the 

local-level measurement of multidimensional poverty dynamics are premised on the 

availability of unit-record files. Hence, this is an area that future research needs to navigate 

its way around. The development of hierarchical spatial-temporal models is an area that can 

be explored. Intuitively, panel responses will be correlated over time, and previous research 

suggests that such temporal correlation can be exploited to achieve further efficiency gains in 

small area estimates (Ferrante and Pacei 2004; Martinez 2012). Additionally, this strategy can 

be supplemented with survey reweighting to known population benchmarks (Pfeffermann 

2013; Martinez et al. 2014).  

Finally, when examining multidimensional poverty dynamics at the small area-level, aside 

from measuring the magnitude of poverty, it is also important to identify the proximate 

determinants of movements into and out of the multiple dimensions of social exclusion and 

disadvantage. This topic can be potentially reframed within the life course paradigm as the 

latter offers a rich and encompassing conceptual framework for identifying life events that 

may precede or coincide with movements into and out of the states of poverty and non-

poverty.  
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