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Highlights 

 This paper reviews the current state-of-the-art segmentation and deformable registration 

methods applied to cervical cancer adaptive radiation therapy planning. 

 Strength and weaknesses of the registration and the segmentation methods are studied and 

analysed. 

 Use of shape prior constraints can significantly reduce segmentation and registration errors.   

 Use of tissue specific classification of tumour may reduce tumour segmentation error.  

*Highlights (for review)
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Abstract

Objective

Manual contouring and registration for radiotherapy treatment planning and online adaptation for cervical cancer ra-

diation therapy in computed tomography (CT) and magnetic resonance images (MRI) is often necessary. However

manual intervention is time consuming and may suffer from inter or intra rater variability. In recent years a number of

computer-guided automatic or semi-automatic segmentation and registration methods have been proposed. Segmenta-

tion and registration in CT and MRI for this purpose is a challenging task due to soft tissue deformation, inter-patient

shape and appearance variation and anatomical changes overthe course of treatment. The objective of this work is to

provide a state-of-the-art review of computer-aided methods developed for adaptive treatment planning and radiation

therapy planning for cervical cancer radiation therapy.

Methods

Segmentation and registration methods published with the goal of cervical cancer treatment planning and adaptation

have been identified from the literature (PubMed and Google Scholar). A comprehensive description of each method

is provided. Similarities and differences of these methods are highlighted and the strengths and weaknesses of these

methods are discussed. A discussion about choice of an appropriate method for a given modality is provided.

Results

In the reviewed papers a Dice similarity coefficient of around 0.85 along with mean absolute surface distance of 2-4

mm for the clinically treated volume were reported for transfer of contours from planning day to the treatment day.

Conclusions

Most segmentation and non-rigid registration methods havebeen primarily designed for adaptive re-planning for the

transfer of contours from planning day to the treatment day.The use of shape priors significantly improved segmen-
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tation and registration accuracy compared to other models.

Keywords: Cervical cancer radiation therapy, B-spline registration, statistical shape models.

1. Introduction

An estimated 527,000 new cases of cervical cancer were detected worldwide in 2012. Cervical cancer is the third

most common cancer among women and accounted for over 265,000 estimated deaths worldwide in the year 2012

[1] and 208 deaths in 2007 in Australia [2]. Factors such as age, stage of the cancer, and tumor type determine the

treatment procedure for cervical cancer with the stage of disease being the primary determinant. Radiation therapy

or radiotherapy (RT) is recommended for a large group of patients [3]. Primarily RT is indicated for advanced stage

cervical cancers (FIGO stage II-IV) and in patients with earlier stage cancers who are not fit enough for surgery.

During RT a high dose of radiation is delivered to the cancerous tumor while attempting to minimize the dose to the

healthy tissues in the vicinity. The balancing act lies in designing a treatment plan which maximizes damage to cancer

cells while minimizing the radiation dose delivered to surrounding healthy tissues. In Fig. 1 we observe the radiation

dose received by healthy tissues close to the cervix.

Traditionally, in image guided RT (IGRT) treatment planning the cervix and the tumor, uterus, parametrium,

vagina, bladder, rectum and pelvic bones are contoured in CTimages. Electron density information from the simula-

tion CT scan enables RT dose calculation. The entire framework of CT guided RT is given in Fig. 2.

The radiation dose is delivered in daily sessions typicallyover five to six weeks to maximize damage to tumor cells

while minimizing the damage to healthy tissues. Factors such as the definition of the tumor, uncertainties about organ

boundaries, as well as variations between patient setups during planning, treatment and dose delivery, uncertainty

regarding biological response to the radiation dose and displacement of the beam shaping device during treatment, all

introduce uncertainties in radiation therapy planning.

The gross tumor volume (GTV) delineation is determined fromclinical examinations and from the extent of the

tumor visible in images. The GTV is often expanded to encompass regions in which the microscopic cancer cells may

be present, thus defining the clinical target volume (CTV). The CTV is expanded further with a margin to compensate

for patient movement and treatment set-up uncertainties, thereby defining a planning target volume (PTV). Minimizing

these uncertainties may aid in reducing the radiation received by healthy tissues [4]. The GTV, CTV and PTV are

illustrated in Fig. 3.

MRI provides superior soft tissue contrast compared to CT [5, 6] and does not deliver ionizing radiation [7].

Further, MRI might determine physiologic radio-resistantareas which then can be counteracted with an escalated dose

of radiation to high risk regions [8]. Delineation of the GTVand CTV from MRI may reduce the uncertainty involved

with organ boundaries and allow a smaller margin to be used, lowering the radiation received by the surrounding

healthy tissues [9–11]. In recent times, MRI guided radiation therapies have received considerable research interest

[12]. In particular, the advantages of MRI in image-guided adaptive brachytherapy for cervix cancer have been well

Preprint submitted to AI in Medicine, Elsevier April 16, 2015
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published and are becoming increasingly adopted [13]. In MRI guided radiation therapy planning the MRI and CT

scans are aligned by matching the pelvic bones. The tumor, cervix, vagina, parametrium, uterus, bladder and rectum

are generally contoured on the MRI. Dose calculation and radiotherapy planning is performed using electron density

information from the CT images. The framework for MRI guidedradiation therapy planning is given in Fig. 4.

Typically during cervical cancer RT planning the GTV, cervix, vagina, parametria, uterus, bladder and rectum are

contoured in MRI. A consensus of guidelines for delineationof the structures and CTV was presented by Lim et al.

[15]. According to Lim et al. [15] the CTV is composed of the GTV, cervix, vagina, parametria and uterus. Please

refer to [15] for a more comprehensive definition of the contoured structures and the CTV. These structures and their

3D reconstruction as observed in a saggital view are illustrated in Fig. 5.

In recent years Dowling et al. [12] have developed a MRI alonetreatment planning and adaptive radiation therapy

workflow for prostate cancer. The improved soft tissue contrast with MRI enables more accurate and consistent

segmentation of the prostate and hence estimation of the CTV. The approach could also reduce cost of the treatment

and reduce the risk of ionizing radiation exposure for the patient by eliminating the CT imaging. A substitute CT

image is generated from the MRI of the patient and the segmented contours from MRI [14] are transferred to the

pseudo CT images for treatment planning. The dose differences between the pseudo CT and planning CT were

quantified and found to be less than 2%. A similar approach could be adopted for cervical cancer treatment.

As observed in Fig. 4, manual segmentations of the GTV, cervix, uterus, parametrium, vagina, bladder and the

rectum are necessary in CT or MRI or both for MRI or CT guided RTplanning. However manual segmentations of

these structures are time consuming and may suffer from inter observer variabilities [15]. In recent years,computer-

aided segmentation methods of the cervix have been reportedin the literature. The challenges involved in automatic

cervix segmentation in CT and MRI are different. In clinical practice, both modalities are actively used in RT treatment

planning. Some of the features of the two imaging modalitiesare summarized in Table 1. In Fig. 6 we observe the

cervix in CT and MRI and the improved soft tissue contrast in MRI.

Typically in computer vision and medical imaging the goal ofimage segmentation is to partition a digital image

into multiple segments that are more meaningful and easier to analyze. Several approaches are used including graph-

cuts [16], level sets [17], pattern recognition based approaches and registration based methods involving atlases [18].

Image registration in computer vision is the process of estimating optimal transformation parameters between

two images to bring them into the same coordinate space. The transformation parameters are estimated in a process

that involves maximization of an image similarity metric like normalized mutual information or normalized cross

correlation between the two images in an energy optimization framework.

Computer-guided segmentation of the structures of interest in MRI and CT is a challenging task. Poor soft tissue

contrast in CT images reduces the accuracy of methods working on edge and contrast information. Similarly magnetic

bias, anisotropic MRI sequences, different bladder and rectal fillings, soft tissue deformation,patient and organ move-

ment and tumor changes over the course of treatment can reduce the effectiveness of computer-aided segmentation

and registration of the cervix. Some of these challenges areillustrated in Fig. 7.

3
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Further challenges in adaptive cervix RT planning involve internal motion of the organs at risk during treatment.

Chan et al. [19] recorded large inter-scan movement of the CTV that could be only partially explained by bladder and

rectal filling. The authors suggest the use of adaptive re-planning to compensate for internal organ movement between

the scans. A generous population-based CTV to PTV margin is required to account for the geometrical uncertainties,

resulting in the irradiation of healthy tissues. Estimating the tumor contour in CT images is difficult and results in a

significant overestimation of the tumor width, thereby resulting in a significant increase in dose delivered to the CTV,

as compared to MRI guided contouring [20, 21]. Healthy tissue irradiation could be potentially minimized by using

computer-aided segmentation and registration methods during treatment planning and online image guidance systems

[22].

This paper presents a summary of segmentation and registration methods that may be applied to online treatment

planning and RT planning for cervical cancer radiation therapy. Different approaches developed for segmentation and

registration for adaptive treatment planning are detailedand their similarities, differences, strengths and weaknesses

are explained to enable the reader to make a knowledgeable decision in the selection of one method over the other.

The outline of the paper is as follows: The state-of-the-artcomputer-aided segmentation and registration procedures

for adaptive treatment planning are presented in section 2.Qualitative evaluations of the methods as reported in the

literature are presented in section 3. In section 4 we present a comparative discussion.

2. Cervix segmentation and registration methods

As illustrated in section 1 the two imaging modalities present different challenges for cervix segmentation and

registration. The methods developed for MRI are described first followed by those for CT images.

2.1. MRI

Computer-aided segmentation of the cervix in MRI is a relatively new domain. From an exhaustive search of the

literature using PubMed and Google Scholar the four papers of Van der Put et al. [23], Staring et al. [24], Lu et al.

[25] and Berendsen et al. [26] were selected. Most of these methods are validated with a large number of datasets and

have shown promising results in a clinical setting. The keyword search of “cervix segmentation’ returned 46 papers in

PubMed and 21,000 results in Google Scholar. The keyword “cervix registration” returned 200 papers in PubMed and

over 20,000 hits in Google Scholar. Most papers were excluded, however, as they were not related to RT treatment

planning in a clinical setting.

Non-rigid registration is often used for segmentation of the organs of interest in medical imaging [18, 27, 28]. In a

registration framework the objective function is to maximize the similarity between two images. The sum of squared

distance, normalized cross-correlation and normalized mutual information are frequently used as similarity metrics

and used in a optimization framework to achieve the objective. A non-linear mapping from the moving image to the

target image is often achieved with mathematical functionsincluding B-spline and thin plate splines. An extensive

study of medical image registration methods may be found in these articles [29, 30].

4
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B-spline based non-rigid registration is often used for registration and segmentation of the cervix [23, 24, 26]. To

formalize a typical B-spline based image registration withnormalized mutual information as a similarity metric, let

Ω = {(x, y, z)|0 ≤ x < X,0 ≤ y < Y,0 ≤ z< Z} represent the image domain. The transformation between themoving

and fixed images is given byT : (x, y, z) 7→ (x′, y′, z′), where any point (x, y, z) of the moving image is mapped onto its

corresponding point (x′, y′, z′) on the fixed image. Given a mesh of control points on the moving image with a control

point defined asφi, j,k with uniform spacing ofδmm, the nonrigid transformationTis defined by B-spline functions as,

T(x, y, z) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)φi+l, j+m,k+n (1)

wherei = ⌊x/δ⌋ − 1, j = ⌊y/δ⌋ − 1, k = ⌊z/δ⌋ − 1,u = x/δ − ⌊x/δ⌋ , v = y/δ − ⌊y/δ⌋ andw = z/δ − ⌊z/δ⌋ is the floor

function andBl represents thelth basis function of the cubic B-spline functions such thatB0(u) = (1− u3)/6, B1(u) =

(3u3 − 6u2 + 4)/6, B2(u) = (−3u3 + 3u2 + 3u+ 1)/6 andB3(u) = u3/6.

The resulting coordinate transformationTi is applied to the training dataset labelLi to produce the resulting label.

Normalized mutual information (NMI) [30] as a similarity metric is maximized to achieve the registration. The NMI

is an information theoretic measure that tries to reduce thejoint entropy of the images and is given by,

NMI = ζsimilarity =
H(M) + H(F)

H(M, F)
(2)

whereζsimilarity is the similarity measure for B-splines registration that is maximized in the process,H(M) andH(F)

are the marginal entropies of the moving (M) and fixed (F) images respectively, andH(M, F) is the joint entropy of

the images.H(M, F) can be written using probability theory as,

H(M, F) =
∑

m, f

p(m, f )log([p(m, f )]) (3)

where,p(m, f ) is the joint probability distribution of the images obtained from their joint histogram. The registration

framework involving B-spline transformation and mutual information as a similarity metric is illustrated in Fig. 8.

Van der Put et al. [23] investigated the accuracies of rigid,non-rigid and a semi-automatic registration of T2

weighted MR images for inter-fractional contour propagation for external beam adaptive RT for cervical cancer. The

scans were acquired using a 1.5 T Philips Interra using a phased-array body coil with 4.5 mm slice thickness and

0.5 mm in plane resolution. Mutual information [31] was usedas a similarity metric for registration between the

bones. A B-spline based registration transformation was used for the non-rigid methods. A semi-automatic point set

registration was performed between manually selected landmarks. The authors concluded that non-rigid registration

performed better than rigid registration and the combination of the semi-automatic and non-rigid registration demon-

strated improved performance compared to a completely automatic method. The registration time requirement for the

procedure was within acceptable limits.

Similar to the framework used by Van der Put et al., Staring etal. [24] used mutual information as a similarity

metric and a B-spline transformation to register the planning day MRI to the inter-fractional images for adaptive

5
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radiotherapy to segment the CTV, bladder and rectum. The T2 weighted MR data were acquired with a Philips 1.5

T Intera scanner with voxel dimension of 0.625×0.625×4.5 mm. Unlike Van der Put et al., Starring et al. proposed

to use rotation and translation invariant reliable image features during registration to reduce the effect of imaging

artifacts, magnetic bias, and noise in the image. Multi-resolution Gaussian derivatives of the intensities along with

spatial derivatives were used to extract reliable edge and texture information of the CTV, bladder and rectum. Mutual

information was computed using image features to reduce theeffect of noise and improve registration accuracy. The

registration time for the procedure was around 31 minutes.

In recent years hybrid methods that combine registration based methods with prior shape information of the

CTV, bladder and rectum have been adopted for cervix segmentation [25, 26]. Prior shape information obtained from

segmented organs are often used to build a shape model for medical image segmentation and analysis for a wide variety

of structures [14, 32–36]. An extensive review of shape models applied to medical image segmentation and registration

may be found in this article [37]. Primarily two different shape models are used in cervix segmentation/registration

framework: the active shape model or statistical shape model framework of Cootes et al. [38] and the kernel density

estimation of Creemers et al. [39].

The Cootes et al. shape model is characterized by a mean shapeand variation of the mean shape in a Gaussian

space [38]. The mean shape and Gaussian space are estimated from the segmented contours of the organ of interest.

The shape model is built from surface meshes from the training images. The point distribution model [38] is built from

the aligned 3D points of the surface meshes. Principal component analysis (PCA) of the aligned point distribution

model (PDMs) identifies the principal modes of shape variation. The statistical shape model is given by,

s= s+ Φsθs (4)

wheres denotes the mean shape,Φs contains the first p eigenvectors (obtained from 98% of totalvariations) of the

estimated joint dispersion matrix of shape, andθs represent the corresponding shape eigenvalues. A penalty function

depending on the value of the Mahalanobis distance between the mean mesh with principal modes of variations and the

reference mesh is introduced to prevent deformations very different from the mean shape. The approach is illustrated

with a shape model for the bladder in Fig. 9.

In the kernel density estimation approach, training data generated from manual segmentations are rigidly aligned

to minimize pose differences. Each object (e.g., the bladder or the uterus) is embedded as the zero level set given

byΨ1,Ψ2, ....,Ψn to achieve a non-parametric density estimation of the shapespace. To formalize, the kernel density

estimation of the shape space is given by,

p(ΨSd) =
1
n

n
∑

i=1

k(D(ΨSd ,Ψi), σ) (5)

whereD(.) is the distance metric in implicit shape space andk(., σ) denotes a Gaussian kernel with kernel sizeσ, i.e.,

k(x, σ) =
1

√
2πσ2

exp
−x2

2σ2
, (6)

6
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The distance between the evolving level set and the kernel density estimation of the shape space is minimized to

impose shape restriction. Lu et al. [25] proposed automaticsegmentation, tumor detection and non-rigid registration

in T2 weighted images to aid IGRT. The T2 weighted fast spin echo (echo time/repetition time 100/500 ms) MR data

were acquired with a GE Excite 1.5 T scanner with image resolution of 0.625×0.625×4.5 mm. Manually segmented

contours of the organs were rigidly registered to a common frame to minimize pose variations. The mean shape and its

variations were estimated from registered contours using the model of Creemers et al. [39]. A B-spline based non-rigid

registration was employed for the transfer of the planning day contours on the treatment day images. The registration

was constrained by the estimated shape model. Large deviations of the organs of interest from their mean shape

were restricted to lie within the estimated variations to impose shape constraints. The intensity distribution insidethe

CTV was modeled as a multiple Gaussian distribution. One Gaussian distribution represented the tumor and the other

represented the healthy tissues. The probability of tumor obtained in this framework was used to estimate the GTV

and constrain the B-spline based registration. The entire process took around 30 minutes with 8 core 2.83GHz Intel

Xeon CPU, 16 Gb of RAM in Matlab.

A shape constraint was used inside a registration frameworkby Berendsen et al. [26]. A shape constrained B-

spline based non-rigid registration was used to segment thebladder and the CTV to aid adaptive re-planning. The

T2 weighted MR data were acquired with a Philips 1.5 T Intera scanner with voxel dimension of 0.625×0.625×4.5

mm. Unlike [23] and [24], Berendsen et al. performed an inter-patient registration to segment the CTV and the

bladder on the treatment day. Inter-patient non-rigid CT toCT registration was followed by intra-patient CT to MR

rigid registration, to achieve an inter-patient MRI registration. The mean shape and variation of the shape estimated

from the segmented contours was introduced as a penalty to impose shape constraint during registration. The entire

registration with the shape model took 3 minutes in a 2.83 GHzdesktop.

2.2. CT

Traditionally CT is used in a clinical setting to contour theCTV and the PTV for RT planning. The work flow

of CT based planning is illustrated in Fig. 2. The manually segmented CTV, bladder, rectum and bones are gener-

ally transformed to the treatment images with non-rigid registrations to account for organ deformations in adaptive

radiotherapy.

Symmetry and inverse consistency in the estimated image alignment is extremely important in medical appli-

cations. In general, registration techniques that do not rely on explicit correspondences benefit from the inverse

consistency constraint. This is because these techniques often employ maximization/minimization of a similarity

measure on image features like intensity, object boundary or shape which has large local maxima/minima due to cor-

respondence ambiguity. Therefore a diffeomorphic (topology preserving) registration without an inverse consistency

constraint may not provide a one-to-one, onto transformation, i.e. the inverse of the forward transformation may not

provide an exact backward transformation. In mathematics,a diffeomorphism is an isomorphism of smooth mani-

folds. It is an invertible function that maps one differentiable manifold to another, such that both the functionand

7
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its inverse are smooth. Christensen et al.[40] proposed that a symmetric and inverse-consistent transformation would

ensure a diffeomorphic, one-to-one and onto transformation that is continuous and differentiable. To overcome the

correspondence ambiguities, [40] proposed a joint estimation of the forward (h(.)) and backward (g(.)) transformations

between the moving (M) and fixed (F) images by minimizing or maximizing a cost function of similarity measures.

However, the joint estimation ofh(.) andg(.) does not guarantee that they the are inverse of each other, since the

contributions of the transformations in the cost function are independent. Therefore in order to couple the estimation

of h(.) andg(.) an inverse consistency constraint is imposed that minimizes the error betweenh(.) andg−1(.), g(.) and

h−1(.) respectively. The need to use the inverse consistency constraint however, depends on the application and on

the correspondence model used for registration. When large variation of deformable organs occurs in clinical data,

symmetric and inverse-consistent registration methods provide more accurate transformations.

Bondar et al. [41] proposed to use a landmark guided thin spline based symmetric non-rigid registration to register

organs of interest such as the bladder. Two variants of the registration algorithm were developed; symmetric and

asymmetric. In the asymmetric version registration was considered in one direction, i.e. from planning CT contours

to the treatment day contours, while the symmetric version included the inverse consistency constraint, i.e. from the

planning CT to the treatment day and from the treatment day tothe planning CT contours. As expected, the inverse-

consistent method performed better in the presence of largedeformations of the bladder and the organs of interest.

The surface registration time for the bladder was 151 seconds and for cervix and uterus was 35 seconds.

Later Bondar et al. [22] proposed to predict the shape and theposition of the cervix and uterus as a function of

the bladder volume to aid in adaptive re-planning. CT imageswere acquired with five different bladder volumes. First

with an empty bladder, then after drinking 500 ml and 300 ml ofwater consecutively; and finally after the interval

of 20, 40 and 60 minutes with natural filling. The surfaces of the organs of interest were reconstructed from 3D

manual segmentations. A linear regression was formulated that predicted the coordinate positions of the cervix and

the uterus from the bladder volumes after registration of the treatment image to the planning day CT. The regression

based approach facilitated the selection of the most probable deformation of the cervix and the uterus depending on

the bladder volume. A symmetric registration [41] between the predicted volume and the treatment day CT was finally

performed for adaptive re-planning.

In recent years a plan-of-the-day strategy has been adoptedfor fast online adaptive radiation therapy [42–44].

Bondar et al. [42] used non rigid registration of [41] and prediction of the position of the cervix and uterus from

[22] to design an online adaptive individualized treatmentplan. The individualized plans were generated by using a

motion model [22] from two pre-treatment CT scans with a fulland empty bladder. The plan-of-the-day was selected

automatically from the library based on bladder volume. Compared to the population-based margins the individualized

plan reduced the CTV-to-PTV volume by 48%±6% sparing the organs at risk. Langerak et al. [43] proposed to use

two plans, one with full bladder and the other with empty bladder, for automatic plan selection on treatment day.

Multi-atlas based segmentation in cone beam CT (CBCT) images was performed to segment the bladder, rectum and

the uterus. The plan with a full bladder was selected if the volume of the bladder was larger than the average of the

8
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full and the empty bladder, while the empty bladder plan was selected otherwise. Heijkoop et al. [44] proposed to use

CBCT scans for selection of the most appropriate plan from a library containing either one or two IMRT plans and a

motion robust 3DCRT backup plan. Two pre-treatment scans with an empty and a full bladder were acquired, aligned

with respect to the bones and the bladder. The cervix-uterusCTVs were manually delineated. Non-rigid registration

[41] was used to register the bladder and [22] was used to predict the internal target volume. For patients with large

cervix-uterus motion, two extra models that predicted internal target volume (MPITV) were used for plan generation.

Cervix-uterus shape models for empty-to-half-full bladder and half-full-to-full bladder were used for MPITV. A plan

was selected online depending on the position of the markersimplanted in the vagina fornix and depending on the

position of the uterus inside the PTV.

The effectiveness of automated re-planning to compensate for interfraction organ motion was studied by [45, 47–

49]. Stewart et al. [45] study explored the limits of a highlyadaptive small margin treatment scenario to accommodate

internal organ motion. The dosimetric consequences of organ and tumor motion were modeled using a combination of

finite element modeling based deformable registration (Brock et al.[46]) and fractional dose accumulation techniques.

The dosimetric impact of interfraction organ and target motion was compared for two hypothetical treatment scenarios:

a 3-mm margin plan without re-planning; and an automatic re-plan performed on the updated weekly patient geometry.

It was concluded that a weekly re-planning strategy can facilitate PTV margin reduction by improving target coverage

and sparing organs at risk.

Two adaptive re-planning strategies were proposed by Lim etal. [47]. Deformable image registration (Brock

et al.[46]) was used to model the accumulated dose for two adaptive re-planning scenarios. In anatomical adaptive

intensity modulated radiation therapy (A-IMRT), a single re-plan was created halfway through the treatment for every

patient in an effort to correct minor target underdosing and reduce normal tissue dose. In dosimetric adaptive intensity

modulated radiation therapy (D-IMRT) re-plans were created only for patients when the final target dose was predicted

to be low. Both methods improved accumulated target dosimetry compared to no re-planning. For 30 patients, the

clinically relevant target dose threshold failed for 8 patients with 3 mm margin without re-planning. AIMRT failed in

3 patients and reduced doses delivered to organs at risks compared to DIMRT.

Oh et al. [48] proposed to use off-line re-planning to improve the quality of radiation delivery affected by sub-

stantial organ motion and tumor shrinkage during the courseof RT. In an off-line re-planning system, the errors on a

certain day are corrected in later treatment fractions. Twomethods of image guidance, bone to bone and soft tissue to

dose matrix were compared with three frequencies of offline re-planning: none, single and weekly. In a bone to bone

matching, pre-treatment and all weekly MRI’s were registered to the planning CT images at the pelvic bone, based

on correlation maximization. In soft tissue to dose distribution registration, the CTV and the dose voxels were bina-

rized and registered based on correlation maximization. Itwas found that offline re-planning significantly improved

target coverage and reduced dosage to organs at risk, especially in difficult cases. Kerkhof et al. [49] suggested an

online planning adaptation by applying a primary and nodal planning target volume margin of 4 mm. Online intensity

modulated radiation therapy (IMRT) compared to pre-IMRT reduced the volume of healthy tissue irradiated.
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Christensen et al. [50] use a deformable registration to register CT serial examinations into a single frame of

reference in order to compute cumulative dose calculationsduring treatment with CT compatible intracavitary appli-

cators. Each serial examination was rigidly registered with respect to the bone followed by a deformable registration

that followed a Navier-Stokes viscous fluid flow equation. Compared to the bony landmark-based alignment a better

overlap was observed.

Recently Bondar et al. [51] benchmarked several strategiesfor accurate registration and suggested the use of shape

based registration and the use of bladder to cervix and uterus shape regression to improve accuracy in the absence of

a fiducial in the fornices of the vagina. The average shape model of the cervix and uterus was created by registration

of the pre-treatment delineated scans with the symmetric registration method proposed in [41]. The shape model was

deformed towards an attractor point identified from organ specific image features [52]. In the presence of a fiducial

in the fornices of the vagina, improved registration accuracy was observed by translation of an average cervix-uterus

shape constrained on the fiducials. However identification of the fiducials on the planning and the treatment day is

necessary for the registration.

3. Validation and qualitative evaluations

Table 2 presents the most commonly used evaluation metrics for determining the accuracies of cervix segmentation

and registration. Performance is evaluated by comparing the output of the segmentation/registration method with the

gold standard generated from manual segmentation by an experienced radiation therapist or radiation oncologist. For

quantitative comparison the contours or surfaces from the method are overlaid along with the manual segmentations

or registrations. In quantitative evaluation a numerical value of either the overlap or the contour distance is presented.

The major contour and volume based quantitative error metrics are presented in Table 2.

A quantitative evaluation of the different methods developed is difficult in the absence of public datasets, software

and standardized evaluation metrics. Furthermore a degreeof parameter tuning is necessary for all methods developed,

which varies depending on the dataset. Nevertheless, to have an overall qualitative estimate of the performance of the

methods in the literature we present the reported results inTable 3. The index of the table is expanded below.

• The name of the first author has been used as a reference of the paper.

• The segmentation and registration method shows the computational method(s) used in the algorithm.

• The automation (Auto) column specifies the degree of manual interaction (if any) that was necessary.

• The performance columns gives the measures and the values.

• The validation column gives the number of datasets that wereused to validate each algorithm.

• Registration performed between the scans of the same patient is given by intra in the Inter/ Intra column. The

primary goal of intra patient registration is the transfer of contours and plans from planning day to treatment

10
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day for adaptive re-planning. Registration performed withthe purpose of automatic segmentation of organs of

interest in the planning CT/MRI of a new patient is given by inter in the Inter/ Intra column.

• The CTV column describes how the CTV was defined for each paper. (-) indicates no CTV definition was

available.

3.1. Discussion

The cervix segmentation and registration methods have beenprimarily developed to expedite radiation therapy

planning. The principal aim of these methods is to segment the GTV, CTV and PTV in treatment images, or to transfer

the planning day contour to a treatment day image for adaptive radiotherapy. The methods discussed in this paper are

dependent on non-rigid registration for the transfer of theplanning day plan to the treatment day images for adaptive

re-planning [23, 24, 26, 25]. The methods that perform an intensity based non-rigid registration [24, 26, 25, 43] could

be used to segment structures of interest in a new MRI. In the near future, a pipeline of MR alone treatment planning

[12] may be adopted for radiotherapy planning for the cervix. This would eliminate the need for CT image acquisition

during radiotherapy planning.

For adaptive re-planning two different kinds of non-rigid registrations are being used. Whilesome methods [24,

26, 25, 43] used intensity based non-rigid registration, others [41] used a structure based non-rigid approach for

registering organs of interest. One advantage of Bondar et al. [41] is that the optimization function minimizes the

distance between two structures and theoretically this method would be more accurate compared to an intensity based

registration. However the minimization of surface based distance requires the structures to be segmented, a priori.

Different variants of adaptive re-planning have been suggestedin recent years [45, 42–44, 47, 48]. These strategies

could be broadly categorized into two groups: a regression based approaches [42–44]; and margin based approaches

[45, 47, 48]. Computational speed during treatment is a major advantage of the regression based approaches. However

several plans for the same patients have to be created offline to create a plan dictionary for selection. Offline re-

planning is necessary for margin based approaches [45, 47, 48]. It has been demonstrated however, margin based or

regression based re-planning improves sparing of organs atrisk.

The registration methods used significantly differ from each other from a theoretical perspective. Intensity based

registration methods like B-spline [18] and landmark-based registration using thin plate splines are also used with

segmented images [41]. While in intensity based registration mutual information between the two images is used as a

similarity metric, in landmark-based registration the least squares distance between two meshes is minimized.

Different strategies have been adopted to improve accuracy in intensity based B-spline registration methods. Star-

ing et al. [24] adopted a robust feature based non-rigid registration with mutual information as the similarity metric

in MRI. The robust features comprised translational and rotational invariant spatial derivatives in MRI. These robust

features improve the median DSC of the bladder from 0.75 to 0.81 and for the rectum from 0.76 to 0.77. For the

bladder, the registration error was reduced from 2-3 mm to 1-2 mm. In contrast Lu et al. [25] and Berendsen et al.
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[26] adopted a shape constrained non-rigid registration toimprove accuracy in MRI. Berendsen et al. [26] improved

DSC for the CTV from 0.43 to 0.57 and DSC for the bladder improved from 0.62 to 0.73 with a shape prior constraint

in registration. Lu et al. [25] found that a shape and intensity prior levelset model significantly improved the bladder

DSC from 0.62 for to 0.88 and the uterus DSC from 0.53 to 0.83, when compared to the intensity only prior levelset

model of Chan and Vese [54].

It has been observed that shape feature based non-rigid registration improves results compared to intensity based

non-rigid registration [24]. The use of rotation and translation invariant robust edge based features in the computation

of mutual information significantly improves registrationaccuracy compared to raw intensities. This is because raw

intensities are often corrupted by magnetic bias, and imaging artifacts. Therefore these edge features are effective in

the extraction of underlying image textures and reliable edge information [33].

The use of a shape model in the later part of the treatment reduced segmentation errors due to ambiguous organ

boundaries, as shown by both Lu et al. [25] and Berendsen et al. [26] who used shape constraints in their registration

frameworks. The shape constraints used however significantly differed from one another. While Berendsen et al.

used a classical statistical shape model as proposed by Cootes et al. [38], Lu et al. used a more recent kernel density

estimation of shape representation as proposed by Cremers et al. [39].

In the later stages of the treatment delivery the GTV and the CTVs are often severely deformed and more so-

phisticated approaches are needed to improve accuracy. Tissue classification as proposed by Staring et al. [24] was

adopted by Lu et al. [25]. In this work, a Bayesian estimate ofthe voxel labels significantly reduced the risk of

mis-classification of healthy tissue. When introduced in theregistration framework, the prior probability of the GTV

improved segmentation accuracies in MRI. Lu et al. [25] improved GTV segmentation accuracy from a DSC of 0.16

to 0.80 in the final week of treatment.

Bondar et al. [41] used a symmetric registration between thecervix, uterus and bladder surfaces obtained from

manual segmentation to compensate for large complex deformations of the structures in CT images. Use of symmetric

inverse-consistent registration produced a smooth deformation field and improved registration accuracy compared to

a non-symmetric version of the algorithm. Residual errors for the landmarks were reduced from 20.7 mm to 3.5 mm

for the bladder with symmetric registration compared to non-symmetric version.

The primary advantages and disadvantages of the methods aregiven in Table 4.

3.2. Choosing a segmentation and a registration method

A comparison of the performance of each method is presented in Table 3. For a fair comparison all methods need

to be validated on the same dataset with exactly the same definition for the CTV. The CTV definition however varied

from one paper to the other. The CTV was not defined by Staring et al. [24]; for Lu et al. [25] only the GTV and

uterus were contoured, Berendsen et al.’s [26] CTV comprised the GTV, cervix, uterus, parametria and vagina; for

Van der Put et al. [23] the CTV was composed of the GTV, uterus,parametria and vagina. For Bondar et al. [51] the
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cervix and the uterus were used to define the CTV. In such a varied definition of the CTV, the performance evaluation

of segmentation and registration methods becomes difficult from a clinical perspective.

The choice of a particular segmentation method depends uponthe imaging modality, the clinical objective and

computational time required by the process. The use of shapeconstraints in the segmentation framework improves

segmentation accuracy in MRI as demonstrated by [25]. Further, the use of the prior probability of the GTV and tissue

clustering may improve the segmentation accuracy of the GTV. The linear relationship between the bladder and the

CTV was demonstrated by [22]. The use of predictive modelingin a plan-of-the-day strategy aided online adaptive

radiation therapy [42].

Considering the deformable nature of the organs of interestand the potential radical change of shape over the

course of treatment it would be difficult to achieve accurate segmentation without incorporating shape information

into the model. Furthermore, the use of appearance information along with edge information detected at multiple

scales would provide stability for such models. Shape and appearance spaces are often considered to be Gaussian

and large scale deviations from the mean shape and appearance model would produce inaccurate segmentations.

Hence it would be useful to consider mixture of Gaussian models for both shape and appearance spaces to improve

on accuracy. A tissue classification strategy would be extremely important, especially in the advanced stage of the

treatment to identify the GTV.

4. Conclusions

In clinical practice, both CT and MRI guided radiation therapy planning are performed. Tissue electron density

obtained directly from a planning CT is used for dose calculation in radiation therapy. MRI with better soft tissue

contrast could significantly improve cervical cancer treatment by ensuring improved organ contours. However, the

success of the procedure is dependent on the automated organsegmentation and/or registration algorithm. Further,

registration between planning day and treatment day imagesmay be necessary for online adaptation of treatment

planning for cervical cancer treatment. This paper has presented the currrent state-of-the-art in segmentation and

registration methods developed for adaptive cervical cancer treatment planning and/or radiation therapy planning. We

have highlighted the similarities, differences, strengths, and weaknesses of these methods to enable the reader to make

a knowledgeable decision in selecting one method over the other.

Conflict of interest

No author in this paper has any potential conflict of interest.

5. References

[1] Cervical Cancer Statistics. http://www.cancerresearchuk.org/cancer-info/cancerstats/keyfacts/cervical-cancer/, accessed on [1st April, 2015];

2015.

13



Page 15 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

[2] Report to the Nation - Cervical Cancer 2012. http://canceraustralia.gov.au/publications-and-resources/cancer-australia-publications/report-

nation-cervical-cancer-2012, accessed on [1st April, 2015]; 2012.

[3] Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of

evidence-based clinical guidelines. Cancer 2005;104(6):1129–37.

[4] Gnep K, Mazeron R. [Radiotherapy for cervix carcinomas: clinical target volume delineation]. Cancer Radiotherapy 2013;17(5-6):486–92.

[5] Devic S. MRI simulation for radiotherapy treatment planning. Medical Physics 2012;39(11):6701–11.

[6] Khan FM. Treatment Planning in Radiation Oncology. Lippincott Williams and Wilkins; Philadelphia, USA 2007.

[7] Yan D. Adaptive radiotherapy: merging principle into clinical practice. Seminars in Radiation Oncology 2010;20(2):79–83.

[8] Haider MA, Sitartchouk I, Roberts TP, Fyles A, Hashmi AT, Milosevic M. Correlations between dynamic contrast-enhanced magnetic

resonance imaging-derived measures of tumor microvasculatureand interstitial fluid pressure in patients with cervical cancer. Journal of

Magnetic Resonance Imaging 2007;25(1):153–9.

[9] Nijkamp J, Pos FJ, Nuver TT, de Jong R, Remeijer P, Sonke JJ, et al. Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam

computed tomography: first clinical results. International Journal of Radiation Oncology Biology Physics 2008;70(1):75–82.

[10] Martinez AA, Yan D, Lockman D, Brabbins D, Kota K, Sharpe M, et al. Improvement in dose escalation using the process of adaptive

radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. InternationalJournal of Radiation

Oncology Biology Physics 2001;50(5):1226–34.

[11] Schwartz DL, Garden AS, Thomas J, Chen Y, Zhang Y, Lewin J,et al. Adaptive radiotherapy for head-and-neck cancer: initial clinical

outcomes from a prospective trial. International Journal ofRadiation Oncology Biology Physics 2012;83(3):986–93.

[12] Dowling JA, Lambert J, Parker J, Salvado O, Fripp J, Capp A, et al. An atlas-based electron density mapping method for magnetic resonance

imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. International Journal of Radiation Oncology

Biology Physics 2012;83(1):5–11.

[13] Clivio A, Kluge A, Cozzi L, Kohler C, Neumann O, Vanetti E,et al. Intensity modulated proton beam radiation for brachytherapy in patients

with cervical carcinoma. International Journal of Radiation Oncology Biology Physics 2013;87(5):897–903.

[14] Chandra SS, Dowling J, Shen KK, Raniga P, Pluim JPW, GreerPB, et al. Patient specific prostate segmentation in 3-d magnetic resonance

images. IEEE Transactions on Medical Imaging 2012;31(10):1955–64.

[15] Lim K, Small W, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target

volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. International Journalof Radiation Oncology

Biology Physics 2011;79(2):348–55.

[16] Boykov Y, Kolmogorov V. An Experimental Comparison of Min-cut/Max-flow Algorithms for Energy Minimization in Vision. IEEE

Transactions on Pattern Analysis and Machine Intelligence2004;26:1124–37.

[17] Malladi R, Sethian JA. Image Processing via Level set Curvature Flow. Proceedings of the National Academy of Sciences1995;92:7046–50.

[18] Klein S, van der Heide UA, Lips IM, van Vulpen M, Staring M, Pluim JP. Automatic segmentation of the prostate in 3D MR images by atlas

matching using localized mutual information. Medical Physics2008;35(4):1407–17.

[19] Chan P, Dinniwell R, Haider MA, Cho YB, Jaffray D, Lockwood G, et al. Inter- and intrafractional tumor andorgan movement in patients

with cervical cancer undergoing radiotherapy: a cinematic-MRI point-of-interest study. International Journal of Radiation Oncology Biology

Physics 2008;70(5):1507–15.

[20] Lim K, Kelly V, Stewart J, Xie J, Cho YB, Moseley J, et al. Pelvic radiotherapy for cancer of the cervix: is what you planactually what you

deliver? International Journal of Radiation Oncology Biology Physics 2009;74(1):304–12.

[21] Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Potter R. Computed tomography versus magnetic resonance imaging-based contouring

in cervical cancer brachytherapy: results of a prospectivetrial and preliminary guidelines for standardized contours. International Journal of

Radiation Oncology Biology Physics 2007;68(2):491–8.

[22] Bondar L, Hoogeman M, Mens JW, Dhawtal G, de Pree I, Ahmad R, et al. Toward an individualized target motion management for IMRT

of cervical cancer based on model-predicted cervix-uterus shape and position. Radiotherapy and Oncology 2011;99(2):240–5.

14



Page 16 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

[23] van der Put RW, Kerkhof EM, Raaymakers BW, Jurgenliemk-Schulz IM, Lagendijk JJ. Contour propagation in MRI-guided radiother-

apy treatment of cervical cancer: the accuracy of rigid, non-rigid and semi-automatic registrations. Physics in Medicineand Biology

2009;54(23):7135–50.

[24] Staring M, van der Heide UA, Klein S, Viergever MA, PluimJP. Registration of cervical MRI using multifeature mutual information. IEEE

Transactions on Medical Imaging 2009;28(9):1412–21.

[25] Lu C, Chelikani S, Jaffray DA, Milosevic MF, Staib LH, Duncan JS. Simultaneous nonrigid registration, segmentation, and tumor detection

in MRI guided cervical cancer radiation therapy. IEEE Transactions on Medical Imaging 2012;31(6):1213–27.

[26] Berendsen FF, van der Heide UA, Langerak TR, Kotte ANTJ,Pluim JPW. Free-form image registration regularized by a statistical shape

model: application to organ segmentation in cervical MR. Computer Vision and Image Understanding 2013;117(9):1119–27.

[27] Ourselin S, Roche A, Subsol G, Pennec X, Ayache N. Reconstructing a 3d structure from serial histological sections.Image and Vision

Computing 2001;19(1-2):25–31.

[28] Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Non-rigid registration using free-form deformations:Application to

breast MR images. IEEE Transactions on Medical Imaging 1999;18(8):712–21.

[29] Maintz JB, Viergever MA. A survey of medical image registration. Medical Image Analysis 1998;2(1):1–36.

[30] Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Transactions on Medical Imaging

2013;32(7):1153–90.

[31] Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3d medical image alignment. Pattern Recognition

1999;32(1):71–86.

[32] Shen KK, Fripp J, Meriaudeau F, Chetelat G, Salvado O, Bourgeat P, et al. Detecting global and local hippocampal shapechanges in

Alzheimer’s disease using statistical shape models. Neuroimage 2012;59(3):2155–66.

[33] Toth R, Tiwari P, Rosen M, Reed G, Kurhanewicz J, Kalyanpur A, et al. A magnetic resonance spectroscopy driven initialization scheme for

active shape model based prostate segmentation. Medical ImageAnalysis 2011;15(2):214–25.

[34] Shen D, Zhan Y, Davatzikos C. Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Transactions

on Medical Imaging 2003;22(4):539–51.

[35] Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic

resonance images of the knee. IEEE Transactions on Medical Imaging 2010;29(1):55–64.

[36] Tsai A, Wells W, Tempany C, Grimson E, Willsky A. Mutual information in coupled multi-shape model for medical image segmentation.

Medical Image Analysis 2004;8(4):429–45.

[37] Heimann T, Meinzer HP. Statistical shape models for 3D medical image segmentation: a review. Medical Image Analysis 2009;13(4):543–63.

[38] Cootes TF, Hill A, Taylor CJ, Haslam J. Use of active shape models for locating structures in medical images. Image VisionComputing

1994;12(6):355–65.
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Table 1: Advantages and disadvantages of the imaging techniques.
Advantages Disadvantages

MRI

Useful in determining volume Expensive
No radiation involved Not portable
Excellent contrast for soft tissues Difficult to implement real time imag-

ing
Allows lesion detection Magnetic bias and artifacts
Staging of cancer possible Limited access
Allows functional imaging No electron density mapping for the tis-

sues

CT
Useful in determining spread of cancer
to bone tissues

Radiation involved

Easy access Not portable
Hounsfield units of tissue have a physi-
cal meaning

Poor soft-tissue contrast

PET could be easily incorporated Difficult to detect lesions
Electron density readily obtained Cancer staging is difficult
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Table 2: Evaluation metrics.
Metric Parameters Equation Used by

C
on

to
ur

Hausdorff distance (HD) Given a set of
finite voxels A =
{

a1,a2, ....ap

}

and

B =
{

b1,b2, ....,bq

}

HD (A, B) = max(h (A, B) ,h (B,A))
where h (A, B) =

maxa∈A (minb∈B ‖a− b‖)

[26]

Mean absolute distance (MAD)
MAD = 1

N

∑N
j=1

∣

∣

∣dj

∣

∣

∣

[22], [24], [25],
[41]

Vo
lu

m
e

Dice similarity coefficient
(DSC)

TP= True positive,
TN = True nega-
tive, FP = False
positive, and FN
= False negative in
voxels

DSC= 2T P
(FP+T P)+(T P+FN)

[24], [25], [26],
[51]

Sensitivity (SN)
S N= T P

T P+FN

[25]

Specificity (SP)
S P= T N

T N+FP

[25]

18



Page 20 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

Table 3: Quantitative evaluations of registration and segmentation methods. Abbreviations DSC, MAD, and HD are explained in Table 2

Reference Segmentation and registra-
tion methods

Auto Performance Validation Inter/Intra CTV definition

Measure Value

M
R

I

Van der
Put [23]

B-spline and landmark-
based registration

Manual placements of land-
marks

CTV median surface distance 3.2 mm 33 patients 129
data sets

Intra GTV, uterus,
parametria, vagina

Staring [24]

B-spline registration Manually cropped CTV DSC 0.86 19 patients × 5
weeks = 95 data
sets

Intra -

CTV MAD 3.5 mm
Bladder DSC 0.81
Bladder MAD 1-2 mm
Rectum DSC 0.77

Lu [25]

Shape prior level set and B-
spline registration

Automatic Bladder DSC 0.88±0.03 6 patients × 6
weeks = 36 data
sets

Inter GTV and uterus

Bladder MAD 1.03±0.16 mm
Bladder HD 1.17±0.32 mm
Bladder sensitivity 0.91±2.1
Bladder specificity 0.91±1.28
Uterus DSC 0.83±0.04
Uterus MAD 1.18±0.24 mm
Tumor DSC 0.82±0.03

Berendsen [26]

Shape constrained B-spline
registration

Manual delineated mask
used

CTV DSC 0.55 17 patients × 5
weeks = 84 data
sets

Inter GTV, cervix,
uterus, parame-
tria, vagina

CTV median DSC 0.57
CTV mean HD 36 mm
CTV median HD 35 mm
Bladder mean DSC 0.67
Bladder median DSC 0.73 mm
Bladder mean HD 20 mm
Bladder median HD 17 mm

C
T

Bondar [41]
Landmark-based symmetric
thin plate spline registration

Manually segmented Bladder landmark distance 3.5±2.4 mm 5 patients × 5
weeks =25 data
sets

Intra Cervix and uterus

Cervix landmark distance 4.62.1 mm

Bondar [51]
Landmark-based symmetric
thin plate spline registration
and bladder CTV regression

Manually segmented CTV MAD 2.2±2.3 mm 13 patients, 102
data sets

Intra Cervix and uterus

CTV DSC 0.85

Langerak [43]

B-spline registration Automatic Bladder HD ≈2 mm 10 patients,
224 treatment
fractions

Inter -

Bladder DSC >0.8
Uterus HD ≈2 mm
Uterus DSC >0.8
Rectum HD ≈2 mm
Rectum DSC >0.8
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Table 4: Potential advantages and disadvantages of the reviewed approaches
Approaches Advantages Disadvantages

M
R

I

Starring [24] Reliable edge and texture feature used for
registration

Difficult to segment images in the advanced
stage of treatment, planning day segmenta-
tion required, may not work for inter-patient
segmentation.

Lu [25] Use of shape model, prior GTV probability
and clustering tissues improve segmentation

Image re-sampling required to create iso-
tropic images. This may affect tumor vol-
ume.

Berendsen [26] Shape constraint present in registration
framework

CT image for corresponding MR is required
for inter patient registration.

C
T

Bondar [41] Inverse consistent symmetric registration
improves registration accuracies

Segmentation of structures of interest neces-
sary

Bondar [51] Use of a linear regression model to predict
cervix and uterus shape with respect to blad-
der volume for a plan of the day strategy

Prior segmentation for structures of interest
necessary
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(a) Axial view (b) Sagittal view (c) Coronal view (d) Dose
color map

(e) Dose volume histogram

Figure 1: Dose plan for tumor-node-metastasis T3bN1M0 (No distant metastasis, with involvement of regional node and fairlylarge tumor) cancer.
Radiation dose received by healthy tissues such as the rectum, bowel and bladder in the vicinity of the cervix can be observed. The dose volume
histogram (DVH) summarizes the dose received by the CTV and thesurrounding tissues. A DVH includes all structures and targets of interest in
the radiotherapy plan, each line plotted a different color representing a different structure. The volume referred to can be a target, an organ nearby
a target or an arbitrary structure.
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Figure 2: CT guided radiation therapy.
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Figure 3: Radiation dose margins. The GTV is the gross tumor volume, CTV is the clinically treated volume, PTV is the planning target volume.
The volume enclosed by an isodose (radiation dose of equal intensity) surface is selected and specified by a radiation oncologist as the treated
volume. The tissue volume receiving a significant dose in relation to normal tissue tolerance is the irradiated volume.
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Figure 4: MRI guided radiation therapy.
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Figure 5: The structures contoured during cervical cancer RT planning and their 3D reconstruction as observed in the saggital view. The structures
are color coded. The clinical target volume (CTV) comprises ofthe GTV, cervix, vagina, parametria and uterus.
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(a) MRI (b) CT

Figure 6: An axial view of an MRI and CT scan of the cervix from the same patient. The improved soft tissue contrast in MRI can beobserved.
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(a) (b) (c) (d) (e)

Figure 7: Computer-aided segmentation and registration challenges in MRI and CT of the cervix. 7(a) Poor soft tissue contrast 7(b) Magnetic bias
in T2 weighted MRI 7(c) An anisotropic MRI sequence - (sagittal view) 7(d) and 7(e) show different soft tissue deformation under variable bladder
filling for the same patient (the red arrow highlights soft tissue deformation).
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Figure 8: B-Spline based registration of the cervix after prior affine registration. Normalized mutual information between the registered image is
maximized.
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Figure 9: A summary of the statistical shape model from Cootes etal. [38]. In the color coded variation in the mean model, red signifies larger
variation and blue and green less variations.
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