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Enhancement of thermal expansion of organic charge-transfer salts by strong electronic correlations
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Organic charge-transfer salts exhibit thermal expansion anomalies similar to those found in other strongly
correlated electron systems. The thermal expansion can be anisotropic and have a nonmonotonic temperature
dependence. We show how these anomalies can arise from electronic effects and be significantly enhanced,
particularly at temperatures below 100 K, by strong electronic correlations. For the relevant Hubbard model the
thermal expansion is related to the dependence of the entropy on the parameters (t , t ′, and U ) in the Hamiltonian or
the temperature dependence of bond orders and double occupancy. The latter are calculated on finite lattices with
the finite-temperature Lanczos method. Although many features seen in experimental data, in both the metallic
and Mott insulating phase, are described qualitatively, the calculated magnitude of the thermal expansion is
smaller than that observed experimentally.
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I. INTRODUCTION

The thermal expansion coefficients of a wide range of
strongly correlated electron materials exhibit temperature and
orientational dependencies that are distinctly different from
simple metals and insulators [1]. Materials that have been stud-
ied included heavy fermion compounds [2], organic charge-
transfer salts [3–6], iron pnictide superconductors [7,8], and
LiV2O4 [9]. The Grüneisen parameter �, which is proportional
to the ratio of the thermal expansion to the specific heat, can
be two orders of magnitude larger than the values of order
unity found for elemental solids [2], and may diverge at a
quantum critical point [10]. For organic charge-transfer salts,
the thermal expansion coefficients show anomalies at the su-
perconducting transition temperature [11], at the Fermi-liquid
coherence temperature, at the Mott transition [12], and strong
nonmonotonic temperature and orientational dependence [3].
Anomalies have been recently observed also in a spin-liquid
candidate material, κ-(BEDT-TTF)2Cu2(CN)3 [5]. For a
proper understanding and interpretation of these experimental
results it is important to elucidate the electronic (apart from the
phononic) contribution to the thermal expansion, particularly
since it may dominate at low temperatures. Related electronic
effects are seen in lattice softening near the Mott transition
via sound velocity measurements [13,14]. The electronic
contribution can also lead to the critical behavior of the thermal
expansion close to the metal-insulator transition [4,15].

Here we study the electronic contribution to the thermal ex-
pansion, including its directional dependence, by modeling the
electrons with a Hubbard model on the anisotropic triangular
lattice at half filling, an effective model Hamiltonian for several
families of organic charge-transfer salts [16]. Our analysis
requires a connection between the Hubbard model parameters
(t,t ′,U ) and structural parameters (lattice constants) that can
be deduced from electronic structure calculations and bulk
compressibilities for which we use experimental values. The
origin of the thermal expansion in our approach is the thermal
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excitations of electrons, which can be traced back to the
temperature dependence of the electronic free energy and
should be distinguished from usual textbook results, where
the thermal expansion is related to thermally excited phonons
in an anharmonic potential [17]. This potential is dictated also
by electronic energy, but is taken as an electronic ground state
energy and not allowed to vary with temperature.

A. Summary of results

Our main results concerning the electronic contribution to
the thermal expansion α are as follows. (i) At low temperatures
strong correlations can increase the thermal expansion by
as much as an order of magnitude. (ii) A nonmonotonic
temperature dependence of α is possible. (iii) Significant
orientational dependence is possible, including the expansion
having the opposite sign in different directions. (iv) In the
metallic phase the crossover from a Fermi liquid to a bad
metal may be reflected in a maximum in the temperature
dependence of α. (v) In the Mott insulating phase a maximum
in the temperature dependence of α can occur, at a temperature
comparable to that at which a maximum also occurs in the
specific heat and the magnetic susceptibility. (vi) All of the
above results are sensitive to the proximity to the Mott metal-
insulator transition and the amount of frustration, reflected in
the parameter values (U/t and t ′/t) in the Hubbard model.

Although we can describe many of the unusual qualitative
features of experimental data for organic charge-transfer salts,
the overall magnitude of the thermal expansion coefficients
that we calculate are up to an order of magnitude smaller than
observed. This disagreement may arise from uncertainties in
how uniaxial stress changes the Hubbard model parameters,
and uncertainty in the compressibilities including not taking
into account the effect of softening of the lattice associated
with proximity to the Mott transition.

B. Specific experimental results we focus on

We briefly review some experimental results that our
calculations are directly relevant to. We only consider thermal
expansion within the conducting layers. Anomalies are also
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FIG. 1. Lattice and hopping integrals in the Hubbard model for
κ-(BEDT-TTF)2X with X = Cu2(CN)3 and Cu(NCS)2. For X =
Cu[N(CN)2]Br, the crystal axes b and c should be replaced with
c and a.

seen in the interlayer direction but are beyond the scope of
this study. Figure 1 shows the relation between the anisotropic
triangular lattice with the associated hoppings t and t ′, and the
intralayer crystal axes (b and c) for κ-(BEDT-TTF)2X with an-
ions X = Cu2(CN)3 and Cu(NCS)2. For X = Cu[N(CN)2]Br,
the crystal axes b and c should be replaced with c and a,
respectively.

Mott insulating phase of κ-(BEDT-TTF)2Cu2(CN)3 (Fig. 1
in Ref. [5]). For some temperature ranges thermal expansions
in the b (t ′) and c (t) directions have opposite signs. Thermal
expansion is a nonmonotonic function of temperature. αb and
αc have extremal values at about 60 and 30 K, respectively.
For comparison, the magnetic susceptibility has a maximum
at a temperature around 60 K [18].

Metallic phase of undeuterated κ-(BEDT-TTF)2Cu
[N(CN)2]Br [Fig. 5(a) in Ref. [3]]. As the temperature
decreases there is a crossover from a bad metal to a Fermi
liquid [19]. αa is a nonmonotonic function of temperature,
with a large maximum around 35 K, which is comparable to
the temperature at which there is a large change in slope of the
resistivity versus temperature curve [20]. This is one measure
of the coherence temperature associated with the crossover
from the bad metal to the Fermi liquid [21].

Mott transition in fully deuterated κ-(BEDT-TTF)2Cu
[N(CN)2]Br (Fig. 1 in Ref. [4] and Fig. 2 in Ref. [22]). As
the temperature decreases there is a crossover from a bad
metal to a Fermi liquid to a Mott insulator (below 14 K). αc

(direction of t ′) is much smaller than αa (direction of t) and
monotonically increases with temperature. In contrast, αa is a
nonmonotonic function of temperature, with a large maximum
around 30 K, which is comparable to the temperature at which
the crossover from the bad metal to the Fermi liquid occurs.
Also, αa is negative in the Mott insulating phase.

C. Outline

The outline of the paper is as follows. In Sec. II we
discuss how the thermal expansion is related to variations in
the entropy through Maxwell relations from thermodynam-
ics. In Sec. III the relevant Hubbard model is introduced

and it is shown how the temperature dependence of bond
orders is related to the thermal expansion. We also discuss
how the parameters in the Hubbard model depend on the
lattice constants. Results of calculations of the bond orders
using the finite-temperature Lanczos method are presented in
Sec. IV. Comparisons are made between the calculated thermal
expansion (for a range of parameter values) and specific
experiments on organic charge-transfer salts. This is followed
by a discussion of the remaining future challenges, while we
summarize our main conclusions in Sec. V.

II. GENERAL THERMODYNAMIC CONSIDERATIONS

For simplicity and to elucidate the essential physics,
we first discuss the isotropic case. Experiments are done
at a constant temperature, pressure, and particle number
(assuming the sample is not connected to electrical leads
and the particle density is controlled by chemistry). Thus,
the Gibbs free energy G(T ,P,Ne) is a minimum and
satisfies

dG = −SdT + V dP + μdNe. (1)

From this we can derive a Maxwell relation implying that the
volume thermal expansion is given by

α(T ) ≡ 1

V

(
∂V

∂T

)
P

= − 1

V

(
∂S

∂P

)
T

. (2)

In calculations it is, however, easier to vary the volume than
pressure and so we rewrite this as

α(T ) = − 1

V

(
∂V

∂P

)
T

(
∂S

∂V

)
T

= κT

(
∂S

∂V

)
T

, (3)

where κT is the isothermal bulk compressibility. Given the
expression above, it is natural to expect strong thermal
expansion effects when the entropy is large (e.g., at the
incoherence crossover) and sensitive to volume-dependent
parameters in the system (e.g., close to the Mott transition).

As the volume changes so do the lattice constants and the
parameters in an underlying electronic Hamiltonian, such as
the hopping integral t in a Hubbard model. To evaluate (3) we
use (

∂S

∂V

)
T ,Ne

= ∂t

∂V

(
∂S

∂t

)
T ,Ne

, (4)

leading to

α(T ) = κT

∂t

∂V

(
∂S

∂t

)
T ,Ne

. (5)

This equation for volume thermal expansion is applicable
for the isotropic case, while orientational dependence of the
thermal expansion can be obtained in a similar manner by
generalizing V dP to −∑

i dσiV
0li/ l0

i . Here i = x,y,z, dσi

is the change of uniaxial stress, li is the length in the i direction,
while V 0 and l0

i are the reference volume and length. Thermal
expansion in direction i is then, similarly as Eq. (4), given by

αi(T ) = 1

Ei

l0
i

V 0

∂t

∂li

(
∂S

∂t

)
T ,Ne

+ · · · . (6)

205121-2



ENHANCEMENT OF THERMAL EXPANSION OF ORGANIC . . . PHYSICAL REVIEW B 91, 205121 (2015)

Additional terms involve different electronic model parameters
instead of t , e.g., t ′ and U . This expression is valid for a small
Poisson’s ratio, which, together with a more detailed derivation
in terms of the grand potential (� = G − PV − μNe), is
discussed in Appendix A. We take the value of the Young’s
modulus Ei from experiment and later comment on the effect
of the Mott transition on it. We estimate ∂t/∂li from band
structure calculations and we calculate ∂S/∂t numerically with
the finite-temperature Lanczos method (FTLM) [23,24]. It
follows from the third law of thermodynamics that αi(T ) → 0
as T → 0.

III. HUBBARD MODEL

We model our system with two Hamiltonian terms, Ĥ =
Ĥel + Ĥother, where Ĥel describes electrons in the highest
occupied band and their contribution to the thermal expansion
is our main interest. We decouple these electronic degrees of
freedom from others such as phonons and electrons in lower
filled bands, and denote their contribution with Ĥother. With this
we neglected the direct coupling of electrons and phonons, but
we keep the dependence of Ĥel on the lattice constants ai ,
which is in the spirit of a Born-Oppenheimer approximation.
A further discussion of the approximations used and the origin
of our electronic contribution to the thermal expansion is given
in Appendix B.

We model the electrons in the highest occupied band
with the grand canonical Hubbard model on the anisotropic
triangular lattice,

Ĥel = −
∑
i,j,σ

ti,j c
†
i,σ cj,σ + U

∑
i

n̂i,↑n̂i,↓ − μ
∑
i,σ

n̂i,σ

= −t T̂1 − t ′T̂2 + UD̂ − μN̂e. (7)

Here, ti,j = t for nearest-neighbor bonds in two directions
and ti,j = t ′ for nearest-neighbor bonds in the third direction
(compare Fig. 1). Electronic spin is denoted with σ (↑ or
↓). T̂1 and T̂2 denote bond order operators corresponding to t

and t ′ hopping, respectively, and D̂ is the double occupancy
operator. The chemical potential μ(T ) is determined by the
required half filling, i.e., that 〈N̂e〉 = Ne = N , where N

is the number of lattice sites. 〈· · · 〉 denotes the thermal
average.

Following Eq. (6), we relate the thermal expansion to
( ∂S
∂x

)T ,Ne
, where x = t,t ′,U . Using the Maxwell-type relations

we can write(
∂S

∂t

)
T ,Ne,t ′,U

=
(

∂〈T̂1〉
∂T

)
Ne,t,t ′,U

, (8)

(
∂S

∂t ′

)
T ,Ne,t,U

=
(

∂〈T̂2〉
∂T

)
Ne,t,t ′,U

, (9)

(
∂S

∂U

)
T ,Ne,t,t ′

= −
(

∂〈D̂〉
∂T

)
Ne,t,t ′,U

. (10)

With the above equations we related the thermal expansion to
the variation of entropy with the electronic model parameters
(t , t ′, and U ) or analogously to the T dependence of bond
orders (〈T̂1〉,〈T̂2〉) or double occupancy (〈D̂〉), again at a fixed
particle number.

A. Dependence of the Hubbard model parameters
on the lattice constants

The expression (6) for the thermal expansion requires
knowledge of the dependence of the Hubbard model param-
eters (t , t ′, and U ) on the lattice constants. Estimates of
this dependence can be obtained from electronic structure
calculations via methods such as the extended Hückel or
density functional theory (DFT). Calculations using the former
with the experimental crystal structure for X = Cu2(CN)3 give
the following (compare Fig. 8 in Ref. [25]):

t = t0

[
1 − 4.9

(
c − c0

c0

)]
, (11)

t ′ = t ′0

[
1 − 8.7

(
b − b0

b0

)]
, (12)

U = U0

[
1 − 3.5

(
b − b0

b0

)
− 2.8

(
c − c0

c0

)]
. (13)

Here, c and b are in-plane lattice constants (compare Fig. 1),
while reference values at 1 bar pressure are denoted with
c0,b0,t0, t ′0, and U0. In general, the Hubbard model parameters
depend on all lattice constants and structural parameters
(including angles) [26–30] and all should be considered, but
for simplicity we keep only the dependencies given above.
They were obtained [25] by assuming that squeezing only
reduces the intermolecular distance along the direction of the
uniaxial stress, but does not induce rotations of molecules.

The actual dependence of the Hubbard U on the structure
is subtle. In a crystal such as sodium or nickel oxide, U would
simply be associated with a single atomic orbital and would
not vary with lattice constant and stress, provided screening
is neglected. Screening could introduce some dependence.
However, for (BEDT-TTF)2X crystals, things are more com-
plicated because U is not the Coulomb repulsion between
two electrons in an orbital localized on a single molecule
but rather on a molecular orbital on a dimer of BEDT-TTF
molecules and the dimer geometry will vary with uniaxial
stress. Furthermore, the estimate given in expression (13)
is based on the assumption that U is solely given by the
intradimer hopping integral 2tb1. However, that is only in the
limit tb1 	 Ũ0, where Ũ0 is the Coulomb repulsion associated
with a single BEDT-TTF molecule. Although this assumption
is actually unrealistic [16], Eq. (13) is useful as an estimate,
particularly because it is an upper bound for the dependence.
Furthermore, we will see below that the U dependence of the
entropy is much smaller than that of the t and t ′ dependence
(compare Figs. 3 and 4) and so it turns out to make a relatively
insignificant contribution to the thermal expansion. Hence, the
above concerns are not particularly important.

The thermal expansion in the direction of the c axis can
therefore be calculated from Eqs. (6), (8), and (11), related to
the bond order 〈T̂1〉, to give

αc = 1

Ec

c0

NV1uc

∂t

∂c

∂〈T̂1〉
∂T

, (14)

where Ec is the Young’s modulus in the c direction, and we
have neglected the contribution from the double occupancy.
V1uc denotes the volume of one unit cell. In a similar way, the
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FIG. 2. (Color online) Strong correlations significantly enhance
the electronic contribution to the thermal expansion through the
temperature dependence of the bond order. This is demonstrated by
comparing ∂〈t̂1〉/∂T at low T for U = 8t with the noninteracting
U = 0 result. 〈t̂1〉 = 〈T̂1〉

/
N is the average kinetic energy in certain

directions. At low temperatures the enhancement is by an order of
magnitude. The plotted quantity is related to the thermal expansion
via Eq. (14) and to the stress dependence of entropy s = S/N

via a Maxwell relation ∂〈t̂1〉/∂T = ∂s/∂t , Eq. (8). In addition,
strong correlations also produce a strong nonmonotonic temperature
dependence. Results are for t ′ = 0.8t and U = 8t , corresponding to
the system in the Mott insulating phase [24].

main contribution to αb is given by the t ′ dependence on b

according to Eq. (12) and the temperature derivative of 〈T̂2〉,

αb = 1

Eb

b0

NV1uc

∂t ′

∂b

∂〈T̂2〉
∂T

. (15)

These are the expressions we use below to calculate the thermal
expansion. We stress that, by neglecting the double occupancy
contribution or change of entropy with U and keeping only
the kinetic energy terms, we are not solely dealing with band
effects, since strong correlations at larger values of U also
significantly enhance the kinetic terms as shown, e.g., in Fig. 2.

IV. RESULTS

In the following we discuss several numerical results
obtained on N = 16 sites by the finite-temperature Lanczos
method (FLTM) [23], which was previously successfully used
to determine a range of thermodynamic quantities for the same
Hubbard model [24]. In particular, it was shown that one could
describe the Mott metal-insulator transition and the crossover
from a Fermi liquid to a bad metal.

A. Dependence of the entropy on Hubbard model parameters

In Fig. 2 we show the T derivative of 〈t̂1〉 = 〈T̂1〉
/
N ,

namely, (1/N )(∂〈T̂1〉
/
∂T )t,t ′,U,Ne

, in the insulating phase
(U = 8t , t ′ = 0.8t [24]) and compare it to the result for
noninteracting fermions (U = 0). The strong difference shows
that correlations can increase the electronic contribution to the
thermal expansion by as much as an order of magnitude at
low temperatures, and produce a nonmonotonic temperature
dependence.
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 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

∂〈
x̂〉

/∂
T 

[1
/t]

T [t]

∂〈t̂1〉/∂T
∂〈t̂2〉/∂T
∂〈d̂〉/∂T

FIG. 3. (Color online) Strongly anisotropic temperature depen-
dence of the bond orders 〈T̂1〉 and 〈T̂2〉. Due to strong correlations
and frustration, a small anisotropy (i.e., deviation from the isotropy
of the triangular lattice) with t ′ = 0.8t leads to strongly anisotropic
electronic contributions to the thermal expansion. This is seen by
comparing ∂〈t̂1〉/∂T = ∂s/∂t and ∂〈t̂2〉/∂T = ∂s/∂t ′, which are
large and have opposite sign at low T . For the isotropic case (t ′ = t)
they have essentially the same T dependence, with only a factor of
2 difference coming from a number of bonds associated with the
corresponding hopping. The double occupancy 〈d̂〉 = 〈D̂〉/N shows
a much weaker T dependence. Results are for the insulating phase
with t ′ = 0.8t and U = 8t [24].

In Fig. 3 we show that an anisotropy value of t ′/t = 0.8
leads to strong anisotropy of the bond orders and their
T derivative relevant for thermal expansion. This probably
originates in strong frustration for the isotropic case with
a large low T entropy, and therefore small changes in the
anisotropy can lead to a strong change of bond orders which
in the insulating phase is associated with spin correlations.
In Fig. 3 we also show the T derivative of double occupancy
which has smaller values than for bond orders. By the Maxwell
relation in Eq. (10), our results in Fig. 3 are qualitatively
consistent with the U variation of S shown in Fig. 4 of
Ref. [24]. This relation of the entropy and negative values
of (∂〈D̂〉/∂T )t,t ′,Ne

at low T was recently evoked [31,32] as a
possible mechanism for adiabatic cooling in optical lattices.

In Fig. 4 we show results for a metallic case (t ′ = 0.8t , U =
6t [24]) for which a Fermi-liquid-like behavior is expected at
low T , leading to a linear-in-T thermal expansion coefficient
below the coherence temperature Tcoh, above which a crossover
to a bad metallic phase appears [33]. Such a linear-in-T
dependence originates in α ∝ −∂S/∂x (with x = t , t ′, or
U ) and a linear-in-T entropy S. Such a dependence of
entropy and its variation with U is shown in Fig. 4 in
Ref. [24]. Based on these considerations we include in Figs. 4
and 6 a linear extrapolation of the FTLM results to zero
temperature.

B. Thermal expansion coefficients

We now present the results of calculations that can be com-
pared to experimental data for the thermal expansion of specific
organic charge-transfer salts. We used Eqs. (14) and (15)
together with the following estimates for the parameter
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FIG. 4. (Color online) In the metallic phase (t ′ = 0.8t , U =
6t [24]) the temperature dependence of the bond orders is strongly
anisotropic and nonmonotonic. At low temperatures, a linear de-
pendence is expected for a Fermi liquid, extrapolating to zero, in
accordance with the third law of thermodynamics. This is shown
by the dashed lines. The linearity ceases above the coherence
temperature Tcoh, where there is a crossover to a bad metal and where
a maximum magnitude of the thermal expansion is observed. At
low temperatures (T � 0.1t), ∂〈t̂1〉/∂T = ∂s/∂t can be an order of
magnitude larger than for the noninteracting (U = 0) system.

values: V1uc = 800 × 10−30 m3 from Fig. 5 in Ref. [30], and
the temperature scale is determined by t = 50 meV [24],
estimated from density functional theory (DFT)-based calcu-
lations [29,30,34]. Estimates for the Young’s modulus from
x-ray determination of the crystal structure under uniaxial
stress are 1/Ec = (1/c0)(dc/dσc) = 6.9 × 10−11 Pa−1 and
1/Eb = (1/b0)(db/dσb) = 5 × 10−11 Pa−1 from Table 1 in
Ref. [28] for α-(BEDT-TTF)2NH4Hg(SCN)4. Comparable
values for isotropic pressure in κ-(BEDT-TTF)2Cu(NCS)2 are
given in Ref. [35]. We also use Eqs. (11) and (12) for estimates
of ∂t/∂c and ∂t ′/∂b.

In Fig. 5 we show an estimate of the thermal expansion
coefficients for the insulating phase and parameters (t ′ = 0.8t ,
U = 8t) that correspond to κ-(BEDT-TTF)2Cu2(CN)3, and
can be compared to experimental data shown in Fig. 1 of
Ref. [5]. The calculated magnitude of about 5 × 10−6/K at
50 K is approximately one fifth of the measured value. We
discuss possible explanations for this discrepancy later. As in
experiment, we observe a strong anisotropy with a maximum
around 50 K, but the sign of the anisotropy is opposite to
the experimental one at such T . Interestingly, a similar T

dependence with the right absolute values is experimentally
observed as a very low T (∼6 K) anomaly (see Fig. 2 in
Ref. [5]), but for agreement our T scale would need to be
reduced by a factor of 10, suggesting that this involves different
physics beyond our calculations, such as a transition into some
type of spin-liquid phase.

Our results in Fig. 5 have significantly different T depen-
dencies for the thermal expansion coefficients in the c (t) and
b (t ′) directions due to anisotropy in the bond orders shown in
Fig. 3, originating in the anisotropy t ′ = 0.8t , and since similar
variation of the corresponding lattice constants b and c changes
t and t ′ differently [Eqs. (11) and (12)]. Low temperature
experimental results shown in Fig. 1 of Ref. [5] show a strong
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 0  50  100  150  200

α i
 [1

0-6
 K

-1
]

T [K]

αc (t  dir.), t’=0.8t
αb (t’ dir.), t’=0.8t
αc (t  dir.), t’=1.2t
αb (t’ dir.), t’=1.2t

FIG. 5. (Color online) Temperature dependence of the thermal
expansion in the Mott insulating phase. Note the nonmonotonic
behavior and the large anisotropy. Indeed, in the b direction, thermal
contraction rather than expansion occurs. The maximum magnitude
occurs at approximately the same temperature as that for which the
specific heat and magnetic susceptibility are a maximum (compare
Fig. S1 of Ref. [24]). The solid curves (t ′ = 0.8t and U = 8t) can
be compared to experimental results for κ-(BEDT-TTF)2Cu2(CN)3

shown in Fig. 1 in Ref. [5]. The results are quite sensitive to the
parameter values and proximity to the Mott transition. This is seen by
comparing the dashed curves (t ′ = 1.2t). The parameter values used
are described in the text.

difference in the T dependence between the b and c directions,
suggesting that, if they originate from the electronic degrees
of freedom, the proper electronic model should have a notable
t-t ′ asymmetry, or that the dependence of t and t ′ on the
lattice constants c and b is strongly asymmetric. The anisotropy
αc − αb in our results shown in Fig. 5 has the opposite sign
to experiment. Taking t ′ ∼ 1.2t > t changes the sign of our
αc − αb results, making the comparison to experiment better.
The change in the sign of the thermal expansion by increasing
t ′ above the isotropic point (t ′ = t) originates in moving away
from maximal frustration (and therefore maximal entropy).
This also involves moving away from the isotropic point for
which the temperature dependence of both 〈T̂1〉 and 〈T̂2〉 is
essentially the same (apart from a factor of 2) due to symmetry
(compare Fig. 3).

In Fig. 6 we show our estimate of the electronic contribution
to the thermal expansion for the metallic phase of organic
charge-transfer salts. Similar to the experimental data, our
results show a maximum at T ∼ 60 K and suggest that the
experimentally observed anomalies (see Fig. 5 in Ref. [3])
could have an electronic origin. On the other hand, in Fig. 6
we observe a larger anisotropy (αc − αb) for t ′ = 0.4t than
for t ′ = 0.6t , which is in agreement with the experimentally
observed larger (αa − αc) for κ-(H8-ET)2Cu[N(CN)2]Br (κ-
Br) shown in Fig. 5(a) in Ref. [3] than (αc − αb) for κ-(D8-
ET)2Cu(NCS)2 (κ-NCS) shown in Fig. 5(b) in Ref. [3]. We
note that in κ-(H8-ET)2Cu[N(CN)2]Br, it is estimated that
t ′ ∼ 0.4t , while in κ-(D8-ET)2Cu(NCS)2, t ′ ∼ 0.6t [29].

C. Sign of the hopping integrals

We note that for comparison with the organics in Figs. 5
and 6 we used positive t and t ′ for the Hubbard model defined
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FIG. 6. (Color online) Temperature dependence of the thermal
expansion in the metallic phase (U = 4t). These results can be
compared to Figs. 5(a) and 5(b) in Ref. [3], with the t ′ = 0.4t results
being more relevant for Fig. 5(a) (κ-Br) and the t ′ = 0.6t results being
more relevant for Fig. 5(b) (κ-NCS). The dashed lines are linear
extrapolations to zero temperature, as expected for a Fermi liquid.
Note that t ′ = 0.4t is closer to the Mott insulating phase than t ′ = 0.6t

(compare Fig. 3 in Ref. [24]). Our αc (αb) should be compared
to the experimental data shown as solid squares (open circles) in
Fig. 5 in Ref. [3]. Our calculated values are about five to ten times
smaller than the measured values. As in experiment, we observe for
T ∼ 60 K a larger anisotropy (αc − αb) for t ′ = 0.4t than for t ′ = 0.6t

with the right sign for t ′ = 0.4t . We observe a maximum magnitude
at T ∼ Tcoh ∼ 60 K, suggesting that the experimental anomalies at
T ∼ 50 K could have an electronic origin, although the observed
increase (decrease) of αc for κ-Br (κ-NCS) at such a temperature is
inconsistent with our results. We use the same parameter values and
approximations as for Fig. 5.

by Eq. (7), while with respect to our definition, DFT-based
calculations suggest they are both negative [29]. This is
not a problem, since changing the signs of both t and t ′
corresponds at half filling to a particle-hole transformation
and leads to the same result due to a double sign change,
e.g., ∂〈T̂1〉/∂T → −∂〈T̂1〉/∂T and ∂t/∂c → −∂t/∂c. On the
other hand, Refs. [34,36] suggest negative t ′/t , which could
affect the results, but actually also t ′/t → −t ′/t corresponds
to a particle-hole transformation with an additional k-space
shift of (π,π ) (considering the equivalent square lattice
with one diagonal hopping t ′). This again does not change
the results for thermal expansion. On the other hand, such
particle-hole transformations are important for the sign of the
thermopower [37].

D. Future challenges

We now discuss several possible improvements to our
theoretical description that we leave as future challenges. First,
it is clear from the discussion of Eq. (6) and furthermore
from the discussion of anisotropic effects in Appendix A and
Eq. (A6) therein that for anisotropic materials, such as the
organics, the stiffness tensor Cijkl can be strongly anisotropic
with several important elastic constants that are not known
at a moment, but may be experimentally accessible. For
example, adding Poisson’s ratios to known Young’s moduli
and extracting also other elastic constants would allow for

a full tensor description. This is not just of interest for
the study of thermal expansion, but also on its own, since
the stiffness tensor also has notable electronic contributions.
These have been already observed as lattice softening, e.g.,
via sound velocity [13,14], which becomes substantial (up
to 50%) close to the metal-insulator transition (MIT), and in
addition suggests critical behavior at the end of the first-order
line, leading to a diverging ∂2�/∂t2 related to ∂2�/∂l2

i [see
Eq. (A5)]. One should, however, keep in mind that the MIT
is experimentally observed to be weakly first order in the
organics [38], but its order (and character of insulating phase)
in a Hubbard model at half filling is still controversial [39–43].
In our analysis we do not include these lattice softening
effects (reduced Young’s modulus) close to the metal-insulator
transition, but their inclusion would increase our αi by
roughly a factor of 2, making the electronic contribution
to αi larger and more important, and would improve the
comparison to experiment (see in particular the discussion of
Fig. 6).

Another challenge is to obtain the dependence of the
Hubbard model parameters (t , t ′, and U ) on all lattice constants
ai and on all structural parameters, including the angles and
orientation of molecules. These dependencies are not easy
to obtain, and the simple Eqs. (11)–(13) could be greatly
improved with more elaborate DFT calculations or studies
such as in Refs. [26,27]. In particular, Fig. 2 in Ref. [27]
shows that in various salts the different angle between ET
molecules is directly connected to the lattice constants, which
suggests that this angle is an important structural parameter
and that it possibly varies also with temperature and applied
stress. Therefore, DFT calculations, which would, in addition
to intermolecular spacing, relax also the angles between
molecules, could be valuable and present a future challenge.
DFT could connect the changes in the Hel parameters to the
changes in the structural parameters with the complete tensor.
This would further facilitate the full tensor description of the
electronic contribution to the thermal expansion and elastic
constants.

For reasons of simplicity we considered the simplest
possible Hubbard model. A further challenge is the inclusion
of additional, possibly relevant, interactions and parameters
in the microscopic model Hel [Eq. (7)]. The first candidates
would be the nearest-neighbor repulsion Ṽ , which could have
a substantial value and effect the electronic properties as
discussed in Ref. [34], and dimerization δ of the hopping
parmeters (t − δ,t + δ, t − δ, . . . ) in a particular direction,
which seems to play an important role in thermopower [20,37].
Other terms that might be considered are multiple bands (so the
system is at quarter filling) and the electron-phonon couplings
such as those considered by Mazumdar and collaborators [44].
We have also assumed that the thermal expansion is dominated
by the contribution from itinerant electrons and that these are
described by the Hubbard model. Relating the Hubbard model
to the total energy of the system as described by density func-
tional theory is subtle. Specifically, we have neglected any role
played by the core electrons and the correlations associated
with them. A full treatment of them would require calculations
based on density functional theory and approximations such as
local density approximation plus dynamical mean field theory
(LDA+DMFT) [45].
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V. CONCLUSIONS

We have shown how the electronic contribution to the
thermal expansion is related to the electronic degrees of
freedom via the parameters (t , t ′, and U ) in a Hubbard model
and temperature derivatives of known quantities (bond orders
and double occupancy). The values of thermal expansion
coefficients are further governed by the relation of model
parameters to the lattice (structural) constants and by elasticity
constants.

The electronic contribution to the thermal expansion is
large, with a strong orientational and nonmonotonic temper-
ature dependence. Furthermore, we showed that correlations
strongly increase the electronic contribution, and by estimating
it for organic charge-transfer salts, we showed that it can
provide a qualitative understanding of experimental data
for temperatures below 100 K. In particular, contrary to
suggestions in Ref. [3], the anomalies around 50 K may not be
lattice anomalies or structural phase transitions. Rather, they
could originate from the electronic contribution, and be due to
the bad metal–Fermi liquid crossover.

It should be pointed out that phononic contributions to the
thermal expansion may also play an important role at low T ,
and we sketch some possible future steps in this direction in
Appendix B. A relevant role of phonons is suggested by the
large phononic contribution to specific heat (see Refs. [46,47]
and the Supplemental Material of Ref. [24]) and in turn to
entropy relevant for thermal expansion [Eq. (3)]. Therefore,
the study of lattice vibrations (e.g., anharmonic effects,
orientational dependence, or the Grüneisen parameter [17])
and the estimates of their contribution to the thermal expansion
or stiffness tensor may aid our understanding.
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APPENDIX A: ANISOTROPIC THERMAL EXPANSION

Here we discuss thermal expansion in terms of a grand
potential �, due to its simple connection to the electronic
Hamiltonian

exp (−β�) = Tr[exp (−βĤel)], (A1)

and its straightforward calculation within FTLM [23]. Thermal
expansion coefficients are given by

αi ≡ 1

li

(
∂li

∂T

)
P,Ne

, (A2)

where li is a length of a sample in the i (= x, y, or z)
direction and can be exchanged also by a lattice constant
ai , and where we have denoted that experiments are done
at a constant pressure (P ) and fixed electron number (Ne).
Since we are interested also in an orientational (i) dependence,
we first need to generalize the standard mechanical work
−PdV to V 0 ∑

i,j σij dεij , with V 0 being a reference volume,

while σij and εij are stress and strain tensors, respectively.
However, we simplify our analysis by considering just normal
stress and no shear deformations, taking only diagonal terms.
σii = σi is the uniaxial stress which equals −P for isotropic
pressure and εii = dli/ l0

i , with l0
i denoting the reference

length. With this we can write the mechanical work as∑
i σiV

0dli/ l0
i . This brings us to � = �(T ,li,μ) and d� =

−SdT + ∑
i σiV

0dli/ l0
i − Nedμ, where for a fixed Ne one

needs to adjust the chemical potential, μ = μ(T ,li,Ne). From
� one can obtain the equation of state, which for usual work
(−PdV ) reads −P = (∂�/∂V )T ,μ, but with our generalized
work the three equations of state (for i = x,y,z) are

σi = l0
i

V 0

(
∂�

∂li

)
T ,lj =i ,μ

. (A3)

Taking the full derivative of the equation of state for fixed
Ne in the case of usual work (−PdV ), one obtains a
differential equation of state −dP = [ ∂

∂T
( ∂�
∂V

)T ,μ]V,Ne
dT +

[ ∂
∂V

( ∂�
∂V

)T ,μ]T ,Ne
dV , which, when compared to dV/V =

αdT − κT dP , gives the expression for isothermal bulk
compressibility κ−1

T = V [ ∂
∂V

( ∂�
∂V

)T ,μ]T ,Ne
and volume thermal

expansion α = −κT [ ∂
∂T

( ∂�
∂V

)T ,μ]V,Ne
in terms of �. Similarly

taking full differentials of Eq. (A3) leads to differential
equations of state,

dσi = l0
i

V 0

[
∂

∂T

(
∂�

∂li

)
T ,lk =i ,μ

]
lj ,Ne

dT +
∑

j

Cij

dlj

l0
j

,

(A4)

Cij = l0
i l

0
j

V 0

[
∂

∂lj

(
∂�

∂li

)
T ,lk =i ,μ

]
T ,lk =j ,Ne

. (A5)

From Eq. (A4) it is clear that a small change of strain dlj / l0
j =

εj leads to a small change of stress dσi = σ̃i , which is, at
constant temperature (dT = 0), related by σ̃i = Cij εj or with
the expanded indices σ̃ii = Ciijj εjj , namely, by Hooke’s law.
Now we recognize Cij or Ciijj as a stiffness tensor, which
depends on the material’s elastic constants, and has replaced
κ−1

T . The symmetry of Cij is discussed in Appendix D.
The thermal expansion coefficients can now be expressed

as

αi =
∑

j

(C−1)i,j
−l0

j

V 0

[
∂

∂T

(
∂�

∂lj

)
T ,lk =j ,μ

]
lk ,Ne

, (A6)

and, for clarity, we further simplify our calculation by
assuming that Poisson’s ratio is small, which makes C−1

diagonal, (C−1)i,j = (1/Ei)δij , with Ei being the Young’s
modulus in the i direction.

Similarly one can show that the li and T derivatives of �

in Eq. (A6) can be replaced with the li derivative of entropy S

(see Appendix C for more details),

αi = 1

Ei

l0
i

V 0

(
∂S

∂li

)
T ,lk =i ,Ne

. (A7)

Furthermore, since Ei > 0, the sign of αi is determined
by the entropy derivative and therefore whether the change
of li [or, in turn, some electronic model parameter—see
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Eqs. (12) and (11)] increases or decreases the entropy. For
maximally frustrated systems, the low-T entropy is expected to
be maximal, and therefore the sign of αi can help to determine
whether one is with a certain parameter above or below the
maximal frustration.

APPENDIX B: DISCUSSION OF ADIABATIC
APPROXIMATION AND ANHARMONICITY

Here we discuss our approach in terms of different adiabatic
approximations. This allows us to comment in more detail
on our approximations, different contributions, and possible
future improvements. In particular, we discuss the effect of
phonon anharmonicity and distinguish it from our approach.

In the usual Born-Oppenheimer approach one first solves
the electronic part of the Hamiltonian for fixed ions (or nuclei)
and then solves the ionic part, for which the electronic energy
enters as the potential energy for ions. Here we allow for
thermal excitations of electrons and therefore generalize the
electronic energy to finite T . The total Hamiltonian can be
written as Htot = Hel + Tion + Vion-ion, where Hel describes
electrons in the ionic potential and therefore depends on
electronic coordinates r and also on the coordinates of ions,
R. Tion and Vion-ion are the ionic kinetic and potential energies,
respectively, both depending on R. We simply denote all
the electronic (ionic) coordinates with r (R). Solutions to
the electronic part for fixed ions satisfy Hel|ψel

i (r,R)〉 =
Eel

i |ψel
i (r,R)〉 and i goes over ground and also excited states.

The total wave function of electrons and ions then can be
expanded over sets of |ψel

i (r,R)〉|ψ ion
j (R)〉, where |ψ ion

j (R)〉
denotes some basis states for the ions’ positions. At finite T , we
calculate the total grand potential �tot = Tr{exp[−β(Htot)]}
instead of the ground state energy,

e−β�tot =
∑
i,j

〈
ψ ion

j

∣∣〈ψel
i

∣∣e−β(Hel+Tion+Vion-ion)
∣∣ψel

i

〉∣∣ψ ion
j

〉
. (B1)

Within the adiabatic Born-Oppenheimer approximation [48]
we neglect the effect of the ions’ kinetic energy on the
electronic states, Tion|ψel

i 〉 ∼ 0, and by using commutation of
Hel with Vion-ion we can write

e−β�tot =
∑
i,j

〈
ψ ion

j

∣∣e−β(Eel
i +Tion+Vion-ion)

∣∣ψ ion
j

〉
. (B2)

By further identifying the electronic grand potential e−β�el =∑
i e

−βEel
i we can calculate �tot as

e−β�tot =
∑

j

〈
ψ ion

j

∣∣e−β(�el+Tion+Vion-ion)
∣∣ψ ion

j

〉
. (B3)

With this we find that the ground state electronic energy Eel
0

plays a potential energy role in the usual Born-Oppenheimer
approximation at T = 0, and can now, at finite T , be
generalized with �el, which depends on R, but also on T .
This T dependence is important for the thermal expansion.

If we further neglect the kinetic energy of ions or their
vibrations, which can be a reasonable approximation in some
regimes, e.g., low T , the ions will take the positions in which
the combined potential (�el + Vion-ion) is minimal. For finite
external pressure (P ) the ions are actually close to these

positions, given by the equation of state,

−P = ∂�el

∂V
+ ∂Vion-ion

∂V
. (B4)

The electronic contribution to the thermal expansion then
comes from the T dependence of �el and our result is related
to the T dependence of ∂�el/∂V , in particular, ∂2�el/(∂V ∂T )
[cf. Eq. (A4) and corresponding text]. Furthermore, here one
recognizes ∂2�el/∂V 2 as the electronic part of the ion’s
potential harmonicity, which is reflected in κT or Young’s
modulus. It has been demonstrated [14] that the anomalies
and their T dependencies in the sound velocity close to the
Mott metal-insulator transition can be explained with just
this electronic contribution, which gives firm support to the
presented approach. Its T dependence also contributes to
thermal expansion, but is due to the higher-order derivative
with respect to V and therefore is even more involved and
nontrivial than the one considered in this work.

Textbooks usually relate thermal expansion to the anhar-
monicity of the ionic potential, since thermally excited ionic
vibrations in an anharmonic potential lead to displaced average
ionic positions. In our case the electronic contribution to
the anharmonicity is given by ∂3�el/∂V 3 and is therefore a
higher-order effect, highly nontrivial, and, in addition, has T

dependence. We stress that this anharmonic origin of thermal
expansion should be distinguished from our results related to
the change of the equilibrium positions of the ions with T ,
simply because the electronic energy (and in turn the ionic
potential) is T dependent. Textbooks usually neglect any T

dependence of the electronic degrees of freedom.
Now we are in a position to discuss several possible

improvements. The most natural next step would be to consider
just the phononic contribution to the thermal expansion in
which the electrons would not be thermally excited and the
thermal expansion would then be given only by thermally
excited phonons in an anharmonic potential. However, the
ionic potential and its anharmonicity would be given also
by the electronic ground state energy Eel

0 depending on
R or V . Its calculation for strongly correlated electrons
is highly nontrivial. The next possible step would then be
to have both electrons and phonons thermally excited, but
still within the adiabatic approximation. However, the most
comprehensive description would emerge by going beyond
the adiabatic approximation and allowing for the coupling
between electrons and phonons (vibrations), which is a difficult
task mainly because the Hilbert space drastically increases
and correlations do not allow for any simple reduction. How
important and relevant any of these improvement are is hard to
judge at this point without an explicit evaluation and therefore
remain a future challenge.

APPENDIX C: RELATION OF THERMAL EXPANSION
TO ENTROPY VIA GRAND POTENTIAL

Here we show that the T and li derivative of �, one at fixed
Ne and the other at fixed μ, appearing in Eq. (A6) for thermal
expansion can be expressed as the li derivative of entropy.
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Such a relation can be shown with the use of the Helmholtz free energy F , but here we show it by using �:[
∂

∂T

(
∂�

∂li

)
T ,lk =i ,μ

]
lk ,Ne

=
(

∂2�

∂T ∂li

)
lk =i ,μ

+
(

∂2�

∂μ∂li

)
T ,lk =i

(
∂μ

∂T

)
lk ,Ne

, (C1)

−
(

∂S

∂li

)
T ,lk =i ,Ne

=
(

∂2�

∂li∂T

)
lk =i ,μ

+
(

∂2�

∂μ∂T

)
lk

(
∂μ

∂li

)
T ,lk =i ,Ne

. (C2)

Since −Ne = (∂�/∂μ)T ,li , we can write[
∂

∂li

(
∂�

∂μ

)
T ,lk

]
T ,lk =i ,Ne

= 0 =
(

∂2�

∂μ∂li

)
T ,lk =i

+
(

∂2�

∂2μ

)
T ,lk

(
∂μ

∂li

)
T ,lk =i ,Ne

, (C3)

[
∂

∂T

(
∂�

∂μ

)
T ,lk

]
lk ,Ne

= 0 =
(

∂2�

∂μ∂T

)
lk

+
(

∂2�

∂2μ

)
T ,lk

(
∂μ

∂T

)
lk ,Ne

. (C4)

Using Eqs. (C3) and (C4) in Eqs. (C1) and (C2) makes it clear that both expressions [Eqs. (C1) and (C2)] are equal, and therefore
αi in Eq. (A6) can be connected to the derivative of entropy.

APPENDIX D: SYMMETRY OF Ci j

By symmetry Cij should equal Cji , which is not directly seen from Eq. (A5) since, for example, the i derivative of � is
taken at fixed μ, while the j derivative is taken at fixed Ne. Here, we show, for example, that Cxy given with Eq. (A5) obeys the
symmetry. Keeping in mind that � = �(T ,li,μ) and for fixed Ne, μ = μ(T ,li,Ne), we can write out the first term,[

∂

∂ly

(
∂�

∂lx

)
T ,lk =x ,μ

]
T ,lk =y ,Ne

=
(

∂2�

∂ly∂lx

)
T ,lk =x,y ,μ

+
(

∂2�

∂lx∂μ

)
T ,lk =x

(
∂μ

∂ly

)
T ,lk =y ,Ne

. (D1)

By using −Ne = (∂�/∂μ)T ,li , one obtains[
∂

∂lx

(
∂�

∂μ

)
T ,li

]
T ,lk =x ,Ne

= 0 =
(

∂2�

∂lx∂μ

)
T ,lk =x

+
(

∂2�

∂μ2

)
T ,li

(
∂μ

∂lx

)
T ,lk =x ,Ne

. (D2)

Using this relation in Eq. (D1) and then further in Eq. (A5), one gets

Cxy = lx ly

V

[(
∂2�

∂lx∂ly

)
T ,lk =x,y ,μ

−
(

∂2�

∂μ2

)
T ,li

(
∂μ

∂lx

)
T ,lk =x ,Ne

(
∂μ

∂ly

)
T ,lk =y ,Ne

]
. (D3)

From this it is obvious that Cxy = Cyx and the symmetry is obeyed.
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