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scales and robustly conform to the theoretical  exponentially truncated power-law. In full-term 

Abstract 

 

In this doctoral thesis I investigate a key issue in neonatal intensive care monitoring - the prediction 

of clinical outcome for infants soon after preterm or compromised full-term birth. With an ever 

increasing need for robust and reliable bedside monitoring, this dissertation develops a set of novel 

methods to quantify the electrical activity of the neonatal brain. In particular, I draw upon concepts 

established in physics and neuroscience known as criticality and crackling noise. These concepts, 

observed in many other dynamic natural systems, are used here to characterize bursts of cortical 

activity that are present in the neonatal electroencephalogram (EEG). Henceforth, in this thesis I test 

two related hypotheses: First, that cortical bursts in neonatal EEG yield important insights into 

critical brain states and underlying neurophysiology; Second, I propose that the robust 

characterization of these cortical bursts yield predictive markers of clinical outcome soon after 

birth, in those neonates at risk of poor outcome. 

Previous studies of complex natural systems, such as earthquakes, have drawn upon analyses of 

stochastic, bursty activity known formally as “crackling noise”. These analyses characterize the 

statistical distribution of the bursts (their area and duration) as well as the average shape of the 

bursts across a hierarchy of time scales. Furthermore, the study of crackling noise processes allow 

one to determine whether the bursts have a characteristic scale, or whether they are scale-free and 

consistent with criticality. In this thesis, I apply both these techniques – analyses of statistical 

distribution and of average burst shape to quantify the temporal progression of cortical bursts in 

EEG, from birth to recovery periods in the neonatal intensive care unit. 

The data driven methods developed in this thesis are henceforth specifically aimed at analyzing the 

durations, areas and average shapes of EEG bursts in two neonatal populations; 1) Full-term 

neonates following birth asphyxia, and 2) Extremely preterm infants. In both cohorts, I characterize 

empirical data features present in neonatal EEG, i.e. durations and areas of cortical bursts by 

analyzing their probability distributions. Statistical quantifiers of average burst shapes - such as 

burst symmetry and sharpness - are used to distinguish between healthy and abnormal brain states. 

The analysis of statistical distributions of bursts and the quantification of average burst shapes leads 

to an automated metric for outcome prediction. 

The key, original contributions of this thesis are that EEG bursts following full-term hypoxia and 

preterm birth are inherently scale-free, that is, their statistical distributions have no characteristic 
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hypoxic infants, burst shapes are nearly scale-invariant although show changes in symmetry and 

sharpness for longer burst durations. These scale-free distributions and average shapes reflect 

fundamental, stochastic properties of critical brain states that provide insight into important 

neurobiological processes. For example, following recovery from hypoxia, average burst shapes in 

full-term neonates become symmetrical and scale invariant across all time scales. I study 

simulations of stochastic models to investigate possible mechanisms underlying the resumption of 

healthy cortical activity states such as recovery from metabolic depletion. In the preterm neonate, 

average shapes reveal a temporal progression in cortical bursts with respect to gestational age, and 

significantly pre-empt the occurrence of intra-ventricular brain hemorrhage. 

In these cohort studies, I present the utility of novel methods developed to predict acute brain injury 

and long-term neurodevelopment. This work establishes statistically significant differences between 

burst shape indices in healthy versus poor clinical outcomes in both full-term hypoxic and preterm 

populations. These findings indicate a practical use for prediction and classification of at-risk 

neonates not readily available in current clinical settings. Moreover, the fundamental understanding 

of the neonatal brain is enriched by presenting unique features and insights into cortical burst 

generation, allowing a better understanding of neonatal neurophysiology. 



v 

 

Declaration by author 

 

This thesis is composed of my original work, and contains no material previously published or written 

by another person except where due reference has been made in the text. I have clearly stated the 

contribution by others to jointly-authored works that I have included in my thesis. 

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, 

survey design, data analysis, significant technical procedures, professional editorial advice, and any 

other original research work used or reported in my thesis. The content of my thesis is the result of 

work I have carried out since the commencement of my research higher degree candidature and does 

not include a substantial part of work that has been submitted to qualify for the award of any other 

degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my 

thesis, if any, have been submitted to qualify for another award. 

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, 

subject to the policy and procedures of The University of Queensland, the thesis be made available for 

research and study in accordance with the Copyright Act 1968 unless a period of embargo has been 

approved by the Dean of the Graduate School. 

I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright 

holder to reproduce material in this thesis. 



vi 

 

Publications during candidature 

Peer-reviewed papers: 

Iyer K.K., Roberts J.A., Metsäranta M., Finnigan S., Breakspear, M., Vanhatalo S., Title: Novel 

features of early burstsuppression EEG predict outcome after birth asphyxia Published, Annals of 

Clinical & Translational Neurology, 2014 

Roberts, J.A., Iyer K.K., Finnigan S., Vanhatalo S., Breakspear M., Title: Scale-Free Bursting in 

Human Cortex following Hypoxia at Birth. Published, Journal of Neuroscience, 2014 

Roberts J.A., Iyer K.K., Vanhatalo S., Breakspear, M. Title: Critical role for resource constraints in 

neural models Published, Frontiers in Neuroscience, 2014 

Iyer K.K., Roberts J.A., Hellstrom-Westas L, Wikstrom S, Hansen-Pupp I, Ley D, Vanhatalo S, 

Breakspear M 

Title: Cortical burst dynamics predict clinical outcome early in extremely preterm infants Under 

Review, 2014 

Iyer K.K., Roberts J.A., Hellstrom-Westas L, Wikstrom S, Hansen-Pupp I, Ley D, Breakspear M,  

Vanhatalo S 

Title:  Early cortical bursts are acute markers of preterm intraventricular hemorrhage Under Review, 

2014 

Iyer K.K., Roberts J.A., Palmu K., Breakspear, M., Vanhatalo S., 

Title: Emerging methods for burst detection in neonatal brain monitoring In preparation, review 

paper, 2015 

 

Conference abstracts: 

Roberts,  J.A.,  Iyer K.K.,  Finnigan  S.,  Vanhatalo  S., Breakspear M.  Crackling noise in cortex 

after perinatal hypoxia. Society for Neuroscience Annual Meeting , USA. 2012 

Roberts,  J.A.,  Iyer K.K.,  Finnigan  S.,  Vanhatalo  S., Breakspear M. Scale-free dynamics in 

human neonatal cortex following perinatal hypoxia. 22nd Annual Computational Neuroscience 

Meeting, , France. 2013 

Roberts,  J.A.,  Iyer K.K.,  Finnigan  S.,  Vanhatalo  S., Breakspear M. Scale-free dynamics in 

cortex after perinatal hypoxia. NeuroEng 6th Australian Workshop on Computational Neuroscience, 

Melbourne, Australia. 2013 



 

 

Publications included in this thesis 

Roberts, J. A., Iyer, K. K., Finnigan, S., Vanhatalo, S., & Breakspear, M. (2014). Scale-free 

bursting in human cortex following hypoxia at birth. The Journal of Neuroscience, 34(19), 6557- 

6572. Incorporated as part of Chapter 3 

Contributor Statement of contribution 

Kartik Iyer (Candidate) Analyzed data (40%) 

Designed experiments (10%) 

Data extraction (50%) 

Wrote and edited the paper (15%) 

James Roberts Designed experiments (10%) 

Analyzed data (60%) 

Wrote and edited paper (30%) 

Simon Finnigan Wrote and edited the paper (5%) 

Sampsa Vanhatalo Designed experiments (50%) 

Data extraction (50%) 

Wrote and edited the paper (10%) 

Michael Breakspear Designed experiments (30%) Wrote and edited 

paper (40%) 

 

Iyer, K. K., Roberts, J. A., Metsäranta, M., Finnigan, S., Breakspear, M., & Vanhatalo, S. (2014). Novel 

features of early burst suppression predict outcome after birth asphyxia. Annals of Clinical and 

Translational Neurology,1(3), 209-214. Incorporated as Chapter 4 

Contributor Statement of contribution 

Kartik Iyer (Candidate) Analyzed data (90%) 

Data extraction (50%) Wrote the paper (60%) 

James Roberts Analyzed data (10%) 

Wrote and edited paper (10%) 

Marjo Metsäranta Wrote and edited paper (5%) 

Michael Breakspear Wrote and edited paper (10%) 

Sampsa Vanhatalo Data extraction (50%) 

Wrote and edited paper (15%) 

 

 

Iyer K.K., Roberts J.A., Hellstrom-Westas  L,   Wikstrom   S,   Hansen-Pupp   I,   Ley   D, Vanhatalo 

S, Breakspear M, Cortical burst dynamics predict clinical outcome early in extremely preterm 

infants, Brain (published, advance access),  2015. Incorporated as Chapter 5 

 

vii 



 

 

Contributor Statement of contribution 

Kartik Iyer (Candidate) Analyzed data (80%) 

Data extraction (50%) Wrote the paper (50%) 

James Roberts Analyzed data (10%) 

Wrote and edited paper (10%) 

Lena Hellstrom-Westas Wrote and edited paper (5%) 

Sverre Wikstrom Analyzed data (10%) 

Ingrid Hansen-Pupp Designed experiments (40%) Wrote and edited 

paper (5%) 

David Ley Designed experiments (40%) Wrote and edited 

paper (5%) 

Sampsa Vanhatalo Designed experiments (20%) 

Data extraction (50%) 

Wrote and edited paper (10%) 

Michael Breakspear Wrote and edited paper (15%) 

 

Iyer K.K., Roberts J.A., Hellstrom-Westas L, Wikstrom S, Hansen-Pupp I, Ley D, Breakspear M, 

Vanhatalo S, Early cortical bursts are acute markers of preterm intraventricular hemorrhage 

In press, Critical Care Medicine, 2014. Incorporated as Chapter 6 

Contributor Statement of contribution 

Kartik Iyer (Candidate) Analyzed data (80%) 

Data extraction (50%) Wrote the paper (50%) 

James Roberts Analyzed data (10%) 

Wrote and edited paper (10%) 

Lena Hellstrom-Westas Wrote and edited paper (5%) 

Sverre Wikstrom Analyzed data (10%) 

Ingrid Hansen-Pupp Designed experiments (40%) Wrote and edited 

paper (5%) 

David Ley Designed experiments (40%) Wrote and edited 

paper (5%) 

Michael Breakspear Wrote and edited paper (10%) 

Sampsa Vanhatalo Designed experiments (20%) 

Data extraction (50%) 

Wrote and edited paper (15%) 

viii 



 

Contributions by others to the thesis 

Iyer K.K., Roberts  J.A., Metsäranta M., Finnigan S., Breakspear, M., Vanhatalo  S., Title: Novel 

features of early burstsuppression EEG predict outcome after birth asphyxia Published, Annals of 

Clinical & Translational Neurology, 2014 

Vanhatalo  S, Metsäranta  M., were responsible for planning, implementing and 

collection of the infant data analysed within the study. 

Breakspear,  M., Roberts  J.A. Finnigan  S., Vanhatalo S, contributed to the design of 

experiments, analysis, and drafting of the paper 

Iyer K.K. was involved with all of the above and the remainder of the work. 

 

Roberts J.A.,  Iyer K.K.,  Finnigan S., Vanhatalo S., Breakspear M., Title: Scale-Free Bursting in 

Human Cortex following Hypoxia at Birth. Published, Journal of Neuroscience, 2014 

Vanhatalo  S, Roberts,  J.A., Breakspear M., were responsible for planning, implementing 

and collection of the infant data analysed within the study. 

Breakspear,  M., Roberts  J.A. Finnigan  S., Vanhatalo  S, to the design of experiments, analysis, 

and drafting of the paper 

Iyer K.K. was involved with all of the above and the remainder of the work. 

 

Roberts J.A., Iyer K.K., Vanhatalo S., Breakspear, M. Title: Critical role for resource constraints in 

neural models Published, Frontiers in Neuroscience, 2014 

Roberts,  J.A., Breakspear M., were responsible for conception of the paper, design of experiments 

and drafting 

Vanhatalo  S, was involved with the editing of the paper 

Iyer K.K. was involved with simulation results and editing of the paper 

 

Iyer K.K., Roberts J.A., Hellstrom-Westas L, Wikstrom,S, Hansen-Pupp I, Ley D., Vanhatalo S., 

Breakspear M 

Title: Cortical burst dynamics predict clinical outcome early in extremely preterm infants Under 

Review, 2014 

Hansen-Pupp I, Ley D., Hellstrom-Westas L., Wikstrom,S., Vanhatalo S, were responsible for 

planning, implementing and collection of the infant data analysed within the study. 

Breakspear,  M., Roberts  J.A. Iyer, K.K, Hellstrom-Westas L., Vanhatalo  S, 

contributed to the design of experiments, analysis, and drafting of the paper 

ix 



 

Iyer K.K. was involved with all of the above and the remainder of the work. 

 

Iyer K.K., Roberts J.A., Hellstrom-Westas L., Wikstrom,S., Hansen-Pupp I, Ley D., Breakspear, M., 

Vanhatalo S. 

Title:  Early cortical bursts are acute markers of preterm intraventricular hemorrhage Under Review, 

2014 

Hansen-Pupp I, Ley D., Hellstrom-Westas L., Wikstrom,S., Vanhatalo S, were responsible for 

planning, implementing and collection of the infant data analysed within the study. 

Breakspear,  M., Roberts  J.A. Iyer, K.K, Hellstrom-Westas L., Vanhatalo  S, 

contributed to the design of experiments, analysis, and drafting of the paper 

Iyer K.K. was involved with all of the above and the remainder of the work. 

 

Iyer K.K., Roberts J.A., Palmu K., Breakspear, M., Vanhatalo S., 

Title: Emerging methods for burst detection in neonatal brain monitoring In preparation, Clinical 

Neurophysiology, 2015 

Iyer K.K., Palmu K., Vanhatalo S., were responsible for planning, and collection of relevant 

literature 

Iyer K.K., Roberts J.A., Palmu  K.,  Breakspear,  M., Vanhatalo S.,  contributed  to  the drafting of 

the paper 

Iyer K.K. was involved with all of the above and the remainder of the work. 

 

 

 

Statement of parts of the thesis submitted to qualify for the award of another degree 

 

None 

x 



 

Acknowledgements 

First and foremost, thank you to my primary supervisor Michael Breakspear for giving me a 

wonderful opportunity to be involved in this research project. I am deeply thankful for your tutelage 

and advice during the whole course of the journey. Thank you for giving me a formal exposure to 

neuroscience and clinical research. As a mentor, you have given me a great motivation to pursue new 

frontiers in science. I am grateful for all the constructive feedback on many paper drafts, oral 

presentations and of course, the editing of this thesis. Personally, I have enjoyed your warm sense of 

humour throughout, the kind heartedness you have shown me and overall positive attitude you instil. 

Away from work, I have enjoyed our conversations on family, your usual recount of how good the 

surf was, cricket and your nostalgia for the ‘80s. Overall, I have genuinely admired your philosophy 

towards scientific pursuits and life outside of the ‘research bubble’ and will continue to influence me 

for a long time. 

To Sampsa Vanhatalo, thank you for being associate supervisor to this project and allowing this 

fruitful collaboration. Your genuine enthusiasm for this project, knowledge of clinical 

neurophysiology and insight into modern clinical research is remarkable and very much appreciated. 

Professionally, you have given me a great formal exposure to clinical research and taught me well 

about the challenges of translating “super heavy mathematical analysis” to common bedside 

monitoring measures. Personally, I have enjoyed our many talks ranging from science, philosophy, 

culture and in general, the way of things in life – these were wonderful conversations. Thank you for 

your kind hospitality during my stay in Finland and the experience of working with you is one that I 

will never forget. Getting to know you well, and your family, visiting your country will no doubt be 

treasured memories of mine. 

To James Roberts, thank you for your supervision and mentorship throughout this project. I am 

incredibly thankful and appreciative for all the technical lessons you gave me and elevating for my 

abilities for analysis and scientific writing. From an academic point of view, your eye for detail and 

insights into science are qualities that I admire and sincerely hope to emulate. Personally, I consider 

you a very good friend and will miss your quasi-professorial quips such as “I have my doubts about 

this”, whilst stroking one’s chin. Thank you for our casual conversations in cricket (more specifically, 

cricket statistics), the best bargains a man can buy on any given day, and for offering plentiful, sage 

advice for a career in research – these chats were most welcome and greatly assisted in my overall 

output. 

xi 



 

To Simon Finnigan, thank you for your involvement and early supervision in this project. I am deeply 

thankful for meeting you when I did those years ago as it has given me great experiences, both 

academically and personally. 

You have all been wonderful mentors throughout this project and I sincerely hope to continue future 

collaboration. 

Thanks to all the folks at the SNG Lab as well. Matt Hyett, Anton Lord, Leonardo Gollo, I’ve got to 

know well you over the years and I am thankful for our continued friendship. To Sascha Frydman, 

Tamara Powell, Matt Aburn, at various stages you helped my research progress and for that I am 

thankful. To Christine Guo as well for some astute advice for a career in research, I thank you for 

guidance early in my final year. 

Thank you to QIMR Berghofer Medical Research Institute, the business development team, Matthew 

Spitzer and Professor Frank Gannon for supporting and funding an overseas study trip in Finland. 

Thanks to Karen Moran and the Moran family, including grandson Calvin for their support in raising 

funds towards this trip and research into causes of cerebral palsy - I wish Calvin and family all the 

best. This trip greatly enhanced the academic contributions of this thesis, and has resulted in a 

successful ongoing collaboration with European partners. 

Thank you to Angela Trieu from QIMR Berghofer Medical Research Institute and the School of 

Medicine (UQ) research office for their support and assistance during my candidature. 

Last but not least, thank you to my family for their love and support over the years. To my parents, 

thank you for encouraging and supporting me to pursue my interests. To my Father, it is said that 

causality has its many interpretations, but as a child growing up and watching you devote yourself to 

the pursuit of scientific discovery inspired me to think differently and develop a scientific mind. To 

my Mother, childhood teachings of reading, writing and clarity when communicating are lifelong 

lessons that I hold dear and have held me in good stead thus far. To my younger brother Guru, thank 

you for your much appreciated sense of humour and genuine interest in my research, it was most 

welcome and offered a great relief. Lastly, to my wife Sushma, thank you for sharing in this journey 

with me, your love and warmth throughout inspired and motivated me to keep chipping away. 

xii 



Keywords 

Scale-free brain activity, crackling noise, neonate, cortical bursts, full-term hypoxia, preterm birth, 

clinical outcome prediction, power-law, average shapes, criticality 

 

Australian and New Zealand Standard Research Classifications (ANZSRC) 

ANZSRC code: 110904, Neurology and Neuromuscular Diseases, 70% ANZSRC code: 029901, 

Biological physics, 30% 

 

Fields of Research (FoR) Classification 

FoR code: 1109, Neurosciences, 100% 

xiii 



14 

 

Table of Contents 

Contents...........................................................................................................................…. xiv 

List of Figures & Tables................................................................................................................ xviii 

List of Abbreviations used in the thesis………………………………………………………….. xxi 

1.0   Introduction ...................................................................................................................... 23 

Abstract .......................................................................................................................................... 23 

1.1  The neonatal brain: conception to postnatal development ........................................ 24 

1.1.1   Formation of the brain............................................................................................... 24 

1.1.2   Neonatal cortical connections ................................................................................... 25 

1.2 Brief epidemiology of neonatal encephalopathy ......................................................... 29 

1.2.1 Birth asphyxia and hypoxic ischemic encephalopathy .............................................. 29 

1.2.2 Preterm brain injury: risk factors and incidence....................................................... 30 

1.3  Common measures in neonatal brain monitoring ...................................................... 33 

1.3.1 Neuroprotective care for at-risk infants: full-term hypoxia and preterm birth ........ 33 

1.3.2 Continuous Electroencephalography monitoring of neonates ................................. 34 

1.4  Insights from neuroscience ........................................................................................... 36 

1.5  Research aims and hypotheses .................................................................................... 37 

1.6  Organization of thesis chapters ................................................................................... 38 

2.0  Review of selected literature ......................................................................................... 41 

Abstract .......................................................................................................................................... 41 

2.1  Full-term hypoxia and Burst Suppression .................................................................. 42 

2.1.1  Pathophysiology of HIE .............................................................................................. 42 

2.1.2 Common EEG features in burst suppression ............................................................. 43 

2.1.3 Quantification of EEG features from neonatal burst suppression ........................... 45 

2.2   Cortical activity in the early preterm ......................................................................... 49 



15 

 

2.2.1  Pathophysiological mechanisms post preterm birth ................................................. 49 

2.2.2  Common temporal features in preterm EEG ............................................................ 51 

2.2.3  Automated detection of EEG features in preterm EEG recordings ......................... 52 

2.3   Principles of criticality and scale-free networks ........................................................ 56 

2.3.1 Criticality, scale invariance & crackling noise in physical systems .......................... 56 

2.3.2 Scale-free neuronal networks ..................................................................................... 58 

2.4   Hypothesis development from the literature ............................................................. 59 

3.0  Scale-free cortical bursts following hypoxia at birth .................................................. 61 

Abstract .......................................................................................................................................... 61 

3.1   Introduction................................................................................................................... 62 

3.2   Materials and Methods ................................................................................................. 63 

3.2.1   Neonatal cohort .......................................................................................................... 63 

3.2.2   Data Acquisition and Pre-processing ........................................................................ 65 

3.3   Statistical characterization of cortical bursts ............................................................. 67 

3.3.1   Threshold estimation and burst extraction .............................................................. 68 

3.3.2   Empirical distribution functions present in burst suppression ................................ 69 

3.3.3   Estimating model likelihoods in empirical data ....................................................... 71 

3.3.4   Analysis of average burst shapes .............................................................................. 72 

3.3.5   Quantifiers of burst shape: skewness and kurtosis .................................................. 73 

3.4   Results ............................................................................................................................ 75 

3.4.1   Scale-free bursts following hypoxia .......................................................................... 75 

3.4.2   Average burst Shapes in hypoxic infants .................................................................. 79 

3.5  Simulating burst suppression through stochastic models .......................................... 83 

3.5.1  Phenomenological models of burst generation ......................................................... 83 

3.5.2  Average burst shapes of stochastic models ............................................................... 85 



16 

 

3.6   Discussion ...................................................................................................................... 87 

3.6.1   Scale-free distributions in the hypoxic neonate ........................................................ 87 

3.6.2   Mechanisms of burst suppression via average burst shapes ................................... 88 

3.6.3  General conclusions ................................................................................................... 90 

4.0 Novel features of burst suppression predict outcome ................................................ 93 

Abstract .......................................................................................................................................... 93 

4.1  Introduction................................................................................................................... 94 

4.2  Materials and methods ................................................................................................. 95 

4.3  Results ............................................................................................................................ 98 

4.4  Discussion .................................................................................................................... 100 

5.0 Cortical bursts predict long-term outcome in preterm infants ............................... 103 

Abstract ........................................................................................................................................ 103 

5.1   Introduction................................................................................................................. 104 

5.2   Materials and Methods ............................................................................................... 105 

5.2.1  Data cohort and clinical details ............................................................................... 105 

5.2.2  Pre-processing and analysis .................................................................................... 106 

5.3   Results .......................................................................................................................... 108 

5.3.1  Scale-free bursts hours after preterm birth ............................................................. 108 

5.3.2  Relationship of burst features to gestational age .................................................... 110 

5.3.3  Burst metrics predictive of long-term outcome ....................................................... 112 

5.4   Discussion .................................................................................................................... 116 

5.4.1  Neurobiological underpinnings of early scale-free behavior ................................. 116 

5.4.2  Transitions in burst dynamics at early gestational ages ......................................... 117 

5.4.3  Early prediction of long-term neurodevelopment ................................................... 118 

5.4.4  Methodological considerations and future directions ............................................ 119 



17 

 

6.0 Early features of acute brain injury in the preterm ................................................. 121 

Abstract ........................................................................................................................................ 121 

6.1   Introduction................................................................................................................. 122 

6.2   Materials and Methods ............................................................................................... 123 

6.2.1   Data collection .......................................................................................................... 123 

6.2.2 Average burst shapes analysis of intraventricular hemorrhage ............................. 125 

6.3   Results .......................................................................................................................... 126 

6.3.1  Burst shape analyses ................................................................................................ 128 

6.3.2  Diagnostic accuracy of burst shape metrics ............................................................. 130 

6.4   Discussion .................................................................................................................... 133 

7.0 General discussion and conclusions ........................................................................... 135 

7.1   Overview of the conclusions of thesis ........................................................................ 135 

7.2   Contributions of this thesis ........................................................................................ 137 

7.3   Concluding remarks and future work ...................................................................... 139 

References ....................................................................................................................................... 142 

Appendix A – Section 1: CDF’s of Burst sizes............................................................................. 160 

Appendix A – Section 2: CDF’s of Burst durations .................................................................... 161 

Appendix B – Section 1: Outcomes Table .................................................................................... 162 

Appendix B – Section 2: Supplemental Materials ...................................................................... 165 

Appendix C – Section 1: statistical distributions in Preterm EEG data ................................... 168 

 

 



18 

 

List of Figures & Tables 

Figure 1.1 – From the embryo through to neural tube closure and cerebral cortex formation in-

utero …………………………………………………………………………………………….25 

Figure 1.2 – Thalamocortical connections (blue fibres) with somatosensory evoked potentials 

(green trace) at different development stages. ………………………………………………….27 

Figure 1.3 – Milestones of brain development processes as cited by Lagercrantz (2010)……...28 

Table 1.1 – Common associated risk factors and incidence for full-term HIE and preterm 

infants…………………………………………………………………………………………...32 

Figure 2.1 – From Sinclair (1999): a sample EEG trace demonstrating a burst suppression 

pattern in a neonate with term hypoxia (HF 70 Hz, LF 1 Hz, 5 μv/mm)……………………...45 

Table 2.1 – Quantification methods and analyses in studies in neonatal burst suppression …...48 

Table 2.2 – Selected quantification methods and analyses in studies in preterm EEG…………55 

Table 3.1 - Gestational age refers to the number of full weeks plus the number of days………65 

Figure 3.1 – Extracting bursts from the envelope of BS EEG from the biparietal electrode 

montage P3-P4. …………………………………………………………………………………67 

Figure 3.2 - Threshold estimation and burst extraction…………………………………………68 

Figure 3.3 - Schematic burst with its duration (time above threshold) and size (area under the 

curve above threshold, shaded) ………………………………………………………………...69 

Figure 3.4 – Statistical distributions of burst duration and burst area…………………………..70 

Figure 3.5 – From burst suppression to continuous cortical activity in the asphyxic newborn...73 

Figure 3.6 - Empirical distributions and scaling relationships in burst suppression data………74 

Figure 3.7 – From burst suppression to continuous cortical activity in the asphyxic 

newborn…………………………………………………………………………………………75 

 

Table 3.2 - Model likelihood tests for cumulative distributions of burst size…………………..76 

Table 3.3 - Burst area (BA) CDF exponent estimated from the fit to an exponentially truncated 

power law. BD, Burst duration. ………………………………………………………………...76 

Figure 3.8 – Rescaling bursts to unit time and unit area and the average burst shape………….78 



19 

 

Figure 3.9 – Quantifiers of burst symmetry (skewness, Σ) and sharpness (kurtosis, K)………..79 

Figure 3.10 – Grand average burst shapes for burst suppression and continuous activity 

recordings. ……………………………………………………………………………………...80 

Figure 3.11 – Comparisons of skewness and numbers of bursts in burst suppression (blue) and 

continuous EEG patterns (red). ………………………………………………………………...81 

Table 3.4 - Skewness Σ(s
-1

) and kurtosis K(s
-1

) slope values calculated by the least-squares fit 

across burst durations. ………………………………………………………………………….81 

Figure 3.12 - Scaling interrelations …………………………………………………………….82 

Figure 3.13 – Cumulative distribution functions of burst areas in stochastic models………….84 

Figure 3.14 - Model average shapes of bursts and their skewness and kurtosis………………..86 

Figure 4.1 – Extraction of burst suppression metrics…………………………………………...97 

Figure 4.2 - Comparison of burst suppression metrics during first hours after birth to subsequent 

MRI changes observed several days later………………………………………………………99 

Table 5.1 - Demographics of the preterm dataset with EEG recording information and clinical 

outcomes……………………………………………………………………………………….106 

 

Figure 5.1 – Schematic of cortical burst analysis of preterm EEG recordings. ………………107 

Figure 5.2 - Preterm EEG analysis results. ……………………………………………………109 

Figure 5.3 – Exponent interrelations for preterm EEG derived from statistical distributions of 

bursts at 12 hours. ……………………………………………………………………………..110 

Figure 5.4 - Relationship of burst metrics with gestational age 12 hours after birth………….111 

Table 5.2 - Bivariate correlations (ANOVA) of burst metrics slope (S), skewness (Σ), and 

kurtosis (K) with Gestational Age, and Mental Developmental Index (MDI), Psychomotor 

Developmental Index (PDI) and overall Outcome (good/poor dichotomy). ………………….112 

Figure 5.5 - Path analysis diagram of correlations at 12 hours showing how GA moderates (A) S 

to MDI and (B) K to MDI. …………………………………………………………………….113 

Figure 5.6 - Preterm EEG burst metrics versus clinical outcome over a 72 hour period….......114 

Table 6.1 – Clinical summary of the preterm population analyzed for this study…………….124 

Figure 6.1 - Analysis schema for each EEG burst……………………………………………..126 

Figure 6.2 - Conventional analyses of preterm EEG ………………………………………….127 



20 

 

Figure 6.3 – Comparisons of EEG bursts in normal preterm and IVH preterms. …………….127 

Figure 6.4 - Differences in average burst shape across increasing burst duration for infants with 

no IVH compared to pre-IVH and confirmed IVH. ……………………………………..........129 

Table 6.2 - Sensitivity and specificity for mean sharpness (K) and mean asymmetry (Σ) for 

bursts greater than 2s in length, respectively to predict no IVH or IVH at any grade…...……131 

Figure 6.5 - Summary of the statistical differences in burst features between infants with no IVH 

and those with IVH 1-4………………………………………………………………………. 131 

Figure 6.6 – Classification via logistic regression of burst sharpness (K) and skew values (Σ) 

values. …………………………………………………………………………………………132 

 



21 

 

List of Abbreviations used in the thesis 

 

aEEG – amplitude-integrated electroencephalographyBMS – Bayesian Model Selection 

BS – Burst Suppression 

BSID-II – Bayley Scales of Infant and Toddler Development, Second version 

CNS – Central nervous system 

CTS – Continuous EEG 

EEG – Electroencephalography  

GA – Gestational age 

GABA - gamma-Aminobutyric acid 

HIE – Hypoxic ischemic-encephalopathy 

IBI – Inter-burst Interval 

IVH – Intraventricular hemorrhage 

MDI – Mental Development Index 

NICU – Neonatal Intensive Care Unit 

PDI – Psychomotor Development Index 

PVL – Periventricular leukomalacia  

REM – Rapid eye movement 

SATs – Spontaneous activity transients  

WHO – World Health Organization 

  

http://en.wikipedia.org/wiki/Gamma-Aminobutyric_acid


22 

 

  



23 

 

1.0   INTRODUCTION 

 
ABSTRACT 

 

This introductory chapter provides a short overview of the fundamental structure and function 

of the neonatal brain. To provide a background, this chapter firstly summarizes the 

developmental aspects of the healthy neonate brain briefly introducing brain development, the 

proliferation of cortical pathways and basic neural circuitry. It elaborates the growth processes 

involved early in gestation and further into the intricate signalling networks in the brain. These 

networks form the basis for rapid cortical electrical bursting patterns. This leads to the focus of 

this thesis which is quantifying cortical activity from the electroencephalogram (EEG) in full-

term hypoxic infants and preterm infants. The associated neurological sequelae in both 

populations are foregrounded by a summary into current epidemiology and common clinical 

practices. Finally, this chapter briefly highlights recent advances in physics and neuroscience, 

such as criticality, scale-free dynamics and crackling noise. These concepts introduce novel 

techniques to answering the fundamental hypotheses tested in this body of work – of developing 

rapid and reliable predictors of outcome for full-term and preterm neonates after birth.  
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1.1  THE NEONATAL BRAIN: CONCEPTION TO POSTNATAL  

  DEVELOPMENT 

The human brain is an incredibly complex and diversely structured organ. It is the core of the 

human nervous system in which movement, cognition and overall biological well-being is 

developed, determined and maintained. From early stages of conception in the womb, through 

to childhood and adulthood, tremendous changes in overall brain size, structure and connectivity 

take place. In this section I overview the neurodevelopment of an infant, including the basis for 

brain formation and how the structure of the brain is wired for growth and communication.  

1.1.1   FORMATION OF THE BRAIN  

The brain begins to form early in the embryonic period, beginning at three weeks post-

conception, with a process known as neural induction in the neural tube – the foundation of the 

central nervous system (CNS) (Stiles and Jernigan 2010). The neural tube is a fundamental 

structure in the vertebrate embryo, carrying highly proliferative cells which provide the building 

blocks for organs and vasculature. As the neural tube closes, these proliferative cells are 

contained within a hollow tube-type structure.  This structure allows for neural induction, which 

is initiated when two of three germ layers of cells in the neural tube, the mesoderm (middle 

layer of cell tissue) induces the ectoderm (outer layer of cell tissue) to form the neural plate 

(Fig.1.1A). Whilst the exact mechanism of this induction is not fully understood, the folding of 

neural plates rapidly converges to form neural folds (Lagercrantz et al. 2010). Within these 

neural folds, major cells such as neurons and glia arise, allowing for connectivity and a 

foundation for basic homeostasis via the human brain (Merkle and Alvarez-Buylla 2006). As 

key mitotic (cell-dividing) processes occur in parallel with multiple layers of neural folding, the 

overall morphology of the human brain becomes more apparent, forming the overall structure 

identified as the cerebral cortex (Fig. 1.1B). 

From this early perinatal period through to postnatal development, the cerebral cortex undergoes 

vast development in interconnectivity, growth and function. Towards the end of the embryonic 

period (eighth and ninth week gestation) leading to the end of gestation, there is rapid growth 

and elaboration of both cortical and subcortical structures including major fibre pathways that 

are crucial for synaptogenesis (Kostović and Jovanov-Milošević 2006). Early neuronal 

connections, which are controlled by growth processes, are aided by migration of neurons and 

more intricate expression of neuronal structures such as axons (connecting long fiber between 

neurons) and dendrites (short fibres at the end of axons). These pathways proliferate 

innumerably, with studies into the macaque prefrontal cerebral cortex (order Primate) indicative 

of up to 40000 new synapses per second during the perinatal period (Bourgeois 1997; Moser 
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1999). As these processes rapidly unfold within the cortex, the migration of neurons to specific 

‘local’ clusters allow for communication between cortical columns (Lagercrantz et al. 2010). 

These basic cortical columns extend across and between cortical hemispheres, accompanied by 

long-range connections between thalamus (a small structure above the brainstem) and cortex 

(Kostović and Jovanov-Milošević 2006; Kostović and Judaš 2007). Long-range connections, 

such as thalamocortical and corticocortical projections, continue to proliferate up until 30 weeks 

gestation (Kostović and Judaš 2010) with the emergence of major inter-hemispheric short-range 

connections formed in the weeks leading up to 37-38 weeks gestation (Lagercrantz et al. 2010).    

Figure 1.1 – From the embryo through to neural tube closure and cerebral cortex formation in-

utero. (A) Embyronic period during which neural induction occurs (Lagercrantz et al. 2010). (B) 

From neural folding to cortex development (BrainFacts.org 2014) 

After birth, brain growth and connectivity continues postpartum through to early childhood and 

adolescence. Cortical pathways proliferate until two years of age followed by increases in size 

and shape, before reaching 90% of adult volume by the age of six (Iwasaki et al. 1997; Lenroot 

and Giedd 2006). An inherently unique aspect of brain development in-utero is the high number 

of neurons and synapses produced – a level that far exceeds that which is seen during adult life 

(Innocenti and Price 2005). One of the mechanisms for this level of growth is the fetal brain 

being experience-independent, i.e. new connections are generated spontaneously in the absence 

of patterned stimuli from the external world (Lagercrantz et al. 2010). As the influence of 

experience-dependent activity is subsequently exerted upon the newborn (as early as its first 

awakening post-birth) connectivity processes are stemmed by competitive processes – an 

indication of early plasticity and intrinsic adaptation of the external world (Stiles and Jernigan 

2010).  

1.1.2   NEONATAL CORTICAL CONNECTIONS 

The spread and growth of networks within the cerebral cortex, extending to the basal ganglia, 

thalamus and brainstem, establishes fundamental neurophysiological connections required for 

sensory perception and later cognition. As these networks differentiate into specific areas within 

the brain, they begin to institute key functions. By the end of the embryonic period, the 
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vertebrate embryo within the neural tube structure begins a prolonged and highly refined 

process of neural patterning (Stiles and Jernigan 2010; Sur and Rubenstein 2005). This process 

of neural patterning extends throughout the gestation period and is fundamental to the 

organization of the somatosensory network, motor cortex, and cognitive association areas of the 

human brain.  

In parallel with brain formation, basic signal communication and networking is established 

through neuron-neuron interactions. In the fetal period (beginning at the ninth gestation week 

through to mid-gestation) neurons proliferate and migrate, allowing for prototypic connections 

between neuron ‘chains’ or synapses, resulting in formation of co-active networks via axons and 

dendrites (Stiles and Jernigan 2010). Arising from this period is the neocortex – a sub-structure 

within the cerebral cortex responsible for higher functions such as sensory perception, 

generation of motor commands and cognition. Vast amounts of activity relay through axons and 

dendrite ‘chains’ between the neocortex and sub-cortical nuclei takes place in the final trimester 

of pregnancy (Lagercrantz et al. 2010).  

Previous studies have reported the emergence of myelin - a critical insulating layer of axons– 

during this period midway between conception and birth, becoming evident by the 24
th

 week 

and continuing until two years of age (Lagercrantz et al. 2010; Stiles and Jernigan 2010; Van 

der Knaap and Valk 2005). The main function of these myelinated axons and dendrites is to 

receive and efficiently regulate the transmission of electrochemical signals (Stiles and Jernigan 

2010). Thus, complex neural ‘hubs’ of communication arise from these key structures allowing 

for substantial neurodevelopment in the weeks leading up to birth.  

Synaptic communication is an integral part of brain growth and function from the second 

trimester onwards through to postnatal development (Kostović and Jovanov-Milošević 2006). 

Critical feedback loops become established via thalamocortical and corticothalamic pathways 

from the neocortex to the thalamus. Here, the thalamocortical pathway transmits sensory and 

motor information from the receptors in the eye (retina), ear (cochlea) and muscle or skin to the 

sensorimotor regions of the neocortex via the thalamus (Stiles and Jernigan 2010). At 22 weeks, 

the thalamocortical pathway is not immediately established, but rather, forms its initial 

connections with a subplate layer of the cortex (Kostović and Jovanov-Milošević 2006). This 

subplate structure is unique and essential to prenatal brain development, without which normal 

connectivity patterns cannot exist (Stiles and Jernigan 2010).  

Over a four week period, thalamocortical axons make connections with the subplate layer, and 

then eventually to the primary cortical layer by about 26 weeks (Fig. 1.2). Similarly, the same 

development pathway occurs for corticothalamic axons, where the subplate layer is intermediary 
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to eventual thalamic connectivity (Kostović and Jovanov-Milošević 2006). The feedback loop is 

completed via the corticothalamic pathway by transmitting information from cortex back to the 

thalamus. These early cortical connections have been thought to be the basis for neuronal 

circuitry in the human fetal cerebral cortex (Kostovic and Judas 2010) and further, a strong 

component of the electrical activity in the brain (Lagercrantz 2010). 

  
Figure 1.2 – Thalamocortical connections (blue fibres) with somatosensory evoked potentials 

(green trace) at different development stages. The red fibres indicate layer pyramidal neurons  

(Vanhatalo and Lauronen 2006) 

The electrical activity of the mature human cortex, commonly measured via an 

electroencephalogram (EEG), reflects the functional state of the brain through cortical activity 

(Ernst Niedermeyer and da Silva 2005). Spontaneous, recurrent action potentials from the 

thalamic nucleus and cortical pyramidal cells (Mircea Steriade et al. 1990) form the basis for 

EEG activity in the cortex. Further, this activity reflects the synchronization of postsynaptic 

action potentials from large numbers of neurons. This synchronicity is maintained by recurrent 

connections between thalamocortical relay cells and the reticular thalamic nucleus (Lagercrantz 

et al. 2010). The neurophysiological basis for fetal EEG activity is relatively unknown. 

Research suggests that at the second trimester the cortical subplate is likely to be involved in 

modulating EEG activity (Kostović and Jovanov-Milošević 2006). It has been hypothesized that 

the subplate layer plays a large role in the emergence of spontaneous activity transients (SATs), 

a type of developmental activity that is present until an infant reaches term age (Vanhatalo and 

Kaila 2006). This type of activity is stereotypically distinct, with slow bursts of cortical activity 

followed by transient silent (inter-burst) periods. As the fetal brain’s emerging cortical 

connectivity becomes established, cortical bursts reflected in EEG become mediated through 

synaptic networks and further mediated by neurotransmitters. By term age, the newborn 

undergoes further maturational changes through to early childhood (Fig. 1.3).  
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Figure 1.3 – Milestones of brain development processes from Lagercrantz (2010) 

Complex dynamics within EEG activity such as sleep-wake cycles become more apparent 

during the third trimester (Graven and Browne 2008; Peirano et al. 2003). After birth, either 

preterm or at term, the EEG can be characterized as discontinuous or continuous. Background 

activity during discontinuous patterns display distinct periods of burst and inter-burst intervals, 

whereas in continuous patterns this distinction is less apparent. At term age, background EEG 

activity is predominantly continuous during wakefulness and active (REM) sleep, but 

discontinuous during quiet (non-REM) sleep (Peirano et al. 2003). In the preterm, cortical 

activity is typically characterized by a discontinuous (trace discontinu) EEG background 

(Hellström-Westas and Rosén 2005). The underlying neurophysiological mechanisms behind 

these EEG patterns of activity have been of immense interest in recent research (Feldman and 

Eidelman 2006; Graven and Browne 2008; Weisman et al. 2011). Neurotransmitters such as 

GABA (gamma-Aminobutyric acid), glutamate and ions such as chloride and extracellular 

calcium have been postulated as playing a major role in the excitation and inhibition of neuronal 

circuits (Kostović and Jovanov-Milošević 2006). This balance of excitation and inhibition in the 

brain is interrupted, either temporarily or irrevocably, by the presence of brain injury.  

The presence of abnormal EEG activity patterns such as trace discontinu  and burst suppression 

are acute reflections of the functional state of the human cortex. In this thesis I further explore 

these abnormal types of neonatal EEG and aim to provide further insight into prenatal and 

postnatal brain development.  

 

http://en.wikipedia.org/wiki/Gamma-Aminobutyric_acid
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1.2 BRIEF EPIDEMIOLOGY OF NEONATAL ENCEPHALOPATHY 

During the period of tremendous growth and complexity involved in brain development 

processes, the human infant is exposed to the ever present risk of brain injury, particularly 

during the perinatal period. Whilst complex forms of encephalopathy – disease of the brain – 

exist, infant brain disorders can be categorized into those occurring at normal gestation (or term) 

and those affecting premature (or preterm) infant populations. In the following section, I briefly 

overview the incidence and risk of two common neonatal brain abnormalities: 1) hypoxic 

ischemic encephalopathy at term and 2) encephalopathy arising from preterm birth. The 

pathophysiological aspects of these abnormalities will be discussed in Chapter 2. 

1.2.1 BIRTH ASPHYXIA AND HYPOXIC ISCHEMIC ENCEPHALOPATHY 

The World Health Organisation (WHO) defines the criteria for the diagnosis of birth asphyxia 

as the "failure to establish breathing after birth" (Spector and Daga 2008). Despite major 

advances in neonatal monitoring, treatment and clinical management in perinatal medicine, birth 

asphyxia leading to hypoxia is still a leading cause of mortality and long term morbidity.  

Asphyxia at birth leads to two major physiological consequences: (1) hypoxic ischemia and (2) 

neonatal encephalopathy. A combination of diminished oxygen rich blood, the deprivation of 

energy producing metabolites and a disturbed neurological function of the newborn brain 

(Volpe 2001a) results in the condition hypoxic ischaemic encephalopathy (HIE).  

Neonatal HIE has a significant prevalence worldwide and has a number of associated risk 

factors as the condition is complex in its diagnosis and clinical management. The condition is a 

significant pre-cursor to neurodevelopmental disorders and disability in infants. HIE infants 

have poor neurodevelopmental outcomes at 18 months of age (Sinclair et al. 1999), such as:   

 Cerebral Palsy, 

 Epilepsy, 

 Blindness, 

 Other motor development problems (e.g. hypotonia) & Learning difficulties. 

Most infant death from acute HIE occurs within the first week of life, with infants suffering 

with severe neurologic impairment or even dying in their infancy from aspiration pneumonia or 

systemic infections (Morley 2005). The incidence of HIE worldwide is relatively high with birth 

asphyxia associated with mortality rates of 25-50% (Spector and Daga 2008). HIE occurs in 1 in 

6 per 1000 births in developed countries, (in developing countries the incidence of HIE is 

reportedly higher), with neonatal encephalopathy occurring 2-6 per 1000 births and hypoxic 
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ischemia occurring 1-8 per 1000 live term births (Volpe 2001a). Estimates from the WHO 

indicate HIE is the fifth largest cause of death in children under the age of five years (Bryce et 

al. 2005) with 80% of infants who survive severe HIE develop complications in later 

neurodevelopment.  

Population based studies have studied the incidence of asphyxia at birth leading consequently to 

HIE from the late 1970's (Hull and Dodd 1992) through to present day (Kurinczuk et al. 2010). 

While standards in clinical practice have improved over time, reduced incidence rates are offset 

by variations in case identification due to imprecise clinical criteria. More stringent 

methodologies over the past few years for case identification from clearly defined populations 

(Badawi et al. 1998; Evans 2001; Tagin et al. 2012) have provided more accurate indicators of 

HIE incidence, management and associated risk factors.   

Identifying key risk factors in HIE is an essential guide to clinical management and optimal 

treatment plans. Understanding the pathophysiological pathways are vital, as evidence suggests 

the condition has a small time-window prior to permanent brain injury (Morley 2005). Some of 

the risk factors for HIE during pregnancy include a combination of maternal age, family history 

of neurological disorders (including and excluding seizures), alcohol consumption, birth weight 

and growth, thyroid disease and gestational age (reported by Badawi et al (1998)). During the 

peripartum period (leading up to birth and directly after), other risk factors are associated with 

the onset of HIE including presentation (position of birth), mode of delivery (vaginal, breech or 

emergency caesarean), maternal fever during labour and general anesthesia effects (Badawi et 

al. 1998). Asphyxia leading to HIE is further complicated by multifactorial risk factors which 

result in an acute brain injury. Early intensive care monitoring thus relies on characterization of 

cardiorespiratory and brain responses to provide clinically qualitative and quantitative 

biomarkers that may help predict short and long-term outcomes. These biomarkers, in 

combination with risk factors, provide a critical understanding of newborn pathophysiology.  

1.2.2 PRETERM BRAIN INJURY: RISK FACTORS AND INCIDENCE  

 

Preterm birth is typically defined as birth prior to 37 weeks gestation (Beck et al. 2010). There 

are three sub-categories of preterm birth – those born extremely preterm (<28 weeks), very 

preterm (28 to 32 weeks) and moderate to late preterm (<37 weeks) (WHO 2013). The 

premature birth of an infant is the leading cause of neonatal death within the first four weeks of 

life and poses a significant risk to morbidity and mortality.  

Preterm birth leads to a multitude of physiological disturbances, which can be primarily 

characterized into: (1) cardiorespiratory (2) systemic (i.e. metabolic, coagulopathy) and (3) 
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neurological sequelae. Its significant prevalence worldwide is due to a combination of maternal, 

fetal, genetic and environmental risk factors (Beck et al. 2010).  

Neurodevelopmental outcomes at 18 months of age for preterm birth survivors potentially 

include:    

 Cerebral Palsy, 

 Sensory deficits, 

 Learning disabilities, 

 Respiratory illnesses. 

Based on recent reports of neonatal births worldwide, the incidence of preterm birth is estimated 

to be 11% of all livebirths (Blencowe et al. 2012) with increasing rates of preterm delivery 

reported. Statistics from about 184 countries show that preterm birth occurs for between 5% and 

18% of births (WHO 2013). This is largely due to increases in multiple births, risk of maternal 

infection, greater use of reproductive techniques in developed countries and variable 

socioeconomic factors in developing countries (Callaghan et al. 2006). Complications arising 

from preterm birth account for over a million deaths each year, and contribute to over 50% of all 

neonatal deaths (Blencowe et al. 2012). In addition, it is the second leading cause of death for 

children under five years of age behind pneumonia (WHO 2013).  

The incidence of preterm birth has been the subject of many population based studies, with 

investigations primarily into causal factors and long-term clinical monitoring of the neonate 

through to early childhood (Goldenberg et al. 2008). Factors which cause birth prematurity 

include intrauterine infection (e.g. urinary tract, bacterial vaginosis), lifestyle factors (e.g. 

smoking, alcohol), maternal history (i.e. congenital conditions) and environment (e.g. 

malnutrition). Moreover, preterm birth is further identified as being either spontaneous or via 

clinically initiated labour (either through elective caesarean or induced labour) (Blencowe et al. 

2012). After birth a preterm infant is exposed to a multitude of physiological disturbances, with 

a high risk of brain injury in the first few days of life (e.g. periventricular and intraventricular 

hemorrhage) (Ballabh 2014). The combination of causal risk factors leading to preterm birth, 

the gestational age of the infant and the development of acute conditions after birth influence 

mortality and long-term outcome. 

In short, the cause and incidence of preterm birth has a significant impact onto the development 

of children worldwide. In particular the risk factors in combination with early gestational age 

greatly affect the neurodevelopment of a newborn, with problems persisting into later childhood 

and adulthood. Thus, early identification of acute brain injury in the preterm and potential 

prediction of long-term outcome is critical to ensure optimal recovery. Table 1.1 highlights the 
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key epidemiological factors commonly identified leading to two different types of neonatal 

birth.  

 Full-term HIE  Preterm infants Both populations 

Incidence 1 in 6 per 1000 births  

hypoxic ischemia 

occurring 1-8 per 

1000 live term births 

Mean of 11% of live 

births - between 5% and 

18% of births 

- 

Risk factors Presentation at birth 

Mode of delivery 

Fetal blood factors 

Intrauterine enrvironment 

Infection (maternal, fetal) 

Fertility treatment 

Maternal age 

Family history 

Lifestyle factors 

Ethnicity 

 

Table 1.1 – Common associated risk factors and incidence for full-term HIE and preterm infants   
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1.3  COMMON MEASURES IN NEONATAL BRAIN MONITORING 

Advancements in neonatal intensive care have vastly improved infant survival, following 

preterm birth or full-term asphyxia. In modern day neonatal intensive care units (NICU) clinical 

management provides basic support for cardiorespiratory and systemic stabilization, along with 

screening for neurological sequlae (Ballabh 2010; McCrea and Ment 2008). Importantly, 

neuroprotective care for infants is a critical to post-natal mortality and morbidity. In this section 

I briefly outline neuroprotective strategies employed for birth asphyxia and preterm birth as well 

as the diagnostic monitoring involved in identifying and treating newborns.  

1.3.1 NEUROPROTECTIVE CARE FOR AT-RISK INFANTS: FULL-TERM HYPOXIA 

AND PRETERM BIRTH 

 

Neuroprotective care in the modern day NICU is usually complemented by standardized 

cardiorespiratory monitoring. Term infants with severe HIE and very or extremely preterm 

infants require respiratory ventilation support to sustain breathing during the first days of life 

(Sabir et al. 2012). This prevents hypoxia or hyper/hypocapnia (either an increased or decreased 

amount of carbon dioxide in the blood). In addition, fluid and glucose homeostasis play an 

important role in preventing hyper/hypoglycaemia (high or low blood glucose levels) because 

both may accentuate brain damage (Salhab et al. 2004). Both ventilator support and fluid 

management aim to compensate for intracellular energy failure while stabilizing blood pressure 

and blood acidosis (Ballabh 2010).  

Following premature birth or asphyxiation at full-term birth (HIE), acute brain injuries can lead 

to serious impairment of neuronal function. For example, one of the most common occurrences 

in HIE is the event of seizures, which affects neonatal health by compromising major bodily 

functions (S. Miller et al. 2002). This includes respiratory function, fluid management and 

cerebral blood pressure. In the preterm neonate, early delivery interrupts crucial neural and 

homeostatic mechanisms responsible for the regulation of cerebral blood flow, with consequent 

hypoxic ischemic injury which can also lead to seizures, disturbed blood coagulation factors and 

hemorrhage (Ballabh 2010; Bolisetty et al. 2014; Volpe 2009).  

The clinical management of these at-risk neonates is vital to their long-term prognosis. The 

level of care is one of the principle factors in determining neurologic outcome (Abend and Licht 

2008). The difficulty associated with predicting outcome from term hypoxia is largely due to 

identification of HIE severity. Furthermore, it has been reported that a majority of case studies 

(Shewmon 2000) provide little information regarding exact definitions of good or poor outcome 

or mild, moderate, sever neurological disability associated with HIE. Recently, the use of mild 
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hypothermia has been utilized as a temporary neuroprotective strategy (Gluckman et al. 2005; 

Shankaran et al. 2005) to reduce metabolic rate and cell apoptosis. Clinically, hypothermia must 

be applied within the first six hours of life and maintained for a 48-72 hour period (Shankaran 

2002) to provide maximum benefit. An important component of neonate treatment is the 

administration of anti-epileptic (anticonvulsant) and anaesthetic drugs to control seizure events 

while aiming to stabilize cerebral function. The most common anaesthetics used include the use 

of phenobarbital, phenytoin, and benzodiazepines (S. Miller et al. 2002).  

A vital monitoring tool that assists neuroprotective care of neonates is the electroencephalogram 

(EEG), in particular the observation of abnormal background patterns in the electrical activity of 

the brain (Sinclair et al. 1999).  Continuous monitoring of newborns using EEG is discussed in 

the following section.  

1.3.2 CONTINUOUS ELECTROENCEPHALOGRAPHY MONITORING OF NEONATES 

 

Continuous brain monitoring of neonates via the EEG is a well-established measure of the 

brain's electrical activity, acquired at the scalp via surface electrodes. Its use clinically has been 

well established, having an unparalleled temporal resolution in non-invasively measuring the 

brain’s electrical activity (Ernst Niedermeyer and da Silva 2005). As a result, its use has 

improved clinical prediction and treatment of at-risk neonates (André et al. 2010; Lamblin et al. 

1999). The prognostic value of an EEG measurement for neonates is reportedly its sensitivity 

for assessing brain damage (Grigg-Damberger et al. 1989; van Rooij et al. 2005; Watanabe et al. 

1999). For example, in hypoxic-ischemic injury, the potential failure of synaptic transmission 

due to poor metabolism in the brain causes normally fast rhythmic continuous electrical activity 

to reduce in amplitude, which is subsequently followed by an increase in erratic mixed wave 

patterns (van Putten and van Putten 2010). These patterns on an EEG are known as burst 

suppression and are commonly associated with poor developmental prognosis in neonates 

(Grigg-Damberger et al. 1989).  

Clinical outcome of full-term hypoxic and preterm infants depends primarily on assessing the 

severity of the acute encephalopathy, in addition to clinical management (e.g. therapeutic 

hypothermia, drug therapies). Continuous monitoring of EEG offers crucial functional markers 

of abnormality within the first few hours of life after birth (Holmes et al. 1982). For instance, 

after initial diagnosis of HIE, EEG can provide important prognostic information, even in 

neonates treated with hypothermia (Hallberg et al. 2010). Further, EEG can reliably monitor for 

the presence of seizures, a potential pre-cursor to epilepsy, where the risk of poor neurological 

outcome is distinctly greater, particularly if seizures occur frequently (S. Miller et al. 2002). 

There is considerable ongoing research that aims to improve the role of post-natal EEG. An 
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example of such is the automated amplitude integrated EEG trends (aEEG) and limited-channel 

EEG (channel montages) which has improved short-term assessment and management of 

preterm and full-term infant groups (Hellström-Westas and Rosén 2005; Olischar et al. 2004; 

Wikström et al. 2012).  

Despite improvements in the use of EEG (qualitative and quantitative), a number of barriers still 

exist. Expert interpretation of continuous EEG recordings in infants is challenged by 

interruptions to data continuity and artifacts from NICU environments (Schumacher et al. 2011; 

Wikström et al. 2012). Background activity from aEEG/EEG in the first 72 hours has predictive 

value but requires expert selection of epochs to distinguish artifacts from abnormal cortical 

activity (Wikström et al. 2012). Notwithstanding these challenges and other factors, the EEG 

still remains the most common and rapid method for assessing post-natal brain function. For 

time-limited injuries such as HIE and hemorrhage, EEG still remains the most practical 

solution, despite advances in brain imaging. This thesis seeks to demonstrate the utility of EEG 

through novel quantification of cortical activity, whilst considering the challenges in which 

neonatal brain monitoring is encumbered by, to provide a robust and reliable solution for 

outcome prediction. 
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1.4  INSIGHTS FROM NEUROSCIENCE  

 

Recent neuroscientific research indicates that criticality has emerged as a leading dynamical 

candidate for healthy and pathological neuronal activity. Criticality occurs in systems which 

border on the cusp of stability and disorder, transitioning between these two extremes via 

temporary system instability (Bak et al. 1987; Beggs and Timme 2012; Sethna et al. 2001). It is 

a phenomena that is commonly observed in physical systems (Bak and Tang 1989; 

Papanikolaou et al. 2011; Sethna et al. 2001; Zapperi et al. 2005) and provides potentially novel 

insights into human brain dynamics.     

A growing body of evidence now contends that cortical networks operate near criticality (Beggs 

and Plenz 2003; Haldeman and Beggs 2005; Kinouchi and Copelli 2006; Meisel et al. 2012; J. 

A. Roberts et al. 2014; Shew et al. 2009). The study of criticality can be dichotomized into two 

classes: those systems which “self-organize” and those tuned to operate at critical points. Within 

these two classes of criticality, terminology such as “scale-free activity”, “avalanches” and 

“crackling noise” are commonly used to characterize highly specific spatiotemporal dynamics 

that occur within a system. Critical systems typically exhibit scale-free activity, i.e. measured 

statistics that have no characteristic time or length scale. These scale-free statistics measured at 

spatial scales are expressed as avalanches, whereas in the temporal domain they are 

characterized as the fluctuations of crackling noise. 

In this thesis I seek to provide a background into concepts such as criticality, crackling noise 

and the scale-free nature of temporal fluctuations present in neonatal EEG to present an 

alternative hypothesis to understanding early brain development. These concepts found in 

natural phenomena and neurobiological models, offer evidence of complex temporal structures 

that transition between balance and imbalance (Beggs and Plenz 2003; Biyu J. He et al. 2010). 

In this thesis I explore how criticality plays a fundamental role in the temporal dynamics of the 

neonate cortex. These processes may further facilitate understanding of neurobiology in the 

compromised full-term or immature preterm brain. Notably, I contend that the study of these 

phenomena can provide novel, predictive markers of early brain activity that advances current 

clinical assessment of neonate EEG.  

  



37 

 

1.5  RESEARCH AIMS AND HYPOTHESES 

 

This thesis develops novel methods for predicting clinical outcome from neonatal brain activity 

recordings drawing on concepts of criticality. The overarching theme of this study is to test 

whether neonatal brain activity has unique scale invariant features, soon after birth, which may 

reflect a complex, yet universal set of dynamics found elsewhere in nature. These features, 

when statistically characterized and robustly extracted may yield important temporal signatures 

of cortical behaviour which have direct clinical and neurodevelopmental relevance.  

The aims and objectives of this thesis are thus summarized below:  

 To identify stochastic processes present in neonatal brain activity following full-term 

hypoxia through a detailed statistical characterization; 

 To objectively extract signatures of cortical bursts measured via the neonatal 

electroencephalogram (EEG) in full-term hypoxic and preterm neonates; 

 To combine detailed statistical characterization and signatures of cortical bursts to 

predict clinical outcome in neonates. 

Significantly, this thesis hypothesizes that:  

 Neonatal brain activity exhibits inherently scale-free processes; 

 Scale-free behavior in the neonate brain is indicative of criticality and a complex form of 

stochastic behavior known as crackling noise ; 

 Properties of crackling noise in the neonate brain are inextricably linked with 

neurobiological processes, such as metabolic constraints and the development of cortical 

pathways; 

 Characterizing early neonate brain activity through the analysis of scale-free and 

crackling noise dynamics yields highly predictive properties of neurodevelopmental 

outcomes. 
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1.6  ORGANIZATION OF THESIS CHAPTERS 

 

This thesis aims to guide the reader toward the application of a clinical outcome prediction 

metric. Here, I present an application of novel methods based on bedside recordings of brain 

activity to predict outcome of at-risk neonatal populations. The organization of the following 

chapters is as follows:  

In Chapter 2, I review selected literature pertaining to the methods and analyses for this thesis. 

In the first half of this chapter I focus on characterizing pathophysiological mechanisms relevant 

to abnormal electrical activity patterns common to full-term hypoxia and preterm infants. For 

each of these neonatal populations, I explore previously developed quantitative measures, with a 

focus on summarizing properties of EEG burst activity used to determine outcome. In the 

following half of chapter 2, I provide background into criticality and scale-free networks, both 

in physical systems and in neuroscience, before concluding with a consideration and reasoning 

for characterizing scale-free processes, criticality and crackling noise in the neonate brain.  

In Chapter 3, I present original research on the empirical nature of neonate brain activity 

following post-natal hypoxia. This chapter presents an alternative viewpoint on current clinical 

interpretations of data by characterizing the underlying statistical behavior present in neonatal 

EEG. Through detailed validation, I present and discuss results of a full-term hypoxic cohort. 

Notably, this chapter introduces a method for analyzing cortical activity patterns in the neonate 

EEG. Here, temporal properties of EEG bursts are characterized by principles of crackling noise 

via an analysis of average burst shapes across a hierarchy of time scales. These average bursts 

are further quantified for their change in symmetry and sharpness over time. The application of 

a phenomenological model is used to demonstrate how cortical bursts can change in symmetry 

and sharpness. Results of both neonate data and a simple model are compared to draw further 

discussion and insight into bursting behavior and metabolic constraint models. This chapter 

forms two peer-reviewed publications: (doi: 10.1523/JNEUROSCI.4701-13.2014, doi: 

10.3389/fnsys.2014.00154).   

In Chapter 4, I utilize methods from the previous chapter to study the application of empirical 

distribution functions in predicting clinical outcome of full-term hypoxic neonates. In sum, 

prediction of outcome at 2 years of age is achieved from analysis of statistical distributions in 

full-term hypoxic neonates undergoing hypothermia treatment hours after birth. Significantly, I 

report that the characterization of statistical distributions in neonate burst suppression offer 

predictors of outcome that are temporally precedent to later clinical findings, i.e. brain imaging 

(MRI).  This chapter forms a full peer-reviewed publication (Iyer et al. 2014, Annals of Clinical 

and Translational Neurology).  
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In Chapter 5, I apply the methods developed in Chapter 3 to predict long-term outcome for a 

cohort of extremely preterm infants. Using outcome measures of preterm infants (gestational 

age 23 – 28 weeks) at first week of life and at 2 years of age I demonstrate that early preterm 

brain activity is characterized by scale-free dynamics which carry developmental significance. 

The use of the EEG burst metric provides rapid and early clinical prediction of 

neurodevelopmental outcomes whilst taking into account the gestational age of the preterm 

infant. This chapter forms a full (standalone) peer-reviewed manuscript (Iyer et al. 2015, 

http://dx.doi.org/10.1093/brain/awv129). 

Chapter 6 utilizes average burst shape analysis to predict acute brain injury of preterm infants 

(gestational age 23 – 28 weeks), namely the risk of developing intraventricular haemorrhage 

(IVH). Specifically, I report upon the efficacy of average burst shape analysis in predicting the 

onset of IVH. Notably, I contrast findings from cranial ultrasound with an assessment of 

average burst shape to reveal features of burst sharpness and symmetry which significantly co-

vary with the occurrence of IVH (pre and post injury). The use of average burst shape analysis 

reveals the first novel indication of preterm hemorrhage injury through bedside assessment of 

EEG prior to screening via a cranial ultrasound. This chapter forms an entire (standalone) peer-

reviewed manuscript (Iyer et al. 2015, in press). 

In Chapter 7, I summarize and conclude upon the main findings of this body of work, discussing 

the major limitations, contributions of this thesis and consider directions for future work.  

http://dx.doi.org/10.1093/brain/awv129
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2.0  REVIEW OF SELECTED 

LITERATURE 
 

ABSTRACT 

 

Significant research over the past 60 years in neurology, neonatology and neuroscience has 

contributed to our understanding of causes and consequences of birth asphyxia and premature 

birth. These works have defined, examined and hypothesized upon the pathophysiological 

mechanisms after birth leading to the types of electrical activity phenomena observed in the 

clinic. This chapter aims to distil key literature highlights from research into full-term hypoxia, 

preterm birth and their associated pathophysiological and neurological abnormalities. 

Specifically, this chapter focuses on the features of electrical activity in the neonate brain, 

contrasting pathological patterns such as burst suppression with physiologically generated 

activity patterns in the preterm. It also formally introduces the study of criticality, scale-free 

networks and crackling noise in physical systems and how they relate to human brain dynamics. 

The utilization of such higher order statistics and stochastic models has yielded new insights 

into the field of neuroscience and provides an important background into the implementation of 

the methods and analyses presented in this thesis. The chapter concludes with a consideration 

for the use of scale-free dynamics in the prediction of clinical outcome in neonates.     
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2.1  FULL-TERM HYPOXIA AND BURST SUPPRESSION 

 

Asphyxia at birth is the most common trigger for a hypoxic-ischemic injury in a newborn. The 

occurrence of maternal hypovolemic shock or cord prolapse (Morley 2005) significantly 

contributes to brain injury. Findings from MRI studies have found that HIE may continue to 

develop without significant hypoxia beyond the initial insult (Alderliesten et al. 2013; Cowan et 

al. 2003). In developed countries, newborns with hypoxia that are routinely oxygenated after 

birth are candidates for rapid diagnosis and treatment. However, prolonged asphyxiation during 

birth leads to multiple pathophysiological effects. Here, I review pathophysiological 

mechanisms of neonatal asphyxia that lead to abnormal electrical activity patterns in the brain. 

Furthermore, I summarize quantitative methods in the field in order to inform the methods 

designed in this body of work.   

2.1.1  PATHOPHYSIOLOGY OF HIE 
 

Neonatal asphyxia results in a cortex that is severely compromised by the deprivation of 

oxygen. Oxygen deprivation, or hypoxia, has a damaging multi-organ effect on the brain, heart 

and pulmonary system  (Volpe 2008). The onset of HIE is sudden and unfolds as a two part 

cascading physiological process, where the result of hypoxic and ischaemic effects sequentially 

cause brain damage. The two major neurological events of HIE are:  

 Primary neuronal damage: Inhibition of energy-producing molecular processes due to an 

asphyxia related event, leading to compromised cellular integrity 

 Secondary neuronal damage: a delayed phase where inflammatory response leads to cell 

necrosis or apoptosis 72 hours or more after the insult 

Factors such as compromised cellular integrity and the inhibition of energy producing cells are 

largely dependent on the severity and duration of the initial insult. The first stage of hypoxic-

ischaemic insult relates to the function of normal cerebral auto-regulation, which maintains 

blood supply throughout the brain. This compensatory system is disturbed during an event of 

asphyxia causing a fall in cerebral blood flow and reducing the capability of blood to perfuse 

with oxygen (Morley 2005). As blood flow to the brain reduces, blood pressure falls leading to a 

failure to replenish intracellular energy-rich metabolites (Volpe 2001a).  

Significant biochemical processes contribute to the failure to produce energy at a cellular level. 

Initially an impaired uptake of glutamate, a major excitatory neurotransmitter, results in over-

activation of amino acids, such as N-methyl-D-asparate (NMDA) (Levene et al. 1995). The 

presence of this amino acid increases the level of glutamate production causing an accumulation 
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of sodium (Na
+
) and intracellular calcium (Ca

2+
), which in turn, activates the production of 

lipases (fatty acids) and nitric oxide (Fellman and Raivio 1997). The combination of these 

activated enzymes results in structural damage to the cell and a production of free radicals. A 

build-up of sodium, mainly due to a reduction in adenosine triphosphate (ATP) production (the 

key energy source for all cellular respiration processes), results in a deregulation of Na
+
/ K

+ 

(potassium) channel pumps. Free radical production, along with an accumulation of Na
+
 acts as 

one of the pre-cursors to cell apoptosis as the brain undergoes reperfusion. 

The combination of free radicals and a decrease in ATP production activates cell apoptosis, the 

secondary delayed phase of neuronal damage. As the neonate immune system is 

underdeveloped and exposed to inflammatory pathogens, the oxidative nature of free radicals 

advances the necrosis of brain tissue (Fellman and Raivio 1997). The presence of cell death 

becomes evident mainly in areas of otherwise high metabolic activity, namely, the basal ganglia 

and the cerebral cortex, which can affect later neurodevelopment. As the brain injury 

progresses, neural activity slows down and the cascade of cell apoptosis begins over a 72 hour 

period (Morley 2005).   

 

2.1.2 COMMON EEG FEATURES IN BURST SUPPRESSION  

 

Under normal conditions, a conventional burst of electrical activity in an EEG recording of the 

infant brain, is described as a "phasic synaptic depolarizing intracellular potential" which occurs 

at the cortical level (Amzica 2009). In a normal full term infant, electrical activity is typically 

continuous and rhythmic with well-defined burst cycles. A burst suppression pattern is distinctly 

different to this normal burst activity across the cerebral cortex.  

Burst suppression (BS) is characterized by alternating periods of erratic mixed waves (slow or 

fast) of high amplitude followed by periods of flat EEG (M Steriade et al. 1994). The most 

common occurrence of BS is immediately after birth asphyxia where it frequently occurs during 

the first few minutes of life and then resolves within 12-24 hours (Holmes et al. 1982). Other 

occurrences of BS include during the administration of general anaesthetic drugs or, less 

frequently, during an event of hypothermia, where the brain undergoes a form of inactivation 

(Lukatch et al. 2005). The nervous system of the newborn is immature in its cortical 

connections. One contention is that incomplete myelination of nerve fibres predisposes the 

neonatal cortex to effective deafferentation between cortical areas (the elimination or 

interruption of afferent nerve impulses) (Grigg-Damberger et al. 1989). The persistence of BS 

patterns in the newborn post-hypoxia results in poor clinical outcomes such as infantile death or 

compromised neurodevelopmental, e.g. cerebral palsy.  
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The electrical behavior in the brain during BS has been hypothesized as being in a constant state 

of hyper-excitability over a range of cortical neurons (M Steriade et al. 1994). The global nature 

of BS indicates that severe disturbances of cerebral function involving both cerebral 

hemispheres exist. Basic features on BS phenomena, extending to anaesthetic burst suppression, 

have been well established in terms of its characteristics and timing (Brenner et al. 1975).  

 

Characteristic features that are present during BS include:  

 Synchrony of burst onset: the generation of burst periods are simultaneous across the 

cortex, indicating spatial homogeneity (Grigg-Damberger et al. 1989). While less 

common, asynchronous burst activity can also occur. It is suggested that this arises due 

to further cortical deafferentation (Lazar et al. 1999).  

 Parametric sensitivity: BS patterns are continually changing in response to underlying 

biophysical processes such as the level of anesthesia administered, or intensity of 

hypoxia and/or hypothermia. An example of this is exhibited by general anesthesia 

which lengthens suppression time (Ching et al. 2012) 

 Heterogeneity in neural activity timescales: the timescales between BS and normal 

neural activity significantly differ as the brain enters a mode of inactivation. Delta 

oscillations of the brain commonly observed during sleep and general anesthesia range 

from 0.5-2 Hz and have an associated periodicity. However, BS occurs on a much 

slower and broader spectrum of timescales (Fig. 2.1) 

 

Thus, burst suppression commonly occurs as a “global” spatial phenomenon where large slow 

wave fluctuations are followed by periods of cerebral silence at most locations across the cortex.  

The distribution of bursting activity across the cortex is time limited due to a depletion of 

extracellular calcium (Ca
2+

), where levels are so low that it becomes incompatible with synaptic 

transmission (Amzica 2009). During suppression periods, synaptic silence allows neuronal 

pumps to restore interstitial Ca
2+

 toward normal levels.  

 

Figure 2.1 – From Sinclair (1999): a sample EEG trace demonstrating a burst suppression 

pattern in a neonate with term hypoxia (HF 70 Hz, LF 1 Hz, 5 μv/mm). 
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BS patterns range from acute onset, pathological, drug induced to recovery based BS leading to 

a transition to continuous EEG. Acute BS is the earliest onset of slow wave large amplitude 

activity (within first 3 hours of birth) (Grigg-Damberger et al. 1989). The transition from acute 

onset to pathological BS corresponds to typically abnormal (discontinuous EEG) patterns 

(Lamblin et al. 1999) in electrical activity. The use of drugs (Lazar et al. 1999; S. Miller et al. 

2002), (such as barbiturates), can also be used to induce burst suppression across the cortex, 

while recovery based BS is an early indicator that the electrical activity is transitioning towards 

a more continuous EEG pattern (Spitzmiller et al. 2007; Ter Horst et al. 2004).  

While studies into BS have revealed a characteristic presence for globally occurring large 

amplitude fluctuations of electrical activity, recent research in newborns (Fransson et al. 2013) 

has focused on the spatial distribution and frequency of these bursts in the neonatal cortical 

network. It has been hypothesized that a complex network of brain cells which alternates 

between periods of quiescence and periods of sudden fluctuations  may reflect a state of 

criticality in the brain (Ter Horst et al. 2004). This concept may provide vital links to BS 

activity and neonatal HIE clinical outcome. 

Research has aimed to identify burst suppression patterns in background term hypoxic EEG, 

either under hypothermia or without hypothermia treatment.  A recent review (Walsh et al. 

2011) summarizes the conventional use of EEG in identifying abnormal patterns such as BS 

with reference to the types of clinical criteria used to assess infants and the typical features of 

background activity present in EEG.  

2.1.3 QUANTIFICATION OF EEG FEATURES FROM NEONATAL BURST 

SUPPRESSION  

 

The detection of bursting content in neonatal EEG is an increasing focus of clinical research. A 

focus of this thesis is the detection and characterization of cortical burst signatures in the 

hypoxic neonate to derive a clinical outcome prediction metric. Below I present a summary of 

previous metrics developed toward this goal (search period up until September 2014). Though 

methods vary between datasets, there is commonality in their feature extraction, analysis 

constraints and methods for optimization. A summary of selected works (Table 2.1) indicates 

the use of automated techniques in neonates and their associated methodologies. Here, I focus 

the literature search on reports of automated analysis of full-term neonate BS EEG. In 

particular, I highlight the types of constraints applied to pre-processing EEG recordings, 

features extracted from BS data and the classification methods employed to determine 

outcomes.  
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Author 

GA 

(wks)  

 

Feature selection Summary 

Filtering 

& 

Channels 

Thresholding 

& constraint 
Target Output 

Optimization (OP) 

& Validation (V) 

(Thordstein 

et al. 2004) 

39-40 

wks 

0.5–70 Hz  

50 Hz 

notch filter 

and 

detrend 

(baseline 

removal) 

 

8 channels, 

0–20 

system at 

positions 

F7, F3, T5, 

P3, F8, F4, 

P4 and T6 

SACS epoch 

export 

program for 

burst periods 

 

Power spectra 

limited to 0–

30 Hz; zero 

padding for 

episodes 

shorter than  

1024 points 

burst periods 

manually 

selected from 

epoch 

 

Mean relative 

power LFA 0-

4Hz, HFA 4-

30Hz 

segments in each 

cluster of absolute                                        

and relative spectral 

powers in two 

frequency bands 

and spectral edge 

frequency 

(SEF95)= the 

frequency below 

which 95% of the 

power resides 

OP: empirical 

(mimicking visual 

analysis) 

 

V: matched controls, 

though small number    

(9 versus 9) 

(Witte et al. 

2004) 

38 -41 

wks 

No specific 

preprocessi

ng 

 

8 channels,  

Fp1, Fp2, 

C3, C4, 

T3, T4, 

O1, O2; 

95% 

confidence 

threshold is 

2/√M, 

where M is the 

number of 

EEG patterns 

used for the 

bichorence 

estimation 

 

1–1.5 Hz to 

3.5–4.5 Hz 

frequencies 

Gabor 

expansion, a 

FFT 

biamplitude, 

bicoherence 

and phase-

bicoherence 

time courses of 

both burst and 

interburst 

patterns 

Quadratic phase 

coupling (peaks of 

bispectra analyzed) 

characteristics 

between both 

patterns within the 

time period from 

0.75 to 1.5 s after 

the pattern onset at 

electrode Fp1 

 

 

OP: t-test paired 

samples of bispectral 

parameters in local 

pairs and global pairs 

 

V: segmentation of 

burst and interburst 

patterns by physician  

(Wang and 

Agarwal 

2007) 

Neonates 0.5-35 Hz 

 

8 channels 

fixed (but 

adjustable): 

e.g. < 9 µV 

 

duration: 

suppression 1-

60s, burst 

>0.5s 

suppression in 

burst-

suppression 

pattern 

 

instantaneous 

amplitude 

across channels 

smoothed by 

calculating 

moving average 

in 0.5s window 

burst-suppression 

event count in 60s 

window, mean 

duration of 

suppression in each 

burst-suppression 

cycle in 60s 

window 

OP:  Event wise 

comparison of 

detection results with 

manually marked 

data from 4 neonates, 

using different 

thresholds. 

 

V: none 
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(Löfhede et 

al. 2008) 

~36-40 

wks 

0.5-20 Hz 

 

 

8 channels 

, F7, F3, 

T5, P3, F8, 

F4, P4 and 

T6 

SACS epoch 

export 

program for 

burst periods 

 

Sliding 

window with a 

length of 1 s, 

corresponding 

to 200 

samples, used, 

with overlap 

of 0.75 s 

5 features for 

classifier 

-spectral edge 

frequency 

- 3hz power 

(1Hz-3Hz) 

- median 

absolute value 

- Variance  

- Shannon 

entropy 

Feature signals  

normalized by 

fitting their 

distributions 

between the first 

and 99th percentile 

into the interval 0 

to 1 to construct 

classifier ROC 

curves 

 

OP:  3 classifiers 

used Artificial neural 

network, Fisher 

discriminant and 

support vector 

machine 

 

V: leave-one-out 

training to build ROC 

curves on 6 neonates 

 

Vairavan 

(Vairavan et 

al. 2009) 

 

 

 

(MEG 

study) 

38-45 

wks 

1-25 Hz 

 

5 channels,  

 

Median of the 

feature is 

calculated 

channel wise 

from time 

windows  

 

Mean across 

channels is the 

threshold. 

duration: 

burst: >1s 

bursts (and IBI) 

in segments of 

discontinuous 

MEG 

 

Detection via 

full-wave 

rectified data  

signal content 

above the 

baseline is 

investigated for 

the calculation 

of the burst 

durations 

3 outputs for burst 

duration and IBIs 

- spectral ratio, 

- Hilbert phase 

- discrete wave 

transform   

 

Values used in each 

to construct ROC 

curves using 

sensitivity and 

specificity of based 

on each output as a 

range of thresholds 

according to 

discontinuity  

OP:  Area under 

curve (AUC) of ROC 

curves is maximized 

using data from 14 

neonatal EEGs with 

manual scoring by 

two reviewers. 

 

V: none, though ROC 

curves for spectral 

ratio, Hilbert phase 

and discrete wave 

transform are 

compared as an 

overall assessment of  

performance 

(Löfhede et 

al. 2010) 

~36-40 

wks 

1.6 – 44Hz 

Notch at 

50Hz 

 

8 channels 

, F7, F3, 

T5, P3, F8, 

F4, P4 and 

T6 

SACS epoch 

export 

program for 

burst periods 

 

Sliding 

window with a 

length of 1 s, 

corresponding 

to 200 

samples, used, 

with overlap 

of 0.75 s 

22 features 

including 

-spectral edge 

frequency 

- 3hz power 

- median  

Shannon 

entropy 

-zero crossings 

- variance 

- spectral 

centroid 

(Continued in 

Performance was 

measured in terms 

of the probability of 

error calculated as 

Perr = P(class 

1)P(class 2|class 1) 

+ P(class 2)P(class 

1|class 2) 

Formula gives a 

weighted sum of 2 

misclassification 

probabilities, where 

the weights are the 

proportions of the 

two classes in data 

OP:  manually pre-

classified training and 

validation sets 

Classifier, Fisher 

discriminant 

 

V: leave-one-out 

training to build ROC 

curves, 20 healthy 

and 6 sick neonates 
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Table 2.1 – Quantification methods and analyses in studies in neonatal burst suppression. Table 

legend: Interburst interval (IBI), Gestational Age (GA) where wks = weeks. SACS refers to a brain 

monitor device. “Constraint” is information provided by the authors for any specifications or 

limitations placed on automatic detection. “Output” refers to the features which are selected for 

analysis and subsequent results. “Optimization” refers to any specific adjustments, correlations or 

classification algorithms. “Validation” refers to confirmed absence or presence of normality or 

abnormality.  

These selected articles suggest two approaches for quantification of burst suppression patterns. One 

approach focuses on burst epochs, and their associated spectra with an empirically driven method 

for classification and prediction. Other methods utilize many features, (time, frequency and higher 

order computations) in a methods-driven exercise to generate feature based classification. Such 

studies and others (adult anaesthetised burst suppression and piglet models) have aimed to develop 

classification schemes to separate burst and suppression content of EEG. 

Table 1 of 

paper) 

(Bhattachar

yya et al. 

2011) 

37- 42 

wks 

0.5–35 Hz 

 

6 bipolar 

channels 

T4-P4, P4-

C4, C4-T4, 

T3-P3, P3-

C3, and 

C3-T3 

FIR filter of 

Kaiser 

window 

 

Manual 

marking  

segments of 

single channel 

labeled EEG 

extracted,  

maximum 

limit as 10 s 

for bursting 

Burst or normal 

segment, 

preceded by 3 s 

and followed 

by 2 s of 

background 

EEG  

 

15 features 

extracted 

(Table 2 of 

paper) 

Classifier output is 

binary 0=normal, 1 

=burst segments 

 

radial-basis 

function (RBF) 

kernel function 

provides indices of 

data to model 

fitting, which is 

used for sensitivity 

and specificity 

analysis 

OP: Support vector 

machine used for 

feature selection and 

training 

 

V: Visual marking by 

three clinicians, event 

marked epochs for 

burst and normal 

segments 

  

(Flisberg et 

al. 2011) 

>36 

wks 

1.6 and 44 

Hz 

 

8 channels 

F7, F3, T5, 

P3, F8, F4, 

P4 and T6 

SACS epoch 

export 

program for 

burst periods 

Detrended via 

median value 

of epochs 

 

10-min epochs 

of burst 

suppression 

classified 

epochs, target 

to quantify 

suppression 

time 

 

22 Features 

extracted using 

a genetic 

algorithm  

Results of classifier 

and segmentation  

used for calculating 

suppression time 

according to epoch 

length (1hr) based 

on 22 feature 

signals 

OP: Fisher linear 

discriminant, 

segments where no 

burst suppression 

activity 

was detected, zero 

suppression length 

was inserted 

 

V: training was 

performed using a 

small set of 

manually classified 

data from patients of 

the same age and type 
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2.2   CORTICAL ACTIVITY IN THE EARLY PRETERM  

 

Cortical activity patterns in the immature preterm brain are inherently different from that of 

compromised full-term neonates. The preterm brain is an immature neuronal network of cortical 

connections that is highly dependent on its ability to generate and sustain rhythmic electrical 

synapses. The disruption to neuronal growth and propagation of synaptic connections that normally 

transpire in-utero (Eeg-Olofsson 1980; Lagercrantz et al. 2010) causes system instability and results 

in a high risk of neurological morbidity (Van Baar et al. 2005). Thus, it is vital that critical care of 

these premature neonates revolves around providing the environment and treatment to stabilize their 

systemic responses and neurological well-being (Olischar et al. 2004). In the following section, I 

review pathophysiological mechanisms that are relevant to types of preterm cortical activity 

patterns. Moreover, I summarize previous quantitative methods which explore both normal and 

abnormal types of cortical activity in preterm populations.  

2.2.1  PATHOPHYSIOLOGICAL MECHANISMS POST PRETERM BIRTH 

 

Immediately following preterm birth, there is a high risk for several pathophysiological mechanisms 

that occur either through maternal intrauterine environment or at birth. These mechanisms have 

acute and severe impacts on the preterm brain and its overall function. Conditions such as damage 

to white matter through hypoxic-ischemia, haemorrhagic lesions and perinatal inflammation are 

some of the most commonly occurring that have a potential for severe effect. 

One of the most common acute forms of injury in the preterm brain is the development of an 

intraventricular hemorrhage (IVH) within the first few days following birth. Common mechanisms 

that lead to intraventricular hemorrhage (IVH) include failure of cerebral autoregulation or cerebral 

blood flow (CBF) (Milligan 1980; Watkins et al. 1989), hypoxic ischemic insult and sepsis (Volpe 

2009). An inability to maintain constant CBF is compounded by the fragility of the germinal matrix 

and coagulation disorders present in the blood (Ballabh 2010). The increasing severity in which the 

haemorrhagic injury is defined includes mild IVH (grade 1) where brain bleeding is confined to the 

subependymal germinal matrix, moderate (grade 2) hemorrhage into the lateral ventricles, severe 

(grade 3) where there is enlarged bleeding of the ventricles and very severe (grade 4) bleeding into 

surrounding brain tissue parenchyma (Papile et al. 1978).  

In the preterm, dysfunctional function and regulation of CBF leads to two variations in blood flow 

to the cortex: pressure-passive CBF regulation and alternations to functional hyperaemia (increase 

in cerebral blood flow due to metabolic demand). Pressure passivity, a term used to describe the 

inability to maintain constant CBF, differs from normal autoregulation mechanisms where smooth 

muscle cells relax or constrict (myogenic response) to compensate for CBF variations (Ballabh 
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2010). Through this myogenic response, there is an elevation of intracellular Ca
2+

 and opening of 

ionic channels resulting in depolarization and contraction, a process which is dysfunctional during 

pressure-passive CBF (Ballabh 2010). Conversely, functional hyperaemia is a response to metabolic 

demand, largely postulated as a result of an activation of glutamate receptors resulting in a post-

synpatic increase in calcium (Iadecola and Nedergaard 2007) leading to an increase in vasoactive 

agents such as CO2, nitric oxide and other metabolites. Whilst the latter is less understood at a 

molecular level, dysfunctions in these mechanisms contribute to a high risk of haemorrhage and 

cerebral ischemia.  

The most common form of injury in the preterm brain is damage to cerebral white matter. It is 

associated with a high risk for neurodevelopmental impairment stemming from injuries such as 

IVH, leading to a more adverse injury - periventricular leukomalacia (PVL) (Larroque et al. 2003). 

PVL is a two-fold injury that combines focal necrosis in white matter with the loss of pre-

myelinating oligodendrocytes (pre-cursor to myelin producing cells) (Volpe 2003). Factors for PVL 

in the preterm are primarily maturation-dependant where initiating factors such as cerebral 

ischemia, infection (maternal or fetal) or systemic inflammation are key pathogenic factors 

(Larroque et al. 2003). White matter injury in the preterm manifests through upstream and 

downstream mechanisms. Upstream mechanisms result primarily through preterm development and 

involve cerebral ischemia, due to pressure-passivity, hypertension, or inflammation (caused by 

infection) (Larroque et al. 2003). Downstream mechanisms are brought upon by insults such as 

hypoxic-ischemia and infection as well, resulting in free radical attack and excitotoxicity – an effect 

of the vulnerability in pre-myelinating oligodendrocytes  (Larroque et al. 2003). Further cascading 

effects including Ca
2+

 influx and generation of reactive oxygen species also become apparent as the 

severity of white matter damage increases.   

Other pathological factors such as perinatal inflammation and variations in carbon dioxide and 

glucose levels also predispose a preterm towards acute brain injury. Moreover, inflammation is 

involved in the upstream pathway of PVL injury where it results in the up-regulation of 

inflammatory cytokines and activation of microglia contributing further to white matter damage 

(Volpe 2001b). Carbon dioxide levels as well play a role in brain injury. High CO2 levels contribute 

to hemorrhage (vasodilation in CBF) and low CO2 levels are associated with ischemic injury 

(vasoconstriction in CBF) (Gorm Greisen and Børch 2001; Kaiser et al. 2006). These 

pathophysiological mechanisms described are multi-factorial, and without proper treatment or 

recovery, result in impaired neurodevelopment.   
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2.2.2  COMMON TEMPORAL FEATURES IN PRETERM EEG  

 

Continuous monitoring in the neonatal intensive care unit (NICU) of the preterm provides insight 

into underlying neurological pathology (Hellström-Westas and Rosén 2005; Olischar et al. 2004; 

Watanabe et al. 1999; Wikström et al. 2012). During this monitoring window, brain activity is 

predominantly discontinuous, whereby periods of high amplitude electrical bursts are interrupted by 

low-voltage periods known as interburst intervals (André et al. 2010; Hellström-Westas and Rosén 

2005; Vanhatalo and Kaila 2006). Notably, this type of electrical activity has similarities to burst 

suppression following full-term hypoxia. However, discontinuous activity patterns in the preterm 

brain tend to reflect maturing thalamocortical networks (André et al. 2010; Vanhatalo and Lauronen 

2006). These discontinuous periods of activity vary in their temporal evolution and spatial 

synchronicity across the cortex and are typically observed in preterm ages of 24-30 weeks. Further, 

preterm gestational age plays an important role in the progressive activation of circuits from the 

brain stem to the cortex (Eeg-Olofsson 1980). The presence of discontinuous activity can be 

delineated into two categories: normal and abnormal background patterns. Characteristic features in 

normal preterm EEG include: 

 Periods of bursts punctuated by sharp transients, of mixed frequency content, with 

accompanying inter-burst (IBI) periods (André et al. 2010). 

 Spectral analysis for infants less than 32 weeks gestation shows that delta wave activity 

dominates (<1Hz region).  

 Nearing term age, theta and alpha activity is more easily recognized 

 IBIs become shorter and burst become frequent (Bell et al. 1991; Tolonen et al. 2007)  

 Fast activity bursts are superimposed on slower wave amplitudes (spontaneous activity 

transients, SATs) (Vanhatalo and Kaila 2006) 

 Emerging and established cyclical variations in EEG patterns become apparent 

 Changes to behavioral state (respiration, eye movements) and sleep-wake cyclicity (SWC) 

reflect hypothalamic connectivity (Fuller et al. 2006) 

Characteristic features in abnormal preterm EEG include: 

 Acute or chronic stage abnormalities which may present in EEG as attenuation of fast 

frequencies, longer IBI periods and a loss of sleep-wake cyclicity (Watanabe et al. 1999)  

 Lowered amplitude fluctuations, which correlate with the above features to reflect 

disorganized patterns of brain activity, with the emergence of abnormal waveforms such as 

positive rolandic sharp waves (Marret et al. 1997)  
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Whilst these features are most commonly associated with normal and abnormal EEG patterns in the 

preterm, several studies have aimed to highlight typical EEG background patterns during the 

presence of brain injury. For instance, IVH has been associated with a depression in amplitudes 

(Aso et al. 1993; Clancy et al. 1984; Hellström-Westas et al. 2001) and infant mortality has been 

associated with the numbers of bursts (Hellström-Westas et al. 2001). Abrupt abnormal EEG 

patterns such as status epilepticus have also been correlated with haemorrhagic lesions in 

amplitude-integrated EEG (aEEG) (G Greisen et al. 1987; Hellström-Westas et al. 1991). Other 

abnormal features include the absence of regular sleep wake cycling and potential white matter 

damage indicated by chronic abnormalities such as positive rolandic sharp waves (PRSW) (Akihisa 

Okumura et al. 2002). Despite the identification of these features in background patterns and burst-

specific features in the preterm EEG, there is still a need for further characterization of how bursts 

are related to short-term and long-term outcome. Moreover, the temporal patterns of cortical 

bursting in the preterm are maturation-dependant and strongly influenced by the development of 

cortical pathways.   

2.2.3  AUTOMATED DETECTION OF EEG FEATURES IN PRETERM EEG 

RECORDINGS 

 

Preterm EEG has also been the subject of method and data driven quantifiers. Here, I focus on 

literature works that utilize automated analysis techniques to EEG recordings to predict outcome in 

preterm populations (search period up until December 2014). Specifically, I summarize the types of 

constraints applied to pre-processing EEG recordings, features extracted from preterm data and the 

classification methods employed to determine outcomes (Table 2.2).  

Author 

GA 

(weeks)  

 

Feature selection Summary 

Filtering & 

Channels 

Thresholding 

& constraint 
Target Output 

Optimization (OP) 

& Validation (V) 

(Wertheim 

et al. 

1991) 

 

24-32 

wks 

0.5-11 Hz 

 

1 (F4-P4 and 

F3-P3 

positions) 

Amplitude 

threshold with 

time constraint 

 

fixed: <25 uV 

and  

duration > 6s 

 

Low 

amplitude 

intervals 

(amount of 

discontinuity) 

 

 

Number of low 

amplitude intervals 

in 1 min analysis 

epoch - mean of the 

square amplitude in 

1 min analysis 

epoch 

 

OP: Empirical  

V: proportion of 

visually identified 

discontinuous 

epochs correlated 

with mean 

proportion of 

automatically 

detected low 

amplitude intervals 

 

(Arnold et 27-31 Adapted FIR Neural Spike patterns High instantaneous OP: Automatic 
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al. 1996) wks filter 

 

8 (Fp1, Fp2, 

T3, T4, C3, 

C4, O1, O2) 

network with 

adaptive pre-

processing 

unit 

 

detected via 

Hilbert-

transformer 

 

 

power values for 

spike patterns  

(neural network) 

V: Visual 

 

(Vanhatal

o et al. 

2005) 

32-36 

wks 

 

(preterm 

subset) 

0.5 Hz 

 

2 only (C3, 

P3, C4 and 

P4 ) 

fixed: number 

of frequency 

bands:>=4. 

adaptive: 

normalized 

amplitude 

envelope: 

1.5SD 

normalized 

amplitude 

envelope in 10 

frequency 

bands, number 

of frequency 

bands  above 

the amplitude 

threshold 

Multiband activity 

transients (MBAT) 

 

 

OP:  empirical, e.g 

thresholds  

V:  Rate of 

occurrence MBATs 

in real data was 

compared with 

detection of MBATs 

in 200 realizations of 

randomly shifted 

surrogate data. 

(West et 

al. 2006) 

<32 wks 1-50 Hz 

 

2 only (C3, 

P3, C4 and 

P4 ) 

No constraint 

 

fixed: > 50 uV 

 

Amplitude 

range median 

values of 4 s 

segments 

 

Continuity 

(proportion of high 

amplitude epochs in 

1 min analysis 

epoch) 

 

OP: Thresholds 10, 

25, 50 and 100 uV 

were tried out. 50 

uV was the optimal 

threshold 

 

Niemarkt 

et al 

(2010) 

29±0.3 

wks 

0.5 – 8 Hz 

1 channel 

derivation 

(C3–C4) 

Adaptive: > 

20th percentile 

 

Fixed:  40 µV
2 

(power) 

bursts, inter-

burst-intervals 

proportion of 

discontinuous 

activity (inter-burst 

ratios)  

OP: Correlation 

analysis with post 

menstrual age 

 

V: none 

Palmu et 

al (2010) 

23-30 

wks 

0.1-8 Hz 

(EEG band), 

47-49 Hz 

(artefact 

band) 

 

1 channel 

 

fixed: > 300 

µV^2 (burst), 

< 40 µV^2 

(IBI), both in 

EEG band. > 

10000 µV^2 

(artifact) 

 

duration (burst 

> 1-2 s, IBI > 

2s) 

burst, IBI, 

(continuous 

EEG/artifact) 

smoothed NLEO 

output in two 

different frequency 

bands 

OP: performance 

measured against a 

gold standard of 

unanimous markings 

by 3 clinicians 

Jennekens 

et al 

(2011) 

29-34 

wks 

0.5-32 Hz + 

50 Hz notch 

 

18 channels 

 

fixed: 30 µV 

(below: IBI, 

above 

burst/continuo

us activity) 

duration 

(burst: <20s, 

continuous 

activity >20s, 

bursts, inter-

burst-intervals 

and 

continuous 

patterns 

Burst, IBI and 

continuous pattern 

envelopes 

 

OP:  Thresholds 

based partly on 

literature, but partly 

on comparison of 

sensitivity values 

against manual 

notations by two 

experts. 
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IBI > 1s), 

number of 

channels with 

high-

/lowamplitude 

activity 

(burst/continu

ous activity: 4, 

IBI: 18). 

 

V:  Validation done 

on different data 

than optimization. 

(O’Reilly 

et al. 

2012) 

<29 wks 2 only (C3, 

P3, C4 and 

P4 ) 

No threshold 

 

Amplitude 

bands with 

boundaries  0-

10μV,10-

25 μV, 25–

50 μV, 50–

100 μV and 

above 100 μV 

Peak-to-peak 

values in raw 

EEG 2 s 

segments 

  

Where rEEG 

is the upper 

estimate of 

peak to peak 

EEG values 

8 indices were 

calculated to 

characterize the 

distribution of 

values in 1 min 

epochs 

 

aEEG, rEEG, half 

wave 

decomposition, root 

mean square  

OP: Spearman rank 

correlation and bland 

altman test each 

measure 

 

V: Linear mixed 

models for all 

indices including 

aEEG, rEEG, half 

wave decomposition, 

root mean square \ 

Hartley 

(2012) 

23-30 

wks  

0.5-70 Hz + 

50 Hz notch 

 

9 or 11  

(F3, F4, C3, 

C4, P3, P4, 

T3, T4, O1, 

O2 and Cz P3, 

P4) 

 

fixed: >0.8, 

duration > 

4/22 s, 

consecutive 

events within 

0.5 s were 

counted as one 

bursts of 

nested 

oscillations 

(BNO) 

inter-event-intervals 

(IEI) further studied 

for long range 

temporal 

correlations 

OP: threshold based 

partly on 

experiments, partly 

on intended 

confidence level 

 

V: detection 

validated visually by 

4 researchers 

Mitchell et 

al (2013) 

27-29 

wks 

 

 

0.1 Hz 

highpass 

 

 

2 channels  

delta waves 

that were at 

least 100 μV 

in amplitude 

and between 

0.5 Hz and 

1.5 Hz 

 

Interburst 

intevals; ampli

tude remained 

under 10 μV 

and exceeded 

5 s. 

based on wave 

morphology 

utilizing 

Bayesian 

probability 

theory of  

delta waves 

and inter-burst 

intervals 

posterior 

probability of each 

pattern based on 

template matching 

OP: 2 of 14 

recordings were used 

for pattern 

optimization 

V: 12 of 14 

recordings 

(=separate test set) 

was used to evaluate 

the performance. 

Validation method: 

confusion matrixes 

with algorithm and 

one of the readers 

compared to the 

other reader. 

Koolen et 

al (2014) 

26-34 

wks 

1-20 Hz 

 

adaptive: > 

0.85*mean of 

line length 

feature in 150s 

bursts (and 

inter-bursts) 

 

Median IBI 

duration, maximum 

IBI, burst 

percentage and 

OP:  Line length 

threshold: 

Evaluation of ROC 

curves generated 
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Table 2.2 – Quantification methods and analyses in studies in preterm EEG, (with content modified 

from (Palmu 2015)). Table legend: Interburst interval (IBI), Gestational Age (GA) where wks = 

weeks, “Constraint” is information provided by the authors for any limitations placed on automatic 

detection. “Output” refers to the features which are selected for analysis and subsequent results. 

“Optimization” refers to any specific adjustments, correlations or classification algorithms. 

“Validation” refers to confirmed absence or presence of normality or abnormality.  

These studies employ a multitude of analysis paradigms which aim to automatically quantify 

preterm EEG features and derive prognostic features. Quantified methods within preterm EEG 

research vary in use of classifiers and data constraints. There appear three different approaches for 

quantifying preterm EEG patterns. One that is qualitatively driven by fixed thresholds and selected 

features, where maximum, minimum limits are set. Secondly, multiple quantitative methods are 

employed to extract an array of features which are used for prediction via a machine learning 

classifier. Third, spectral methods are used to analyze changes in different cortical bursting and 

suppression periods across preterm development ages. 

The use of these methods in preterm and full-term populations informs us about the range of 

methodologies employed to extract prognostic information from neonate EEG recordings. In 

particular, the research presented in Table 2.1 and Table 2.2 suggests common analysis challenges 

such as: 1) accounting for data variability, e.g. electrical noise, neonate movements; 2) objective 

threshold estimation, 3) robust statistical characterization of empirical distributions in data and 4) 

rapid extraction of cortical signatures from infant brain activity. In this thesis, I focus on mitigating 

these challenges in designing an analysis paradigm for neonate EEG that offers predictive markers 

of clinical outcome. Prior to commencing empirical chapters, I first review the concepts I bring to 

this question, namely criticality, scale-free statistics and crackling noise.  

  

9 electrodes epoch 

 

difference in 

amplitude 

between a 

successive 

non-detected 

and detected 

point and vice 

versa should 

be > 0.4 * SD 

of median line 

lengths in 

150s segment 

median of 

normalized 

line lengths in 

each channel 

median deviation  with manual 

markings by two 

experts as gold 

standard. Additional 

constraint was 

defined heuristically. 

 

V:  Separate test set. 

Detection results 

were compared with 

manual markings by 

two experts and 

reported as 

confusion matrixes. 
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2.3   PRINCIPLES OF CRITICALITY AND SCALE-FREE NETWORKS 

 

Theories of universality in nature and the ubiquity of “1/f” noise fluctuations in physics and biology 

have been areas of immense scientific discovery (Bak et al. 1987; Schuster et al. 2014). In the 

context of complex fluctuating behaviour, there are tremendous amounts of energy that dissipate 

and transform across a range of temporal scales. These fluctuations in nature represent behavior of 

systems which are fundamentally complex and have a propensity to transform into a critical state. 

Concepts such as self-organized criticality, scale-free dynamics and crackling noise offer 

quantitative insights into systems which exhibit stochastic behavior across a broad range of sizes.  

The exploration of these concepts, in physics and nature, has yielded tremendous insights into how 

large scale systems maintain and transform energy processes that exist in complex fluctuating 

behavior. As described in section 2.1 and 2.2, the temporal characteristics of a newborn’s EEG, 

particularly following brain injury or premature birth, contains uniquely ubiquitous cortical bursts – 

an aspect of neurophysiology that may lend itself to previously detailed studies of critical 

phenomena. Neonatal EEG has yet to be investigated using principles of criticality, a concept which 

has provided significant insights in characterizing the dynamics of healthy and pathological 

neuronal activity (Beggs and Plenz 2003; Haldeman and Beggs 2005; Kinouchi and Copelli 2006; 

Meisel et al. 2012; J. A. Roberts et al. 2014; Shew et al. 2009). The following sections aim to 

discuss the evolution of criticality in physics and neuroscience. In particular, through detailing the 

literature of criticality, I seek to strengthen the reasoning for the study and presence of critical 

phenomena in newborn EEG. 

 

2.3.1 CRITICALITY, SCALE INVARIANCE & CRACKLING NOISE IN PHYSICAL 

SYSTEMS  

 

Criticality occurs through complex, stochastic processes arising in systems close to the point of 

chaotic instability or occurring to compensate for spontaneous changes to a system. Models of 

criticality in physical systems demarcate two classes of dynamics: systems which display criticality 

through “self-organizing” mechanisms or exhibiting critical dynamics via an external tuning 

parameter. Systems which are self-organizing re-establish the order in a system when a critical 

point of instability is reached (Bak et al. 1987). An exemplar of self-organizing, uniform dynamics 

is the ‘sand pile’ model which has no specific hierarchical organization. As the sand pile grows, a 

point of criticality is reached and the pile collapses, partially before building back up. Here, energy 

dissipates from the system without being driven by any external tuning parameter. Systems that 

self-organize do not need to be tightly tuned to show spontaneous instability, but rather organize to 

this state by amplifying internal fluctuations. This occurs as the system passes through instability 
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and rearranges to a more stable state. The term commonly used in systems which encounter these 

fluctuations near critical points are called "avalanches" (Bak et al. 1987). Avalanche behavior is 

observed in a wide variety of physical systems, including earthquakes (Gutenberg and Richter 1945; 

Pisarenko and Sornette 2003), snow avalanches (Birkeland and Landry 2002) and forest fires 

(Malamud et al. 1998) where a fluctuation above a critical threshold results in a characteristic 

cascade of events. These events propagate throughout the system. The spatial and temporal 

distributions of avalanche events are uniformly distributed across scales. 

In complex systems, avalanche type events have unique statistical properties which yield insight 

into the scaling behavior with relation to size, area and duration of an event (Frette et al. 1996; 

Laurson and Alava 2006). The presence of an external or internal driving force coupled with an 

underlying hierarchy of characteristic scales provides better understanding of complex scaling 

exponents which influence system spontaneity (Sornette and Cont 1997). This introduces the 

concept of scale invariance and the presence of heavy tailed distributions in physical systems, such 

as the power-law (Pareto) distribution. 

A system that is scale invariant indicates that fluctuations range very broadly across event size (i.e. 

existence of small avalanches to large avalanches). A characteristic of a power-law distribution is 

that the occurrences of events vary over the system, i.e. larger avalanches are less frequent, more 

often expected by chance, than smaller avalanches (Kadanoff et al. 1989; Sethna et al. 2001). 

Within a power-law distribution a mathematical ratio is maintained across the system. In particular, 

the log of the likelihood of an event occurring co-varies linearly with the log of the size of that 

event. For example, an earthquake which is lower on the Richter scale occurs more frequently than 

larger scale earthquakes thus maintaining a common ratio across the system. Power-law scaling and 

other heavy tailed distributions (Levy, Cauchy, Weibull) capture the empirical statistical 

distributions present in avalanche type events in natural world phenomena (Clauset et al. 2009). 

Moreover, power-laws are evident in systems which self-organize.  

Scaling laws such as a power-law regime offer a quantitative insight into the mathematical function 

of system behavior, particularly if the quantities of avalanches in a system are not well captured by 

their average and standard deviation. Within a power-law scaled system the vast spectrum between 

small and large cascading avalanche events is often followed or preceded by periods of quiescence. 

These aperiodic intervals contain informative ‘noise’ interactions - termed “crackling noise” - 

where a system is in a critical balance between amplification and dissipation (Sethna et al. 2001). 

Further, crackling noise exemplifies characteristics of universality because it arises through varied 

mechanisms in diverse phenomena yet exhibits stereotypical scale-free properties. In physical 

systems, crackling noise has been observed during the occurrence of avalanches in ferromagnets 

responding to changes in the external magnetic field (Zapperi et al. 2005). The transition between 
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these changes indicates the various time scales at which events occur, the range in event sizes and 

the critical points of a system.  

The study of crackling noise phenomena provides informative insights into the mechanisms of self-

similarity and state-dependent effects present during stochastic fluctuations in a system. Systems 

which are at a critical balance reflect a transformation in energy, whether it is subcritical (small 

internal fluctuations) or supercritical (large fluctuations superimposed upon a power-law regime). 

Here the study of average fluctuation shapes elucidate upon energy expenditure within a scale-free 

system, where fluctuations at a range of sizes converge towards a universal set of dynamics and 

scaling functions (Baldassarri et al. 2003). A classic example of average shapes collapsing towards 

scale-invariance is the erratic, bursty Barkhausen noise pulses of ferromagnets (Mehta et al. 2002; 

Perković et al. 1995; Zapperi et al. 2005). These pulses, which exhibit a power-law regime during 

changes in an external magnetic field, are an example of crackling noise across a hierarchy of time 

scales (Papanikolaou et al. 2011; Spasojević et al. 1996; Zapperi et al. 2005). Moreover, stochastic 

models developed to replicate the behavior of these pulses have yielded additional insights into how 

scale-free systems utilize their resources. For example, the uncorrelated unbiased Gaussian random 

walk has an entirely symmetric, scale-invariant morphology in terms of average burst shapes with 

robust power-law regimes (Baldassarri et al. 2003). The asymmetry of average burst shapes, 

discovered in Zapperi’s work on domain wall velocities in magnetic materials (2005), successfully 

elucidated upon scale-dependent effects at long time scales. These data experiments and models 

provide critical insights into a subtle set of dynamics which are embedded within scale-free 

systems.  

2.3.2 SCALE-FREE NEURONAL NETWORKS  

 

Concepts of self-organized criticality and crackling noise in physical systems present a significant 

premise for the study of criticality in the human brain (Beggs and Plenz 2003; Chialvo 2010; 

Schuster et al. 2014). Characterizing the scaling laws present in network level neuron interactions 

and temporal cortical activity may provide crucial insight into healthy brain states. Patterns in 

neonate brain recordings consisting of burst suppression during hypoxia and discontinuous patterns 

of the immature preterm cortex are similar to avalanche type events, i.e. there is a broad range of 

fluctuation sizes occurring at different time scales. Studies over the past decade have shown that 

self-organizing networks in neurobiological models display scale invariance through avalanches and 

crackling noise (Beggs and Plenz 2003; de Arcangelis et al. 2006; K. J. Miller et al. 2009; Rubinov 

et al. 2011). These models have shown that scale invariant systems are inherently stochastic, 

fluctuating on a continuum between ordered information processing to unstable signalling 

randomness.  
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The study of criticality in the brain over the past decade has progressed substantially from cortical 

level research (Beggs and Plenz 2003), to modeling the spatial distribution of avalanches (Chialvo 

2010) and its application at a functional level (Eguiluz et al. 2005; Haimovici et al. 2013; Biyu J. 

He et al. 2010). In Beggs and Plenz’s (2003) seminal experiments using small grids of electrodes, 

critical branching processes were observed through the spiking patterns in a multi-electrode array in 

cortical slices of the rat, where ‘neuronal avalanches’ operated at a point of network stability and 

instability. These neuronal avalanches constituted activity bursts which conformed to a classical 

power-law distribution with respect to event sizes and occurrence of small and large bursting 

patterns. Further, this experiment and similar studies (Haldeman and Beggs 2005; Mazzoni et al. 

2007; Shew et al. 2009; Steyn-Ross et al. 1999) frequently observe scale-free distribution of 

avalanches in neuronal populations, with a power-law exponent close to -3/2 for event sizes. These 

studies observed criticality when externally driven by a tuning parameter, e.g. tuning to a threshold, 

rather than those that spontaneously propagate avalanche events through self-organization.  

Recent studies have expanded upon in vitro and in vivo experiments to demonstrate criticality via 

computational models and explore the presence of self-organizing mechanisms in neuronal systems. 

These mechanisms, which are largely unknown at a neurophysiological level, hypothesize on the 

timing of burst spikes (Meisel and Gross 2009; Pasquale et al. 2008; Rubinov et al. 2011) and the 

strength of activity through synaptic plasticity (de Arcangelis et al. 2006; Levina et al. 2007; 

Tetzlaff et al. 2010). The basis for these models is that the parameters which drive a system towards 

criticality adhere to self-organizing principles such as increased activity dependence or a slow 

build-up of energy before fast dissipation and relaxation.  

Measurements of criticality in the brain have been captured through long range correlations across 

cortical systems. The use of neural field modeling focuses on the spatial mechanisms driving 

avalanche behavior rather than features of criticality (Aburn et al. 2012; Benayoun et al. 2010; 

Robinson et al. 2010). In the human brain, study of local field potentials, EEG and MEG derived 

data have demonstrated different signatures of subcritical, critical and supercritical behavior in 

cortical networks (Linkenkaer-Hansen et al. 2001; Palva et al. 2013; Priesemann et al. 2013; Shriki 

et al. 2013). These large scale analyses along with earlier cortical level experiments have 

contributed greatly to the understanding of the human brain and the mechanisms in which critical 

behavior is observed.  

2.4   HYPOTHESIS DEVELOPMENT FROM THE LITERATURE  

 

In this thesis I test hypotheses which further explore the mechanisms of scale-free activity, 

criticality and crackling noise in the human neonate brain. Using neonatal brain activity recordings I 

contend that cortical activity early after birth is inherently scale-free, a process which is a 
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ubiquitous signature of complex natural systems. Significantly, I disambiguate an important point – 

that systems which yield scale-free power-laws do not necessarily display criticality (Beggs and 

Timme 2012). This follows in testing whether scale-free behavior in the brain is consistent with 

criticality or whether it speaks to other complex scale dependent processes. Here, I investigate event 

duration and size statistics present in neonatal EEG and the correct scaling estimation and model 

likelihood fitting required to differentiate between critical power-laws and scale-free distributions 

exhibiting a different set of dynamics (Biyu J He 2014).          

Following on from criticality experiments in physics, such as bursts of Barkhausen noise in 

microscopic ferromagnetic domains (Sethna et al. 2001), I further explore hypotheses that the 

stochastic nature of cortical bursts in the brain can be elucidated via principles of crackling noise. 

Recent analytic approaches to neurophysiological signals have focused on temporal dynamics of 

cortical bursts, characterizing features of bursting content to assess underlying brain states as 

opposed to conventional interburst interval analysis (Lewis et al. 2013; Westover et al. 2015; 

Vanhatalo and Kaila 2006; Benders et al. 2014). The characterization of bursts in hypoxia, induced 

burst suppression or preterm trace alternant activity may yield important insights into how neuronal 

constraints, e.g. metabolism, and cortical networks are bounded by a finite resource pool. Given that 

these types of cortical bursting patterns are (predominantly) spatially homogenous, I investigate the 

temporal properties of the bursts to reveal new markers of brain activity, with a view to explicate 

the link between neuronal activity and its neurophysiological underpinnings. 

The first half of this chapter focused on pathophysiological mechanisms of full-term hypoxia and 

preterm populations. Specifically, abnormal cortical activity patterns, such as burst suppression and 

discontinuous EEG, are seemingly indicative of systems which are poised between system stability 

and instability. These types of abnormal patterns in the brain are fundamentally stochastic, 

particularly in a neonate cortex, and may reflect the constraint of metabolic nutrients or the 

excitability of cortical networks. Importantly, utilizing features of scale-free analysis from neonatal 

electroencephalography towards an outcome prediction metric will provide an enriched 

understanding of neurodevelopmental outcome and potentially, an effective tool for bedside 

identification of at-risk neonates.  
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3.0  SCALE-FREE CORTICAL 

BURSTS FOLLOWING 

HYPOXIA AT BIRTH 

  

 

 

 

ABSTRACT 

 

The cortex of the human brain is susceptible to oxygen deprivation at any age, but never more so 

than at birth. Following perinatal hypoxia, cortical activity exhibits a stereotypical recovery pattern 

that includes a period of highly irregular electrical fluctuations known as burst suppression. A 

healthy outcome requires the rapid resolution of bursts and the resumption of continuous cortical 

activity. In this chapter, we describe methods for statistically characterizing and analyzing routinely 

monitored EEG bursts, following hypoxia, to highlight the potential clinical relevance of scale-free 

fluctuations. Analysis of empirical distributions of burst durations and their sizes demonstrate that 

bursts are a fractal phenomenon with power-law scaling up to five orders of magnitude. Through an 

analysis of average shapes, cortical bursts converge toward a simple scaling function which, in most 

infants, shows a leftward asymmetry at long time scales. Significantly, the resumption of normal 

electrical activity corresponds to the loss of leftward asymmetry and the re-organization of other 

key scaling relationships. Burst suppression, an important clinical phenomenon, hence belongs to a 

very broad class of physical processes known as crackling noise. These findings reveal novel 

neurophysiological mechanisms and hold promise for new ways to monitor recovery from cortical 

hypoxia in the newborn. 
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3.1   INTRODUCTION  

 

The hypoxic neonate brain represents a highly compromised cortex where metabolic supply is 

limited and pathological states of cortical activity, such as burst suppression commonly exist 

(Amzica 2009; Kostović and Judaš 2010). In Chapter 2, section 2.2.3 we highlighted key issues for 

variability in automated measures of EEG to predict outcomes. Notably, we identified the need for 

objective data analysis paradigms that circumvent the use of applying arbitrary choices (e.g. 

threshold, filtering constraints). This chapter motivates the use of statistical characterization to 

identify key features of neonate EEG. In particular, we study a dataset of full-term hypoxic 

neonates and extract robust statistical properties to differentiate between abnormal and healthy 

cortical activity states.  

In this study we employ a method for analyzing burst durations and burst sizes to characterize their 

respective scaling relationships during hypoxia induced burst suppression. Many prior qualitative 

methods rely upon perceiving burst suppression as a uniform entity, deriving standard statistics 

such as the mean burst intervals and inter-burst periods to predict acute and long-term outcome 

(Walsh et al. 2011). These temporal ‘snapshots’ of data in neonates are typically used to derive 

indication of outcomes, requiring further stipulation of statistical normality or non-normality, 

resulting in possible estimation errors and conclusions. We pursue an alternative approach to 

classification and correlational analyses that assume underlying normality, opting for a data driven 

approach by characterizing probability distributions of bursts during burst suppression in post-

hypoxic infants. Probability distributions in data, such as population growth, economic models and 

biological signals, rarely conform to a Gaussian normal distribution (McKelvey and Andriani 

2005). The idea of scalability, or ‘fractal geometry’, draws upon the concept that self-similarity of 

the smallest features in complex phenomena correlate strongly with features at larger scales 

(Mandelbrot and Hudson 2004). In recent decades, the analysis of heavy-tailed distributions has 

revealed subtle, yet complex mechanisms of model likelihood and consequent prediction. As 

described in Chapter 2, there is growing body of literature that demonstrates signatures of self-

organization, crackling noise and criticality in both physical and biological systems. In these 

studies, characterizing scale-free distributions in data provides a critical interpretation of heavy-

tailed phenomena in revealing the underlying statistical mechanisms within a system.  

This study draws upon concepts of criticality, self-organizing mechanisms and crackling noise to 

test the hypothesis that burst suppression arising in the hypoxic neonate conforms to a complex 

heavy-tailed empirical distribution function known as a power-law. Moreover, statistics of bursts, 

such as burst durations and burst sizes are contrasted with theoretical power-law models to contend 
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that power-law scaling is a signature of the neonatal hypoxic brain soon after asphyxic insult, and 

that these features are not only scale-free but consistent with criticality.   

We also introduce a novel analysis method for analyzing burst content during burst suppression. 

This chapter aims to further understand scale-specific shapes of cortical bursts, and their inter-scale 

relationships to differentiate between subcritical, critical and supercritical processes (Papanikolaou 

et al. 2011; Zapperi et al. 2005). These scale-specific shapes, hereafter referred to as average burst 

shapes, provide a deeper understanding of the temporal dynamics of burst fluctuations. Moreover, 

the stochastic nature of cortical bursting patterns also suggests state transitions between burst 

suppression and continuous activity, reflecting a reorganization of neuronal resources. We seek to 

understand the reorganization of these cortical activity patterns through quantifying the changes to 

burst shape across a hierarchy of burst durations.  

Our findings motivate the use of computational models which have demonstrated scale-invariance, 

i.e. an undamped stochastic process equivalent to a Brownian walk (Baldassarri et al. 2003; Colaiori 

et al. 2004), and modeled state-dependant effects such as damping and asymmetry at longer time 

scales (Papanikolaou et al. 2011; Sethna et al. 2001; Zapperi et al. 2005). Through model 

simulations of scale-invariance, activity-dependent damping and asymmetry, mechanisms of energy 

expenditure are reconciled with trends in burst symmetry and sharpness found in the post-hypoxic 

neonatal brain. This study tests the hypothesis that cortical activity in hypoxic neonates have 

characteristic average burst shapes which arise from initial insult. These burst shapes are posited to 

yield signatures of recovery soon after burst suppression patterns resolve as a response to metabolic 

replenishment.  

3.2   MATERIALS AND METHODS 

 

The dataset comprised thirteen consecutively admitted infants (gestational age 39±2 weeks) with 

birth asphyxia leading to hypoxic ischemic encephalopathy (HIE) in the tertiary level neonatal 

intensive care unit of Helsinki University Central Hospital. Use of these archived, de-identified 

EEG recordings was approved by the Ethics Committee of the Hospital for Children and 

Adolescents, Helsinki University Central Hospital.  

3.2.1   NEONATAL COHORT  
 

Infant EEG recordings were collected over a 30 month period from November 2009 to April 2012. 

Further, these infants underwent whole-body hypothermia treatment during long-term EEG 

monitoring in the first week of life.   
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Inclusion criteria for this study involved high-quality EEG epoch selection from a trained 

neurologist. Periods of initial burst suppression occurred within 18 hours of birth. EEG epochs were 

relatively artifact-free, ranging between 40-330 minutes in length. Recordings were available over 

the first 72 hours after birth. 10 of 13 neonates resolved from burst suppression to continuous 

activity patterns.  

Exclusion criteria for this analysis included the presence of epileptic seizures or non-neuronal 

artifacts such as those due to physical movements or respiration. Clinical details regarding delivery, 

drug treatments, complications immediately following birth (i.e. infection), and Apgar scores 1, 5 

and 10 min after birth were also collected. Infants comprised of 13 neonates (9 male) having 

presented with either asphyxia at birth (n=12) or a sudden cardiorespiratory collapse with severe 

asphyxia immediately following birth (n=1).  

Table 3.1 summarizes the details of the cohort studied 

  



65 

 

 

 

Table 3.1 - Gestational age refers to the number of full weeks plus the number of days. Apgar 

scores refer to the short standard clinical test done immediately after birth that examines breathing 

effort, heart rate, muscle tone, reflexes, and skin color. pH at birth was measured from umbilical 

cord blood sample. m, Male; f, female. *Infant 11 has normal Apgar values at birth, because he 

presented with sudden cardiovascular collapse and ensuing asphyxia at 33 min of age. Asterisked 

values indicate those infants that resolved to continuous EEG.  

 

3.2.2   DATA ACQUISITION AND PRE-PROCESSING  

 

Data were recorded via two EEG amplifiers – the NicOne (Nicolet Biomedical) and the Olympic 

(Natus) monitor – at sampling rates of 250 and 500 Hz or 256 Hz, respectively, and stored offline 

for later analysis. Further exporting of data involved either European Data Format (for NicOne) or 

ASCII format (Olympic monitor). Pre-processing of data (in MATLAB) was conducted to 

standardize the sampling rate of all data to 250 Hz, i.e., 500 Hz recordings were downsampled 

(n=6) by discarding every second point, and the 256 Hz recording was resampled (n=1) by using an 

anti-aliasing (low-pass) filter. Channel selection for this data only included the single biparietal 

derivation (P3–P4). This is the most common recording configuration in use in the neonatal 

intensive care setting. Moreover, as highlighted in Chapter 2 although analysis of the spatial 

Infant Sex Recording 

(min) 

pH at Birth GA (weeks±days) Apgar (1/5/10 

min) 

1* m 75 6.71 34 + 5 0/0/6 

2* m 120 6.76 40 + 1 2/4/4 

3* m 90 7.10 40 + 3 0/0/1 

4* f 120 6.89 41 + 4 2/3/5 

5* f 180 6.86 40 + 1 1/1/1 

6* f 60 6.80 41 + 3 2/2/5 

7* m 100 7.30 36 + 1 1/4/5 

8* m 330 7.02 40 + 0 2/3/5 

9* m 40 6.84 38 + 1 1/4/5 

10* m 70 7.30 36 + 1 1/4/5 

11 m 60 6.90 41 + 0 5/6/6
* 

12 m 60 7.15 39 + 3 1/1/1 

13 f 160 6.68 36 + 4 0/2/3 
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properties of post-hypoxic burst suppression would likely be informative, this analysis focuses here 

on characterizing the temporal signatures of the term hypoxic brain.    

Temporal analysis of EEG epochs involved initial pre-processing for optimizing cortical burst 

selection. Firstly, we obtain amplitude envelopes of data using the magnitude of the Hilbert 

transform. The Hilbert transform is an effective signal processing tool for this type of data as it 

preserves the temporal properties of a signal whilst detecting slow time variations without the 

incursion of small, rapid oscillations (Thrane et al. 1995). Burst suppression patterns in full-term 

hypoxic infants involve large, slow duration burst fluctuations (> 1 s). These fluctuating bursts can 

be often compounded by small, rapid oscillations either arising from respiratory, physical 

movement or heart-rate variability. Extracting the signal envelope via the Hilbert transform, 

captures burst events and preserves temporal resolution for further analysis.    

The second step we employ in pre-processing the data is signal filtering. The data is squared to 

obtain the instantaneous power and then smoothed via a 10th-order Savitzky-Golay filter (19 Hz 

cutoff) to reduce noise on short timescales. This also assists with the convergence of average burst 

shapes (Papanikolaou et al. 2011). This filtering technique allows smoothing of high frequency 

noise whilst maintaining the shape and peak of a waveform using least-squares polynomial estimate 

(Savitzky and Golay 1964; Schafer 2011).  

Analyses of multiple filter settings for both the raw data and power fluctuations were studied as a 

quality check for robustness in terms of pre-processed signal and post-hoc analysis for scale-free 

distributions and average shape analysis of bursts. In this chapter, this testing of filter settings 

extended to the robustness of burst distribution statistics and further the effect of these filters on 

average burst shapes. Examples (Fig. 3.1) illustrate the use of the Hilbert transform on the EEG, 

filtering of the signal and the power fluctuations present in a windowed epoch of data.  
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Figure 3.1 – Extracting bursts from the envelope of BS EEG from the biparietal electrode montage 

P3-P4. (A) A small snippet of a BS epoch (B) the magnitude of the Hilbert transform of the signal 

(red overlay), (C) Instantaneous power with the Savitzky-Golay filter smoothing high frequency 

noise, (D) – (F) Self-similar bursts in the power epoch of the BS EEG give an indication of scale-

invariance. 

 

3.3   STATISTICAL CHARACTERIZATION OF CORTICAL BURSTS 

 

Following pre-processing, data epochs were analyzed via the following steps: (1) threshold 

estimation; (2) burst extraction; (3) calculation of burst areas and durations; (4) fitting burst 

distributions (5) empirical validation (6) calculation of average shapes at different time scales; and 

(7) quantification of variations in shapes by calculating asymmetry and flattening. These steps are 

further described.  
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3.3.1   THRESHOLD ESTIMATION AND BURST EXTRACTION  

 

As outlined in Chapter 2, Table 2.1 and Table 2.2, quantitative and qualitative methods for feature 

detection employed for burst and inactive periods depend upon subjective choices for threshold 

values. Hence, it was crucial that the application of a heuristic method such as data thresholding 

could be applied to all datasets. In this work we focus on the detection of burst events, and further 

characterizing the size, duration and shape statistics in a robust and objective manner. Using this 

method, we obtain a threshold by maximizing the number of identified bursts and hence avoid 

manual marking of each EEG epoch. Visual inspection of a sample EEG epoch from an infant with 

burst suppression (Figure 3.1A) consists of typically inactive periods with intermittent low level 

bursts (<5 µV) followed by much larger amplitude bursts. Applying a threshold to account for 

inactive suppression periods and low level bursts thus becomes an important starting point for any 

threshold estimation. Threshold values below noise level yield very few bursts. As a threshold value 

rises above the noise floor, suprathreshold bursts emerge, although for small thresholds, many of 

these will be artificially merged. High thresholds fail to identify small bursts and, in the extreme, 

fail to identify any bursts at all. Hence the number of bursts is a simple unimodal function of 

threshold with a single maximum (Fig. 3.2A). This maximum threshold value — unique to each 

dataset— can be used as the choice of threshold.  

 

Figure 3.2- Threshold estimation and burst extraction. (A) Example of threshold values versus 

number of bursts found in an EEG epoch with BS where the maximum (red circle) indicates the 

threshold at which the most number of bursts events are detected. (B) Using the threshold value, a 

burst can be extracted based on points supra-threshold; inset (red circle) shows an approximation of 

a data crossing derived via linear interpolation.  

Due to coarse sampling it is typical that a threshold crosses data between two samples rather than 

on the exact threshold value. To improve temporal precision of endpoints we used linear 

interpolation to find an approximation at which the threshold crosses (Fig. 3.2B, inset) with respect 

to below threshold and supra-threshold points. This method ensures that each burst begins and ends 
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at the exact threshold value. In this analysis, a burst event is defined as all successive supra-

threshold data points, beginning when the signal crosses the threshold from below and ceasing 

when the signal next crosses the threshold from above. Using this method suppression periods or 

inter-burst intervals can also be extracted. To reduce computation time, we restrict the set of 

thresholds tested to 50 quantiles of the data as results are insensitive to the precise number as the 

relationship between threshold and number of bursts is relatively smooth in all our datasets. 

Moreover, we tested the sensitivity of our results to the precise choice of threshold.  

3.3.2   EMPIRICAL DISTRIBUTION FUNCTIONS PRESENT IN BURST SUPPRESSION 

    

Following thresholding and identifying discrete bursts, two features of bursts were analyzed for 

their statistical distributions. Specifically, burst size (supra-threshold burst area under the curve) and 

burst duration (time between successive threshold crossings), as illustrated in Figure 3.3, were 

identified using the threshold value. In this study, bursts of duration less than 40 ms were excluded 

as these are coarsely sampled (10 samples) at 250 Hz.  

 

Figure 3.3 - Schematic burst with its duration (time above threshold) and size (area under the curve 

above threshold, shaded). 

After extracting burst durations and burst sizes, (referred interchangeably as areas), cumulative 

distribution functions were then examined.  For each epoch, extracting burst durations greater than 

40 ms yielded each infant’s unique set of fluctuation statistics. These fluctuations were used to 

construct an upper cumulative distribution function (i.e. 1-P(X > x)). To examine the empirical 

characteristics of each cumulative distribution, heavy tailed candidate fits were fitted via the method 

of maximum likelihood. This analysis employed five heavy tailed distributions commonly present 

in natural phenomena: power-law (Pareto distribution), power-law with exponential cutoff, log-

normal, stretched exponential (Weibull distribution), and exponential distribution (Fig. 3.4A).   
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We also analyze the scaling relationship between burst durations and burst areas, given the temporal 

self-similarity of bursts at range of sizes and durations. Here, bursts were binned by duration into 

logarithmically spaced bins and we calculated within each the median duration and median area. 

Estimation of the scaling exponent (slope of the linear relationship in log-log coordinates) was 

performed using a linear least-squares fit. Figure 3.4B shows a sample plot of the scaling 

relationship present between burst duration and burst areas. 

 

Figure 3.4 – Statistical distributions of burst duration and burst area. (A) Upper cumulative 

distribution of burst area (solid circles) showing lengthy power-law regime. Solid lines show best-

fitting candidate long-tailed distributions: power-law (red), Weibull (blue), log-normal (magenta), 

and exponentially truncated power-law (green) (B) An example of the scaling relationship of 

median burst size and burst duration in double-logarithmic coordinates. 
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3.3.3   ESTIMATING MODEL LIKELIHOODS IN EMPIRICAL DATA 

 

Using established techniques, each theoretical distribution was fitted to the right-hand side of the 

empirical cumulative distribution function (CDF), above a lower bound that minimizes the 

Kolmogorov–Smirnov goodness-of-fit statistic between the power-law model and the data (Clauset 

et al. 2009). This method of determining the range of the fit strikes a balance between fitting too 

wide a range (i.e. outside the power-law regime) and too narrow a range (i.e. unnecessarily 

throwing away data), thus maximizing the fitting range for a power-law. The same fitting range for 

all five candidate distributions were used in each data epoch. An estimated p-value was calculated 

for each fitted power-law by comparing 2500 synthetic datasets drawn from a true power law. This 

p-value provided an estimate of the likely deviation between the data and the fitted power law. A 

significance level greater than 0.1 indicated the likelihood of power-law behavior, otherwise power-

law behavior cannot be considered plausible (Clauset et al. 2009). 

Contrasts of candidate distribution functions were tested via a hierarchical approach that balances 

model likelihood with model complexity (Clauset et al., 2009). Here, fitted power-law distributions 

are compared with alternative distribution fits using likelihood ratio tests. We compared power-law 

distributions with functions of lower complexity, such as the exponential distribution, and three 

heavy tailed distributions: a power law with exponential cutoff, log-normal, and stretched 

exponential (or Weibull) distributions (Figs. 3.4A). Likelihood ratio tests further discriminate one 

data models’ preference over another (Clauset et al. 2009). This test, in isolation, is not completely 

definitive in deciding which fit is more favourable as data is also prone to “chance” fluctuations 

which can significantly influence one model distribution over the other. Thus, significant deviation 

of the likelihood ratio from zero was tested using Vuong’s methods (Vuong 1989). The 

combination of the likelihood ratio test with Vuong’s estimate provides further evidence for model 

favourability. 

Statistical comparison of log model evidences allows differentiation of which candidate fits are 

favoured within the dataset. This comparison draws upon Bayesian Model Selection (Stephan et al. 

2009), which tests which distribution scaling process is most significant in our data based on log 

model evidences. Using Bayesian inferences, the posterior expectation of log evidences in five 

candidate fits gives the likelihood that the model (r) explains observed data events (y). The model 

with the highest posterior expectation indicates the most favoured distribution function present in 

the dataset. 

Another form of power-law distribution is the strictly-truncated power law, which is restricted to a 

range of data between both lower and upper cut-offs – a narrower range than the tail distributions 

fitted above (Deluca and Corral 2013). Verification of power-law fits were further tested via the use 
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of strictly truncated power-laws fitted to burst distributions (Deluca and Corral, 2013). These fits 

were used to identify self-consistent ranges of power-law scaling in areas and durations. The strictly 

truncated power-law is essentially the Pareto distribution restricted to a finite range of data bounded 

by lower and upper cutoffs (cf. the Clauset et al., 2009 method that fits the entire tail above a lower 

cutoff). We estimated cutoffs from the data by examining a 100-by-100 grid of logarithmically 

spaced ranges. For each candidate range, the strictly truncated power-law was fitted using 

maximum likelihood estimates, and used to generate 50 synthetic datasets. Following the method of 

Deluca and Corral (2013), the fitted range that was the widest was chosen (maximizing the ratio of 

upper and lower cutoffs) that yielded a plausible fit, defined as requiring at least 20% of the 

synthetic datasets to deviate from the fit by at least as much as the data. 

3.3.4   ANALYSIS OF AVERAGE BURST SHAPES 

 

For each epoch of data, all bursts of duration greater than a minimum duration bin (in this case 40 

ms) are extracted and further pooled into specific duration lengths. This binning involves analyzing 

bursts in a hierarchy of time scales, partitioning burst fluctuations into fixed duration bins. In this 

data cohort, bins were logarithmically spaced with edges at durations of 160 ms, 320 ms, 640 ms, 

1.28 s, 2.56 s, and 5.12 s. The first step in calculating average bursts was to interpolate all bursts in 

each fixed bin to the lowest respective bin edge. For example a burst of duration 178 ms would be 

resampled and interpolated to have a duration of 160 ms within the duration bin of 160 ms to 320 

ms. Using this process, we can assign all bursts into each duration bin (and all other respective bin 

sizes). This step obtains all bursts during an epoch at their specified duration bin lengths leading to 

the next step of rescaling and normalization. A key step for this analysis is being able to compare 

and contrast the change in burst shapes over a range of time scales. Rescaling burst durations to 

have a unit area and unit duration achieves this goal (Colaiori et al. 2004). We can calculate unit 

time based on values between start and end points for each burst (Fig. 3.5A). Here, unit time is 

derived from the ratio of each coordinate of a burst subtracted by the first suprathreshold point (Fig. 

3.5A, inset) divided by the difference between the start and end points of a burst. Each burst is then 

re-interpolated over unit time. The magnitude of these bursts are then rescaled to have unit area 

(Fig. 3.5B). The process is repeated for all bursts at each duration bin edge. The average shape of 

the burst is the average of all unit areas over unit time for each duration bin (Fig. 3.5C). 
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Figure 3.5 – Rescaling bursts to unit time and unit area and the average burst shape. (A) An 

example burst with supra-threshold points above a threshold. (B) The same burst (blue) rescaled to 

have unit time and area compared with a burst of different duration (green) with the same data axes. 

(C) Average burst shape <y(t,T)> during burst suppression across a hierarchy of time scales. Colors 

correspond to successive durations T (red=160 ms, yellow=320 ms, green=640 ms, cyan=1.28 s, 

blue=2.56 s). (D) Burst numbers across burst duration bins ±SEM. Here, short duration bins (< 1.28 

s) have more bursts than and longer duration bins (> 1.28 s). 

 

3.3.5   QUANTIFIERS OF BURST SHAPE: SKEWNESS AND KURTOSIS  

 

Average burst shapes vary in their symmetry and flattening across time scales. To quantify 

asymmetry and flattening of the average shapes, estimates of skewness and kurtosis were 

calculated, respectively, as a function of duration (Eq. 3.1-3.3). This quantification served as an 

extension of work by Zapperi (2005), where skewness was calculated on the average shape of 

fluctuations in ferromagnetic material (Barkhausen-noise). Further, these measures are not to be 

confused with the skewness and kurtosis (i.e., 3rd and 4th standardized moments) of the time series 

itself.  
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Skewness Σ is given by 
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where <y(t,T)> denotes the average shape over duration T.  
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The integrals in all equations were evaluated using the trapezoidal rule. The above expressions are 

the same as those for the theoretical skewness and kurtosis of a probability density function given 

by <y(t,T)>. Figure 3.6 demonstrates how the average burst shape template (Fig. 3.6A) is quantified 

by skewness and kurtosis. To estimate skewness (Fig. 3.6B) and kurtosis trends (Fig. 3.6C), average 

shapes were calculated on a finer partition of durations rather than being used for displaying the 

average shapes. The linear trends, in this dataset, as a function of duration were estimated by 

ordinary least squares.  

Figure 3.6 – Quantifiers of burst symmetry (skewness, Σ) and sharpness (kurtosis, K). (A) Average 

burst shape example of burst suppression. (B) Trend in skewness (Σ). Finer partition of duration 

bins indicate that the skewness trend is positive, corresponding to an increasingly leftward 

asymmetry in average burst shape over burst duration. (C) Kurtosis (K) over the same partition of 

bins remains constant. Lines (in red) are linear least-squares fits. 
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3.4   RESULTS  

 

EEG epochs in the full-term hypoxic neonate revealed classical temporal sequences of BS (Fig. 

3.7). During recovery from asphyxic insult, these neonates typically experienced periods of 

complete inactivity in which the EEG contains only non-neuronal noise (Fig. 3.7A), followed by 

burst suppression (Fig. 3.7B, C) before the resumption of continuous activity (Fig. 3.7D). Periods of 

BS exhibit highly variable electrical bursts erratically punctuating a low amplitude, “suppressed” 

EEG trace (Fig. 3.7B, C). Whereas the periods of suppression contain low-voltage amplifier noise 

and non-neuronal artifacts, the bursts reflect intermittent, spontaneous activity in large pools of 

neurons (Niedermeyer et al., 1999). 

 

Figure 3.7 – From burst suppression to continuous cortical activity in the asphyxic newborn. (A) 

Cortical inactivity immediately after birth asphyxia. (B) Sparse occurrences of burst suppression 

activity. (C) Dense burst suppression activity. (D) Transition toward normal continuous cortical 

activity. 

 

3.4.1   SCALE-FREE BURSTS FOLLOWING HYPOXIA 
 

The striking self-similarity in burst sizes (3.1D-F) was a feature of 13 neonates with BS in this 

dataset. Notably, the upper CDF was typically heavy-tailed, with broad power-law scaling regimes 

spanning between 2 and 5 orders of magnitude before exponential truncation at their far right tails 

(Appendix A, Section 1). Four infants exhibited a “knee” before the truncation (denoted by 

asterisks).  Burst duration CDFs also follow truncated power laws, albeit over a more restricted 1–2 

orders of magnitude (Appendix A, Section 2).  

The likelihoods of all four heavy-tailed distributions easily exceeded that of the exponential 

distribution. Among the heavy-tailed candidates, model likelihood was highest for the exponentially 

truncated power-law distribution in 12 of 13 recordings (Table 3.2). Using log model evidences, 

Bayesian model selection confirms the power-law with exponential distribution as the dominant 

candidate fit (see Fig. 3.8C). In the remaining case, the likelihood of the stretched exponential was 

marginally higher than the truncated power law, but model comparison showed this difference to 

not be significant. However, when penalized for extra complexity, the simple power-law 

distribution was more likely than the truncated power-law in three of the datasets (Table 3.2).  
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Infant  Power 

law 

Power law with cut-

off 

Log-normal  Stretched 

exponential 

Distribution 

p LLR p LLR p LLR p 

1 0 -56.2 1.89x10
-5

 -24.2 1.6x10
-6

 -28.6 5.0x10
-7

 Power law with cut-off  

2 0.16 -0.157 0.57 -0.112 0.79 -0.0282 0.97 Power law with cut-off 

3 0 -24.3 3.2x10
-12 

-19.5 6.8x10
-5

 -21.6 3.5 x10
-5

 Power law with cut-off 

4 0 -31.8 1.4 x10
-15

 -29.4 5.1x10
-12

 -31.9 1.8x10
-7

 Power law with cut-off 

5 0.8 -6.34x10
-3 

0.91 -0.746 0.11 -0.207 0.5 Power law with cut-off  

6 0.03 -9.05 2.1x10
-5

 -0.183 0.68 1.25 0.49 Power law with cut-off 

7 0 -288 0 -201 2.2x10
-39

 -219 1.2x10
-42

 Power law with cut-off  

8 0.034 -23.4 8.2x10
-12 

-4.28 0.035 -4.81 0.039 Power law 

9 0.6 -6.48x10
-3

 0.91 -0.393 0.18 0.262 0.44 Power law 

10 0.028 -18.6 1.0x10
-9

 -3.49 0.049 -3.96 0.048 Power law with cut-off  

11 0 -65.9 0 -26.1 7.8x10
-7

 -29.5 3.8 x10
-7

 Power law with cut-off 

12 0 -45.7 0 -16.8 2.7x10
-5

 -19.5 1.4x 10
-5

 Power law with cut-off  

13 0.035 -15.6 2.4x10
-8

 -6.04 0.016 -6.73 0.014 Power law 

Table 3.2 – Model likelihood tests for cumulative distributions of burst size. Negative log-

likelihood ratio (LLR) values favour that specific column’s distribution compared with a power-law 

distribution fit; e.g., for subject 1, an LLR of -56.2 favours a power law with exponential cut-off. 

For the power law column, p-value is for the hypothesis that the power-law distribution is a 

plausible fit. For the other distribution columns, p-value is for the hypothesis that the corresponding 

LLR is zero. For subject 4, both power-law with exponential cut-off and stretched exponential are 

favoured, with the hypothesis test unable to decide between these. 

From the burst size CDF fits, scaling exponents for the power-law with exponential cutoff ranged 

between -2.32 and -1.18 (mean, -1.59; SE, 0.11; 95% CI, -1.38 to -1.81; see Table 3), Exponents for 

the fitted duration distributions ranged from -3.32 to -1.35 (mean: -1.97; SE, 0.16; 95% CI: -2.28 to 

-1.66). Plotting probability distributions functions showed similar fitted ranges spanning between 3 

orders of magnitude for burst duration and 7 orders of magnitude for burst area (Fig. 3.8A). These 

fits provide additional support for the existence of power-law distributions in the dataset. Table 3.3 

summarizes the scaling exponents and fitted ranges for burst duration and burst size.  

Infant Distribution 

exponent  (BA) 

Fitted range of BA 

(min, max) (mV
2
 s) 

Distribution 

exponent  (BD) 

Fitted range of BD 

(min, max) (s) 

BA vs BD 

exponent 

1      1.29 3.9 x 10
2
, 3.7 x10

5
 1.35 3.91 x 10

2
, 1.8 x 10

6 
0.49 

2 2.21 8.5 x 10
3
, 5.5 x10

5
 1.91 8.5 x 10 

3
, 9.1 x 10

5
 0.60 

3 1.66 3.6 x 103, 1.1 x 10
5
 1.8 3.6 x 10 

3
, 1.1 x 10 

5
 0.61 

4 1.18 1.4 x 10
2
 , 1.5 x 10

9
 2.51 1.4 x 10 

2
, 1.5 x 10 

9
 0.56 

5  2.32 2.0 x10
5
, 1.0 x10

7
 2.81 2.0 x 10 

5
, 1.0 x 10 

7
 0.54 

6 1.47 5.3 x 10
0
, 1.8 x10

6
 1.75 5.3 x 10 

0
, 1.8 x 10 

6
 0.56 

7 1.32 2.2 x 10
0 
, 2.7x 10

5
 1.62 2.2 x 10 

0
, 2.7 x 10 

5
 0.49 

8 1.39 3.6 x 10
2
, 1.0 x10

7
 1.61 3.6 x 10 

2
, 1.0 x 10 

7
 0.53 

9 2.28 2.8 x 10
4
, 2.4 x10

6
 3.32 2.8 x 10 

4
, 2.4 x 10 

6
 0.54 

10 1.43 3.9 x 10
2
, 2.4 x10

6
 1.8 3.9 x 10 

2
, 2.4 x 10

 6
 0.48 

11 1.36 6.4 x 10
0
, 5.0 x10

5
 1.56 6.4 x 10 

0
, 5.0 x 10 

5
 0.51 

12 1.30 2.5 x 10
2
, 6.9 x10

6
 1.48 2.5 x 10 

2
, 6.9 x 10 

6
 0.51 

13 1.53 1.4 x 10
3
, 3.6 x10

6
 2.10 1.4 x 1

0
 
3
, 3.6 x 10 

6
 0.52 

 

Table 3.3 - Burst area (BA) CDF exponent estimated from the fit to an exponentially truncated 

power law. BD, Burst duration. 
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The relationship between median burst size and burst duration also exhibited a striking power law 

in all neonates, showing a linear regime in double-logarithmic coordinates that in most cases 

spanned over 4 orders of magnitude of burst size (see insets, Fig. 3.8 B, D & F and Appendix A, 

Section 1). Notably, the power-law scaling relationship between size and duration extended to very 

large scales without truncation in all neonates. The availability of uninterrupted EEG recordings 

over the first 72 hours after birth asphyxia in this dataset enabled the study of continuous cortical 

activity patterns (Fig. 3.8D) following the resolution of burst suppression. Here, 10 of 13 neonates 

successfully transitioned from burst suppression to continuous (CTS) activity. Similar statistical 

trends in CTS activity were found, such as the model likelihood of truncated power-law 

distributions. However, the slope of the scaling relationship between burst size and burst duration 

showed a significant increase following the transition to continuous EEG (Fig. 3.8E, p=0.017, df=9, 

t=3.1, paired t-test). Hence, power law regimes during continuous activity are heavily truncated 

which is reflected in the scaling relationships between burst duration and burst area during the 

resumption of continuous cortical activity. Thus, it is plausible to contend that scale-free activity 

persists within continuous EEG in a hypoxic newborn (immediately following burst suppression). 

Figure 3.8 summarizes key observations in this dataset. 
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Figure 3.8 - Empirical distributions and scaling relationships in burst suppression data. (A) Overlay 

of probability distribution functions for all hypoxic neonates showing a predominant right tail. (B), 

(D), (F) Exemplar upper cumulative distributions of burst area (solid circles) showing lengthy 

power-law regimes. Solid lines show best-fitting candidate long-tailed distributions: power-law 

(red), Weibull (blue), log-normal (magenta), and exponentially truncated power-law (green). Insets 

show scaling relationship between median burst size and burst duration in double-logarithmic 

coordinates. (C) Bayesian model selection of log-model evidences, where p(r|y)=0.6 indicates the 

power-law with exponential cut-off as the dominant candidate fit in this dataset. (E) Scaling 

relationship between burst area and burst duration for burst suppression (BS, blue) and after the 

resumption of continuous cortical activity (CTS, red). Crosses denote data points, circles denote 

means, lines denote ±SEMs.   

To ensure robustness of distribution functions, a range of thresholds and filter settings were tested. 

Significantly, slight changes in threshold value do not have a great effect on later quantitative 

analyses. For moderate changes in threshold of ±10%, the exponent of the exponentially-truncated 

power-law revealed a <1% change in exponent for 11 out of 13 infants with BS (20% range in 

threshold), showing that empirical results were robust to choice of threshold. Of the remaining 2 out 

13 infants, the exponent changes by 7% and 20% respectively – in both cases this was due to the 

threshold falling near a jump in the lower cut-off as determined by the Clauset et al. algorithm. Note 

that these two cases both exhibit large bursts above the background trend. For large changes in 

 

A B 

C D 
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threshold by a factor of 2, the overall shape of the distributions remains largely unchanged, with 

only slight effects on the smallest bursts (Fig. 3.9A). Lengthy scaling regimes in particular are 

insensitive to the particular choice of threshold. Similarly, varying the filter cut-off frequency has 

little effect on the distributions (Fig. 3.9B). More stringent filtering (lower cut-off frequencies) 

primarily eliminates the smallest bursts causing no net change to empirical distribution functions 

(Fig. 3.9B).  

 

Figure 3.9 - Robustness of burst distributions to variations in thresholds and filter settings. (A) 

Burst area CDFs for half (blue) and double (red) the chosen threshold (black). (B) Burst area CDFs 

for smoothing filters with cutoffs at 12 Hz (red), 19 Hz (black), and 37 Hz (blue). 

 

3.4.2   AVERAGE BURST SHAPES IN HYPOXIC INFANTS  

 

Average burst shapes in all burst suppression data showed clear leftward asymmetry, increasing in 

extent towards longer time scales. The grand average of all 10 neonates with burst suppression 

shows a symmetrical, inverted parabolic shape at the shortest time scale (0.16-0.32 s) (Fig. 3.10A). 

Thereafter, at successively longer time scales, the average shapes skew progressively to the left 

(Fig. 3.10B). In contrast, shape kurtosis was approximately scale-invariant (Fig. 3.10C). At longer 

time scales the smaller number of bursts results in noisier average burst shape. Using the grand 

average burst shape, we observe the difference between burst suppression and continuous activity 

recordings. Inspection of average burst shapes following the resumption of continuous activity (Fig. 

3.10D) suggested a marked reduction in leftward asymmetry (Fig. 3.10E) and constant kurtosis 

trends.  

 A B 
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Figure 3.10 – Grand average burst shapes for burst suppression and continuous activity recordings. 

(A) Average burst shape for burst suppression with (B) skewness increasing in leftward asymmetry 

and (C) constant kurtosis. (D) Average burst shape for continuous activity patterns converged to a 

more symmetric burst shape where (E)-(F) skewness and kurtosis remained constant. Color legend 

for average shapes: red=160 ms, yellow=320 ms, green=640 ms, cyan=1.28 s, blue=2.56 s. 

Trends of skewness and kurtosis were calculated from the slope of the linear least-squares fit to 

skewness (and kurtosis, respectively) versus duration (Table 3.4). This method of fitting was 

preferred over maximum likelihood estimation methods as the duration bins are clearly bound 

between 200 ms and 6 s, allowing an simple method of estimation and analysis.  Using these slope 

values, a paired (repeated measures) comparison of this burst shape asymmetry effect in the 10 

neonates with burst suppression and continuous EEG, revealed a significant difference in skewness 

(Fig. 3.11A, p<0.007, t=3.37, df=9, paired t-test). Due to the pooling of data – and hence the 

increase in the number of bursts – the average shapes were smoother in appearance in these grand 

averages than in shapes derived from individual subjects.  

  

 A B 
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It was further found that the numbers of bursts were comparable in both types of activity patterns 

and yielded no significant differences at each burst duration bin (Fig. 3.11B). Furthermore, Fig. 

3.11B indicates that average burst shapes can be reliably characterized if in a given infant EEG 

epoch burst numbers have a minimum of 2000 bursts (or a 20 minute recording of EEG).     

Figure 3.11 – Comparisons of skewness and numbers of bursts in burst suppression (blue) and 

continuous EEG patterns (red). (A) The slope of skewness (Σ (s
-1

)) is significantly different 

(p=0.007, df=9, paired t-test) in burst suppression when compared with continuous EEG. (B) 

Numbers of bursts in both activity patterns have no significant differences (paired t-test) across all 

burst durations. 

 

Table 3.4 - Skewness Σ(s
-1

) and kurtosis K(s
-1

) slope values calculated by the least-squares fit across 

burst durations. 

  

 
A B 

Infant Skewness slope (Σ(s
-1

)) Kurtosis slope (K(s
-1

)) 

1      0.09 0.03 
2 0.04 -0.016 
3 0.12 0.06 
4 0.015 -0.03 
5  0.04 -0.009 
6 0.03 0.03 
7 0.04 0.024 
8 0.006 -0.03 
9 0.12 0.12 
10 0.05 0.05 
11 0.07 0.04 
12 0.04 0.03 
13 0.05 -0.06 
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3.4.3   Scaling interrelations   

 

In critical systems, the various scaling exponents are often interrelated (Sethna et al., 2001; 

Friedman et al., 2012). We sought to identify a scaling relationship between the exponents for area 

distributions (a), duration distributions (d), and the duration versus area exponent (c). Theory 

predicts that if the distribution of burst areas scales as ~s
-a

, the distribution of durations scales as ~T
-

d
, and the average size scales with duration as ~s(T)~T

1/c
, then the exponents obey the relationship 

c=(a-1)/(d-1). To test whether this relationship holds in our data, we estimated the three exponents 

over self-consistent ranges of the data identified using the Deluca and Corral (2013) method. 

Specifically, we used the fitted range of areas to identify the corresponding range of durations, then 

fitted the duration distribution and duration versus area relationship to obtain a set of three 

exponents for each recording. Beyond exponent interrelations an important feature to test for 

criticality is the existence of a scaling function that relates the duration versus area exponent to the 

average burst shape (Sethna et al. 2001, Friedman et al. 2012). In testing this relationship, it is 

expected that <y(t,T}> ~ T
(1/c-1) 

F(t/T), where F(t/T) is the scaling function describing the average 

shape independent of scale. In comparing the predicted and measured scaling exponents in 

statistical distributions of data we find good agreement within the uncertainties of estimates (Fig. 

3.12). Specifically, scaling exponents of burst area and burst duration obey the relationship with the 

duration versus area exponent: c=(a-1)/(d-1). Furthermore, we find that the duration versus area 

exponents do relate to the average burst shape. The analysis of average burst shapes does reveal 

heterogeneity in the dataset, where not every recording collapses with this method over the same 

range of durations. Figure 3.12 summarizes the scaling interrelations found in the data.  

 

Figure 3.12 - Scaling interrelations. A, Scaling exponents for area (a), duration (d), duration versus 

area (c), and the predicted relationship (a-1)/(d-1). Uncertainties are 95% confidence intervals 

derived for a and d from the SD of the maximum likelihood estimator (Deluca and Corral, 2013), 

for c from the least-squares fit, and for (a-1)/(d-1) by propagating the uncertainties from a and d. 

Points are plotted with small horizontal offsets for clarity. B, C, Collapse of average shapes after 

rescaling raw averages by a function of duration and the duration versus area exponent, T 1_1/c, for 

exemplar burst suppression (BS; B) and continuous (CTS; C) subjects. Colors correspond to those 

in Figure 9, and we estimated c by fitting over all bursts used in the averages (i.e., 0.16 –2.56 s). 

 

   A B C 
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3.5   SIMULATING BURST SUPPRESSION THROUGH STOCHASTIC 

  MODELS 

 

The processes underlying bursting phenomena have been successfully elucidated in numerous 

physical systems through the use of stochastic models (Colaiori 2008). This thesis extends upon 

theoretical work in simulating several candidate stochastic models to elucidate the basic 

mechanisms underlying the average burst shapes in hypoxic EEG data. The changes to burst shape 

symmetry from burst suppression to continuous EEG activity (Fig. 3.10), suggests that following 

hypoxia, cortical activity directly reflects a period of metabolic recovery. Thus it is reasonable to 

assume that following post-hypoxic insult, neuronal metabolites such as extracellular calcium 

(Amzica 2009; Ching et al. 2012; Volpe 2008), deplete rapidly during the course of a burst and 

replenish during the subsequent quiescent phase of burst suppression. Here, we describe three 

models of burst generation and analyze their average shapes. Further, we interpret the mechanisms 

of burst generation that cause symmetry, flattening and asymmetry over long time scales.  

3.5.1  PHENOMENOLOGICAL MODELS OF BURST GENERATION  

 

In simple phenomenological models, the activity of the cortex is summarized by a single scalar 

term, x, which is subject to random fluctuations. The simplest continuous stochastic process models 

fluctuations in x that are subject to uncorrelated random perturbations, given by 

 x ,       (3.4)  

where 


 is an uncorrelated zero-mean Gaussian process (the “Wiener process”). Equation (3.4) 

models a perfectly-balanced critical process, where the probability of incremental growth of a burst 

equals the probability of incremental decay. While Eq. (3.4) has traditionally been used to study the 

motion of particles subject to random perturbations — that is, Brownian motion — in the present 

setting, the value of x corresponds to the voltage measured at the scalp, and the fluctuations 

represent the sum total of excitatory and inhibitory influences at any given moment. Such a critical 

process is consistent with a balance of excitatory and inhibitory processes in underlying cortex (Shu 

et al. 2003). Sample solutions of this stochastic model were generated by numerical integration 

using the Heun algorithm (Rümelin 1982). Analysis of the displacement squared of these sample 

walks recapitulated the well-known result (Colaiori 2008) that fluctuations generated by a Brownian 

walk exhibit a power-law distribution in size (Fig. 3.13A). These distributions are truncated at the 

far right tail in our simulations by an upper bound imposed by the finite sample length. 

While this simple random walk captures the power-law scaling seen in our data, none of the 

empirical burst suppression recordings showed scale-invariant burst shapes. Hence a more complex 
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phenomenological model was considered. In the following model the Brownian walk generalizes to 

an Ornstein–Uhlenbeck (mean-reverting) process through the introduction of a linear restoring 

force, 

      xx ,       (3.5) 

where  is a constant. The addition of a small, negative restoring force corresponds to a weakly 

damped, near-critical system, and is a classic model for the motion of a particle within a harmonic 

potential of concavity . In the present setting, this term embodies a weak constant bias towards 

greater inhibition than excitation within neuronal populations, albeit not of sufficient strength to 

prevent the triggering of burst activity. This damping term leads to an exponential truncation of the 

right-hand tail of the fluctuation size distribution (Fig. 3.13B),  

 
 

Figure 3.13 – Cumulative distribution functions of burst areas in stochastic models. (A) Upper CDF 

arising in a Wiener process. (B) Effect of sample damping values  (black=0.05, red=0.075, 

blue=0.1) on the upper cumulative distributions of burst area 

 

Neuronal resource depletion is also implicated in mechanisms of self-limiting disinhibited activity 

(Staley et al. 1998; Tabak et al. 2006). If history-dependent effects increase the inhibitory bias, it 

could be captured by modifying the damping term λ to vary according to recent burst activity. We 

thus modified the damping term to depend upon the recent energy expended by the system,  

    




t
t

dxet   2)(

2
1

,      (3.6) 

This history-dependent damping term has an exponentially-decaying memory with time constant α1 

and thus relaxes back to zero in the absence of bursting activity. Equation (3.6) can be re-cast as a 

first-order differential equation,  
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  ,2

21 xt          (3.7) 

to be coupled with Eq. (3.7). The time scale constant α2 determines how quickly burst energy, x
2
, 

drives up the damping, whereas α1 captures the relaxation of the damping back to zero during 

suppression.  

 

3.5.2  AVERAGE BURST SHAPES OF STOCHASTIC MODELS   

 

From Eq. (3.4) average shape fluctuations in the model converged at all scales towards a single 

scaling function, namely an inverted parabola (Fig. 3.14A), without skewing (Fig. 3.14B) or 

flattening (Fig. 3.14C). Average burst shapes simulated through Eq. (2), exhibited flattening at 

successively longer time scales (Fig. 3.14F). However, bursts at all scales remain symmetric (Fig. 

3.14E). Using Eq. (2) and (4), setting α1 = 0.1 and α2 = 30, quantitatively recaptures the trend of 

positive skewness at longer time scales observed in burst suppression data (Fig. 3.14H). 

Fluctuations arising from this process show leftward asymmetry, increasing at longer time scales 

(Fig. 3.14G) which is consistent with a fast-out/slow-return effect of activity-dependent damping.  
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Figure 3.14 - Model average shapes of bursts and their skewness and kurtosis. (A)-(C) Symmetrical 

average burst shape given by model of Eq. (1). (D)–(F) Symmetrical but successively flattened 

shapes given by model of Eq. (2). (G)–(I) Leftward asymmetric shapes without flattening given by 

model of Eq. (2) and Eq. (3). Colors correspond to successive durations T (red=160 ms, yellow=320 

ms, green=640 ms, cyan=1.28 s, blue=2.56 s). Simulations used a time step of 0.04 ms, with 


 

having SD 0.1 (in the same arbitrary units as x), and initial conditions x(0)=0 and  (0)=0. 
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3.6   DISCUSSION 

 

In this chapter we characterize burst suppression in thirteen hypoxic neonates, using statistics of 

burst durations and their sizes, and analyze their empirical distribution functions following asphyxic 

insult. Furthermore, the average shapes of cortical bursts in ten neonates whom resolved to 

continuous EEG were processed and calculated. The symmetry and sharpness of these shapes over a 

range of burst durations were also derived. The method employed to study these bursts are 

objective, data driven and robust to filtering settings and insensitive to minor changes in chosen 

threshold values. The results in this cohort of full-term hypoxic neonates suggest that features of 

critical systems commonly found in nature are present in burst suppression patterns. Moreover, 

average burst shapes reveal scale specific effects across time scales. Here, these features of bursts 

demonstrate the transitions involved in critical systems as they undergo a transition from burst 

suppression to continuous activity patterns. 

3.6.1   SCALE-FREE DISTRIBUTIONS IN THE HYPOXIC NEONATE 

 

Using a dataset of thirteen term hypoxic neonates it was found that epochs of burst suppression are 

typically scale-free with broad power-law regimes up to five orders of magnitude. These power-

laws are typically truncated by an exponential cut-off, a hallmark of natural systems where energy 

and size is bounded. The match between empirical and theoretical distribution functions provides 

significant evidence of scale-free mechanisms present early in the term hypoxic brain. Moreover, 

the relationship between median burst size and burst duration is strikingly linear in logarithmic 

coordinates, suggesting a robust scaling relationship. This slope value generally increased upon 

resumption of continuous patterns of cortical activity.       

Whilst reports of scale-free statistics in complex systems have become quite frequent, power-law 

regimes in data and close theoretical matches to power-law models are relatively uncommon in 

nature (Stumpf and Porter 2012). In our results, the scaling exponent range in the data coupled with 

the range in which these power-laws extend over is characteristic of a system displaying criticality. 

We here posit that burst activity arising from a state of complete quiescence to a pathological 

activity pattern such as burst suppression indicate a system at a critical balance – a key feature of 

avalanche type behavior (Bak et al. 1987). Moreover, in a few cases, scale-free distributions had a 

characteristic “knee” suggesting a slightly supercritical system indicative of fluctuations that are 

larger and more numerous than the background trend. We validate the presence of a critical system 

by using the Deluca and Corral (2013) method of exponent interrelations. Here, exponentially 

truncated power-law scaling exponents are related to the slope of the relationship between burst 

duration and burst size. Thus, the interrelation of exponents satisfies the hypothesis that the hypoxic 

neonate brain operates near criticality.   
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Empirical distributions observed in this dataset also carry significance regarding the hypothesis of 

excitation or inhibition imbalances present in the full-term hypoxic brain.  Following deprivation of 

oxygen, we can further postulate that patterns such as burst suppression reflect a system that is 

constrained by a slow build-up of energy and fast energy dissipation when a critical point is 

reached, resulting in a transient burst. The study of neuronal avalanches in cultured tissues (Beggs 

and Plenz 2003; Friedman et al. 2012) suggests that crackling noise is highly likely to arise in 

systems in which excitation and dissipation are tightly coupled. These studies, along with the 

analyses presented offer further insight into a neonate that is metabolically constrained resulting in a 

pathologically abnormal burst suppression pattern.  

3.6.2   MECHANISMS OF BURST SUPPRESSION VIA AVERAGE BURST SHAPES 
 

The findings in ten term hypoxic neonates whom progressed to continuous activity indicate that in 

epochs of burst suppression, average burst shapes are typically asymmetric, with a pronounced 

trend in leftward skew as burst duration increased. On the other hand, continuous activity bursts 

tend to have a more symmetric form independent of burst duration, indicative of a more scale 

invariant distribution. Theoretical simulations of stochastic models enable a deeper interpretation of 

possible effects of energy expenditure in an asphyxiated cortex. The use of these models along with 

the quantification of symmetry and sharpness, suggest that neurophysiological mechanisms such as 

state-dependent metabolic depletion and excitation, inhibition imbalances strongly influence 

patterns such as burst suppression.      

As demonstrated, properties of scale-free bursts vary across recovery periods where empirical 

distribution functions have long power-law regimes during the burst-suppression phase, exhibiting 

stronger truncation upon the resumption of healthy activity. Here, limitations of simple probability 

fits and estimation of scaling exponents overlook the change in dynamic mechanisms which drive 

burst generation and overall burst morphology. The use of average burst shapes serves as a means 

to differentiate between abnormal patterns such as burst suppression from continuous activity. This 

is a critical extension of fitting probability functions to empirical data particularly since multiple 

models can exhibit the same exponents whilst having different mechanisms and avalanche shapes 

(Sethna et al. 2001). Further, average burst shapes reveal a clear difference in symmetry and 

sharpness trends during burst suppression when compared with continuous activity, a type of 

pattern which is inherently linked with the recovery of the hypoxic neonate. This dynamic transition 

in burst shape builds upon prior use of average shapes in physical systems, where subtleties of 

scaling laws in critical systems are further explicated (Friedman et al. 2012; Papanikolaou et al. 

2011; Zapperi et al. 2005). Average burst shapes thus provide stronger, more robust evidence of 

scale-free dynamics, leading to hypotheses for the fundamental reorganization of neuronal activity 

under metabolic resource constraints.  
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The manipulation of a simple stochastic model exhibiting criticality through perfect scale 

invariance, to a model exhibiting state-dependant effects, is a valuable means to postulate 

neurobiological mechanisms which are involved in the reorganization of neuronal activity. 

Extending upon Zapperi’s (2005) ferromagnetic experiments, asymmetry in average burst shape in 

hypoxic neonates may arise from activity-dependant damping – a feature captured by a fast 

acceleration with a slow return. Further, the strength of damping in the stochastic model correlates 

with burst suppression data where this term determines the bias towards inhibition rather than 

excitation. A constant damping term is indicative of a subcritical process. In the presence of 

dynamic state dependent damping effects, however, burst fluctuations continue to propagate which 

contributes to the notion that history-dependent effects arising through metabolic depletion leads to 

feedback via an inhibitory bias loop. These stochastic models hence provide a understanding of 

burst phenomenology and potential neurophysiological effects involved following perinatal 

asphyxia.  

The evidence for criticality in an abnormal neuropathology such as burst suppression provides a 

new avenue for understanding how healthy brain states are optimized during recovery. In a highly 

complex system like the brain, we can contend that there may be a number of distinct critical points 

which occur in both healthy states and neurological disorders – a reflection of energy 

replenishment, e.g. metabolic, or brain maturation. For example, it may be plausible that the 

neonate brain undergoes a critical transition early in the burst suppression period, during which 

cortical silent periods evolve towards sparse cortical bursting patterns. Whether this is a mechanism 

of optimized energy transfer (Kinouchi and Copelli 2006) or representative of balanced brain states 

(Shew et al. 2011) requires further investigation. Scale-free exponents and average shapes analyses 

provide a theoretical basis for genuine critical phase transition upon recovery, leading to fully 

continuous EEG. In this regard, the study of critical behaviour in the brain and its link to pathogenic 

mechanisms would likely provide new insights into cellular and synaptic determinants supporting 

the emergence of dynamics that meet criteria for criticality (Massobrio et al. 2015). Though we can 

only speculate the idea of multiple critical points, further data analyses at these points of recovery 

(fully continuous EEG) are required in conjunction with a unified computational model to 

understand the parameters of criticality and its associated neurobiological mechanisms.  

Recent neurobiological studies in animals, both in vitro and in vivo, have focused on how oxygen 

availability, and its deprivation, affect metabolism in the mammalian cortex (Herculano-Houzel 

2011; Ivanov and Zilberter 2011; Zilberter et al. 2010). These studies experimentally observed the 

acute imbalances towards inhibition arising from energy expenditure of ATP and glucose levels. As 

a cascade of biochemical processes are involved during and after perinatal asphyxiation, there is 

evidence to suggest that compensatory mechanisms are primarily involved in driving feedback 
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loops. For example, reduced cerebral blood flow results in release of inhibitory neurotransmitter 

GABA, leading to loss of cellular integrity, metabolic imbalance and consequent neuronal death 

(Lagercrantz et al. 2010; Lauritzen et al. 2012; Morley 2005). As described in Chapter 2, the 

pathophysiological mechanisms involved in hypoxic-ischemic injury evolve through primary 

damage (reconciled here via metabolic imbalances) and secondary neuronal damage, which 

typically occurs in the following 72 hours post-hypoxia. This form of damage predisposes a 

hypoxic infant to poor neurodevelopmental outcomes limiting overall recovery towards continuous 

cortical activity. In this analysis, burst shapes reveal an important neurophysiological insight into 

subcritical processes (leftward skewed burst shapes; metabolic depletion arising from initial 

hypoxic insult) and critical scale invariance (symmetric shape collapse; recovery to continuous 

EEG). The presence of supercritical bursts (truncated powerlaw with a knee) in a few infants with 

burst suppression indicates a system that is not perfectly able to regulate bursting activity 

throughout the cortex and may provide clues into the extent of hypoxic insult.  

Hence, the study of state-dependent changes in burst shapes in this dataset provides deeper insight 

into the scale-free statistical distributions found in burst suppression data. From these findings we 

can assert that transitions in burst symmetry and sharpness across increasing burst durations in the 

neonatal brain are seemingly affected by resource constraints to metabolic nutrients.  

3.6.3  GENERAL CONCLUSIONS    

 

The analyses presented in this chapter hence diverges from studies in the field, demonstrating that 

inherently stochastic processes present in burst suppression yield scale-free processes in which 

robust metrics can be calculated and validated. The use of such methods is strengthened further by 

calculating burst statistics present in electroencephalographic data and fitting these statistical 

distributions to theoretical heavy-tailed models.  

An important aspect of this analysis method was the estimation of scaling parameters and validation 

of model likelihood. Empirical methods, such as quantitative assessments of burst suppression 

(Brandon Westover et al. 2013; Löfhede et al. 2008; Löfhede et al. 2010), focus on segmentation of 

epoch windows and human-computer classification of activity patterns. These methods steer away 

from statistical characterization and distribution functions, focusing more on a methodologically 

driven heuristic. As noted by Clauset et al. (2009), method driven heuristics along with correlative 

analyses (which employ least square fits and data regressions) often miscalculate the scaling 

parameters present in heavy-tailed distributions (Clauset et al. 2009). In this analysis using a 

maximum likelihood estimate offers a much more stringent test of data cut-offs - in terms of 

minimum and maximum data ranges – providing a closer approximation of data distribution 

parameters. Further testing for model likelihood against theoretical candidate distributions enables 
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better validation of underlying statistical distributions. This is confirmed in this dataset as model 

likelihood overwhelmingly confirms the significance of a power-law with exponentially truncated 

regime.       

This analysis has hence established a new paradigm in which neonatal burst suppression, and 

indeed analysis of cortical activity is effectively characterized. The empirical distribution functions 

present in single stream epochs of EEG data yield closer approximations of bursting activity hours 

after birth asphyxia. The current findings suggest a novel means of monitoring recovery from 

neonatal term hypoxia in the clinical setting, while also yielding key quantitative predictions of 

system balance and/or imbalance. Further understanding the mechanisms of burst suppression could 

be tested with combined neurophysiological and metabolic recordings in a nonclinical, experimental 

setting. 

The method of average burst shapes provides an objective test for analyzing the burst content in a 

single stream EEG epoch. Typically, the study of burst suppression has focused on background 

changes associated with large, slow amplitude excursions and long suppressed periods. In 

particular, the utility of suppression periods to guide clinical classification has provided some 

indication of clinical outcome, yet realistically provides limited understanding into cortical 

mechanisms and neurobiological processes at play (Amzica 2009; Grigg-Damberger et al. 1989; E 

Niedermeyer et al. 1999). This chapter has presented an alternative hypothesis that bursts yield 

important features of neuronal damage caused by perinatal asphyxia. The heterogeneity in burst 

durations in hypoxic neonates has been further characterized by the change in burst shape – a 

significant step towards understanding the mechanisms involved in metabolic depletion.  

The focus of the remaining chapters is the application of methods described in this chapter and the 

use of scaling parameters in empirical distributions to predict clinical outcome. These outcomes 

range from acute complications within the first week of life or long-term neurodevelopmental 

disabilities. The combination of these novel methods henceforth provides a robust and reliable 

metric for the analysis of electroencephalographic recordings in the clinical setting.    
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4.0 NOVEL FEATURES OF 

BURST SUPPRESSION 

PREDICT OUTCOME  
 

 

 

ABSTRACT 

 

Burst suppression patterns in the neonatal electroencephalogram are a reliable marker of recent 

severe brain insult. The introduction of hypothermia treatment in neonates with burst suppression 

has compromised the utility for outcome prediction and clear prognostic markers. In this study, we 

utilize methods from the previous chapter to study the application of statistical characterization of 

bursts in predicting clinical outcome in full-term hypoxic neonates. Specifically, we extract the 

scaling exponents of statistical distribution functions in twenty electroencephalographic recordings 

acquired from hypothermic asphyxic newborns in the hours immediately following birth. 

Distributions of burst area and duration are benchmarked with conventional analyses of inter-bursts 

and the coefficient of variation in burst durations. Significantly, statistical characterization is 

possible from analyzing neonate burst suppression hours after birth. These measures are hence 

temporally precedent to later outcomes, i.e. brain imaging (MRI) findings and clinical outcomes at 

two years of age. The findings in this chapter indicate the first early electroencephalographic 

metrics that offer outcome prediction in asphyxic neonates undergoing hypothermia treatment. 
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4.1  INTRODUCTION  

 

Hypoxic ischemic encephalopathy following perinatal asphyxia is the leading cause of acquired, 

severe neurodevelopmental disability (Bonifacio et al. 2011). The neurodevelopmental outcome of 

HIE depends on how quickly neuronal function recovers from the asphyxic insult. Continuous 

electroencephalography (EEG) monitoring has become a widely accepted practice in neonatal 

intensive care units (NICUs) (Hellström-Westas and Rosén 2006; Nash et al. 2011; van Rooij et al. 

2005). A key EEG hallmark of severely injured brain function is a pattern of low amplitude 

(suppressed) EEG punctuated by irregular high amplitude bursts (Fig. 1A) known as burst 

suppression (BS) (Holmes et al. 1982). Several studies have shown that the resolution of BS in EEG 

recordings within 6-12 hours of birth correlates strongly with a favorable neurodevelopmental 

outcome (Toet et al. 1999; van Rooij et al. 2005). Identification of BS and its recovery time in 

asphyxic newborns has thus been used as a prognostic indicator of brain function to guide 

therapeutic decisions. While clinical decisions to commence therapeutic hypothermia after birth 

asphyxia are often based on observing BS in the early EEG, hypothermia treatment itself was 

recently found to significantly delay BS recovery, hence compromising the utility of early EEG in 

outcome prediction (Hallberg et al. 2010; Kessler et al. 2011; Thoresen et al. 2010).   

Neurophysiological interpretation of BS conventionally rests upon a dichotomous presence-versus-

absence classification. While qualitative assessment of  “burst sparseness” –  a low overall 

frequency of bursts – may be taken as an additional sign of severity (Walsh et al. 2011), no 

properties of the bursts themselves have been shown to provide useful prognostic indicators. In this 

chapter, we test the hypothesis that the scale-free bursts of burst suppression patterns do contain 

predictive properties towards eventual neurodevelopmental outcome. Exploiting the advances in 

complex systems analysis (Beggs and Plenz 2003; Friedman et al. 2012; Sethna et al. 2001; 

Spasojević et al. 1996), we sought to characterize statistical properties of BS under hypothermia, in 

particular features related to burst duration and area (i.e., burst size). Features identified in this 

study demonstrate that the bursts of BS carry novel, clinically-important information not provided 

by current brain monitoring paradigms or evident by visual inspection of EEG alone. These findings 

provide a novel approach for predicting outcome, based on identifying information embedded in BS 

activity early after brain injury, a task that has proven thus far elusive. 
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4.2  MATERIALS AND METHODS 

 

This dataset continues the study of hypoxic term neonates from Chapter 3, extending the dataset to 

include more infants and outcome information derived at 2 years of age. Recordings of twenty 

consecutively-admitted newborns were collated (gestational age 39±2 weeks) monitored due to HIE 

following perinatal asphyxia at the tertiary level NICU of Helsinki University Central Hospital. HIE 

was assessed according to conventional criteria (Sarnat and Sarnat 1976), including lethargy, 

stupor, or coma, with one or more findings of hypotonia, abnormal reflexes or clinical seizures. As 

per the data in Chapter 2, the EEG was acquired from biparietal electrodes at 250 Hz using a 

NicOne or Olympic EEG device (Cardinal Healthcare, Nicolet Biomedical, Madison, WI, USA and 

Natus Medical, CA, USA). Lengthy epochs of BS that were relatively artifact-free (120±90 

minutes, range 30-600 minutes) were subject to the same filtering settings as the previous analyses. 

BS was determined visually as an EEG pattern consisting of activity bursts (mixture of sharp, slow 

waves) periodically interrupted by multiple episodes of suppressed cortical activity (approximately 

<10 IV). Although BS somewhat resembles trace alternant and trace discontinue activity patterns, 

these are distinct phenomena. First, they are part of the pseudo-periodic vigilance state cycling that 

is absent early after asphyxia (Hellström-Westas and Rosén 2006; Thoresen et al. 2010). Second, 

they only occur in younger preterm babies (trace discontinue), or their suppression period is 

insufficiently suppressed for classification as BS (trace alternant). Cooling onset preceded EEG 

recordings in all babies (see Appendix B, Section 1: Outcomes Table).  

Clinical data collated from patient reports included: reports from MRI scans during the first week 

after birth; birth details; NICU drug treatments; and outcome description from the last visit to 

routine neonatal outpatient clinic (age 12-39 months). Patients were divided into two categories 

based on MRI findings (presence/absence of a thalamic lesion), and further into four categories 

based on clinical outcomes: normal versus mildly, moderately, and severely abnormal (see 

Appendix B, Section 1: Outcomes Table for full details). Four of the twenty available neonatal data 

were excluded from further analyses due to the presence of excessive seizure activity (n=1), early 

administration of sedative drugs that likely affected BS (n=1), or missing reliable clinical or MRI 

information (n=2). The use of patient data for this study was approved by the Ethics Committee of 

the Hospital for Children and Adolescents, Helsinki University Central Hospital. 

To extract statistical properties of the bursts, we utilize methods established in Chapter 3, as 

summarized by Figure 4.1. We extract three burst metrics for each infant: i) conventional measures 

of mean burst duration (BD) and its coefficient of variation (CV), ii) scaling exponent (α) of the 

cumulative distribution function (CDF) of the burst areas (BA) in each recording (Fig 4.1E) and iii) 

slope value based on the relationship between BD and BA (Fig 4.1F). Here, the scaling exponent (
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α) captures how quickly the number of bursts diminishes as a function of increasing area: A large 

exponent (α >> 1.5) indicates that most bursts are very small in area, whereas the converse (α ~ 

1.5) indicates that larger bursts occur relatively more often. Since the distribution closely follows a 

truncated power law, there is no single characteristic size but rather a broad "scale-free" regime, 

limited only by finite brain capacity.  

These novel metrics focus on properties of bursts, specifically the heterogeneity of BAs, as well as 

the relationship between BAs and BDs. In addition, we benchmarked these novel measures against 

those established in prior research, namely the mean and CV of interburst interval (IBI) durations, 

(Grigg-Damberger et al. 1989). The IBI was automatically derived from points below burst 

threshold, where durations less than 40 ms and greater than 8 s were excluded from analysis. The 

slope values from BA vs. BD plots and BA CDF plots were extracted as described in Fig. 4.1E and 

Fig 4.1F. Notably, the analysis algorithms did rely on visual EEG interpretation nor clinical data 

measures, resulting in a purely data driven approach. 

Group comparisons were conducted using one-way analysis of variance (ANOVA) and verified 

with non-parametric Mann-Whitney U tests. Correlations of clinical outcomes to EEG metrics were 

measured using Spearman’s rank correlation coefficient. 
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Figure 4.1 – Extraction of burst suppression metrics. (A) Example EEG epoch with burst 

suppression pattern (P3-P4 derivation). (B) Instantaneous power (amplitude-squared) of the same 

EEG epoch obtained from the amplitude envelope (via Hilbert transform). (C) Instantaneous power 

over 80 minutes of a recording to illustrate the variability in the size of bursts over time. (D) Sample 

burst taken from graph B to illustrate the burst measures. The automated threshold was used for 

defining the burst area (BA) and the burst duration (BD). (E): Upper cumulative distribution 

function (CDF) of BA in one infant shows that it follows an exponentially-truncated power law 

distribution (fit shown in green) over several orders of magnitude. We extracted the scaling 

exponent (α) of the distribution. Here the dashed line illustrates the corresponding α for the BA as 

given by the CDF. (F) Relationship between BAs and BDs in one infant, plotted in double 

logarithmic coordinates. Points are median durations and median areas calculated after dividing the 

data into 250 quantiles, with the robust linear relationship quantified by the slope of the linear least-

squares fit (red line).  
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4.3  RESULTS 

 

Visual inspection of bursts occurring during post-asphyxic EEG characteristically showed erratic 

and irregular fluctuations of BS in the amplitude trace (Fig. 4.1A), as well as the corresponding 

power trace (Fig. 4.1B-C). We hence examined the variability of BA by plotting its CDF (Fig. 4.1E) 

and the relationship between BA and BD (Fig. 4.1F). We first observed that the CDFs of BA show 

a robust, power-law relationship over several orders of magnitude (Fig. 4.1E). We also observed a 

robust linear scaling relationship between log-log coordinates of BA and BD over four orders of 

magnitude (Fig. 4.1F). Comparison with subsequent MRI findings (Fig. 4.2A and Fig. 4.2B) 

showed that α was significantly higher (F1, 16 = 5.39, p=0.035; Fig. 4.2A), and the slope between 

BAs versus BDs was significantly higher (F1, 16 = 7.89, p=0.013; Fig 4.2B) in babies with thalamic 

lesions. Moreover, both of these metrics showed a significant correlation to neurodevelopmental 

outcome (r=0.81, p<0.0001, and r=0.58, p=0.022, respectively; Fig. 4.2C and 4.2D). Visual 

comparison of different outcome groups shows considerable variability over time and between 

records, due to both temporal evolution of BS patterns and physical factors (e.g. subcutaneous 

swelling). Two extreme cases (normal MRI and outcome versus abnormal MRI and outcome) are 

shown in Appendix B, Section 2: Supplemental Materials, emphasizing the need for objective, 

statistically-sound methods for their interpretation. 

We then benchmarked these findings against conventional measures of bursts (BDs, BD CVs), and 

their intervals (IBIs). Statistical analyses revealed that BD CV was significantly higher (F1, 16 = 

4.92, p=0.042) in babies with thalamic lesions compared to those with normal MRI findings. 

However, no difference was found in the mean duration of bursts (F1, 16 = 0.17, p=0.68) or the mean 

IBIs (F1, 16 =0.05, p=0.81). In addition, BD CV showed a positive correlation to the developmental 

outcome (r=0.37, p=0.17; Fig 4.2E). No correlation was seen between mean burst duration and any 

measure of IBIs. Additionally, no significant correlations between average burst shapes, i.e. 

skewness, kurtosis measures were observed in thalamic lesion MRI and neurodevelopmental 

outcomes.   
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Figure 4.2 - Comparison of burst suppression metrics during first hours after birth to subsequent 

MRI changes observed several days later. Infants who developed thalamic lesion (Th lesion) 

apparent in MRI had significantly higher exponents α (A) in the BAs, and a significantly higher 

slope values (B) in the relationship between BA and BD. The graphs show mean±SEM (circles and 

lines) and the individual data points (crosses). (C) to (E): Comparison of burst suppression metrics 

during first hours after birth to clinical outcome categories later in infancy (1=normal; 2=mildly 

abnormal; 3=moderately abnormal; 4=severely abnormal; see also Appendix B, Section 2: 

Supplemental Materials). There was a statistically significant correlation between clinical outcome 

and (C) scaling exponent, α  (D) slope and a positive correlation in (E) BD CV. Significant 

differences were found when dividing outcomes into two categories, good (1&2) and poor (3&4).  
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4.4  DISCUSSION 

 

This study demonstrates that novel burst statistics derived objectively from EEG, soon after 

perinatal asphyxia, correlate significantly with MRI findings obtained only several days later, as 

well as with neurodevelopmental outcomes obtained at two years of age. Utilizing methods 

described in Chapter 3, we extract measures of burst areas and durations, and their slope 

relationship, to predict outcome using clinically collated records in cooled asphyxic newborns. We 

further confirm that traditional measures of mean burst durations and IBIs in hypothermic newborns 

have insufficient prognostic reliability (Hallberg et al. 2010; Thoresen et al. 2010). The results of 

this study yield important metrics based on the statistical characterization of bursts during burst 

suppression. These observations have both theoretical and practical implications.  

Theoretically, the presence of robust scale-free statistics is compatible with the notion that a 

severely compromised brain operates in a critical balance between excitation and inhibition. While 

such properties of cortical dynamics cannot be assessed using traditional EEG measures, they are 

rapidly extracted with novel and robust mathematical tools recently developed in computational 

neuroscience and physics (Papanikolaou et al. 2011; Sethna et al. 2001; Shew et al. 2009) 

Pragmatically, extracting clinically-informative statistics from a very large number of bursts 

engenders such metrics insensitive to common noise-related confounders. Moreover, the 

observations presented in this study significantly challenge the clinical practice of perceiving BS as 

a uniform entity (Walsh et al. 2011). Rather, these findings are compatible with the alternative notion 

that functional brain recovery is already ongoing during burst suppression. Thus, in this study we 

can assess the statistical characteristics of cortical bursts rather than relying on traditionally 

measured lengths of inactive (IBI) periods.  

Importantly, future analyses should consider the integration of scale-free statistics with other 

measures of hypoxic neonate EEG, such as background abnormality or suppression time. A recent 

method such as adaptive segmentation in continuous recordings of neonate EEG via IBI extraction 

has shown high classification accuracy, particularly in the presence of artifacts and seizures (Matic 

et al. 2014). Whilst a limitation of such analyses is the reliance on laborious visual qualitative 

assessment and classification of epochs, this analysis allows a clinical comparison with abnormality 

linked with brain maturation. Significantly, scale-free statistics provide an objective 

characterization of burst activity in EEG via rigorous tests of model likelihood, distinguishing those 

epochs that have clinically informative statistics (as evidenced in this chapter). Thus, the calculation 

of scale-free exponents in conjunction with classification of IBI periods may provide 

complimentary information regarding hypoxic EEG outcomes and could be integrated through 

computational machine learning approaches. 
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Practically, these measures present several clinical advantages. First, because they focus on the 

bursts only, they avoid a need for uninterrupted recordings. Hence, these measures are robust to 

intermittent artifacts present in the electrically-noisy NICU environment and challenge traditional 

analyses of EEG monitoring. Second, the EEG-derived measures provide outcome predictions 4-7 

days earlier than MRI findings, possibly enabling early guidance of individually-targeted 

therapeutic decisions. Third, the analysis paradigm is adaptive and data-driven, reducing inter-

individual variability in the overall level of EEG amplitudes caused by technical variations (e.g., 

inter-electrode distance, constant artifact, or subcutaneous swelling). Amplitude variance caused by 

artifacts is a serious confounder prevalent in many existing approaches, particularly amplitude-

integrated EEG (aEEG, a.k.a. Cerebral Function Monitor (CFM) (Hellström-Westas et al. 2003)). 

Here, the data-driven algorithm employs burst detection via an adaptive threshold, where scaling 

properties reported were reliable over a range of thresholds (see Appendix B, Section 2: 

Supplemental materials). Notably, the EEG measures introduced here are designed for rapid 

automated prognostication, and thus could be readily implemented as software features in currently-

used brain monitoring systems. 

While the findings presented in this chapter are encouraging, the dataset studied has limitations, 

such as a limited sample size and outcome classifications that were retrospectively extracted from 

clinical archives instead of prospectively-collected standardized neurodevelopmental tests. 

Significantly, EEG remains the most rapid and continuous real-time monitor of brain function and 

is hence heavily relied upon by neurophysiologists and neonatal staff. As highlighted in this study, 

EEG is temporally precedent to brain imaging techniques such as an MRI, where indications of 

poor outcomes were able to be identified in analysing EEG bursts several days earlier than the MRI 

based findings. However, it has been it has been highlighted recently that the potential use of more 

portable imaging modalities such as near infrared spectroscopy (NIRS) and ultrasound with EEG is 

an important consideration in an diagnostic setting (Sood et al. 2015). Whilst the clinical efficacy is 

yet to be established the promise of recent studies into oxygen utilization has shown that NIRS and 

EEG have some level of correlation with brain vulnerability (Tataranno et al. 2015). Further 

prospective trials in the NICU could benefit from the integration of scale-free methods in parallel 

with multiple imaging modalities, such as NIRS techniques to monitor critical recovery periods. 

Future studies on larger patient series with standardized outcome measures are needed to validate 

the present observations. It will also be important to examine the clinical potential of these 

measures in differential diagnoses of BS etiologies (e.g., asphyxia, trauma, sedative drugs), a 

common diagnostic challenge in acute patient care. Finally, it is likely that these same statistical 

properties of BS are also found in adult neurointensive care, expanding the clinical utility of the 

metrics employed.  
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5.0 CORTICAL BURSTS 

PREDICT LONG-TERM 

OUTCOME IN PRETERM 

INFANTS 
 

 

 

ABSTRACT 

 

Intermittent bursts of electrical activity are a ubiquitous signature of very early brain activity. 

Previous studies have largely focused on assessing the amplitudes of these transient cortical bursts 

or the intervals between them. Recent advances in basic neuroscience have identified the presence 

of scale-free “avalanche” processes in bursting patterns of cortical activity in other clinical contexts. 

Here, we hypothesize that cortical bursts in human preterm infants also exhibit scale-free properties, 

providing new insights into the nature, temporal evolution, and prognostic value of spontaneous 

brain activity in the days immediately following preterm birth. We examined 

electroencephalographic (EEG) recordings from 43 extremely preterm infants (gestational age 22-

28 weeks) and demonstrated that their cortical bursts exhibit scale-free properties as early as 12 

hours after birth. The scaling relationships of cortical bursts correlate significantly with later mental 

development - particularly within the first 12 hours of life. These findings show that early preterm 

brain activity is characterized by scale-free dynamics which carry developmental significance, 

hence offering novel means for rapid and early clinical prediction of neurodevelopmental outcomes. 
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5.1   INTRODUCTION 

 

Early brain development depends upon spontaneously occurring, intermittent electrical activity 

(Blankenship and Feller 2009; Colonnese and Khazipov 2012; Kilb et al. 2011) that supports 

neuronal survival and sustains primary growth of brain networks. This electrical activity is highly 

sensitive to various endogenous and exogenous disturbances, creating clinical challenges in the 

acute care of preterm infants. Despite advances in neonatal intensive care units (NICU), early 

preterm birth is still associated with a high risk of adverse neurodevelopment (Aarnoudse-Moens et 

al. 2009; Back and Miller 2014; Van Baar et al. 2005). A major endeavor in neonatal care is to 

complement cardiorespiratory support with intensive brain monitoring, a rapidly emerging clinical 

benchmark. Thus, the goal of continuous preterm brain monitoring is to identify early markers of 

cortical disturbance which could then guide appropriate clinical interventions.  

As described in Chapter 2, the analysis of continuous EEG recordings in preterm infants is 

challenging due to data interruptions and artifacts from NICU environments (Schumacher et al. 

2011; Wikström et al. 2012). The presence of amplifier noise in the NICU is a common issue that 

arises as a “continuous nonrepetitive artifact” (Walls-Esquivel et al. 2007) during EEG recordings. 

Existing amplifiers are not immune to mains interference (50 Hz) or higher frequency harmonics 

(100 Hz, 200 Hz), particularly in a NICU environment where numerous medical devices are 

routinely used (e.g. incubators, electric syringes, catheters). Consequently, the dominant approach 

for aEEG/EEG assessment remains a qualitative, subjective appraisal which is vulnerable to 

confounders arising from technical artifacts and inter-rater variability. Background activity from 

aEEG/EEG in the first 72 hours has predictive value but requires expert selection of epochs to 

distinguish artifacts from abnormal cortical activity (Wikström et al. 2012). Recent quantitative 

analyses of cortical bursting (Palmu et al. 2010; Stevenson et al. 2014) in preterm EEG carries 

potential for objective, real-time prognostication (Benders et al. 2014; Wikström et al. 2012). 

Robust characterization and outcome prediction based on the properties of these bursting patterns 

has proven difficult due to a number of factors, namely the acute presentation in the first few days 

of life (Smith et al. 2011), the relative shortness of uninterrupted, artifact-free EEG (Olischar et al. 

2004), the role of brain activity cycling (Kidokoro et al. 2010; Palmu et al. 2013) and, crucially, the 

lack of an analytic framework that speaks to the nature of the burst dynamics. Hence, there is an 

unmet challenge to derive cortical activity signatures of early brain function that are robust, 

objective, and based on firm statistical evidence.  

In this chapter we hypothesize that the preterm brain is also governed by scale-free processes that 

can be measured using robust statistical metrics. Further, we hypothesize that such properties in 

early brain activity reflect likely outcome and provide insight into underlying brain development 
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processes. We thus test the value of characterizing scale-free behavior in preterm infants across 

gestational ages in predicting long-term outcome, highlighting critical periods immediately after 

birth 

5.2   MATERIALS AND METHODS  

 

Following on from predicting clinical outcome in HIE infants from the statistical distributions of 

bursts, we apply methods utilized in Chapter 3 to predict long-term outcome from discontinuous 

bursts of EEG in extremely preterm neonates.  

5.2.1  DATA COHORT AND CLINICAL DETAILS 

 

We analyzed EEG recordings of 43 preterm neonates (gestational age (GA) 22-28 weeks) that were 

monitored in the neonatal intensive care unit (NICU) at Lund University Hospital, Sweden. Other 

details of this cohort have been previously published (Wikström et al., 2012, Stevenson et al., 

2014). Infants were included in the study after informed parental consent. The study was approved 

by the Regional Ethics Committee at Lund University. The demographics of the cohort and basic 

details of the data are summarized in Table 5.1. The EEG was acquired from surface EEG 

electrodes at a sampling rate of 256 Hz using a NicOne amplifier (Cardinal Healthcare, Madison, 

WI, USA). These data were acquired from the parietal (P3, P4) channels in all babies, and 

additionally from the frontal (F3, F4) in half of the neonates. However, we focused only on the 

biparietal P3-P4 derivation and selected relatively artifact-free EEG epochs (average epoch duration 

of 115 minutes, range 70-120 minutes) at four postnatal ages: 12, 24, 48 and 72 hours. These 

relatively artifact-free epochs were selected via visual inspection on the basis of two criteria: 1) the 

presence of an uninterrupted recording of data and 2) the absence of excessive (high amplitude) or 

prolonged (tens of seconds) artifacts during NICU monitoring. No artifact correction was performed 

on these data. Each recording was exported to MATLAB (Mathworks, Natick, MA, USA), 

bandpass filtered (0.2-20 Hz) 

All infants underwent standardized neurodevelopmental testing at 2 years corrected age with the 

Bayley scales of infant development and toddler development, version II (BSID-II). The BSID-II 

provides developmental scores for cognition (Mental Development Index, MDI) and motor skills 

(Psychomotor Development Index, PDI). In addition, two dichotomous outcome groupings were 

used, D1: a composite outcome classification (good versus poor) was created from observing one or 

more of the adverse outcomes (MDI<70, PDI<70, cerebral palsy, blindness, deafness, or death); and 

D2:  infants considered optimal versus suboptimal based on a cut-off MDI score of 85. This cut-off 

score is minus 1 standard deviation from a mean MDI of 100. 
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 Value Range  

(min, max) 

Unit 

Clinical details    

 Subjects 43  n 

 Sex, male/female  20/23  n 

 Gestational Age (mean)
 

25 22 28 weeks 

 Birth Weight (mean) 820  460 1340 grams  

 SGA
a
  10  n 

 5 min Apgar score (mean) 7  2 10  

 IVH
b
 grade 1-2 8  n 

  grade 3-4 5  n 

 Antenatal steroids all   

 Morphine
c
  27  n 

EEG information    

 Recording duration (mean) 69  62 80 hours 

 Epochs (n) at postnatal hours:  12   24    n 

                                Duration (mean): 119 115   120 minutes 

              24   35   n 

 117 90  120 minutes 

                             48  39    n 

 118 90 120 minutes 

                  72  25    n 

 112 70 1120 minutes 

 Burst count per epoch 2376 195
 

   4402
d 

n 

Clinical outcomes    

 MDI (mean)
 

87  50 118  

 PDI (mean) 85  50 121  

 D1
e, 

good/poor 

 D2
e
, optimal/suboptimal 

25/18 

21/15 

 n 

n 

 Died < 2 years 7  n 

 

Table 5.1 - Demographics of the preterm dataset with EEG recording information and clinical 

outcomes.
 a 

Small for gestational age, defined as birth weight less than 2 standard deviations below 

the mean for an infant’s gestational age, 
b 

Intraventricular Hemorrhage (IVH) in the first 72 hours 

after birth, 
c 

Morphine received within the first 72 hours after birth. 
d 

No statistically significant 

relationship between burst count and postnatal hours (p<0.096). 
e 
D1 refers to composite outcome 

classification created from observing one or more of the adverse outcomes (MDI<70, PDI<70, 

cerebral palsy, blindness, deafness, or death); D2 refers to infants considered optimal versus 

suboptimal based on a cut-off MDI score of 85.  

 

5.2.2  PRE-PROCESSING AND ANALYSIS 

 

Bursts were extracted from all available recordings and their statistical properties were 

characterized using the pipeline shown in Figure 5.1. Drawing from methods in chapter 3, we 

quantify two aspects of burst morphology: First, the distribution of burst durations and burst areas 

are quantified across a wide spectrum of scales, yielding insights into putative scaling properties of 

early brain function; Second, the average shape of bursts at different time-scales are estimated, 

which speaks to their underlying dynamical mechanisms (Papanikolaou et al. 2011). To study 
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scaling relationships present between burst durations and burst areas, we also estimate their linear 

regression in log-log coordinates (see Figure 5.2D), yielding a regression slope (S).  Second, the 

average shape of bursts at different time-scales are estimated, which speaks to their underlying 

dynamical mechanisms (Papanikolaou et al., 2011, Roberts et al., 2014a). Average burst shapes are 

quantified by the change in symmetry (Σ) and sharpness (K) across burst durations from 200 ms up 

to 6 s in length.These features of burst duration, area, and shape permit rapid, automated analyses of 

burst statistics from EEG epochs acquired at each postnatal age across gestational ages which we 

then correlate against clinical outcome indices. Statistical comparisons were conducted via general 

linear model fitting (GLM) and one-way analysis of variance (ANOVA). The GLM yields Pearson 

correlation coefficients (R) of burst statistics against continuous variables (i.e., GA in days; MDI 

and PDI scores between 50-120), and dichotomic outcome variables (0=good outcome, 1=poor 

outcome).   

 

 

Figure 5.1 -  Schematic of cortical burst analysis procedure for preterm EEG recordings. 
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5.3   RESULTS  

 

Visual inspection of bursts occurring in the EEG of these extremely preterm infants 

characteristically showed discontinuous, bursting EEG activity at 12 and 72 hours after birth (Fig. 

5.2A-B). We first studied burst scaling as captured in the upper cumulative distributions (CDFs) of 

burst areas (Fig. 5.2C), and the relationship between burst area and burst duration (Fig. 5.2D).  

5.3.1  SCALE-FREE BURSTS HOURS AFTER PRETERM BIRTH 

 

Burst areas and burst durations clearly revealed scale-free relationships present across nearly three 

orders of magnitude. At 12 hours, the upper CDF (Fig. 5.2C) is closely described by an 

exponentially truncated power law, while the corresponding scaling relationship of burst areas with 

durations (Fig. 5.2D) exhibited a linear regime in double-logarithmic coordinates. To formally test 

the validity of scale-free behavior in our data, we examined the empirical shapes of burst area CDFs 

against four theoretical distributions: power law (pareto), power law with exponential cutoff, log-

normal, and exponential (Clauset et al., 2009). We assessed the candidate fits for the data using log 

model evidence and Bayesian Model Selection (Stephan et al., 2009). This test indicates that the 

exponentially truncated power law is clearly the best description of the scaling process present in 

our data (Fig. 5.2E). We also examined the average burst shape at sequential timescales (Fig. 5.2F), 

observing changes in burst symmetry (a measure of burst skewness, Fig.  5.2G), and sharpness (a 

measure of burst kurtosis, Fig. 5.2H). A summary of scaling regimes found robust presence of 

power-law regimes indicative of scale-free processes (Appendix C, Section 1: Statistical 

distribution summary in preterm EEG data). 

Exponent interrelations of the slope of burst size and burst duration (c) were compared with the 

predicted relationship that indicates a system exhibiting critical features, namely c=a-1/d-1. Whilst 

there is a reasonable approximation, close inspection suggests a small nut noticeable difference in 

these sets of values (see Fig. 5.3). Statistical testing shows that the values do differ (p<0.01). These 

relationships hence approximate but do not statistically satisfy these analytic conditions for 

criticality.  
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Figure 5.2 - Preterm EEG analysis results. (A) Typical recording of preterm infant EEG at 12 hours, 

showing discontinuous activity with clear bursts and inter-burst periods. (B) The same infant at 72 

hours has an increase in background EEG activity with brief inter-burst periods. (C) The upper 

cumulative distribution (CDF) of burst areas with fit to an exponentially truncated power law 

(green). (D) Burst scaling relationship of burst areas (BA) and their respective durations (BD). 

Linear fit (red) in log-log coordinates. (E) Bayesian Model Selection (BMS) of 5 candidate heavy 

tailed models: Weibull distribution, exponential (exp), log-normal (lnorm), power law (pareto), and 

exponentially truncated power law (pexp). The posterior expectation gives the likelihood that the 

model (r) explains observed data events (y). (F) Average burst shapes at increasing burst durations 

T = 200 ms (red), 600 ms (yellow), 1 s (light green), 2 s (green), 2.75 s (cyan), 3.5 s (blue) and 4.25 

s (purple). (G) Burst skewness (Σ) across timescales with a parabolic fit. (H) Burst kurtosis (K) 

across timescales fitted with a quadratic fit.  
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In summary, these analyses assert the presence of power law scaling in the bursty cortical activity 

of the preterm as soon as 12 hours after birth. Whilst the bursts converge toward simple shapes, 

there is a subtle but systematic change in burst symmetry and sharpness as a function of time scale. 

For the subsequent analyses, we extract three robust burst metrics: (1) slope (S) of the linear 

relationship between burst areas and burst durations in log-log coordinates; (2) change in symmetry 

(Σ) of bursts across timescales and (3) corresponding change in sharpness (K) of bursts across 

timescales. These metrics together capture the heterogeneity of bursts, their shape, size, and overall 

temporal evolution over the first few days of preterm infant life. 

 

Figure 5.3 – Exponent interrelations for preterm EEG derived from statistical distributions of bursts 

at 12 hours. Scaling interrelations for exponents for area (a), duration (d), duration versus area (c), 

and the predicted relationship (a-1)/(d-1). A paired t-test reveals a significant difference (p<0.01) in 

the predicted relationships between exponents for slope (c) and a-1/d-1. Points are plotted with 

small horizontal offsets for clarity. 

 

5.3.2  RELATIONSHIP OF BURST FEATURES TO GESTATIONAL AGE 

 

Having established the presence of scale-free statistics, we next report on how the three markers of 

early cortical activity (scaling slope S; burst symmetry Σ; burst sharpness K) varied with gestational 

age (GA) in extremely preterm infants. At 12 hours, S values significantly co-varied with GA 

(R=0.22, p<0.02, Fig. 5.4A), with lower slopes occurring in the most preterm infants (22-24 weeks) 

and higher slopes in babies of a higher GA (25-28 weeks). Values of S did not co-vary with GA at 

24, 48 and 72 hours after birth.  Mean sharpness (K) for bursts (>2 s duration) also significantly 

correlated with GA at 12 hours (R=0.29, p=0.0071, Fig. 5.4B), but there was no correlation at 24, 

48 and 72 hours. Mean symmetry (Σ) for bursts (>2 s duration) did not correlate with GA at any 

postnatal epoch period between 12 to 72 hours. The burst metrics S and K were also inversely 
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correlated at 12 hours such that lower S generally corresponded with higher K (R
2
=0.50, p<0.00011, 

Fig. 5.4C). This relationship was present at each postnatal period (24 hours R=0.34, p<0.0003; 48 

hours R= 0.18, p<0.007; 72 hours R=0.32, p<0.003). 

At a postnatal age of 12 hours, average burst shapes showed a specific dependence on burst 

duration in the most immature infants (GA 22-24 weeks) (Fig. 5.4D) which was not present at later 

GA (25-28 weeks, Fig. 5.4E). In particular, the burst sharpness (K) at longer durations (>1 s 

duration) differs between these gestational ages. Further we find that K at mid-ranged burst 

durations significantly correlates with gestational age (Fig. 5.4F), specifically durations from 1 s – 2 

s (p<0.017), 2 s - 2.75 s (p<0.0015) and 2.75 s to 3.5 s (p<0.049). Bursts shorter than 1 s and longer 

than 3.5 s do not show any significant dependence on GA. The measured features of bursts were 

hence specifically related to GA of the baby. 

 

Figure 5.4 - Relationship of burst metrics with gestational age 12 hours after birth. Scatter plots of 

(A) Slope (S) versus GA, (B) Mean sharpness (K) of bursts >2 s duration versus GA, and (C) Inter-

relationship of burst metrics S and K values. (D) Average burst shapes for a range of burst durations 

(from 200 ms - 6 s) show changes in sharpness values between (D) 22-24 weeks GA and (E) 25-28 

weeks at 12 hours after birth. (F) Bursts are predominantly more kurtotic at middle timescales (1-

3.5 s) in younger preterms (red line with standard error bars) compared with later ages (black line 

with standard error bars); * p<0.05, ** p<0.01. 

In the early post-natal hours, these novel burst shape measures also significantly covaried with the 

traditional measure of scale-free activity, namely the power law exponent.  In particular, the power 

law exponent co-varies with burst slope S and asymmetry Σ at both 12 hours (R
2
=0.28, p=0.0077 

and R
2
=0.21, p=0.026, respectively) and 24 hours (R

2
=0.5, p<0.001 and R

2
=0.16, p=0.016, 

respectively). The power law exponent co-varies with burst sharpness K only at 24 hours (R
2
=0.27, 

p<0.0012). There are no significant correlations at later post-natal hours. 
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5.3.3  BURST METRICS PREDICTIVE OF LONG-TERM OUTCOME  

 

We next regressed these burst metrics against neurodevelopmental outcomes. In the human infant, 

this can be assessed by examining their correlations with long-term neurodevelopmental outcomes. 

Thus we examined the potential for S, K and Σ to predict three later outcomes at the age of 2 years: 

(1) the Mental Developmental Index (MDI), (2) the Psychomotor Index (PDI), and (3) composite 

outcome measures. These analyses are presented in Table 5.2. Of note, slope (S) values were 

predictive of MDI (R=0.24, p<0.035) as soon as 12 hours after birth, and was also predictive of 

composite outcome measures (R=0.19, p<0.035) at 72 hours. Mean sharpness (K) values for bursts 

(>2 s duration) at 12 hours were predictive of composite outcome (R=0.29, p<0.007). At 72 hours, 

K (bursts with >2 s duration) was predictive of all three outcome measures: MDI (R=0.18, p<0.04), 

PDI (R=0.25, p<0.01) and composite outcome (R=0.18, p<0.034). In contrast, mean symmetry (Σ) 

of bursts (>2 s duration) was only predictive at 72 hours of MDI (R=0.28, p<0.01) and PDI 

(R=0.19, p<0.04).    

Metric 
MDI PDI Overall 

Outcome R p R p R p 

12 hours 

GA 0.55 0.0002
 0.06 0.29 0.32 0.003 

S 0.24 0.035 0.04 0.43 0.19 0.035 
Σ 0.01 0.98 0.00 0.89 0.01 0.62 
K 0.17 0.08 0.10 0.192 0.29 0.007 

72 hours 

GA 0.41 0.001 0.17 0.05 0.09 0.147 
S 0.08 0.19 0.11 0.12 0.18 0.036 
Σ 0.28 0.01 0.19 0.04 0.14 0.067 
K 0.18 0.04 0.25 0.01 0.18 0.034 

 

Table 5.2 - Bivariate correlations (ANOVA) of burst metrics slope (S), skewness (Σ), and kurtosis 

(K) with Gestational Age, and Mental Developmental Index (MDI), Psychomotor Developmental 

Index (PDI) and overall Outcome (good/poor dichotomy).  

 

Importantly, we find that both S and GA are correlated with MDI (Table 1). Further our burst 

metrics S and K are also correlated with GA (Fig. 5.5). In addition, we identified a weaker 

correlation of K with MDI at 12 hours (Table 5.1). This raises the possibility that the correlations of 

S and K with MDI arise only through the co-linearity of both variables with GA. Hence, we wanted 

to see whether our burst measures have independent predictive value over GA, which is already 

known in each given baby. This was done by assessing how GA affects the outcome prediction 

from burst measures. We employed statistical moderation (Baron and Kenny, 1986), to study via 
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general linear models (GLM) whether GA strengthens the causal relationship between burst 

variables S and K to MDI. 

 MDI = b0 +  b1.S + b2.GA + b3.S.GA + ε1.    (5.1) 

 MDI = b10 + b11.K + b12.GA + b13.K.GA + ε12.   (5.2) 

Thus, for GLM (1) (with regression coefficients bn): b1 (2514) and b2 (6.7) quantify the 

contributions of S and GA, respectively, and b3 (-13.33) quantifies the interaction between both S 

and GA, where ε1 (9.86) is the error term in the fit. This GLM (1) is highly significant in the case of 

S predicting MDI at 12 hours after birth (overall GLM (1): R’=0.75, p’=8.03x10
-5

). In addition the 

value of b3 is significant thus satisfying the condition for a moderating relationship (p<7.32x10
-4

). 

Similarly, for GLM (2), b11 (-1133.2) and b12 (5.99) quantify the contributions of K and GA, 

respectively, and b13 (5.94) is highly significant (p<0.02): thus K is also highly predictive of MDI 

(overall GLM (2): R’=0.69, p’=4.26x10
-4

, ε12=11). Thus our metrics predict outcome even after 

taking into account the effect of GA, and the combined model yields a better predictor than either 

alone. Hence, formally, this relationship between S and MDI is moderated by GA. We represent 

these relationships using a simple path analysis diagram (Fig. 5.5).  

  
Figure 5.5 - Path analysis diagram of correlations at 12 hours showing how GA moderates (A) S to 

MDI and (B) K to MDI. Values of S and K at 12 hours are strongly influenced by GA in predicting 

mental development indices. 

 

The relationships between burst metrics and clinical outcome measures at each postnatal time 

period are summarized in Figure 5.6. Over a 72 hour period, burst metrics significantly co-vary with 

composite outcome measure D1 (Fig. 5.6A to C) at some, but not at all postnatal ages. 

Dichotomizing MDI into sub-optimal and optimal MDI (D2) yields strong correlations at 12 hours 

for S (p<0.009) and K (p<0.03) values (Fig. 5.6D to F).   To demonstrate the potential for burst 

metrics in diagnostic classification, we next assessed the sensitivity and specificity across a range of 

thresholds. These results were quantified using receiver operating characteristic (ROC) curves (Fig. 

5.6G to I).  
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Figure 5.6 - Preterm EEG burst metrics versus clinical outcome over a 72 hour period. Mean values 

(circles) ±standard error bars (*p<0.05; **p<0.01), representing good (black) versus poor (red) 

composite outcome D1 for (A) S values, (B) Mean K values (>2 s duration), and (C) Mean Σ values 

(>2 s duration). Boxplots of sub-optimal (MDI<85) versus optimal (MDI>85) outcomes (D2) for 

(D) S values, (E) Mean K values (>2 s duration), and (F) Mean Σ values (>2 s duration) for post-

natal ages of 12 hours (open circles) and 72 hours (filled circles). (G) ROC curve  showing  

sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) at 12 hours for values 

of S predicting MDI. (H) ROC curve for values of K at 12 hours predicting the composite outcome. 

(I) ROC curve for values of Σ at 72 hours predicting MDI. 

We observe very high accuracy (AUC=0.82) for kurtosis K as a predictor for the composite 

outcome (D1) and for the slope S at 12 hours as a predictor (AUC=0.91) for later 

optimal/suboptimal MDI outcome (D2). Values of slope S carry very high sensitivity for later MDI 

outcome (up to 100%), achieved with a specificity of close to 80%. At 72 hours, asymmetry Σ of 

bursts also predicts later optimal/suboptimal MDI outcome (D2) with a high accuracy (AUC=0.75). 

Our analyses were conducted on lengthy epochs of relatively artifact-free clinical EEG (mean 

duration 116 minutes). In clinical practice, availability of such data is often restricted to briefer 

epochs. To test the sensitivity of our approach in such settings, we repeated our analyses restricted 

to the first 50% of each neonate's data (average of 58 min) as well as 25% (average of 30 min). The 

primary outcome measures remained significant on these shorter epochs. In particular for epochs of 

50% their original duration, slope S predicted MDI (p<0.043) at 12 hours, whilst skew Σ and 

kurtosis K at 72 hours predicted MDI (p<0.0024 and p<0.019, respectively) and PDI (p<0.0098 and 

p<0.0034, respectively). Most of these outcome predictors dropped below significance for data of 
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duration less than 30 minutes. Predictors of the continuous outcome measures MDI and PDI were 

more robust to data down-sampling than the predictors of the composite outcome measure D1. 

 

We also benchmarked our findings against more conventional measures of preterm EEG (Hayakawa 

et al., 2001), namely, the burst count and the inter-burst intervals (IBIs). As per Table 5.1, we 

analyzed an average of 2376 bursts per epoch, with no significant differences across the four 

postnatal ages (12 to 72 hours, F=2.2, p>0.096). Similarly, IBIs were also statistically non-

significant across postnatal ages (F=1.8, p>0.16). No statistically significant differences in IBIs and 

burst counts were found in infants with respect to the severity of outcomes and long-term injury 

(MDI, PDI and composite outcomes) at any of the four postnatal ages (12 to 72 hours, p>0.24 in all 

cases).  
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5.4   DISCUSSION  

 

In this chapter, we establish that intermittent, spontaneous cortical bursts in the preterm brain 

exhibit scale-free properties. Moreover, the characteristic statistics of these bursting dynamics 

correlate with indices of longer term developmental outcome. Path analysis indicates that the 

relationship between these burst metrics and outcome is moderated by gestational age. Hence, this 

analysis identifies specific predictive properties of scale-free bursts in the preterm and their 

relationship to long term neurodevelopment. We also highlight the crucial temporal transitions in 

these scaling statistics that occur already between 12 and 72 hours after birth. Scale-free processes 

arising from cortical activity in the preterm may provide insight into infant brain behavior when 

normal gestation is interrupted. Further, statistics scale-free bursts in the preterm may reflect 

fundamental thalamo-cortical and cortico-cortical pathways which emerge during the gestational 

ages studied.  

5.4.1  NEUROBIOLOGICAL UNDERPINNINGS OF EARLY SCALE-FREE BEHAVIOR 

 

The presence of scale-free activity provides insight into system disturbances, potentially arising due 

to interplay between excitation and inhibition in cortical pathways and, more broadly, complex 

dynamics within neuronal networks, particularly in the face of scarce metabolic resources (Roberts 

et al. 2014a). In this study the results of scaling exponent interrelations suggest that early human 

brain activity self-organizes, transitioning between subcritical and critical states, though not entirely 

consistent with criticality. Early developing neuronal circuits have been studied in detail at the 

cellular level (Blankenship and Feller 2009; Hanganu-Opatz 2010; Kilb et al. 2011) but little is 

quantitatively known about systems level brain dynamics in neonatal brains. It has been established 

in in vivo tissue slices that a shift in endogenous balance results in spontaneous cortical bursts 

exhibiting “neuronal avalanches”, occurring when a system is bordering on the cusp between 

stability and instability (Beggs and Plenz 2003). This avalanche-type behavior has been studied in a 

variety of neuronal recordings (Friedman et al. 2012; Meisel et al. 2012) highlighting that cortical 

activity may be generated via self-organized networks within the human cortex. In physical 

systems, self-organization further elucidates the unpredictable nature of a system at a critical state, 

resulting in fluctuations spanning a broad range of sizes (Sethna et al. 2001).  

Recent neuroanatomical work has shown that major thalamo-cortical and cortico-cortical pathways 

are in the early stages of development during the first weeks of early preterm life (Kostović and 

Judaš 2010). Hence, the observed scale-free behavior of cortical activity arises in a brain network 

that is immaturely wired (early GA neonates) or where wiring is still undergoing intensive 

organization (later GA neonates). Indeed, our findings showed that cortical bursting dynamics are 



117 

 

different in infants prior to (GA < 24 weeks) versus those after (GA > 24 weeks) which aligns with 

the growth of first thalamo-cortical pathways (cf. Kostović and Judaš, 2010). Research using animal 

models shows that at early phases of cortical pathway development, these sparse connections give 

rise to intermittent spontaneous activity transients (SATs) – a characteristic feature of immature 

brain activity (Ben-Ari 2001; Blankenship and Feller 2009; Colonnese and Khazipov 2012; 

Hanganu-Opatz 2010; Khazipov and Luhmann 2006; Kilb et al. 2011; Vanhatalo and Kaila 2006). 

These events are thought to be the key functional driver of neuronal development where the 

deprivation of neurons leads to apoptotic cell death in experimental models (Kilb et al. 2011; 

Nimmervoll et al. 2013), while the overall level of bursting activity relates to prospective structural 

growth in the human preterm babies (Benders et al. 2014). Moreover, disruption of these events 

leads to disorganized thalamo-cortical connectivity and neuronal death (Catalano and Shatz 1998; 

Tolner et al. 2012). In this study, we demonstrate that features of cortical bursts in the early preterm 

do reflect immature cortical pathways which readily relate to neurodevelopmental consequences as 

indicated by our findings.  

The recent observation of scale-free processes in hypoxic term infants with burst suppression (J. A. 

Roberts et al. 2014) opens novel insights into critical states of cortical activity under the constraints 

of metabolic depletion. Using similar methods and more stringent statistical tests (i.e., Bayesian 

model selection), the present study establishes that scale invariant distributions exist in preterm 

EEG data - a characteristic feature recently identified as a key, but challenging objective (Fransson 

et al. 2013). Our results thus provide insight into a neurodevelopment window in the early preterm, 

where classical scale-free processes characterize potential system disturbances in cortical pathways 

hours after birth.  

5.4.2  TRANSITIONS IN BURST DYNAMICS AT EARLY GESTATIONAL AGES 
 

Previous analyses of preterm EEG have established the developmental trajectory of burst properties, 

with an increase in their duration and decrease in their amplitudes with GA (André et al. 2010; 

Tolonen et al. 2007; Vanhatalo et al. 2005). The intra-burst activities are also known to change with 

development (André et al. 2010; Tolonen et al. 2007), as well as after medication (Malk et al. 2014) 

or brain lesions (Akihisa Okumura et al. 2002). These prior findings suggest that the burst shape 

analysis advanced in the present report may find diagnostic use in preterm babies, akin to evidence 

from full-term babies (see chapter 3 and chapter 4). In our study of preterm neonates, bursting 

statistics change substantially over the 72 hour period after birth, either in response to treatment in 

the NICU, spontaneous metabolic recovery, or conversely due to progression of underlying 

neuronal disturbances. Further clarifying how these burst metrics reveal critical periods that predict 

outcome is to be the focus of future work.  
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In the absence of solid ground-truth, the issue of pathophysiological versus physiological preterm 

EEG remains a difficult and vexed issue (cf. Kidkoro et al., 2009). Based upon the our sensitivity 

analysis, the EEG in preterm neonates that are most likely to have a favorable outcome is 

characterized by bursts that are typically symmetric and relatively flat at long time scales (Figure 

5.6B,C). Conversely, bursts in neonates with long term disability are skewed and highly kurtotic 

shortly after birth. Assuming that long term outcome correlates with the presence of post-natal 

pathophysiological EEG, these values provide promising benchmarks for future research that 

correlates features of surface EEG with invasive measures of existing underlying pathophysiology. 

 

5.4.3  EARLY PREDICTION OF LONG-TERM NEURODEVELOPMENT  
 

Early prediction of long-term neurodevelopmental outcome remains a major bedside challenge as 

very preterm infants that survive into early childhood have a high likelihood of developing mental 

disability or poor psychomotor performance at 2 years of age (Wood et al. 2000). The availability of 

outcome prediction within the first few days of life would allow early identification and provide the 

basis for improved guidance of intensive care interventions. 

We observed significant relationships between statistical metrics of single channel EEG and later 

neurodevelopmental outcomes. Our results show that low slope values, moderated by the effect of 

gestational age, correlate with poor scores on the Mental Developmental Index (MDI, <85 on 

Bayley scales) or early death. We also show that higher burst sharpness (kurtosis), moderated by 

gestational age is indicative of poorer MDI. Importantly, our study quantifies the moderating role of 

gestational age on outcome. Thus, moderation was used to formally establish the effect of GA on 

our burst measures S and K. In the context of predicting likely neurocognitive outcome hours after 

preterm birth, this characterization of preterm EEG bursts is highly significant. Further we posit that 

these measures provide insight to the notion that system level disturbances (i.e., metabolic 

imbalance and poor synaptic connectivity) are acute reflections of the underlying neuronal circuitry 

in an immature cortex. It is also compatible with the interpretation that prenatal disturbances, such 

as placental infections or brain hemorrhages, predispose the child to adverse outcomes (H. K. 

Brown et al. 2013; Shapiro-Mendoza 2014), and that our present EEG metrics capture the 

immediate consequences of these system-level disturbances coupled with the gestational age of the 

infant. In the absence of acute complications, the preterm infant is considered to be metabolically 

stable by the third day of life (Klein 2002). Formal ROC curves, used to quantify sensitivity and 

specificity of later outcome prediction yielded promising results at both 12 and 72 hours after birth 

(Fig 5G-I). The finding of outcome prediction by 12 hours may be particularly important because of 

its potential implications for clinical management directly after birth. Prediction during the first day 
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of life may be crucial in terms of active and specific neuroprotective strategies. We find that at 72 

hours, skew and kurtosis values are predictive of mental and psychomotor outcome. This may 

indicate that temporal changes in bursting behavior reflect the impact of metabolic disturbances on 

neuronal integrity and recovery. In contrast, traditional measures (of burst count and inter-burst 

interval) did not co-vary with post-natal age or predict later outcome. 

Most prior studies have focused on measuring overall amplitudes at a limited bandwidth (aEEG). 

As reviewed above, this approach requires trained reviewers and is vulnerable to artifacts. Despite 

these limitations, a relationship to later outcomes has been established (Hellström-Westas and 

Rosén 2005; Olischar et al. 2004; Sisman et al. 2005; Wikström et al. 2012). These findings are 

compatible with the proposal that the total amount of brain activity is important for early brain 

health (see also (Benders et al. 2014).  

5.4.4  METHODOLOGICAL CONSIDERATIONS AND FUTURE DIRECTIONS 

 

A particular technical advantage in our methods is that they are based on analyzing extracted events 

(bursts). Hence they do not require fully continuous streams of EEG signal. This allows rejection of 

signal epochs with clear artifacts without loss of analytical reliability, which commonly challenges 

paradigms relying on continuous temporal behavior, such as vigilance state cyclicity (Stevenson et 

al. 2014) or broad spectrum power spectra (Fransson et al. 2013). The requirements of the algorithm 

are also computationally modest, depending only upon a simple algorithm for threshold detection, 

followed by resampling, averaging, and shape characterization. It would hence be quite feasible to 

implement the burst characterization on-line, giving a moving window predictor of outcome, which 

could then be integrated with other clinical variables to inform acute management. Whilst practical 

from a computational perspective, such an endeavor naturally rests upon future, large validation 

studies. 

We can see two directions that warrant more detailed future studies. First, in establishing the 

presence of scale-free bursts in single-channel recordings, we focused entirely on the temporal 

properties of bursts. An aspect of SAT events in discontinuous preterm EEG is the spatial 

specificity of neonatal EEG signals (Odabaee et al. 2013), which may account for some of the 

observed variability in burst shapes in our single channel recordings due to varying spatial relations 

between cortical activity and scalp electrode positions. Future studies with higher density EEG will 

show whether sensitivity of burst shape analyses can be improved by better spatial sampling.  

Second, the efficacy of quantitative EEG measures in the NICU is dependent upon disambiguating 

bursts of cortical origin (e.g. duration, area, and shape of SAT) from artifact type events (e.g. 

movement, respiration spikes, and amplifier noise). Recent studies have shown that more 

conventional quantification of burst occurrence (Benders et al. 2014) and the presence of vigilance 
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state cycling (a.k.a. sleep wake cycling; SWC) (Stevenson et al. 2014) may inform brain health. 

These methods recently became available with the validation of burst detectors (Palmu et al. 2010) 

and the development of cyclicity measures for preterm EEG monitoring (Stevenson et al. 2014). 

Future studies to this end will need to apply all methods to the same datasets to define their 

mutually added values in clinical applications.  

Third, full band EEG recordings potentially offer substantial additional benefits over those 

presently analyzed. In particular, the slowest signal component (infra-slow) would likely allow 

detection of bursts of longer duration and greater area, hence expanding the upper bound in the 

corresponding probability distributions. Unfortunately, such data is not currently available from 

clinical datasets with long-term monitoring and outcome data, which were acquired with inbuilt 

hardware high-pass filters. The extension to full band recordings remains the objective of future 

research using new generation amplifiers. 

Finally, we presently restrict our approach to analyses of a single (bipolar) electrode recording. 

Additional channels were available in some, but not all, of our neonates. Such additional data could 

potentially enhance the sensitivity of the proposed approach in two ways: First, by pooling across 

all channels, more bursts would be available and hence the confidence of our shape estimates would 

be greater. This improvement may be tempered somewhat by the fact that, in very early preterm 

babies, many underlying bursts would appear in several channels contemporaneously such that 

additional true degrees of freedom may be limited. Second, if many additional channels were 

present, additional analyses based on the spatiotemporal properties of avalanche-like activity would 

be possible. However this would require high quality, dense EEG recordings which are not 

presently available in the NICU. 

 

In summary, the analysis of bursts of electrical activity in neonatal EEG using the techniques of 

scale-free systems shows potential for predicting long-term outcome in preterm infants. Further, 

combining information from burst shapes with gestational age strongly predicts later outcome. 

Finally, we highlight the subtle but important temporal changes in cortical bursting dynamics 

during the first early weeks of preterm development, as well as over the first days of postnatal life.  
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6.0 EARLY FEATURES OF 

ACUTE BRAIN INJURY IN 

THE PRETERM  
 

 

ABSTRACT 

 

Acute brain injury in the preterm, such as intraventricular haemorrhage, is a common occurrence in 

neonatal intensive care. In this study we characterize early cortical activity that indicates the 

presence of intraventricular hemorrhage (IVH) in preterm infants. Automated offline analyses of 

electroencephalography in 25 extremely preterm infants (23 to 28 weeks gestational age) included 

quantifiers of burst shapes: symmetry and sharpness, calculated for all burst durations, and 

conventional detection of inter-burst intervals and burst counts. Two contrasts of quantitative EEG 

data were performed: (1) Between neonates with (n=14) versus those without IVH (n=11), and (2) 

Before and after the ultrasound confirmation of IVH. Burst shape and asymmetry differed 

significantly for both clinical contrasts. Moreover, increasing levels of IVH severity corresponded 

with sharper, more asymmetric burst shapes. Clinical sensitivity and specificity testing of burst 

symmetry and sharpness revealed high true positive rates (Sensitivity: 82% and 88%, respectively) 

and low false positive rates (1-Specificity: 81% and 92%, respectively) in discriminating between 

infants with and without intraventricular hemorrhage. In contrast, conventional measures of inter-

burst intervals and burst counts were not statistically significant for either contrast. Measures of 

early cortical burst shapes in the electroencephalogram offer a novel, real-time method to identify 

preterm infants at risk of intraventricular hemorrhage during their first days of life. 
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6.1   INTRODUCTION 

 

Preterm infants are exposed to an increased risk of developing acute neurological disorders, such as 

germinal matrix and intraventricular hemorrhage (IVH), during the first few days of life (Ballabh 

2010; Bolisetty et al. 2014). Common mechanisms that lead to IVH include failure of cerebral 

autoregulation (Milligan 1980; Volpe 2001b), hypoxic-ischemic insults, and sepsis (Volpe 2009). 

Prevention and management of IVH focuses on systemic circulatory stabilization and 

cardiorespiratory support, as well as correction of coagulopathies (Ballabh 2010; McCrea and Ment 

2008). An acute injury such as a large IVH predisposes an infant to poor neurodevelopmental 

outcomes (Bolisetty et. al. 2014) such as cerebral palsy, developmental delay or hydrocephalus 

(Ballabh 2014). Hence, prevention or early detection of IVH holds promise of significantly 

improving neurodevelopmental outcomes in these vulnerable neonates.  

Currently, the gold standard for IVH detection is cranial ultrasonography through the anterior 

fontanel (Bada et al. 1979; McCrea and Ment 2008), which is sensitive to lesions within hours to 

days after the occurrence of IVH. A timely therapeutic response to IVH requires a means of pre-

empting IVH or detecting it as soon as it occurs, implying a need for continuous brain monitoring. 

Studies have shown that IVH may cause a qualitative change in EEG waveforms – as visually 

assessed (Hayakawa et al. 1999) - or in the background patterns of the electroencephalogram (EEG) 

(Chalak et al. 2011; Akihisa Okumura et al. 2002; Olischar et al. 2007). Continuous EEG recording 

is hence recognized as a clinically useful method for monitoring the preterm brain and is in 

widespread use (Olischar et al. 2004; Watanabe et al. 1999; Wikström et al. 2012). Identification of 

EEG features appropriate for automatic and objective analysis would greatly enhance the potential 

for this data to be used for real-time detection of impending IVH.  

As reviewed in Chapter 2, the hallmark of early EEG activity in extremely preterm infants is the 

presence of intermittently occurring spontaneous activity transients (SATs), evident in the EEG 

trace as irregular high amplitude bursts of activity (André et al. 2010; Vanhatalo and Lauronen 

2006). Normal preterm EEG activity is characterized by intermittent occurrence of activity with 

mixed frequency content, and the relatively silent EEG during the inter-burst (IBI) periods (André 

et al. 2010). In particular, extremely early preterm infants (<28 weeks gestational age) have 

characteristically dominant few second long epochs of low frequency activity (<1 Hz) with 

superimposed fast activity bouts, collectively called bursts, spontaneous activity transients (SAT) or 

delta brushes (Vanhatalo et al. 2006). Abnormalities in the preterm EEG are mostly seen as 

durations of the silent periods (André et al. 2010), however visually observed changes in the 

waveforms, such as positive rolandic sharp waves, have also been reported (Aso et al. 1993). This 

chapter builds upon the previous study of predicting long-term outcomes from preterm EEG during 
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the first days of life. In the present study, we hypothesize that quantitative measures of the early 

cortical bursts in the preterm EEG may acutely reflect, and even precede, the onset of IVH. 

Importantly, the findings presented in this chapter suggest that IVH may be detectable via bedside 

EEG monitoring prior to routine cranial ultrasound detection, hence our method opens a novel 

window to real-time monitoring as well as identifying neural mechanisms underlying IVH. 

6.2   MATERIALS AND METHODS  

 

In chapter 3, quantitative methods are used to rapidly analyze EEG bursts that occur after asphyxia 

in full-term infants. In Chapter 4 we found that specific changes in burst size are predictive of long-

term outcome. These methods are fully automated and free from subjective qualitative assessments, 

thus enabling robust burst characterization, complementing conventional visually analyzed EEG 

measures such as the inter-burst interval (IBI) and burst counts (Wikstrom 2012, Hellstrom-Westas 

2001).  

6.2.1   DATA COLLECTION   

 

We analyzed EEG recordings of 25 preterm infants (gestational age 23-28 weeks; Table 1) that 

were monitored during their first three days of life in the Neonatal Intensive Care Unit (NICU) at 

Lund University Hospital, Sweden. The infants constitute approximately half of the infants in a 

cohort of extremely preterm infants from which qualitative and quantitative (IBI and measures of 

suppression) EEG analyses have been previously published (Wikström 2011, Wikström 2012). 

Inclusion criteria for this analysis included clinically confirmed absence or presence of IVH via 

ultrasound at either day 1 or day 3 of life. Exclusion criteria for this study were based on 

unconfirmed ultrasound reports, infants greater than 28 weeks gestation and relatively artifact-free 

postnatal EEG epochs 12 to 72 hours. EEG was acquired at the biparietal P3-P4 derivation at a 

sampling rate of 256 Hz using a NicOne amplifier (Cardinal Healthcare, Nicolet Biomedical, 

Madison, WI, USA). Epochs of EEG (90-120 minutes) were selected at fixed post-natal time points 

of 12, 24, 48 and 72 hours from relatively artifact-free periods irrespective of vigilance state. Our 

quantitative EEG analysis focused on EEG epochs that preceded (pre-IVH) or followed (IVH) the 

confirmation of hemorrhage by ultrasound within the first three days of birth. The use of patient 

data for this study was approved by the Research Ethics Committee of the Lund University 

Hospital.   

Cranial ultrasound was performed routinely on day 1 (0-24 postnatal hours) and day 3 (48-72 

postnatal hours) (Ultrasound brand should be mentioned- I can find it in previous papers: LHW 

comment).  Data were analyzed in three categories according to the severity of IVH: no IVH (grade 

0); mild-moderate IVH (grades 1-2, i.e. germinal matrix hemorrhages or IVH without ventricular 



124 

 

dilatation, respectively); and severe IVH (grades 3-4, i.e. IVH with ventricular dilatation or 

intraparenchymal involvement, respectively) (Papile et al 1978). Contrasts on EEG analyses were 

then performed, comparing: i) infants with no IVH, ii) infants with IVH grades 1-2 and iii) IVH 

grades 3-4. EEG data were exported to MATLAB (Mathworks, Natick, MA, USA), band-pass 

filtered (0.2-20 Hz), and analyzed using conventional and custom algorithms (Roberts et al, 2014). 

Clinical details for each neonate are provided in Table 6.1. 

  GA 

(weeks 

+days) 

Birth 

Weight 

(g) 

Apgar5
a US day 1 

(0-24 h) 
US day 2 

(24-48 h) 

US day 3 (0-

48-72 h) 

No IVH 

1 26+6 854 6 0  0 

2 25+2 638 7 0  0 

3 27+1 854 8 0  0 

4 24+4 788 8 0  0 

5 27+3 840 7 0  0 

6 25+3 940 8 0  0 

7 27+3 950 9 0  0 

8 27+3 1148 8 0  0 

9 25+1 732 9 0  0 

10 25+5 946 5 0  0 

11 25+5 780 8 0  0 

IVH 

(Gr 1 -2) 
  

12 24+2 730 6 0  1 

13 24+2 646 5 2  2 

14 26+4 951 8 1  1 

15 25 725 6 0  2 

16 27 970 7 1  2 

17 23+5 584 9 0  2 

18 27+4 1092 6 - 2 2 

19 28+1 1230 7 - 2 2 

20 27+4 630 6 - 2 2 

IVH 

(Gr 3 -4) 
  

21 22+6 580 7 0  3 

22^ 26+4 670 3 4  - 

23* 24+3 796 6 0  3 

24* 27 950 7 0 3 - 

25 24+2 730 6 3  - 

Table 6.1 – Clinical summary of the preterm population analyzed for this study. Table legend: 

GA=gestational age, Apgar5= Apgar score at 5 minutes; 
a
 IVH and Apgar5 were significantly 

correlated (Wilcoxon ranksum test, p<0.05), Gr=Grade. Ultrasound labels: US= cranial ultrasound, 

0=no IVH, 1=mild IVH, 2=moderate IVH, 3=severe IVH, 4=very severe IVH, “-”=no ultrasound 

examination, blank table entry=no ultrasound performed. ^= periventricular leukomalacia (25). 

*=bilateral IVH.   

 

Contrasts on EEG analyses were then performed, comparing: i) infants with no IVH, ii) infants with 

IVH grades 1-2 (mild-moderate), and iii) IVH grades 3-4 (severe IVH). We also analyzed bursts 

from EEG epochs recorded prior to identification of the IVH by ultrasound to investigate whether 

burst shapes could indicate an impending or early onset phase of IVH. Thus, we compared all 

postnatal epochs with ultrasound confirmed IVH with epochs temporally precedent to hemorrhage 

confirmation. Hereafter, we refer to epochs with no hemorrhage as “no IVH”, epochs prior to 
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ultrasound confirmed IVH as “preUS-IVH” and epochs with ultrasound confirmed IVH as “US-

IVH”. Thus for the data cohort, we identified 11 epochs as no IVH. Moreover, for mild-moderate 

IVH we identified 12 epochs as preUS-IVH grade 1-2 and 11 epochs as US-IVH grade 1-2. For 

severe IVH, we identified 6 epochs as preUS-IVH grade 3-4 and 4 epochs as US-IVH grade 3-4. 

 

6.2.2 AVERAGE BURST SHAPES ANALYSIS OF INTRAVENTRICULAR HEMORRHAGE  

 

We first applied conventional analyses, namely interburst interval (IBI) and burst counts for the 

three preterm populations as classified in Table 6.1. Following these conventional measures, we 

performed average shape analyses to analyze burst symmetry (skewness, Σ) and sharpness (kurtosis, 

K), across a wide range of burst durations (200 ms-6 s) (see Chapter 3). Statistical group 

comparisons of burst shape metrics were conducted using one-way analysis of variance (ANOVA).  

To assess diagnostic accuracy of burst shapes to identify IVH, we estimated true positive and false 

positive rates across a range of Σ and K values, deriving corresponding receiver operating 

characteristic (ROC) curves. The ROC curves were further quantified by calculating the area under 

curve (AUC), a measure of diagnostic accuracy. We then summarized the clinical sensitivity and 

specificity of burst symmetry and sharpness values to discriminate between preUS-IVH, US-IVH 

and no IVH neonates. To validate the diagnostic accuracy of our measures, we performed two tests 

of data reliability for both Σ and K values. First, we used the leave-one-out cross validation test – a 

method where one single value in the sample set is tested against the rest of the samples. This 

process is iteratively repeated for each value to calculate the error in prediction, until all samples in 

the dataset have been tested, thus deriving an overall accuracy measure. Similarly, we also tested 

whether adding null data points in each sample set – group mean values of Σ and K in both no IVH 

and IVH infants, respectively –and derived the relevant sensitivity and specificity measures. Figure 

6.1 shows a schematic for the analyses. 
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Figure 6.1 - Analysis schema for each EEG burst. (A) Bursts binned by duration (T) to seven 

groups and all bursts in a group are averaged, then re-scaled to have unit time and analyzed for their 

(B) change in shape symmetry (skewness) and (C) sharpness (kurtosis) across duration T. Durations 

in average burst shapes are here color coded to corresponding points in the skewness and kurtosis 

graphs: 200 ms (red), 600 ms (yellow), 1 s (light green), 2 s (cyan), 2.75 s (green), 3.5 s (purple) 

and greater than 4.25 s (blue). Solid lines show quadratic fits to skewness and kurtosis graphs 

across burst durations.  

 

6.3   RESULTS  

 

Visual assessment of EEG epochs did not significantly indicate any differences between no IVH 

and IVH infants. Conventional measures did not differ significantly across IVH (grades 1-2 and 3-4, 

respectively). For mean IBI of length >1 second (F=0.08, p=0.92) across normal and IVH 

populations revealed no statistically significant differences. Further, burst counts comparing short 

bursts (F=0.43, p=0.65 for bursts < 2 seconds) or long bursts (F=0.12, p=0.88 for bursts >2 

seconds) were statistically insignificant (Fig. 6.2A and B). Inspection of the preterm EEG showed 

characteristic SATs with no visually apparent difference in the overall activity between the groups - 

that is no IVH (e.g. Fig. 6.2A) versus IVH (e.g. Fig. 6.3C). There were also no statistically 

significant differences in IBI or burst counts related to severity of IVH, gestational age, birth weight 

or 5-minute Apgar score. 

http://onlinelibrary.wiley.com/doi/10.1002/acn3.32/full#acn332-fig-0001
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Figure 6.2 - Conventional analyses of preterm EEG (A) Mean number of IBIs longer than 1 second 

(±SEM) for the three IVH categories. No significant differences were found (Gr=grade). (B) Total 

burst counts (±SEM) demonstrating that short bursts (dark blue bar; 200 ms-2 s) and longer 

duration bursts (light blue bar; 2 s-6 s) in the three categories did not exhibit significant group 

differences. 

The observable difference in EEG traces suggested infants with IVH grades 1-4 appeared to have 

higher amplitudes and greater burst areas than infants without IVH. These differences appeared 

more evident when we computed the instantaneous amplitude of the signals (see blue overlay traces 

in Fig. 6.3A and C). This observation appeared further confirmed by super-positioning hundreds of 

bursts (Fig. 6.3B and D). However, on closer inspection conventional mean amplitudes (F=0.54, 

p=0.59) and mean areas (F=1.81, p=0.18) for bursts (>1 s duration) did not significantly differ 

between groups. Thus we can firmly establish from these measures that conventional measures that 

burst counts, IBIs and amplitude changes are not effective for classifying between hemorrhagic and 

non-hemorrhagic presentation.      

 

Figure 6.3 – Comparisons of EEG bursts in normal preterm and IVH preterms. (A)  Example of 

EEG epoch (black) from infant with no IVH, with corresponding amplitude envelope (blue). (B) 

Overlay of all amplitude envelope signals (gray) and their mean (black) for a single infant with no 

IVH. (C) Example of EEG epoch for infant with IVH grade 2. (D) All amplitude envelopes for an 

infant with IVH grade 2. 

 

A B 
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6.3.1  BURST SHAPE ANALYSES 

 

We next examined the change in average burst shape as a function of burst duration using measures 

of burst symmetry (Σ) and sharpness (K). Visual comparison of grand average burst shapes across 

burst durations shows clear differences between the three IVH groups. We also analyzed bursts 

from postnatal EEG prior to ultrasound screening to investigate whether burst activity indicates an 

onset of early IVH. Thus, we also analyzed each postnatal epoch with confirmed IVH with epochs 

temporally precedent to hemorrhage confirmation, referred hereafter as pre-IVH. For each IVH 

grouping we calculated average burst shapes for pre-IVH 1-2 and 3-4 compared with IVH grades 1-

2 and 3-4, respectively (Fig. 6.4). Most notably, there was a strong increase in the sharpness of 

longer bursts (>2 s duration) with increasingly severe IVH. The longer bursts in infants with severe 

IVH (grades 3-4) were also asymmetric to the left, with sharper onset and slower decay compared 

to the bursts in infants with no or mild IVH (grades 1-2).  
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Figure 6.4 - Differences in average burst shape across burst durations for infants with no IVH 

compared to preUS-IVH and US-IVH. Color coding of burst duration (200 ms – 6 s) as per Figure 

1. (A) Grand average burst shape of all infants with no IVH: Short and long bursts have similar 

symmetry and sharpness. (B) Infants classified as mild-moderate exhibit changes in average burst 

shape preUS-IVH over these burst durations hours before (C) presenting with grade 1 or 2 IVH. 

The onset of more severe hemorrhage is significantly noticeable in grand average shape features in 

infants (D) preUS-IVH and (E) US-IVH grades 3 or 4. 

  

 

A 

B C 

D E 
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6.3.2  DIAGNOSTIC ACCURACY OF BURST SHAPE METRICS 
 

Statistical comparison of burst shapes between the three groups - no IVH, mild-moderate IVH 1-2, 

and severe IVH 3-4 – showed that bursts in the IVH infants were significantly sharper (higher K) at 

most burst durations (Fig. 6.5A). Mean K values for bursts longer than 2 seconds differed markedly 

between no IVH and IVH epochs (preUS-IVH: F=22.23, p=6.5x10
-5

, US-IVH:F=22.25, p=8.5x10
-5

, 

Fig. 6.5B). We also observed that asymmetry (Σ) of mid-duration bursts (1 s-3.5 s) differed 

significantly between IVH infants versus no IVH infants (Fig. 6.5D). The difference in longer 

bursts (>2 s duration) was statistically significant between preUS-IVH and US-IVH infants when 

contrasted with no IVH infants (preUS-IVH: F=6.91, p=0.014, US-IVH: F=24.01, p=5.23x10
-5

, Fig. 

6.5E), indicating that IVH infants tend to have more asymmetric bursts. No significant difference 

was seen in Σ values between IVH severity grades (F=0.41, p=0.53).  

 

The accuracy of burst shape metrics in identifying IVH was evaluated by use of receiver operating 

characteristics (ROC) for mean sharpness (K) (Fig. 6.5C), and symmetry (Σ) derived from longer 

bursts (>2 s duration) (Fig. 6.5F). We combined IVH 1-2 and IVH 3-4 (injury positive) in both 

preUS-IVH and US-IVH groups and compared these infants to infants who did not develop IVH for 

each burst measure. The overall accuracy estimated by area under the curve (AUC) was high in 

both groups (0.83-0.94). Importantly, sensitivity was fairly high (>80% and >60% for K and Σ, 

respectively) at all cutoff levels. A modest increase in sensitivity comes at a high price of 

substantial loss in specificity.  

We then tested systematically a range of K and Σ values for long bursts (>2 s duration), and found 

high sensitivity and specificity at selected cutoff levels for all preUS-IVH and IVH groups. 

Specifically, for this dataset, in both preUS-IVH and US-IVH groups we find that for K very high 

sensitivity and specificity values are found at a cutoff of -0.99 (for K ranging between -1.06 to -

0.98). Similarly, for Σ, sensitivity and specificity in preUS-IVH and US-IVH groups also remains 

high at a cutoff of 0.13 (for Σ ranging between 0.12 to 0.16). The validity of our results are 

confirmed our reliability tests where the leave-one-out and added data permutation analyses reveal 

that for both K and Σ values, sensitivity and specificity remain consistently high (>80% for K and 

Σ). Table 6.2 summarizes the highest sensitivity and specificity values found in the ROC analysis, 

along with the reliability tests employed.    
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 preUS-IVH 

(sensitivity, specificity) 

US-IVH 

(sensitivity, specificity) 
    ROC analysis  K:   88.2%,91%  

 Σ:  82.4%, 81.8 % 

 K:   86.7%, 90.9%  

Σ:  80%, 90.9% 

Leave-one-out 

permutation 

 K:   83%,90.3%  

 Σ:  83%, 88.2% 

K:   88%, 90.3% 

Σ:  81%, 92.3% 

Added data 

permutation 

 K:   80%,91.9%  

 Σ:  80%, 88.2% 

K:   88%, 91.9% 

Σ:  82%, 91.7% 

 

Table 6.2 - Sensitivity and specificity for different cutoffs in mean sharpness (K) and mean 

asymmetry (Σ) to predict no IVH or IVH at any grade. The top row shows the sensitivity and 

specificity of our main test statistics.The middle row shows the average sensitivity and specificity if 

leaving out any one of the subjects we reported. The lower row shows the values if further infants 

without the reported effect are added. 

 

Figure 6.5 - Summary of statistical differences in burst features between infants with no IVH 

compared to those with any IVH grade. (* p<0.05; ** p<0.01). (A) Infants with no IVH (black) had 

lower mean K values over longer bursts than infants with IVH 1-2 (light brown) and IVH 3-4 (red). 

(B) Boxplots of no IVH (black circles) versus preUS-IVH (blue circles) and US-IVH (red circles) 

for mean values of K longer than 2 seconds, where open colored circles indicate individual data 

points. (C) ROC curves showing true positive rates (TPR) and false positive rates (FPR) for mean K 

derived from bursts >2 s in infants pre-IVH (yellow) and IVH (red); the Area Under Curve (AUC) 

values suggest a high predictive value. (D) Infants with no IVH (black) had lower mean Σ values 

over longer bursts as compared to infants with IVH (red). Error bars denote ±SEM. Solid curves are 

parabolic fits. (E) Boxplots of no IVH (black circles) versus preUS-IVH (blue circles) and US-IVH 

(red circles) for mean values of Σ longer than 2 seconds, where open colored circles indicate 

individual data points. (F) ROC curves for mean Σ for bursts >2 s for all grades of pre-IVH (yellow) 

and IVH (red) with the respective AUC values.  

 

The combination of K and Σ values for long bursts (>2 s duration) were further tested by a method 

of classification in logistic regression model. In combining both burst features an even more 

accurate predictor is achieved, where for preUS-IVH and US-IVH, AUC values were 0.95 and 0.97.  

 

A B C 

D E F 
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The improvement in sensitivity and specificity suggests that edge cases (previously misclassified 

infants) were now detected by the combination of burst variables.  

 

Figure 6.6 – Classification via logistic regression of burst sharpness (K) and skew values (Σ) values.  
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6.4   DISCUSSION  

 

In this chapter we demonstrate that two novel features of early cortical activity in extremely preterm 

infants - burst shape and asymmetry - are sensitive indicators of intraventricular hemorrhage. 

Cortical burst shapes can be rapidly and automatically analyzed from continuously recorded EEG 

data: the presently used metrics are thus readily translatable back into the clinical setting. This study 

also shows a high diagnostic accuracy for identifying preterm IVH. Together, these findings hold 

promise for the everyday clinical challenge of real-time detection of impending IVH in extremely 

preterm infants and build on the prediction of long-term outcomes in Chapter 5. 

Prior studies of EEG abnormalities in the presence of vascular lesions have focused on late EEG 

features, particularly the presence of positive rolandic sharp waves (PRS) (Clancy et al. 1984; A 

Okumura et al. 1999). These PRS waves are identified as sharp, discrete transients of short duration 

(≤400 ms), which provide a relatively reliable sign of previously experienced IVH and white matter 

injury. The overall levels of early aEEG/EEG activity were recently shown to be associated with 

early brain injury (Bowen et al. 2010; Chalak et al. 2011; Hellström-Westas et al. 2001; Akihisa 

Okumura et al. 2002; Olischar et al. 2007), . Our objective and patient-wise adaptive analysis 

method found no significant quantitative differences between study groups in the conventional 

measures used in studies of aEEG markers during acute IVH, namely IBI and burst count. However, 

average burst shapes were significantly sharper and more asymmetric during the onset and 

occurrence of IVH as compared to infants without IVH. This suggests that the study of burst 

morphology in EEG may reflect disturbances in cortical activity prior to and during acute brain 

injury. 

The observed changes in cortical burst shapes offer new insights into developmental neurobiology. 

Recent advances in experimental animal models have established that the early preterm EEG bursts 

are cortical events, spontaneous activity transients (SATs (Vanhatalo et al. 2005)), that play a 

crucial role in both neuronal survival and guidance of emerging network growth (Colonnese and 

Khazipov 2012; Hanganu-Opatz 2010). Studies in both animals (Brockmann et al. 2011; Colonnese 

and Khazipov 2012; Kilb et al. 2011) and humans(Omidvarnia et al. 2013) have shown that these 

events bind brain areas together, a necessary activity-dependent developmental mechanism for the 

developing brain connectome (Rubinov et al. 2009; L. I. Zhang and Poo 2001). It has also been 

demonstrated that the subplate layer in the developing cortex is responsible for orchestrating early 

cortical activity transients (Dupont et al. 2005). These mechanisms offer a potential developmental 

context to our finding - burst shapes were found to be most informative in the most severe, 

parenchymal brain lesions that extend to subplate or its vicinity (i.e., IVH grades 3-4). A change in 

the shape of scalp EEG bursts to sharper and leftward asymmetric forms could arise from a 
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compromised subplate function, or from lesions in cortico-cortical tracts in the white matter, both of 

which may render cortical bursts more focal. This complements the analysis in Chapter 3 where 

burst shapes may also arise from compromises in metabolic resources - a likely scenario at, or 

around the time of the occurrence of intra-ventricular hemorrhage. 

Prior to routine clinical implementation, the methodology employed in this study requires validation 

from larger, independent patient cohorts that are monitored with EEG for several days after birth, 

with detailed accounts of clinical treatment, complications, outcome and other co-morbidities. Such 

studies, for example, would allow further confirmation of whether the current EEG metrics reveal 

as-yet–unmeasured existing IVH or are sensitive to precursors that predict the onset of IVH itself. 

For example, this could be achieved using frequent repeated ultrasounds. Therefore, larger data 

cohorts need to be targeted in confirming the utility of burst sharpness in EEG as a sensitive 

indicator of IVH. A larger cohort size necessitates a multicenter study or, optimally, sourcing 

existing datasets with similar data quality, clinical details, outcome related information.  

Our present method offers possible solutions for common challenges in clinical applications of this 

kind in the neonatal intensive care environment. A particular technical advantage is that our method 

analyzes extracted EEG events (bursts) without a need for continuous, uninterrupted streams of 

EEG signal. This allows automated selection of sufficient quality, artifact-free EEG epochs, without 

compromising analytical reliability. Hence, our burst-shape metrics will allow reliable diagnostics 

derived from EEG monitoring, even during NICU treatment where EEG records are frequently 

prone to disruption by clinical care artifacts, which are a particular weakness of currently available 

algorithms for NICU EEG monitoring.  

In conclusion, we demonstrate that burst shape and burst asymmetry in the early EEG are indicators 

of IVH in extremely preterm infants as soon as 12 hours after birth,. Early and accurate 

identification of abnormal burst shape and asymmetry may enable timely identification of infants at 

high risk for developing IVH, and may thus contribute to an increased understanding of 

pathophysiological mechanisms associated with IVH and targeted neuroprotective strategies. 
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7.0 GENERAL DISCUSSION 

AND CONCLUSIONS 
 

7.1   OVERVIEW OF THE CONCLUSIONS OF THESIS 

 

In this thesis, novel methods were developed to predict clinical outcome from neonatal brain 

activity soon after birth. The overarching message for this body of work is that the cortical activity 

of the neonate brain has inherently rich temporal structures, with cortical bursts belong to a widely 

occurring class of dynamics known as scale-free processes. Significantly, we find that scale-free 

burst dynamics yield predictive properties towards eventual neurodevelopmental outcome. These 

properties provide critical insight into fundamental neurophysiological mechanisms, such as 

constraints to metabolic supply and the development of cortical pathways.  

Through a series of data driven cohort studies, this thesis addresses its principle aims and objectives 

in two neonate data cohorts: 1) term hypoxia, and 2) preterm birth. Here we revisit the aims and 

objectives in summarizing the insights provided by Chapter 2:  

 To identify stochastic processes present in neonatal brain activity following full-term 

hypoxia through a detailed statistical characterization; 

 To objectively extract signatures of bursts of cortical activity measured via the neonatal 

electroencephalogram (EEG) in full-term hypoxic and preterm neonates;  

 To combine detailed statistical characterization and signatures of bursting cortical 

activity in order to predict clinical outcome in neonates. 

In Chapter 3, I characterized the temporal information present during burst suppression in term 

hypoxic neonates. The statistical characterization of early brain activity is vital to its overall 

interpretation due its complex, stochastic nature. In utilizing a data-driven approach for thresholding 

data and extracting bursts, statistical distributions of burst durations and their sizes were found to be 

heavy tailed with power-law scaling regimes – a feature that is most commonly observed in 

physical systems. Next, exponents of burst size and duration were interrelated to reveal a 

fundamentally scale-free system operating near criticality. Significantly, I developed a novel 

method for characterizing the bursts during burst suppression to derive cortical signatures of 

recovery. The theory of crackling noise was linked to burst suppression, providing insight into how 
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neuronal resources are utilized following a period of complete quiescence. In analyzing average 

burst shapes at different time scales, burst suppression at longer time scales was found to have 

leftward asymmetry. Notably, as the neonates recover, there is a shift towards symmetrical bursting 

patterns at longer time scales, suggestive of a more scale invariant burst morphology. The findings 

of this chapter assert that bursts yield clinically informative properties in monitoring recovery of a 

hypoxic neonate. Thus, characterization of burst suppression data through empirical distribution 

functions from neonate EEG data yield closer approximations of underlying cortical behavior hours 

after birth. Further, the use of average burst shapes help identify cortical signatures of the neonate 

brain and understand the mechanisms involved in metabolic depletion.     

In Chapter 4, I demonstrated the measure of scaling exponents from statistical distributions in post-

hypoxia full-term infants in burst suppression to predict long-term clinical outcome following 

asphyxia. The provision of clinical hypothermia greatly affects the nature and interpretation of 

bedside EEG. Exponents of burst duration and burst size during early burst suppression were found 

to correlate significantly with neurodevelopmental findings at two years of age. Furthermore, this 

study steers away from previously conventional methods of burst suppression analysis, such as 

mean burst durations and inter-burst intervals. Hence, the scaling relationships of burst durations 

and sizes are vitally important to determining good and poor outcomes during post-hypoxic burst 

suppression.        

In Chapter 5, I applied methods developed in Chapter 3 to demonstrate their utility in predicting 

long-term neurodevelopmental outcomes in extremely preterm infants. Early brain activity of the 

preterm, when normal gestation is interrupted, is inherently scale-free providing insight into cortical 

activity in the presence of immature cortical pathways. Specifically, scale-free properties of cortical 

bursts durations, their sizes and shapes are predictive of long term neurodevelopment outcomes. A 

combination of gestational age and scale-free burst variables provide a highly sensitive test in pre-

empting neurocognitive outcome, i.e. Mental Development Index (MDI) at 2 years of age.  Notably, 

this chapter first highlights the crucial temporal transitions in postnatal EEG burst statistics as early 

as 12 hours after birth, wherein gestational age plays a moderating role in influencing brain 

behavior and eventual outcome.  

Chapter 6 shifts focus from long-term outcomes to acute injury observed in intensive care. This 

study revealed critical signatures of cortical bursts to predict the onset of acute brain haemorrhage 

in extremely preterm infants. Bedside monitoring of neonatal EEG in intensive care can be further 

complemented by measures of average burst shapes, irrespective of gestational age, to detect the 

early intraventricular haemorrhage. This chapter identifies significant change in cortical bursts via 

analyzing burst shapes across increasing burst durations, as opposed to conventional counts of 

bursts and inter-burst intervals. Furthermore, classification via a sensitivity and specificity analysis 
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reveals high true positive rates and low false positive rates: an important step in predicting acute 

brain injury in at-risk neonates.  

Thus in summary, in both full-term HIE and preterm infants, early identification and 

characterization (within the first 72 hours) of poor neuropathology provides a significant time 

advantage in potentially informing types of clinical treatment. In future trials, analysis techniques 

such as those presented in this thesis may influence short-term treatment (i.e. use of anti-convulsant 

medication and hypothermia treatment). For long-term outcomes, EEG correlated with later 

imaging analysis may identify those infants at-risk of poor neurodevelopment in early childhood. 

Furthermore, early or interrupted birth of a newborn results in poor homeostatic control and 

maintenance of biochemical pathways (as highlighted in Chapter 2), resulting in multiple neuronal 

damage effects. In this aspect, the studies in the thesis (Chapters 3 to 6) focus primarily on utilizing 

EEG burst analysis at bedside in the first 72 hours to reveal these potential post-birth risk factors, of 

which some are potentially treatable (via metabolic replenishment and management).      

 

7.2   CONTRIBUTIONS OF THIS THESIS 

 

This thesis combines principles of physical systems and neuroscience with neonatal brain activity 

recordings to present an integration of novel methods in predicting clinical outcome soon after 

birth. Specifically, the techniques detailed in this work and cohort studies presented have been 

subjected to stringent statistical characterization and validation. Moreover, in identifying clinically 

relevant features of early brain activity, this thesis offers a data-driven approach to bedside 

monitoring of neonates.   

In revisiting the key hypotheses presented, the contributions of this thesis to the field of 

neuroscience are:  

1)  Neonatal brain activity exhibits inherently scale-free processes; a ubiquitous signature of 

 natural systems 

Following term hypoxia and/or preterm birth, the statistical distributions of single-channel 

neonatal electroencephalographic data reveal inherently scale-free, exponentially truncated 

power-law regimes. As a neonate transitions from abnormal EEG towards a normal, 

continuous cortical activity pattern, these scale-free processes become shorter-ranged and 

sharply truncated, indicative of a system undergoing critical phase transitions following birth.         
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2)  Scale-free behavior arising from neonate brain activity is consistent with systems that 

exhibit criticality and a more complex form of stochastic behavior known as crackling noise 

In the term hypoxic brain I established that scaling relationships of cortical burst durations 

and their sizes, confirm a system consistent with criticality. Scaling relationships of cortical 

bursts in preterm brain activity are also consistent with a system that exhibits critical 

features, with robust scale-free processes. However, evidence suggests that although the 

statistical distributions of activity in the preterm brain are scale-free the activity does not 

meet exact criteria for criticality, instead displaying scale-specific changes in cortical bursting 

behavior. The presence of crackling noise elucidates upon fundamental mechanisms such as 

the self-organization of cortical bursts and neuronal resource constraints present following 

birth.     

3)  Properties of crackling noise in the neonate brain are inextricably linked with 

neurobiological processes, such as metabolic constraint and cortical pathway development 

This thesis provides a significant contribution to identifying signatures of cortical activity via 

the analysis of average burst shapes in neonate EEG soon after birth. Here, properties of 

cortical bursts in both term hypoxic and preterm infants have state-dependant effects which 

speak to underlying neurobiological processes. Specifically, average burst shapes suggest a 

phase transition towards the resumption of healthy cortical activity following hypoxia, which 

reflects a fundamental reorganization of metabolic supply. In the preterm, average burst 

shapes correlate with gestational age and acute brain injury, reflecting an immature cortical 

network during recovery.       

Furthermore, the contributions of this thesis to the field of neonatal brain monitoring are: 

4) Characterizing early neonate brain activity through analysis of scale-free and crackling noise 

 dynamics yields highly predictive properties for potential neurodevelopmental outcomes. 

This thesis identifies a direct clinical utility for extracting scale-free distributions and 

properties of crackling noise from neonate EEG data. Notably, scaling relationships of 

cortical bursts and average burst shapes aid in delineating between abnormal from healthy 

cortical signatures. This is a novel contribution in clinically classifying at-risk neonate 

populations such as term hypoxic and preterm infants. The methods detailed in this thesis 

provide a translatable approach in the automated analysis of bedside EEG. This approach 

potentially guides the clinician in predicting the risk for acute brain injury and long-term 

neurodevelopmental outcomes during neonatal intensive care.     
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7.3   CONCLUDING REMARKS AND FUTURE WORK 

 

There are specific areas of this thesis that warrant future work. For this dissertation I focused 

primarily on routinely used biparietal electrode derivations of EEG data. From a statistical point of 

view, in Chapter 3, empirical distribution functions of bursts could be compared with detrended 

fluctuation analysis, a technique used to identify long-range correlations in time series of adult EEG 

(Linkenkaer-Hansen et al. 2001; Palva et al. 2013). Long-range correlations and spatial evolution of 

cortical bursting would likely be informative in improving understanding of abnormal cortical 

activity patterns. Here, an understanding of global and focal cortical connections in the neonate 

could be enhanced by source localization analysis (Roche‐Labarbe et al. 2008) and functional 

connectivity of resting-state networks (Omidvarnia et al. 2013). Moreover, given that scale-specific 

phase transitions are observed in temporal EEG data, increased spatial topology could further 

motivate an understanding for traveling wave mechanisms, changes in power-law scaling and 

cortical burst propagation (Nunez and Srinivasan 2014; Patten et al. 2012). It is important to note 

however that characterization of spatiotemporal dynamics in the neonate requires a far denser array 

of scalp electrodes than is usually used in neonatal intensive care settings (Odabaee et al. 2013).  

In examining selected periods of postnatal EEG after birth, this thesis identifies heterogeneous burst 

scaling regimes which require investigation. Through calculating average burst shapes, we establish 

the change in burst dynamics between abnormal states of activity (pathological or preterm) and 

healthier states (continuous, rhythmic EEG). Reliability analyses conducted in each study revealed 

that within a minimum of 20 minutes, EEG epochs produce reliable numbers of bursts which can be 

robustly characterized with the calculation of average burst shapes. Future measures of reliability 

need to recapitulate criticality theory with the variations in burst shapes, in particular bursts at short 

time scales which show the greatest variability (< 1 s). In this regard, it may be useful to employ 

measures which are targeted towards identifying fast frequency activity in conjunction with average 

burst shape analysis (Palmu et al. 2010; Palmu 2015). To formally understand the mechanisms of 

recovery, specifically how neurobiological processes speak to metabolic replenishment and cortical 

pathway development, more continuous streams of data are required for analysis. Here, recordings 

of animal models, such as prolonged hypoxia effects in piglet EEG (Nakamura et al. 2013; D. 

Zhang et al. 2012), could be used to further establish the effects of oxygen deprivation, 

hemodynamic blood flow contributing to abnormal cortical activity patterns, such as burst 

suppression.  

In chapter 3, a phenomenological model for burst generation was used, whereby sequences of 

alternating bursts and suppression were not explicitly modelled. This type of modelling provides a 

practical yet mechanistic interpretation of how energy is transformed and maintained, drawing 
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parallels with velocities of ferromagnetic domains (Zapperi et al. 2005). Ideally, model-driven 

approaches such as a bifurcation analysis could build upon previously detailed neuronal models of 

the cortex, further elucidating upon activity ranging between microscopic and macroscopic scales 

(Breakspear et al. 2006; Da Silva et al. 2003; Freyer et al. 2009; J. Roberts and Robinson 2012; 

Victor et al. 2011). The presence of large-scale dynamics, such as the types of temporal EEG 

analyzed in this thesis, requires a large scale model such as a mean field approach to effectively 

capture and track the changes in recovery of brain activity. Furthermore, a more insightful method 

would investigate coupling between variables of metabolic supply and neuronal activity to better 

understand newborn neuropathology. Currently identified metabolic variables such as oxygen 

availability and ion (Na
+
/K

+
, Cl

-
) concentrations have shown to be coupled with the cortical 

excitability of neurons (Cressman Jr et al. 2009; Hajos et al. 2009; Ivanov and Zilberter 2011). 

Furthermore, the hypothesis of this model would be to assert the mutual coupling between brain 

dynamics and metabolic function. Thus, formal, unifying approaches to neural computational 

modelling will ultimately inform our understanding of early neurophysiological drive and brain 

health, providing a more sophisticated framework for empirical interpretation (J. W. Brown 2014).  

From a clinical context, cohort studies presented in chapters 5 through to 7 have potential avenues 

for future work. Identifying larger neonatal populations of EEG data following birth asphyxia and 

preterm birth would assist in building a strong and identifying case for the predictive utility of 

methods applied. Prospective studies could be used to identify the critical time windows in which 

signatures of electrical bursts, such as burst shape and scaling, in combination with interburst 

interval detection are most predictive of outcome (Matic et al. 2014). Furthermore, testing this 

study’s methodology in prospective cohorts would provide an indication of diagnostic efficacy 

during bedside monitoring. The promise of such trials include a more rapid and robust 

characterization of burst and interburst activity, which for short-term management could be used to 

trigger a cranial ultrasound for IVH identification or in the long-term indicate likely 

neurodevelopmental outcomes. Moreover, such studies would provide a more sensitive test of 

background EEG abnormality that may temporally precede current monitoring methods, e.g. brain 

imaging via ultrasound or MRI. Importantly, the use of these methods would provide highly 

focused EEG metrics based on relatively short epochs of data (between 30-60 minutes), rather than 

hours of continuously recorded EEG (which are then subjected to laborious visual assessment), 

enabling these prospective study designs.  

Further validation of current techniques should also exploit existing clinical datasets. In this respect, 

potential EEG datasets from multicentre trials similar to the neonate populations analyzed in this 

thesis have been identified for future collaboration. These datasets have collected neonate brain 

activity with other bedside monitored signals such as cardiorespiratory response (e.g. heart rate, 



141 

 

CO2, respiratory function. The proposed hypotheses in both full-term hypoxic infants and preterm 

infants would be the evolution of scale-free dynamics during impaired cardiorespiratory response 

and its link with short-term outcomes and pathophysiology. Moreover, subtle nuances of neonate 

EEG such as sleep patterns (REM, non-REM) and characterization of salient cortical patterns such 

as seizure activity, i.e. status epilepticus, will yield more informative markers of brain health and 

outcome prediction. Other routinely monitored bedside monitoring such as electrocardiograms 

(ECG/EKG) and respiration rate may elucidate upon the link between cardiorespiratory drive and 

neuronal dynamics, i.e. heart-rate variability with associated changes to neonate EEG (Massaro et 

al. 2014; Matić et al. 2013). These types of analysis will further reveal insights into how scale-free 

dynamics are linked to core neurophysiological processes, including how energy resources are 

managed in early electroencephalographic patterns of at-risk newborns.  

To conclude, in this body of work I have demonstrated that universal scaling properties which are 

found in naturally occurring phenomena, such as earthquakes and avalanches, exist in the neonate 

brain soon after birth. Notably, early cortical activity signatures are fundamentally scale-free and 

consistent with systems undergoing critical phase transitions. These transitions are scale-specific 

and temporally evolving as a neonate recovers - providing evidence of underlying neurobiological 

processes in the early human brain. Significantly, clinically informative properties can be readily 

extracted from single-channel derivations of neonatal electroencephalography, allowing for a 

prediction of neurodevelopmental outcomes. Thus, the applications for the novel methods presented 

in this thesis extend toward the bedside monitoring of at-risk neonates, and further, the potential for 

guided postnatal treatment and management.   
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APPENDIX A – SECTION 1: CDF’S OF BURST SIZES 

A-1 - Burst area distributions for all burst suppression recordings. A–M, Upper CDFs of burst area (BA, black) for all 

infants 1–13, respectively, with fits to Pareto (red), log-normal (blue), Weibull (magenta), and exponentially truncated 

ower-law (green) distributions. Asterisks denote “knees” showing an excess of bursts above the background trend. 

Insets, Scaling relationships between burst durations and burst areas (black; points are medians after binning both axes), 

with least-squares linear fit in double-logarithmic coordinates (red). BD, Burst duration. 
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APPENDIX A – SECTION 2: CDF’S OF BURST DURATIONS 

A-2 - Burst duration distributions for all burst suppression recordings. A–M, Upper CDFs of burst duration (BD; black) 

for all infants 1–13, respectively, with fits to Pareto (red), log-normal (blue), Weibull (magenta), and exponentially 

truncated power-law (green) distributions. 
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APPENDIX B – SECTION 1: OUTCOMES TABLE   

Subjects EEG Recordings Clinical outcome 

Gestational 

age 

(weeks+day

s), weight 

(g) 

pH at 

birth, 

Apgar 

(Ap) 

(1/5/10mi

n) 

Infa

nt 

Se

x 

Duratio

n of 

EEG 

epoch 

(mins) 

Coolin

g 

onset 

(hours

: 

EEG 

epoch 

onset 

(hour

s: 

MRI 

findings 

Early 

Neurolo

gy 

Later 

outcome 

(age, 

years and 

months) 

Outco

me 

class 

mins) mins) 

(Th = 

thalamu

s, BG = 

basal 

ganglia) 

39+4 7.07 

1 m 30 3:48 4:34 Normal - 

mild 

abn  in 

vision and 

fine motor 

skills 

2 

3780 1/04/2005 3y2m 

39+2 6.95 

2 m 120 0:01 1:20 
Excluded from main analysis due to lack of 

follow-up data 
3390 1/01/2005 

34+5 6.71 

3 m 120 2:24 4:39 

bilateral 

Th 

lesion 

myocloni

c 

epilepsy, 

spastic 

hemipleg

ia 

mild 

hemiplegi

a and 

epilepsy 
3 

2525 0/0/6 2y 

40+1 6.76 

4 m 100 4:00 5:44 
Excluded from main analysis due to lack of 

follow-up data 
3030 2/04/2004 

40+0 7.02 

5 m 330 11:00 15:54 

extensiv

e 

bilateral 

Th 

lesion & 

BG 

lesion 

infantile 

spasms, 

dystonic 

CP, 

mental 

retardati

on 

severe CP 

4 

3830 2/03/2005 2y 

40+3 6.93 6 m 120 11:00 15:55 

brain 

normal, 

mild 

subdural 

hemato

ma 

mild abn 

in gross 

& fine 

motor 

skills, 

visual 

perceptio

n & 

speech, 

behavior

Normal 1 
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al issues 2y9m 

3960 1/04/2005   

40+3 7.1 

7 m 90 3:03 3:07 
Th 

lesion 
died - 4 

5778 0/0/1 

41+4 6.89 

8 m 120 3:34 5:56 
normal 

MRI 

normal at 

1y 

Normal 

1 

3625 2/03/2005 2y2m 

40+1 6.86 

9 f 180 4:37 5:53 

severe 

Th 

lesion 

died   4 

3190 1/01/2001 

41+3 6.8 

10 f 120 3:15 8:32 

severe 

Th 

lesion & 

cortical 

lesion 

lost in 

follow-

up 

(hospital 

transfer) 

motor 

dysfunctio

n, affects 

speech 
2 

2688 2/02/2005 3y3m 

36+4 6.68 

11 f 160 2:23 11:55 

extensiv

e Th 

lesion & 

BG 

lesions 

infantile 

spasms, 

dyskineti

c CP 

severe CP 

4 

3374 0/2/3 3y1m 

41+1 7.13 

12 f 40 3:54 4:59 
Excluded from main analysis due to lack of 

follow-up data 
3260 

Ap not 

known 

38+1 6.84 

15 m 35 3:02 3:58 

right Th 

lesion 

sign 

increase 

normal at 

11m 

Normal 

1 

3300 1/04/2005 1y5m 

36+1 7.3 

16 m 70 3:20 17:45 normal - 

mild 

abnormali

ty 1 

2430 1/04/2005 1y7m 

41+0 6.9 

17 m 60 2:05 4:16 normal - 

Normal 

2 

3510 5/06/2006 13m 

39+3 7.15 

18 m 60 2:58 3:26 normal - 

Normal 

1 

3550 1/01/2001 12m 

39+5 6.85 

19 f 70 2:49 4:27 normal - 

Normal 

1 

3645 3/04/2006 12m 
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40+2 6.87 

20 m 210 2:26 2:38 

extensiv

e 

bilateral 

Th & 

BG 

lesion 

died   4 

3520 0/0/1 
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APPENDIX B – SECTION 2: SUPPLEMENTAL MATERIALS 

 

 

 

Supplementary Figure 1. This example EEG (P3-P4 derivation) demonstrates how the instantaneous EEG amplitude 

(red; amplitude at each time point) was computed using the Hilbert transform, a well-established method. The 

instantaneous power was then computed from the amplitude by taking its square at each time sample (see Fig. 1C).  
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Supplementary Figure 2. In order to maximize objectivity in our analysis, we developed a burst detection algorithm that 

automatically identifies  a threshold for each recording. A burst is defined as a series of consecutive time points 

beginning where the signal crosses above threshold and ending where the signal next crosses below threshold. The 

thresholding algorithm involves scanning through a wide range of thresholds (x axis ) and counting the number of bursts 

for each threshold (y axis). The identified threshold is that which yields the most bursts (red circle). This procedure 

overcomes the proven ambiguity in visual burst detection (Palmu et al. 2010) as it yields reproducible and 

mathematically-unambiguous bursts. Inset: example instantaneous power signal (black) and its identified threshold 

(red). 

 

 

 

1 Palmu, K. et al. Detection of ‘EEG bursts’ in the early preterm EEG: visual vs. automated detection. Clinical 

Neurophysiology 121, 1015-1022 (2010). 
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Supplementary Figure 3. Four additional examples of infant recordings showing reliability of our automated adaptive 

thresholding algorithm. In each case (and this was the case for all data sets) the relationship between threshold and the 

number of bursts follows the same unimodal form yielding one threshold value (red circles) that maximizes the number 

of bursts detected. 

 

 

Supplementary Figure 4. These EEG examples show 45 s epochs of BS recordings in two babies that had either normal 

(above) or abnormal (lower) outcomes. In our overall dataset we observe that burst events span a wide range of 

durations, with a substantial number of long bursts with durations longer than 2 s (the sixteen babies in our outcome 

groups yielded an average of 236 long bursts each).  
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APPENDIX C – SECTION 1: STATISTICAL DISTRIBUTIONS IN PRETERM EEG DATA 

 

N Study

ID 

Onset 

age 

(+hrs) 

Gestational 

Age  

(wks) 

Notable features of 

distribution 

Scaling exponent  Area v Durs 

slope  

Outcome information   Presence of 

Seizures 

(N=0, Y=1) 
     α.pexp LLR Slope GOF IVH1 IVH3 MDI  PDI NOS  

1 47 12 22 With cut-off, good fit 1.27 -52.94 0.40 0.90 0 N/A N/A N/A N/A 0 

  24  Loss of powerlaw scaling 1.54 -7.87 0.43 0.96       

  48  Loss of powerlaw scaling 1.51 -5.40 0.60 0.57       

2 27 12 23 Fit suggests emergence 1.60 -6.83 0.38 0.95 0 0 50 53 59.3 1 

  24  With cut-off, good fit 1.26 -

122.73 

0.35 0.96    

 

   

  48  Loss of powerlaw scaling 3.37 0.00 0.35 0.97       

  72  Slightly supercritical knee 1.32 -84.82 0.33 0.97       

3 40 12 23 No powerlaw scaling 2.05 -1.27 0.41 0.97 0 2 86 80 72 0 

  24   2.75 -0.37 0.43 0.98       

  48   1.86 -2.39 0.41 0.95       

  72   2.57 -0.59 0.55 0.63       

4 6 12 24 With cut-off, good fit 1.30 -94.93 0.42 0.95 3 N/A N/A N/A N/A 0 

  24  With cut-off, good fit 1.33 -80.25 0.40 0.96       
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  48  With cut-off, good fit 1.34 -81.27 0.40 0.95       

  72  Slightly supercritical knee 1.31 -91.64 0.37 0.94       

5 7 12 24 Supercritical knee 1.26 -52.19 0.41 0.92 3 N/A N/A N/A N/A 0 

6 17 24 24 Fit suggests emergence 1.35 -32.09 0.35 0.95 3 1 50 50 48.8 1 

  48  With cut-off, good fit 1.47 -12.30 0.35 0.90       

  72  Slightly supercritical knee 1.35 -22.07 0.31 0.93       

7 25 12 24 No powerlaw scaling 1.98 -1.65 0.51 0.94 0 0 103 88 75.5 1 

  24   1.99 -0.72 0.55 0.58       

  48   2.77 0.00 0.40 0.94       

8 34 12 24 No powerlaw scaling 1.80 -2.53 0.39 0.98 0 0 N/A N/A N/A 1 

  24  Slightly supercritical knee 1.47 -24.07 0.42 0.67       

9 49 12 24 With cut-off, good fit 1.33 -55.60 0.35 0.94 0 0 56 80 64 0 

  24  Slightly supercritical knee 1.27 -41.28 0.32 0.74       

  48  Loss of powerlaw scaling 3.33 -0.09 0.48 0.79       

  72  No powerlaw scaling 1.16 -4.76 0.44 0.46       

10 53 24 24 With cut-off, good fit 1.25 -96.11 0.36 0.96 0 0 72 80 71.5 1 

  48  Slightly supercritical 1.16 -

158.23 

0.37 0.97       

11 61 12 24 With cut-off, good fit 1.22 -

153.31 

0.38 0.94 2 2 76 96 72.5 1 
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  24  Slightly supercritical knee 1.38 -39.33 0.37 0.95       

  48  No powerlaw scaling 0.86 -17.41 0.40 0.72       

  72  No powerlaw scaling 1.85 -1.99 0.36 0.95       

12 13 24 25 With cut-off, good fit 1.47 -37.00 0.40 0.95 0 N/A 50 N/A N/A 0 

  48  No powerlaw scaling 1.39 -16.97 0.50 0.93       

  72  Slightly supercritical knee 1.27 -

113.18 

0.37 0.95       

13 14 24 25 With cut-off, truncation 1.41 -4.28 0.40 0.93 0 0 61 88 67 0 

  48  With cut-off, truncation 1.29 -71.36 0.41 0.88       

14 15 12 25 With cut-off 1.35 -31.37 0.39 0.75 0 0 72 80 78 1 

  24  No powerlaw scaling 2.12 0.00 0.47 0.57       

  48  Supercritical knee 1.35 -23.82 0.39 0.52       

  72  Slightly supercritical knee 1.41 -44.12 0.50 0.58       

15 19 24 25 

No powerlaw scaling 

4.66 -0.01 0.38 0.89 0 0 106 84 78 0 

  48  1.44 -8.25 0.38 0.89       

  72  1.72 -1.65 0.41 0.96       

16 39 48 25 No powerlaw scaling 2.31 -1.41 0.45 0.92 0 0 50 50 63.3 1 

  72   2.11 -0.19 0.30 0.28       

17 44 48 25 No powerlaw scaling 1.01 -1.37 0.55 0.72 0 0 102 114 74 0 
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18 45 12 25  2.74 0.00 0.40 0.98 0 0 82 99 78 0 

  48  No powerlaw scaling 2.59 0.00 0.39 0.98       

  72   0.97 -7.21 0.47 0.94       

19 50 24 25 Supercritical knee 1.52 -32.56 0.47 0.77 0 0 106 76 74.9 0 

  48  Loss of scaling 1.46 -28.28 0.39 0.45       

20 51 24 25 No powerlaw scaling 5.21 0.00 0.43 0.97 0 0 N/A N/A N/A 0 

  48   3.19 -0.06 0.48 0.90       

21 54 48 25 No powerlaw scaling 2.31 -0.50 0.44 0.84 0 0 94 103 78 0 

22 58 24 25 With cut-off, good fit 1.26 -98.01 0.37 0.95 0 2 54 61 62 1 

  48  Loss of scaling 2.50 -0.57 0.41 0.97       

  72  No powerlaw scaling 1.96 0.00 0.27 0.28       

23 62 24 25 No powerlaw scaling 3.17 0.00 0.49 0.79 0 0 94 88 73.5 1 

  48  With cut-off, good fit 1.16 -

183.47 

0.41 0.94       

  72  With cut-off, good fit 1.17 -

172.08 

0.39 0.95       

24 11 12 

26 

With cut-off, slight trun 1.19 -

244.66 

0.43 0.93 0 N/A 88 72 75 0 

  24 No powerlaw scaling 4.06 0.00 0.40 0.96       

  48 No powerlaw scaling 3.12 -0.18 0.47 0.97       

  72 No powerlaw scaling 3.59 0.00 0.44 0.97       
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25 12 24 26 Supercritical knee 1.34 -65.30 0.35 0.96 4 N/A N/A N/A N/A N/A 

  48  Supercritical knee, 

bimodal? 

1.40 -22.13 0.36 0.88       

26 26 12 

26 

No powerlaw scaling 2.97 -0.20 0.69 0.83 1 1 106 92 78 0 

  24 No powerlaw scaling 2.51 -0.62 0.55 0.87       

  48 No powerlaw scaling 2.65 -0.48 0.55 0.88       

  72 Fit suggests emergence 1.14 -75.98 0.78 0.79       

27 29 12 

26 

No powerlaw scaling 2.57 -0.76 0.43 0.95 N/A 0 80 72 71.5 1 

  24 No powerlaw scaling 1.10 -3.84 0.39 0.96       

  48 Supercritical knee 1.27 -61.76 0.34 0.95       

28 30 12 
26 

With cut-off, good fit 1.24 -

127.56 

0.39 0.95 0 4 N/A N/A N/A 1 

  48 No powerlaw scaling 2.51 -0.05 0.48 0.76       

29 57 12 

26 No powerlaw scaling 

1.42 -4.64 0.53 0.83 1 1 106 103 78 0 

  24 2.36 -0.60 0.46 0.62       

  48 2.75 -0.25 0.54 0.82       

  72 3.03 0.00 0.53 0.75       

30 63 12 26 No powerlaw scaling 2.35 0.00 0.47 0.95 0 N/A 94 88 72 0 

  24  With cut-off, good fit 1.19 -82.52 0.38 0.76       

  48  No powerlaw scaling 2.10 0.00 0.43 0.92       
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  72  No powerlaw scaling 2.15 -1.07 0.49 0.95       

31 9 12 27 No powerlaw scaling 1.96 -2.49 0.47 0.97 0 0 112 121 75.6 1 

  24  With cut-off, good fit 1.34 -85.90 0.36 0.96       

  48  Loss of scaling 2.11 -1.46 0.32 0.24       

32 23 24 27 Supercritical knee 1.36 -55.59 0.32 0.93 0 0 82 92 78 0 

  48  No powerlaw scaling 2.84 -0.22 0.46 0.82       

33 24 24 27 No powerlaw scaling 

No powerlaw scaling 

No powerlaw scaling 

No powerlaw scaling 

No powerlaw scaling 

3.37 -0.10 0.55 0.97 0 0 68 84 65 1 

  48  2.08 -1.66 0.47 0.61       

34 33 12 

27 

1.46 -6.40 0.45 0.97 0 0 102 84 74 1 

  24 3.36 -0.04 0.44 0.97       

  72 -0.58 -2.79 0.42 0.98       

35 41 12 27 Slightly supercritical knee 1.48 -75.16 0.55 0.94 0 0 96 88 71 1 

  24  Slightly supercritical knee 1.43 -93.23 0.51 0.91       

  48  No powerlaw scaling 2.78 -0.31 0.50 0.85       

  72  No powerlaw scaling 2.24 -0.03 0.45 0.69       

36 60 12 27 No powerlaw scaling 2.86 -0.21 0.48 0.56 1 2 92 80 74.2 1 

  24  No powerlaw scaling 3.37 -0.04 0.53 0.50       

  48  Fit suggests emergence 1.10 -37.34 0.52 0.86       



174 

 

 

 

 

  72  Fit suggests emergence 1.26 -33.00 0.50 0.86       

37 64 12 27 No powerlaw scaling 1.67 -4.71 0.45 0.78 2 2 104 92 73 1 

  24  With cut-off, good fit 1.41 -34.20 0.37 0.88       

  48  No powerlaw scaling 1.45 -5.11 0.31 0.65       

  72  No powerlaw scaling 1.84 -1.26 0.39 0.77       

38 20 48 28 Slightly supercritical? 1.62 -13.63 0.45 0.64 0 0 111 92 78 0 

39 21 12 28 Slightly supercritical knee 1.22 -

135.16 

0.38 0.97 0 0 118 81 78 1 

  24  Slightly supercritical knee 1.23 -

160.43 

0.37 0.98       

  48  No powerlaw scaling 5.97 0.00 0.42 0.98       

  72  No powerlaw scaling 2.45 -1.17 0.39 0.96       

40 35 12 28 Supercritical knee 1.57 -16.59 0.34 0.77 0 0 100 103 68.6 0 

  24  Loss of scaling 2.22 -1.75 0.42 0.83       

  48  No powerlaw scaling 3.53 -0.13 0.40 0.97       

  72  No powerlaw scaling 2.37 -0.67 0.38 0.96       

41 36 12 28 No powerlaw scaling 2.39 0.00 0.51 0.73 0 0 94 96 74 0 

  24  Fit suggests emergence 1.68 -19.45 0.50 0.88       

42 55 12 28  0.66 -2.49 0.52 0.95 2 3 100 76 73.5 1 

  24  No powerlaw scaling 1.36 -9.64 0.45 0.97       
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  48   0.94 -3.62 0.44 0.96       

43 22 48 30 Fit suggests presence 1.65 -0.43 0.36 0.78 N/A 0 84 92 78 0 

  72  Fit suggests presence 1.69 -2.29 0.41 0.47       

44 38 24 30 No powerlaw scaling 2.57 -0.17 0.52 0.75 0 0 102 100 73.8 0 

  48  No powerlaw scaling 2.21 -0.91 0.53 0.79       
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