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Nuclear factor one X (NFIX) has been shown to play a pivotal role during the

development of many regions of the brain, including the neocortex, the hippocampus

and the cerebellum. Mechanistically, NFIX has been shown to promote neural stem cell

differentiation through the activation of astrocyte-specific genes and via the repression

of genes central to progenitor cell self-renewal. Interestingly, mice lacking Nfix also

exhibit other phenotypes with respect to development of the central nervous system,

and whose underlying causes have yet to be determined. Here we examine one of the

phenotypes displayed by Nfix�/� mice, namely hydrocephalus. Through the examina-

tion of embryonic and postnatal Nfix�/� mice we reveal that hydrocephalus is first seen

at around postnatal day (P) 10 in mice lacking Nfix, and is fully penetrant by P20.

Furthermore, we examined the subcommissural organ (SCO), the Sylvian aqueduct and

the ependymal layer of the lateral ventricles, regions that when malformed and

functionally perturbed have previously been implicated in the development of hydro-

cephalus. SOX3 is a factor known to regulate SCO development. Although we revealed

that NFIX could repress Sox3-promoter-driven transcriptional activity in vitro, SOX3

expression within the SCO was normal within Nfix�/� mice, and Nfix mutant mice

showed no abnormalities in the structure or function of the SCO. Moreover, these

mutant mice exhibited no overt blockage of the Sylvian aqueduct. However, the
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ependymal layer of the lateral ventricles was frequently absent in Nfix�/� mice,

suggesting that this phenotype may underlie the development of hydrocephalus within

these knockout mice.

& 2015 Published by Elsevier B.V.

1. Introduction

Hydrocephalus is a common neurological disorder with an
estimated incidence of 1–3 cases per 1000 live births (Del
Bigio, 2010). Hydrocephalus arises when cerebrospinal fluid
(CSF) accumulates abnormally within the ventricular system,
usually due to either an over production of CSF by the choroid
plexus, or to a failure of CSF to drain from the subarachnoid
spaces due to impaired function of the ependymal cilia (both
known as communicating hydrocephalus) or, more com-
monly, due to a blockage occurring within the ventricular
system (known as non-communicating hydrocephalus)
(Perez-Figares et al., 2001).

At a cellular and molecular level, the precise causes

underlying these different forms of hydrocephalus remain

largely unknown. However, a common observation in many

mouse models with non-communicating hydrocephalus is

that they exhibit stenosis and occlusion of the Sylvian

aqueduct (Perez-Figares et al., 2001). The Sylvian aqueduct

joins the third and fourth ventricles, and, perhaps due to its

narrowness, it is particularly prone to blockage. Indeed,

stenosis of the Sylvian aqueduct is the most common site

of intraventricular blockage within patients with hydroce-

phalus (Cinalli et al., 2011). The Sylvian aqueduct is kept

open, or patent, in part via the production of a long, high

molecular weight glycoprotein known as Reissner's fibre

(Rodriguez et al., 1998). This fibre, composed primarily of

highly glycosylated spondin, is produced by a specialised

ependymal structure situated at the roof of the Sylvian

aqueduct below the post-optic commissure known as the

subcommissural organ (SCO) (Creveaux et al., 1998; Vio et al.,

2008). Reissner's fibre extends from the SCO through the

fourth ventricle to the end of the spinal cord central canal,

maintaining the patency of the Sylvian aqueduct and so

allowing CSF to flow through this bottleneck and into the

fourth ventricle (Perez-Figares et al., 2001). Importantly, there

are many examples of mice in which gene loss (Blackshear

et al., 2003; Dietrich et al., 2009), or the over expression of

transgenes (Lee et al., 2012; Louvi and Wassef, 2000), is

accompanied by deficient SCO formation or Reissner's fibre

production and hydrocephalus, implying that abnormal

development of this structure plays a central role in aque-

ductal stenosis.
Many genes have been identified that play important

roles during normal development of the nervous system,

and that, when mutated or abnormally expressed, result in

the development of hydrocephalus (Cinalli et al., 2011). Nfix

provides a salient example of this (Driller et al., 2007). Nfix

belongs to a group of genes known as the Nuclear factor

one family, of which there are four isoforms within the

vertebrate lineage, Nfia, Nfib, Nfic and Nfix (Heng et al., 2012;

Mason et al., 2009). These genes encode site-specific
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Fig. 1 – Nfix�/� mice exhibit hydrocephalus at weaning. At P20, wild-type mice (A) are markedly larger than Nfix�/� (B)
littermate controls. Another phenotype evident in mice lacking Nfix is the presence of a dome-shaped skull at this age
(compare dotted lines in A' and B'). Hematoxylin stained sagittal sections of wild-type (C) and knockout (D) mice revealed a
smaller olfactory bulb (ob) and a dysmorphic hippocampus (hc) within mutant mice. The lateral ventricle in wild-type mice at
this sagittal plane was very small (double arrowhead in C), whereas there was massive expansion of the lateral ventricle
within mutant mice (open arrowhead in D). Scale bar (in D): (A and B) 5 mm; (A' and B') 2.5 mm; (C and D) 1 mm.
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transcription factors that have been implicated in regulat-
ing key aspects of nervousQ3 system development (Harris
et al., 2014). For instance, NFIX has been shown to mediate
normal development of the neocortex (Campbell et al.,
2008), hippocampus (Heng et al., 2014a) and cerebellum
(Piper et al., 2011), in part through promoting neural
progenitor cell differentiation via the transcriptional
repression of genes involved in progenitor cell self-
renewal, such as Sox9 (Heng et al., 2014a). Interestingly,
mice lacking Nfix survive until weaning, and have been
reported to exhibit hydrocephalus (Campbell et al., 2008;
Driller et al., 2007). However, the factors contributing to this
phenotype in Nfix knockout mice remain undefined. Here
we analysed the development of hydrocephalus in Nfix�/�

mice, revealing that this phenotype becomes evident
within the early postnatal period. Moreover, we reveal that
the SCO appears to develop normally in the absence of Nfix,
that Reissner's fibre is produced by the ependymal cells of
the SCO in mutant mice, and that stenosis of the third
ventricle is not evident within Nfix�/� mice. Finally, we
reveal that the walls of the lateral ventricles are frequently
denuded of their ependymal cell layer in Nfix mutant mice.
Collectively, these data suggest that Nfix�/� mice exhibit
communicating hydrocephalus, and that the hydrocephalic
phenotype displayed by this strain of mice, rather than
resulting from intraventricular blockage of the Sylvian
aqueduct, more likely arises from aberrant loss of the
ependymal cells that line the lateral ventricles.

2. Results

2.1. Nfix�/� mice exhibit hydrocephalus at weaning

Previous studies have shown that mice lacking Nfix exhibit
hydrocephalus at P23 (Driller et al., 2007). We confirmed these
findings through the analysis of Nfix�/� mice at P20. Compar-
ison of the heads of wild-type and mutant mice at this age
revealed marked differences, with Nfix�/� mice exhibiting a
more dome-shaped skull when compared to littermate con-
trols (compare the dotted lines in Fig. 1A' and B'). This was
likely due to hydrocephalus, as the analysis of sagittal
sections of these brains revealed greatly enlarged lateral
ventricles in mice lacking Nfix (Fig. 1C and D). These data
confirm the presence of postnatal hydrocephalus in this line
of knockout mice, leading us to investigate the causes under-
lying the development of this phenotype in more detail.

2.2. Hydrocephalus develops postnatally in mice lacking
Nfix

To determine when hydrocephalus first became evident
within Nfix�/� mice we performed hematoxylin staining on
coronal sections of littermate wild-type and mutant brains at
ages ranging between E14 and P20. We focussed our analysis
at the level of the developing corpus callosum, as the lateral
ventricles are easily observed at this position along the
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Fig. 2 – Nfix�/� mice do not exhibit ventricular enlargement during embryogenesis. Hematoxylin-stained coronal sections of
E14, E16 and E18 wild-type (A, C and E) and Nfix�/� mice (B, D and F) at the level of the developing corpus callosum (CC).
Although the corpus callosum was reduced in Nfix�/� mice, and the cingulate cortex was expanded (compare brackets in E
and F), there was not any appreciable difference in the size of the lateral ventricles in comparison to controls (compare double
arrowheads in A, C, E to arrowheads in B, D, and F). In support of this, quantification of total lateral ventricle area (G) and
lateral ventricle area as a proportion of total brain area (H) did not reveal any difference between sample groups (p40.05, t-
test). Scale bar (in F): (A and B) 300 lm; (C and D) 350 lm; (E and F) 500 lm.
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rostro-caudal axis of the telencephalon. Between the ages of
E14 and E18, we did not observe any appreciable differences
in the size of the lateral ventricles between wild-type and
mutant brains (Fig. 2A–F), nor did we observe any instances of
denudation of the neuroepithelial ventricular zone within the
lateral ventricles at these ages. Moreover, quantification of
the total ventricular area, as well as ventricular area as a
proportion of total brain area, did not reveal any significant
differences in the size of the lateral ventricles between
sample groups (Fig. 2G and H). The choroid plexus of the
lateral ventricles and the third ventricle also appeared mor-
phologically normal in Nfix�/� mice during embryonic stages
(Fig. 3). Similarly, at both P2 and P5, we did not observe any
evidence of lateral ventricular dilation within Nfix�/� mice
(data not shown). However, at P10, we observed that 4 out of 8
mice lacking Nfix exhibited expansion of the lateral ventricles
(Fig. 4A and B). This phenotype became more pronounced
between P15 and P20, with all Nfix�/� mice examined exhi-
biting significantly larger lateral ventricles in comparison to
controls (Fig. 4C–H). Nfix7 mice did not exhibit evidence of
hydrocephalus at any of these ages (data not shown). Collec-
tively, these data suggest that hydrocephalus develops post-
natally within Nfix�/� mice.

2.3. Double heterozygous NFI mice exhibit progressively
worsening hydrocephalus

Nfix�/� mice die soon after weaning, from as yet unknown
causes, precluding the ongoing trajectory of hydrocephalic
development to be tracked with these mice (Heng et al.,
2014a). However, mice heterozygous for both Nfib and Nfix
also exhibit hydrocephalus and survive beyond this age,
enabling us to ask how hydrocephalus develops over time
in mice heterozygous for two Nfi genes. As with homozygous
Nfix mutants (Fig. 4D), hydrocephalus was evident within
Nfib7; Nfix7 mice at P10, with these mice displaying enlarged

lateral ventricles at this age (Fig. 5A, B), a phenotype also seen
at P20 (Fig. 5C and D). By P37, the hydrocephalic phenotype of
the double heterozygotes had worsened. At the level of the
corpus callosum, the lateral ventricles were very large and
the corpus callosum was phenotypically absent (Fig. 5E and
F). More caudally, at the level of the hippocampus, the
ventricles were hugely dilated in the double heterozygote,
and the hippocampus and thalamus were diminished in
comparison to the controls (Fig. 5G and H). These data
suggest that hydrocephalus continues to worsen in the
postnatal period in mice heterozygous for two Nfi genes.

2.4. NFIX is expressed within the SCO

We next sought to determine the underlying cause of the
postnatal hydrocephalus within Nfix�/� mice. There are
multiple potential causes for hydrocephalus, however, ste-
nosis of the Sylvian aqueduct is the most common site of
intraventricular blockage leading to hydrocephalus (Cinalli
et al., 2011). The aqueduct, which connects the third and
fourth ventricles, is kept patent via the production of Reiss-
ner's fibre, a glycoprotein primarily comprised of spondin,
that is secreted by a specialised gland at the roof of the
diencephalon known as the SCO (Vio et al., 2008). Given a
recent report demonstrating that ependymal cells within the
developing telencephalon express NFIX (Campbell et al., 2008;
Heng et al., in press), we first determined whether NFIX was
expressed by ependymal cells within the SCO. Using an
antibody specific for NFIX (Harris et al., 2013) on tissue from
E14, E16 and E18 wild-type mice, we revealed that cells lining
the walls of the third ventricle do indeed express NFIX
(Fig. 6A, and C–F and data not shown). Importantly, at all of
these ages, the SCO was strongly immunoreactive for NFIX
(Fig. 6A), indicating that this transcription factor may regulate
the development of this organ. The molecular determinants
of SCO development are poorly understood, but recent
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Fig. 3 – Normal appearance of the choroid plexus in embryonic Nfix�/� mice. Coronal paraffin sections (6 lm) of E16 wild-type
(A) and Nfix�/� (B) mice stained with hematoxylin. Within both the third ventricle (3 V; A' and B') and the lateral ventricle (LV;
A'' and B''), the choroid plexus can be observed (arrowheads). We observed no morphological abnormalities within the choroid
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findings have begun to elucidate the factors that mediate its
formation. For example, the transcription factor Sox3 has
been implicated in SCO development, with a transgenic line
that expresses elevated levels of SOX3 exhibiting aberrant
SCO development and hydrocephalus (Lee et al., 2012). We
confirmed the expression of SOX3 by cells within the devel-
oping SCO at E18 (Fig. 6B), and, moreover, demonstrated that
NFIX and SOX3 were co-expressed by cells within the nascent
SCO using co-immunofluorescence labelling and confocal
microscopy (Fig. 6C–F). Interestingly, we have previously
revealed that other Sox family members, namely Sox9 and
Bbx, are targets for transcriptional repression by NFIX during
development of the dorsal telencephalon (Dixon et al., 2013;
Heng et al., 2014a). Moreover, a microarray analysis per-
formed in the latter study on hippocampi isolated from E16
wild-type and Nfix�/� mice revealed that Sox3 expression

within the hippocampus of Nfix�/� mice was significantly
upregulated in comparison to controls (Heng et al., 2014a).
Given these findings, and that NFIX and SOX3 are co-
expressed within the SCO, we hypothesised that Sox3 could
be a target for transcriptional repression by NFIX during SCO
development, and that Sox3 upregulation in Nfix�/� mice
may contribute to the postnatal hydrocephalus evident in
these knockout mice.

To test this hypothesis we first validated our microarray
findings. SOX3 is expressed by radial glial progenitor cells within
the proliferative ventricular zone within the developing telence-
phalon (Rogers et al., 2013). Analysis of SOX3 expression within
the neocortex and hippocampus of E16 wild-type and Nfix�/�

mice revealed significantly more cells within the ventricular
zone expressing SOX3 within Nfix mutant mice (Supp. Fig. 1A–C),
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Fig. 4 – Hydrocephalus develops early in the postnatal
period in Nfix�/� mice. Hematoxylin-stained coronal
sections of P10, P15 and P20 wild-type (A, C and E) and Nfix�/

� mice (B, D and F) at the level of the corpus callosum (CC).
At P10, the lateral ventricles of Nfix�/� mice were frequently
enlarged in comparison to controls (4 from 8 knockout mice),
a phenotype recapitulated at P15 and P20 compare
arrowheads in B, D and F with double arrowheads in A, C
and E. Quantification of total lateral ventricle area (G) and
lateral ventricle area as a proportion of total brain area (H)
revealed that there was a significant increase in lateral
ventricular size within Nfix�/� mice in comparison to
controls at P15 and P20 (nnpo0.01, t-test). ns¼not significant.
Scale bar (in F): (A and B) 500 lm; (C–F) 600 lm.

Fig. 5 – Continued progression of hydrocephalus in Nfib7;
Nfix7 mice. Hematoxylin-stained coronal sections of P10,
P20 and P37 wild-type (A, C, E and G) and Nfib7; Nfix7 (B, D, F
and H) mice. Mice lacking two Nfi alleles exhibited marked
expansion of the lateral ventricles at the level of the corpus
callosum at all of these ages in comparison to controls
(compare arrowheads in B, D and F with double arrowheads
in A, C and E). More caudally, at the level of the
hippocampus, the expansion of the lateral ventricles of
Nfib7; Nfix7 mice was even more marked (arrowhead in H).
Moreover, the hippocampus was dramatically reduced in
the mutant (compare open arrowhead in H with the arrow in
G), as was the thalamus (th). Scale bar (in H): (A and B)
500 lm; (C and D) 600 lm; (E–H) 750 lm.
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corroborating our earlier microarray findings. Further evidence to
support a direct role for NFIX in the transcriptional regulation of
Sox3 came from a bioinformatic screen aimed at identifying NFI
consensus binding motifs. This in silico screen identified six
putative NFI binding sites within the region 3000 base pairs
upstream of the Sox3 transcription start site (at �2235, �2085,

�1237, �745, �471 and �27 relative to the transcription start
site; Table 1). Next, we used a reporter gene assay to determine
the ability of NFIX to regulate Sox3 promoter-driven transcrip-
tional activity. A 1278 base pair fragment of the mouse Sox3
promoter containing the four putative NFI binding motifs most
proximal to the transcription start site was able to induce
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Fig. 6 – NFIX and SOX3 are co-expressed within the embryonic SCO. (A and B) Coronal sections of E18 wild-type mice revealing
the expression of NFIX (A) and SOX3 (B). NFIX immunoreactivity was observed by cells within the neocortex (neo) and
hippocampus (hc). Ependymal cells lining the walls of the third ventricle (3 V) were also immunopositive for both NFIX and
SOX3 (arrowheads in A' and B'). Ependymal cells comprising the subcommissural organ (SCO), which is located at the roof of
the third ventricle, were also expressed NFIX (A') and SOX3 (B'). (C–F) Co-immunofluorescence labelling and confocal
microscopy (3.0 lm optical section) were used to demonstrate that NFIX (D; green) and SOX3 (E; red) were co-expressed by
ependymal cells lining the walls of the third ventricle (arrowheads in D–F), as well as by cells of the SCO, at E18. Nuclei are
labelled with DAPI (C; white). Scale bar (in F): (A and B) 500 μm; (A', B', and C–F) 50 μm. (For interpretation of the references to
color in this figure legend, the readerQ5 is referred to the web version of this article.)

Table 1 – Putative NFI binding sites within the promoters of genes implicated in ependymal cell function. All potential NFI
binding sites with p-values r10�4 were reported in the region of �3000 base pairs to þ200 base pairs relative to the
transcription start site (TSS) of the selected genes.

Gene UCSC identifier Position relative to TSS Site p-value Site sequence

Sox3 uc009vff.1 �27 1.9� 10�5 CGGGCAGGCTTCCCG
Sox3 uc009vff.1 �471 3.0� 10�5 CTGGAAAGCTCCCCG
Sox3 uc009vff.1 �745 8.7� 10�5 CTGGAAAGCTCCCCG
Sox3 uc009vff.1 �1237 9.2� 10�5 TGGGTTATCTGCCAA
Sox3 uc009vff.1 �2085 7.7� 10�5 GAGGGCAAGGGCCAG
Sox3 uc009vff.1 �2235 6.0� 10�5 TTGGAAAGAATCCTG
Celsr2 uc008qyx.1 194 2.1� 10�5 CTGGTGTAGAGCCAG
Celsr2 uc008qyz.1 �18 6.8� 10�5 GAGGGAAGAAGCCAA
Celsr2 uc008qyx.1 �140 1.8� 10�5 TGGGCCTGCACCCAG
Celsr2 uc008qyx.1 �430 7.3� 10�5 ATGGCCCTGCGCCAC
Celsr2 uc008qyz.1 �1503 1.7� 10�5 AGGGCAGGGTGCCAC
Celsr2 uc008qyz.1 �2135 7.7� 10�5 CGGGGCCAGTGCCAC
Celsr2 uc008qyz.1 �2141 2.8� 10�5 GGGGGACGGGGCCAG
Celsr2 uc008qyz.1 �2261 3.8� 10�5 CTGGCCAGATCCCTG
Celsr3 uc009rrc.1 �37 2.4� 10�5 TAGGCCTGGAGCCTG
Celsr3 uc009rrb.1 �60 1.5� 10�5 CGGGCCTTGGGCCCG
Celsr3 uc009rrb.1 �194 1.4� 10�5 GGGGCCGTATGCCAA
Celsr3 uc009rrb.1 �1420 2.1� 10�5 CTGGCCCGCCCCCAA
Celsr3 uc009rrc.1 �1578 1.1� 10�7 GTGGCCAGGTGCCAA
Cdh2 uc008edx.2 �2198 6.9� 10�6 CGGGCAAGAATCCAA
Dvl2 uc007jtl.1 �281 9.1� 10�6 GGGGCCGAGTCCCAG
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reporter gene (luciferase) activity in NeuroA cells (Suppl. Fig. 1D).
Co-transfection of NFIX with the Sox3 promoter construct culmi-
nated in significantly reduced levels of luciferase expression, a
finding replicated in a second neuronal cell line, NSC34 (Suppl.
Fig. 1D). In total, these findings indicate that, at least within the
dorsal telencephalon, Sox3 is a potential target for transcriptional
repression by NFIX. Surprisingly however, the expression of
SOX3 within the SCO of Nfix�/� mice was comparable to wild-
typemice at E14, E16 and E18 (Fig. 7A and B and data not shown).
Normally SOX3 expression by ependymal cells within the SCO is
at a lower level than that within ependymal cells lining the walls
of the third ventricle (Fig. 6C–F, Fig. 7A'; also see Lee et al., 2012).
Sox3 transgenic mice with hydrocephalus exhibit SOX3 expres-
sion within the SCO that is comparable to that within cells lining
the walls of the third ventricle (Lee et al., 2012). Contrary to our
hypothesis, the level of SOX3 expression within the SCO of Nfix
mutantmice did not appear elevated in comparison to surround-
ing tissue (Fig. 7A' and B'), suggesting that upregulation of SOX3
within the SCO ofNfix�/� does not contribute to the formation of
hydrocephalus within this line.

2.5. Patterning and function of the SCO is normal in
Nfix�/� mice

We next investigated the formation of the SCO in mice
lacking Nfix. The SCO develops from neuroepithelial progeni-
tor cells that line the lumen of the dorsal aspect of the
diencephalon. The epithelial progenitors of the SCO are

driven towards a specialized secretory ependymal cell fate
in part via the expression of patterning genes such as Bmp6,
which is expressed by the nascent SCO during embryogenesis
(Huh et al., 2009; Lee et al., 2012). Analysis of Bmp6 expression
via in situ hybridisation during development of the SCO
revealed that this gene was expressed by cells within the
SCO of both wild-type and Nfix mutant brains at ages between
E14 and E18, and that expression levels were comparable
between controls and mutants (Fig. 8A–D). Expression of
another patterning molecule, Lhx5, was also unchanged in
Nfix mutant mice (data not shown). Furthermore, analysis of
the development of Reissner's fibre revealed that this struc-
ture began to be produced specifically by the ependymal cells
of the SCO in both wild-type and mutant brains during late
embryogenesis (Fig. 8E–H), and continued to be produced by
these cells within the postnatal brain (Fig. 8I and J). Again, we
did not detect any qualitative differences in the expression of
Reissner's fibre immunoreactivity between wild-type and
mutant brains, suggesting that the functionality of the SCO
is maintained in the absence of Nfix.

NFIX is part of a larger family of transcription factors that
also includes NFIA, NFIB and NFIC, of which the former two
have been shown to be strongly expressed within the develop-
ing central nervous system (Chaudhry et al., 1997). To ascertain
whether other NFI family members may have been compensat-
ing for the loss of Nfix, we first analysed the expression of NFIA
and NFIB within the developing SCO. Both NFIA and NFIB were
expressed by ependymal cells of the SCO during embryogenesis
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Fig. 7 – SOX3 expression is not altered within the SCO of Nfix�/� mice. Coronal sections of E18 wild-type (A) and Nfix�/� (B)
mice revealing the expression of SOX3. Within the wild-type and the mutant, cells lining the walls of the third (3 V) ventricle
expressed high levels of SOX3 (double arrowheads in A' and B'). Ependymal cells within the SCO expressed SOX3 at a lower
level in the wild-type in comparison to cells lining the walls of the third ventricle (A'). Expression of SOX3 by cells within the
SCO of Nfix�/� mice was comparable to the control (B'). Scale bar (in F): (A and B) 500 μm; (A', B', and C–F) 50 μm.
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(Fig. 9A and B). The development of conditional Nfi alleles has
recently enabled the investigation of consequences of the loss
of multiple Nfi isoforms in a temporally controlled manner (Hsu
et al., 2011; Messina et al., 2010). Using conditional Nfib (NfibFlox/
Flox) (Hsu et al., 2011) and Nfix (NfixFlox/Flox) (Messina et al., 2010)
alleles we generated a strain containing both Nfib and Nfix
conditional alleles (NfibFlox/Flox; NfixFlox/Flox). This was crossed to a
Cre deleter strain under which Cre recombinase was under
the control of a tamoxifen-inducible ubiquitous Rosa26 promo-
ter (R26CreERT2). The resulting line (NfibFlox/Flox; NfixFlox/Flox;

R26CreERT2) was injected with tamoxifen at E10 and E12 to
induce knockout of both Nfib and Nfix. Analysis of mRNA levels
by qPCR revealed that both Nfib and Nfix levels were reduced by
over 90% in comparison to mice that were not carrying the
R26CreERT2 allele (data not shown). We then analysed SCO
morphology (Fig. 9C–E) as well as SOX3 expression and Reiss-
ner's fibre immunoreactivity (Fig. 9F–K) within the SCO of
tamoxifen treated NfibFlox/Flox; NfixFlox/Flox; R26CreERT2 mice at
E18. In spite of the loss of 4 individual alleles, SOX3 expression
and Reissner's fibre immunoreactivity was not different from
the controls in these mice.

Despite the production of spondin by ependymal cells of
the SCO in mice lacking Nfix, the possibility of hydrocep-
halus occurring as a result of stenosis of the Sylvian aque-
duct remained a possibility. To address this we analysed
hematoxylin-stained coronal sections of P15 wild-type and
mutant brains at multiple different rostro-caudal levels. We
saw no evidence for stenosis of the aqueduct in Nfix�/� mice
(Fig. 10). To investigate this further, we measured the dorso-
ventral length of the Sylvian aqueduct at three different
levels on coronal sections of P15 wild-type and knockout
brains, a measure that has previously been utilised as a proxy
for aqueductal stenosis (Nakajima et al., 2011). Again, we saw
no significant alterations in this measure of aqueductal
morphology between wild-type and knockout brains
(Fig. 10G), illustrative of normal aqueduct formation in
Nfix�/� mice. Of note, however, was the fact that there was
no evidence of dilation within the third ventricle or Sylvian
aqueduct of mice lacking Nfix, which is in stark contrast to
the phenotype within the lateral ventricles of these mice.
Moreover, the ependymal cells lining the aqueduct appeared
morphologically normal, and we observed no evidence for
denudation of this cellular layer within this mutant strain
(Fig. 10). This led us to question whether ependymal cells
within the lateral ventricles of Nfix�/� mice were normal, as
ependymal denudation within the lateral ventricles has
previously been implicated in the progression of some mod-
els of hydrocephalus (Jimenez et al., 2001).
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Fig. 8 – Patterning and function of the SCO is not perturbed
within Nfix�/� mice. (A–D) Coronal sections of wild-type
and Nfix�/� mice showing the expression of Bmp6 mRNA
as revealed by in situ hybridisation at E14 (A and B) and E18
(C and D). The expression of Bmp6 by cells within the SCO
was comparable between mutants (B and D) and controls (A
and C). (E–J) Coronal sections of E14, E18 and P15 wild-type
(E, G, and I) and Nfix�/� (F, H, and J) mice revealing the
presence of Reissner's fibre (RF). At E14, RF expression was
not detectable within the SCO. By E18, similar levels of
expression were evident within the SCO of wild-type and
mutant brains (compare double arrowheads in G and H).
The presence of RF was also similar between sample
groups at P15 (compare double arrowheads in I and J).
3 V¼third ventricle. Scale bar (in J): (A, B, E, and F) 50 μm; (C,
D, G, and H) 50 μm; (I and J) 75 μm.
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2.6. Ependymal cells within the lateral ventricles are
abnormal in Nfix�/� mice

Ependymal cells of the lateral ventricles facilitate the flow of
CSF via the beating of their cilia that are located within the
ventricular lumen (Wilson et al., 2010). The loss of these cells
perturbs the flow of CSF and contributes to its build up within
the lateral ventricles (Baas et al., 2006). Indeed, a number of
mouse models of communicating hydrocephalus have been
reported to display ependymal denudation of the lateral

ventricles (Jimenez et al., 2001, 2014), as have hydrocephalic
humans (McAllister, 2012). NFIX was recently been shown to
be expressed by ependymal cells lining the lateral ventricles
of adult mice (Heng et al., in press). We confirmed this, using
co-immunofluorescence staining and confocal microscopy to
demonstrate that vimentin-expressing ependymal cells also
express NFIX at P5 and P10 (Fig. 11 and data not shown). To
address the morphology of ependymal cells within the lateral
ventricles of Nfix�/� mice, we next examined the expression
of vimentin in sections from P5, P10 and P15 wild-type and
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Fig. 9 – The SCO is not functionally perturbed in mice lacking both Nfib and Nfix. (A and B) Coronal sections of E17 wild-type
mice, showing the expression of NFIB (A) and NFIA (B). Both of these transcription factors were expressed by ependymal cells
within the SCO, as well as by ependymal cells lining the third ventricle (double arrowheads in A', B) at this age. (C–K) Coronal
sections of E18 control (NfibFlox/þ; NfixFlox/þ; C, F, and I); double heterozygous Nfi (NfibFlox/þ; NfixFlox/þ; R26CreERT2; D, G, and J) and
double homozygous Nfi (NfibFlox/Flox; NfixFlox/Flox; R26CreERT2; E, H, and K) mice. Hematoxylin staining (C–E) revealed that the SCO
appeared morphologically normal in all groups. Similarly, the expression of SOX3 (F–H) and RF (open headed arrows in I–K)
was similar across mice from each of these genotypes. Scale bar (in K): (A) 500 lm; (A', and B–K) 50 lm.
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mutant brains. Within wild-type mice we observed a contin-
uous arrangement of cuboidal, vimentin-expressing lining
the lateral ventricles at these ages (Fig. 12A, C and E). In the
mutant, however, a number of consistent changes were
observed at P10 and P15. Firstly, we frequently observed
thickening of the ependymal cell layer, with cells lacking
the classical cuboidal shape of normal ependymal cells
(Fig. 12D, F, and F'). Secondly, in all of the mice with
hydrocephalus that we analysed at P10 and P15 there were
regions of the lateral ventricular wall in which the ependymal
cells had either failed to develop or had sloughed off com-
pletely (Fig. 12D, F, and F''). We also observed this phenotype
within postnatal Nfib7; Nfix7 mice with hydrocephalus
(Fig. 5). Given the crucial role of ependymal cilia on facilitat-
ing the flow of CSF (Lee, 2013) our findings indicate that the
loss of a functional ependymal cell layer may be the under-
lying cause of the postnatal hydrocephalus evident within
Nfix�/� mice.

We next analysed cellular apoptosis via cleaved caspase 3
immunocytochemistry. We have previously reported that
increased apoptosis occurs within the SVZ region of Nfix�/�

mice at P10 (Heng et al., in press). We replicated these
findings here, demonstrating increased levels of apoptosis
within the SVZ of P10 Nfix�/� mice (Suppl. Fig. 2). However,
we did not observe any apoptotic cells within the ependymal
layer of Nfix mutant mice at either P5 or P10, suggestive of
cellular death not playing a direct role in the denudation of
the ependyma in these mice. Furthermore, the expression of
N-cadherin, a cell-adhesion molecule localised to ependymal
cells (Oliver et al., 2013) was not markedly different in Nfix�/�

mice at P5 or P10, although the morphology of the ependymal
cells expressing this factor was abnormal at P10 (Fig. 13). We
also assessed the expression of Celsr2 and Celsr3 mRNAs in
tissue isolated from the SVZ of P20 wild-type and Nfix�/�

mice using qPCR. These cadherin molecules are known to
regulate ependymal ciliogenesis, and mice lacking both of
these genes exhibit impaired ciliogenesis and subsequent
hydrocephalus (Tissir et al., 2010). However, the expression of
these genes was not significantly changed within Nfix�/�

mice (data not shown). Furthermore, the expression of
acetylated α tubulin, a ciliary component, appeared normal
in those regions of the ventricular surface where the epen-
dymal layer was still present within P15 Nfix�/� mice (Suppl.
Fig. 3). Finally, we further analysed the ependymal thickening
phenotype we observed at P10 and P15 using GFAP immuno-
cytochemistry, as astrocytes have been suggested to
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Fig. 10 – Nfix�/� mice do not exhibit aqueductal Stenosis.
Coronal sections of P15 wild-type (A, C, and E) and Nfix�/�

(B, D, and F) mice stained with hematoxylin. Panels A, C, and
E are representative sections from a wild-type mouse that
show the position along the rostro-caudal axis that were
used to quantify the length of the Sylvian aqueduct. The
high power images to the right show the third ventricle (3 V)
as well as the length of the Sylvian aqueduct (demarcated by
brackets) at rostral (A' and B), middle (C' and D) and caudal (E'
and F) levels. There was no significant difference in the
length of the aqueduct between genotypes at these
positions along the rostro-caudal axis at this age (G; p40.05,
t-test. ns¼not significant). Scale bar (in E): (A, C, and E)
600 lm; (A', B, C', D, E' and F) 60 lm.

Fig. 11 – NFIX and vimentin are co-expressed by ependymal cells within the lateral ventricles. (A) Coronal sections of a P5
wild-type mice revealing the expression of NFIX (red), vimentin (green) and DAPI (blue) visualised via confocal microscopy
(3.0 lm optical sections). The boxed region in A is expanded in panels B–E. Nuclei are shown with DAPI (blue; B). Vimentin
expressing ependymal cells (green, C) also express NFIX (red, D), as shown in the merged image (E; arrowheads depict
ependymal cells expressing vimentin and NFIX). Scale bar (in E): (A) 100 lm; (C–E) 20 lm. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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assemble at the sites of ependymal denudation to facilitate
the re-establishment of the layer separating the CSF and the
brain parenchyma (Roales-Bujan et al., 2012). Confocal micro-
scopy revealed that the thickened areas within the lateral
ventricles of Nfix�/� mice were strongly immunoreactive for
GFAP, suggestive of these zones being the sites of astroglial
scarring in response to ependymal denudation (Fig. 14).

3. Discussion

Hydrocephalus is a relatively common birth defect (Bruni
et al., 1985) but despite its prevalence, and the existence of
several rodent models of this disorder (Jones and Bucknall,
1988; Lee et al., 2012; Perez-Figares et al., 1998), our under-
standing of the molecular and cellular mechanisms leading

to the pathological CSF accumulation remains limited. Here
we reveal that hydrocephalus is a consistent feature present
in mice lacking the transcription factor Nfix, implicating
normal NFIX function as being central to the formation of
the intraventricular region of the central nervous system.
Specifically, we demonstrated that NFIX is central to the
biology of ependymal cells, and that, in its absence, the
lateral ventricles of the dorsal telencephalon exhibit denuda-
tion of the ependymal cell layer.

Ependymal cells lining the walls of the brain ventricles are
post-mitotic cells that are derived from radial glial progeni-
tors during embryonic development (Spassky et al., 2005). NFI
family members, including NFIX, have previously been
shown to be expressed by radial glia within the dorsal
telencephalon (Campbell et al., 2008; Plachez et al., 2008).
Moreover, a number of recent studies have begun to elucidate
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Fig. 12 – Nfix�/� mice exhibit ependymal denudation within the lateral ventricles. Co-immunofluorescence labelling and
confocal microscopy (3.0 lm optical sections) were used to examine the expression of vimentin (green) by cells lining the
lateral ventricles of P5, P10 and P15 wild-type (A, C, and E) and Nfix�/� (B, D, and F) mice. In the wild-type, vimentin-
expressing ependymal cells were cuboidal in shape, and formed a regular array along the walls of the lateral ventricle
(arrowheads in A, C, E' and E''). This was also the case in P5 mutant mice (arrowheads in B). In the mutant at P10 and P15,
however, there was frequent thickening of the ependymal layer, and the cells were no longer of a uniform cuboidal shape
(arrows in D and F'). Mutant mice also exhibited denudation of the ependymal layer within the lateral ventricles (double
arrowhead in D and F''). Nuclei were labelled with DAPI (blue). Scale bar (in F''): (A–F) 100 lm; (E', E'', F', and F'') 20 lm. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the role of NFI proteins within ventricular zone neural
progenitor cells (Harris et al., 2014), revealing that NFIs
mediate radial glia differentiation in a number of distinct
ways, including via the repression of pathways mediating
progenitor cell self-renewal (Heng et al., 2014a; Piper et al.,
2014), through the activation of differentiation-specific
genetic programmes (Cebolla and Vallejo, 2006), and by
indirectly influencing epigenetic DNA methylation of target

genes such as glial fibrillary acidic protein (Namihira et al.,
2009). These reports demonstrate a central role of NFI
proteins in mediating the differentiation of radial glia during
development.

Studies have also shown that NFIA, NFIB and NFIX are also
expressed by ependymal cells lining the ventricles of the
brain in both postnatal and adult mice (Campbell et al., 2008;
Plachez et al., 2008). Given the reports of hydrocephalus in
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Fig. 13 – N-cadherin is expressed by ependymal cells of the lateral ventricles in Nfix�/� mice. Coronal sections of P5 and P10
wild-type (A and C) and mutant (B and D) mice showing the expression of DAPI (blue) and N-cadherin (red). This adhesion
molecule is expressed on the surface of ependymal cells in both the wild-type (A' and C') and the mutant (B' and D') mice at
these ages. Scale bar (in D'): (A–D) 100 lm; (A'–D') 20 lm. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 14 – Aberrant expression of GFAP within the thickened ependyma of Nfix�/� mice. Coronal sections of P5, P10 and P15
wild-type (A, C, and E) and mutant (B, D, and F) mice showing the expression of DAPI (blue) and GFAP (red). At P5, the
expression of GFAP is comparable between wild-type and mutant mice (A and B). At P10, however, GFAP expression is
elevated in regions of the lateral ventricles that appear thickened in the mutant (arrow in D), a phenotype also seen at P15
(arrows in F and F'). Scale bar (in F'): (A–F), 100 lm; (E' and F') 20 lm. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Nfix-/- mice (Campbell et al., 2008; Driller et al., 2007), this led
us to hypothesise that NFIX may be mediating the formation
and/or function of the SCO, a specialized ependymal gland
located at the roof of the third ventricle (Huh et al., 2009).
There were a number of lines of evidence that led us to this
hypothesis. Firstly, the Sylvian aqueduct is the most common
cause of intraventricular blockage in cases of hydrocephalus
(Cinalli et al., 2011), and normal SCO development and
function is central to maintaining the patency of this aque-
duct (Huh et al., 2009; Perez-Figares et al., 2001). Secondly,
NFIX has recently been shown to repress members of the Sox
family of transcription factors, including Sox9 and Bbx (Dixon
et al., 2013; Heng et al., 2014a). Moreover, we also reported
that Sox3 is upregulated within the hippocampus of mice
lacking Nfix at E16 (Heng et al., 2014a). When considered in
light of a recent report demonstrating that overexpression of
SOX3 within the SCO culminates in hydrocephalus (Lee et al.,
2012), we postulated that upregulation of SOX3 within the
SCO of mice lacking Nfix may underlie the hydrocephalic
phenotype of these mice.

Contrary to our hypothesis, the development of the SCO in
Nfix�/� mice was morphologically normal, with no evidence for
upregulation of SOX3 within the ependymal cells of this organ.
Moreover, Reissner's fibre was produced within the SCO of Nfix
mutant mice in a manner similar to that of wild-type mice.
Finally, we found no evidence for aqueductal stenosis in this
mutant strain, illustrative of other factors contributing to the
hydrocephalus evident within these mice. Do these findings
suggest that NFI proteins do not contribute to the formation
and/or function of the SCO? At this stage, it is unclear whether
NFI function is redundant for development of the SCO. Impor-
tantly, embryonic expression of both SOX3 and spondin was
normal in NfibFlox/Flox; NfixFlox/Flox; R26CreERT2 mice, suggesting
that the loss of 4 Nfi alleles is not sufficient to perturb SCO
development. However, NFIA is also strongly expressed by the
developing SCO, suggesting that its presence may be sufficient
to compensate to the loss of both Nfib and Nfix. Moreover, these
double mutants die at birth, precluding postnatal investigation
of whether these mice develop hydrocephalus in a fashion akin
to Nfix mutant mice. Future experiments centred on the condi-
tional ablation of all three of these genes specifically from cells
within the SCO are required to determine whether or not NFIs
are dispensable for the genesis and the function of this organ.

Instead, the main phenotype exhibited by Nfix mutant mice
was denudation of the ependymal layer of the lateral ventricles.
Although we cannot definitively ascertain whether this is the
cause of hydrocephalus in these mice, or a consequence of
raised intraventricular pressure, recent reports from the
literature suggest that the loss of ependymal cells may in-
deed underlie the development of hydrocephalus in both
rodent models of this disorder and within human patients
(Dominguez-Pinos et al., 2005; Jimenez et al., 2014). For instance,
ependymal cell denudation is one of the prominent features in
the hyh (hydrocephalus with hop gait) mouse (Paez et al., 2007).
These mice, which carry mutations to the alpha-SNAP gene
(Chae et al., 2004), exhibit aqueductal stenosis due to absence of
the neuroepithelium/ependymal cell layer (Wagner et al., 2003).
Crucially, however, neuroepithelial/ependymal denudation in
hyh mice occurs embryonically, prior to the development of
hydrocephalus (Jimenez et al., 2001), suggestive of primary

deficits in the ependymal cell layer as being the causative
agents of postnatal hydrocephalus within this mutant strain.
Conditional ablation of the Ras-related GTPase Cdc42 also
culminates in ependymal cell denudation and hydrocephalus
(Peng et al., 2013), further underlining the importance of
ependymal cells in the development of this disorder.

Abnormal subcellular distribution of the cell adhesion mole-
cule, N-cadherin, has also been linked to ependymal cell
denudation within another human disorder, namely spina
bifida aperta (Sival et al., 2011). N-cadherin constitutes part of
the adherens junction within neuroepithelial/ependymal cells,
and is thus postulated to regulate the stability of this cellular
layer (Jimenez et al., 2014). With regards to hydrocephalus,
disruption of N-cadherin based adherens junctions within an
in vitro organotypic model of bovine ventricular ependymal cell
development was recently shown to lead to the disruption of
ependymal cell adherens junctions, and to culminate in apop-
tosis of the ependymal cell layer (Oliver et al., 2013). Within this
in vitro model there are no extrinsic mechanical factors present,
such as elevated ventricular pressure, suggesting that ependy-
mal cell denudation can occur in isolation from increased
ventricular pressure, and further implicate N-cadherin-
mediated adherens junctions as being pivotal for normal
ependymal cell biology. Could the phenotype within Nfix�/�

mice be related to abnormal N-cadherin expression? Interest-
ingly, we identified a putative NFI binding site in the upstream
region of the N-cadherin (Cdh2) promoter (Table 1), suggestive of
potential regulation of N-cadherin expression by NFI family
members. However, the expression levels of N-cadherin within
the ependyma of Nfix�/� mice at P10 were not noticeably
different from that seen in wild-type controls (Fig. 13). Moreover,
although we identified NFI binding sites within other genes
involved in the development of ependymal cell polarity, includ-
ing Celsr2 and Celsr3 (Table 1), the expression of these factors
was not significantly different within tissue isolated from the
SVZ of P20 mutant mice. At this stage, however, it is too early to
rule out abnormal expression and/or sub-cellular localisation of
these factors as contributing factors to the hydrocephalus
evident within Nfix�/� mice. Future studies based upon gene
expression profiling (single cell mRNA profiling on ependymal
cells isolated from wild-type and mutant brains) and sub-
cellular investigation of protein localisation are required to
determine whether abnormal adhesion and polarity are impor-
tant facets that contribute to hydrocephalus within Nfix�/�

mice. In addition, the analysis of ciliary morphology, perhaps
through scanning electron microscopy, will be critical to per-
form, as impaired ciliogenesis is implicated in hydrocephalus
(Lattke et al., 2012).

Our work also revealed that an astroglial scar formed in
some areas of the ventricular wall of Nfix�/� mice (Fig. 14).
This is in accordance with other instances of ependymal cell
denudation, such as that seen in the hyh mouse, where
periventricular astrocytes expand to form a new cellular layer
over the denuded ventricular surface (Roales-Bujan et al.,
2012). This suggests that some compensatory mechanisms
exist to drive gliogenesis within these periventricular astro-
cytes, although the cellular and molecular mechanisms
underpinning this also remain undefined at this stage.

One final question that arises is why the ependyma of the
lateral ventricles is affected in our mutant mice, yet the
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ependyma of the third ventricle is not? Currently this
remains an open question, though we speculate that multiple
causes could underlie these phenomena. For instance, the
NFI family seem to play a critical role in the development of
the dorsal telencephalon, with dramatic phenotypes evident
within the cerebral cortex of Nfia (Piper et al., 2010), Nfib
(Barry et al., 2008) and Nfix (Heng et al., in press) knockout
mice. However, these knockout strains do not present with
such drastic phenotypes within other regions of the brain,
despite the strong expression of NFI isoforms by progenitor
cells within the ventricular zone throughout the neuraxis
(Campbell et al., 2008; Plachez et al., 2008). This is perhaps
indicative of compensatory mechanisms working to spare the
ependyma of the rest of the ventricular system. Alternatively,
one of the most dramatic phenotypes evident within the SVZ/
lateral ventricular region of Nfix�/� mice is the marked
expansion of the SVZ (Heng et al., in press), a phenotype
unique to this region of the mutant brain. One could spec-
ulate that the buildup of cells within this region, and the
apoptosis that accompanies it, may culminate in altered
cellular dynamics that place more stress on the ependymal
cells within this region, leading to ependymal denudation.
Further studies are required to address this question fully. In
conclusion, our findings illustrate that the hydrocephalus
evident within Nfix�/� mice (Campbell et al., 2008; Driller
et al., 2007) arises not from abnormal development of the SCO
or from aqueductal stenosis, but rather from denudation of
the ependymal layer of the lateral ventricles, providing a
further context in which NFIX function is critical for the
normal development and function of the central nervous
system.

4. Materials and methods

4.1. Animals and genotyping

Nfix�/� and Nfixþ/þ littermate mice were used in this study.
These mice were maintained on a C57Bl/6 background. They
were bred at the University of Queensland under approval from
the Institutional Animal Ethics Committee. Timed-pregnant
females were obtained by placing Nfix7 male and female mice
together overnight. If the female had a vaginal plug the
following day it was designated as E0. The genotype of each
mouse was confirmed by polymerase chain reaction (PCR) on

DNA prepared from toe samples. The primers used in the
reaction amplified a 213 base pair DNA band corresponding to
the wild-type Nfix allele or a 309 base-pair DNA band corre-
sponding to the Nfix null allele (Campbell et al., 2008). Nfib7;
Nfix7 mice were also used in this study, and were bred at the
State University of Buffalo under approval from the Institu-
tional Animal Care and Use Committee. The Nfib null allele was
identified using PCR as described previously (Steele-Perkins
et al., 2005). NfibFlox/Flox and NfixFlox/Flox mice were also used in
this study (Hsu et al., 2011; Messina et al., 2010), and were also
bred at the State University of Buffalo under approval from the
Institutional Animal Care and Use Committee. These mice
were also genotyped using PCR and sequences of the primers
are available upon request.

4.2. Preparation of tissue

Brains were collected at embryonic day (E) 14, E16, E18, P2, P10,
P5, P10, P15, P20 and P37. E14 brains were dropped fixed in 4%
paraformaldehyde (PFA) in phosphate buffered saline (PBS).
From E16 onwards mice were perfused with PBS followed by 4%
PFA. Brains were post-fixed in 4% PFA at 4 1C until required.
Brains were removed from the skull, embedded in 3% noble
agar (Difco Sparks, MD USA) and 50 μm coronal or sagittal
sections were cut using a vibratome (Lecia, Nussloch Germany).

4.3. Haematoxylin staining

Tissue sections were mounted and dried on Superfrost Plus
slides before being incubated Mayer's hematoxylin (Sigma-
Aldrich solution) for 3 min. The slides were then washed with
water before being dehydrated in an ethanol–xylene series
and cover-slipped using the mounting medium DPX.

4.4. Immunohistochemistry

Immunohistochemistry on floating tissue sections was per-
formed as described previously (Barry et al., 2008) using the
chromogen 3,3'-diaminobenzidine (DAB). Briefly, sections were
incubated overnight with the primary antibody, and then
incubated for 1 h with biotinylated secondary antibodies. Anti-
body details and the dilution at which they were used are listed
in Table 2. Sections were then incubated for 1 h in avidin–biotin
complex (Vectastain ABC kit; Vector Laboratories) before being
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Table 2 – Primary antibodies used in this study. The source, dilution and use (Immunohistochemistry – IHC, or
immunofluorescence – IF) of the antibodies used in this study are given below.

Antibody Host Source Use Dilution

NFIX Rabbit polyclonal Abcam, ab101341 IHC 1/1000
NFIX Mouse monoclonal Sigma-Aldrich, SAB1401263 IF 1/400
SOX3 Goat polyclonal R&D Biosciences, AF2569 IHC 1/5000
SOX3 Goat polyclonal R&D Biosciences, AF2569 IF 1/100
Vimentin Rabbit monoclonal Abcam, ab92547 IF 1/500
RF Rabbit polyclonal Gift from Dr. A Meiniel IHC 1/50,000
GFAP Rabbit polyclonal Dako, Z0334 IF 1/1000
N-cadherin Mouse monoclonal BD Biosciences, 610,920 IF 1/200
Cleaved caspase 3 Rabbit polyclonal Cell Signalling Technology, 9661 IF 1/200
Acetylated α tubulin Mouse monoclonal Sigma, T7451 IF 1/2000
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incubated in the colour reaction solution (nickel-DAB chromo-
gen solution activated with 0.01% v/v hydrogen peroxide).
The colour reaction was terminated by rinsing sections in
PBS. Following staining, tissue sections were mounted onto
gelatinized Superfrost slides before being dehydrated in an
ethanol-xylene series and cover-slipped using DPX. Immuno-
histochemistry on paraffin sections was performed as above,
with the additional inclusion of an antigen retrieval step
(boiling citrate treatment, pH 6.0) as described previously
(Piper et al., 2010).

4.5. Immunofluorescence

To perform co-immunofluorescence labelling, sections were
processed for antigen retrieval (sodium citrate buffer, pH 6.0,
95 1C, 15 min, before being incubated overnight with the
primary antibodies at 4 1C. They were then washed and
incubated in a solution containing the secondary antibodies,
before being washed again and counterstained with 4',6-
diamidino-2-phenylindole (DAPI). The secondary antibodies
used in this study were goat anti-rabbit IgG AlexaFluor488
(Invitrogen; 1/250), goat anti-rabbit IgG AlexaFluor568 (Invi-
trogen; 1/250), goat anti-mouse IgG AlexaFluor 647 (Invitro-
gen; 1/250) and goat anti-mouse IgG AlexaFluor488
(Invitrogen; 1/250). The secondary antibody used to detect
the SOX3 primary antibody was biotin-conjugated rabbit anti-
goat IgG (1/1000; Vector Laboratories) followed by incubation
with Streptavidin-Cy3 (1/250; Invitrogen). Sections were then
mounted in fluorescent mounting medium (DAKO). Sections
labelled with fluorescent antibodies were imaged with a Zeiss
Axio Observer Z1 spinning disk confocal using Slidebook
software (3i). The data presented are from three adjacent
merged 1.0 mm confocal z-stacks of the stained tissue.

4.6. In situ hybridisation

Mouse brains were collected at embryonic E14, E16 and E18 and
fixed and sectioned as described above. Brain sections were
mounted onto Superfrost plus slides (Menzel-Glaser, Bruns-
wick, Germany) (n¼5 for both wild type and knockout mice),
air dried for one hour then processed for in situ hybridisation. In
situ hybridisation was performed as described previously (Piper
et al., 2009), with minor modifications. Antisense riboprobes
against Lhx5 and Bmp6 were used in this study. The hybridisa-
tion temperature was 68 1C, and the colour reaction was
performed using the substrate BM Purple (Roche). Slides were
then coverslipped with Hydromount (National Diagnostics).

4.7. Image acquisition and analysis

Sections were imaged for bright-field microscopy using an
upright microscope (Zeiss Z1, Zeiss, Goettingen, Germany)
attached to a digital camera (Zeiss AxioCam HRc) using
AxioVision software (Zeiss). Sections labelled with fluorescent
antibodies were imaged with a Zeiss Axio Observer Z1 spinning
disk confocal using Slidebook software (3i). The data presented
are from three adjacent merged 1.0 mm confocal z-stacks of the
stained tissue. When comparing wild-type to knockout tissue,
sections from matching positions along the rostro-caudal axis
were selected. For all experiments, sections from n45 different

brains of each genotype were analysed. Quantification of
ventricular area, total brain area and aqueduct length was
performed using the freeware programme ImageJ. To perform
cell counts of SOX3-positive cells within the neocortical and
hippocampal ventricular zone, the total number of immuno-
positive cells per 100 μm was counted. Two independent
100 μm regions were counted for each neocortical or hippo-
campal section. For all experiments involving quantification,
data represent pooled results from at least 5 wild-type and 5
Nfix�/� brains. Quantification was performed blind to the
genotype of the sample, and statistical analyses were per-
formed using a 2-tailed unpaired t-test. Error bars represent the
standard error of the mean.

4.8. Bioinformatic promoter screen

The NFI binding motif was generated as reported previously
(Heng et al., 2014a) from published chromatin immu-
noprecipitation-sequencing (ChIP-seq) data for NFI (pan-NFI
antibody used) (Pjanic et al., 2011). Potential NFI binding sites
promoter was identified using the MEME algorithm and the
FIMO motif-scanning programme as described previously.
FIMO was run on the mouse genome (without repeat masking)
using a 0-order background generated on the entire mouse
genome, and a pseudocount of 0.1. All potential binding sites
with p-value r10�4 were reported in the region of �3000 base
pairs to þ200 base pairs relative to the transcription start site
(TSS) of relevant genes. Putative NFI binding sites near the Sox3
promoter were identified by viewing the FIMO output using the
UCSC genome browser (Table 1).

4.9. Luciferase reporter assay

Our bioinformatic promoter screen identified six potential NFI
binding sites within the Sox3 promoter, with four of these being
within 2000 base pairs of the transcription start site (TSS),
namely at �27 base pairs relative to the TSS (chromosome X:
58146618-58146632, CGGGAAGCCTGCCCG), �471 base pairs
relative to the TSS (chromosome X: 58147062-58147076,
CTGGAAAGCTCCCCG), �745 base pairs relative to the TSS
(chromosome X: 58147336-58147350, TGGGGGGTTTGCCAG)
and �1237 base pairs relative to the TSS (chromosome X:
58147828-58147842, TGGGTTATCTGCCAA). An expression vec-
tor containing the full length Nfix gene driven by the chick
β-actin promoter (Nfix pCAGIG), and a luciferase reporter
construct containing a 1278 base pair fragment of the mouse
Sox3 promoter sequence (containing these 4 putative NFI
binding sites, chromosome X: 58146604-58147882) cloned
upstream of the Renilla luciferase gene (pLightSwitch Sox3; this
construct was obtained from Switchgear Genomics) were used
for the luciferase assays. NSC34 cells were seeded at 1�105

cells per well of a 96 well plate 24 h prior to transfection. DNA
was transfected into cells using FuGENE (Invitrogen). Cypridina
luciferase was added to each transfection as a normalisation
control. After 24 h, luciferase activity was measured using a
dual luciferase system (Switchgear Genomics). Within each
experiment, each treatment was replicated three times. Each
experiment was also independently replicated a minimum of
three times. These experiments were also replicated using a
second cell line, Neuro2A. Statistical analyses were performed
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using an ANOVA. Error bars indicate the standard error of
the mean.
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