-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by University of Queensland eSpace

Radial Inflow Turbine Meshing Rev. 1

Mechanical Engineering Technical Report 2015/03
Ingo JAHN
School of Mechanical and Mining Engineering
The University of Queensland.

June 12, 2015

Abstract

This report describes meshing utilities to support the mesh generation for Radial Inflow
Turbines. This includes two tools:
(a) parameterised mesh generator for Nozzle Guide Vanes;
(b) a geometry and mesh generation tool for turbine rotors.
A key feature of the turbine rotor mesh and geometry generation tool is that it allows a
parametric definition of the geometry based on properties of the aerodynamic passage. For
example desired flow direction and evolution of flow area. This is in contrast to alternative
methods, which start by defining the physical features of the rotor (e.g. hub and shroud
shape), in which case the aerodynamic passage becomes and output.

In addition to providing the description of the two tools, usage instructions and examples
are provided.

https://core.ac.uk/display/43373855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) Blocking structure used for Nozzle Guide Vane mesh

(b) Cross-sectional slices through the parametrically defined rotor passage.

Figure 1: Examples of Nozzle Guide Vane and Rotor Passage Geometries generated by this
utility.

1 Introduction / Overview

Description and Userguide for Inlet_Vane_Round_Square.py, an automated job script for e3prep.py
[1] to generate Nozzle Guide Vane (NGV) meshes and Rotor_Passage.py, a piece of code that
can be used to generate parametric rotor passages for radial in-flow turbines or as an input to
e3prep.py to generate appropriate rotor meshes. These tools allow the automated generation of
geometries and structured meshes, based on a small number of parametric inputs. A key advan-
tage, particularly for the rotor passage, is that the mesh is defined by a small number of input
parameters that directly define the aerodynamic properties of the passage, thereby allowing op-
timisation by directly altering these properties. This is in contrast to alternative methods, which
start by defining the physical features of the rotor (e.g. hub and shroud shape), in which case the
aerodynamic passage becomes and output. The suitability for optimisation is further enhanced
as all code is written in python, thereby allowing easy incorporation into scripted optimisation
processes. NGV meshes can be 2-D and 3-D in the Eilmer format and the rotor meshes are in
3-D in the Eilmer format. The mesh can be used directly for simulations in Eilmer [3] or can be
converted to the foam format used by OpenFoam [2] using the e3preToFoam.py utility [4].

The typical block structure used for a NGV mesh is shown in Figure a). The parametrically
defined rotor shape, shown for two adjacent passages in shown in Figure b).

The report is split into the following sections.

e Section [2] provides information about obtaining and tool and associated code.
e Section [3| describes tools that have been developed to mesh Nozzle Guide Vanes.

e Section [4] describes the approach used to generate rotor passage geometries and associated
boundary conforming meshes.

e Section [6] provides some brief conclusions of the work and an outline of future improvements
and additions that are in preparation.

2 Distribution and Installation

2.1 Compatibility

The tools used to generate the meshes use functions from the CFCFD Group code collection
Eilmer3 [3], python, and C++. The following dependencies exist:

Eilmer3 e3prepToFoam has been included as part of Eilmer code distribution from November
2014 onwards.

python The code has a number of python and C++ dependencies. It is recommended to install
the dependencies list from the CFCFD webpage http://cfcfd.mechmining.uq.edu.au/
getting-started.html

2.2 Citing this tool

When using tho tool in simulations that lead to published works, it is requested that the following
works are cited:

e This report to cover the mesh generation tools.
Ingo Jahn (2015), “Radial Inflow Turbine Meshing”, Mechanical Engineering
Technical Report 2015/03, The University of Queensland

http://cfcfd.mechmining.uq.edu.au/getting-started.html
http://cfcfd.mechmining.uq.edu.au/getting-started.html

e The following report which covers e3prep.py the underlying code used to generate the
mesh.
PA Jacobs, RJ Gollan, DF Potter (2014), “The Eilmer3 code: user guide and
example book”, Mechanical Engineering Technical Report 2014/04, pp 1-447,
The University of Queensland

2.3 License

The tools described within this report are distributed as part of the code collection maintained
by the CFCFD Group at the University of Queensland [3]. This collection is free software:
you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or any later
version. This program collection is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details http:
//www.gnu.org/licenses/.

The code will be automatically installed during a typical build of Eilmer3. Download and
build instructions are available from the CFCFD webpage http://cfcfd.mechmining.uq.edu.
au/.

2.4 Modifying the code and Contributing

If you perform modifications or improvements to the code please submit an updated version
together with a short description of the changes to the authors. Once reviewed the changes will
be included in future versions of the code.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://cfcfd.mechmining.uq.edu.au/
http://cfcfd.mechmining.uq.edu.au/

3 NGVs

3.1 Running the Tool
Follow these steps:

1. Define the NGV geometry in the Inlet_Vane_Round_Square.py
2. Modify settings in file Inlet_Vane_Round_Square.py

3. Run following command to create e3prep mesh:
e3prep.py ——job=Inlet_Vane_Round_Square.py --do-svg

4. 2-D mesh topography is now available as .svg
5. Convert mesh to other format for further processing

6. Run following commands to convert mesh to Vtk format and view in paraview:
e3post.py —-—job=Inlet_Vane_Round_Square.py --vtk-xml
paraview

7. If using Eilmer for flow simulation, the job file Inlet_Vane_Round_Square.py needs to be
adjusted to set appropriate simulation parameters.

3.2 Geometry Definition

The geometry of the NGV and the fluid domain is constructed using ### Defining the Geometry ###
section of the code. Figure 2| provides a graphical definition of the corresponding variables. The
following variables define fluid domain:

Dimensions defining the fluid Domain

R_in = 35.e-3 # (m)

R_out = 24.8e¢-3 # (m)

N_blade = 8 # Number of blades
Height = 0.003 # (m)

The domain is modelled as an arc segment of a ring. The arc width is defined by the blade
number N_blade, the inner and outer edge of the domain are set by radii R_in and R_out. The
left and right faces (periodic boundaries in typical simualtions) are inclined to the respective
radial directions at an angle that matches the angle of the NGV. In 3-D the mesh is extruded
out of the page by the distance Height.

The actual NGV geometry is defined by:

Dimensions defining the Vane

R_leading = 30e—3 # (m) position of Vane leading edge centre
alpha_trailing = 50./180*np.pi # (rad) Vane angle at trailing edge.
r_leading = 1.5e-3 # (m) radius of vane leading edge

r_trailing = 0.5e=3 # (m) thickness/radius of vane trailing egde

The NGV geometry is constructed as follows:

r_leading

alpha_trailing_,

r_trailing

Figure 2: Variables defining the geometry of the NGV and fluid domain.

e TO, NGV trailing edge centre is placed at the centre of the domain outlet, defined by R_out.

e L0, NGV leading edge centre is placed at radius, R_leading, so that a NGV centreline
with angle, alpha_trailing is created.

e NGV leading edge is constructed from a circle with radius, r_leading, centred at TO.

e NGV sides are constructed as the tangents to two circles. The with radius, r_leading,
centred at LO and the second with radius, r_trailing, centred at TO.

e The intersection of the NGV sides with the inner radius of the fluid domain (T1 and T2)
are used as the ends of the sides.
3.3 Mesh Definition

The mesh is created in two parts. There is a NGV wrapping boundary layer mesh consisting
of the blocks BL0O, BL1, BL2, BL3, and BL4 and a far-field mesh consisting of the remaining
blocks. The mesh topography together with the nodes at block corners is shown in Figure

3.3.1 Mesh Construction and built-in constraints

Boundary layer mesh To create a wall conforming boundary layer mesh the The Boundary
layer mesh is split into 5 sections as a consequence of the geometry definition as follows:

e L1 is placed at the end of the straight section of the NGV upstream side.

_—
,//////
_— BTO
L~
7 T
/// B
— B2
n,.- BU2 . / n
\\ /(
\\\ b3i2 L L0
~ - ulb3a \\Bil.j .
W e A
T uzbBYT uib3p R
\\Uz,\ 1 X
S~ u’Zb_Zib_ e BLO

BUO

S~

Figure 3: Mesh Topography.

L4 is place on the NGV downstream side, so that the distances T1L1 and T2L2 are matched.
This ensures equal cell spacing on both sides of the NGV.

L3 is placed at the end of the straight section of the NGV downstream side.

L2 is placed on the NGV upstream side, so that the distances L3L4 and L1L2 are matched.

To define the upper limit of the boundary layer mesh, the control nodes B2, B3, B4, and B5 are
placed at a distance, bl normal to the wall. The control nodes B1 and B6 are placed such that
the BLO and BL4 have parallel edges.

Far-field mesh The far field mesh topography is predefined by the need to match cells between
the two periodic boundaries at the left and right side of the domain. To ensure good mesh quality
tuneable control points Ul and U2 (paired with D1 and D2) exist on the domain sides and control
points I2 and I3 exist at the domain inlet (see . The lines linking the domain edges to the
top of the boundary layer blocks are constructed as follows:

U2 — B2, 4 point bezier curve with intermediary control points u2b2a, u2b2b, which
ensure line is perpendicular at both ends

Ul — B3, 4 point bezier curve with intermediary control points ulb3a, ulb3b, which
ensure line is perpendicular at domain edge and forms 60° angle at B3. (3 x 60° 42 x 90°)

B3 — 12, 3 point bezier curve with intermediary control point b3i2, which ensures line
forms 60° angle at B3. (3 x60° 42 x 90°) The angles are chosen to maximise mesh quality,
firstly in the boundary layer blocks abd then the surrounding blocks.

B4 — I3, 3 point bezier curve with intermediary control point b4i3, which ensures line
forms 60° angle at B4. (3 x 60° + 2 x 90°)

B4 — D1, 4 point bezier curve with intermediary control points b4dlb, b4dla, which
ensure line forms 60° angle at B4 and is perpendicular at domain edge. (3 x 60° + 2 x 90°)

B5 — D2, 4 point bezier curve with intermediary control points b5d2b, b5d2a, which
ensure line is perpendicular at both ends

3.3.2 Tuning nodes

To obtain high grid qualities, especially for highly inclined NGVs, the mesh has 4 user definable
mesh tuning nodes. These are Ul and U2 (paired with D1 and D2) on the domain sides and
12 and I3 at the domain inlet. The position of these is defined using fractions of the respective
lines where the nodes are positioned. E.g. U1D1_f defines the position of the Ul (and D1) as a
fraction of the distance along the line U3 — I1. A low value will place U1 close to inner radius
of the domain and a high value will place U1 close the outer radius of the domain. The fractions
are set in the following part of the code:

Dimensions defining the mesh

bl = 0.5e-3 # (m) thickness of boundary refined layer around
vane

U1lD1.f = 0.7 # fractiond defining position of Ul and DI

U2Db2.f = 0.5 # fractiond defining position of U2 and D2

I12_.f = 0.3 # fractiond defining position of I2

I13.f = 0.9 # fractiond defining position of I3

e U1D1_f, position of Ul (and D1) along line U3 — I1.
e U2D2_f, position of U2 (and D2) along line U3 — I1.
e I2_f, position of 12 along line 11 — I4.

e I3_f, position of I3 along line I1 — I4.

3.3.3 Cell numbers

The cell numbers are defined by the following variables:

\
Define the number of cells:

Nu = 32
Nd = 32
Nt = 12
NBL = 7
Nbl = 53
Nb2 = 13
Nb3 = 18
Nz = 10

The variables correspond to the following:

e Nu, number of cells in the tangential direction for blocks BUO, BU1, and BU2.
e Nd, number of cells in the tangential direction for blocks BDO, BD1, and BD2.
e Nt, number of cells in the tangential direction for block BTO.

e NBL, number of cells in the wall normal direction in the boundary layer blocks BL0, BL1,
BL2, BL3, and BLA4.

e Nbi, number of cells used to discretise the NGV surface in the wall parallel direction for
BLO and BL4.

e Nb2, number of cells used to discretise the NGV surface in the wall parallel direction for
BL1 and BL3.

e Nb3, number of cells used to discretise the NGV surface in the wall parallel direction for
BL2.

e Nz (3-D only), number of cells used of the page normal direction.

3.3.4 Cell recommendations

The code includes a simple utility to recommend cell numbers for the mesh generation. Cell
number recommendations are automatically generated when running the code and provided as
part of the on-screen output:

The following numbers of cell settings are recommended
Adjust absolute number by changing N_mult

Current setting: N_mult = 150 (number of cells along blade
surface)

Recommendations:

Nu = 32.0

Nd = 31.0

Nt = 30.0

NBL = 777, user selected

Nbl = 50.0

Nb2 = 10.0

Nb3 = 30.0

Nz = 777, user selected

The recommendations are based on the value of the variable N_mult, which is set in the line:
N_mult = 150 # wuse this N_multiplier to adjust number of cells.

Using the above numbers, results in mesh with the following properties:
e mesh with N_mult cells equally spaced around the perimeter of the NGV
e mesh with cells in the inter NGV gap having same cell length as NGV perimeter cells

e cell numbers for boundary layer blocks need to be adjusted manually to correct ensure
smooth transition (see [3.3.5))

By adjusting N_mult and re-running the code, new recommendations for finer or coarser meshes
can be generated.

3.3.5 Changing cell clustering

Clustering can be adjsuted in the ### Set Cluster Functions ### part of the code.

NGV Boundary Layer The clustering of the boundary layer blocks wrapped around the
NGV can be adjusted by adjusting the XX parameter in the following two lines:

CF_bl0 = RobertsClusterFunction (0,1 ,XX)
CF_bll = RobertsClusterFunction (1,0,XX)

The value of XX for both lines needs to be identical, as lien directions change between adjcanet
blocks in the boundary layer. Varying this parameter in conjunction with the number of cells in
the boundary layer, N_bl, the boundary layer block height, bl allows the boundary layer mesh
to be refined and integrated into the far-field mesh.

Z-direction (3-D only) Clustering in the Z-direction, i.e. close to the top and bottom wall
can be adjusted by varying the XX parameter in the following line:

CF_h = RobertsClusterFunction (1,1 ,XX)

3.3.6 Defining Flow Properties

This is not covered here. See specific simulation code instructions for details. If using Eilmer the
boundary conditions can be set in under the ### define B/C ### section of the code (see []).
If using OpenFoam the boundary faces are pre-labeled as follows for use with e3prepToFoam [4]:

OF _outlet_00 Boundary at inner radius. Typically outlet.
OF_inlet_00 Boundary at outer radius. Typically inlet.
OF_inlet_01 Boundary on left side. First periodic interface.

OF_inlet_02 Boundary on right side. Second periodic interface. This is fully matched to
OF_inlet_01.

OF_wall_00 Surface of NGV.
OF_wall_01 (3-D only). Top wall of channel.

OF_wall_02 (3-D only). Bottom wall of channel.

3.4 Example

The following section shows an example mesh generated by for a radial inflow turbine NGV.
The geometry and mesh properties of the NGV are summarised in table [I} The example can be
generated by executing ./run_NGV.sh.

3.4.1 Set-up file

The mesh is initially generated in 2-D to ensure computationally efficient generation of and easy
review of the main mesh topography. Once the 2-D topography has been set, as a final step the
mesh is extrude in the z-direction to generate a 3-D mesh (see [3.4.2)). The releavnt code from
the set-up file, to set the properties from Table (1] is:

10

Table 1: NGV geometry used for example case

Fluid Domain

Domain outer radius 0mm Domain inner radius 0mm
Number of blades 0
NGV Geometry
Leading edge centre ra- (Omm Leading edge radius 0mm
dius
Trailing edge width 0mm Height 3mm
Mesh
Thickness of boundary 0mm Nu 32
layer blocks
Nd 32 Nt 12
NBL 7 Nb1 53
Nb2 13 Nb3 18
Nz 10
Tuning Parameters
UiD1_f 0.7 UiD1_f£ 0.5
I2_f 0.3 I3_f 0.9

Defining the Geometry and Mesh

Dimensions defining the fluid Domain

R_in = 33.e-3 # (m)

R_out = 24.8e—3 # (m)

N_blade = 8 # Number of blades
Height = 0.003 # (m)

Dimensions defining the Vane

R_leading = 30e—3 # (m) position of Vane leading edge centre
alpha_trailing = 50./180*np.pi # (rad) Vane angle at trailing edge.
r_leading = 1.5e-3 # (m) radius of vane leading edge

r_trailing = 0.5e—=3 # (m) thickness/radius of vane trailing egde

Dimensions defining the mesh

bl = 0.3e-3 # (m) thickness of boundary refined layer around
vane

UlD1.f = 0.75 # fractiond defining position of Ul and DI

U2D2.f = 0.55 # fractiond defining position of U2 and D2

I12_f = 0.3 # fractiond defining position of 12

I13_.f = 0.9 # fractiond defining position of I3

bez... # definition of Bezier control points.

Define the number of cells:

11

NS
TN
umuunm?‘ RN
i

“o
()
)
i
o
S
LS
SN

%
A
%

0
':"
0
X
K
o
I
P!
205
o
K

e

0
%
&

L

T ELL TR
2 R oSS AANINARRANAAAS
v TRt .

()
3%
2

%
25
7%

SN

%
"l
9
N
.

L7
0..

B

0
o7

dit eEERSE AN VAR
7 S i

%
Y

o
9
W
0
o
0
f@
7

%
(X
i
3"
%
o,

A
i;@
X
"
"
"I
;/
;j&
i
i
5
0y

0

/ e

l,’

0
s

i
(7

ELL

NS
=
SN
RS,
NI
e

0

)
s
LT

4
7
il
i
o
o
) N'
i
9
,’l
0
14:
"
¢
%
g
e

o
n:
)
1
i
|
/
4y
/
4 :I/l
/)
hrs

X
/
5
"O'
i
0
o
i
7
)
{
¢’O
0"

ks
i

Y

/

y
Wy
%!9}#5 W”

)

i

£
S
£
S
A
A
S
A
e
i
i
i
o
/
9
'o
!

A

= =
SRmae R
S . TS
= = = S
= S

L)
9
i
v
"
7
[v

/
y %99
i

/

e S
e e U
SRR SRR

(a) 2-D mesh

Quallity Quality
3 5 0.853 08

0.6

(b) Cell Aspect Ratio (c) Mesh skewness

Figure 4: 2-D mesh generated for NGV using example data.

Nt = 16
Nbl = 7
Nbl = 50
Nb2 = 10
Nb3 = 30
Nz = 10
N_mult = 150 # use this N_multiplier to adjust number of cells.

The resulting mesh, mesh aspect ratio, and mesh skewness are shown in Figure [l While
overall a good quality, the mesh shows high skewness close to the inner edge, of the domain,
which is caused by the high angle between the NGV and the inner edge. However with a
maximum skewness parameter of 0.85 the mesh is still within acceptable limits, This mesh can
be further improved by increasing the overall cell numbers.

12

Figure 5: 3-D mesh

3.4.2 Conversion to 3-D
To generate a 3-D mesh the variable gdata.dimensions needs to be set to 3.

For grid development, set gdata.dimensions = 2, this will create
teh 2—D projection of the mesh.

gdata.dimensions = 3

gdata.axisymmetric_flag = 0

Once this has been changed, executing ./run_NGV.sh will generate the 3-D mesh shown in

figure

13

0.02 o010
0.038 19.008.000.00 axis

(a) Low Wrap Angle, Oyrap = 40° (b) High Wrap Angle, 0rqp = 80°

Figure 6: Comparison of two identical rotor geometries with different wrap angles. (6;, = —21°,
Oour = 65°, Rip = 28.44 x 1072 m,Roue = 12.5 x 1073 m, Z = 12 x 103 m, A, = 3.9 x 10~ 4 m?,
Aout = 5.6 x 1074 m?

4 ROTOR

4.1 New approach to Definition of Rotor Shape

Traditionally the shape of aerodynamic passages on a radial turbine are defined using a hub con-
tour, a shroud contour, wrap angle, and local blade angle 3, defined with respect to the passage
meridional length. While such a geometry definition is logical from a structural, manufacturing,
and mechanical design point of view (i.e. blades features are attached to the hub), this approach
is not ideal for aerodynamics design. When designing and optimising the aerodynamic design
parameters such as local flow direction, flow area (normal to flow direction), wetted rotor area,
wetted shroud area, and how these evolve along the meridional length of the passage are the
parameters of interest.

Particularly when comparing performance of turbomachinery, the traditional approach can
create significant challenges. For example two designs with identical hub and shroud contours
and inlet and exit flow angles can be generated with two different wrap angles as shown in Fig. [6]
Naturally their performance will be different and one may conclude that this is a consequence
of wrap angle. However, the underlying physical effects causing this effect are the differences
in passage length (affecting frictional losses) and the changes in flow area evolution (affecting
rate of expansion) between the two different designs. Thus to get a good understanding of the
interaction between the fluid flow, the turbine rotor, and the resulting performance it is more
intuitive and direct to work with aerodynamic parameters. The direct approach is also favourable
from an optimisation point of view, as it allows a more direct parameterisation of the design space
using parameters that directly affect performance.

The advantages outlined above in combination with recent advances in manufacturing, that
allow even the most abstract geometries to be manufactures, for example by using precision
5-axis machining or advanced powder deposition methods (e.g. laser sintering), make geometry
definition based on aerodynamic shapes an appealing alternative. The following sections outline
a new geometry definition approach, which defines rotor geometry based on three features, also
illustrated in Flg. [7}

Meridional Streamline This line in 3-D defines the direction the flow has to follow as it

14

9 5000009 / Npiage — \
= 8 £ opooos| {
<o 050007 \ Vout
98 010006 [“_R
30 00005 | ~Rout
sg 00004 [=
X Hoo3miin—o———. .1 1 X
00190 02 04 06 08% JH10§0 02 04 06 08 10 - : ———
€ 0,010 0.p0104 - ~<
3 0.008 0.50102 - S~
> 0.006 050100 - - ~
5 0.004 0.00098 e Meridional So
T £002 0.H0096 ’ ; N
2 gooo 2 5boooa s Streamline \
S190 02 04 06 O0& oifp0 02 034 06 08 10 / N
210 4o 0210 / \
508 220.800205 I \
iy %20.0§0200 ! |
204 s, \
202 @0.890195 /
<00 5 = 0.0b0190 \ . . , \ /
£ 0.0 %10 .0__02 04 06 08 10 N /
= 5 104f \ B e
1 02t N ,
1.00 N Ire
0 98| ~_i Pl
704131@% g ooel ! R -7
00.00-639" 0.94 i in_ ——

£
© 0.0 0.2 0.4 0.6 0.8 1.0 o ——— -
3 Length along Streamline P i

=)

(a) Parametrically defined input variables. Graph
show variation of variables with meridional length,
L

(b) Schematic showing definition of Meridional
stream line, which forms the basis of the rotor
passage definition.

Figure 7: Definition of Parameters used to define rotor aerodynamic shape.

passes through the rotor passage. Effectively it defines r, theta, and z, the coorindates of
the passage centre as a function of positon along the passage. The position in the passage
is defined by the normailsed meridional variable L. L = 0 corresponds to the rotor inlet,
L =1 corresponds to the rotor outlet.

Evolution of Area The change in area normal to the flow direction, A,,, along the the stream-
line defines how quickly the flow expands and thus how the velocity evolves along the rotor
passage.

Parametric Passage Cross-section This features defines a parameterised shape used to gen-
erate the passage shape based on the streamline and normal area, A,. Fig. [7] shows a
simple template. More complex templates as outlined in section [£:4] are possible to en-
hance performance.

A further advantage of this approach is that the number of design variables is reduced to
two design variables that can be described by functions (e.g. polynominals or Bezier curves) and
a third variable with discrete values. The resulting reduction in variables, compared to more
traditional ways of rotor geometry definition and the fact that variables are directly linked to
aerodynamic effects, make this approach highly suitable for optimisation.

4.2 Process Overview

This section provides details on how the rotor and shroud geometry is generated. The stages of
the process are summarised in the following list.

1. Define shape of meridional streamline. (Defined by parametric curve in 3-D)
2. Define flow normal area, A,,. (Defined by parametric function)

3. Construct streamline and calculate relative projection, thetaey s, which allows effective flow
area, Acsy to be calculated.

15

A(L=0.5) \

Apassage(L)

’ A(L)

- -- (b) Transformation of flow area normal to
streamline, A, to corresponding effective area,

(a) Flow Area, A defined at various positions Aef g, normal to vector V..
along the Meridional Streamline.

Figure 8: Construction of parameterised passage. The streamline normal area, A is transformed
into an equivalent effective area, A.sy, which must be acommodated in the available passage
area, Apgssage-

4. Perform area correction to account for blade thickness. (Blade thickness is defined by
parametric function)

5. Select parametric passage cross-section (see section [4.4). (Parametric shape specific vari-
ables can be defined by parametric functions)

Use parametric passage shape to construct rotor hub and blade shapes.
Generate shroud shape. (Rotor-stator clearance is defined by parametric function)

Export rotor and shroud shape.

© ® N

Meshing.

(a) Define boundary layer refinement blocks.
(b) (optional) Add inlet mesh.
(c) (optional) Add NGV-rotor cavity mesh

The key steps of the above list are stages 1, 2, and 6. Based on the meridional streamline
shape and desired evolution of flow area along the parametric passage shape is used to generate
the rotor geometry.

4.3 Definition of Passage Shape

The passage shape is constructed piece-wise along the meridional streamline. Fig. a) shows the
meridional streamline and the corresponding normal flow area, A,,, and the local direction vector.
To utilise the parametric passage shapes, the normal flow area is projected into a revolved surface
as shown in Fig. b). The advantage of using this revolved surface space, is that the available
annular area can easily be distributed between multiple blade passages that exist around the

16

rotor. To construct this area, first the radial vector V,.,4;q; is found and then the vector normal
to the 7, 6 plane, n,g is calculated as

n.g = |nz X Vradial| (1)

Next the vector, Vg, the projection of the local streamline directional vector on the local r, z
plane is found as
Vrg =V - |V~nr9| N,g. (2)

This vector is the plane normal for the revolved surface. Once known, the inclination angle
between the normal flow area, A, (normal to streamline) and the projected flow area, A.r¢
(projection onto revolves surface) is calculated as

Qeff =cos™! (V . Vrg) (3)
Using 0fs the required flow area A,y on the revolved surface is calculated

A, A,
COS@eff - V-Vre.

Acsy = (4)
At this stage the parametric passage cross-sections (see section , defined on the revolved
surface are used to construct a local slices of the blade passage. The parametric passage shape is
centred on the local streamline coordinate and the angular segment that can be used to construct
the passage is defined by the number of blades (Opassage = Nl?[:de). Geometric features, such as
blade thickness and corner radii that affect the available flow area within a given angular segment
are incorporated in the definition of the parametric shape. Effectively in this stage a parametric
shape, centred on the local streamline coordinate is fitted into the available angular segment. By
appropriately defining the parametric shape, the full passage geometry is constructed.

As will be apparent in the next section, the normal flow area, A, defined on a flat surface
is transformed to an area defined on a revolved surface. This is particularly apparent close to
the inlet of a radial in-flow turbine, where the flow direction is purely radial. This treatment,
which implies that not all the flow crossing the revolved surface is parallel to the meridional
streamline is appropriate as particularly close to the inlet, the actual flow purely radial and thus
perpendicular to the revolved surface.

4.4 Parametric passage Cross-sections

As described above, core step of the current approach is to define the a parametric passage cross-
section shape, which can be used to convert the effective flow area, A.rs into a corresponding
rotor and blade shape at various points along the meridional streamline. For this purpose a
number of pre-defined parametric geometries have been generated. These are listed in Table
The following sections give further details about the various parametric shapes.

4.4.1 Rectangle to annular segment

This parametric surface is defined relative to its centre, (black dot), as shown in Fig. @(a) The
shape is constructed as follows:

1. Area occupied by rotor blade, defined in terms of passage height, H,,ss is added to flow
area

An

1 1
Apassage — Aeff + - (troot + ttip) Hpass = m + 5

2 (t'r'oot + ttip) Hpass (5)

17

Table 2: Options for defining the passage cross-section between inlet and outlet

Option

Passage shape
Rotor inlet (looking radially inwards) Rotor outlet (looking in axial direction)

Rect — Anul

Rect — Anul
(with corner
radii)

Semi-circle

Lean option

18

P! 1:tip
>

1
o

% Troat

‘L
@

S

N

(a) Passage shape (b) Mesh control points

Figure 9: Rect — Anul, definition of parametric surface geometry.

2. Required height of the passage is calculated by solving the following the equation

9Passage h:_},.@
Apassae = /0 / r(h) dr df, o

__ Hpass
- 2

27
Notades

where Opgssage =

In addition to defining the passage shape, internal control points to define the region of the
mesh used for boundary layer refinement are also created as shown in the Fig. @](b) The control
points are placed a distance BL, defined by a parametric function, from the outer surfaces.

Function:

Rect (STREAMLINE, AREA, T_ROOT, T_TIP, BL, N_BLADE, LEAN), where STREAMLINE is a 3-d
parametric path object, AREA, T_ROOT, T_TIP, BL, and LEAN are 1-d parametric path objects, and
N_BLADE is a constant.

4.4.2 Rectangle to annular segment with corner radii

This parametric surface is defined relative to its centre, (black dot), as shown in Fig. [10}(a) The
shape is constructed as follows:

1. Area occupied by rotor blade, defined in terms of passage height, Hqss and area occupied
by corners is added to flow area

1 T A, 1
Apassage = Aeff"’* (troot + ttip) Hpass+R(2; (1 - 7) = —F

m
Y tT‘OO t 7 H, ass ‘96 R2 (1 - 7>
2 4 coslerr 2 (troot + ttip) Hpasscosbepp+R: 1

(7)

19

<7

|
i
'

—
1
o

i
'

} P

(b) Mesh control points

(a) Passage shape

Figure 10: Rect — Anul (with corner radii), definition of parametric surface geometry.

2. Required height of the passage is calculated by solving the following the equation

Hpass

epassage h=+ b)
Apassage = /0 /; ’f'(h) dr d@, (8)
——

Hpass

2

27

where Opassage = Npiades

In addition to defining the passage shape, internal control points to define the region of the
mesh used for boundary layer refinement are also created as shown in the Fig. b). The control
points are placed a distance BL, defined by a parametric function, from the outer surfaces.

Function:

Rect (STREAMLINE, AREA, T_ROOT, T_TIP, BL, RC, N_BLADE, LEAN), where STREAMLINE is a
3-d parametric path object, AREA, T_ROOT, T_TIP, BL, RC, and LEAN are 1-d parametric path ob-
jects, and N_BLADE is a constant.

4.4.3 Rectangle to semi-circular segment

This parametric surface is defined relative to its centre, (black dot), as shown in Fig. [11}(a) The
shape is constructed as follows:

1. A circle is constructed, which forms tangent lines with both the passage side walls.

2. Area occupied by rotor blade, defined in terms of passage height, Hp,ss and area occupied
by corners is added to flow area
tbe (9)

20

~ S

b2l troo‘r_»
|

(b) Mesh control points

(a) Passage shape

Figure 11: Semi-circle, definition of parametric surface geometry.

3. Required height of the passage is calculated by solving the following the equation

the (10)

27
Notades

where Opgssage =

In addition to defining the passage shape, internal control points to define the region of the
mesh used for boundary layer refinement are also created as shown in the Fig. b). The control
points are placed a distance BL, defined by a parametric function, from the outer surfaces.

Function:
SemiCirc (STREAMLINE, AREA, T_ROOT, T_TIP, BL, N_BLADE, LEAN)
4.4.4 Blade lean

A further feature of all the above parametric shapes is the inclusion of blade lean. This allows
the blade profiles to be inclined relative to the radial direction as shown in Fig. a). Blade
lean is incorporated by applying the angle 0.4, to the rotor blades. The angle is defined using
a 1-D path object which defines the change in lean along the passage.

4.4.5 Profile Blending

To generate more complex rotor geometries it is desirable to create combinations of the parametric
shapes defined in section To allows this a blending function has been generated. This

21

o
— - —e— —]-

Figure 12: Sketch showing incorporation of blade lean into geometry generation

function is based on a blending parameter, blend, defined in terms of position along the meridional
streamline and creates a linear combination of the respective parametric profiles as follows:

Profileyys = (1 — blend) x Profile; + blend x Profiles (11)
By defining blend as a continuous function this ensures a smooth transition of the shape.

Function:
Blended2Dsurface(Profile_1,Profile_2,blend), where Profilel and Profile2 are para-
metric surface objects and blend is a 1-d path object.

4.5 Running the Tool
Follow these steps:

1. Define the passage geometry in the file Rotor_example.py
2. To display the rotor passage geometry and to generate a geometry for export to CAD

(a) Run Rotor_Profile.py --job=Rotor_example.py
(b

)

) View displayed rotor passage properties
(¢) View generated passage shape

)

(d) To generate geometry files, set appropriate variable inside Rotor_example.py
3. To generate the mesh

(a) Adjust mesh property and mesh clustering parameters in Rotor_Profile.py

(b) Generate mesh by running e3prep.py --job=Rotor_Passage.py
if renaming Rotor_example. py, ensure correct file is referenced in Rotor_Passage.
ple.py ge.py

22

(¢) Run following commands to convert mesh to Vtk format and view in paraview:
e3post.py ——job=Rotor_Passage.py --vtk-xml
paraview

(d) Iterate to improve mesh quality by adjusting thickness of boundary layer blocks inside
Rotor_example.py, or by adjusting clustering and number of cells in Rotor_Passage . py

4. Convert mesh to other format for further processing

5. If using Eilmer for flow simulation, the job file Rotor_Passage.py needs to be adjusted to
set appropriate simulation parameters.

4.6 Geometry Generation

Generation of the rotor and shroud geometry is performed using the standalone python pro-
gramme Rotor_Profile.py, which use geometry parameters defined in the geometry definition
file Rotor_example.py to generate multiple slices along a single (or multiple) rotor passage. This
allows efficient generation of candidate rotor passages, which can either be turned into output
files for import to CAD packages or which can be further processed into a CFD mesh as described
in section 71

The rotor geometry is generate by executing:
Rotor_Profile.py --job=Rotor_example.py
where Rotor_example.py is a geometry definition file that is used to set up the rotor geometry
and to define parameters for the output files. The following sections describe how the rotor
geometry is defined and the corresponding outputs that are provided.

4.6.1 Setting up the Rotor_example.py

The rotor geometry is defined in the Rotor_example.py file. A typical file consists of the following
three main parts:

Streamline Definition

Setting Streamline at Passage Centre

Define Central Streamline that is used to set blade passage shape.

STREAMLINE must be a 3—D path function as described at the end

STREAMLINE = Topgen2Bezier (R_in, theta_in, R_out, theta_out, Z_out,
Twist, L_in2, L_in3, L_out4, L_out’)

STREAMLINE = Bezier_3D ([(x0,y0,20), (x1,yl,z1), ... (x6,y6,2z6)])

Here the a line in 3-D space is defined, which forms the streamline at the centre of the
passage. This line can be a 3-D Bezier curve, or a function to read-in an output from TopGen
[5], Topgen2Bezier has also been set-up. The use of this function is illustrated and explained in
the example provided in section

As a minimum, a 3-D path object with the name STREAMLINE has to be created.

23

Parametric Curve Definition

Setting Parametric curves to define passage

Define parametric evolution of area
AREA must be a 1-D path function
AREA = Poly_1D ((A0,Al))

set corner radius and boundary layer refinement height
RC must be a 1-D path function

RC = Const_1D(0.001)

BL must be a 1-D path function

BL = Const-1D (0.0002)

set Blade thickness at root and tip

T_-ROOT and T_-TIP must be a I-D path function
TROOT = Const_1D (0.001)

T_TIP = Const_1D (0.001)

set lean of rotor blades
LEAN must be a 1-D path function
LEAN = Const_1D (0.)

set number of Blades
NBLADE = 9

Here 1-D line objects are defined, which set the evolution of various line parameters along
the length of the passage.

As a minimum, 1-D path objects with the following names: AREA, T_ROOT, T_TIP, BL and the
integer variable N_BLADE have to be created. The objects RC, BLEND and E_RATIO are optional
and depend on the type of parametric cross-section that is used.

Passage Shape Creation

Setting Parametric Profile

Define parametric profile used to generate passage shape

PROFILE must be a 2—D profile object, which contains sub—division
into 4 grid—able blocks

Surfl = Rect (STREAMLINE,AREA, T ROOT, T_TIP ,BL,N_BLADE,LEAN)

Surf2 = RectCorner (STREAMLINE, AREA, T ROOT, T_TIP ,BL,RC,N_BLADE,LEAN)

define blending function
BLEND must be a 1-D path function varying between 0. and 1.

24

Radius (m)
© o coooToooo0
[slslssssssss sl
15 AU
© NONROOIONRGTO

: (n:
coooop

oS 22

[sjejelele o]

[sisisislsls)

[sleleloleNe]

EOGu®©

Height Z (m)
=)
o
o
(=]
o o0ooh o000
o
=
(=]
o

02 04 06 O0&E L4190 02 04 06 08 10
oo ; : : ;

0.2 0.4 0.6 0.8 1.0
T T T T

.0 0.2 0.4 0.6 0.8 1.0
Length along Streamline

Figure 13: Parametrically defined input variables. Graph show variation of variables with merid-
ional length, L

BLEND = Poly_1D ((0.,1.))
BLEND = Const_1D(1.)

Assemble Profile
PROFILE = Blended2Dsurface (Surfl , Surf2 ;BLEND)

This last section is used to combine the streamline and various parametric objects that have
been combined to create one of the pre-defined parametric passage cross-sections defined in
section 4] In the above case two surface objects Surfl and Surf2 are created and blended to
form the final cross-section object PROFILE.

The final profile object that is created must be named PROFILE.

4.6.2 Graphical Displays

After running the programe Rotor_Profile.py --job=Rotor_example.py a number of graph-
ical outputs are generated. These are collated in three figures.

Figure 1 This displays eight graphs showing the input parameters as well as the calculated
inout parameters. The left column shows inputs for the streamline defining the rotor passage.
These are the evolution of radius, angular position, and height z with meridional position L, as
well as 3-D and 2-D projection of the streamline in 3-D. The right column shows the requested
flow area A,, and the calculated flow area Ay, together with other setting parameters and how
they vary with meridional position.

Figure 2 This 3-D projection of multiple cross-sectional slices through the passage. In
addition to showing the perimeter of the slices, the position of the nodes used to define the
boundary layer blocks is marked also. The number of slices and the number of adjacent channels
that is plotted can be defined in Rotor_example.py

25

00

093.01¢)
Xeaxje 001 ~0.005
axis 5.028.0230300_010

Figure 14: Rotor Shape, illustrated by multiple slices through passage.

Figure 3 This shows a 2-D slice through the rotor in the r, z plane. The lines show the
profile of the hub, blade tips, and shroud.

Graphical Discplay Settings The settings for the display are adjusted in the following sec-
tion of Rotor_example.py

Setting Visulisation Properties

set Visulisation Flag
VISUAL. flag =1

Set Properties for Showing Profile in python window
VISUAL. slices = 10

VISUAL. channels = 2

VISUAL. nodes = 40

VISUAL.flag defines if data will be displayed;

VISUAL.slices sets how many channel cross-sections will be displayed;
VISUAL.channles defines how many side-by-side channels are displayed;
VISUAL.nodes sets the resolution used when creating the perimeter lines.

4.6.3 Output Files for CAD

Optionally the following section of code can be added to the job_rotor.py file. By setting
FILES.flag = 1 this will invoke the creation of a number of output files, which can be used to
generate coordinate files for import to CAD software.

26

0.014

0.012

0.010+

0.008 -

0.006 -

0.004 -

Height, Z m

0.002 -

0.000 -

—0.002 -

—0.004 . . I L .
0.000 0.005 0.010 0.015 0.020 0.025 0.030

Radius m

Figure 15: Generate Rotor and Shroud Profile

Define QOutput Files
/

set file writing Flag
FILES. flag = 0

set Filenames

FILES . nameroot = ”"Dat_”
FILES. Slices = 10
FILES. Pointsl = 20
FILES. Points2 = 5

The following files are generated to define the axi-symmetric profile of the rotor and the
shroud:

Dat_hub.txt a file containing the r and z coordinates along the perimeter of the rotor blank.
This is consists of rotor back-side, defined by 1-D object R_THICK, inlet, blade tips, outlet
and hub.

Dat_shroud.txt’ a file containing the r» and z coordinates for the turbine shroud, positioned
with a perpendicular off-set relative to the blade tip defined by the 1-D path object
CLEARANCE

And the following files are the generated to define the lines in 3-D space, which resemble the
geometry of a single rotor passage. The value of FILES.Slices is used to set the number of
slices used for extracting the rotor shape.

Dat_line0.txt a file containing the coordinates of the shroud facing edge of a passage profile.
Points2 defines the number of points used to discretise the boundary layer block segments
(west and east edge of blkl and blk3). Points1 defines the points along the central block.
Totoal number of points per line is Points2 + Pointsl + Points2.

27

Dat_linel.txt points along the left hand side blade. Discretised Points1 points.
Dat_line2.txt points along the bottom of the passage. Discretised Points1 points.
Dat_line3.txt points along the right hand side blade. Discretised Points1 points.

Once imported into a CAD package, the respective line segments can be used to reconstruct
surfaces, which in turn form the full 3-D geometry of the rotor. Care must be taken to discretise
the passage profiles sufficiently, so that small features, such as the corner radii are correctly
re-created.

4.7 Mesh Generation

The mesh is generated using the tool e3prep using the pre-prepared job-file Rotor_Passage.py.
This creates a structured mesh, based on the rotor geometry defined in the file Rotor_example.py.

The mesh generation is performed by running e3prep.py --job=Rotor_Passage.py
Details on using the e3pre and how to perform general modifications to the file Rotor_Passage.py
can be obtained from the Eilmer User Guide [I]. The following paragraphs describe modifi-
cations to the file of specific relevance for using in conjunction with the rotor meshing tool
Rotor_Profile.py.

4.7.1 Rotor Profile Definition

The rotor shape is generated by linking importing the Rotor_Profile as a module and then exe-

cuting the file containing the rotor shape definition. This is the same file as can be used as the job

file when executing Rotor_Profile.py --job=job. In the code below this is Rotor_example.py.

The subsequent lines are used to generate anonymous functions, which can be called by PyFunctionPath()
when constructing the blocks.

\

from Rotor_Profile import x

Set Rotor Properties A

set filename wused to store rotor data. Data can be previewed wusing
Rotor_Profile.py —job=name
RotorFileName = ”Rotor_example.py”

execute file containing rotor data to define geometry

execfile (RotorFileName , globals ())

create anonymous functions that can be used by PyFunctionVolume ()
pyfunction_blk0 = lambda r,s,t: PROFILE.eval(r,s,t,0)
pyfunction_blkl = lambda r,s,t: PROFILE.eval(r,s,t,1)
pyfunction_blk2 = lambda r,s,t: PROFILE.eval(r,s,t,2)
pyfunction_blk3 = lambda r,s,t: PROFILE.eval(r,s,t,3)

28

4.7.2 Mesh Definition and Clustering

The cell numbers and mesh clustering are defined in this section

Set Number of Cells HAH

nl = 60 # cells along passage

nt = 60 # cells of main passage in circumferential (tangential)
direction

nz = 60 # cells of main passage azial (at inlet) or radial (at

outlet) direction
nbl = 10 # cells in boundary layer region.

Set Cluster Functions HAHH

CF_bl0 = RobertsClusterFunction(1,0,1.05)
#CF_bll = RobertsClusterFunction (1,0,1.05)
#CF_h = RobertsClusterFunction (1,1,1.05)

Here nl, nt, and nz defines the number of cells in the meridional, tangential and hub towards
shroud direction of the block located in the passage centre (BLKO). The value of nbl sets the
number of used to for boundary layer refinement in the wall normal direction.

Clustering can be achieved using the cluster functions. Currently only clustering in the
boundary blocks in the wall normal direction is active. Other clustering can be added by defining
further cluster functions and adding these to the respective block definitions.

4.8 Example

The following sections describes the generation of an example mesh, based on a geometry de-
fined by the meanline turbine design code TopGen [5]. In addition to the meanline geometry
parameters, defined by the TopGen, the twist angle needs to be selected by the user. For
the current example the twist angle was determined by iteratively generating geometries with
Rotor_Profile.py until a smooth profile was created that results in a continuos increase in
properties of the streamline at the passage centre. The geometry defining properties are defined
in table [3] In the table the extra parameters that have to be defined in addition to the outputs
from meanline analysis are shown in bold.

The corresponding geometry definition file is given below. In this case the passage defin-
ing streamline, STREAMLINE is defined using the function Topgen2Bezier, which constructs a
Bezier_3D curve based on the provided inputs. This function takes the geometry variables and
the following tuning parameters to define the Bezier control points:

L_in2 and L_in3, are two control points positioned on a straight line defined by the inlet flow
vector.

L_out4 is a control point at the same radius as the outlet, but rotated such that the line follows
a cylindrical path.

L_out5 is a control point on the vector defined by the outlet flow direction. This ensures the
correct flow direction is achieved at the outlet.

29

Table 3: Rotor geometry, obtained from meanline analysis, used for example case

Overall Dimensions

Inlet Radius 28.44 x 1073 m Outlet Radius 12.5 x 1073 mm
Rotor Height 12.00 Number of Blades 9
Flow Angles
Inlet relative Angle —21° Outlet relative Angle 60°
Twist Angle 60°
Flow Areas and Passage Features
Inlet Area 3.9 x 10~ m? Outlet Area 6.2 x 10T m?
Inlet Normal Area 4.17 x 1074 m? Outlet Normal Area 18.13 x 10~* m?
Area evolution linear increase Parametric Area Type RectCorner
Blade Thickness (root) 1.0m Balde Thickness (tip) 1.0m
Blade-Hub corner ra- 0.2m Blade Lean None
dius
Mesh
Thickness of boundary layer blocks 0.2 x 102 m
nl 60 nt 60
nz 60 nbl 10

For all control points the values correspond to the fractional distance (based on meridional length
L), that these points are away from the inlet.

Is should be noted that this file actually defines two parametric geometries, Surf1 and Surf2.
However by setting BLEND = 1 using the Const_1D class the resulting output is Surf2.

Rotor_example. py
Ingo Jahn 11/05/2015
Ezxample Job file for creating Mesh

Name = ”Rotor._meshing._example”
print ”Running.” , Name, ”_to.generate_rotor._mesh”

Setting Streamline at Passage Centre

Streamline defining passge (take wvalues from TOPGEN)

R_in = 28.443e-3 # (m) radius at inlet
TOPGEN —> radius_inlet

R_out = 12.5e—3 # (m) radius at outlet
TOPGEN —> radius_outlet (mean)

Z_out = 12e-3 # (m) height at outlet (only used for elipse) —>
design variable

Twist = 60./180. * np.pi # (rad) twist angle of streamline —>
design variable
theta_in = —21./180. * np.pi # (rad)

TOPGEN —> beta_inlet
theta_out = 60./180. * np.pi # (rad)
TOPGEN —> beta_outlet

30

L.in2 = 0.3 # position of 2nd control point (fraction along
streamline from inlet) —> design variable

L_.in3 = 0.6 # position of 3rd control point (fraction along
streamline from inlet) —> design variable

L_out4d = 0.8 # position of 4th control point (fraction along
streamline before outlet) —> design wvariable

L_outh = 0.9 # position of 5th control point (fraction along

streamline before outlet) —> design wvariable

Define Central Streamline that is used to set blade passage shape.

STREAMLINE must be a 3—D path function as described at the end

STREAMLINE = Topgen2Bezier (R_.in, theta_in, R_out, theta_out, Z_out,
Twist, L_in2, L_in3, L_out4, L_outh)

Setting Parametric curves to define passage

Area of Passage

A0 = 3.9e—4/12.xnp.cos (21./180. * np.pi) # (m2) Area at inlet
Al = 6.2e—4/12.xnp.cos (70./180. x np.pi) # (m2) Area at outlet
Al = 0.9x%A1

Define parametric evolution of area
AREA must be a 1-D path function
AREA = Poly_1D ((A0,A1))

set corner radius and boundary layer refinement height
RC must be a 1-D path function

RC = Const_1D(0.0002)

BL must be a 1-D path function

BL = Const_1D(0.0002)

set Blade thickness at root and tip

T_-ROOT and T_-TIP must be a I-D path function
TROOT = Const_1D (0.001)

T_TIP = Const_1D (0.001)

set lean of rotor blades
LEAN must be a 1-D path function
LEAN = Const_1D (0./180.%np. pi)

set number of Blades
NBLADE = 9

Setting Parametric Profile

Define parametric profile used to generate passage shape

31

PROFILE must be a 2—D profile object, which contains sub—division
into 4 grid—able blocks

Surfl = Rect (STREAMLINE, AREA, T ROOT, T_TIP ,BL,N_BLADE,LEAN)

Surf2 = RectCorner (STREAMLINE, AREA, T ROOT, T_TIP ,BL,RC,N_BLADE,LEAN)

define blending function

BLEND must be a 1-D path function wvarying between 0. and 1.
BLEND = Poly_ 1D ((0.,1.))

BLEND = Const_1D(1.0)

Assemble Profile
PROFILE = Blended2Dsurface (Surfl , Surf2 ,BLEND)

Defining Rotor blank and Stator

set Clearance
CLEARANCE = Const_1D (0.001)

Rotor back thickness
R_THICK = Const_-1D (0.002)

Define QOutput Files

set file writing Flag
FILES. flag = 0

set Filenames
FILES . nameroot = ”Dat_”
FILES. Slices = 10
FILES. Pointsl = 20
FILES. Points2 = 5

Setting Visulisation Properties

set Visulisation Flag
VISUAL. flag =1

Set Properties for Showing Profile in python window
VISUAL. slices = 10

VISUAL. channels = 2

VISUAL. nodes = 40

The results from Rotor_Profile.py are shown in Figs [I3] [I4] and [[5] Even these simple
results reveal some interesting features in relation to rotor design, such as the rapid increase in
effective flow area, A.yy as L — 1. This is caused by the fact that the effective flow area is
a function of —+— and that at the exit 6, rf equals the relative flow angle. Consequently as

cosfcysy

32

the exit flow angle becomes large (> 60°), the required effective flow area increases rapidly. To
accommodate this, the rotor actually increases in outer radius at the exit, as shown in the rotor
profile plot (Fig. . In contrast rotors designed with conventional design tools, which define
a shroud and hub profile, the flow area evolution along meridional position would be highly
nonlinear.

The corresponding mesh, generated using e3prep.py is shown in Fig. This is a preliminary
mesh without the implementation of significant mesh refinements.

5 Combined geometry

To conduct fully coupled and possibly unsteady CFD simulations of a full Radial-Inflow turbine
the NGV mesh and the rotor mesh need to be coupled. Currently a range of coupling methods
exist, such as mixing planes, or universal grid interfaces, that allow unsteady coupling between
the two sections. To allow the user the most flexibility for constructing this mesh interface,
currently no mesh is defined for the NGV - rotor gap. Future work will explore the options of
extending both the NGV and rotor mesh towards the middle of the gap in order to create a mesh
interface at mid position.

33

iSRRI -
il g
. //ll,ﬁ’lll',’,

(a) Textl

(b) Text2

Figure 16: Preliminary Mesh generated using e3prep. Fine tuning of boundary layer clustering
and position of control points that define boundary layer blocks can be used for further mesh
improvements.

34

6 Conclusion and Planned Work

A new radial inflow turbine geometry generation and mesh definition tool has been developed.
The Nozzle Guide Vane (NGV) part of the tool allows the generation of a specific vane geometry
with a circular leading edge and a straight cut trailing edge. For the rotor two tools have been
generated. First, a tool that allows the generation of a rotor geometry based on aerodynamic
requirements. This tool can be used to rapidly generated desirable rotor geometries and these
geometries can be extracted to CAD for further processing. Second, the same tool can be used
to generate structured meshes suitable for CFD.

The key advantage of the approach taken for rotor geometry generation, is that the geometry
is defined as a function of aerodynamic parameters, such as evolution of flow area (defined
normal to flow direction) along the passage length. This allows a direct investigation of the rotor
performance in terms of aerodynamic inout parameters.

The following tasks to improve the capability of this open-source meshing tool are currently
planned and in progress. Please contact the author if you want to support the development of
these modules

e Development of additional parametric passage shapes. Planned passages currently under
consideration are:

— Upgrade of SemiCircle Profile to allow an elliptical base. (effectively a variable root
radius)

Addition of rotor-shroud clearance to mesh

Addition of rotor blade inlet edges to mesh

implementation of sliding grid interface for Eilmer

other suggestions

35

References

[1] P.A. Jacobs, R.J. Gollan, D.F. Potter, 2014, The Eilmer3 Code: User Guide and Example-
Book, Mechanical Engineering Report 2014/05, The University of Queensland

[2] OpenFOAM The Open Source CFD Toolbox, Userguide, Version 2.3.1, 3r December 2014,
www.foam.sourceforge.net/docs/Guides-a4/UserGuide. pdf OpenFOAM Foundation

[3] CFCFD, The Compressible Flow Project http://cfcfd.mechmining.uq.edu.au The Uni-
versity of Queensland

[4] Ingo Jahn, Kan Qin, 2015, eSprepToFoam: a mesh generator for OpenFOAM, Mechanical
Engineering Report 2015/04, The University of Queensland

[5] Carlos A.M. Ventura, Peter A. Jacobs, Andrew S. Rowlands, Paul Petrie-Repar, Emilie
Sauret, 2012, Preliminary Design and Performance Estimation of Radial Inflow Turbines:
An Automated Approach, Journal of Fluids Engineering, MARCH 2012, Vol. 134, ASME

7 Code

7.1 Inlet_Vane Round_Square.py

17## \ Inlet_Vane_Round_Square.py

2 #

3777777

4Script to create a structured mesh for an inlet guide vane as may be used
for a radial in—flow turbine.

5 The current file is designed for a a guide vane with a rounded leading edge
and a trauiling edge, cut at the exit of the domain.

6

7The grid is generated largely automatically. See XXX for corresponding
diagrams and definitions.

s Currently the following locations have to be adjusted manually:

9— Positions of Ul, U2, D1, D2 (as fraction of radial position)

10— Positions of I2, I3 (as fraction of angular position)

11— Bezier control points for the corresponding lines.

12

13 Author: Ingo Jahn

14 Last modified: 23/03/2015

15”7777

16

17 import numpy as np

18

19
207### Setting up Basic Information ###

21

22

23# For grid development, set gdata.dimensions = 2, this will create teh 2—-D
projection of the mesh.

24 gdata.dimensions = 2

25 gdata.axisymmetric_flag = 0

36

www.foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf
http://cfcfd.mechmining.uq.edu.au

26

2or# Set some fluid propertied to allow e8prep to solve

287# These only need to be correct if wusing FEilmer as solver.

20 select_gas_model (model="ideal gas’, species=["air’])
soinitial = FlowCondition (p=5955.0, u=0.0, v=0.0, T=304.0)
s1 inflow = FlowCondition (p=95.84e3, u=1000.0, v=0.0, T=1103.0)
32

33

34
s ### Defining the Geometry and Mesh ##5#
36
s7# Dimensions defining the fluid Domain

s3s Roin = 33.e-3 # (m)

30 R_out = 24.8e—3 # (m)

10 N_blade = 8 # Number of blades
41 Height = 0.003 # (m)

42

13# Dimensions defining the Vane

144 R_leading = 30e—3 # (m) position of Vane leading edge centre

a5 alpha_trailing = 50./180xnp.pi # (rad) Vane angle at trailing edge.
wr_leading = 1.5e—3 # (m) radius of vane leading edge

arr_trailing = 0.5e=3 # (m) thickness/radius of vane trailing egde
48

19 # Dimensions defining the mesh

50 bl = 0.3e—3 # (m) thickness of boundary refined layer around wvane
51 UID1.f = 0.75 # fractiond defining position of Ul and DI

52 U2D2_f = 0.55 # fractiond defining position of U2 and D2

s312_f = 0.3 # fractiond defining position of 12

54 I3_f = 0.9 # fractiond defining position of I3

ss7# bez. .. # definition of Bezier control points.

56

st# Define the number of cells:

ss Nu = 32
soNd = 31
so Nt = 16
s1NBL = 7
62 Nbl = 50
63 Nb2 = 10
64 Nb3 30
65 Nz = 10

66 N_mult = 150 # use this N_multiplier to adjust number of cells.

67

68
eo ### Helper Functions A
70

1 def M_calc(R_out,R_leading ,alpha_trailing):

99999

72

73 function to calculate distance M

74 »ry

75 theta_x = np.arcsin(R_out * np.sin(np.pi — alpha_trailing) /
R_leading)

76 theta_m = np.pi — (np.pi — alpha_trailing) — theta_x

77 M = R_leading # np.sin(theta_m) / np.sin(np.pi — alpha_trailing)

37

78

79 HH
so def

82
83

84

85 7
se def
87

88

89

90

91

92

93

04
95 def
96

97

98

99

100

102 ##
103 def

104

105

106

107

108

109

110 74
111 def
112

113

114

120 #

121

122 7
123 def

return M

d_alpha_trailing_calc(r_-leading ,r_trailing , M):

99999

function to calculate delta_alpha_trailing

9799

return np.arcsin((r-leading—r_trailing) /M)

theta-T1_calc(R-out,r_trailing ,alpha_trailing ,d-alpha_trailing):

79N

function to calculate theta_T1

d-x = r_trailing / (np.cos(np.pi/2.—alpha_trailing—d_alpha_trailing))
theta.x = np.pi — alpha_trailing — d_alpha_trailing

theta_temp = np.arcsin((R_out — d-x) % np.sin(theta_x) / R_out)
return np.pi — theta_.x — theta_temp

theta-T2_calc (R-out,r_trailing ,alpha_trailing ,d-alpha_trailing):

79N

function to calculate theta_T2

d_x = r_trailing / np.sin(alpha_trailing—d_alpha_trailing)

theta_temp = np.pi — np.arcsin((R_out + d_x) * np.sin(alpha_trailing—
d_alpha_trailing) / R_out)

return np.pi — (alpha_trailing—d_alpha_trailing) — theta_temp

theta_d_I_calc (R-out,R.in,alpha_trailing):

79

function to calculate theta_I1

theta.x = np.pi — alpha_trailing

theta_y = np.arcsin(R_out/R_in * np.sin(theta.x))
return np.pi — theta_x — theta_y

perimeter_calc (T1,L1,T2,L3,r_leading):

99999

function to claculate positions

Pl = ((Tl.x — Ll.x)**2. + (Tl.y — Ll.y)*%2.)%%0.5
P45 = ((T2.x — L3.x)**2. + (T2.y — L3.y)*x2.)*%0.5
P4 = P45-P1

alpha = P1 / P45

theta_.L2 = P4 / r_leading

print P1, P45, P4, theta_ L2

return alpha, theta_L2

distance_calc (T1,L1,L3,L4,T2,theta_L2 ,d_alpha_trailing ,r_leading ,
theta_ U3 ,theta_B1l ,theta_B6 ,theta_-D3):

9999 9

function to calculate distances along edges of domain
P1 ((Tl.x — Ll.x)*%2. + (Tl.y — Ll.y)=*%2.)%x0.5
P2 = r_leading * theta_L2

38

129 P3 = r_leading * (np.pi + 2«d_alpha_trailing — theta_L2)
130 P4 = ((L3.x — Ld.x)**x2. + (L3.y — Ld.y)=*%2.)*%0.5

131 P5 = ((Ld.x — T2.x)**x2. + (Ld.y — T2.y)*%2.)*%0.5
132 P6 = R_out * (—theta_U3—theta_T1)

133 P7 = R_out * (theta_D3—theta_T2)

134 #print theta-U3, theta-D3, theta-T1, theta_-T2

135 return P1,P2,P3,P4 P5,P6,P7

136

137

ws ### Generation of Nodes HHH

139

1o# Calculate derived wvariables

141 theta_blade = np.pi / N_blade

112M = M _calc (R-out,R_leading ,alpha_trailing)

s d_alpha_trailing = d_alpha_trailing_calc(r_-leading ,r_trailing , M)

1aa theta_T1 = theta_T1_calc(R_out,r_trailing ,alpha_trailing ,d_alpha_trailing)

115 theta_B1 = theta_T1_calc(R_out,r_trailing+bl,alpha_trailing ,
d_alpha_trailing)

146 theta_ T2 = theta_T2_calc(R_out,r_trailing ,alpha_trailing ,d_alpha_trailing)

1a7 theta_B6 = theta_T2_calc(R_out,r_trailing+bl,alpha_trailing ,
d_alpha_trailing)

1as theta.D3 = (theta_blade — (theta_Bl4theta_B6)) / 2. + theta_B6

199 #H# Setting up Basic Information ###

150 theta_U3 = —(theta_blade — (theta_Bl4theta_-B6)) / 2. — theta_Bl

151 theta_ I1 = theta.U3 — theta_d_I_calc(R_out,R_in,alpha_trailing)

152 theta_ 14 = theta_.D3 — theta_d_I_calc(R_out,R_.in,alpha_trailing)

153

152 print ”alpha_trailing”, alpha_trailing, "d_alpha_trailing”,
d_alpha_trailing , "M’ , M

155

156# Define some Nodes (directly calculated)

157 Origin = Node(0.0,0.0, label = ”Origin”)

153 T0O = Node (0.0, R_out, label = ”T0”)

159 LO = Node(—M * np.sin(alpha_trailing), R_out + M % np.cos(alpha_trailing),
label = ”L07)

160 L1 = Node(LO.x— r_leadings* np.cos(alpha_trailing+d_alpha_trailing), LO.y—
r_.leading* np.sin(alpha_trailing+d_alpha_trailing), label="L1")

161 L3 = Node(LO.x+ r_leading* np.cos(alpha_trailing—d_alpha_trailing), LO.y+
r_-leading* np.sin(alpha_trailing—d_alpha_trailing), label="L3")

162B2 = Node(L0.x— (r_leading+bl)* np.cos(alpha_trailing+d_alpha_trailing), LO
.y— (r_-leading+bl)* np.sin(alpha_trailing+d_alpha_trailing), label="B2”
)

163B4 = Node(LO.x+ (r_leading+bl)x np.cos(alpha_trailing—d_alpha_trailing), LO
.y+ (r_-leading+bl)* np.sin(alpha_trailing—d_alpha_trailing), label="B4”

)
164T1 = Node(—R_out* np.sin(theta.T1), R_out* np.cos(theta_T1), label = "T1")
165 Bl = Node(—R_out* np.sin(theta_.B1), R_out* np.cos(theta.B1l), label = "B1”)
166 T2 = Node(R_out* np.sin(theta_T2), R_out* np.cos(theta_T2), label = "T2")
167B6 = Node(R_out* np.sin(theta_B6), R_out* np.cos(theta.B6), label = ”"B6”)
168 U3 = Node(R_out* np.sin(theta_U3), R_out* np.cos(theta_U3), label = "U3")
160 D3 = Node(R_out* np.sin(theta_D3), R_out* np.cos(theta_D3), label = ”"D3”)
17011 = Node(R_in* np.sin(theta_I1), R_in* np.cos(theta_I1), label = "I17)
17114 = Node(R_in* np.sin(theta_I4), R_in* np.cos(theta_I4), label = 714”)

39

172

173# Do some more calcs based on already defined points

17a L4_f, theta L2 = perimeter_calc(T1,L1,T2,L3,r_leading)

175 L4 = Node((1.—L4_f)*T2.x+L4_fxL3.x, (1.—L4_f)«T2.y+L4_fxL3.y, label = ”L4”

176 B5 = Node((1.—L4_f)«B6.x+L4_fxB4.x, (1.—L4_f)*B6.y+L4_f«B4.y, label = "B5”
)

177L2 = Node(LO.x — r_leading * np.sin(np.pi/2 — alpha_trailing —
d_alpha_trailing + theta_L2), LO.y — r_leading * np.cos(np.pi/2 —
alpha_trailing — d_alpha_trailing + theta_L2), label = 7L27)

17sB3 = Node(LO.x — (r_leading+bl) * np.sin(np.pi/2 — alpha_trailing —
d_alpha_trailing + theta_L2), LO.y — (r-leading+bl) * np.cos(np.pi/2 —
alpha_trailing — d_alpha_trailing + theta_L2), label = ”B3”)

179

1s0# Define some Nodes (weighted average)

151 UL = Node((1.—U1D1_f)+U3.x+U1D1_f+I1.x, (1.—UID1_f)*U3.y+UID1_f+I1.y,
label = 7U1”)

1822D1 = Node((1.—U1lD1.f)«D3.x+UIlD1_fxI4.x, (1.—U1D1._f)*«D3.y+U1D1_fxI4 .y,
label = "D17”)

183U2 = Node((1.—-U2D2_f)*U3.x+U2D2_f*I1.x, (1.—U2D2_f)«U3.y+U2D2_fxI1.y,
label = 7U2”)

154D2 = Node((1.—U2D2.f)+D3.x+U2D2_f+14.x, (1.—U2D2_f)«D3.y+U2D2_f+I4.y,
label = ”D2”)

185

ws6# Define Bezier Control Points

187# points are generated, so that Bezier curves form a junction with 4 * 90
degree

issra = 2. % bl

1sorb = 2. *x bl

1wotua = alpha_trailing + theta_U3

191 tda = alpha_trailing — theta_D3

12tub = np.pi/2. — alpha_trailing — d_alpha_trailing

13tdb = np.pi/2. — alpha_trailing + d_-alpha_trailing

194 u2b2a = Node(UQ.x + ra*np.cos(tua), U2.y + raxnp.sin(tua), label = "u2b2a”)
195 u2b2b = Node(B2.x — rbxnp.sin (tub), y — rb#np.cos(tub), label = 7u2b2b”)
196 ulb3a = Node(Ul.x + rasnp.cos(tua), Ul.y + raxnp.sin(tua), label = "ulb3a”)
197 b4dla = Node(D1l.x — ra*np.cos(tda), .y — raxnp.sin(tda), label = "b4dla”)
108 b5d2a = Node(DQ.x — raxnp.cos(tda), D2.y — ra*np.sin(tda), label = ”?b5d2a”)
190 b5d2b = Node(B5.x + rb*np.sin(tdb), B5.y + rbxnp.sin(tdb), label = "b5d2b”)

200

201# points are generated, so that Bezier curves form a junction with 2 x 90
degree and 3 *x 60 degree

202TT = 3. % bl

203 tubb = np.pi/2. — alpha_trailing — d_alpha_trailing + theta_L2

204 tdbb = np.pi/2. — alpha_trailing + d-alpha_trailing

20 ulb3b = Node(B3.x — rrxnp.sin(tubb — np.pi/6.), B3.y — rr*np.cos(tubb — np.
pi/6.), label = ”"ulb3b”)

206 b3i2 = Node(B3.x — rr#np.sin (tubb + np.pi/6.), B3.y — rr*np.cos(tubb + np.
pi/6.), label = 7?b3i2”)

207 b4d1lb = Node(B4.x 4 rr#np.sin (tdbb + np.pi/6.), Bd.y + rr*np.cos(tdbb + np.
pi/6.), label = "b4dlb”)

208 b4i3 = Node(B4.x + rrxnp.sin(tdbb — np.pi/6.), Bd.y + rr*np.cos(tdbb — np.
pi/6.), label = ”"b4i3”)

40

200 12 = Node(R.inx*np.sin((1.—I12_f)xtheta_I1 + I2_fxtheta_I4), R_in*np.cos(

(1.—I2_f)xtheta_I1 + I2_fxtheta_I4), label = "I27)

210 13 = Node(R.in#np.sin((1.—I3_f)xtheta-I1 + I3_fxtheta_-I4), R_in*np.cos(

(1.—I3_f)*theta_I1 + I3_fxtheta_I4), label = 713")

212 HHHHH

23 ### Calculated recommended grid number

214 FHHHH

215 print
216 print
217 print
218 print

219

220P1,P2,P3,P4,P5,P6,P7 = distance_calc(T1,L1,L3,L4,T2,theta_L2,
d_alpha_trailing ,r_leading ,theta_U3 theta.B1l ,theta_-B6 ,theta_D3)

”The following numbers of cell

7 Current
blade surface) \n”

setting :

221 P_blade = P14+P2+P34+P44P5
2220 P_cell = P_blade / N_mult

223 print ” Recommendations:”

224 print "Nu = 7, round(P6/P _cell)

225 print "Nd = 7, round(P7/P_cell)

ne#print "Nt = 7, round((R_-in — (R_leading+r_leading)) / P_cell)
227 print "Nt = 7, round ((R.in — (B4.x*%2+4+B4.y*%2)x%0.5

228 print "Nbl = 777, user selected”

220 print "Nbl = 7| round(P1 / P_bladex*N_mult)

230 print "Nb2 = 7| round (P2 / P_blade+*N_mult)

231 print "Nb3 = 7, round(P3 / P_bladex*N_mult)

w2#print "Nbj = Nb2 = 7, round (P2 / P_blade)* N_mult

ws#print "Nbs = Nbl 7, round(P1 / P_blade)x N_mult

234 print "Nz = 777,

235

user selected”

236

w7 ### Generation of Lines HAH

238

230# Lines for 2—-D grid

220 U3U2 = Line (U3, U2); U2U1 = Line (U2, Ul); UIlIl = Line(U1,I1)
Line(D2, D1); D114 = Line(D1,14)
B1T1 = Arc(B1,T1,Origin); T2B6 =

241 D3D2
242 U3B1

Line (D3, D2); D2D1
Arc(U3,B1, Origin) ;

); B6D3 = Arc(B6,D3,Origin)

243 1112 = Arc(I1,12,0rigin);

244 T1L1 = Line(T1,L1); L1L2 = Arc(L1,L2,L0); L2L3

(L4,L3); T2L4 = Line(T2,L4)

215 BIB2 = Line (B1,B2); B2B3 = Arc(B2,B3,L0); B3B4

(B5,B4); B6B5 = Line (B6,B5)
26 B2L1 = Line(B2,L1); B3L2 = Line(B3,L2); L2B3 = Line(L2,B3); L3B4 = Line (L3,
B4); L4B5=Line(L4,B5)

247 U2B2
248 U1B3
2140 B312
250 B413
251 B4D1
252 B5D2

Bezier ([U2,

Bezier
Bezier

Bezier
Bezier

([Uul
([B3
Bezier ([B4,
([B4
([B5

u2b2a, u2b2b, B2],”U2B2”
ulb3a, ulb3b, B3],”U1B3”

b3i2, 12],”B3I12” ,0.0,1.0,
b4i3, 13],”B4I3” ,0.0,1.0,

bddlb, bddla, D1],”B4D1”
b5d2b, b5d2a, D2],”B5D2”

41

are recommended”
” Adjust absolute number by changing N_mult”

settings

N_mult = 7 ,N_mult ,

) / P_cell)

1213 = Arc(I12,13,0Origin);
Arc(L2,L3,L0); L4L3

Arc(B3,B4,L0); B5B4

corHr P oo

(number of cells along

Arc(T2,B6,Origin

Arc(I3,14,0rigin

= Line

= Line

253

wa# Nodes for Extrusion (defined at cormer

255 if gdata.dimensions = 3:

256 U3h = Node(U3.x,U3.y,Height, label =
257 U2h = Node(U2.x,U2.y,Height, label =
258 Ulh = Node(Ul.x,Ul.y,Height, label =
259 Blh = Node(Bl.x,Bl.y,Height, label =
260 B2h = Node(B2.x,B2.y,Height, label =
261 B3h = Node(B3.x,B3.y,Height, label =
262 L2h = Node(L2.x,L2.y,Height, label =
263 B6h = Node(B6.x,B6.y,Height, label =
264 B5h = Node(B5.x,B5.y,Height, label =
265 B4h = Node(B4.x,B4.y,Height, label =
266 T2h = Node(T2.x,T2.y,Height, label =
267 L4h = Node(L4.x,L4.y,Height, label =
268

269

o ### Set Cluster Functions HAH

271

272 CF_bl0 = RobertsClusterFunction (0,1,1.05
273 CF_bll = RobertsClusterFunction (1,0,1.05
274 CF_h = RobertsClusterFunction (1,1,1.05)

275

276

2 ### Definitions of Blocks A
278

279 if gdata.dimensions — 2:

280 BLO =

281

283

284

285

286

288

289

290

292

293

294

295

297

298

299

301

302

303

304

BL1

BL2

BL3

BL4

BUO

BU1

BU2

BDO

BD1

BD2

Block2D (make_patch (B2L1, T1L1, B1T1, B1B2), nni=Nbl,

cf_list = [CF_bl0, None,
fill_condition=initial ,

Block2D (make_patch (B3L2, L1L2, B2L1, B2B3), nni=Nbl,

cf_list = [CF_bl0, None,
fill_condition=initial ,

Block2D (make_patch (B3B4, L3B4, L2L3, L2B3), nni=Nb3,

cf_list = [None, CF_bll,
fill_condition=initial ,

Block2D (make_patch (L3B4, B5B4, L4B5, L4L3), nni=Nbl,

cf_list = [CF_bll, None,
fill_condition=initial ,

Block2D (make_patch (L4B5, B6B5, T2B6, T2L4), nni=Nbl,

cf_list = [CF_bll, None,
fill_condition=initial ,
Block2D (make_patch (U2B2, B1B2,
fill_condition=initial ,
Block2D (make_patch (U1B3, B2B3,
fill_condition=initial ,
Block2D (make_patch (1112, B3I2,
fill_condition=initial ,
Block2D (make_patch (B5D2, D3D2,
fill _condition=initial ,
Block2D (make_patch (B4D1, D2D1,
fill _condition=initial ,
Block2D (make_patch (1314, D114,

42

)
)

00). Only required in 8D

)
"U2h”)
"Ulh”)
"B1h”)
"B2h”)
"B3h”)
"L2h”)
"B6h”)
"B5h”)
"Bdh”)
"T2h”)
"L4h”)

CF_bl0, None],
label="BL0”)

CF_bl0, None],
label="BL1”)

None, CF_bll],
label="BL2”)

CF_bll, None],
label="BL3”)

CF_bll, None],

label="BL4”)

U3B1, U3U2), nni=Nu,

label="BU0")

U2B2, U2U1), nni=Nu,

label="BU1”)

U1B3, U1Il)

label="BU2”)
)
)
)
)
)

, nni=Nu,

B6D3, B6B5), nni=Nd,

label="BD0”
B5D2, B5B4), nni=Nd,
label="BD1”

B4D1, B4I3), nni=Nd,

nnj=Nbl,

nnj=Nb2,

nnj=Nbl,

nnj=Nb2,

nnj=Nbl,

nnj=Nbl,
nnj=Nb2,
nnj=Nt,

nnj=Nbl,
nnj=Nb2,

nnj=Nt,

306

307

309

310

312

313

315

316

317

318

319

320

321

322

323

324

326

327

329

331

332

334

335

336

337

338

fill_condition=initial , label="BD2”)
BT0 = Block2D (make_patch (I2I3, B413, B3B4, B3I2), nni=Nb3, nnj=Nt,
fill_.condition=initial , label="BT0”)

elif gdata.dimensions = 3:

BLO = Block3D (WireFrameVolume (make_patch (B2L1, T1L1, B1T1, B1B2), Line(
B1,Blh)), nni=Nbl, nnj=Nbl, nnk=Nz,
cf_list = [CF_bl0, None, CF_bl0, None, CF_bl0, None, CF_bl0,
None, CF_h, CF_h, CF_h, CF_h],
fill_condition=initial , label="BL0”)
BL1 = Block3D (WireFrameVolume (make_patch (B3L2, L1L2, B2L1, B2B3), Line(
B2,B2h)), nni=Nbl, nnj=Nb2, nnk=Nz,
cf_list = [CF_bl0, None, CF_bl0, None,CF_bl0, None, CF_blO,
None, CF._h, CF.h, CF._.h, CF.h],
fill_condition=initial , label="BL1”)
BL2 = Block3D (WireFrameVolume (make_patch (B3B4, L3B4, L2L3, L2B3), Line(
L2,L2h)), nni=Nb3, nnj=Nbl, nnk=Nz,
cf_list = [None, CF_bll, None,CF_bll, None, CF_bll, None,
CF_bll, CF.h, CF.h, CF.h, CF.h],
fill_condition=initial , label="BL2”)
BL3 = Block3D (WireFrameVolume (make_patch (L3B4, B5B4, L4B5, L4L3), Line(
L4,L4h)), nni=Nbl, nnj=Nb2, nnk=Nz,
cf_list = [CF.bll, None, CF_bll, None,CF_bll, None, CF_bll,
None, CF_h, CF_.h, CF_h, CF_.h],
fill_condition=initial , label="BL3”)
BL4 = Block3D (WireFrameVolume (make_patch (L4B5, B6B5, T2B6, T2L4), Line(
T2,T2h)), nni=Nbl, nnj=Nbl, nnk=Nz,
cf_list = [CF_bll, None, CF_bll, None,CF_bll, None, CF_bll,
None, CF_h, CF.h, CF._.h, CF.h],
fill_condition=initial , label="BL4")
BUO = Block3D (WireFrameVolume (make_patch (U2B2, B1B2, U3B1, U3U2), Line(
U3,U3h)), nni=Nu, nnj=Nbl, nnk=Nz,
cf_list = [None, None, None, None, None, None, None, None,
CF_.h, CF.h, CF.h, CF.h],
fill_condition=initial , label="BU0")
BU1 = Block3D (WireFrameVolume (make_patch (U1B3, B2B3, U2B2, U2Ul), Line(
U2,U2h)), nni=Nu, nnj=Nb2, nnk=Nz,
cf_list = [None, None, None, None, None, None, None, None,
CF_h, CF.h, CF.h, CF.h],
fill_condition=initial , label="BU1”)
BU2 = Block3D (WireFrameVolume (make_patch (1112, B3I2, UIB3, U1lI1), Line(
U1,Ulh)), nni=Nu, nnj=Nt, nnk=Nz,
cf_list = [None, None, None, None, None, None, None, None,
CF.h, CF.h, CF.h, CF.h],
fill_condition=initial , label="BU2”)
BD0 = Block3D (WireFrameVolume (make_patch (B5D2, D3D2, B6D3, B6B5), Line(
B6,B6h)), nni=Nd, nnj=Nbl, nnk=Nz,
cf_list = [None, None, None, None, None, None, None, None,
CF.h, CF.h, CF.h, CF.h],
fill_condition=initial , label="BD0”)
BD1 = Block3D (WireFrameVolume (make_patch (B4D1, D2D1, B5D2, B5B4), Line(
B5,B5h)), nni=Nd, nnj=Nb2, nnk=Nz,
cf_list = [None, None, None, None, None, None, None, None,
CF_.h, CF.h, CF.h, CF.h],

43

339 fill_condition=initial , label="BD1”)
BD2 = Block3D (WireFrameVolume (make_patch (1314 , D114, B4D1,
B4,B4h)), nni=Nd, nnj=Nt, nnk=Nz,
cf_list = [None, None, None, None, None, None, None, None,
CF.h, CF.h, CF.h, CF.h],

fill_condition=initial , label="BD2")

340 B413), Line(
341

342

343 BT0 = Block3D (WireFrameVolume (make_patch (1213, B4I3, B3B4, B3I2), Line(
B3,B3h)), nni=Nb3, nnj=Nt, nnk=Nz,
344 cf_list = [None, None, None, None, None, None, None, None,

CF_.h, CF.h, CF.h, CF.h],
345 fill_condition=initial , label="BT0”)
346
sar# link blocks
sas identify _block_connections ()

sao# define B/C

350 BUO. be_list [SOUTH] = ExtrapolateOutBC (label="OF _outlet_00")
351 BLO. be_list [SOUTH] = ExtrapolateOutBC (label="OF _outlet_00")
352 BL4. be_list [SOUTH| = ExtrapolateOutBC (label="OF_outlet_00")
353BD0. be_list [SOUTH] = ExtrapolateOutBC (label="OF _outlet_00")
35¢BU2. be_list [NORTH] = ExtrapolateOutBC (label="OF _inlet_00")
355 BTO. be_list [NORTH| = ExtrapolateOutBC (label="OF_inlet_00")
356 BD2. be_list [NORTH] = ExtrapolateOutBC (label="OF _inlet_00")
357
358 BUO. be_list [WEST| = ExtrapolateOutBC (label="OF_inlet_01’) # OF_inlet_01 and
_02 are used to group periodic boundaries
350 BUL. be_list [WEST] = ExtrapolateOutBC (label="OF _inlet_01")
360 BU2. be_list [WEST| = ExtrapolateOutBC (label="OF_inlet_01")
361 BD0. be_list [EAST] = ExtrapolateOutBC (label="OF _inlet_02 ")
362BD1. be_list [EAST] = ExtrapolateOutBC (label="OF _inlet_02 ")
36aBD2. be_list [EAST| = ExtrapolateOutBC (label="OF_inlet_02")
364
36s BLO. be_list [EAST] = ExtrapolateOutBC (label="OF _wall_00 ")
se6 BL1. bc_list [EAST| = ExtrapolateOutBC (label="OF _wall_00")
s3e7r BL2. be_list [SOUTH] = ExtrapolateOutBC (label="OF _wall_00 ")
s36s BL3. bc_list [WEST] = ExtrapolateOutBC (label="OF _wall_00")
360 BL4. bc_list [WEST] = ExtrapolateOutBC (label="OF_wall_00")

370

311 if gdata.dimensions = 3:

372 BUO. be_list [TOP] = ExtrapolateOutBC (label="OF_wall_01")
373 BUO. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF_wall_02 ")
374 BUL. bc_list [TOP] = ExtrapolateOutBC (label="OF_wall_01")
375 BUL. be_list [BOTTOM] = ExtrapolateOutBC(label="OF_wall_02")
376 BU2. bc_list [TOP] = ExtrapolateOutBC (label="OF_wall_01")
377 BU2. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF _wall_02")
378 BDO. bc_list [TOP] = ExtrapolateOutBC (label="OF_wall_01")
379 BDO. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF_wall_02 ")
380 BD1. bc_list [TOP] = ExtrapolateOutBC (label="OF_wall_01")
381 BD1. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF_wall_02")
382 BD2. bc_list [TOP] = ExtrapolateOutBC (label="OF_wall_01")
383 BD2. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF_wall_02")
384 BLO. bc_list [TOP] = ExtrapolateOutBC (label="OF_wall_01")
385 BLO. be_list [BOTTOM] = ExtrapolateOutBC (label="OF _wall_02 ")
386 BL1. bc_list [TOP] = ExtrapolateOutBC (label="OF _wall_01")

44

387 BL1. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF _wall_02")

388 BL2. bc_list [TOP] = ExtrapolateOutBC (label="OF _wall_01")

389 BL2. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF_wall_02")

390 BTO0. bc_list [TOP] = ExtrapolateOutBC(label="OF_wall_01")

391 BTO. bc_list [BOTTOM] = ExtrapolateOutBC (label="OF _wall_02")

392

sos sketch. prefer_bc_labels_on_faces () # required to allow grouping of
boundaries by e3prepToFoam.py

394

395 if gdata.dimensions =— 2:

396 # This is to make a nice x.svg file of the 2—D projection of the mesh
397 sketch.xaxis(—0.05, 0.05, 0.02, 0.0)

308 sketch.yaxis (0.0, 0.1, 0.02, 0.0)

399 sketch .window(—0.05, 0., 0.05, 0.1, 0.05, 0.05, 2.05, 2.05)

7.2 Rotor_Passage.py

17## \Rotor_Passage . py

2 #

3777’7’

4Script to create a structured mesh for an Radial inflow turbine passage.
s The geometry and grid is defined in Rotor_Profile.py
6

7 Author: Ingo Jahn

s Last modified: 23/03/2015

5 PN

10

11 import numpy as np

12from Rotor_Profile import =

13

14

s ### Setting up Basic Information ###

16

17# For grid development, set gdata.dimensions = 2, this will create the 2—D
projection of the mesh.

18 gdata.dimensions = 3

19 gdata. axisymmetric_flag = 0

20

2n17# Set some fluid propertied to allow e38prep to solve

227# These only need to be correct if wusing FEilmer as solver.

23 select_gas_model (model="ideal gas’, species=[’air’])

24 initial = FlowCondition (p=5955.0, u=0.0, v=0.0, T=304.0)

25 inflow = FlowCondition (p=95.84e3, u=1000.0, v=0.0, T=1103.0)

26

27

2w #H## Set Rotor Properties HAH

29

so# set filename used to store rotor data. Data can be previewed using
Rotor_Profile.py —job=name

31 RotorFileName = ” Rotor_example.py”

45

32

337# execute file containing rotor data to define geometry

sa execfile (RotorFileName , globals ())

ss# create anonymous functions that can be used by PyFunctionVolume ()
36 pyfunction_blk0 = lambda r,s,t: PROFILE.eval(r,s,t,0)

s7 pyfunction_blkl = lambda r,s,t: PROFILE.eval(r,s,t,1)
ss pyfunction_blk2 = lambda r,s,t: PROFILE.eval(r,s,t,2)
39 pyfunction_blk3 = lambda r,s,t: PROFILE.eval(r,s,t,3)
40

41

w### Set Number of Cells A

43

wu#nl = 60 # cells along passage

ws#Nt = 60 # cells of main passage in circumferential direction

w#nz = 60 # cells of main passage azial (at inlet) or radial (at outlet)
direction

ar#nbl = 10 # cells in boundary layer region.

48

s9nl = 30 # cells along passage

sont = 15 # cells of main passage in circumferential direction

sinz = 15 # cells of main passage azial (at inlet) or radial (at outlet)
direction

s2nbl =5 # cells in boundary layer region.

53

54

ss ### Set Cluster Functions A

56
s7 CF_bl0 = RobertsClusterFunction (1,0,1.05)
ss #CF_bll = RobertsClusterFunction (1,0,1.05)
s #CF_h = RobertsClusterFunction (1,1,1.05)

60

61

e27### Definitions of Blocks HAH

63

6a BLO = Block3D (PyFunctionVolume (pyfunction_blk0), nni=nt, nnj=nz, nnk=nl,

65 cf_list = [None, None, None, None, None, None, None, None,
None, None, None, None],

66 fill_condition=initial , label="blk0”)

67 BL1 = Block3D (PyFunctionVolume (pyfunction_blkl), nni=nz, nnj=nbl, nnk=nl,
68 cf_list = [None, CF_bl0, None, CF_bl0, None, CF_bl0, None,
CF_bl0, None, None, None, None],

69 fill_condition=initial , label="blkl”)

70 BL2 = Block3D (PyFunctionVolume (pyfunction_blk2), nni=nt, nnj=nbl, nnk=nl,
71 cf_list = [None, CF_bl0, None, CF_bl0, None, CF_bl0, None,
CF_bl0, None, None, None, None],

72 fill_condition=initial , label="blk2”)

73 BL3 = Block3D (PyFunctionVolume (pyfunction_blk3), nni=nz, nnj=nbl, nnk=nl,
74 cf_list = [None, CF_bl0, None, CF_bl0, None, CF_bl0, None,
CF_bl0, None, None, None, None],

75 fill_condition=initial , label="blk3”)

e# link blocks
77 identify_block_connections ()

78

46

79

so### define B/C

81

999
82

83 OF _inlet_00 —> Inlet
84 OF _outlet .00 —> Outlet

85

s6 OF _wall_00 —> shroud

g7 OF _wall_.01 —> left

blade

ss OF _wall_.02 —> right balde

g0 OF _wall_03 —> hub
90””’7

oan# Inlet & QOutlet

92 BLO. bc_list [TOP] =
93 BL1. bc_list [TOP] =
9aBL2. be_list [TOP] =
95 BL3. bc_list [TOP] =
96 BLO. bc_list [BOTTOM]
o7rBL1. bc_list [B(jme]
9s BL2. bc_list [BOTTOM]
99 BL3. bc_list [BOTTOM]
100# Shroud

ExtrapolateOutBC (label="OF _inlet_00 ")
ExtrapolateOutBC (label="OF _inlet_00")
ExtrapolateOutBC (label="OF _inlet_00 ")
ExtrapolateOutBC (label="OF _inlet_00")
ExtrapolateOutBC (label="OF _outlet_00")
ExtrapolateOutBC (label="OF _outlet_00")
= ExtrapolateOutBC (label="OF _outlet_00")
= ExtrapolateOutBC (label="OF_outlet_00")

101 BL1. be_list [WEST] = ExtrapolateOutBC (label="OF _wall_00")

102 BLO. be_list [NORTH]

= ExtrapolateOutBC (label="OF_wall_00")

103 BL3. bc_list [EAST] = ExtrapolateOutBC (label="OF_wall_00")

1wa# Left Blade

10s BL1. be_list [SOUTH]
106 # Hub

107 BL2. be_list [SOUTH]
1ws# Right Blade

100 BL3. be_list [SOUTH]
110

111 # make sure labels

= ExtrapolateOutBC(label="OF_wall_01")
= ExtrapolateOutBC(label="OF_wall_02")
= ExtrapolateOutBC(label="OF_wall_03")

are plotted in svg

112 sketch . prefer_bc_labels_on_faces ()

7.3 Rotor_example.py

1# Rotor_example. py

2# Ingo Jahn 11/05/2015

s# Example Job file

4

for creating Mesh

s Name = ”Rotor meshing example”

6

7print ”Running ”

8

, Name,

” to generate rotor mesh”

9

1w# Setting Streamline at Passage Centre

11

12# Streamline defining passge (take wvalues from TOPGEN)

47

13 R_in = 28.443e-3 # (m) radius at
radius_inlet

inlet

1uR_out = 12.5e-3 # (m) radius at outlet

—> radius_outlet (mean)

TOPGEN —>

TOPGEN

15 Z_out = 12e—3 # (m) height at outlet (only used for elipse) —> design

variable

16 Twist = 60./180. % np.pi # (rad) twist angle of streamline —> design
variable

17 theta_in = —21./180. % np.pi # (rad) TOPGEN —>
beta_inlet

18 theta_out = 60./180. % np.pi # (rad) TOPGEN —>

beta_outlet

19 L_in2 = 0.3 # position of 2nd control point
from inlet) —> design wvariable

20 L_in3 = 0.6 # position of 3rd control point
from inlet) —> design wvariable

21 L_outd = 0.8 # position of 4th control point
before outlet) —> design variable

22 L_outh = 0.9 # position of Sth control point

before outlet) —> design wvariable

23

(fraction
(fraction
(fraction

(fraction

along streamline
along streamline
along streamline

along streamline

24a7# Define Central Streamline that is used to set blade passage shape.
25 # STREAMLINE must be a 3—D path function as described at the end
theta_out , Z_out, Twist,

27

28

26 STREAMLINE = Topgen2Bezier (R_.in, theta_in, R_out,
L_.in2, L_.in3, L_out4, L_outh)
20# Setting Parametric curves to define passage

30

s17# Area of Passage

32A0 = 3.9¢—4/12.%xnp.cos (21./180. * np.
33Al = 6.2e—4/12.xnp.cos(70./180. * np.

34 Al = 0.8xAl

35

se# Define parametric evolution of area
sr# AREA must be a 1-D path function
3sAREA = Poly_1D ((A0,Al))

39

pi) # (m2) Area at inlet
pi) # (m2) Area at outlet

w# set corner radius and boundary layer refinement height

a# RC must be a 1-D path function

22RC = Const_1D (0.0002)

137# BL must be a 1-D path function

14BL = Const_1D (0.0002)

45

w6# set Blade thickness at root and tip
ar# T_ROOT and T_TIP must be a 1-D path
4s TROOT = Const_1D (0.001)

49 T_TIP = Const_-1D (0.001)

50

s17# set lean of rotor blades

s2# LEAN must be a 1-D path function

53 LEAN = Const_1D (0./180.%np. pi)

54

function

48

s57# set number of Blades
56 N.BLADE = 9
57

58

59

co# Setting Parametric Profile

61

627 Define parametric profile used to generate passage shape

63# PROFILE must be a 2—D profile object, which contains sub—division into 4
grid—able blocks

64 Surfl = Rect (STREAMLINE,AREA, T ROOT, T_TIP ,BL,N_BLADE,LEAN)

65 Surf2 = RectCorner (STREAMLINE, AREA, T ROOT, T_TIP ,BL,RC,N.BLADE,LEAN)

66

e7# define blending function

68 # BLEND must be a 1-D path function varying between 0. and 1.

6o # BLEND = Poly_1D ((0.,1.))

70 BLEND = Const_1D (1.0)

71

2# Assemble Profile

73 PROFILE = Blended2Dsurface (Surfl , Surf2 ,BLEND)

74

75
76# Defining Rotor blank and Stator
T
w# set Clearance

79 CLEARANCE = Const_1D (0.001)
80

s1# Rotor back thickness

s2 R.THICK = Const_1D (0.002)

83

84
ss# Define Output Files
86
st# set file writing Flag
ss FILES . flag = 0

89

w0# set Filenames

o1 FILES . nameroot = ”Dat_”
92 FILES. Slices = 10

93 FILES . Pointsl = 20

94 FILES. Points2 = 5

95

96
or# Setting Visulisation Properties
98
w0# set Visulisation Flag

100 VISUAL. flag = 1

101

1w2# Set Properties for Showing Profile in python window
103 VISUAL. slices = 10

10a VISUAL. channels = 2

105 VISUAL . nodes = 40

106

49

wr# path functions:

108

999997

100 Following path functions are required:
110 1-D path:

111

119

121 3—D

129

130

131

133

134

99997

Function which returns single value (betwee 0 and 1) as a function of
parametric input parameter t.

Function requires two sub—functions

self .eval(t) —> provides local value

self .gradeval(t) —> provides local gradient d/dt

Options:

— Const_1D(Value) —> will output a constant value

— Poly_1D ((coeff0, coeffl, coeff2, ...)) —> creates polynominal of
from y = coeff0 + coeffl x t 4+ coeff2 * t*x2, +

— Bezier_1D ((coeff0, coeffl, coeff2, ...)) —> creates bezier curve

through control points defined by coeff

path:

Function which returns three value (betwee 0 and 1) as a function of
parametric input parameter t.

Function requires two sub—functions

self.eval(t) —> provides local value (x,y,z)

self . gradeval(t) —> provides local gradient dx/dt, dy/dt, dz/dt

Options:
— Bezier 3D (((coeff0.x, coeffO.y ,coeffO0.z), (coeffl_x, coeffl_y,
coeffl_z), (coeff2_x, coeff2_y , coeff2_z), ...))

—> creates bezier curve through control points defined by coeff
— Topgen2Bezier (R_in, theta_in, R_out, theta_out, Z_out, Twist, L_in2,
L.in3, L_out4, L_out5)

—> function that takes TopGen Outputs (R-in, theta_in, R_out,
theta_out , Z_out, Twist) and generates a corresponding point
Bezier curve.

(L.in2, L_.in3, L_out4, L_outb5) are used to control position of
intermediary control points.

50

	Introduction / Overview
	Distribution and Installation
	Compatibility
	Citing this tool
	License
	Modifying the code and Contributing

	NGVs
	Running the Tool
	Geometry Definition
	Mesh Definition
	Mesh Construction and built-in constraints
	Tuning nodes
	Cell numbers
	Cell recommendations
	Changing cell clustering
	Defining Flow Properties

	Example
	Set-up file
	Conversion to 3-D

	ROTOR
	New approach to Definition of Rotor Shape
	Process Overview
	Definition of Passage Shape
	Parametric passage Cross-sections
	Rectangle to annular segment
	Rectangle to annular segment with corner radii
	Rectangle to semi-circular segment
	Blade lean
	Profile Blending

	Running the Tool
	Geometry Generation
	Setting up the 'Rotor_example.py'
	Graphical Displays
	Output Files for CAD

	Mesh Generation
	Rotor Profile Definition
	Mesh Definition and Clustering

	Example

	Combined geometry
	Conclusion and Planned Work
	Code
	'Inlet_Vane_Round_Square.py'
	'Rotor_Passage.py'
	'Rotor_example.py'

