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*Highlights (for review)

Highlights

e This paper reviews the current state-of-the-art segmentation and deformable registration
methods applied to cervical cancer adaptive radiation therapy planning.

e Strength and weaknesses of the registration and the segmentation methods are studied and
analysed.

e Use of shape prior constraints can significantly reduce segmentation and registration errors.

e Use of tissue specific classification of tumour may reduce tumour segmentation error.
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Abstract

Objective

Manual contouring and registration for radiotherapy treait planning and online adaptation for cervical cancer ra-
diation therapy in computed tomography (CT) and magnesomance images (MRI) is often necessary. However
manual intervention is time consuming and maffesufrom inter or intra rater variability. In recent years anher of
computer-guided automatic or semi-automatic segmentatid registration methods have been proposed. Segmenta-
tion and registration in CT and MRI for this purpose is a aradling task due to soft tissue deformation, inter-patient
shape and appearance variation and anatomical changetheweurse of treatment. The objective of this work is to
provide a state-of-the-art review of computer-aided meshaeveloped for adaptive treatment planning and radiation
therapy planning for cervical cancer radiation therapy.

Methods

Segmentation and registration methods published with tia @f cervical cancer treatment planning and adaptation
have been identified from the literature (PubMed and Googl®[ar). A comprehensive description of each method
is provided. Similarities and fierences of these methods are highlighted and the strengthseaknesses of these
methods are discussed. A discussion about choice of an@jgimmethod for a given modality is provided.

Results

In the reviewed papers a Dice similarity ¢beient of around 0.85 along with mean absolute surface distah2-4

mm for the clinically treated volume were reported for tfan®f contours from planning day to the treatment day.
Conclusions

Most segmentation and non-rigid registration methods haen primarily designed for adaptive re-planning for the

transfer of contours from planning day to the treatment ddne use of shape priors significantly improved segmen-
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tation and registration accuracy compared to other models.

Keywords: Cervical cancer radiation therapy, B-spline registrataiatistical shape models.

1. Introduction

An estimated 527,000 new cases of cervical cancer weretddteorldwide in 2012. Cervical cancer is the third
most common cancer among women and accounted for over Z6Bdibnated deaths worldwide in the year 2012
[1] and 208 deaths in 2007 in Australia [2]. Factors such &s atage of the cancer, and tumor type determine the
treatment procedure for cervical cancer with the stage séatie being the primary determinant. Radiation therapy
or radiotherapy (RT) is recommended for a large group ofp#di[3]. Primarily RT is indicated for advanced stage
cervical cancers (FIGO stage II-1V) and in patients withliearstage cancers who are not fit enough for surgery.
During RT a high dose of radiation is delivered to the cangstomor while attempting to minimize the dose to the
healthy tissues in the vicinity. The balancing act lies isigeing a treatment plan which maximizes damage to cancer
cells while minimizing the radiation dose delivered to sumding healthy tissues. In Fig. 1 we observe the radiation
dose received by healthy tissues close to the cervix.

Traditionally, in image guided RT (IGRT) treatment plargithe cervix and the tumor, uterus, parametrium,
vagina, bladder, rectum and pelvic bones are contoured imm@ges. Electron density information from the simula-
tion CT scan enables RT dose calculation. The entire framewofcCT guided RT is given in Fig. 2.

The radiation dose is delivered in daily sessions typicalsr five to six weeks to maximize damage to tumor cells
while minimizing the damage to healthy tissues. Factork ssahe definition of the tumor, uncertainties about organ
boundaries, as well as variations between patient setupsgdplanning, treatment and dose delivery, uncertainty
regarding biological response to the radiation dose argdatiement of the beam shaping device during treatment, all
introduce uncertainties in radiation therapy planning.

The gross tumor volume (GTV) delineation is determined fidimical examinations and from the extent of the
tumor visible in images. The GTV is often expanded to encaspagions in which the microscopic cancer cells may
be present, thus defining the clinical target volume (CT\We TTV is expanded further with a margin to compensate
for patient movement and treatment set-up uncertaintieseby defining a planning target volume (PTV). Minimizing
these uncertainties may aid in reducing the radiation vedeby healthy tissues [4]. The GTV, CTV and PTV are
illustrated in Fig. 3.

MRI provides superior soft tissue contrast compared to GT6][5and does not deliver ionizing radiation [7].
Further, MRI might determine physiologic radio-resistargas which then can be counteracted with an escalated dose
of radiation to high risk regions [8]. Delineation of the GBvid CTV from MRI may reduce the uncertainty involved
with organ boundaries and allow a smaller margin to be ussdering the radiation received by the surrounding
healthy tissues [9-11]. In recent times, MRI guided radiatherapies have received considerable research interest

[12]. In particular, the advantages of MRI in image-guidéagative brachytherapy for cervix cancer have been well
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published and are becoming increasingly adopted [13]. Il ilRded radiation therapy planning the MRl and CT
scans are aligned by matching the pelvic bones. The tumtixc®agina, parametrium, uterus, bladder and rectum
are generally contoured on the MRI. Dose calculation antbtlaerapy planning is performed using electron density
information from the CT images. The framework for MRI guidediation therapy planning is given in Fig. 4.

Typically during cervical cancer RT planning the GTV, cetwagina, parametria, uterus, bladder and rectum are
contoured in MRI. A consensus of guidelines for delineatbthe structures and CTV was presented by Lim et al.
[15]. According to Lim et al. [15] the CTV is composed of the G Tervix, vagina, parametria and uterus. Please
refer to [15] for a more comprehensive definition of the conéal structures and the CTV. These structures and their
3D reconstruction as observed in a saggital view are ibitstt in Fig. 5.

In recent years Dowling et al. [12] have developed a MRI atbeatment planning and adaptive radiation therapy
workflow for prostate cancer. The improved soft tissue @sitwith MRI enables more accurate and consistent
segmentation of the prostate and hence estimation of the TH&/approach could also reduce cost of the treatment
and reduce the risk of ionizing radiation exposure for thigepa by eliminating the CT imaging. A substitute CT
image is generated from the MRI of the patient and the segederdntours from MRI [14] are transferred to the
pseudo CT images for treatment planning. The dogferdinces between the pseudo CT and planning CT were
guantified and found to be less than 2%. A similar approackddoeiadopted for cervical cancer treatment.

As observed in Fig. 4, manual segmentations of the GTV, genterus, parametrium, vagina, bladder and the
rectum are necessary in CT or MRI or both for MRI or CT guidedgnning. However manual segmentations of
these structures are time consuming and maiestrom inter observer variabilities [15]. In recent yeargmputer-
aided segmentation methods of the cervix have been reportbd literature. The challenges involved in automatic
cervix segmentation in CT and MRI ardfdirent. In clinical practice, both modalities are activedgd in RT treatment
planning. Some of the features of the two imaging modal@iessummarized in Table 1. In Fig. 6 we observe the
cervix in CT and MRI and the improved soft tissue contrast iRIM

Typically in computer vision and medical imaging the goalrohge segmentation is to partition a digital image
into multiple segments that are more meaningful and easi@nalyze. Several approaches are used including graph-
cuts [16], level sets [17], pattern recognition based apghnes and registration based methods involving atlasés [18

Image registration in computer vision is the process ofesting optimal transformation parameters between
two images to bring them into the same coordinate space. rihsformation parameters are estimated in a process
that involves maximization of an image similarity metrikdinormalized mutual information or normalized cross
correlation between the two images in an energy optimindt@mework.

Computer-guided segmentation of the structures of intémédR| and CT is a challenging task. Poor soft tissue
contrast in CT images reduces the accuracy of methods wpodkiredge and contrast information. Similarly magnetic
bias, anisotropic MRI sequencesttdrent bladder and rectal fillings, soft tissue deformati@tient and organ move-
ment and tumor changes over the course of treatment cane¢hedfectiveness of computer-aided segmentation
and registration of the cervix. Some of these challenge8lasérated in Fig. 7.
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Further challenges in adaptive cervix RT planning involiinal motion of the organs at risk during treatment.
Chan et al. [19] recorded large inter-scan movement of the tB@t could be only partially explained by bladder and
rectal filling. The authors suggest the use of adaptive aefphg to compensate for internal organ movement between
the scans. A generous population-based CTV to PTV marggujisired to account for the geometrical uncertainties,
resulting in the irradiation of healthy tissues. Estimgtihe tumor contour in CT images isfliicult and results in a
significant overestimation of the tumor width, thereby tesg in a significant increase in dose delivered to the CTV,
as compared to MRI guided contouring [20, 21]. Healthy #sstadiation could be potentially minimized by using
computer-aided segmentation and registration methodisgitreatment planning and online image guidance systems
[22].

This paper presents a summary of segmentation and regiatragthods that may be applied to online treatment
planning and RT planning for cervical cancer radiationdlpgr Diferent approaches developed for segmentation and
registration for adaptive treatment planning are detadlied their similarities, dierences, strengths and weaknesses
are explained to enable the reader to make a knowledgeatikiatein the selection of one method over the other.
The outline of the paper is as follows: The state-of-thecamputer-aided segmentation and registration procedures
for adaptive treatment planning are presented in sectid@ulitative evaluations of the methods as reported in the

literature are presented in section 3. In section 4 we pteseomparative discussion.

2. Cervix segmentation and registration methods

As illustrated in section 1 the two imaging modalities prasdifferent challenges for cervix segmentation and

registration. The methods developed for MRI are describystiféillowed by those for CT images.

2.1. MRI

Computer-aided segmentation of the cervix in MRI is a reédyi new domain. From an exhaustive search of the
literature using PubMed and Google Scholar the four papfevam der Put et al. [23], Staring et al. [24], Lu et al.
[25] and Berendsen et al. [26] were selected. Most of thedhade are validated with a large number of datasets and
have shown promising results in a clinical setting. The kaghsearch of “cervix segmentation’ returned 46 papers in
PubMed and 21,000 results in Google Scholar. The keywondixcesgistration” returned 200 papers in PubMed and
over 20,000 hits in Google Scholar. Most papers were exdudewever, as they were not related to RT treatment
planning in a clinical setting.

Non-rigid registration is often used for segmentation efdhgans of interest in medical imaging [18, 27, 28]. Ina
registration framework the objective function is to maximthe similarity between two images. The sum of squared
distance, normalized cross-correlation and normalizetuatinformation are frequently used as similarity metrics
and used in a optimization framework to achieve the objectivnon-linear mapping from the moving image to the
target image is often achieved with mathematical functiockiding B-spline and thin plate splines. An extensive
study of medical image registration methods may be fountiése articles [29, 30].

4
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B-spline based non-rigid registration is often used foistegtion and segmentation of the cervix [23, 24, 26]. To
formalize a typical B-spline based image registration withhmalized mutual information as a similarity metric, let
Q={Xy,20<x< X 0=<y<Y0<z< Z} represent the image domain. The transformation betweemtiving
and fixed images is given By : (x,y,2) — (X,VY',Z), where any pointX, y, ) of the moving image is mapped onto its
corresponding point(, Yy, Z) on the fixed image. Given a mesh of control points on the ngiritage with a control
point defined a®; jx with uniform spacing o6 mm, the nonrigid transformatichis defined by B-spline functions as,

3

3 3
TXY:2 =D 3" B(WBHV)BW)ia jrmken (1)

1=0 m=0 n=0
wherei = |x/6] -1, = |ly/6] - Lk =12/6] — L, u = x/§ — [X/6],v=Y/6 — |y/6] andw = z/§ — | z/6] is the floor
function andB, represents thE" basis function of the cubic B-spline functions such #Bgu) = (1 — u®)/6, By(u) =
(3u® — 6U? + 4)/6, Bo(u) = (—=3u® + 3u? + 3u + 1)/6 andBs(u) = u®/6.

The resulting coordinate transformatidnis applied to the training dataset latiglto produce the resulting label.
Normalized mutual information (NMI) [30] as a similarity tnie is maximized to achieve the registration. The NMI
is an information theoretic measure that tries to reducgainéentropy of the images and is given by,

H(M) + H(F)

NMI = Lsimilarity = H(M, F)

)

wherelsimiarity IS the similarity measure for B-splines registration tisatiaximized in the procesbl(M) andH(F)
are the marginal entropies of the moving) and fixed £) images respectively, antd(M, F) is the joint entropy of

the imagesH(M, F) can be written using probability theory as,

H(M, F) = > p(m, f)log([p(m, )]) (3)

mf
where,p(m, ) is the joint probability distribution of the images obtaéhfrom their joint histogram. The registration
framework involving B-spline transformation and mutudbirmation as a similarity metric is illustrated in Fig. 8.

Van der Put et al. [23] investigated the accuracies of rigimh-rigid and a semi-automatic registration of T2
weighted MR images for inter-fractional contour propagatior external beam adaptive RT for cervical cancer. The
scans were acquired using a 1.5 T Philips Interra using aeghasay body coil with 4.5 mm slice thickness and
0.5 mm in plane resolution. Mutual information [31] was useda similarity metric for registration between the
bones. A B-spline based registration transformation wasl fier the non-rigid methods. A semi-automatic point set
registration was performed between manually selectedvanks. The authors concluded that non-rigid registration
performed better than rigid registration and the combdamatif the semi-automatic and non-rigid registration demon-
strated improved performance compared to a completelyraatio method. The registration time requirement for the
procedure was within acceptable limits.

Similar to the framework used by Van der Put et al., Staringlef24] used mutual information as a similarity

metric and a B-spline transformation to register the plagrday MRI to the inter-fractional images for adaptive
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radiotherapy to segment the CTV, bladder and rectum. The dighted MR data were acquired with a Philips 1.5
T Intera scanner with voxel dimension of 0.6&5625<4.5 mm. Unlike Van der Put et al., Starring et al. proposed
to use rotation and translation invariant reliable imageuees during registration to reduce théeet of imaging
artifacts, magnetic bias, and noise in the image. Multbhgion Gaussian derivatives of the intensities along with
spatial derivatives were used to extract reliable edge extdrie information of the CTV, bladder and rectum. Mutual
information was computed using image features to reduceffbet of noise and improve registration accuracy. The
registration time for the procedure was around 31 minutes.

In recent years hybrid methods that combine registratigetbanethods with prior shape information of the
CTV, bladder and rectum have been adopted for cervix segtien{25, 26]. Prior shape information obtained from
segmented organs are often used to build a shape model fizahieadage segmentation and analysis for a wide variety
of structures [14, 32—36]. An extensive review of shape rtsajgplied to medical image segmentation and registration
may be found in this article [37]. Primarily twofiierent shape models are used in cervix segmenfetigistration
framework: the active shape model or statistical shape hitataework of Cootes et al. [38] and the kernel density
estimation of Creemers et al. [39].

The Cootes et al. shape model is characterized by a mean ahdpariation of the mean shape in a Gaussian
space [38]. The mean shape and Gaussian space are estimatetid segmented contours of the organ of interest.
The shape model is built from surface meshes from the trgiiniages. The point distribution model [38] is built from
the aligned 3D points of the surface meshes. Principal compioanalysis (PCA) of the aligned point distribution

model (PDMs) identifies the principal modes of shape vanmtT he statistical shape model is given by,
S=S5+ Dy (4)

wheres denotes the mean shapk; contains the first p eigenvectors (obtained from 98% of tedisiations) of the
estimated joint dispersion matrix of shape, @depresent the corresponding shape eigenvalues. A penaltyidn
depending on the value of the Mahalanobis distance betvreanéan mesh with principal modes of variations and the
reference mesh is introduced to prevent deformations vidigrent from the mean shape. The approach is illustrated
with a shape model for the bladder in Fig. 9.

In the kernel density estimation approach, training dateggted from manual segmentations are rigidly aligned
to minimize pose dferences. Each object (e.g., the bladder or the uterus) isdaeld as the zero level set given
by W1, Vo, ...., P, to achieve a non-parametric density estimation of the sekppee. To formalize, the kernel density

estimation of the shape space is given by,

n

P(¥s,) = = 3" KID(¥s,, ¥i).0) ©

i=1

whereD(.) is the distance metric in implicit shape space kfitrr) denotes a Gaussian kernel with kernel sizée.,

1 —X2
k(x, o) = S exp; ., (6)
6
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The distance between the evolving level set and the kermslityeestimation of the shape space is minimized to
impose shape restriction. Lu et al. [25] proposed autonsa&ignentation, tumor detection and non-rigid registration
in T2 weighted images to aid IGRT. The T2 weighted fast sphogecho timgepetition time 10600 ms) MR data
were acquired with a GE Excite 1.5 T scanner with image reésolwf 0.625¢0.625<4.5 mm. Manually segmented
contours of the organs were rigidly registered to a commamé to minimize pose variations. The mean shape and its
variations were estimated from registered contours usiagtodel of Creemers et al. [39]. A B-spline based non-rigid
registration was employed for the transfer of the planniag cbntours on the treatment day images. The registration
was constrained by the estimated shape model. Large dmgatif the organs of interest from their mean shape
were restricted to lie within the estimated variations tpase shape constraints. The intensity distribution ingide
CTV was modeled as a multiple Gaussian distribution. Ones&iaun distribution represented the tumor and the other
represented the healthy tissues. The probability of turbtained in this framework was used to estimate the GTV
and constrain the B-spline based registration. The entoegss took around 30 minutes with 8 core 2.83GHz Intel
Xeon CPU, 16 Gb of RAM in Matlab.

A shape constraint was used inside a registration frametpiBerendsen et al. [26]. A shape constrained B-
spline based non-rigid registration was used to segmenltdzgler and the CTV to aid adaptive re-planning. The
T2 weighted MR data were acquired with a Philips 1.5 T Inteanser with voxel dimension of 0.68.625<4.5
mm. Unlike [23] and [24], Berendsen et al. performed an ipitient registration to segment the CTV and the
bladder on the treatment day. Inter-patient non-rigid CTToregistration was followed by intra-patient CT to MR
rigid registration, to achieve an inter-patient MRI reaibn. The mean shape and variation of the shape estimated
from the segmented contours was introduced as a penaltyposenshape constraint during registration. The entire

registration with the shape model took 3 minutes in a 2.83 Gétktop.

22. CT

Traditionally CT is used in a clinical setting to contour @8&V and the PTV for RT planning. The work flow
of CT based planning is illustrated in Fig. 2. The manuallgmented CTV, bladder, rectum and bones are gener-
ally transformed to the treatment images with non-rigidstgtions to account for organ deformations in adaptive
radiotherapy.

Symmetry and inverse consistency in the estimated imagamént is extremely important in medical appli-
cations. In general, registration techniques that do nigtae explicit correspondences benefit from the inverse
consistency constraint. This is because these technidters employ maximizatigfminimization of a similarity
measure on image features like intensity, object boundashape which has large local maxifménima due to cor-
respondence ambiguity. Therefore &ebmorphic (topology preserving) registration without averse consistency
constraint may not provide a one-to-one, onto transfoinaiie. the inverse of the forward transformation may not
provide an exact backward transformation. In mathematiaiffeomorphism is an isomorphism of smooth mani-

folds. It is an invertible function that maps onefdrentiable manifold to another, such that both the funcéind
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its inverse are smooth. Christensen et al.[40] proposdadithigmmetric and inverse-consistent transformation would
ensure a dfeomorphic, one-to-one and onto transformation that isicoatis and dierentiable. To overcome the
correspondence ambiguities, [40] proposed a joint esiimaf the forward [(.)) and backwardd(.)) transformations
between the moving\) and fixed £) images by minimizing or maximizing a cost function of siamity measures.
However, the joint estimation df(.) andg(.) does not guarantee that they the are inverse of each othee, the
contributions of the transformations in the cost functiomiadependent. Therefore in order to couple the estimation
of h(.) andg(.) an inverse consistency constraint is imposed that mimisiike error between(.) andg(.), g(.) and
h=1(.) respectively. The need to use the inverse consistencytraamshowever, depends on the application and on
the correspondence model used for registration. When lagation of deformable organs occurs in clinical data,
symmetric and inverse-consistent registration methoogige more accurate transformations.

Bondar et al. [41] proposed to use a landmark guided thimsfased symmetric non-rigid registration to register
organs of interest such as the bladder. Two variants of thistration algorithm were developed; symmetric and
asymmetric. In the asymmetric version registration wassici@red in one direction, i.e. from planning CT contours
to the treatment day contours, while the symmetric vergiatutled the inverse consistency constraint, i.e. from the
planning CT to the treatment day and from the treatment dalyeglanning CT contours. As expected, the inverse-
consistent method performed better in the presence of Bef@mations of the bladder and the organs of interest.
The surface registration time for the bladder was 151 sexand for cervix and uterus was 35 seconds.

Later Bondar et al. [22] proposed to predict the shape angdk#ion of the cervix and uterus as a function of
the bladder volume to aid in adaptive re-planning. CT image® acquired with five dierent bladder volumes. First
with an empty bladder, then after drinking 500 ml and 300 mivafer consecutively; and finally after the interval
of 20, 40 and 60 minutes with natural filling. The surfaceshs brgans of interest were reconstructed from 3D
manual segmentations. A linear regression was formul&igtdpredicted the coordinate positions of the cervix and
the uterus from the bladder volumes after registration eftteatment image to the planning day CT. The regression
based approach facilitated the selection of the most pteltiormation of the cervix and the uterus depending on
the bladder volume. A symmetric registration [41] betwdenpredicted volume and the treatment day CT was finally
performed for adaptive re-planning.

In recent years a plan-of-the-day strategy has been adémtddst online adaptive radiation therapy [42-44].
Bondar et al. [42] used non rigid registration of [41] anddicgon of the position of the cervix and uterus from
[22] to design an online adaptive individualized treatm@an. The individualized plans were generated by using a
motion model [22] from two pre-treatment CT scans with a &mtl empty bladder. The plan-of-the-day was selected
automatically from the library based on bladder volume. @arad to the population-based margins the individualized
plan reduced the CTV-to-PTV volume by 48%#%6 sparing the organs at risk. Langerak et al. [43] proposecs¢
two plans, one with full bladder and the other with empty diag for automatic plan selection on treatment day.
Multi-atlas based segmentation in cone beam CT (CBCT) images performed to segment the bladder, rectum and
the uterus. The plan with a full bladder was selected if tHame of the bladder was larger than the average of the
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full and the empty bladder, while the empty bladder plan vedscted otherwise. Heijkoop et al. [44] proposed to use
CBCT scans for selection of the most appropriate plan froirardy containing either one or two IMRT plans and a
motion robust 3DCRT backup plan. Two pre-treatment scatisavi empty and a full bladder were acquired, aligned
with respect to the bones and the bladder. The cervix-uteliyss were manually delineated. Non-rigid registration
[41] was used to register the bladder and [22] was used tdqrid internal target volume. For patients with large
cervix-uterus motion, two extra models that predictedrimabtarget volume (MPITV) were used for plan generation.
Cervix-uterus shape models for empty-to-half-full bladded half-full-to-full bladder were used for MPITV. A plan
was selected online depending on the position of the markgrkanted in the vagina fornix and depending on the
position of the uterus inside the PTV.

The dfectiveness of automated re-planning to compensate fafriatéion organ motion was studied by [45, 47—
49]. Stewart et al. [45] study explored the limits of a highyaptive small margin treatment scenario to accommodate
internal organ motion. The dosimetric consequences ofomgd tumor motion were modeled using a combination of
finite element modeling based deformable registration¢Bed al.[46]) and fractional dose accumulation techniques
The dosimetric impact of interfraction organ and targetiorotvas compared for two hypothetical treatment scenarios:
a 3-mm margin plan without re-planning; and an automatiglag-performed on the updated weekly patient geometry.
It was concluded that a weekly re-planning strategy catitate PTV margin reduction by improving target coverage
and sparing organs at risk.

Two adaptive re-planning strategies were proposed by Liml.ef47]. Deformable image registration (Brock
et al.[46]) was used to model the accumulated dose for twpta@are-planning scenarios. In anatomical adaptive
intensity modulated radiation therapy (A-IMRT), a singéeplan was created halfway through the treatment for every
patient in an &ort to correct minor target underdosing and reduce norrssiié dose. In dosimetric adaptive intensity
modulated radiation therapy (D-IMRT) re-plans were créately for patients when the final target dose was predicted
to be low. Both methods improved accumulated target dosjnuetmpared to no re-planning. For 30 patients, the
clinically relevant target dose threshold failed for 8 pats with 3 mm margin without re-planning. AIMRT failed in
3 patients and reduced doses delivered to organs at risksazechto DIMRT.

Oh et al. [48] proposed to usdtdine re-planning to improve the quality of radiation deliy afected by sub-
stantial organ motion and tumor shrinkage during the coof$€T. In an di-line re-planning system, the errors on a
certain day are corrected in later treatment fractions. methods of image guidance, bone to bone and soft tissue to
dose matrix were compared with three frequencieditihe re-planning: none, single and weekly. In a bone to bone
matching, pre-treatment and all weekly MRI's were regeteto the planning CT images at the pelvic bone, based
on correlation maximization. In soft tissue to dose disttitn registration, the CTV and the dose voxels were bina-
rized and registered based on correlation maximizationak found that filine re-planning significantly improved
target coverage and reduced dosage to organs at risk, apacidifficult cases. Kerkhof et al. [49] suggested an
online planning adaptation by applying a primary and notitping target volume margin of 4 mm. Online intensity
modulated radiation therapy (IMRT) compared to pre-IMRdueed the volume of healthy tissue irradiated.
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Christensen et al. [50] use a deformable registration tstegCT serial examinations into a single frame of
reference in order to compute cumulative dose calculatiomsg treatment with CT compatible intracavitary appli-
cators. Each serial examination was rigidly registereth wéspect to the bone followed by a deformable registration
that followed a Navier-Stokes viscous fluid flow equationn@ared to the bony landmark-based alignment a better
overlap was observed.

Recently Bondar et al. [51] benchmarked several stratégiescurate registration and suggested the use of shape
based registration and the use of bladder to cervix and sirape regression to improve accuracy in the absence of
a fiducial in the fornices of the vagina. The average shapeshraddhe cervix and uterus was created by registration
of the pre-treatment delineated scans with the symmefgistration method proposed in [41]. The shape model was
deformed towards an attractor point identified from orgaectfr image features [52]. In the presence of a fiducial
in the fornices of the vagina, improved registration accunaas observed by translation of an average cervix-uterus
shape constrained on the fiducials. However identificatfathe fiducials on the planning and the treatment day is

necessary for the registration.

3. Validation and qualitative evaluations

Table 2 presents the most commonly used evaluation metricefermining the accuracies of cervix segmentation
and registration. Performance is evaluated by compariagtitput of the segmentatioagistration method with the
gold standard generated from manual segmentation by amiemped radiation therapist or radiation oncologist. For
guantitative comparison the contours or surfaces from tethad are overlaid along with the manual segmentations
or registrations. In quantitative evaluation a numeriedbe of either the overlap or the contour distance is present
The major contour and volume based quantitative error osetiie presented in Table 2.

A quantitative evaluation of the fierent methods developed idfitiult in the absence of public datasets, software
and standardized evaluation metrics. Furthermore a defpsgameter tuning is necessary for all methods developed,
which varies depending on the dataset. Nevertheless, mdraoverall qualitative estimate of the performance of the

methods in the literature we present the reported resuftalite 3. The index of the table is expanded below.

e The name of the first author has been used as a reference afibe p

The segmentation and registration method shows the cotigmabmethod(s) used in the algorithm.

The automation (Auto) column specifies the degree of mamtdaction (if any) that was necessary.

The performance columns gives the measures and the values.

The validation column gives the number of datasets that weed to validate each algorithm.

Registration performed between the scans of the same patigiven by intra in the Intérintra column. The
primary goal of intra patient registration is the transfécontours and plans from planning day to treatment
10
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day for adaptive re-planning. Registration performed i purpose of automatic segmentation of organs of

interest in the planning GMRI of a new patient is given by inter in the Inténtra column.

e The CTV column describes how the CTV was defined for each papgindicates no CTV definition was

available.

3.1. Discussion

The cervix segmentation and registration methods have peerarily developed to expedite radiation therapy
planning. The principal aim of these methods is to segmenGthy, CTV and PTV in treatment images, or to transfer
the planning day contour to a treatment day image for adapdigiotherapy. The methods discussed in this paper are
dependent on non-rigid registration for the transfer ofglaaning day plan to the treatment day images for adaptive
re-planning [23, 24, 26, 25]. The methods that perform agnisity based non-rigid registration [24, 26, 25, 43] could
be used to segment structures of interest in a new MRI. Indlae future, a pipeline of MR alone treatment planning
[12] may be adopted for radiotherapy planning for the cervixis would eliminate the need for CT image acquisition
during radiotherapy planning.

For adaptive re-planning two fiiérent kinds of non-rigid registrations are being used. Wileme methods [24,

26, 25, 43] used intensity based non-rigid registratiohers [41] used a structure based non-rigid approach for
registering organs of interest. One advantage of Bondal ¢#4] is that the optimization function minimizes the
distance between two structures and theoretically thifiatkivould be more accurate compared to an intensity based
registration. However the minimization of surface basetiadice requires the structures to be segmented, a priori.

Different variants of adaptive re-planning have been suggistedent years [45, 42—44, 47, 48]. These strategies
could be broadly categorized into two groups: a regressiaseth approaches [42—44]; and margin based approaches
[45, 47, 48]. Computational speed during treatment is a nzajeantage of the regression based approaches. However
several plans for the same patients have to be credtiidecto create a plan dictionary for selectionffiide re-
planning is necessary for margin based approaches [45847Ithas been demonstrated however, margin based or
regression based re-planning improves sparing of organiskat

The registration methods used significantlffeli from each other from a theoretical perspective. Intgrmsed
registration methods like B-spline [18] and landmark-lossgistration using thin plate splines are also used with
segmented images [41]. While in intensity based registratiatual information between the two images is used as a
similarity metric, in landmark-based registration thestesquares distance between two meshes is minimized.

Different strategies have been adopted to improve accuracieimsity based B-spline registration methods. Star-
ing et al. [24] adopted a robust feature based non-rigidstesgion with mutual information as the similarity metric
in MRI. The robust features comprised translational andtratal invariant spatial derivatives in MRI. These robust
features improve the median DSC of the bladder from 0.75&& and for the rectum from 0.76 to 0.77. For the

bladder, the registration error was reduced from 2-3 mm 2onim. In contrast Lu et al. [25] and Berendsen et al.
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[26] adopted a shape constrained non-rigid registratiompyove accuracy in MRI. Berendsen et al. [26] improved
DSC for the CTV from 0.43 to 0.57 and DSC for the bladder impobfrom 0.62 to 0.73 with a shape prior constraint
in registration. Lu et al. [25] found that a shape and intigngiior levelset model significantly improved the bladder
DSC from 0.62 for to 0.88 and the uterus DSC from 0.53 to 0.8&mcompared to the intensity only prior levelset
model of Chan and Vese [54].

It has been observed that shape feature based non-rig&lregigin improves results compared to intensity based
non-rigid registration [24]. The use of rotation and traisin invariant robust edge based features in the computati
of mutual information significantly improves registratianocuracy compared to raw intensities. This is because raw
intensities are often corrupted by magnetic bias, and intagrtifacts. Therefore these edge features fiexive in
the extraction of underlying image textures and reliablgesidformation [33].

The use of a shape model in the later part of the treatmenteeldsegmentation errors due to ambiguous organ
boundaries, as shown by both Lu et al. [25] and Berendsen @Ilwho used shape constraints in their registration
frameworks. The shape constraints used however significdiffered from one another. While Berendsen et al.
used a classical statistical shape model as proposed bg£ebal. [38], Lu et al. used a more recent kernel density
estimation of shape representation as proposed by Cretrar{&9].

In the later stages of the treatment delivery the GTV and th¥<are often severely deformed and more so-
phisticated approaches are needed to improve accuraguel@assification as proposed by Staring et al. [24] was
adopted by Lu et al. [25]. In this work, a Bayesian estimat¢hefvoxel labels significantly reduced the risk of
mis-classification of healthy tissue. When introduced inrdggstration framework, the prior probability of the GTV
improved segmentation accuracies in MRI. Lu et al. [25] ioved GTV segmentation accuracy from a DSC of 0.16
to 0.80 in the final week of treatment.

Bondar et al. [41] used a symmetric registration betweercéneix, uterus and bladder surfaces obtained from
manual segmentation to compensate for large complex daf@ns of the structures in CT images. Use of symmetric
inverse-consistent registration produced a smooth deftiom field and improved registration accuracy compared to
a non-symmetric version of the algorithm. Residual errorgtie landmarks were reduced from 20.7 mm to 3.5 mm
for the bladder with symmetric registration compared to-sgmmetric version.

The primary advantages and disadvantages of the method&varein Table 4.

3.2. Choosing a segmentation and a registration method

A comparison of the performance of each method is present&alile 3. For a fair comparison all methods need
to be validated on the same dataset with exactly the samatiefifor the CTV. The CTV definition however varied
from one paper to the other. The CTV was not defined by Stattirad, §24]; for Lu et al. [25] only the GTV and
uterus were contoured, Berendsen et al.’s [26] CTV comgriie GTV, cervix, uterus, parametria and vagina; for

Van der Put et al. [23] the CTV was composed of the GTV, utquasgametria and vagina. For Bondar et al. [51] the
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cervix and the uterus were used to define the CTV. In such ad/idefinition of the CTV, the performance evaluation
of segmentation and registration methods becontéisult from a clinical perspective.

The choice of a particular segmentation method depends tifgoimaging modality, the clinical objective and
computational time required by the process. The use of sbaps&raints in the segmentation framework improves
segmentation accuracy in MRI as demonstrated by [25]. Eyrthe use of the prior probability of the GTV and tissue
clustering may improve the segmentation accuracy of the.@h¥ linear relationship between the bladder and the
CTV was demonstrated by [22]. The use of predictive moddling plan-of-the-day strategy aided online adaptive
radiation therapy [42].

Considering the deformable nature of the organs of intexedtthe potential radical change of shape over the
course of treatment it would beffitult to achieve accurate segmentation without incorpogashape information
into the model. Furthermore, the use of appearance infeomalong with edge information detected at multiple
scales would provide stability for such models. Shape ampda@@nce spaces are often considered to be Gaussian
and large scale deviations from the mean shape and appeamaael would produce inaccurate segmentations.
Hence it would be useful to consider mixture of Gaussian rsole both shape and appearance spaces to improve
on accuracy. A tissue classification strategy would be extg important, especially in the advanced stage of the

treatment to identify the GTV.

4. Conclusions

In clinical practice, both CT and MRI guided radiation th@ralanning are performed. Tissue electron density
obtained directly from a planning CT is used for dose caliutain radiation therapy. MRI with better soft tissue
contrast could significantly improve cervical cancer tneat by ensuring improved organ contours. However, the
success of the procedure is dependent on the automated sggarentation aridr registration algorithm. Further,
registration between planning day and treatment day imag®sbe necessary for online adaptation of treatment
planning for cervical cancer treatment. This paper hasepttes the currrent state-of-the-art in segmentation and
registration methods developed for adaptive cervical eatreatment planning ayat radiation therapy planning. We
have highlighted the similarities, flerences, strengths, and weaknesses of these methods iotheaeader to make

a knowledgeable decision in selecting one method over ther.ot
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Table 1: Advantages and disadvantages of the imaging tesbsiq

[ Advantages

[ Disadvantages ]

Useful in determining volume
No radiation involved

Expensive
Not portable

MRI | Excellent contrast for soft tissues Difficult to implement real time imag:
ing
Allows lesion detection Magnetic bias and artifacts
Staging of cancer possible Limited access
Allows functional imaging No electron density mapping for the tig
sues
cT Useful in determining spread of cancerRadiation involved

to bone tissues
Easy access
Hounsfield units of tissue have a phys
cal meaning

PET could be easily incorporated
Electron density readily obtained

Not portable
i-Poor soft-tissue contrast

Difficult to detect lesions
Cancer staging is flicult

D
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Table 2: Evaluation metrics.

[ Metric [

\olume

Parameters

| Equation

| Used by

Contour

Hausdoff distance (HD)

Given a set of

HD (A, B) = max(h(A, B),N(B,A))

finite voxels A = | where h(A, B) =
{al,az, ....ap} and | maxgea (Minyeg ||a— bl)
B = {by, by, ...., b}

(26]

Mean absolute distance (MAD)

MAD = £ 3, |dj|

[22], [24], [25],
[41]

Dice codficient

(DSC)

similarity

Sensitivity (SN)

Specificity (SP)

TP = True positive,

[24], [25], [26],

— 2TP
TN = True nega- DSC= (FP+TP)+(TP+FN) [51]
tive, FP = False
positive, and FN
= False negative in
voxels
(25]
SN= TPT+F|;N
(25]
SP= Tl:lr+NFP
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MRI

CcT

Table 3: Quantitative evaluations of registration and segai®n methods. Abbreviations DSC, MAD, and HD are explaiimeTable 2

Reference Segmentation and registra{ Auto Performance Validation Inter/Intra CTV definition
tion methods
Measure [ Value
Van der B-spline and landmark- | Manual placements of land-|| CTV median surface distance 3.2mm 33 patients 129 | Intra GTV, uterus,
Put [23] based registration marks data sets parametria, vagina
B-spline registration Manually cropped CTVDSC 0.86 19 patientsx 5 Intra -
weeks = 95 data
Staring [24] sets
CTV MAD 3.5mm
Bladder DSC 0.81
Bladder MAD 1-2mm
Rectum DSC 0.77
Shape prior level set and B-| Automatic Bladder DSC 0.88£0.03 6 patients x 6 Inter GTV and uterus
spline registration weeks = 36 data
sets
Lu [25] Bladder MAD 1.03:0.16 mm
Bladder HD 1.17+0.32 mm
Bladder sensitivity 0.91+2.1
Bladder specificity 0.91+1.28
Uterus DSC 0.83:0.04
Uterus MAD 1.18:0.24 mm
Tumor DSC 0.82+:0.03
Shape constrained B-splinf Manual delineated mask|[ CTV DSC 0.55 17 patientsx 5 Inter GTV, cervix,
registration used weeks = 84 data uterus, parame-
sets tria, vagina
CTV median DSC 057
Berendsen [26] CTV mean HD 36 mm
CTV median HD 35mm
Bladder mean DSC 0.67
Bladder median DSC 0.73mm
Bladder mean HD 20 mm
Bladder median HD 17 mm
Landmark-based symmetric| Manually segmented Bladder landmark distance 3.5£2.4 mm 5 patients x 5 Intra Cervix and uterus
Bondar [41] N N Y N
thin plate spline registration weeks =25 data
sets
Cervix landmark distance 4.62.1 mm
Landmark-based symmetric| Manually segmented CTV MAD 2.2+2.3mm 13 patients, 102 [ Intra Cervix and uterus
Bondar [51] . y f "
thin plate spline registration data sets
and bladder CTV regression
CTV DSC 0.85
B-spline registration Automatic Bladder HD ~2 mm 10 patients, Inter -
224 treatment
fractions
Langerak [43] Bladder DSC >08
Uterus HD ~2mm
Uterus DSC >0.8
Rectum HD ~2 mm
Rectum DSC >0.8
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Table 4: Potential advantages and disadvantages of thewegiapproaches

[ Approaches

MRI

CT

| Advantages

[ Disadvantages ]

Starring [24]

Reliable edge and texture feature used
registration

obDifficult to segment images in the advanced

tion required, may not work for inter-patier
segmentation.

—

Lu [25]

and clustering tissues improve segmentati

Use of shape model, prior GTV probabilit}

Image re-sampling required to create iso
priropic images. This mayfgect tumor vol-
ume.

Berendsen [26]

Shape constraint present in registrati
framework

orCT image for corresponding MR is required
for inter patient registration.

Bondar [41] Inverse consistent symmetric registratipnSegmentation of structures of interest neces-
improves registration accuracies sary
Bondar [51] Use of a linear regression model to predictPrior segmentation for structures of intergst

cervix and uterus shape with respect to blg

dnecessary

der volume for a plan of the day strategy

20
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(a) Axial view (b) Sagittal view (c) Coronal view (d) Dose
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(e) Dose volume histogram
Figure 1: Dose plan for tumor-node-metastasis T3bN1MO (N@udisnetastasis, with involvement of regional node and féarge tumor) cancer.
Radiation dose received by healthy tissues such as themebtwel and bladder in the vicinity of the cervix can be obedrvThe dose volume

histogram (DVH) summarizes the dose received by the CTV anduheunding tissues. A DVH includes all structures anddaergf interest in

the radiotherapy plan, each line plotted &etient color representing affirent structure. The volume referred to can be a target, @morgarby
a target or an arbitrary structure.
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Figure 2: CT guided radiation therapy.
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Figure 3: Radiation dose margins. The GTV is the gross tumamve| CTV is the clinically treated volume, PTV is the planniagget volume.
The volume enclosed by an isodose (radiation dose of equalsity) surface is selected and specified by a radiationlogisv as the treated
volume. The tissue volume receiving a significant dose inicgldb normal tissue tolerance is the irradiated volume.
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Figure 4: MRI guided radiation therapy.
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Parametrium
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Cervix

GTV

Uterus

Rectum

Bladder

Figure 5: The structures contoured during cervical can@eplRnning and their 3D reconstruction as observed in thgitlgiew. The structures
are color coded. The clinical target volume (CTV) comprisethefGTV, cervix, vagina, parametria and uterus.
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@ MRI (b) CT

Figure 6: An axial view of an MRI and CT scan of the cervix frame same patient. The improved soft tissue contrast in MRI carbberved.
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@ (b)

Figure 7: Computer-aided segmentation and registratiortectgds in MRI and CT of the cervix. 7(a) Poor soft tissue amstt7 (b) Magnetic bias
in T2 weighted MRI 7(c) An anisotropic MRI sequence - (sagitiew) 7(d) and 7(e) show flerent soft tissue deformation under variable bladder
filling for the same patient (the red arrow highlights sofstis deformation).
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Figure 8: B-Spline based registration of the cervix aftéompaffine registration. Normalized mutual information between tigistered image is

maximized.
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\ Training images mesh

Affine registration

Aligned points

PCA

Eigenvalues

Mean model Mean model variations

Figure 9: A summary of the statistical shape model from Cootes §88]. In the color coded variation in the mean model, reaigigs larger

variation and blue and green less variations.
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