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Abstract 

This article examines the performance of the updated quality effects (QE) estimator for meta-

analysis of heterogeneous studies. It is shown that this approach leads to a decreased mean 

squared error (MSE) of the estimator while maintaining the nominal level of coverage 

probability of the confidence interval. Extensive simulation studies confirm that this approach 

leads to maintenance of the correct coverage probability of the confidence interval, regardless 

of the level of heterogeneity.  It also retains a lower observed variance compared to the 

random effects (RE) model. The QE model is robust to subjectivity in quality assessment down 

to completely random entry, in which case its MSE equals that of the RE estimator. When the 

proposed QE method is applied to a meta-analysis of magnesium for myocardial infarction data, 

the pooled mortality odds ratio (OR) becomes 0.81 (95% CI 0.61 – 1.08) which favours the 

larger studies but also reflects the reduced uncertainty around the pooled estimate. In 

comparison, under the RE model, the pooled mortality OR is 0.71 (95% CI 0.57 – 0.89) which is 

less conservative than that of the QE results. The new estimation method has been 

implemented into the free meta-analysis software MetaXL which allows comparison of 

alternative estimators and can be downloaded from www.epigear.com.   

 

Keywords: Fixed effects, heterogeneity, meta-analysis, quasi-likelihood , quality effects, 

random effects   
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1. INTRODUCTION 

In 2008, we had provided a solution to the problems with the random effects (RE) model for 

meta-analysis using a quality weighted model which we called the quality effects (QE) model 

[1,2].  In the previous paper in this series, we also discussed a variant of the QE model called 

the inverse variance heterogeneity (IVhet) model that does not require quality assessment 

because all studies by default are assigned the same quality [3]. The initial problem was that, as 

heterogeneity increases, the coverage of the RE confidence interval drops well below the 

nominal level [4], substantially underestimates the statistical error and produces overconfident 

conclusions [5,6]. In addition, we believe that the way the RE model modification of the inverse 

variance weights are conceptualized [7] lacks justification according to a strict view of 

randomization in statistical inference [8]. We therefore introduced these alternative models in 

an attempt to lower the estimator mean squared error and obtain a correct coverage of the 

confidence interval that keeps to the nominal level across different degrees of heterogeneity 

[1,3].  

We now demonstrate that input of quality into the model can markedly improve the 

performance measures of the estimator as compared with the conventional random effects 

estimator or the IVhet estimator that replaces it [3]. Additionally, because quality is often 

viewed with suspicion as extremely subjective, the performance measures are obtained after 

subjecting the quality input to various degrees of random variation (at the point of input to the 

model) to see how this affects the estimator performance. The QE model examined in this 

paper updates the QE model of meta-analysis proposed in 2008 [2] in two important respects 
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[1]. First, overdispersion observed with the initial estimator has been corrected using an intra-

class correlation based multiplicative scale parameter. Second, the quality scores were 

originally re-scaled between 0 & 1 for input into the model. Currently, they are still rescaled 

between 0 & 1 but then each of these rescaled scores is divided by the maximum value of the 

rescaled scores within the meta-analysis before it is input into the model. This still keeps the 

scores in the 0 – 1 range but now allows them to reflect the relative nature of these scores, i.e., 

relative to the best study in the meta-analysis. This will be discussed further in the next section.       

2. DIFFERENCE BETWEEN THE RANDOM AND QUALITY EFFECTS WEIGHTED MEANS 

Consider a collection of k independent studies, the jth of which has estimated effect size 

ˆ
j  which varies from its true effect size, j through random error. Also consider that the true 

effects, 
j , also vary from an underlying common effect,  , through bias. This bias would 

include the possibility of some diversity of true effects (which remain similar) across studies (in 

which case   would simply be the mean of the true (unbiased) effects). A greater diversity that 

leads to dissimilarity of effects would not be meta-analysed [9].  

As previously described [3], the RE model weighted estimator, ˆRE , has weights given 

by:  

 
2

1
ˆ ,j

j

w
 




  {1} 

and weights that sum to 1 are given by 
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   {2} 

with the sampling error variance of the jth study being j  and 2  being the methods of 

moment based between study variance estimate [7].     

For the QE model, the weighted estimator, ˆQE , has weights that are adjusted from 

inverse variance weights based on the additional variance contribution from internal study 

biases ( 2

j ). Thus the QE weights are now given by: 

2

1
ˆ

j

j j

w
 

 


    {3} 

The problem is that 2

j  in expression {3} is unknown and thus a “synthetic” value for it 

needs to be created that keeps the proportional weights across studies similar to what would 

be expected with the true weights across studies in the meta-analysis. This works because we 

use normalized (sum to 1) weights in meta-analysis. One way of creating a synthetic value for 

2

j  (and it’s estimator 2ˆ
j ) is through the use of quality scores, derived from each study. If these 

quality scores are expressed on a scale between 0 and 1 by dividing by the maximum possible 

value under the scale, we can interpret the rescaled quality of each individual study as an intra-

class correlation ( jq )  and thus relate it back to 2

j  by considering this as the proportion of 

variance from between study bias ( 2 ) not related to variance from internal study bias  2( )j

[10]. Thus 2 2 2( )j jq     . Since jq  is also scale dependent, it can be expressed in relative 

terms that converts it into a study rank that starts from 1 in every meta-analysis and is now 
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scale independent. This is done by expressing jq  relative to the maximum ( maxjq ) in the list of 

studies (which occurs in the study with the minimum internal bias variance, 2

minj ). If we denote 

this study rank as jQ , this equals the ratio maxj jq q and jQ  can then be expanded as follows:  

2 22 2
min

2 2 2 2 2 2 2
min min

( )

ˆ( )

j

j

j j j j

Q
  

      


 

   
  {4} 

In expression {4}, the synthetic bias variance, 2ˆ
j , equals 2 2

minj j  and starts from zero and goes 

asymptotically to infinity. Similarly study rank, jQ   starts from 1 (since the best study has 

2 2

minj j  ) and goes asymptotically to  zero since
2

 lim  0

j

jQ
 

 . If we believe that the 

contribution of variance due to bias is not necessarily more costly than the contribution of 

variance due to chance (and is certainly not infinitely more costly otherwise we would be 

limiting this discussion to unbiased estimators) [11], then jQ can be used to add the 

incremental contribution of variance due to bias to the variance due to chance and thus the 

synthetic sum of variances  2ˆ( )j j   is given by j jQ , and ranges between j  (when jQ  is 

one) and increases asymptotically towards infinity (when jQ  is close to zero). Thus, by scaling 

the inverse variance weight proportional to jQ  we do not generate the true weight (which is 

unknown) but we do generate relative weights that should maintain the same proportional 

relationship to each other that would have been expected had the true (but unknown) weights 

been applied. This “synthetic” weight is given by:  
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2

1
ˆ

ˆ
j

j

jj j

Q
w

 
 


 {5} 

Keep in mind that ˆ jw  in expressions {3} and {5} are not the same. To generate a weight that is 

influenced by both random chance and internal study bias thus requires weights to drop from 

1 j to 
j

j

Q


due to the influence of variance contributed by internal study bias. An important 

aspect to keep in mind is that there is no attempt here at bias quantification and there is no 

connection between a quality score and the magnitude or direction of change in an effect size. 

This model utilizes the fact that variance due to bias can be modeled through a quality score.  

The decrease in the weight defined by expression {5} (from inverse variance weight) in 

each study will therefore be by an amount given by: 

11 j j

j j j

Q Q

  


   {6} 

To reduce the inherent bias in any weighting scheme, we can pool the weight decrement across 

studies using expression {6}, and this is given by 
1

(1 ) /
k

j j

j

Q 


   , which then can be split into 

k parts whose size is proportional to jQ  and added to each study’s weight so that the sum of 

weights remains unchanged from the sum of the inverse variance weights. This adjustment was 

first proposed in 2009 [2] and modified slightly subsequently [12]. This is an additional measure 

to reduce estimator bias because through this step we can achieve bias reduction by decreasing 

the correlation between weights and the study effect. The advantage gained from doing this 
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additional procedure is depicted in the simulation results below. The latter adjustment is made 

by adding a quantity,  ˆ j (see appendix for computation), and the final QE model weight ˆ( )jw  

for each study is given by: 

ˆˆ
j

j j

j

Q
w 


      {7} 

and the weights that sum to 1 are given by 

1

ˆ ˆ
k

j

j

Q Q
j j

w
j j

j j

 
 

  
     
  

  

   

While the weights in expression {7} will not equal the expected value of the unknown weight 

which is 21/ ( )j j  , the relative distribution of weights that sum to 1 should now be correct 

to a large extent. Since we are only interested in relative weights (that sum to 1) this works 

quite well to decrease estimator variance beyond that achievable through inverse variance 

weights alone.  

 

3. VARIANCE OF THE ESTIMATOR UNDER DIFFERENT MODELS  

The difference between the RE model and QE model is that the former has all 

2 2 2 ˆ replaced by  and thus 1 ( )j j jw      and there is a decreasing capacity to minimize error 

due to sampling variability by the weights as heterogeneity increases and weights equalize. In 

the case of the QE model, ˆ ˆ
j

j j

Q
w


   and thus when 

jQ  varies across studies, this estimator 

will discount studies with both greater random chance as well as internal study bias. The QE 
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estimator will thus be expected, with increasing heterogeneity, to have a lower true variance 

(true variance is estimated through simulation) and therefore MSE than the RE estimator.    

The theoretical model variance (theoretical variance is derived through the model and given 

in expressions {9} below) is computed by considering only variance from random error and 

modeling overdispersion through a quasi-likelihood approach [13,14] as previously described 

[3]. This implies that the meta-analysis is performed under a fixed effect assumption 2( 0)    

where 2  is a moment-based estimate of the between-studies variance proposed by 

DerSimonian and Laird [7] and the variance of the estimator inflated to account for the 

heterogeneity, thus preventing a reduction in confidence interval coverage. Thus, we remedy 

the overdispersion expected by introducing a dispersion parameter into the model so that the 

conditional variance of the true study effects increases more rapidly than that based on the 

probability distribution assumed by a fixed effects approach. This is then a quasi-likelihood 

approach since the QE model specifies the conditional variance of the study specific true effects 

directly and this has the advantage of being based purely on the variance-to-mean relationship 

(rather than on distributional assumptions) with variance appropriately inflated using a scale 

parameter, j . The latter can be defined by interpreting the multiplicative factor as an intra-

class correlation (ICC) as described by Kulinskaya & Olkin [15] where the 2 2( )j jICC    

and the scale parameter is defined as:  

1

1
j

jICC
 


 {8} 
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The variance of any weighted estimator is given by 2

1

ˆvar( )
k

j j

j

 


  where j  is any series of 

weights that sum to 1. The latter is then inflated to 2

1

ˆvar( )
k

j j j

j

  


 and using this expression, 

the variance of the estimator under the QE model weights then is given by: 

 
2

2

1

ˆvar( ) ( )
k

QE jj

j

w  


  
         {9} 

 

 

4. EXAMINING ESTIMATOR PERFORMANCE USING SIMULATION  

We now proceed to examine the performance of the RE and QE estimators (Table 1) under 

varying degrees of heterogeneity. The odds ratio is used as the effect size (though the models 

can deal with any of the common effect measures) and the simulation is modeled around the  

magnesium meta-analysis [16] data which was previously reviewed by Al Khalaf et al [17]. 

Based on this meta-analysis a simulation study was set-up fixing the true effect size as the odds 

ratio (OR) and selecting an OR from between 0.4 and 4 and allowing the study sample size ( )jN  

as well as the proportion of events and non-events in the jth study to vary in a similar pattern 

as in the original studies. Randomly generated variance due to bias or  random chance were 

added (as previously described [18]) to the true OR, the magnitude of the bias thus varying over 

runs to generate different levels of heterogeneity. The OR and four-fold cells required for each 

study were generated as previously described [18]. The only difference was that the simulation 
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generates jq and we go a further step to compute jQ  from it which is then used as input into 

the QE model. Since the real-life jQ  is more uncertain when generated from a quality scale, we 

increase uncertainty around jQ  by creating a beta distribution around jq that simulates a 

quality scale with a maximum score out of 10 points as follows: 

       10 , 10 max 0.1 10j j j jQ Beta q q q      {10} 

Every run generated k studies (randomly between 5 and 19) with a sample size (Nj) from three 

different distributions giving 45 combinations possible that were uniformly distributed across 

all the simulation iterations. The three distributions of Nj were a Delaporte distribution (with 

parameters 0.1, 8000, 160) [18], a uniform distribution between 50 and 58000 in increments of 

50 and finally a uniform distribution between 25 and 200 in increments of 25.The data from 

10,000 iterations of these k studies for each model at each heterogeneity level were generated 

using the Monte Carlo simulation program Ersatz (Epigear International, Sunrise Beach, 

Australia; www.epigear.com) and meta-analyses results computed through MetaXL (Epigear 

International, Sunrise Beach, Australia; www.epigear.com). The performance measures were 

computed from the simulated data exactly as detailed by Burton et al [19]. The various 

performance measures were also plotted as a function of increasing heterogeneity, the latter 

being indicated by the median 2  in a particular simulation run. The Delaporte distribution had 

a median study size of 175 and a distribution that resembled the original magnesium meta-

analysis with the occasional mega-trial. A total of 10 separate simulations (OR 0.4 to 4 in steps 

of 0.4) involving  a million separate meta-analyses were therefore performed, but only selected 

results from two simulations are reported in this paper because they all concurred in terms of 
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estimator performance. We also ran the simulation protocol using the standardized mean 

difference effect size, but given that results were similar to the log odds ratio effect size, only 

the latter are reported. 

The first observation from the simulation was that indeed the use of ˆ j decreased the 

bias in the estimator considerably (Figure 1). The second observation from this simulation was 

to confirm that the QE estimator had a clearly lower MSE than the RE estimator (Figure 1). 

Additionally, since both empirically weighted models (RE and QE) discount studies with larger 

sampling variability when heterogeneity is low, they did have a similar MSE when studies were 

homogenous (starting point in Figure 1). Since the MSE is lower for the QE estimator under 

increasing heterogeneity, the QE model estimator is more efficient than the RE estimator.  

A comparison across the two models of the confidence interval width (not shown) and 

coverage probability (Figure 1) confirms that the QE estimator produced a CI with a slightly 

broader width to retain  the coverage probability above the nominal level while the RE 

estimator fails to retain the coverage probability. Although the results of 2 simulations are 

shown in Figure 1, the results of the remaining 8 simulations were similar when the simulations 

were run with different effect sizes (range of OR from 0.8 to 3.6).    

When quality was randomly generated at the point of input into the QE model without 

regard to the actually simulated quality in each iteration, the QE model had an identical MSE to 

the RE model (Figure 2). This suggests that the RE model is simply a QE model with random 

entry of quality information. Despite the performance estimates equalizing, the coverage 

probability of the QE confidence interval drops only to 90% unlike the greater drop seen with 
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the RE model. Finally, when the actual simulated variances were used as weights (the true QE 

model; Figure 2), the estimator was unbiased (as expected) and coverage probability was 

exactly at the nominal level of 95%. The MSE and variance using the true weights were 

nevertheless similar to the QE model MSE and variance.   

Finally, we looked at the difference between the simulation generated “true” weight and 

the simulation based QE weight (with subjectivity added through expression {10}) for the first 

study in each iteration in run 1 (no heterogeneity) and run 10 (maximum heterogeneity) on the 

normalized scale (ie that sum to 1).  The histogram in Figure S1 clearly depicts that the QE 

method is able to capture the “true” normalized weight quite well even when quality is 

measured subjectively. 

 

5. REAL DATA EXAMPLES 

To compute the meta-analysis results using real data requires the following steps: 

a) Quality assessment of individual studies using a quality scale and computing a 

univariate quality score. Each component is equally weighted given that we do not 

have sufficient information yet from meta-epidemiological studies to do otherwise. 

In the future differential weighting of quality components may be an option if data 

from such studies accrues.   

b) Conversion of the univariate score to jQ by dividing each score by the maximum 

score in the list of studies 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14 
 

c) Plugging summary statistics and jQ  into our software MetaXL (downloadable freely 

from www.epigear.com) which uses the methods defined in this paper to compute 

meta-analytic estimates and plots. 

We first looked at the controversial magnesium meta-analysis whose data 

consists of 19 English language randomized trials (published prior to June 2006) that 

reported on early mortality after myocardial infarction [17].  Early mortality was 

defined as occurring in hospital during the acute admission phase or within 35 days 

of onset of myocardial infarction. This meta-analysis is well known because of the 

discrepancy between the mega-trial and the random effects meta-analysis result. 

When the meta-analysis estimates were computed using the two methods described 

here as well as when the quality score of the studies was considered to be the same 

(IVhet model), results were more conservative with the QE estimator (OR 0.81; 95% 

CI 0.61 – 1.08) and less so with the RE estimator. What the QE estimate depicts 

(Figure 3B) is support for the results of both the larger as well as the better quality 

studies (pooled estimate) while at the same time support for the smaller or poorer 

quality studies by increasing uncertainty around the pooled estimate as evidenced 

by the expanded (but presumably correct) confidence interval. The QE estimator, 

because it penalizes for both precision and quality, discounts the most precise study 

(ISIS-4) based on additional information from the study and thus provides more 

evidence for a possible benefit for magnesium (Figure 3B). When we applied the 

random effects model here (Figure 3C), it simply equalized the weights (more or 

less) and produced a very extreme effect without justification. Figure 3A depicts 
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results with the IVhet model which assumes studies all have the same quality. This 

result depicts a larger estimator variance and bias because of the presumption of 

equal quality.    

Another example from the recent meta-analysis literature also reveals a similar 

comparison. A meta-analysis by Ha and colleagues [20] demonstrates a more 

conservative effect under the QE model (Figure 4A) while under the RE model (Figure 

4B) there is a larger effect with a narrower confidence interval. Application of the 

random effects model, as the authors did, underestimates the statistical error without 

justification. 

   

6. DISCUSSION 

The QE model estimate differs from the RE model estimate in two perspectives: Pooled 

QE estimates favor both larger and better trials (as opposed to penalizing larger trials with the 

RE model) and have a more conservative confidence interval that retains the nominal coverage 

probability). The implication for the meta-analysis of the magnesium studies in myocardial 

infarction (Figure 3) is that the evidence for the intervention suggests less benefit when 

methodology is also assessed.  

When quality information becomes available, several other options also open up which 

are different from our approach. Bias quantification has been proposed as a theoretical way to 

improve the estimator performance [21] but this remains impractical in meta-analysis because 

there is no definite relationship between a quality deficiency and the quantitative magnitude or 
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direction of bias in the study effect [11]. Our approach of using the additional information to 

model the component of between studies variance likely to be contributed by systematic error 

in individual studies is less problematic in this respect and clearly leads to gains in estimator 

efficiency as demonstrated here.   

A final point is that the QE model remains robust to variability in quality assessment 

down to the point of completely random assessment of quality. When the latter happens, the 

MSE and variance of the QE estimator will tend to equal that of the RE estimator and its CI 

coverage will drop too. However, the latter does not occur on the magnitude seen with the 

conventional random effects model estimator. Figure 2 depicts the contrast between the 

performance under the QE model with random quality input (QE-r), the RE performance and 

the performance of true weights in the QE model (generated as the reciprocal of the sum of the 

simulated variances due to chance and bias for each study). It is seen that the MSE of the QE-r 

estimator equals that of the RE estimator while, as expected, the MSE with the true weights is 

the least and represents the best possible performance that an estimator can possibly have. 

The true weights also depict their expected property of zero bias and clearly maintained 

coverage at the nominal level (Figure 2).  

We conclude that the QE model of meta-analysis is a clear improvement over the RE 

model to handle heterogeneity when quality information is available. Alternatively, when 

quality information is lacking, the IVhet estimator can be used (see previous paper in this 

series) [3]. To facilitate use and further evaluation of this new and improved method, our 

software, MetaXL (available for free download at www.epigear.com), has been updated to 
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version 2.0 to run the QE model as well as the IVhet model and all other conventional models 

for comparison.  

FUNDING 

There was no external funding for this study. 

CONFLICT OF INTEREST  

JJB owns Epigear International Pty Ltd which sells the Ersatz simulation software used in this 
study.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

18 
 

 

Appendix 1: Computation of ˆ j  

In order to redistribute the inverse variance weights using  jQ , it first needs adjustment ( jQ )  

to prevent the possibility of negative weights as follows: 

 
 

1

1

if 1

( 1)

otherwise

k

j j

j

j j j
k

j

j

j

j

Q

Q Q Q
Q

k

Q









  
  
   

     
   

  
     







 

where 

  
1

1
j

j

j

Q
k




   

and k is the number of studies in the meta-analysis. From this ˆ j is then computed given by 

 
1

1

ˆ
k

j
j j jk

j
j

j

Q
k

Q

  







  
 

    


 




 

The advantage of using this correction to reduce estimator bias is indicated in the comparison 

of QE versus QE(-t) in panel C of Figure 1.    



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

19 
 

References 

 

 1. Doi SA, Thalib L. A Quality-Effects Model for Meta-Analysis. Epidemiology 2008; 19(1):94-100. 

 2. Doi SA, Thalib L. An Alternative Quality Adjustor for the Quality Effects Model for Meta-analysis. 

Epidemiology 2009; 20(2):314. 

 3. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the meta-analyis of heterogenous 

clinical trials I: The inverse variance heterogeneity model. Contemp Clin Trials 2015;In process. 

 4. Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med 2001; 20(6):825-

40. 

 5. Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat 

Med 2011; 30(28):3304-12. 

 6. Poole C, Greenland S. Random-effects meta-analyses are not always conservative. Am J Epidemiol 1999; 

150(5):469-75. 

 7. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7(3):177-88. 

 8. Overton RC. A Comparison of Fixed-Effects and Mixed (Random-Effects) 

Models for Meta-Analysis Tests of Moderator Variable Effects. Psychological Methods 1998; 3(3):354-379. 

 9. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc 

Ser A Stat Soc 2009; 172(1):137-159. 

 10. Doi SA. Evidence Synthesis for Medical Decision Making and the Appropriate Use of Quality Scores. Clin 

Med Res 2014; 12(1-2):40-6. 

 11. Greenland S, O'Rourke K. On the bias produced by quality scores in meta-analysis, and a hierarchical view of 

proposed solutions. Biostatistics 2001;  2(4):463-71. 

 12. Doi SA, Barendregt JJ, Mozurkewich EL. Meta-analysis Of Heterogenous Clinical Trials: An Empirical 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 
 

Example. Contemp Clin Trials 2011; 32:288-98. 

 13. Detsky AS, Naylor CD, O'Rourke K, McGeer AJ, L'Abbe KA. Incorporating variations in the quality of 

individual randomized trials into meta-analysis. J Clin Epidemiol 1992; 45(3):255-65. 

 14. Wedderburn RW. Quasi-likelihood functions, generalized linear models and the Gauss-Newton method. 

Biometrika 1974; 61:439-447. 

 15. Kulinskaya E, Olkin I. An overdispersion model in meta-analysis. Statistical Modelling 2014; 14(1) :49-76. 

 16. Li J, Zhang Q, Zhang M, Egger M. Intravenous magnesium for acute myocardial infarction. Cochrane 

Database Syst Rev 2007;(2):CD002755. 

 17. Al Khalaf MM, Thalib L, Doi SA. Combining heterogenous studies using the random-effects model is a 

mistake and leads to inconclusive meta-analyses. J Clin Epidemiol 2011; 64(2):119-23. 

 18. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Simulation Comparison of the Quality Effects and 

Random Effects Methods of Meta-analysis. Epidemiology 2015; DOI: 10.1097/EDE.0000000000000289 . 

 19. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat 

Med 2006; 25(24):4279-92. 

 20. Ha V, Sievenpiper JL, de Souza RJ et al. Effect of dietary pulse intake on established therapeutic lipid targets 

for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. 

CMAJ 2014; 186(8):E252-62. 

 21. Thompson S, Ekelund U, Jebb S et al. A proposed method of bias adjustment for meta-analyses of published 

observational studies. Int J Epidemiol 2011; 40(3):765-77. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 
 

Figure legends 

Figure 1: The left (A – D) and right (E – H) panels are based on an effect size of OR = 0.4 and OR 

= 4 respectively. The panels depict MSE (A & E), variance (B & F), bias squared (C & G) and 

coverage probability (D & H). The MSE (A & E) is lowest for the QE model estimator and the 

effect of adding ˆ j  (QE) or not (QE(-t)) is shown. The QE estimator (in contrast to the QE(-t) 

estimator has much less bias leading to a lower MSE.  

Figure 2: The left (A – D) and right (E – H) panels are based on an effect size of OR = 0.4 and OR 

= 4 respectively. The panels depict MSE (A & E), variance (B & F), bias squared (C & G) and 

coverage probability (D & H) for the true weight used in the simulation (QE true; where ˆ
j

j

j

Q



  

was replaced with 
2

1

j j 
) and a simulation where a random quality (out of 10) was input into 

the model (QE-r). The MSE (A & E) is lowest for the QE true model estimator and the effect of 

using a random quality is shown. The QE true model has no bias while the random quality leads 

to deterioration in coverage of the QE estimator, but nowhere as near to what is seen with the 

random effects estimator. 

Figure 3: The magnesium meta-analysis results are depicted. The IVhet model (A) favours larger 

studies and has a larger uncertainty around the point estimate. With the addition of quality (B) 

there is less uncertainty and the point estimate does not simply favour larger studies and 

indeed suggests a trend towards some effect. When the random effects model is used (C), 

there is clearly an effect, but this is because it underestimates the statistical error and thus we 

have an overconfident result. Forest plots created using MetaXL version 2.0 

(www.epigear.com). 

Figure 4:  Example from a 2014 meta-analysis by Ha and colleagues [20] on the effects of pulse 

intake on serum LDL levels. The IVhet model (A) demonstrates no significant effect but taking 

quality into consideration (B) suggests that there is indeed an effect as the uncertainty 

decreases. The random effect model (not shown) concurs with the QE result, but simply 

because it tends to underestimate the statistical error. Forest plots created using MetaXL 

version 2.0 (www.epigear.com). 
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Table 1: Summary of the Two Methods* 
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Pooled effects 
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ˆ ˆ
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Variance of 
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2
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1

ˆvar( ) ( )
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QE jj
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Comments More fully specified model Quasi-likelihood model 

*For abbreviations or expansion of the notation please see the text 
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Figure 1 
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Figure 2 

A)      E) 
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Figure 3 
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Figure 4 

 


