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Abstract 

PDZ domains are one of the most well studied peptide binding domains. These domains usually 

bind short peptides at the C-terminus of their target proteins and play a crucial role in cellular 

signalling processes. Computational approaches have been published to determine the interaction 

specificity of PDZ domains, but these prediction methods often limit their predictions on a limited 

subset of PDZ domains. In this research work, we developed PreDiZ, a computational method for 

PDZ domain-peptide interaction prediction based on the SDR approach. The SDR approach was 

originally created to predict specificity of protein kinases. In this work, improvements have been 

made to apply the SDR approach to the PDZ domains, including using a more sophisticated 

strategy to determine SDRs, and using both positive and negative interactions in the prediction. As 

a result, PreDiZ is able to work on a wide range of PDZ domains, including novel PDZ domains. In 

cross-validations, PreDiZ scored AUCs range from 0.82 to 0.94. In the comparison against 

published methods, PreDiZ showed competitive performance on making prediction to distantly 

related PDZ domains, but not as good as other recently published methods on mouse test set. 

However, the results also suggested that PreDiZ could be improved by optimising SDRs. We also 

conducted proteome-wide predictions on A. thaliana, C. elegans, D. rerio, M. musculus and H. 

sapiens and showed PDZ domains were evolved relatively late in eukaryotic cells. Network studies 

on human PDZ domain interaction revealed the enriched GO terms and KEGG pathways of PDZ 

domain binding proteins. Lastly, we studied how H7N9’s NA and H5N1’s NS1 protein regulate 

human biological processes using the human PDZ interaction network. Human proteins that 

regulated via PDZ domain interactions by these two kind of viral proteins, were enriched in similar 

biological processes. Therefore, we concluded that the function of PBM in the NS1 proteins of 

H5N1 was replaced by the PBM in the NA proteins of H7N9. 
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1 Introduction 

1.1 Peptide-protein interactions 

Proteins often interact with each other to form functional complexes and these 

interactions are important in all biological pathways and signalling mechanisms (1). 

Understanding protein-protein interactions is crucial to the study of protein functions and 

reconstructing biological pathways. It will also help in discovering the functions of new 

proteins by identifying their interaction partners.  

Many proteins have well-structured globular domains. The functions of proteins are 

largely dependent upon these domains. However, disordered regions of proteins also play 

an important role in protein functions (2, 3). Recently, increasing evidence shows that 

linear motifs inherent in these disordered regions play important roles in protein-protein 

interactions. Linear motifs are short peptide sequences containing key residues for 

function or binding (4). They usually form transient complexes with their interaction 

partners. Peptide-protein interactions usually have smaller interacting interfaces and 

weaker interaction affinities compared to interactions between globular domains. The 

transient nature makes linear motifs very good candidates for signalling pathways, which 

require fast response to stimuli (5). 

Experimental methods such as the yeast two-hybrid approach (6, 7), affinity 

purification-mass spectrometry (8) and oriented peptide libraries (9) have been widely 

used to perform large-scale analyses of interactions in different organisms. These 

experimental methods have produced a massive quantity of interaction information, 

however they are also known to be expensive, labour-intensive and time-consuming.  

Moreover, the high-throughput methods may generate false positive results, and therefore 

particular caution is necessary when using these data (10, 11).   

With the rise of bioinformatics in recent years, computational methods can be used 

to complement certain limitations of high-throughput experiments (12). Generally, these 

bioinformatics algorithms can be very helpful for selecting potential targets for 

experimental screening or for validating experimental data. Sometimes, they can even 

provide detailed binding information which might not be found easily using the 

experimental techniques. Hence, they reduce significantly the time and cost required to 
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determining interactions experimentally (13). A number of domains such as SH2, SH3, 

WW, 14-3-3 and PDZ domains have been found to interact with their partners via peptide-

protein interactions. 

1.2 Interaction studies on PDZ domains 

PDZ domain, also named GFGL domain or DHR domain, was first identified in three 

proteins: postsynaptic density protein-95, disks large tumor suppressor and zonula 

occludens-1; and named using the first letter of each of these proteins (14-16). PDZ 

domains are involved in cell signalling and polarity, and mostly found in multi-cellular 

organisms. Hence, it has been suggested that PDZ domains co-evolved with multi-

cellularity (17).  PDZ domains usually consist of 80 to 90 amino acids and fold into a 

globular structure comprising six beta-strands (βA to βF) and two alpha-helices (αA and 

αB). The N- and C-termini of PDZ domains are mostly found close in space. There are 

over 400 structures of PDZ domains in the Protein Data Bank (PDB) (18). These protein 

domains share only around 30% sequence identity on average, but the core structure 

remains the same (19). Furthermore, some PDZ domains contain variable loop regions 

and extension regions that affect their structures and functions (19). Experiments show 

that PDZ domain structures are robust to extensive mutagenesis (20). 

PDZ domains are able to bind short peptides at the C-terminus of their target 

proteins (21). Short C-terminal peptides are recognised by a carboxylate binding loop (βA 

– βB loop), containing the conserved GLGF motif, and the αB helix (22-25). The binding 

peptide binds to the PDZ domain as an anti-parallel extension of the β-sheet of the PDZ 

domain and the ligand residues in positions -1 and -3 point towards to the solvent, while 

residues in positions 0 and -2 point towards to the binding pocket, with the last residue at 

the C-terminus as position 0 (12, 26). PDZ domains are quite promiscuous with their 

specificity; one PDZ domain can interact with multiple peptides and the same peptide can 

be recognised by multiple PDZ domains (27). The specificity of PDZ domains can be 

changed by mutagenesis, which make PDZ domains adapt quickly during evolution (27). 

The PDZ-peptide interactions are regulated by various factors, such as buffer conditions 

(28, 29), allosteric differences (30) and phosphorylation in PDZ-domain binding motives 

(PBM) (31). In addition, some PDZ domains are also able to bind to internal (non-C-

terminal) motifs (32-39) and membrane phospholipids (40-43). 
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Early studies classified PDZ domains into classes based on the last few amino 

acids in their binding peptides (21). Class 1 PDZ domains bind the motif Ser/Thr-X-Ф-

COOH and class 2 PDZ domains bind Ф-X-Ф-COOH, where X is any residue and Ф is a 

hydrophobic residue (26). Less common classes of PDZ domains recognize a different 

motif, Asp/Glu-X-Ф-COOH (22). Later research showed that it was not appropriate to 

classify PDZ domains into three simple classes (44, 45). Tonikian, et al. (46) demonstrated 

that PDZ domains can be classified into up to 16 different classes and the selection 

specificity depended on up to 7 C-terminal residues in their binding peptides. 

Bezprozvanny and Maximov (44) classified PDZ domains into 25 different sub-classes 

based on amino acids in two positions of PDZ domains. Further research on PDZ binding 

specificity showed that every position of the last five C-terminal amino acid of the binding 

peptide affects the binding specificity (47).   

PDZ domain interactions have been experimentally characterised using methods 

such as  immunoprecipitation experiments (48-50), mass spectrometry (51), the yeast two-

hybrid  approach (52), and oriented peptide libraries (9, 21). However, high throughput 

methods are known to be expensive, labour-intensive and time-consuming. With the help 

of computational methods, the time and cost of determining interactions experimentally 

can be reduced. 

1.3 Computational predictive methods of PDZ-peptide interactions 

A number of computational approaches have been published to determine the 

interaction specificity of PDZ domains, as they are one of the most well studied interaction 

domains. These approaches have used sequence information, structure information or 

both to predict specificity of PDZ domains.  

Structure-based methods rely on the information provided from 3D structures of 

PDZ domain-peptide complexes. With the 3D structures available, researchers can study 

in detail how the two proteins interact, as well as the physicochemical properties of the two 

interacting partners (53). On the other hand, these methods are often limited by the lack of 

available 3D structures. There are over 400 PDZ domain structures in the PDB (54), 

compared to 58998 PDZ domain-containing proteins available in the SMART nrdb 

database (55). The lack of coverage of PDZ domains will make it difficult for this kind of 

approaches to predict PDZ domains without known structures. Therefore, most structure-

based methods can only predict interactions with the PDZ domain structure available.  



16 

 

Encinar, et al. (56) published a structure-based interaction prediction tool, called 

prediADAN, as part of the ADAN database. It provides position-specific scoring matrices 

for 212 PDZ domains calculated from their high quality structures using a protein design 

algorithm called FoldX (57). Their benchmarking showed an area under receiver operating 

characteristic (AUC) value from 0.48 to 0.96. 

Smith and Kortemme (58) analysed 17 human PDZ domain structures. They used 

Rosetta to simulate and score interactions between large numbers of peptides with five 

residues against these PDZ domain proteins. Then the position specific scoring matrices 

(PSSMs) of PDZ domains were calculated for each domain. They evaluated their method 

on mutated Erbin PDZ domains. For Erbin single point mutation, the method reported an 

AUC value of 0.90 and 0.72 for Erbin with 10 mutations.  

Both structure-based methods described above provide web access, and require a 

protein structure to perform interaction prediction. However, it is not always the case that 

the structure is available for the protein of interest. This will limit the usage of these 

methods. On the other hand, sequence-based methods analyse the amino acid sequences 

of the PDZ domains and their binding partners. Some methods also consider extra 

parameters in their predictions, such as structures, co-localisation and phylogenetic 

profiles. In general, these methods benefit from the large amount of available data for PDZ 

domain interactions (53).  

Stiffler, et al. (59) performed a large scale study on mouse PDZ domains and 

developed a prediction model called multidomain selectivity model (MDSM). They 

identified both positive and negative interactions between 157 mouse PDZ domains 

against 217 peptides using yeast-two-hybrid experiments. By using the positive 

interactions identified, they generated a PSSM for each mouse PDZ domain based on the 

probability of amino acid on last five positions of the positive binding peptides. They were 

able to build PSSMs for 74 mouse PDZ domains. They benchmarked MDSM on 

interactions that weren’t included in the training data and successfully predicted 48% of the 

positive interactions and 88% of the negative interactions. It is worth noting that the 

interaction data published in this study were widely used as training data in almost every 

PDZ domain prediction approach. 

Chen, et al.(60) used a statistical model to predict interactions of mouse PDZ 

domains and peptides by using both sequences of PDZ domains and peptides. They 

constructed a multiple sequence alignment of mouse PDZ domains with available 
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structures in the PDB. Using the structures of α1-syntrophin PDZ and heptapeptide 

GVKESLV as a reference, the model chooses position pairs in close proximity (<5.0 Å). 

They excluded any residue position in the PDZ domains that was not perfectly aligned. 

They obtained 38 interacting pairs involving 16 PDZ-domain binding pocket residues and 5 

peptide ligand residues. They then generated a scoring matrix for each residue pair. This 

model was then fit with affinities or binary interaction data. Cross-validation tests 

(randomly assigning 12% of the domains and 8% of the peptides as the test set) of binary 

interaction showed AUC scores of 0.84, 0.91 and 0.87 for extrapolations to novel mouse 

peptides, novel mouse PDZ domains or both.  They also tested the method on PDZ 

domains from other species. The AUC was 0.77 for D. melanogaster domains and 0.68 for 

C. elegans domains. Chen’s method successfully used PDZ structure to determine the key 

binding sites, then used sequence information to build a predictor that performs at a high 

level on the cross-validations. The method has high accuracy predicting mouse PDZ 

domain interactions. On the other hand, further tests showed that this method was general 

for mouse PDZ domains, but performance for domains derived from more distantly related 

species was not very good. 

Schillinger, et al. (61) developed the domain interaction footprint (DIF) method. This 

method was designed to predict protein-peptide interactions for SH3 and PDZ domains. 

For the PDZ domain part, it used experimentally tested data from four different PDZ 

domains, AF6, SNA1, ERBIN and N1P1. The properties of both binding and non-binding 

peptide sequences of PDZ domains were studied using a machine learning method. 

Parameters such as logP, Verloop parameters for volume, parameters for hydrophobicity, 

polarization, frequency of occurrence in elements of secondary structure, flexibility, and 

surface description were studied using correlation-based feature selection to select the 

best subset of features to classify the binding and non-binding peptides. The selected 

subset was then used to create DIFs for PDZ domains. For a PDZ domain, one DIF for the 

binding and another DIF for the non-binding peptides were created. A peptide is allocated 

to the DIF with the best score. On the ten-fold cross-validation, the DIF method scored an 

average AUC of 0.89, whereas the AUC scores of the single classifiers ranged from 0.84 

to 0.93.  

Kalyoncu, et al. (12) published a PDZ domain interaction prediction and 

classification method, which is based on the sequence features from mouse PDZ domains. 

The training dataset consisted of interaction information from 85 mouse PDZ domains and 
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181 peptides (59). They calculated the frequencies of consecutive two amino acids and 

three amino acids in the amino acid sequences of PDZ domains. Amino acids were 

arranged into seven groups according to their dipoles and volumes of the side-chains. 

Frequencies of consecutive two amino acids (bigram) and three amino acids (trigram) in 

the PDZ domain sequences were used as features to predict their binding partners. Five 

machine learning approaches, which were support vector machine (SVM), nearest 

neighbour, naïve Bayes, J48 and random forest, were trained using 10-fold cross-

validation. In the end, the random forest method was chosen as it out-performed the other 

methods. For the trigram part, this method scored an AUC of 0.97 and 91.4% accuracy on 

their cross-validation. The method was also tested on an unpublished validation dataset 

and scored an accuracy of 79.8%. Kalyoncu’s method showed a very good performance 

on predicting mouse PDZ domain interactions. However, on an unpublished dataset the 

accuracy of the prediction dropped to 79.8%. The tests performed on this method were all 

based on mouse PDZ domains. Performance for PDZ domains on other species was not 

tested.  

The method of Shao, et al. (62) is another sequence-based PDZ domain interaction 

prediction approach. It used a novel regression framework that considers both positive and 

negative interaction data available for mouse PDZ domains. Shao’s method, called semi-

quantitative support vector regression (SVR), predicts the binding affinity of PDZ-peptide 

interactions from quantitative binding data and qualitative non-binding data. SVR is a well-

known machine learning method of non-linear regression. They modified this method to 

take advantage of negative information they had available. They scored an average AUC 

of 0.86 in the benchmarking.  

DomPep developed by Li, et al. (63) is a sequence-based prediction model for 

domain-mediated protein-protein interactions using SVM. They demonstrated their 

approach by building prediction models for PDZ and SH2 domains. They clustered PDZ 

domains in pairs by their positive binding peptides using a parameter called ligand-binding 

similarity (LBS). LBS is positively correlated to the number of shared binding peptides 

between two PDZ domains. Domain sequence identity (DSI) and PWM distance for each 

domain pair was also calculated. PDZ domains with LBS above an arbitrary set cut-off, in 

this case 0.7, were used to determine thresholds of DSI and PWM distance. PDZ domains 

with PWM distance and DSI greater than the corresponding thresholds were considered 

similar in specificity. A SVM algorithm was used to build prediction models for each PDZ 
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domain using binding data from PDZ domains with similar specificity. DomPep scored an 

average AUC of 0.81 on a test set of 52 mouse PDZ domains and an average AUC of 0.84 

on a test set of PDZ domains in other species than mouse. They also compared DomPep 

predictions for three PDZ domains in Scrib, PDZ-1, -2, and -3 with experimental data and 

scored AUC values of 0.90, 0.85 and 0.89 respectively. A web server is available for 

DomPep. 

Kundu and Backofen (64) developed PdzPepInt, a cluster-based prediction method 

for PDZ-peptide interactions. They used the Markov clustering algorithm (MCL) to cluster 

human, mouse, fly and worm PDZ domains based on their sequence identify. PDZ 

domains with sequence identity greater than 50% were considered to have similar binding 

specificity and were therefore grouped together. Then they built a predictive model using a 

Gaussian kernel support vector machine with sequence-based and contact-based feature 

encoding. For the sequence-based approach, they used a strategy similar to DomPep 

(63), considering last five C-terminal residues of binding peptides of each PDZ domain 

group. For the contact-based approach, their approach was similar to Chen’s method (60). 

The sequence-based approach covered 136 PDZ domains and scored an average AUC of 

0.92 on a 5-fold cross-validation test. The contact-based approach covered 70 PDZ 

domains and scored an average AUC of 0.89. A web server is available for the public to 

access this method (65).  

Overall, computational PDZ-peptide prediction methods show high-level 

performances. Some prediction methods limit their predictions on a limited number of 

species such as mouse and human. Other methods show a decrease in performance in 

test sets from other species or PDZ domains without binding data. Some of these 

prediction methods did not provide any convenient way, such as a web interface, for other 

researchers to use them without bioinformatics or programing background. Stiffler’s MSDM 

method (59) provided PSSMs for 74 mouse PDZ domains. DomPep (63) and PdzPepInt 

(64, 65) both have web servers for users to submit their queries and make predictions. 

However, although DomPep claimed it can make predictions for any user-submit PDZ 

domain, this function wasn’t working on their web server at the time of writing.   

1.4 The SDR approach 

The SDR approach was first developed by Brinkworth et al. (66) to predict substrate 

specificities of protein kinases. They identified specificity determining residues (SDR) by 
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analysing the crystal structures of protein kinases. With the assumption of “proteins with 

similar SDR have similar specificity”, protein kinases that contain SDRs similar to the 

query protein were clustered. The binding peptides of these protein kinases are used to 

build PSSMs for the query protein and predict potential ligands. Later on, this approach 

has been proven successful not only for the prediction of phosphorylation sites (67, 68), 

but also prediction of peptide binding to MHC class II proteins (69, 70). In this work, we 

developed PreDiZ, which used the SDR approach to predict PDZ-peptide interactions 

using both structure and sequence information.  

2 Datasets and Methodology 

2.1 Datasets 

2.1.1 PDZ domain structures (PDB) 

The PDZ domain structures were obtained from the RCSB PDB (54). Structures 

that contained at least one PDZ domain and one ligand were extracted. In order to avoid 

low resolution and redundant structures, these structures were further filtered with the 

criteria of resolution higher than 2.4 Å and no more than 95% overall identity. PDZ 

complex structures that represent the canonical PDZ-peptide interaction, where the PDZ 

domain binds to a C-terminal peptide at the GLGF motif, were manually selected. After 

filtering, 22 complex structures were extracted (Table 1). 

Table 1 list of PDZ domain structures extracted from the PDB. 

PDB ID Name 

1BE9 
The third PDZ domain from the synaptic protein PSD-95 in complex with a C-terminal 
peptide derived from CRIPT. 

1IHJ 
Crystal structure of the N-terminal PDZ domain of InaD in complex with a NorpA C-
terminal peptide. 

1KWA Human CASK/LIN-2 PDZ domain. 

1L6O Xenopus Dishevelled PDZ domain. 

1MFG 
The structure of ERBIN PDZ domain bound to the carboxy-terminal tail of the ErbB2 
Receptor. 

1N7F 
Crystal structure of the sixth PDZ domain of GRIP1 in complex with liprin C-terminal 
peptide. 

1OBX 
Crystal structure of the complex of PDZ2 of syntenin with an interleukin 5 receptor 
alpha peptide. 

1OBY Crystal structure of the complex of PDZ2 of syntenin with a syndecan-4 peptide. 
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1Q3P 
Crystal structure of the Shank PDZ-ligand complex reveals a class I PDZ interaction 
and a novel PDZ-PDZ dimerization. 

1RZX Crystal Structure of a Par-6 PDZ-peptide complex. 

1TP3 PDZ3 domain of PSD-95 protein complexed with KKETPV peptide ligand. 

1TP5 
Crystal structure of PDZ3 domain of PSD-95 protein complexed with a peptide ligand 
KKETWV. 

1V1T Crystal structure of the PDZ tandem of human syntenin with the TNEYKV peptide. 

1W9E 
Crystal structure of the PDZ tandem of human syntenin in complex with the TNEFYF 
peptide. 

1W9O 
Crystal structure of the PDZ tandem of human syntenin in complex with the TNEYYV 
peptide. 

1W9Q 
Crystal structure of the PDZ tandem of human syntenin in complex with the TNEFAF 
peptide. 

1YBO Crystal structure of the PDZ tandem of human syntenin with the syndecan peptide. 

2AWW 
Synapse associated protein 97 PDZ2 domain variant C378G with C-terminal GluR-A 
peptide. 

2FNE The crystal structure of the 13th PDZ domain of MPDZ. 

2HE2 Crystal structure of the 3rd PDZ domain of human discs large homologue 2, DLG2. 

2I04 X-ray crystal structure of MAGI-1 PDZ1 bound to the C-terminal peptide of HPV18 E6. 

2I0L X-ray crystal structure of Sap97 PDZ2 bound to the C-terminal peptide of HPV18 E6. 

2I1N Crystal structure of the 1st PDZ domain of human DLG3. 

2IWP 12th PDZ domain of multiple PDZ domain protein MPDZ (CASP target).  

2JIL 
Crystal structure of 2nd PDZ domain of glutamate receptor interacting protein-1 
(GRIP1). 

2OPG The crystal structure of the 10th PDZ domain of MPDZ. 

2QBW The crystal structure of PDZ-fibronectin fusion protein. 

2QT5 Crystal structure of GRIP1 PDZ12 in complex with the Fras1 Peptide. 

2R4H 
Crystal structure of a C1190S mutant of the 6th PDZ domain of human membrane 
associated guanylate kinase. 

2V90 
Crystal structure of the 3rd PDZ domain of intestine- and kidney-enriched PDZ domain 
IKEPP (PDZD3). 

2VPH 
Crystal structure of the human protein tyrosine phosphatase, non-receptor type 4, PDZ 
domain. 

2VRF Crystal structure of the human beta-2-syntrophin PDZ domain. 

3B76 
Crystal structure of the third PDZ domain of human ligand-of-numb protein-X (LNX1) in 
complex with the C-terminal peptide from the coxsackievirus and adenovirus receptor. 

3CBY The Dvl2 PDZ domain in complex with the N1 inhibitory peptide. 

3CH8 The crystal structure of PDZ-fibronectin fusion protein. 
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2.1.2 PDZ domain-peptide interactions 

PDZ domain-peptide interactions were extracted from published studies, including 

three large-scale studies of PDZ domain interactions in M. musculus (59), H. sapiens (46) 

and C. elegans (71), and an online interaction database (72).  

Stiffler, et al. (59) studied PDZ domain-peptide interactions from 157 mouse PDZ 

domains and 217 genome-encoded peptides using protein microarray screening.  

Equilibrium dissociation constant (KD value) cut-off of 100 µM was used to determine 

positive and negative interactions. There were 726 positive interactions and 16142 

negative interactions extracted, involving 84 PDZ domains and 217 peptides.  

Tonikian, et al. (46) conducted a study on human PDZ domain specificity using 

phage-display experiments. We extracted 1473 positive PDZ domain-peptide interactions 

involving 54 human PDZ domains and 1283 peptides from this study. This study only 

provided positive interaction data, therefore no negative interaction data was collected. 

Lenfant, et al. (71) performed yeast two-hybrid screens to study PDZ domain 

interactions in C. elegans. We collected 396 positive PDZ domain-peptide interactions 

comprising 47 C. elegans PDZ domains and 327 peptides. 

The DOMINO database (72) is a manually curated database of protein interactions. 

Interactions involving a PDZ domain and that were not from the three large scale studies 

above were extracted from the database. We collected 1947 PDZ domain-peptide 

interactions from the DOMINO database. 

2.1.3 Proteome-wide datasets 

Reference proteomes are complete non-redundant proteome sets for selected well-

studied organisms. In this study, reference proteomes of A. thaliana, C. elegans, D. rerio, 

M. musculus and H. sapiens were downloaded from the UniProt database (release 

2014_04) (73) for proteome-wide analyses.  

2.1.4 GO database 

The GO database is a database of Gene Ontologies and annotation of genes and 

gene products (7). In this study, GO database version 2013-03-13 and the gene 

annotation file of version 3/5/2013 were used.   
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2.1.5 Kyoto Encyclopedia of Genes and Genomes pathway database 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database is a 

database of manually curated biological pathway maps (74, 75). It is widely used in studies 

such as metabolism, genetic information processing and cellular processes. 

2.1.6 Influenza A virus datasets 

Highly pathogenic avian influenza (HPAI) A virus protein sequences were 

downloaded from the NCBI Influenza Virus Resource database (76) with search conditions 

of “Type:A, Host: Human, Full-length only and collapse identical sequences”. There were a 

total of 33604 virus protein sequences, including 1182 protein sequences from H5N1 and 

218 protein sequences from H7N9. 

2.2 SDR selection based on structural alignments 

2.2.1 PDZ structure-based alignments 

PDZ domain structures were extracted from the PDZ domain-peptide complexes 

from the PDB. These PDZ domain structures were then aligned using PROMALS3D (77), 

a multiple sequence alignment tool using 3D structural information to improve sequence 

alignment quality. Then an HMM profile (referred to as the PDZ HMM profile) was built 

from the structure alignments using the HMMER 3.0 package. The HMM profile of PDZ 

domain structures were later used to determine SDRs.  

2.2.2 Four-parameter-test to identify SDRs 

SDRs were determined for each position of the PDZ binding motif (PBM) 

independently. We designed a four-parameter-test to look at every column of the 

consensus sequence of the PDZ HMM profile. The four parameters were: maximum 

contacting distance (MCD), average column similarity (ACS), proportion of interacting 

residues (PIR) and BLOSUM matrix (BLOSUM). Maximum contacting distance is the 

distance between PDZ domain residue’s side-chain atoms to the closest side-chain atoms 

of their binding peptides. Residues with distance below or equal to the MCD were 

considered as contacting residues. BLOSUM corresponds to the BLOSUM substitution 

matrix used to determine similar residues. Residues with a positive score on the selected 

BLOSUM matrix were considered similar. ACS is the proportion of similar residues on an 
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aligned column of the alignment. PIR is the proportion of contacting residues on an aligned 

column of the alignment. For each position of the PBM (i.e. the last five residues at the C-

terminus), if a column satisfied the condition of all four parameters, it was selected as a 

SDR.  

The SDRs were named based on their positions on the consensus sequence of the 

PDZ HMM profile. Two conserved motifs on the consensus sequence of the PDZ HMM 

profile were selected as marker motifs. They were the GLGF motif located in the βB strand 

and the GD motif located on the βD. The position of a SDR was marked using a marker + 

offset format. For example, if a SDR was on the column two residues after GD, it was 

marked as GD+2. 

2.3 Implementation of the SDR approach 

2.3.1 Customised PDZ interaction database 

Similar to the SDR method on Predikin, a purpose-built protein-peptide interaction 

database of PDZ domain interactions was needed. The database was structured in a 

fashion that the relationship between SDRs and PBM residues could be easily obtained 

(Figure 1). Hence, each PDZ domain in the database was scanned with the PDZ HMMER 

profile and each residue on the PDZ domain was encoded into the motif + offset format. 

There were in total 20494 interactions in this database. 

 

Figure 1 Database schema of the customised PDZ interaction database 
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2.3.2 PreDiZ prediction module  

In general, PreDiZ predicts binding between PDZ domains and five-residue PBMs 

by establishing a correlation between the SDRs in the query PDZ domains and the SDRs 

associated with known PDZ domain interactions. After the user submits a query, which 

includes at least one PDZ protein and one five-residue peptide sequence (if the submitted 

peptide is longer than 5-residues, only the last 5 residues are used), PreDiZ executes the 

following steps. 

2.3.2.1 Locate SDRs from query protein 

Firstly, PreDiZ identifies all the SDRs for each of the positions of the PBM. The PDZ 

HMM profile built from structural alignments is used to locate PDZ domain(s) on the query 

protein sequence by hmmsearch function from HMMER with the condition of E-value less 

than 0.01. If a PDZ domain is found, SDRs are identified from the sequence alignment of 

the HMM consensus sequence and the query protein. Residues that align to the SDR 

positions of the consensus sequence, correspond to the SDRs for the query PDZ domain.  

2.3.2.2 Query the customised database  

Secondly, PreDiZ queries the customised PDZ interaction database for known PBM 

sequences associated with PDZ domains that share similar SDRs with the query protein at 

each binding position. The term similar SDR is defined as amino acid residues that score 

positively in the selected BLOSUM substitution matrix. Because PreDiZ treats each 

position of the PBM independently, five sets of amino acids are collected for five positions 

of PBM and are used to build a PSSM or a naive Bayesian classifier. 

2.3.2.3 Scoring methods 

2.3.2.3.1 PSSM scoring method 

To construct a PSSM, PreDiZ first calculates the amino-acid frequencies of positive 

interactions for each position from the previous step. A 20 columns (amino acids) x 5 rows 

(5 PBM positions) PSSM based on the amino acid frequency results is built using equation 

(i). The query peptide is scored with the PSSM using equation (ii). 

𝑊𝑖,𝑗 =
𝐹𝑖,𝑗+√

𝑛

20

n+√𝑛
         (i) 
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𝑠𝑐𝑜𝑟𝑒 =  
∑ 𝑤𝑖,𝑗−∑ 𝑤𝑚𝑖𝑛,𝑗

∑ 𝑤𝑚𝑎𝑥,𝑗− ∑ 𝑤𝑚𝑖𝑛,𝑗
        (ii) 

where F is the frequency of amino-acid i for PBM position j and n is the number of 

sequences used to calculate the frequency. Note that the PSSM scoring method only uses 

positive binding data to make predictions. 

2.3.2.3.2 Naive Bayesian classifier scoring method 

To utilise both positive and negative interaction data in PreDiZ’s prediction, the 

naive Bayesian classifier is used to build the classification models for query PDZ domains 

from the results of the previous step (2.3.2.2). For each position of the PBM, amino acids 

are categorized into binding or non-binding class, and a vector x = (x1, …, xn) where x1, …, 

xn are the amino acids. Based on Bayesian’s theorem, we get   

𝑃(𝐶|𝑋1, … , 𝑋𝑛) =  
𝑃(𝐶)𝑃(𝑋1, … 𝑋𝑛|𝐶)

𝑃(𝑋1, … 𝑋𝑛)
 

where C refer to the binding or non-binding class and 𝑃(𝐶|𝑋1, … , 𝑋𝑛) is the posterior 

probability of the class C. The posterior probability corresponds to 𝑃(𝐶|𝑋1, … , 𝑋𝑛) when C = 

binding is used as the score of the query peptide. 

2.4 Performance evaluation and optimisation 

The performance of PreDiZ was evaluated extensively by 4-, 6-, 8- and 10-fold 

cross-validation. Four standard measurements, including sensitivity (Sn), specificity (Sp), 

accuracy (Ac), and the Matthew’s correlation coefficient (MCC) were defined as follows:  

FNTP

TP
Sn


                                                             

FPTN

TN
Sp


  

FNTNFPTP

TNTP
Ac






)()()()(

)()(

FNTNFPTPFPTNFNTP

FPFNTNTP
MCC




  

The receiver operating characteristic (ROC) curves were drawn for each cross-

validation. The area under the ROC curve (AUC) was calculated as a measurement of the 

performance. 
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2.4.1 GO and KEGG enrichment analysis of PDZ-binding proteins 

In this study, a statistical approach based on hypergeometric distribution was 

employed to perform enrichment analysis of PDZ-binding proteins in H. sapiens (78). We 

compared the predicted PDZ-binding proteins (group S) against the proteome (group W) to 

find out if a GO/KEGG term t is enriched in the predicted PDZ-binding proteins. The 

following terms were defined: N was the total number of proteins in group W annotated by 

GO/KEGG; n was the number of proteins in group W annotated by GO/KEGG term t; M 

was the total number of proteins in group S annotated by GO/KEGG; m was the number of 

proteins in group S annotated by GO/KEGG term t. Hence,  

Enrichment ratio (E − ratio)  =  
𝑚

𝑀
/

𝑛

𝑁
 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = ∑
( 𝑀

𝑚′)( 𝑁−𝑀
𝑛−𝑚′)

(𝑁
𝑛

)
(Enrichment ratio ≥  1)

𝑛

𝑚′=𝑚

 

    

or 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  ∑
( 𝑀

𝑚′
)(𝑁−𝑀

𝑛−𝑚′
)

(𝑁
𝑛

)
 (Enrichment ratio <  1)

𝑚

𝑚′=0

 

Here, we considered only the over representation of GO/KEGG groups with enrichment 

ratio greater than 1.  

 

 

 

 

3 Results 

3.1 Computational approach to predict PDZ domain-peptide interactions (PreDiZ) 

3.1.1 Construction of PreDiZ for the prediction of PDZ domain interactions 

In this work, we developed a computational tool called PreDiZ to predict peptide-protein 

interactions involving PDZ domains based on the SDR approach (66-68, 79). The 

procedures used for data preparation and prediction making are shown in Figure 2. PreDiZ 

is able to predict the binding between any PDZ domain and any 5-residue-long peptide. It 

will return a score between 0 and 1 for each predicted binding pair as the result.  
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Figure 2 A schematic representation of PreDiZ. SDR determination: PDZ domain structures were 
then aligned using PROMALS3D. Then an HMM profile was built from the structure alignments 
using the HMMER 3.0 package. The HMM profile of PDZ domain structures were later used to 
determine SDRs. PDZ binding prediction: PreDiZ identifies all the SDRs for each of the positions 
of the PBM. The PDZ HMM profile built from structural alignments is used to locate PDZ domain(s) 
on the query protein sequence. If a PDZ domain is found, SDRs are identified from the sequence 
alignment of the HMM consensus sequence and the query protein. Residues that align to the SDR 
positions of the consensus sequence, correspond to the SDRs for the query PDZ domain. Model 
construction: PreDiZ queries the customised PDZ interaction database for known PBM 
sequences associated with PDZ domains that share similar SDRs with the query protein at each 
binding position. Because PreDiZ treats each position of the PBM independently, five sets of amino 
acids are collected for five positions of PBM and are used to build a PSSM or a naive Bayesian 
classifier. The PSSM or the naive Bayesian classifier is used to score PDZ domain-binding motifs. 

3.1.2 Performance evaluation and optimisation 

3.1.2.1 SDR selection and cross-validations 

SDR selection is critical for the performance of PreDiZ. In this work we performed 

extensive tests to select the best SDR set for PDZ binding prediction. Firstly, structural 

alignment was performed with 22 PDZ domain structures from the PDB. From this 

alignment, we determined 128 groups of SDRs according to combinations of four 

parameters: average column similarity (ACS) of 0.2, 0.4, 0.6, 0.8, proportion of interacting 

residues (PIR) of 0.2, 0.4, 0.6, 0.8, maximum contacting distance (MCD) of 5 Å, 6 Å, 8 Å, 

10 Å, and BLOSUM matrix (BLOSUM) of BLOSUM62, BLOSUM80. The SDR set with the 
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best area-under-ROC curves (AUC) from the cross-validation tests was used in the final 

version of PreDiZ. Both the position-specific scoring matrix scoring method (PreDiZ-PSSM) 

and the naive Bayesian scoring method (PreDiZ-NB) were tested. For the PreDiZ–PSSM 

method, PreDiZ used only the positive binding data of PDZ interactions and performed 

best when used the SDR selected using from ACS = 0.8, PIR = 0.8, MCD = 10 Å and 

BLOSUM = BLOSUM62 parameters (Table 2, Figure 3). The resulting AUC’s values were 

0.812, 0.811, 0.812 and 0.812 for 4-, 6-, 8- and 10-fold cross-validation, respectively 

(Figure 4). For the PreDiZ–NB method, which using both positive and negative binding 

data of PDZ interactions, the same SDR set gave the best results with AUC of 0.885, 

0.883, 0.879 and 0.886 for 4-, 6-, 8- and 10-fold cross-validation, respectively (Figure 5). 

The performance of the 10-fold validations was used for determining the cut-offs. If a pair 

of PDZ protein and PBM gave a score higher than the cut-off value, it was considered 

positive, otherwise negative. Three levels of thresholds were selected (Table 3). The High 

threshold was set as default and was used in the following analyses unless stated 

otherwise. 



30 

 

 

Figure 3 3D structure of a representative PDZ domain (PDB ID 1TP5) with SDRs highlighted in red. 
The PDZ domain is shown in grey and the peptide is shown in cyan. 

 

Table 2 SDR set used in the PreDiZ 

Position SDR in motif + offset format 

0 GLGF -3 GLGF 1 GD -15 GD -11 GD 20 

-1 GLGF -3 GLGF 1 GD -15 
  -2 GLGF 1 GLGF 3 

   -3 GLGF 1 GLGF 3 
   -4 GLGF 1 GLGF 3       
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Figure 4 ROC curves of cross-validations for PreDiZ-PSSM 

 

Figure 5 ROC curves of cross-validations for PreDiZ-NB. 
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Table 3 Performance evaluations of PreDiZ 

Predictor Threshold ACC (%) TPR (%) SPC (%) MCC 

PreDiZ - PSSM High 88.35  33.14  97.06  0.4047 

 
Medium 84.60  50.34  90.00  0.3825 

 
Low 80.23  69.54  81.91  0.4079 

PreDiZ - NB High 91.60  55.98  96.89  0.5919 

 

Medium 87.48 70.45 90 0.5291 

  Low 83.96 76.9 85 0.4925 

ACC stands for accuracy. TPR stands for true positive rate or sensitivity. SPC stands for specificity. 

MCC stands for the Matthew’s correlation coefficient. 

3.1.2.2 Performance comparison with published methods  

3.1.2.2.1 Performance evaluation on unpublished mouse interaction data 

We compared PreDiZ with three state-of-the art PDZ interaction prediction tools, 

MDSM, DomPep and PdzPepInt. An independent test set consisting of interactions 

between 74 mouse PDZ domains and 48 peptides was used in this test. There were in 

total 493 positive interactions and 3059 negative interactions. From this test set, 

interactions involving 50 PDZ domains that were shared in all the prediction methods were 

selected. These interactions were carefully excluded from the training data of PreDiZ. The 

comparison results (Table 4) showed that the performance of PreDiZ-PSSM achieved an 

AUC of 0.78, which was better than MDSM’s AUC of 0.74, but not as good as PdzPepInt 

and DomPep which scored 0.85 and 0.84, respectively. PreDiZ-NB performed worst 

among all the prediction methods in the test, with an AUC of 0.67. PreDiZ-NB also scored 

the worst true-positive/false-positive (TP/FP) ratios of 0.36, 0.25 and 0.24 for high, medium 

and low threshold respectively, which suggested this method made more false positive 

predictions than the others. PreDiZ-PSSM achieved the best TP/FP ratio of 1.12 at high 

threshold, but the true positive rate (TPR) was 0.36, which was around half of the TRP of 

PdzPepInt or DomPep. 

Table 4 Performance evaluation on the independent mouse test set 

Predictor Threshold TPR FPR TP/FP AUC 

PreDiZ - NB High 0.43 0.2 0.36 0.67 

 
Medium 0.69 0.45 0.25 

 

 
Low 0.8 0.54 0.24 

 PreDiZ - PSSM High 0.36 0.05 1.11 0.78 
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Medium 0.57 0.21 0.51 

 

 
Low 0.79 0.32 0.45 

 MDSM 
 

0.55 0.17 0.55 0.74 

PdzPepInt 
 

0.67 0.14 0.87 0.85 

DomPep   0.66 0.15 0.79 0.84 

TRP is true positive rate, FPR is false positive rate, TP/FP is true-positive/false-positive ratio. 

In another experiment, we tested PreDiZ on a test set of 20 mouse PDZ domain-

peptide interactions derived from PDZbase (80). This test set has been used to compare 

performance of MDSM and PdzPepInt (64). Both PreDiZ-PSSM and PreDiZ-NB were 

tested using the high threshold. The results showed PdzPepInt performed best by 

successfully predicting 14 out of 20 interactions. While PreDiZ-NB was the worst predictor, 

which only managed to predict one interaction. PreDiZ-PSSM predicted 8 interactions, 

which was better than MDSM’s 4 interactions, but still not as good as the PdzPepInt’s 

result. All prediction scores for the validated set were listed in Table 5. 

Table 5 PdzPepInt, MDSM and PreDiZ scores for validated set. 

PDZ domain Peptide PdzPepInt MDSM PreDiZ - NB PreDiZ - PSSM 

Cipp-(3/10) IESDV 0.44 -0.7 0.86 0.73 

Cipp-(3/10) LESEV 0.3 -0.62 0.68 0.71 

Cipp-(3/10) QQSNV 0.29 -0.78 0.67 0.51 

Cipp-(3/10) KEYYV 0.51 -0.34 0.42 0.66 

Dvl1-(1/1) SETSV -1.27 -0.74 0.22 0.51 

Pdlim5-(1/1) DITSL -0.24 -0.15 0.29 0.42 

Erbin-(1/1) LDVPV 0.99 0.61 0.11 0.42 

Magi-2-(5/6) KESSL 1.76 0.19 0.005 0.21 

MUPP1-(10/13) IATLV 1 0.46 0.49 0.64 

MUPP1-(10/13) GKDYV 1 1.68 0.03 0.41 

NHERF-1-(1/2) FDTPL 1.06 0.01 0.99 0.89 

LIN-7A-(1/1) IESDV 0.33 0.29 0.83 0.77 

Lin7c-(1/1) IESDV 0.33 1 0.83 0.77 

ZO-3-(1/3) GKDYV 0.99 0.09 0.35 0.4 

a1-syntrophin-(1/1) VLSSV -1.47 0.16 0.49 0.47 

PSD95-(1/3) LQTEV 0.38 1.41 0.79 0.76 

PSD95-(1/3) NETVV -1.35 1.19 0.73 0.85 

PSD95-(1/3) GETAV -1.32 1.23 0.74 0.86 

PSD95-(1/3) EESSV -2.23 0.77 0.17 0.62 

PSD95-(1/3) RTTPV 1 0.61 0.73 0.81 

Scores marked red are the true positive interactions. 

3.1.2.2.2 Prediction comparison on novel PDZ domains 

Both DomPep and PdzPepInt claimed that they are able to predict interactions for 

unknown PDZ domains, as does PreDiZ. Therefore, we designed an experiment to test the 
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performance of making prediction on unknown PDZ domains for these prediction methods. 

At the time of writing DomPep webserver returned an error on any user-submitted PDZ 

domains. Hence, we could only make comparisons between PdzPepInt and PreDiZ. We 

used 251 PDZ domain-peptide interactions from C. elegans, which the PDZ domains were 

not modelled in PdzPepInt and these interactions were excluded from the training set of 

PreDiZ. PdzpepInt was able to correctly predict 4 interactions, while PreDiZ-NB with high 

threshold predicted 8 and PreDiZ-PSSM predicted 5. Both methods therefore showed a 

similar level of performance on predicting unknown PDZ interactions (Table 6).  

Table 6 Performance evaluation between PreDiZ and PdzPepInt on unknown PDZ domains 

Predictor Threshold True positive interactions TPR 

PdzPepInt 
 

4 0.02 

PreDiZ - NB High 8 0.03 

 
Medium 17 0.07 

 
Low 23 0.09 

PreDiZ - PSSM High 5 0.02 

 
Medium 8 0.03 

  Low 18 0.07 

 

3.2 Proteome-wide analysis 

3.2.1 Proteome-wide PDZ domain-peptide interaction predictions 

Proteome-wide prediction of PDZ domain mediated interactions in A. thaliana, C. 

elegans, D. rerio, M. musculus and H. sapiens were performed. We retrieved 26577, 

20310, 25418, 21966 and 20661 proteins from A. thaliana, C. elegans, D. rerio, M. 

musculus and H. sapiens reference proteomes, respectively. We scanned these 

proteomes with PreDiZ to identified PDZ domains and predict their binding partners. The 

results showed PDZ domains exist in 0.02%, 0.24%, 0.90%, 0.60% and 0.68% of the 

proteins in A. thaliana, C. elegans, D. rerio, M. musculus and H. sapiens proteomes, 

respectively (Table 7). Around one third of the proteome was predicted with the ability to 

bind PDZ domains for D. rerio, M. musculus and H. sapiens, while 2.82% for D. 

melanogaster and 6.10% for C. elegans. 

Table 7 Proteomic prediction of 5 species PDZ interactions 

Organism Proteome 
PDZ PDZ-binding (PSSM) 

Num. Per. Num. Per. 
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A. thaliana 26577 6 0.02% 749 2.82% 

C.  elegans 20310 49 0.24% 1238 6.10% 

D. rerio 25418 229 0.90% 9144 35.97% 

M. musculus 21966 132 0.60% 7589 34.55% 

H. sapiens 20661 140 0.68% 7212 34.91% 

 

3.2.2 GO/KEGG enrichment analysis of human PDZ domains 

Using the predicted H. sapiens PDZ interactions, a PDZ interaction network was 

constructed with 140 PDZ proteins and 7212 PDZ binding proteins. The top 10 

interconnected PDZ domains and PDZ binding proteins are listed (Figure 6). 

Hypergeometric distribution tests (p-value < 1E-3) were performed to analyse the 

enrichment of GO terms for proteins in the network. The results show that the network is 

significantly enriched with proteins locating to the membrane and involving a number of 

biological processes such as small GTPase-mediated signal transduction, steroid 

metabolic process and xenobiotic metabolic processes (Table 8). Similar statistical tests 

were also performed to test the enrichment of KEGG pathways. The results suggested the 

network proteins were associated in pathways such as metabolism of xenobiotics by 

cytochrome P450, drug metabolism by cytochrome P450 and epithelial cell signalling in H. 

pylori infection (Table 4). These results are consistent with our knowledge of PDZ domains. 

For example, PDZ domains are known to interact with xenobiotic transporters (81). The 

involvement of PDZ domains in other top-ranking biological processes, such as small 

GTPase mediated signal transduction (82, 83), steroid metabolic process (84, 85) and 

regulation of proteolysis (86, 87), are well documented. 



36 

 

 

Figure 6 Interaction network of human PDZ interactions and statistics. (a) Interaction network of 
human PDZ interactions. (b) Proteins targeted by most PDZ domains. (c) PDZ domain proteins 
with most binding partners. 

 

Table 8 The most enriched GO terms in the H. sapiens PDZ interaction network (p-value < 1E-3) 

Term Description 
PDZ Domain Proteome E-

ratio 
p-value 

Num. Per. Num. Per. 

The most enriched biological processes 
      small GTPase mediated signal 

transduction (GO:0007264) 186 2.37% 326 1.79% 1.32 2.10E-07 
regulation of small GTPase mediated 
signal transduction (GO:0051056) 90 1.15% 147 0.81% 1.42 6.62E-06 

steroid metabolic process (GO:0008202) 42 0.54% 61 0.34% 1.60 4.13E-05 
xenobiotic metabolic process 
(GO:0006805) 81 1.03% 136 0.75% 1.38 7.54E-05 

regulation of proteolysis (GO:0030162) 29 0.37% 40 0.22% 1.68 1.55E-04 
glycosaminoglycan biosynthetic process 
(GO:0006024) 26 0.33% 35 0.19% 1.72 1.77E-04 
auditory receptor cell differentiation 
(GO:0042491) 10 0.13% 10 0.05% 2.32 2.19E-04 
protein homooligomerization 
(GO:0051260) 85 1.08% 150 0.82% 1.32 5.27E-04 

neural tube formation (GO:0001841) 11 0.14% 12 0.07% 2.13 6.84E-04 

cellular response to zinc ion (GO:0071294) 11 0.14% 12 0.07% 2.13 6.84E-04 
regulation of protein stability 
(GO:0031647) 20 0.26% 27 0.15% 1.72 1.08E-03 
positive regulation of phosphorylation 
(GO:0042327) 17 0.22% 22 0.12% 1.79 1.18E-03 
daunorubicin metabolic process 
(GO:0044597) 8 0.10% 8 0.04% 2.32 1.18E-03 

sulfation (GO:0051923) 8 0.10% 8 0.04% 2.32 1.18E-03 

doxorubicin metabolic process 8 0.10% 8 0.04% 2.32 1.18E-03 

(c) 

(b) (a) 
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(GO:0044598) 

fertilization (GO:0009566) 21 0.27% 29 0.16% 1.68 1.32E-03 
ATP hydrolysis coupled proton transport 
(GO:0015991) 21 0.27% 30 0.16% 1.63 2.62E-03 

transferrin transport (GO:0033572) 21 0.27% 30 0.16% 1.63 2.62E-03 

       
The most enriched molecular functions 

      
PDZ domain binding (GO:0030165) 55 0.70% 75 0.41% 1.70 9.96E-08 
glutathione transferase activity 
(GO:0004364) 20 0.26% 25 0.14% 1.86 1.83E-04 

sulfotransferase activity (GO:0008146) 21 0.27% 27 0.15% 1.81 2.58E-04 
aldo-keto reductase (NADP) activity 
(GO:0004033) 9 0.11% 9 0.05% 2.32 5.08E-04 
oxidoreductase activity, acting on 
NAD(P)H, quinone or similar compound as 
acceptor (GO:0016655) 8 0.10% 8 0.04% 2.32 1.18E-03 
alditol:NADP+ 1-oxidoreductase activity 
(GO:0004032) 8 0.10% 8 0.04% 2.32 1.18E-03 

polysaccharide binding (GO:0030247) 10 0.13% 11 0.06% 2.11 1.47E-03 
delayed rectifier potassium channel activity 
(GO:0005251) 24 0.31% 35 0.19% 1.59 2.04E-03 
cytochrome-b5 reductase activity, acting 
on NAD(P)H (GO:0004128) 7 0.09% 7 0.04% 2.32 2.74E-03 
cyclin-dependent protein serine/threonine 
kinase activity (GO:0004693) 22 0.28% 32 0.18% 1.60 2.97E-03 
calcium channel regulator activity 
(GO:0005246) 14 0.18% 18 0.10% 1.81 2.98E-03 

       
The most enriched cellular components 

      
apical plasma membrane (GO:0016324) 115 1.47% 210 1.15% 1.27 3.99E-04 

clathrin adaptor complex (GO:0030131) 14 0.18% 17 0.09% 1.91 1.10E-03 

plasma membrane (GO:0005886) 1556 19.85% 3436 18.88% 1.05 1.91E-03 

Golgi lumen (GO:0005796) 46 0.59% 77 0.42% 1.39 2.33E-03 

Golgi apparatus (GO:0005794) 321 4.09% 667 3.66% 1.12 4.14E-03 

nuclear speck (GO:0016607) 81 1.03% 150 0.82% 1.25 4.41E-03 

Golgi membrane (GO:0000139) 219 2.79% 447 2.46% 1.14 6.12E-03 

PCAF complex (GO:0000125) 6 0.08% 6 0.03% 2.32 6.37E-03 

early endosome (GO:0005769) 71 0.91% 132 0.73% 1.25 8.28E-03 

endocytic vesicle (GO:0030139) 23 0.29% 36 0.20% 1.48 9.47E-03 
heterotrimeric G-protein complex 
(GO:0005834) 23 0.29% 36 0.20% 1.48 9.47E-03 

adherens junction (GO:0005912) 23 0.29% 36 0.20% 1.48 9.47E-03 

 

Table 9 The most enriched KEGG pathways in the H. sapiens PDZ interaction network (p-value < 
1E-3) 

Term Description 

PDZ Domain 
  

Proteome 
  E-ratio p-value 

Num. Per. Num. Per. 

Metabolism of xenobiotics by cytochrome 
P450(path:hsa00980) 54 1.98% 76 1.23% 1.61 1.80E-06 

Drug metabolism - cytochrome P450(path:hsa00982) 47 1.72% 68 1.10% 1.56 2.73E-05 

Epithelial cell signalling in Helicobacter pylori 
infection(path:hsa05120) 46 1.68% 68 1.10% 1.53 7.70E-05 
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Regulation of autophagy(path:hsa04140) 25 0.92% 32 0.52% 1.77 9.55E-05 

Endocrine and other factor-regulated calcium 
reabsorption(path:hsa04961) 32 1.17% 49 0.79% 1.48 2.32E-03 

Synaptic vesicle cycle(path:hsa04721) 39 1.43% 64 1.04% 1.38 5.10E-03 

Huntington's disease(path:hsa05016) 98 3.59% 182 2.95% 1.22 5.18E-03 

Collecting duct acid secretion(path:hsa04966) 19 0.70% 27 0.44% 1.59 5.42E-03 

Cardiac muscle contraction(path:hsa04260) 45 1.65% 76 1.23% 1.34 5.89E-03 

 

3.3 PDZ-binding motifs in influenza virus A 

3.3.1 Interaction predictions of human PDZ domains and virus proteins 

In 2013, a novel avian-origin influenza A virus H7N9 has emerged in China, 

infecting over 160 patients. Highly pathogenic avian influenza (HPAI) A virus, such as 

H5N1, are known to contain a PDZ domain binding motif at the C-terminus of the NS1 

protein. This motif is able to affect virulence, but not the replication of the virus (88, 89). 

However, the PDZ domain-binding motif (PBM) is not found in the recent H7N9’s NS1 

proteins, but is found in the NA proteins instead (90). 

To investigate how these changes affect the virus regulating human cells through 

PDZ binding, PrediZ was used to predict the binding between human PDZ proteins from 

the previously generated human PDZ interaction network and the HPAI H5N1’s NS1 

proteins and HPAI H7N9’s NA proteins. The PDZ domains, that were predicted to bind the 

viral proteins, were mapped to the human PDZ interaction network to find their binding 

partners. The results revealed that all H7N9’s NA proteins and 96.72% H5N1’s NS1 

proteins were predicted to interact with at least one PDZ domain. H7N9’s NA proteins are 

targeted by 20 different human PDZ domains, while H5N1’s NS1 are targeted by 18. The 

number of human proteins that interact with these PDZ domains is similar, with 3366 

proteins for H7N9’s NA and 4238 for H5N1’s NS1 (Table 10).  

Table 10 Predicted PDZ interaction in HAPI influenza A viral proteins 

Protein Hits Total Percentage 
PDZ 
domains 

PDZ binding 
proteins 

H7N9 NA 26 26 100.00% 20 3366 

H5N1 NS1 118 122 96.72% 18 4238 

* hit means the protein is predicted to interact with at least one PDZ domain. 

 

To further validate how H5N1’s NS1 proteins and H7N9’s NA proteins affect the 

virus regulation human cells by the virus, we analysed the PDZ binding proteins related to 
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these two viral proteins by comparing their enrichment of biological process of GO 

ontology. The results showed two sets of protein enriched in similar biological processes 

by sharing 6 out of 10 most enriched biological processes (Table 11, Table 12).  

Table 11 GO enrichment analyse of H5N1 NS1 related PDZ binding proteins 

Term Description 
PDZ Proteome 

E-ratio p-value 
Num. Per. Num. Per. 

Top 10 most enriched biological processes 
      transmembrane transport (GO:0055085) 22 9.36% 449 2.47% 3.80 9.44E-08 

glutamate receptor signaling pathway (GO:0007215) 5 2.13% 13 0.07% 29.79 4.07E-07 

actin crosslink formation (GO:0051764) 4 1.70% 8 0.04% 38.73 1.82E-06 

Wnt receptor signaling pathway, calcium modulating pathway 
(GO:0007223) 

4 1.70% 11 0.06% 28.17 8.32E-06 

muscular septum morphogenesis (GO:0003150) 3 1.28% 4 0.02% 58.09 8.42E-06 

glossopharyngeal nerve morphogenesis (GO:0021615) 3 1.28% 4 0.02% 58.09 8.42E-06 

G-protein coupled receptor signaling pathway (GO:0007186) 15 6.38% 301 1.65% 3.86 9.12E-06 

brain development (GO:0007420) 11 4.68% 170 0.93% 5.01 1.34E-05 

membranous septum morphogenesis (GO:0003149) 3 1.28% 5 0.03% 46.47 2.08E-05 

startle response (GO:0001964) 3 1.28% 6 0.03% 38.73 4.13E-05 

 

Table 12 GO enrichment analyse of H7N9 NA related PDZ binding proteins 

Term Description 
PDZ Domain Proteome E-ratio p-value 

Num. Per. Num. Per.     

Top 10 most enriched biological processes 
      transmembrane transport (GO:0055085) 30 10.56% 449 2.47% 4.28  2.15E-11 

glutamate receptor signaling pathway (GO:0007215) 5 1.76% 13 0.07% 24.65  1.04E-06 

ion transmembrane transport (GO:0034220) 8 2.82% 56 0.31% 9.16  2.36E-06 

actin crosslink formation (GO:0051764) 4 1.41% 8 0.04% 32.05  3.87E-06 

potassium ion transport (GO:0006813) 9 3.17% 83 0.46% 6.95  5.78E-06 

muscular septum morphogenesis (GO:0003150) 3 1.06% 4 0.02% 48.07  1.49E-05 

Wnt receptor signaling pathway, calcium modulating 
pathway (GO:0007223) 4 1.41% 11 0.06% 23.31  1.76E-05 

regulation of small GTPase mediated signal 
transduction (GO:0051056) 11 3.87% 147 0.81% 4.80  1.99E-05 

synaptic transmission (GO:0007268) 18 6.34% 381 2.09% 3.03  3.26E-05 

membranous septum morphogenesis (GO:0003149) 3 1.06% 5 0.03% 38.45  3.67E-05 

 

4 Discussion 

4.1 New developments on the SDR approach 

We have presented a PDZ domain-peptide interaction prediction tool based on the 

SDR approach, called PreDiZ. The SDR approach was first developed to predict specificity 

of protein kinases and showed the potential of working on other peptide recognition 

proteins (66). It was later applied in Predivac to predict CD4+ T-cell epitopes (69). In this 
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work, we successfully adapted the SDR approach on another peptide recognition domain, 

the PDZ domain. Unlike other methods that build models for individual domains or a group 

of domains, PreDiZ analyses the SDRs on each PDZ domain and constructs a specific 

model according to these SDRs. Hence, PreDiZ isn’t limited to predicting interactions for 

known PDZ domains, but also able to make prediction for novel PDZ domains. 

 

4.1.1 Using a four-parameter-test as the SDR selection strategy 

A number of improvements have been made to the SDR approach to apply it to the 

PDZ domains. First of all, a four-parameter-test (described in 2.2.2) was introduced to 

select SDRs. In previous tools using the SDR approach, i.e. Predikin and Predivac, 

residues within 5 Å distance between PDZ domain residue’s side-chain atoms to the 

closest side-chain atoms of their binding peptides were selected as SDRs. Here, we used 

the four-parameter-test that determines SDRs from structural alignments, by filtering each 

column of the alignment with four parameters, including MCD, ACS, PIR and BLOSUM. 

Therefore, SDRs were selected not only based on the contact distance, but also the amino 

acid similarity of each column. This test was designed based on the theory that SDR is 

likely to be located at the position that is in close proximity of the binding peptide but not 

conserved across the PDZ domains. Hence, SDRs that affect the binding specificity either 

through direct contact or in indirect ways can all be considered. Furthermore, this test can 

be easily applied to other protein domains. In this study, the SDR set with the best 

performance was used MCD = 10 Å (3.1.2.1), as a typical Van der Waal interaction’s 

contacting distance is normally less than 5 Å. This result supported our opinion of the 

specificity of PDZ domain isn’t only affected by residues making direct contact. A recent 

study analysing 28 ligand-bound PDZ structures revealed structural determinants of 

peptide binding specificity for each of the last four residue of the binding peptide (91). 

Comparing these results and SDRs from PreDiZ, most of the SDRs we used were also 

found in this study (Table 2, Table 13). Another study used molecular dynamics 

simulations to analyse PDZ domain-peptide complexes with known binding affinities (92). 

The study identified 13 binding pocket residues on the PDZ domain structure 1TP3. Four 

out of six SDRs we used were in these binding pocket residues. The SDRs identified for 

PreDiZ were therefore consistent with the findings in the literature. 
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Table 13 SDRs presented in Ernst’s study 

Position SDRs SDRs converted into motif + offset 
format 

0 β1:β2-7, β2-1, β2-3, α2-5, α2-8 GLGF-2, GLGF0, GLGF2, GD20, 
GD23 

-1 β2-2, β2-4, β3:α1-1, β3-5 GLGF1, GLGF3, GD-15, GD-13 

-2 β2-2, α2-1, α2-5 GLGF1, GD16, GD20 

-3 β2-2, β2-4, β3-4, β3-5 GLGF1, GLGF3, GD-16, GD-15 

4.1.2 Using both positive and negative interactions in the prediction 

We employed the naive Bayesian classifier as an alternative scoring method in 

PreDiZ, to take the advantage of having both positive and negative interactions available 

for the PDZ domains. Both Predikin and Predivac used PSSM scoring methods, where 

only positive interactions were taken into account. In our case, negative interaction data 

were available for PDZ domains, therefore the naive Bayesian classifier scoring method 

(PreDiZ-NB) was employed as an alternative scoring method, in addition to the PSSM 

method (PreDiZ-PSSM). As expected, the performance of PreDiZ-NB was better than the 

PreDiZ-PSSM in the cross-validation tests, improving the AUC from 0.82 to 0.88. Despite 

the better scores in the cross-validation tests, PreDiZ-NB’s AUC was only 0.67 using on 

the mouse test set of 50 mouse PDZ domains and 48 peptides, compared to PreDiZ-

PSSM’s AUC of 0.78 (3.1.2.2.1). This result was due to PreDiZ-NB predicting a large 

number of false positives. The predictions for individual PDZ domain showed PreDiZ did 

better in some PDZ domains than others. It is suggested that PreDiZ could be trained to 

perform well on the training set, but the selected SDRs are not specific enough to 

distinguish the interactions in some PDZ domains from this specific mouse test set. This 

mouse available test set is the only test data that with negative interactions. There is no 

any other test data to further validate either of these contradictory results. However, it is 

clear that there is still room for improvement for PreDiZ. 

4.1.3 Using a wide range of interaction data 

To the best of our knowledge, PreDiZ uses the widest range of experimentally 

verified PDZ interactions among the published PDZ interaction prediction algorithms. The 

PreDiZ’s interaction data was extracted from three proteome-wide large scale studies on C. 

elegans, M. musculus and H. sapiens, as well as the manually curated interaction 

database Domino. Using a wide range of data enables PreDiZ to make predictions for 
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more PDZ domains. However, including C. elegans interactions into our dataset lowered 

the results in cross-validation in our case. The reason is that including PDZ interactions 

from C. elegans introduced a large number of false negative results in the cross-

validations due to the poor performance on predicting C. elegans PDZ interactions. To 

validate this assumption, we excluded all C. elegans data from our database and used 

only mouse and human PDZ proteins to perform 10-fold cross-validation. The AUCs 

showed significant improvement from 0.82 to 0.89 and from 0.88 to 0.94 for PreDiZ-PSSM 

and PreDiZ-NB, respectively (Figure 7, Table 14). The AUC value of PreDiZ-NB is one of 

the best score among all published methods. We also performed tests on the unpublished 

mouse test sets, and the performance showed only a slight improvement on PreDiZ-NB, 

but not much change for PreDiZ-PSSM ( 

Table 15, Table S3, Table S4). This result suggested that PreDiZ didn’t use many C. 

elegans interactions to make prediction for PDZ domains in the mouse test set, as the 

PDZ domains from these two species do not share many similar SDRs. Overall, the results 

suggested the improvement on cross-validation tests were mainly contributed from 

excluding the C. elegans data, but the performance on making prediction on mouse PDZ 

domains was remain unchanged.  
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Figure 7 ROC curves of 10-fold cross-validations for PreDiZ-PSSM and PreDiZ-NB using mouse 
and human interaction data 

Table 14 Cross-validation results of PreDiZ using only mouse and human interaction data 

Predictor 
ACC 
(%) 

TPR (%) SPC (%) MCC 
AUC 

PreDiZ-
PSSM 90.16 51.21 94.87 0.4742 

0.89 

PreDiZ-NB 93.98 67.38 97.06 0.6664 0.94 

 
Table 15 Performance of PreDiZ using only mouse and human interaction data on the unpublished 
mouse test set  

Predictor TPR FPR TP/FP AUC 

PreDiZ-PSSM  0.44 0.11 0.74 0.78 

PreDiZ-NB 0.40 0.18 0.38 0.70 

4.2 Comparisons between the PreDiZ and other methods 

We compared the PreDiZ with three state-of-the-art PDZ interaction prediction tools. 

The results presented in 3.1.2.2.1 suggested that the PreDiZ performed better than MDSM 

but not as good as the other recently published methods in the mouse test sets. In the test 

of using C. elegans PDZ domains, both PreDiZ and PepPePInt scored rather low true 
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positive rates, with the PreDiZ performing slightly better. Unfortunately, there is no 

negative interaction data on these C. elegans PDZ domains for us to do a comprehensive 

comparison. From the available information, it is suggested that PreDiZ is one of the best 

methods for predicting interactions for novel PDZ domains. 

4.3 Applications of PDZ domain-peptide interaction prediction 

4.3.1 Proteome-wide analyses  

PDZ domains are known to have evolved relatively late in eukaryotic cells. The 

results of proteome-wide analyses of five different species supported this theory. A larger 

number of PDZ domains and PDZ binding proteins were found in species higher up in the 

evolutional tree such as H. sapiens, M. musculus and D. rerio. The GO and KEGG 

analyses revealed a number of common features of human PDZ domains. Not surprisingly, 

the PDZ domain involvement in most of the enriched GO terms and KEGG pathways is 

well documented. 

4.3.2 PDZ binding motifs in the influenza A virus  

The mortality rate for H5N1 and H7N9 virus infections in human is much higher 

compared to that of seasonal influenza infections (93, 94). There are reports showed the 

PBM in NS1 proteins contribute to virulence of HPAI H5N1 virus (95-98). Previous studies 

also revealed that compared to HPAI H5N1 virus, the HPAI H7N9 virus did not have PBM 

in the NS1 proteins, instead having a PBM in the NA proteins. Hence, it was suspected 

that the loss of function from missing the PBM in H5N1’s NS1 proteins were regained by 

H7N9 virus through the PBM in their NA proteins (90). Our studies supported that the PBM 

on H5N1’s NS1 proteins and H7N9’s NA proteins regulate similar human biological 

process by PDZ-domain interactions. This finding may form the basis for further studies of 

the PBM in influenza A virus.  

5 Conclusions and future directions 

In this work, the PDZ domain-peptide interaction prediction tool PreDiZ has been 

developed. It is based on the SDR approach, which has been successfully applied in 

predicting protein-peptide interaction involving protein kinases and MHC class II proteins. 

A number of modifications has been made to apply the SDR approach to the PDZ domains, 
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including using a more sophisticated strategy to determine SDRs, and using both positive 

and negative interactions in the prediction. One of the advantages of PreDiZ is that it is 

able to work on a wide range of PDZ domains, including novel PDZ domains. However, 

there is room to improve the tool, especially to reduce the false positive rate. We also 

conducted proteome-wide analyses in human PDZ binding proteins. Lastly, we studied 

how H7N9’s NA and H5N1’s NS1 protein regulate human biological processes, and found 

the PBM in the NS1 proteins of H5N1 was replaced by the PBM in the NA proteins of 

H7N9.  

Improvements need to be made to PreDiZ to especially to reduce false positive 

predictions, in order for it to match the performance of the best available PDZ interaction 

prediction tool. At the time I started this project, there were only 22 PDZ complex 

structures that satisfied our selection criteria. However, the number of published PDZ 

structures have been increasing rapidly. Using more high quality structures will definitely 

have a positive impact on PreDiZ’s performance. In the future update of PreDiZ, using 

more available structures to derive SDRs will be a very important part of the work. We also 

believe that the SDR selection could be further optimised to improve accuracy of our 

predictions. Due to time constraints, we couldn’t employ a more sophisticate strategies of 

SDR identification, which could improve prediction accuracy. For example, a mutagenesis 

study conducted by Tonikian, et al. (46) showed that PDZ domain’s specificity for residues 

at position 0 and -2 of the PBM were affected by direct side chain interaction.  Specificity 

for position -1 was affected by both direct and indirect side chain interactions. Specificity 

for position -3 and -4 were affected by indirect ways. Different cut-offs of the four-

parameter-test could be adjusted according these information independently for each 

peptide position. The prediction result from unpublished mouse data set showed PreDiZ 

didn’t perform well on some PDZ domains. A potential solution to this problem would be 

using specific prediction models for each of the known PDZ domains and a general model 

for others. There are over 300 known PDZ domains, building prediction models for all of 

them is labour intensive. However, the four-parameter-test developed in this study can 

speed up the process by selecting SDRs automatically.  For the proteome-wide analyses, 

including extra contextual information, such as secondary structure of binding peptides 

and co-cellular localisation of PDZ domain and their binding partners, may improve the 

quality of predictions. Finally, we expect that the SDR method, along with the four-

parameter-test, can be used for other protein-peptide interaction domains.  
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6 Supplementary materials 

Table S1 Prediction statistics of individual PDZ domains from mouse test set using PreDiZ-NB 
(high threshold) 

PDZ Domain Name TP FN FP TN TPR FPR TP/FP Accuracy 

a1-syntrophin_1-1 10 6 8 24 0.63 0.25 1.25 0.71 

b1-syntrophin_1-1 9 7 9 23 0.56 0.28 1.00 0.67 

Cipp_03-10 0 8 0 40 0.00 0.00 - 0.83 

Cipp_05-10 0 2 12 34 0.00 0.26 0.00 0.71 

Cipp_08-10 0 1 8 39 0.00 0.17 0.00 0.81 

Cipp_09-10 3 2 7 36 0.60 0.16 0.43 0.81 

Cipp_10-10 1 4 13 30 0.20 0.30 0.08 0.65 

Dvl1_1-1 0 2 6 40 0.00 0.13 0.00 0.83 

Dvl2_1-1 1 2 5 40 0.33 0.11 0.20 0.85 

Dvl3_1-1 1 5 5 37 0.17 0.12 0.20 0.79 

Erbin_1-1 0 1 8 39 0.00 0.17 0.00 0.81 

g2-syntrophin_1-1 3 10 4 31 0.23 0.11 0.75 0.71 

Gm1582_2-3 2 7 11 28 0.22 0.28 0.18 0.63 

LIN-7A_1-1 6 4 11 27 0.60 0.29 0.55 0.69 

Lin7c_1-1 6 3 11 28 0.67 0.28 0.55 0.71 

Lrrc7_1-1 0 1 10 37 0.00 0.21 0.00 0.77 

Magi-1_2-6 7 17 6 18 0.29 0.25 1.17 0.52 

Magi-1_4-6 0 2 0 46 0.00 0.00 - 0.96 

Magi-1_6-6 9 5 10 24 0.64 0.29 0.90 0.69 

Magi-2_5-6 0 4 0 44 0.00 0.00 - 0.92 

Magi-2_6-6 6 3 13 26 0.67 0.33 0.46 0.67 

Magi-3_5-5 9 6 10 23 0.60 0.30 0.90 0.67 

MUPP1_01-13 2 0 10 36 1.00 0.22 0.20 0.79 

MUPP1_05-13 0 1 12 35 0.00 0.26 0.00 0.73 

MUPP1_10-13 0 2 7 39 0.00 0.15 0.00 0.81 

MUPP1_11-13 0 0 8 40 - 0.17 0.00 0.83 

MUPP1_12-13 0 0 2 46 - 0.04 0.00 0.96 

MUPP1_13-13 2 7 6 33 0.22 0.15 0.33 0.73 

NHERF-1_1-2 1 2 4 41 0.33 0.09 0.25 0.88 

NHERF-2_2-2 7 10 2 29 0.41 0.06 3.50 0.75 

Pdlim5_1-1 0 0 14 34 - 0.29 0.00 0.71 

Pdzk1_1-4 7 3 4 34 0.70 0.11 1.75 0.85 

Pdzk3_1-1 0 1 4 43 0.00 0.09 0.00 0.90 

PDZ-RGS3_1-1 0 13 0 35 0.00 0.00 - 0.73 

PSD95_1-3 3 5 6 34 0.38 0.15 0.50 0.77 

PTP-BL_2-5 2 2 7 37 0.50 0.16 0.29 0.81 

SAP102_3-3 2 3 16 27 0.40 0.37 0.13 0.60 

SAP97_1-3 3 5 6 34 0.38 0.15 0.50 0.77 

SAP97_3-3 3 4 15 26 0.43 0.37 0.20 0.60 
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Scrb1_1-4 5 0 18 25 1.00 0.42 0.28 0.63 

Scrb1_2-4 2 0 17 29 1.00 0.37 0.12 0.65 

Scrb1_3-4 13 7 7 21 0.65 0.25 1.86 0.71 

Shank3_1-1 10 4 4 30 0.71 0.12 2.50 0.83 

SLIM_1-1 0 0 7 41 - 0.15 0.00 0.85 

ZO-1_1-3 2 6 13 27 0.25 0.33 0.15 0.60 

ZO-2_1-3 1 4 14 29 0.20 0.33 0.07 0.63 

ZO-3_1-3 1 1 14 32 0.50 0.30 0.07 0.69 

TP is true positive. FN is false negative. FP is false positive. TN is true negative. TPR is true 
positive rate. FPR is false positive rate. 

Table S2 Prediction statistics of individual PDZ domains from mouse test set using PreDiZ-PSSM 
(high threshold) 

PDZ Domain Name TP FN FP TN TPR FPR TP/FP Accuracy 

a1-syntrophin_1-1 9 7 0 32 0.56 0.00 - 0.85 

b1-syntrophin_1-1 9 7 0 32 0.56 0.00 - 0.85 

Cipp_03-10 0 8 0 40 0.00 0.00 - 0.83 

Cipp_05-10 1 1 5 41 0.50 0.11 0.20 0.88 

Cipp_08-10 0 1 5 42 0.00 0.11 0.00 0.88 

Cipp_09-10 4 1 3 40 0.80 0.07 1.33 0.92 

Cipp_10-10 0 5 5 38 0.00 0.12 0.00 0.79 

Dvl1_1-1 0 2 0 46 0.00 0.00 - 0.96 

Dvl2_1-1 0 3 0 45 0.00 0.00 - 0.94 

Dvl3_1-1 0 6 0 42 0.00 0.00 - 0.88 

Erbin_1-1 0 1 0 47 0.00 0.00 - 0.98 

g2-syntrophin_1-1 5 8 0 35 0.38 0.00 - 0.83 

Gm1582_2-3 1 8 5 34 0.11 0.13 0.20 0.73 

LIN-7A_1-1 5 5 1 37 0.50 0.03 5.00 0.88 

Lin7c_1-1 5 4 1 38 0.56 0.03 5.00 0.90 

Lrrc7_1-1 0 1 0 47 0.00 0.00 - 0.98 

Magi-1_2-6 5 19 1 23 0.21 0.04 5.00 0.58 

Magi-1_4-6 0 2 0 46 0.00 0.00 - 0.96 

Magi-1_6-6 6 8 2 32 0.43 0.06 3.00 0.79 

Magi-2_5-6 0 4 0 44 0.00 0.00 - 0.92 

Magi-2_6-6 5 4 3 36 0.56 0.08 1.67 0.85 

Magi-3_5-5 7 8 1 32 0.47 0.03 7.00 0.81 

MUPP1_01-13 0 2 1 45 0.00 0.02 0.00 0.94 

MUPP1_05-13 0 1 6 41 0.00 0.13 0.00 0.85 

MUPP1_10-13 1 1 4 42 0.50 0.09 0.25 0.90 

MUPP1_11-13 0 0 6 42 - 0.13 0.00 0.88 

MUPP1_12-13 0 0 0 48 - 0.00 - 1.00 

MUPP1_13-13 5 4 0 39 0.56 0.00 - 0.92 

NHERF-1_1-2 1 2 12 33 0.33 0.27 0.08 0.71 

NHERF-2_2-2 3 14 1 30 0.18 0.03 3.00 0.69 

Pdlim5_1-1 0 0 0 48 - 0.00 - 1.00 
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Pdzk1_1-4 5 5 2 36 0.50 0.05 2.50 0.85 

Pdzk3_1-1 0 1 1 46 0.00 0.02 0.00 0.96 

PDZ-RGS3_1-1 0 13 0 35 0.00 0.00 - 0.73 

PSD95_1-3 5 3 0 40 0.63 0.00 - 0.94 

PTP-BL_2-5 2 2 5 39 0.50 0.11 0.40 0.85 

SAP102_3-3 4 1 3 40 0.80 0.07 1.33 0.92 

SAP97_1-3 5 3 0 40 0.63 0.00 - 0.94 

SAP97_3-3 4 3 3 38 0.57 0.07 1.33 0.88 

Scrb1_1-4 3 2 6 37 0.60 0.14 0.50 0.83 

Scrb1_2-4 1 1 4 42 0.50 0.09 0.25 0.90 

Scrb1_3-4 8 12 1 27 0.40 0.04 8.00 0.73 

Shank3_1-1 5 9 0 34 0.36 0.00 - 0.81 

SLIM_1-1 0 0 1 47 - 0.02 0.00 0.98 

ZO-1_1-3 0 8 5 35 0.00 0.13 0.00 0.73 

ZO-2_1-3 0 5 5 38 0.00 0.12 0.00 0.79 

ZO-3_1-3 0 2 5 41 0.00 0.11 0.00 0.85 

TP is true positive. FN is false negative. FP is false positive. TN is true negative. TPR is true 
positive rate. FPR is false positive rate. 
 

Table S3 Prediction statistics of individual PDZ domains from mouse test set using PreDiZ-NB with 
only mouse and human interaction data 

Domain Name TP FN FP TN TPR FPR TP/FP Accuracy 

a1-syntrophin_1-1 11 5 6 26 0.69 0.19 1.83 0.77 

b1-syntrophin_1-1 10 6 7 25 0.63 0.22 1.43 0.73 

Cipp_03-10 0 8 0 40 0.00 0.00 - 0.83 

Cipp_05-10 0 2 14 32 0.00 0.30 0.00 0.67 

Cipp_08-10 0 1 9 38 0.00 0.19 0.00 0.79 

Cipp_09-10 3 2 6 37 0.60 0.14 0.50 0.83 

Cipp_10-10 1 4 4 39 0.20 0.09 0.25 0.83 

Dvl1_1-1 0 2 4 42 0.00 0.09 0.00 0.88 

Dvl2_1-1 1 2 3 42 0.33 0.07 0.33 0.90 

Dvl3_1-1 1 5 3 39 0.17 0.07 0.33 0.83 

Erbin_1-1 0 1 7 40 0.00 0.15 0.00 0.83 

g2-syntrophin_1-1 3 10 2 33 0.23 0.06 1.50 0.75 

Gm1582_2-3 2 7 11 28 0.22 0.28 0.18 0.63 

LIN-7A_1-1 5 5 10 28 0.50 0.26 0.50 0.69 

Lin7c_1-1 5 4 10 29 0.56 0.26 0.50 0.71 

Lrrc7_1-1 0 1 8 39 0.00 0.17 0.00 0.81 

Magi-1_2-6 5 19 1 23 0.21 0.04 5.00 0.58 

Magi-1_4-6 0 2 0 46 0.00 0.00 - 0.96 

Magi-1_6-6 8 6 9 25 0.57 0.26 0.89 0.69 

Magi-2_5-6 0 4 0 44 0.00 0.00 - 0.92 

Magi-2_6-6 6 3 11 28 0.67 0.28 0.55 0.71 

Magi-3_5-5 9 6 8 25 0.60 0.24 1.13 0.71 
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MUPP1_01-13 2 0 4 42 1.00 0.09 0.50 0.92 

MUPP1_05-13 0 1 14 33 0.00 0.30 0.00 0.69 

MUPP1_10-13 0 2 8 38 0.00 0.17 0.00 0.79 

MUPP1_11-13 0 0 6 42 - 0.13 0.00 0.88 

MUPP1_12-13 0 0 2 46 - 0.04 0.00 0.96 

MUPP1_13-13 3 6 6 33 0.33 0.15 0.50 0.75 

NHERF-1_1-2 0 3 4 41 0.00 0.09 0.00 0.85 

NHERF-2_2-2 2 15 2 29 0.12 0.06 1.00 0.65 

Pdlim5_1-1 0 0 17 31 - 0.35 0.00 0.65 

Pdzk1_1-4 7 3 4 34 0.70 0.11 1.75 0.85 

Pdzk3_1-1 0 1 5 42 0.00 0.11 0.00 0.88 

PDZ-RGS3_1-1 0 13 0 35 0.00 0.00 - 0.73 

PSD95_1-3 2 6 7 33 0.25 0.18 0.29 0.73 

PTP-BL_2-5 2 2 9 35 0.50 0.20 0.22 0.77 

SAP102_3-3 2 3 17 26 0.40 0.40 0.12 0.58 

SAP97_1-3 2 6 7 33 0.25 0.18 0.29 0.73 

SAP97_3-3 3 4 16 25 0.43 0.39 0.19 0.58 

Scrb1_1-4 5 0 14 29 1.00 0.33 0.36 0.71 

Scrb1_2-4 1 1 14 32 0.50 0.30 0.07 0.69 

Scrb1_3-4 13 7 6 22 0.65 0.21 2.17 0.73 

Shank3_1-1 8 6 2 32 0.57 0.06 4.00 0.83 

SLIM_1-1 0 0 7 41 - 0.15 0.00 0.85 

ZO-1_1-3 4 4 10 30 0.50 0.25 0.40 0.71 

ZO-2_1-3 2 3 12 31 0.40 0.28 0.17 0.69 

ZO-3_1-3 0 2 14 32 0.00 0.30 0.00 0.67 

TP is true positive. FN is false negative. FP is false positive. TN is true negative. TPR is true 
positive rate. FPR is false positive rate. 
 

Table S4 Prediction statistics of individual PDZ domains from mouse test set using PreDiZ-PSSM 
with only mouse and human interaction data 

Domain Name TP FN FP TN TPR FPR TP/FP Accuracy 

a1-syntrophin_1-1 6 10 0 32 0.38 0.00 - 0.79 

b1-syntrophin_1-1 6 10 0 32 0.38 0.00 - 0.79 

Cipp_03-10 0 8 0 40 0.00 0.00 - 0.83 

Cipp_05-10 1 1 5 41 0.50 0.11 0.20 0.88 

Cipp_08-10 0 1 4 43 0.00 0.09 0.00 0.90 

Cipp_09-10 4 1 3 40 0.80 0.07 1.33 0.92 

Cipp_10-10 0 5 0 43 0.00 0.00 - 0.90 

Dvl1_1-1 0 2 0 46 0.00 0.00 - 0.96 

Dvl2_1-1 0 3 0 45 0.00 0.00 - 0.94 

Dvl3_1-1 0 6 0 42 0.00 0.00 - 0.88 

Erbin_1-1 0 1 0 47 0.00 0.00 - 0.98 

g2-syntrophin_1-1 4 9 0 35 0.31 0.00 - 0.81 

Gm1582_2-3 1 8 4 35 0.11 0.10 0.25 0.75 
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LIN-7A_1-1 5 5 1 37 0.50 0.03 5.00 0.88 

Lin7c_1-1 5 4 1 38 0.56 0.03 5.00 0.90 

Lrrc7_1-1 0 1 0 47 0.00 0.00 - 0.98 

Magi-1_2-6 5 19 1 23 0.21 0.04 5.00 0.58 

Magi-1_4-6 0 2 0 46 0.00 0.00 - 0.96 

Magi-1_6-6 3 11 2 32 0.21 0.06 1.50 0.73 

Magi-2_5-6 0 4 0 44 0.00 0.00 - 0.92 

Magi-2_6-6 2 7 3 36 0.22 0.08 0.67 0.79 

Magi-3_5-5 4 11 1 32 0.27 0.03 4.00 0.75 

MUPP1_01-13 0 2 0 46 0.00 0.00 - 0.96 

MUPP1_05-13 0 1 6 41 0.00 0.13 0.00 0.85 

MUPP1_10-13 0 2 4 42 0.00 0.09 0.00 0.88 

MUPP1_11-13 0 0 6 42 - 0.13 0.00 0.88 

MUPP1_12-13 0 0 0 48 - 0.00 - 1.00 

MUPP1_13-13 4 5 0 39 0.44 0.00 - 0.90 

NHERF-1_1-2 1 2 1 44 0.33 0.02 1.00 0.94 

NHERF-2_2-2 0 17 1 30 0.00 0.03 0.00 0.63 

Pdlim5_1-1 0 0 0 48 - 0.00 - 1.00 

Pdzk1_1-4 4 6 2 36 0.40 0.05 2.00 0.83 

Pdzk3_1-1 0 1 1 46 0.00 0.02 0.00 0.96 

PDZ-RGS3_1-1 0 13 0 35 0.00 0.00 - 0.73 

PSD95_1-3 5 3 0 40 0.63 0.00 - 0.94 

PTP-BL_2-5 2 2 3 41 0.50 0.07 0.67 0.90 

SAP102_3-3 4 1 3 40 0.80 0.07 1.33 0.92 

SAP97_1-3 5 3 0 40 0.63 0.00 - 0.94 

SAP97_3-3 4 3 3 38 0.57 0.07 1.33 0.88 

Scrb1_1-4 3 2 6 37 0.60 0.14 0.50 0.83 

Scrb1_2-4 1 1 4 42 0.50 0.09 0.25 0.90 

Scrb1_3-4 8 12 1 27 0.40 0.04 8.00 0.73 

Shank3_1-1 1 13 0 34 0.07 0.00 - 0.73 

SLIM_1-1 0 0 1 47 - 0.02 0.00 0.98 

ZO-1_1-3 1 7 5 35 0.13 0.13 0.20 0.75 

ZO-2_1-3 0 5 6 37 0.00 0.14 0.00 0.77 

ZO-3_1-3 0 2 6 40 0.00 0.13 0.00 0.83 

TP is true positive. FN is false negative. FP is false positive. TN is true negative. TPR is true 
positive rate. FPR is false positive rate. 
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