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ABSTRACT 

Spatial coalbed methane (CBM) resources estimation is based on spatial distributions of 

coal, coal adsorbed gas content and coal density. However, the spatial distribution of gas 

content can be generated via two different geological modeling processes: (1) The gas 

content distribution is generated by geological modeling based on the interpreted gas 

content at boreholes; (2) Distributions of gas content related logs or coal properties are 

generated firstly, then the gas content distribution is calculated based on the spatial 

distributions of logs or coal properties by the relationship between the gas content and 

logs or coal properties. This paper presents a study to compare the impact of these two 

processes on CBM resources estimation for coal seam No.3 (CS-3) in southeast Qinshui 

Basin, China. Well logs from 22 wells, laboratory data from five wells and well tops 

from 131 wells for CS-3 are used in log interpretation and geological modeling. The 

simple kriging (SK) is used to build the structural model and the coal distribution. 

                                                             
*
 Corresponding author: 

Tel.: +61 7 3365 1180, fax: +61 7 3365 1277 

E-mail address: f.zhou1@uq.edu.au (F. Zhou) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 

Weighted and unweighted omni-directional variograms for structural residual and coal 

thickness are calculated using an in-house program. Logs of gamma-ray (GR) and 

density (DEN or RHOB) are distributed in 3D by using sequential Gaussian simulation 

(SGS) with SK algorithm. Artificial neural network (ANN) is used to build the 

relationship of the measured raw gas content (RGC; gas content in raw coal basis) with 

the logs of GR, DEN and measured depth (MD). Then the RGC is distributed in 3D by 

the two geological modeling processes. CBM resources are calculated in 3D based on 

the cells’ volume, coal density and RGC. Results show that RGC increases with 

increase in burial depth. Total CBM resources for the study area calculated by these two 

processes are similar for CS-3 but the distribution probability of high gas content is 

highly different which is important for locating wells. 

 

Keywords: Coalbed methane resources; geological modeling processes; artificial neural 

network.  

 

1. INTRODUCTION 

In coal seams, most of CBM is adsorbed in the micro-pores of coal matrix (Gray, 

1987). CBM resource is estimated as a product of coal thickness, coal density and RGC 

in this paper. Hence, distributions of coal, coal density and adsorbed gas content are the 

three basic properties for volumetric CBM resources estimation. Accurate spatial 

distribution estimation of CBM resource is crucial for planning and design of producing 

methane from coalbed. 3D geological modeling, including stratigraphic modeling, 

structural modeling and property modeling was used to predict the distributions of coal 

thickness, coal density and gas content in 3D (Zuo et al., 2009; Karacan et al., 2012; 
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Zhou et al., 2012; Karacan, 2013). For the gas content distribution in 3D, two processes 

can be used. One is that the gas content distribution is generated by geological modeling 

based on the interpreted gas content at boreholes; another one is that the gas content 

related logs or coal quality properties are distributed in 3D firstly and then the gas 

content is calculated or predicted in 3D by the relationship between the gas content and 

logs or coal quality properties. 

Gas content at well boreholes is interpreted by using logs and laboratory data. 

However, gas content interpretation is difficult because it is impacted by lots of 

parameters (Faiz et al., 2007; Hemza et al., 2009), e.g. coal components (contents of ash, 

moisture, fixed carbon and volatile matter content), coal maceral compositions (vitrinite 

reflectance ratio - VRO, vitrinite, liptinite and inertinite), coal maturity, pressure and 

temperature, etc. In laboratory, coal adsorbed gas content, coal components, gas 

desorption time and coal bulk density are normally measured for each sample. Coal 

maceral compositions are measured in a separate experiment. Kim (1997) estimated the 

gas content of coals in place by integrating the pressure, temperate and the ratio of fixed 

carbon over volatile matter content in wt.%. Based on the desorption values for the 61 

low volatile bituminous coal samples, Nolde and Spears (1998) calculated the gas 

content using a linear regression equation in which the depth is the only independent 

variable and gas content increases with increase in depth. Fu et al. (2009) estimated the 

gas content using multivariable regression analysis by relating burial depth, resistivity, 

sonic slowness and DEN with measured gas contents from 32 samples. Four of the five 

reported equations by Fu et al. show that the gas content increases with increase in 

burial depth. Karacan et al. (2012) also reported an increasing trend of gas content with 

increase in overburden depth and they calculated the gas content using quadratic 
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polynomials. Using ANN to interpret coal gas content is shortage in literature. 

Geostatistical methods, which are optimal when data of the modeled parameters are 

stationary (mean and variance or covariance do not vary significantly in space), are 

normally used to generate the distributions of coal properties and coal gas content 

(Jakeman, 1980; Mastalerz and Kenneth, 1994; Cairncross and Cadle, 1988; 

Hagelskamp et al., 1988; Liu et al., 2005; Heriawan and Koike, 2008b; Beretta et al., 

2010; Hindistan et al., 2010; Heriawan and Koike, 2008a; Karacan et al., 2012; Karacan 

et al., 2014; Karacan and Olea, 2015). SGS and ordinary kriging (OK) methods 

(Bohling, 2005) were used to predict the distribution of coal thickness and coal quality 

(Beretta et al., 2010). Geostatistical modeling also was used to analyze the uncertainty 

of total CBM resources (Zhou et al. 2012), gas retained amount in coal gas emission 

zone (Karacan et al., 2012), time-lapse gas-in-place after degasification using vertical 

wells (Karacan, 2013; Karacan and Olea, 2013) and effect of variogram characteristics 

of permeability on CBM production (Zhou et al., 2014). Combination of stochastic 

geological modeling and history matching was used in selecting the most probable 

realizations from geostatistical realizations (Karacan and Olea, 2015). Sufficient data, 

robust log interpretation methods and appropriate geological methods can improve the 

reliability of resource estimation. 

In this paper, ANN is used to increase the accuracy in gas content interpretation 

from logs. SK is used to build the structural model and SGS is used to generate the 

distribution of coal logs. In practical, SGS is a spatial version of a Monte Carlo 

simulation procedure (Srivastava, 2013) which generates multiple equiprobable 

realizations for the property in question (Bohling, 2005). Because the objective of this 

paper is to compare the impact of modeling process on CBM resource estimation, using 
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SK method which is based on the known mean values of parameters is to minimize the 

effect of kriging method on CBM resource estimation. Gas content is distributed by the 

two above mentioned processes. Then CBM resources are calculated and compared. The 

probability distribution of high gas content away from the well location is also analyzed 

based on multiple realizations. 

 

2. DATA AND METHODOLOGY 

2.1 Methodology 

2.2.1 Geological Modeling Processes 

In order to calculate CBM resources via geological modeling, distribution of gas 

content has to be generated. Fig. 1 shows the two processes for generating the 

distribution of gas content in 3D and the calculation processes for CBM resources. In 

Process 1, ANN is used to generate the gas content distribution in 3D based on the 

distribution of DEN, GR and MD. In Process 2, the gas content at borehole is firstly 

estimated and then built its distribution in 3D using SGS with SK algorithm (Bohling, 

2005). In both processes, the gas amount in each cell is calculated with the following 

equation: 

RGCDENVCBMR b         (1) 

where, CBMR is the cells’ gas amount in m
3
; Vb is the cells’ bulk volume in m

3
; DEN is 

the cells’ coal density in g/cm
3
 and RGC is the cells’ gas content in m

3
/t. 

 

2.2.2 Artificial Neural Networks 

It is well established that ANN has been an effective tool in dealing with non-linear 

and multi-dimensional data system. Fig. 2 indicates a neural network including three 
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layers as input, hidden (or middle) and output. In this study, logs of GR, DEN and MD 

are inputs and RGC is output. Each layer is made up of a number of processing 

elements or neurons. The output neuron represents the reservoir properties which need 

to be estimated. The number of input neurons (m) is same as the number of input well 

logs to be correlated with the property. Each input neuron brings one independent 

variable value to the network. The neuron number (n) in hidden layer is determined 

from the trial and error. ANN algorithm could be broken down to four main steps 

claimed by Rojas (2005) as: 

 Feed-forward computation; 

 Back propagation to the output later; 

 Back propagation to the hidden layer; 

 Weight updates. 

The algorithm is stopped when the value of the error function has become 

sufficiently small (Cilimkovic, 2014). 

The input neurons are connected to every hidden neuron by randomly initialized 

weights. Then each of the output neuron receives signals from all the hidden neurons 

and provides a similar weighted response. A feed forward network with sigmoid hidden 

neurons (or activation function) and linear outputs neurons is used in fitting (Matlab, 

R2012b; see Fig. 2). Sigmoid activation function combines nearly linear behavior, 

curvilinear behavior and constant behavior which makes it used usually for hidden layer 

(Cilimkovic, 2014). The network is trained with Levenberg-Marquard back propagation 

algorithm (Matlab, R2012b; Yu and Wilamowski, 2011).  

It is worth to note that avoiding overfitting or overtraining problems (Tetko et al., 

1995) is important for using ANN because it leads to deterioration in predicting 
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properties of model and untrustworthy performance when applied to novel 

measurements (Piotrowski and Napiorkowski, 2013). Early stopping, noise injection, 

weight decay, optimized approximation algorithm have been used in literature 

(Piotrowski and Napiorkowski, 2013). In this study, gas content data obtained from 61 

coal samples of five wells are used; method by setting a maximum iteration number of 

200, nine hidden layers, 25% samples for cross validation and 10% for error limit is 

used to avoid overtraining or overfitting in building the ANN model. 

 

2.2.3 Simple Kriging 

Kriging is an optimal interpolation method which estimates the value for estimation 

point as a weighted sum of neighbouring data points (Deutsch and Journel, 1998). 

Weights normally decrease with increasing separation distance between the estimation 

point and surrounded known data points. Two methods, SK and OK are used to 

determine the weights (Deutsch and Journel, 1998; Bohling, 2005). For SK, the mean is 

known and constant. The equation is: 

 


)(

1

* ])()[()(
un

muZumuZ


       (2) 

where, Z(uα) are the values from neighbouring points, uα; Z
*
(u) is the estimated value 

for estimation point u; m is the mean, which is constant over the entire domain, from all 

the known points; n(u) is the number of neighbouring data points; λα(u) is the weights 

between neighbouring points uα and estimation point u.  
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2.2.4 Sequential Gaussian Simulation 

Kriging gives us an estimation of both the mean and standard deviation of the 

variable at each grid node (Deutsch and Journel, 1998). However, SGS first generate a 

“sequential” path for visiting all the unknown grid nodes by input a seed number. 

Uniform random probability is also generated for all unknown grids. Then SGS uses 

kriged mean estimate and standard deviation to build the distribution of possible values 

at a particular location. The simulated value for one grid is determined by the generated 

random probability, kriged mean and standard deviation of the variable at this grid. For 

example, the kriged mean and standard deviation of gas content for one grid is 10m
3
/t 

and 3m
3
/t, respectively. Assuming a Gaussian distribution of gas content at this grid, the 

gas content distribution is shown in Fig. 3. If the generated uniform probability is 0.5, 

then the simulated gas content for this point is 10 m
3
/t. SGS uses the simulated value as 

input data in kriging to estimate value for successive node according to the generated 

random path. Note that one random number seed generates one realization of property. 

 

2.2 Geological Data 

The study area, a producing CBM district named as South Shizhuang CBM district 

with an area of approximate 96 km
2
, is located between the county of Qinshui and the 

city of Gaopin in the Shanxi Province (Fig. 4; Zhou et al., 2012; Zhou et al., 2013). The 

ground surface indicates a rugged-topography and a maximum 300m difference 

between the highest and lowest altitude. Wells were drilled firstly in those areas where 

are easier accessible by drilling facilities. This is the reason why most wells were drilled 

in three zones. 

From bottom to top, the stratigraphy structure is divided into three systems 
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(Ordovician, Carboniferous and Permian) and five groups (Fengfeng, Benxi, Taiyuan, 

Shanxi and Low Shihezhi; Fig. 5). The CS-3 belongs to Shanxi group which was 

formed in a delta and fluvial environment. Coal was accumulated mainly in the lake 

plain, blocked channel and delta plain (Liang et al., 2002). 

Desorption data obtained from 61 coal samples of five wells (W-1 to W4 and W-6; 

Fig. 4) and well logs, spontaneous potential (SP), GR, deep laterolog of resistivity (RD), 

shallow laterolog of resistivity (RS) and DEN from 22 wells, and correlated well-tops 

on CS-3 from 131 wells are used in the log interpretation and reservoir modeling. The 

mean RGC of the 61 samples is 9.4 cc/g with standard deviation of 3.1 cc/g. RGC was 

measured according to the Chinese industrial standard QB/MCQ1001-1999 and 

converted to the standard condition (temperature at 20°C and pressure at 1atm). Fig. 6 

shows the normal quantile-quantile plot (Bancroft and Hobbs, 1986) which indicates a 

fairly normal distribution of RGCs from these samples. 

 

3. RESULTS AND DISCUSSION 

3.1 Structural Modeling 

Measured depths on both top and bottom of CS-3 for 131 wells are correlated out 

and then convert to elevation by using the following equation: 

33 cstkbcst DZZ  
        (3)

 

In this equation, Zt-cs3 is the subsea true vertical depth (SSTVD) on top of CS-3, Zkb 

is the elevation of kelly bushing, and Dt-cs3 is the true vertical depth from kelly bushing 

to the top of CS-3, D equals the measured depth (MD) because these are vertical wells. 

The structural modeling processes are: (1) generate the horizon for top of CS-3 

using kriging; (2) build the thickness distribution of CS-3 using kriging; and (3) 
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generate the bottom of CS-3 by combining well tops on bottom of CS-3 for the 131 

wells and the thickness distribution. 

In the study area, well tops of CS-3 deeps obviously from east to west. The east-

west directional standardize semi-variogram (ratio of semi-variogram over variance) 

also continues climbing steadily beyond the global variance value which is caused by 

the deepening trend of well tops from east to west (Zhou et al., 2012; Bohling, 2005). In 

order to deal with the trend (Bohling, 2005), structural residual is used to obtain the 

semi-variogram. In order to obtain the structural residual, the relationship of Zt-cs3 with 

well locations’ coordinates is built firstly by using multivariate regression as: 

yxZ cstc  01.004.07392713       (4)
 

where, Zc-t-cs3 is the calculated structural elevation trend on top of CS-3, x and y are well 

locations in Universal Transverse Mercator coordinate system (UTM). Fig. 7 shows a 

good relationship between the measured elevation and the predicted elevation on top of 

CS-3. Then the structural residual is calculated as: 

333 cstccstcst ZZR  
       (5)

 

The structural residual ranges from -48m to 73m with average and variance of 19m 

and 651 m
2
 respectively. 

Kovitz and Christakos (2004) reported that common variogram becomes 

increasingly unreliable with increasing in clusteredness. Declustering weights was used 

to calculate the modified variogram. In study area, 97% wells were drilled in three parts 

(see Fig. 4). So the semi-variogram of the structural residual is calculated using two 

methods, weighted and unweighted. Weighted semi-variogram (de Souza and Costa, 

2013) is calculated by: 
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      


N(h)

1i
)(

N(h)

1i

2
)( /

2

1
) hihi ZZ  ii xhx(h

    (6)
 

where, ωi(h) is the occupied area of the “head” point of data point pair i which is used as 

the declustering weight. 

A program is coded in Matlab
TM

 to: (1) divide the study area into Voronoi cells for 

the 137 wells (Fig. 8); (2) to calculate the area of each cell; and (3) to calculate the 

Omni-directional semi-variograms. Fig. 9a shows the standardize semi-variogram and 

pair numbers. Note that six well met with karst collapse column (KCC; locations are 

shown in Fig. 1) are not used in calculating all semi-variograms because they were 

formed mainly by human activities (Wang et al., 1997). The mean and variance of the 

structural residual are 19m and 651m
2
 respectively. Results show that the experimental 

semi-variograms by these two methods are similar in this case. Hence, a spherical 

model is used to fit the unweighted semi-variogram with sill, nugget and range of 816 

m
2
, 0, and 1500m, respectively (see Table 2). Based on the semi-variogram, the 

distribution of structural residual and variance is kriged as shown in Fig. 10. Variance 

which represents the uncertainty is small for the area near well locations (Fig. 10b). 

Note that the grid size is 50m in both x- and y-direction and no more than one well 

filling into one grid. 

The structural elevation trend for each grid is calculated by using Eq. 4 and the x- 

and y-coordinate at the centre of grid. Then the finial horizon on top of CS-3 is the 

structural elevation trend plus kriged structural residual. Fig. 11a shows the contour map 

of elevation on top of CS-3. Results show that the elevation is deepening from east to 

west. 

Thickness of CS-3 at the 131 wells ranges from 4.9m to 7.6m with mean and 

variance of 6.3m and 0.19m
2
 respectively. Fig. 9b shows the standardize semi-
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variograms and pair numbers for coal thickness of CS-3. Results show that the weighted 

experimental semi-variograms is fluctuant. Hence an exponential model is used to fit 

the unweighted semi-variogram with sill, nugget and rage of 0.20m
2
, 0.13m

2
, and 

4100m respectively (see Table 2). Based on the semi-variogram, the distributions of 

coal thickness and variance are kriged by SK method and results are shown in Figs. 11b 

and 10c, respectively. 

The horizon on the bottom of CS-3 is generated by combining the kriged horizon 

on the top of CS-3, coal thickness and well tops on the bottom of CS-3 from the 131 

wells. Fig. 11c shows the final horizon on the bottom of CS-3. The zone is generated by 

using the horizons on both top and bottom of CS-3, and then it is sub-layered into 12 

layers in vertical which leads to an average grid size 0.5m. The total number of cells is 

148×240×12=426,240. Fig. 12 shows the spatial distribution of CS-3 after the structural 

modeling. 

Based on the structural model, distribution of karst collapse column was built using 

the objective modeling method (Zhou et al., 2012; Petrel, 2009).  

 

3.2 Log Interpretation on Gas Content 

Table 1 lists the measured gas contents and logging values at the same depths for 

the 61 samples. In order to build an ANN model for gas content, the correlation 

coefficients between gas content and each logs are analyzed. Fig. 13 shows the 

relationships of gas content with logs of SP, GR, RD, RS, DEN and MD. Results show 

that gas content increases with increase in MD while has weak relationships with each 

of GR, SP, DEN, RD and RS. Considering the correlation coefficients between logs and 

RGC, logs of MD, DEN and GR were chosen in building the ANN model for gas 
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content estimation (see Fig. 2). Note that shale correction on GR and DEN logs are not 

considered because the gas content used in the log interpretation was measured as 

received basis which includes content of inorganic matter. Neuron numbers are three, 

nine and one for input, hidden and output layers, respectively. In training ANN, 

maximum number of iterations is 200 hence the algorithm will stop at this number even 

if an adequate result has not been reached; error limit is 10%; and 25% of input data 

points are used for cross validation to test the result and give the error and the remaining 

part is used to train the model. 

Compared with the models by Zhou et al. (2012), the estimated RGCs by ANN 

matched better with the laboratory measured data with an incremental of 0.26 in 

regression coefficient from 0.42 to 0.68 (Fig. 14). 

 

3.3 Estimation of CBM Resources 

There are only 22 wells with logs of GR and DEN which are insufficient for 

generating good variograms. Hence, omni-directional variogram with range of 500m is 

used in SGS for GR and DEN based on the assumption that GR and DEN are more 

heterogeneity than structural residual. MD is modeled by SGS with same kriging 

parameters as those for the structural residual modeling. Each of GR, DEN and MD are 

generated by SGS with 100 realizations to analyze the uncertainty. Fig. 15 shows the 

histograms of MD, DEN and GR which were assumed independent variables with each 

other in the ANN model. Histogram for DEN has two peaks with one range from l.4g/cc 

to 1.6 g/cc for coal and another from 2.6g/cc to 2.8g/cc for KCC. The mean DEN is 

1.7g/cc and standard deviation is 0.4g/cc (see Fig. 15a). Histogram for GR has one peak 

around 70API. The mean GR is 79API and standard deviation is 26API (see Fig. 15b). 
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Histogram for MD has two peaks with one range from 550m to 600m and another from 

750m to 800m. The mean MD is 624m and standard deviation is 95m (see Fig. 15c). Fig. 

15d shows the histogram of coal thickness from 137 wells. Six wells from them are 

drilled with KCC. The average coal thickness from the 137 wells is 6.3m with standard 

deviation of 0.44m. Fig. 16 shows one realization for each of DEN, GR and MD. Note 

that the data sets of GR, DEN, MD and RGC are assumed as stationary data in 

geological modeling. 

Each of Process 1 and Process 2 generated 100 realizations of RGC distributions in 

3D. Fig. 17 shows one realization of RGC each from Process 1 and Process 2. Results 

indicate that the higher values of RGC from Processes 1 are distributed mostly at the 

west part (Fig. 17a). This is because that west part is deeper in burial depth than east 

part and RGC has highest correlation coefficient with MD (see Fig. 12a). However, 

higher values of RGC in Fig. 17b are distributed dispersedly. The reason is because 

RGC distribution in Fig. 17b is built by SGS and its distribution is dominated by log 

interrelated RGC at well boreholes and input parameters in SGS. 

Swath plot was used to display of grade distributions derived from a series of 

sections (Tercan et al., 2013). Each of the 100 realizations from each of the two 

processes is averaged in vertical. Then the 100 vertical average RGCs each of the two 

processes are averaged again. Fig. 18 shows the swath plots of average RGCs for six 

sections which locations are marked in Fig. 4a. Results show that vertical average RGCs 

of 100 realizations from Process 2 forms a wider belt than those from Process 1 at 

sections #A2, A3, B3, east parts of sections #B1 and B2. It presents a higher uncertainty 

for RGC by Process 2 than that from Process 1 for the area with low density boreholes 

and vice versa. Also it indicates that the average RGCs from the 100 realizations by 
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Process 1 is similar with those by Process 2 at sections #A1 through A3; while in 

sections #B1 through B3, RGCs from Process 1 decreases from west to east but it is 

quite flat for RGC from Process 2. This is because RGC is stronger related with MD, 

which is deeper for west part than east, in Process 1 than in Process 2. 

Based on the 100 realizations of RGC, the average occurrence probabilities, with 

RGC greater than 8m
3
/t for CS-3, are calculated (Fig. 19). Results indicate that most 

cells with occurrence probability higher than 50% are located in west part for Process 1; 

while for Process 2, cells with higher occurrence probability than 50% are distributed 

dispersedly. 

Fig. 20 shows the frequency distribution of the total CBM resources from Processes 

1 and 2 of 100 realizations. The average CBM resources are 6.19×10
9
m

3
 and 

6.38×10
9
m

3
; standard deviations are 0.05×10

9
m

3
 and 0.06×10

9
m

3
, from Processes 1 and 

2, respectively. The total CBM resources from Processes 1 and 2 are similar. 

Fig. 21 shows the comparison of RGCs at borehole with depth incremental of 0.1m, 

(well logs), after upscaled to 0.5m in vertical and in 3D models. Results show similar 

RGC distributions for those two processes which is the reason caused similar total CBM 

resources. 

 

4. CONCLUSIONS 

In this study, 61 laboratory data from five wells, log data from 22 wells and well 

tops data from 131 wells are used in log interpretation, structure modeling and 

stochastic modeling for estimation of CBM resources. ANN model is built firstly based 

on measured RGC and corresponding logging values. Then, we generate RGC 

distributions through two processes. In Process 1, parameters of DEN, GR and MD are 
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simulated in 3D by using SGS firstly, and then predict the distribution of the gas content 

in 3D using the developed ANN model. In Process 2, we firstly estimate RGC at 

boreholes with the ANN model and then build the RGC distribution in 3D by SGS. 

Then, the predicted RGC distributions are used in CBM resources calculation. Through 

this study, it is concluded that the weighted and unweighted omni-directional 

variograms are similar for structural residual; while for coal thickness, the weighted 

omni-directional variogram is fluctuant while unweighted omni-directional variogram is 

fitted well by an exponential model. The accuracy in predicting RGC at borehole by the 

ANN model is higher than that by the multivariate regression method. The total CBM 

resource by Process 1 is similar with that by Process 2 but Process 1 predicts a higher 

RGC for west deeper part than east. Process 1 is better in spatial CBM resources 

estimation for those CBM fields where RGC is strongly related with structural depth. 

 

Nomenclature 

ANN  = artificial neural network 

CBM  = coalbed methane 

CBMR  = coalbed methane resources 

CS-3  = coal seam No.3
 

GR   = gamma-ray, API 

KCC  = karst collapse column 

MD   = measured depth, m 

RD   = deep laterolog of resistivity, Ω.m 

RGC  = raw gas content measured on as received basis, cm
3
/g-coal 

RHOB (DEN) = logging coal bulk density, g/cm
3
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RS   = shallow laterolog of resistivity, Ω.m 

SGS  = sequential Gaussian simulation 

SP   = spontaneous potential, mV 

UTM  = universal Transverse Mercator coordinate system 

VRO  = vitrinite reflectance ratio 
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Table 1. Measured raw gas content and logging values. 
 

SN MD, m GR, API SP, mV DEN, g/cm
3
 RD, Ω.m RS, Ω.m RGC, cm

3
/g 

W1-1 583.0 112.29 129.77 1.84 223.30 236.32 8.63 

W1-2 583.5 68.38 119.54 1.36 549.91 611.67 8.48 

W1-3 584.3 46.95 72.72 1.36 3997.72 4233.04 9.28 

W1-4 584.7 37.57 41.28 1.37 5964.68 5894.14 9.28 

W1-5 585.0 34.53 17.68 1.42 6164.83 5821.74 9.64 

W1-6 585.2 27.20 2.16 1.40 6526.39 6071.08 8.44 

W1-7 585.5 24.29 -21.48 1.36 7324.22 6490.57 10.69 

W1-8 586.0 40.47 -51.35 1.34 6846.05 5676.92 9.09 

W1-9 586.7 46.20 -67.05 1.38 5828.75 5749.63 8.07 

W1-10 587.0 31.61 -67.43 1.39 5184.99 5791.24 7.68 

W1-11 587.6 92.38 -55.69 1.42 1090.61 1412.91 7.45 

W1-12 588.4 54.49 -21.31 1.38 848.87 929.04 9.61 

W2-1 450.9 137.99 121.99 1.69 115.02 131.51 8.37 

W2-2 451.7 63.21 84.73 1.30 777.09 997.98 9.94 

W2-3 451.9 56.94 74.44 1.30 1538.93 1859.11 7.85 

W2-4 452.6 35.64 41.91 1.33 7906.55 7692.77 7.15 

W2-5 452.9 27.12 32.30 1.29 8244.13 7941.87 9.85 

W2-6 453.1 24.27 27.26 1.28 8459.62 8129.54 8.28 

W2-7 453.8 37.71 17.22 1.27 9188.59 8633.02 8.49 

W2-8 454.1 64.10 16.30 1.29 7458.65 7296.70 9.86 

W2-9 454.3 56.55 16.06 1.28 7244.59 7331.59 6.2 

W2-10 455.5 76.51 19.45 1.33 1940.29 2599.23 7.9 

W2-11 456.4 49.47 46.15 1.29 656.93 783.83 10.84 

W3-1 792.4 72.01 / 1.54 895.61 1011.74 11.35 

W3-2 792.8 52.01 / 1.40 3993.74 3671.97 12.83 

W3-3 793.2 39.84 / 1.36 7714.90 6526.34 15.74 

W3-4 793.5 30.81 / 1.36 8342.95 6851.31 12.18 

W3-5 793.9 24.80 / 1.32 8275.24 6181.81 15.6 

W3-6 794.4 25.66 / 1.39 7824.58 5228.12 14.25 

W3-7 794.9 57.61 / 1.41 8247.75 4990.91 14.01 

W3-8 795.3 58.14 / 1.42 7208.40 4411.33 14.33 

W3-9 795.8 31.78 / 1.43 4071.11 3225.64 14.22 

W3-10 796.3 72.90 / 1.45 1284.36 1360.28 10.18 

W3-11 796.7 68.49 / 1.44 408.06 441.50 12.99 

W3-12 797.4 41.66 / 1.32 802.04 738.81 15.99 

W3-13 797.8 28.68 / 1.37 1784.60 1622.37 16.86 

W3-14 798.3 78.37 / 1.61 357.08 327.13 14.19 

W4-1 762.8 32.44 37.99 1.13 5196.91 5119.86 9.33 

W4-2 763.1 26.69 30.68 1.11 5665.98 5259.09 2.56 

W4-3 765.6 76.64 48.66 1.18 1701.78 2261.43 6.46 

W4-4 766.1 128.49 63.85 1.43 420.63 516.84 8.77 

W4-5 766.4 90.97 76.07 1.14 485.03 610.96 7.34 
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W4-6 767.0 35.87 107.93 1.10 355.93 412.87 7.13 

W4-7 767.3 94.83 124.05 1.91 139.48 150.53 4.2 

W4-8 767.6 148.49 138.10 2.51 94.68 101.21 8.65 

W4-9 768.0 148.41 147.87 2.53 99.17 107.32 10.01 

W6-1 556.0 101.67 216.74 1.61 349.90 447.33 8.61 

W6-2 556.4 48.84 194.34 1.42 1089.57 1436.49 5.42 

W6-3 556.8 45.53 181.27 1.33 4145.76 4715.64 3.2 

W6-4 557.2 39.24 172.67 1.33 6484.82 6499.76 7.97 

W6-5 557.6 35.05 170.95 1.36 6978.10 6299.81 8.13 

W6-6 557.9 20.17 170.14 1.38 7338.35 6303.24 8.62 

W6-7 558.3 18.93 170.22 1.36 8228.93 6713.19 8.63 

W6-8 558.6 42.17 171.58 1.38 8993.53 7186.33 8.65 

W6-9 559.0 49.46 174.90 1.39 9067.99 7334.15 4.55 

W6-10 559.4 18.30 184.03 1.32 8693.92 7493.66 10.07 

W6-11 559.7 14.96 203.79 1.34 7843.14 7125.50 9.36 

W6-12 560.0 18.99 231.50 1.35 5929.62 5907.65 6.56 

W6-13 560.3 32.89 241.73 1.33 3829.23 4259.76 6.83 

W6-14 560.6 75.40 243.48 1.38 2097.49 2552.94 11.71 

W6-15 560.9 115.16 244.97 1.41 912.81 1165.31 5.5 

Average 629.8 55.54 92.43 1.41 4285.80 3916.16 9.41 
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Table 2. Semi-variogram models and parameters for structural residual, coal thickness 

and logs of DEN and GR. 

Properties 

Semi-variogram models and parameters 

Fitting Model Direction Nugget Sill Range Mean Variance 

Structural residual Spherical Omni-direction 0 816 1500 19 651 

Coal thickness Exponential Omni-direction 0.13 0.20 4100 6.3 0.19 

DEN Exponential Omni-direction 0 0.16 500 1.7 0.16 

GR Exponential Omni-direction 0 1012 500 61.7 1012 

MD Spherical Omni-direction 0 816 1500 19 651 

Note: Nugget, sill and variance are in m
2
 for structural residual, MD and coal thickness; in (g/cc)

2
 for 

DEN and (API)
2
 for GR. Means are in m for structural residual, MD and coal thickness; in g/cc for DEN 

and API for GR. Ranges are in m.  
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Highlights 

 Artificial neural network is used to predict gas content by logs. 

 Artificial neural network is used in 3D to predict gas content distribution. 

 Two geological modeling processes are used to calculate CBM resources. 

 CBM resources from these two processes are compared. 

 Probability distributions of high gas content from these two processes are compared. 


