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Abstract 
 
The application of NMR spectroscopy to study the structure, dynamics and function of 
macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional 
NMR time-response from the spectrometer is extended to additional dimensions by introducing 
incremented delays in the experiment that cause oscillation of the signal along “indirect” 
dimensions. For a given dimension the delay is incremented at twice the rate of the maximum 
frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records 
sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in 
sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR 
spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-
Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset 
of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to 
improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional 
uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily 
dependent on the distribution of points in the random subset acquired. Typically, random points are 
selected from a probability density function (PDF) weighted according to the NMR signal envelope. 
In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in 
poor reproducibility, i.e. when two experiments are carried out where the same number of random 
samples is selected from the same PDF but using different random seeds. Here, a jittered sampling 
approach is introduced that is shown to improve reproducibility of multidimensional spectra 
generated from NUS data, compared to commonly applied NUS methods. It is shown that this is 
achieved due to the low variability of the inherent sensitivity of the random subset chosen from a 
given PDF. Finally, it is demonstrated that metrics used to find optimal NUS distributions are 
heavily dependent on the inherent sensitivity of the random subset, and such optimisation is 
therefore less critical when using the proposed sampling scheme. 
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Multidimensional NMR experiments are a prerequisite in the study of complex biomolecules. 
Introduction of isotope labelling and the design of triple resonance experiments have been critical in 
establishing the biomolecular NMR field [1]. Recent improvements in spectrometer hardware, 
including ultra-high field and cryogenically cooled probes have significantly improved the 
sensitivity of multidimensional NMR experiments, making NMR a routine method for structural 
studies of biomolecules. 
 As the application of NMR to study biomolecules increases so does the pressure on 
improving the throughput of multidimensional experiments. The 1D NMR signal, which is acquired 
in real time, is extended to multiple dimensions by iteratively incrementing delays in the 
multidimensional experiments to generate additional “indirect” dimensions. The length of the data 
record along each indirect dimension (evolution time) dictates the resolution attainable in that 
dimension. However, accurate processing of the time domain data into a frequency spectrum using 
the Fourier transform requires sampling of the time domain at uniform intervals at twice the rate of 
the highest frequency signal (Nyquist rate). Thus, in order to obtain high-resolution spectra it is 
necessary to sample the time domain at uniform intervals and for a long time period. These 
constraints result in very long acquisition times to generate high-resolution multidimensional NMR 
spectra. Typically up to ten 3D experiments are required to solve the structure of a protein, each 
requiring days of spectrometer time to achieve the necessary resolution.  
 To increase the throughput of NMR experiments several methods have been introduced that 
aim to reduce the acquisition time by relaxing some of the above-mentioned sampling requirements 
[2]. Perhaps the most general of these is by non-uniform sampling (NUS) of the time domain data. 
This can be considered as sub-sampling the complete time domain grid as dictated by the Nyquist 
condition (Nyquist grid). Omission of sample points results in a compressed dataset and it has been 
shown that if the information content (number of signals) is sparse it is possible to faithfully 
reconstruct the frequency domain spectrum from such a sparse dataset using various non-Fourier 
processing methods, including maximum entropy reconstruction [3], CLEAN [4], multidimensional 
deconvolution [5], multidimensional FT [6], iterative soft thresholding [7]  and compressed sensing 
[8, 9]. 

NUS is primarily used to reduce the required experiment time, such that high-resolution 
spectra can be obtained from an NUS subset [10]. Alternatively, NUS can be used to boost the 
sensitivity of NMR experiments by acquiring more repetitions of the experiment whilst sampling 
fewer time points. Under particular conditions it is possible to boost both sensitivity and resolution 
by use of NUS [11-13]. 

The spectra generated from NUS data are to an extent dependent on the processing method 
used, but are also to a large extent dependent on the distribution of the sampled points. For example, 
it has been shown that the characteristic ridge artifacts associated with back-projection 
reconstruction (BPR) are due to the distribution of the samples in the time domain, and are present 
in spectra generated by other reconstruction methods [14].  

The significant impact of the sampling distribution on the reconstructed spectrum has led to 
various approaches aimed at optimising the distribution of NUS data. Certain trends have become 
apparent, including results showing that periodicity in the distribution leads to prominent artifacts, 
which can be effectively reduced by introducing disorder [15]. There is, however, no consensus on 
an optimal sampling method. The earliest and perhaps most robust approach to NUS is random 
sampling from an exponential probability density function (PDF) that mimics the natural decay of 
the NMR signal [16]. This is analogous to a window function with a decay rate corresponding to the 
linewidth of the NMR signal (matched filter). In analogy to windowing of NMR signals, applying 
decay rates that are slower than that of the measured signal result in sharper signals (narrow 
linewidth) but noisier spectra, whilst applying decay rates faster than those of the measured signal 
produce higher sensitivity spectra with lower resolution (broad linewidth) [17]. The choice of decay 
rate is, therefore, in much the same way as with window functions, dependent on the experiment. 
More recent studies have explored the potential for improving sensitivity by non-uniform sampling 
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using different PDFs and formal relationships between these distributions and their intrinsic 
sensitivity have been derived [18].  
 The above procedure provides an avenue for comparing the relative sensitivity of different 
PDFs, however, it does not provide any information on how variable the results are where different 
random subsets are chosen from the same PDF. For example, where the Nyquist grid is defined, and 
a defined number of samples are drawn from a given PDF, there remains a random seed dependent 
variation in the distribution of the samples drawn, which is only dependent on the random seed used. 
This variability becomes particularly pronounced where the data is heavily under-sampled and 
raises reproducibility issues when NUS is applied to multidimensional NMR experiments. It is for 
example possible that if an NUS experiment is reported in the literature together with all the 
relevant parameters used to generate the random subset, the same results may not be replicated 
independently without knowledge of the actual subset drawn (commonly referred to as the sampling 
schedule).  
 It is generally accepted that this random seed dependent variability can be very significant, 
to the point where it has become a common approach to optimise NUS schedules using random 
search (e.g. Monte Carlo) approaches. The optimisation is carried out by defining a given quality 
measure of the sampling distribution (or in a transform space of that function), which is 
subsequently used to rank a large number of generated schedules [19]. The quality measure is 
commonly evaluated based on the point-spread-function (PSF) of the sampling function.  
The sampling function is a binary function where ones are used to denote sampled points and zeroes 
represent omitted data points in a predefined Nyquist grid. The Fourier transform of the sampling 
function then results in the PSF. The PSF contains a signal at 0 Hz frequency and sampling noise 
outside of this frequency. The artifacts due to NUS in experimental data originate from the 
convolution of the PSF with the measured NMR signals. Thus, the intensity and distribution of the 
sampling noise serves as a useful tool in evaluating different sampling functions. To date there is no 
universal measure of the quality of a PSF and common metrics used, include the peak to side-lobe 
ratio (the ratio between central component of the PSF and the most intense artifacts) and the level of 
sampling noise in some region of the PSF [10]. The lack of a consensus quality metric will 
inevitably lead to disagreement about the appropriateness of any given metric used.  

Several pseudo-random sampling methods including jittered, Poisson disc and Poisson gap 
sampling have been suggested that also reduce the random seed dependent variability of the 
sampling noise [19-22]. The jittered sampling and Poisson based (gap and disc) sampling 
approaches are closely related. The Poisson disc method imposes the highest degree of order on the 
distribution of sampling points. The method can be described as sampling a particular point and 
then imposing a region about this point that may not contain another sample, successive samples are 
added in “allowed” regions until the required number of points have been selected. In the extreme 
case this can become a problem, for example, when exactly half the points in a discrete 1D series 
(spaced uniformly) are to be retained randomly, the method would necessarily retain every other 
point (either with the first point sampled or not), resulting in perfect aliasing.  

To overcome this limitation, the Poisson gap method ensures sampling points follow a 
Poisson distribution [f(k;λ) = (λke-λ)/k!], i.e. that the probability of finding a sample point in a given 
region adheres to a Poisson distribution. It is therefore possible to sample two adjacent points, albeit 
with a low probability [21]. This sampling method, as introduced to NMR by Hyberts et al., is 
further weighted to produce a sine-weighted distribution (0 to sin(π) over the desired Nyquist grid). 
The use of the sine weighting penalises values having high values of sin(x), thus it can be 
considered to impose a PDF having a π/2 shifted sine function. This distribution was motivated by a 
desire to avoid gaps at the beginning and end of the sampling schedules, which were anecdotally 
considered to be particularly bad when processing NUS data using forward maximum entropy (FM). 
The weighting was then modified to span 0-sin(π/2) for exponentially decaying NMR signals 
resulting in a distribution very similar to an exponentially weighted distribution (albeit with a 
Poisson distribution). In 2D, the Poisson gap method can be extended by employing the 1D Poisson 
gap algorithm along individual rows and columns, in a “woven” manner [23]. However, as each 
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column/row is treated individually, there is no constraint to adhere to a Poisson distribution between 
rows, thus the distribution in 2D does not necessary result in sampling points drawn from a Poisson 
distribution. 

The implementation of jittered sampling in NMR by Kazimierczuk et al. divides the time 
domain into square segments [20]. The number of segments, referred to as cells, determines the 
number of samples, and the size of each cell in turn depends loosely on the PDF. The method is an 
off-grid method and samples are allowed to occur at an arbitrary position inside the defined cell. It 
is unclear how the PDFs are related to the cell sizes and how this would behave for complex 
multidimensional PDFs with different weighting along different dimensions. 

All of the above methods have the desirable property that they reduce the seed dependent 
variability of the sampling schedules, be it with some caveats. The Poisson based methods reduce 
the inherent disorder in the sampling, ultimately leading to aliasing in the extreme case. Whilst the 
Poisson gap sampling method overcomes this to an extent in the 1D case, it is unclear how the 
current implementation achieves a Poisson distribution in the multidimensional case. The Monte-
Carlo method is an appealing approach but in the absence of definitive quality measures it is 
difficult to optimise.  

Here a general algorithm is introduced based on jittered sampling, which is appropriate for 
on-grid sampling and applicable to arbitrary PDFs along arbitrary number of dimensions. The 
algorithm does not segment the PDF into regions using defined geometrical shapes but instead 
defines regions based on the underlying PDF. Notably, this treatment ensures that all NUS 
distributions based on the same PDF have nearly identical inherent sensitivity. The performance of 
the algorithm is compared in the one-dimensional case to random exponential sampling as well as 
Poisson gap sampling through analysis of the PSFs generated by the different approaches.  

Examples of jittered sampling in experiments with two indirect dimensions are 
demonstrated (3D experiments). The approach provides a robust general method for non-uniform 
sampling with minimal seed dependence whilst introducing minimal order in the sampling. Using 
experimental data, it is shown that the proposed jittered sampling method improves the 
reproducibility of NMR experiments where NUS is applied. 
 

 
2. Theory & Methods 
 
Random samples from a probability distribution 
 
The sampling schedules are generated based on the single pass method described previously [24]. 
First, a Nyquist grid is defined, consisting of L dimensions each having Tk points along the kth 
dimension. The total size of the grid (N) is defined by the product of the number of points along 
each dimension: 
 

 𝑁 = ∏ 𝑇%&
%'( 			     (1) 

 
The distance between adjacent points in each dimension is defined by the dwell time Dk (equivalent 
to 1/swk, where swk is the spectral window/width along the kth dimension). The probability (p(i)) 
associated with each point (i) on the Nyquist grid is calculated based on the desired PDF, i.e. 
exponential decay for regular NMR acquisition: 

 

𝑝(𝑖) = ∏ 𝑒
/01234 5346&

%'( 			    (2)
  

where  and  are the linewidth and spectral window in the kth dimension, respectively, and 
the equation may be further altered to include, for example, J modulation. The single pass method 
described previously then calculates a rank for each point r(i) according to: 
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 𝑟(𝑖) = 𝑥(𝑖)
(
9(0)6      (3) 

 
where x(i) is a random number between 0 and 1. The rank r(i) is then sorted in descending order. 
The number of points subsampled from N is defined as m, where m ≤ N. In the single pass approach 
the top m points would represent random points from the defined exponential distribution. When 
samples are selected from an exponentially decaying PDF according to the ranks of Eq. 3, it is 
referred to here as exponential random sampling (ERS).  
 
Jittered sampling from a probability distribution 
 
The jittered sampling approach implemented here, is suitable for any arbitrary PDF for arbitrary 
number of dimensions. First p(i) are normalised within the bounds of the space such that the sum of 
all weights is equal to 1 producing normalised weights: 

 
 𝑝′(𝑖) = 9(0)

∑ 9;<
;=>

    

 (4) 
 

The probability space is then divided into m parts, where 1/m defines the total probability of each 
region. Within each region a point is selected either randomly or according to its rank as defined by 
Eq. 3. In practice the algorithm is implemented as follows: 

 
Algorithm. Steps involved in drawing jittered samples from a multidimensional, weighted 
probability distribution. 
 
After each region is defined a residual remains which is the difference between the sum of the 
probability (as defined by 𝑝′) of all points in that region and 1/m. The residual is carried over and 
used to redefine the region sizes for the remaining iterations, this ensures that rounding errors are 
not propagated. Also note that 1.c.ii uses the probability as defined in Eq. 3, this will ensure that the 

The Nyquist grid as defined above by the elements of 𝑝′(𝑖), is segmented into jittered regions. 
The jittered regions are each a subset of the Nyquist grid. Each jittered region is defined by 
selecting points form the Nyquist grid according to the below algorithm, where Y is a temporary 
array that is filled with elements (coordinates) until a region is defined.  

 
1. Pick the point yj with the highest probability as defined by 𝑝′ and add this to Y.  

a. Identify the neighbours of yj (coordinate preceding or following yj along each 
dimension on the Nyquist grid) 

b. Pick the neighbour of yj with the highest probability from 𝑝′ and stores this as yj+1. 
i) If multiple points have the same (highest) probability then pick the one closest 

to the centroid of Y 
c.  Calculate the sum of probabilities of all elements of Y including the contribution of 

yj+1.  
i) If inclusion of (yj+1) results in a total probability that is closer to 1/m then add 

yj+1 to Y, increment j and repeat from a (i.e. find neighbours of added point).    
ii) If c.i) is not true, then the elements of Y define a jittered region. Pick the point 

from Y with the highest rank (as defined in Eq. 3), store the coordinates of this 
point in the sampling schedule. Remove all elements of Y reset j to 1 and 
remove all points defined in this region from the Nyquist grid, so that these 
cannot be reselected in subsequent regions. If there are any points left on the 
Nyquist grid define a new region by returning to 1. 
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probability distribution is also taken into account within each region. In the 1D case if a large 
proportion of the defined grid is sub-sampled, this can increase the probability of generating strong 
aliasing artifacts, thus in 1D, the samples are here simply taken as a random point in each region. In 
the software implementation of the algorithm, this is treated as a user defined parameter (which 
practically, involves modification of Eq. 3 to produce random ranks). Where jittered sampling is 
applied to an exponentially decaying probability distribution according to Eq. 2, it is referred to as 
“exponential jittered sampling” (EJS). 
 Extension of the above algorithm to multiple dimensions is straightforward although two 
slight modifications are made. To avoid cases where a small region is confined between already 
defined regions such that it does not have any further neighbours, the points in that region are 
merged with a neighbouring region; again the appropriate residual probability is used to redefine 
region sizes in subsequent iterations (same is true if a point is not assigned to a region). Finally, at 
step b.i. the point closest to the centroid of the region is only calculated where two neighbours have 
the same probability, this leads to narrow regions for any weighted PDF. To avoid this, a threshold 
probability difference (set by default to 1/N) between the evaluated points is defined, and points 
within this threshold are considered in step b.i. to be equal and the one closest to the centroid of the 
region is chosen.  
 
 
Relative sensitivity & resolution of a sampling schedule 
 
Comparison of different sampling schedules generated using different NUS methods, e.g. Poisson 
gap sampling vs random sampling, requires that these have comparable properties, in particular with 
respect to sensitivity and resolution. Various measures have been proposed for measuring the 
relative sensitivity of a sampling schedule. Rovnyak et al. have shown that where the probability 
function of NUS data can be defined precisely it is possible to derive an analytical solution to SNR 
enhancement for different weighting functions [25]. The decay function of Poisson gap sampling is 
complicated by the adjustable weighting parameter (w) that ensures Poisson distribution of the 
generated points without strictly requiring these to adhere to the specified weighting function [21]. 
It is therefore difficult to define the PDF of Poisson gap sampling hence also defining an 
exponential weighting scheme that would be equivalent to a particular Poisson gap sampling 
scheme.  
 Instead comparable schedules may be defined as having the same relative sensitivity as 
described previously [18]: 

 

      𝑅(𝑲) = ∑ %;9;<
;=>
∑ 9;<
;=>

    (5) 

  
where K is the sampling function, ki has the value 1 for sampled times and zero for times not 
sampled and pi is as defined in Eq. 2. R(K) is a good measure of sensitivity but it does not take into 
account the contribution from the experimental noise. For example, consider the case where a 
Nyquist grid is defined as having 100 points but where the first 10 points contain the entire 
probability density (points 11 to 100 have 0 probability of containing a signal). In this case it does 
not matter if one sub-samples the first 10 points or all 100 points, the value of R(K) is 1 when using 
Eq. 5. In reality the latter case, where all 100 points are sampled, would also result in a higher noise 
contribution, which is not reflected in R(K). To overcome this issue, R(K) is here scaled by N/m, 
such that R’(K) = R(K)×(N/m). Using the modified R’(K) function it is now possible to distinguish 
the two cases above, such that if the first 10 out of 100 points are selected and these contain all of 
the probability, R’(K) becomes 10. That is, a factor of 10 difference (in time savings) when only 
sampling the first 10 points compared to sampling all 100 points.  

The R’(K) measure does, however, not reflect the resolution enhancement achieved by the 
NUS scheme. A suitable measure of resolution enhancement should take into account the 
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distribution of the samples, in particular with respect to the proportion of samples at long evolution 
times. Here the average and median evolution times (Aev and Mev respectively) are proposed as 
useful metrics for measuring the resolution enhancement achieved by a sampling schedule. These 
parameters are further normalised by dividing them by the longest evolution time as defined by the 
Nyquist grid (Tk). This results in a value that will always be between 0 and 1, where values towards 
0 reflect a sampling schedule with low resolution enhancement, whilst values close to 1 reflect 
those providing a high level of resolution enhancement, and a linear sampling scheme that samples 
all points until N will produce a value of 0.5.  

Although the decay parameters (related to ) of EJS and ERS can be adjusted to achieve 
the same relative sensitivity as measured by R’(K), this cannot be achieved while maintaining 
similar resolution parameters (Aev and Mev). Here, we will compare different sampling strategies 
(e.g. ERS vs EJS) by adjusting the variable parameters (e.g. ) until the same relative sensitivity, 
R’(K), is achieved. Aev and Mev will be reported to reflect differences in the distribution of points 
between the different approaches. 

 
Approximation of sine weighted Poisson-gap sampling 
 
As previously described, the schedules generated using PS are sine weighted and thus have a 
stronger weighting at short and long evolution periods. Thus, although an EJS/ERS sampling 
schedule with the same relative sensitivity, R’(K), as PS can be produced, it will not have a similar 
distribution as defined by Aev and Mev. Instead the distribution of PS can be emulated in EJS and 
ERS by introducing a shifted sine weighting, attenuating the PDF (Eq. 2) by scaling down the 
central region. The following function:  
 
     𝛼	sinF 𝜋 H(

I
+ 0

K
L + (1 − 𝛼)    (6)  

 
when multiplied by Eq. 2 was found to yield sampling schedules with distributions in close 
agreement with those generated by the PS (see Fig. 1). The α parameter in the above equation is a 
real valued scaling, determining how much the central region of the probability distribution will be 
scaled down. The β parameter is an even integer and determines the width of the central region 
being scaled down. Where Eq. 6 is applied to EJS the sampling function is referred to as sine-
weighted exponential jittered sampling (SEJS). 
 Where sine weighting is applied to multiple dimensions the product of Eq. 6 along each 
dimension results in a weighting that has the highest probability at the intersection of the extremes 
of each time axis (or corners of the multidimensional object).  The purpose of the sine weighting is 
to increase the probability at the edges of the object not the corners. In the implementation used 
here this is achieved by evaluating Eq. 6 for all dimensions of the multidimensional object and only 
multiplying Eq. 2 by the highest value. 
 
Sampling artifacts and the point-spread-function 
 
The PSF serves as a useful tool to predict the distribution and intensity of the artifacts related to 
NUS. A common measure proposed for quantitating the noise content of a PSF is the peak-to-
sidelobe ratio (PSR). However, this does not provide a good measure of the total noise present, 
instead it provides a measure of the highest amplitude artifact to be expected from each signal in the 
spectrum. To provide a measure for the total noise associated with the PSF, the average of the 
magnitude spectrum was calculated (which can also be considered to be the average of the 
Euclidian norm of the complex numbers or the average l1 norm of the magnitude spectrum): 
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where Re and Im are the real and imaginary components of the PSF. We also note that the 0 Hz 
frequency signal should be excluded. The width of this signal is dependent on the distribution of the 
data points and is loosely related to the average and median evolution times (as defined above). The 
width was evaluated manually to ensure that only the “noise” was included in sidelobe part of the 
PSR and the 𝑀PQRS  parameters. The standard deviation σPSF from the 𝑀PQRS  was also calculated. The 
moving average as defined recently [26] was also calculated, however, this produced trends in close 
agreement with the 𝑀PQRS  parameter and was not considered further.  
 
Methods 
 
The jittered sampling algorithm as well as sine weighting of the PDF were incorporated into a 
computer program called sched3d (version 5), written in C [24]. All synthetic data were generated 
using the Rowland NMR toolkit version 4 (http://rnmrtk.uchc.edu/rnmrtk/RNMRTK.html). Spectra 
were plotted using the functions within the Rowland NMR toolkit. The heat map representation of 
the jittered regions was generated using Gnuplot (http://www.gnuplot.info). The spectrometer 
implementation (on a Bruker spectrometer running Topspin 3.0,) of this code was done using an AU 
program called nus_mm.be. Sched3d5 and nus_mm.be are available from the author upon request. 
The script generates a set of prompts for user input related to the variations of jittered sampling as 
described above (e.g. linewidth parameters and sine-weighting), whilst reading the appropriate 
parameters from the experiment (Nyquist grid size, spectral windows etc.). These parameters are 
compiled and used to generate a sampling schedule that is stored appropriately for execution of the 
experiment.  The experimental data was generated as previously described [14] from a 
commercially obtained (AVR) sample of uniformly 15N/13C labelled ubiquitin at a concentration of 
~1mM and a pH of 6.5 at nominal 1H frequency of 600 MHz on a Varian spectrometer equipped 
with a cryogenically cooled probe. This data was processed using the maximum entropy 
reconstruction method as implemented in the Rowland NMR toolkit. 
 
3. Results 
 
1D schedules 
  
The 1D Poisson gap sampling code as published previously [21] was used to generate a series of 
Poisson distributed sampling (PS) schedules, where 128 points were subsampled from a total of 512 
points. The spectral parameters used were a sw of 6000 Hz and at a spectrometer frequency of 600 
MHz (resulting a 10 ppm window). The average of R’(K), as well as Aev and Mev were monitored 
over 1000 generated schedules. This resulted in average values of  R’(K) = 1.23 (±0.01), Aev = 0.34 
(±0.01) and Mev = 0.25 (±0.02). Two other sets of 1000 sampling schedules were generated, one 
using ERS and another using EJS (as described above). The lw parameters for ERS and EJS were 
adjusted to produced average R’(K) parameter matching those of PS (see Table 1). The lw 
parameters were found to be 9.5 and 8.2 Hz for ERS and EJS respectively. Two further sets of 1000 
schedules were generated using SEJS, both adjusted to have average R’(K) parameters  matching 
those of PS. The first, “SEJS1”, was chosen to approximate the sample distribution of PS as 
described by Aev and Mev and the second, “SEJS2”, further exaggerates the sine-weighting at early 
and late evolution times. SEJS1 was generated using α and β parameters of 0.6 and 8 (Eq. 6) 
together with a lw parameter of 5.5 Hz (Eq. 2). SEJS2 was generated using α and β parameters of 
0.7 and 12 respectively, and an lw parameter of 4.9 Hz. The various metrics for these schedules are 
also summarised in Table 1. 

Fig. 1 shows plots of a representative sampling schedule generated with the above 
parameters for ERS (blue diamonds), PS (green triangles), EJS (black squares), SEJS1 (orange 
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pluses) and SEJS2 (red dots). As can be seen that the EJS method mimics the distribution of ERS 
whilst SEJS1 follows that of PS well, finally we can see that SEJS2 further enhances the sine 
weighting seen in PS.  
 

 
Figure 1 The sampling schedule is a vector containing the coordinates to be sampled along a 

predefined Nyquist grid. The sampling schedule for different NUS schemes are 
plotted, with the index of the point being sampled on the y-axis and the index of the 
sampling schedule on the x-axis. Exponentially weighted random sampling (ERS) is 
represented by blue diamonds, exponentially weighted jittered sampling (EJS) by 
black squares, sine and exponentially weighted jittered sampling which 
approximates Poisson gap distribution  (SEJS1) by orange pluses, sine and 
exponentially weighted jittered sampling which exaggerates the sine weighting of 
Poisson gap distribution  (SEJS2) by red dots and Poisson-gap sampling (PS) by 
green triangles. 

 
Table 1 The average and standard deviation of sampling schedule related parameters. 1000 

sampling schedules were generated using different random seeds for five different 
NUS approaches. ERS: random samples from an exponentially decaying probability 
distribution. EJS: jittered random samples from an exponentially decaying 
probability distribution. PS: Poisson gap sampling with shifted sine weighting. 
SEJS1: jittered random samples from an exponentially decaying probability 
distribution augmented with a shifted sine weighting. SEJS2: same as SEJS1 but 
with different decay and sine weighting. 

  
ERS EJS PS SEJS1 SEJS2 

R’(K) 1.23 1.23 1.23 1.23 1.23 
St. dev. 0.03 0.00 0.01 0.00 0.00 
Aev 0.33 0.33 0.34 0.35 0.35 
St. dev. 0.02 0.00 0.01 0.00 0.00 
Mev 0.27 0.27 0.25 0.23 0.22 
St. dev. 0.03 0.00 0.02 0.00 0.00 

The data in Table 1 shows that although the mean of R’(K) is kept the same for all NUS 
approaches, ERS has a much  higher standard deviation of R’(K) values about the mean compared 
to EJS. This reflects the random seed dependence of ERS and suggests that it is significantly 
reduced in EJS. This large variation can lead to significant differences in the spectra generated from 
the extremes of the distribution. To exemplify this the sampling schedule resulting in the highest 
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and lowest value of R’(K) for ERS and EJS were compared (Fig. 2). The results show that larger 
seed dependent variation of R’(K) when using ERS leads to noticeable difference in the PSF. In 
contrast the low variation of R’(K) when using EJS, results in little seed dependent change of the 
PSF. When these differences are quantified a correlation between the sampling schedule realted 
parameter R’(K) and the PSF related parameters of resolution (linewidth) and  sensitivity (𝑀PQRS) 
can be seen. 
 
 

 
 
Figure 2 Random seed dependence of relative sensitivity, as measured by R’(K), for ERS 

(A/C) and EJS (B/D) sampling. 1000 sampling schedules were generated with 
identical parameters but different random seeds. The PSFs corresponding to the 
sampling schedules with the lowest (A/B) and highest (C/D) R’(K) are shown. The 
sampling strategy as well as R’(K), the measured linewidth (lw) of the central 
component, the peak-to-sidelobe ratio (PSR) and the average of the magnitude 
spectrum (𝑀PQRS) is reported in all cases. The inset shows an expansion of the central 
component (shaded). The dashed line is at the same relative position in all windows 
and marks the highest amplitude artifacts across all four PSFs.  

 
 The seed dependent variation of R’(K), Aev and Mev is further shown for the first 100 
schedules of the 1000 schedules generated (Fig. 3). In all cases the jittered sampling methods show 
very little seed dependence, whilst PS shows slightly less variation then ERS. Compared to ERS 
and EJS the sine-weighted sampling methods (PS, SEJS1 and SEJS2) consistently show higher 
median evolution times and lower average evolution times, consistent with these having a 
distributions skewed to the right. There is also a very clear correlation between the relative 
sensitivity, R’(K), and the average evolution time Aev for ERS and PS, which is not present for the 
jittered sampling methods (due to the small seed dependence of these parameters). The correlation 
between R’(K) and Aev suggests that the higher sensitivity of certain PS/ERS schedules is related to 
increased sampling at early time points and is therefore also likely to result in increased linewidths, 
hence lower resolution. 
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       Figure 3 Sensitivity (R’(K)) and resolution parameters (Aev and Mev) plotted for the first 100 

schedules (of 1000) generated for the five different approaches to NUS discussed 
(ERS, EJS, PS, SEJS1 and SEJS2). 

 
For each of the 1000 sampling schedules generated for each NUS approach the PSF of the 

corresponding sampling function was calculated. The 𝑀PQRS , σPSF and PSR parameters were 
calculated for each PSF and the average and standard deviation of these values are given in Table 2 
and summarised in Fig. 4. In contrast to the sampling schedule dependent parameters it can be seen 
that the variation of the various parameters about the mean is similar in all cases. The skewed 
distributions of the sine-weighted sampling approaches correlate with reduced noise content as 
measured by 𝑀PQRS  and σPSF as well as increased sensitivity as measured by PSR. There was also a 
noticeable trend between the 𝑀PQRS  and the σPSF,, especially clear for the jittered sampling 
approaches. This suggests that a reduction of the average sampling noise is associated with a larger 
spread of the noise amplitudes about the mean, which is likely a manifestation of Parceval’s 
theorem. Furthermore, there is a correlation between the relative sensitivity of the sampling 
schedule as measured by R’(K) and the sampling nosie level as measured by the 𝑀PQRS  for all non-
jittered approaches. This is consistent with gains in sensitivity in the PSF beign related to denser 
sampling of earlier time points. 
 
 
Table 2 The average and standard deviation of PSF related parameters. 1000 sampling 

schedules were generated using different random seeds for five different NUS 
approaches (same as Table 1). The PSF of these schedules was calculated and used 
to derive statistics of sensitivity related parameters. ERS: random samples from an 
exponentially decaying probability distribution. EJS: jittered random samples from 
an exponentially decaying probability distribution. PS: Poisson gap sampling with 
shifted sine weighting. SEJS1: jittered random samples from an exponentially 
decaying probability distribution augmented with a shifted sine weighting. SEJS2: 
same as SEJS1 but with different decay and sine weighting. 
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ERS EJS PS SEJS1 SEJS2 

PSR  5.32   5.09   5.38   5.38   5.61  
St. dev.  0.54   0.52   0.54   0.54   0.54  
𝑴P𝑷𝑺𝑭  0.51   0.52   0.51   0.51   0.50  
St. dev.  0.01   0.01   0.01   0.01   0.01  
σPSF  0.28   0.29   0.28   0.28   0.27  
St. dev.  0.01   0.01   0.01   0.01   0.01  
 
 

 
Figure 4 Plot on left shows the correlation between the average and standard deviation of the 

sampling related noise (from the PSF). The plot on the right shows the correlation 
between the average of the sampling related noise and the sensitivity of the 
corresponding sampling schedule as measured by R’(K). The plots are based on the 
first 100 schedules (of 1000) generated for the five different NUS approaches to 
NUS described (ERS, EJS, PS, SEJS1 and SEJS2). 

 
 The PSF with the best (highest) and worst (lowest) PSR for each method was identified and 
is shown in Fig. 5. As discussed above the PSR was taken as the ratio between the 0 Hz frequency 
component and the highest artifact outside the peak region. A total of 20 points (~200 Hz) either 
side of the 0 Hz frequency component were excluded such that data points making up the linewidth 
introduced by the exponential weighting of the sampling schedules would not be included as 
artifacts.  It can be seen that for the ERS scheme this has led to the selection of a schedule that has 
strong artifacts in this region (note this is about a third of the shaded region in Fig. 5). For the 
jittered and Poisson methods the PSFs of the schedules that generate the worst PSRs have strong 
spikes at the extremes of the spectral window, these artifacts are due to the pseudorandom nature of 
the sampling by these method. In extreme cases these pseudorandom methods impose order on the 
sampling schedule, which on the one hand shifts the artifacts to extreme frequencies, and on the 
other hand concentrates these at frequencies where aliasing artifacts would be expected. There is a 
known relationship between oversampling, NUS and aliasing, which has been discussed in detail 
previously [17, 27, 28]. It should be noted that the amplitude of the strongest artifacts in all cases is 
comparable regardless of the method used. 
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Figure 5 The figure shows PSFs generated from the different sampling schemes tested here. 

The top panels show the PSFs of the schedules that generated the highest (best) 
PSRs and the bottom panels show the schedules that generated the lowest (worst) 
PSRs. The NUS approach used is given at the top left of each column. The inset 
shows an expansion of the shaded area. Note that although the sampling noise level 
and the magnitude of the largest artifacts are comparable in all cases, the pseudo-
random nature of Poisson-gap and jittered sampling methods result in the largest 
artifacts being shifted to the extremes of the spectral window, whilst conversely the 
region near the central component contains the smallest artifacts. The dashed line 
marks the highest amplitude artifacts across each row of PSFs. 

 
 
2D schedules 
 
The jittered sampling algorithm discussed above is easily extendable to multiple dimensions. The 
multidimensional implementation is exemplified here by generation of a number of 2D sampling 
schedules with different probability distributions (see Fig. 6). The figure shows exactly 512 jitter 
regions each having a different colour according to a heat map going from black to purple, red and 
finally yellow. The heat map colouring is also consistent with the probability density, going from 
high to low probability according to the above order. The black region will contain the point in the 
PDF that has the highest probability weighting (in the case where there is no weighting the order is 
based on the evolution time going from low to high, along each dimension).  

Each heat map plot has the same number of jitter regions of the same colour. All regions are 
approximately equiprobably, containing ~1/512 of the total probability density. The size of each 
jitter region is therefore dependent on the probability of the points it encompasses, such that regions 
containing parts of the PDF with a high probability weighting will be smaller and areas of the PDF 
that have a low probability weighting will be larger. Note that exactly one sample is taken from 
each region, such that areas containing large jittered regions will be sampled less densely than areas 
containing many small regions.    

To demonstrate how the sampling regions are modified depending on the underlying PDF, a 
synthetic Nyquist grid was defined with 64 x128 points in dimensions 1 and 2 with spectral widths 
of 2000 and 16000 Hz in each dimensions. These parameters were chosen to mimic a standard triple 
resonance experiment with or without constant time acquisition in the two indirect dimensions (e.g. 
HNCACB at 900 MHz). In each case 512 points were subsampled from the 8192 available points 
(6.25%). Four scenarios were tested each having a different PDF; i) with no weighting in either 
dimension ii) exponential weighting in only dimension 2, corresponding to a linewidth of 50 Hz iii) 
exponential weighting in both dimensions, corresponding to linewidths of 20 and 50 Hz in 
dimensions 1 and 2 and finally iv) sine weighting as defined by Eq. 6, using α and β parameters of 
0.6 and 8, in both dimensions (see also section Approximation of sine weighted Poisson-gap 
sampling for implementation of sine weighting in 2D). The sine weight parameters were the same 
as those used in the 1D case (SEJS1) to mimic the weighting of the Poisson gap sampling method. 
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Figure 6 The figures shows the distribution and size of different jittered sampling regions 

(color coded heat map) based on different probability density functions (PDF). The 
incremented coordinates of the time domain are marked on the axes of the heat map. 
Each jitter region is represented by a different colour and the probability of each 
region is approximately the same. As the weighting is increased the darker regions 
(black/purple) become smaller, whilst the lighter regions (yellow, red) become 
larger. Exactly one point is sampled from each region, such that an area containing 
many small regions (see near origin of C) is sampled more densely than an area 
containing fewer larger regions (see centre of D). The jittered regions are used to 
generate a sampling schedule for which the corresponding PSF is also shown (black 
and white). The underlying Nyquist grid is constructed loosely based on the 15N (64 
points) and 13C (128 points) dimensions of triple resonance experiments typically 
used for protein backbone assignments (e.g. HNCACB at 900 MHz). 512 points were 
selected from the 8192 point grid.  A) Example where jittered sampling is used 
without any weighting of the PDF (constant time in both dimensions). B) Jittered 
sampling used without exponential weighting in one dimension (constant time 15N). 
C) Jittered sampling using exponential weighting in both dimensions (constant time 
in neither dimension). D) Jittered sampling with sine weighting in both indirect 
dimensions of the PDF (similar to SEJS above). 

 
 
R’(K) was computed for 1000 schedules with the parameters described above, using either jittered 
sampling or random sampling. As for the 1D case (see Figs 3 and 4), the jittered sampling schedules 
showed much less seed dependence than those generated by random sampling. The range of values 
for jittered sampling ranged from 1.437 to 1.448 (standard deviation 0.002), whereas the extremes 
of random sampling were 1.302 and 1.517 (standard deviation of 0.032).  
 
Experimental data 
 
Finally, the jittered sampling algorithm was compared to ERS when applied to an experimental 3D 
HNCO dataset, having constant time (no decay) along the 15N dimension and an exponential decay 
along the 13C dimension. The linewidth of the 13C dimension was measured using linear sampling 
without apodisation and found to be ~16 Hz, this was subsequently used to calculate R’(K) for all 
sampling schedules generated. Linewidth parameters that produce the same average R’(K) were 
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used to generate 1000 ERS and EJS sampling schedules having decay rates roughly twice the 
natural linewidth in 13C (30 for EJS and 28 for ERS). A total of 75 points were sampled from a grid 
of 52 15N and 128 13C increments (total N = 6656), equating to ca 1% of the total sampling space. 
For ERS and EJS the sampling schedule with the highest and lowest R’(K) were selected and a 
plane at a proton frequency of 8.14 ppm was reconstructed using maximum entropy (same plane as 
used in previous examples [10, 14]). The same maximum entropy reconstruction parameters were 
used for all reconstructions shown in Fig. 7 (def = 0.01, aim = 0.05). The ratio between the weakest 
signal and the highest artifact was measured together with the linewidth of one of the peaks, to 
monitor for relative changes in sensitivity and resolution. As expected the ERS method showed a 
larger spread of R’(K) values compared to EJS, which resulted in noticeable variability in sensitivity 
and resolution.  
 

 
Figure 7 Panel A and C show spectral representation of an HNCO plane using the schedule with 
the highest and lowest R’(K) using exponentially weighted random sampling (ERS) at twice the 
natural decay of the signals. Panels B and D show the same when using exponentially weighted 
random jittered sampling (EJS). The contour level is set at the same level in all spectra and chosen 
to show the weakest peak (dotted box). The two dashed lines are separated by the same distance in 
each panel and the measured linewidth of the peak is reported as lw in each panel. In each case the 
ratio between the weakest peak and the most intense artifact is reported (S/A).  
 
Discussion 
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Non-uniform sampling using jittered sampling (JS) appropriate for on-grid sampling and arbitrary 
probability density functions (PDFs) was introduced for multidimensional NMR spectroscopy. The 
algorithm produces sampling schedules with relative sensitivities R’(K) showing very little random 
seed dependence. The performance of jittered sampling was compared to the commonly applied 
approaches to NUS, namely random sampling (RS) and Poisson-gap sampling (PS). It was found 
that the random seed dependence of both RS and PS, as measured by a range of sampling schedule 
related parameters, show much higher variability than JS (See Fig. 4). In general, the spectral 
properties of PS, as measured by a range of metrics associated with the PSF, could be replicated by 
JS when the appropriate sampling distribution was used. In 1D NUS, both JS and PS were found to 
produce PSFs that have characteristic blue shifted noise as described previously [20], where 
sampling related artifacts are shifted to higher frequencies, minimizing artifacts in the immediate 
vicinity of the 0 Hz signal (see also Fig. 5). It was also found for both JS and PS that the most 
intense artifacts, as identified by the PSR parameter, were shifted close to the edges of the spectral 
window, consistent with these methods being more likely than random sampling methods to 
produce schedules with more intense aliasing artifacts. The intensity of these artifacts was, however, 
not significantly larger than the most intense artifacts found for random sampling (See Fig. 5). In 
general the PSR parameter was most sensitive to the underlying PDF, increasing for distributions 
that were skewed to the right, i.e. having a larger average evolution time and a smaller median 
evolution time. The trend of increased PSR when skewing the distribution to the right may account 
for some of the positive outcomes seen for PS in the past such as lower average sampling noise [21]. 
It is also noted that the PSFs using the recently described multidimensional Poisson-gap sampling 
method do not produce schedules with PSFs that have the characteristic “blue noise” (data not 
shown), consistent with previous reports [10]. As noted above the weaving approach used to extend 
the method to multiple dimensions does not restrict the distance between points that are in different 
rows/columns/planes. Although the samples may have a Poisson distribution in each 
row/column/plane, they will not necessarily adhere to this distribution as a multidimensional object. 
This departure from the Poisson distribution is likely the cause of the absence of the blue shifted 
noise.  

As expected, a correlation between the average evolution time and the inherent sensitivity of 
the sampling function as defined by R’(K) was found. There is, however, also an interesting trend, 
found only for RS and PS, between the relative sensitivity of the sampling schedule as measured by 
R’(K) and the average of sampling noise (𝑀PQRS), see Fig. 4. This trend is not present for JS due to 
the very low variation of R’(K) when using this method. It should therefore be noted that if the 
noise contents of the PSF, as measured by 𝑀PQRS , is minimised to find an “optimal” sampling 
schedule for a set of PS/RS parameters [26], it is most likely that this will instead skew the outcome 
to a schedule that has unusually low average evolution time. Although this may produce sampling 
schedules with higher sensitivity, the same can be achieved more effectively by increasing the 
exponential weighting in the PDF. The latter would also reduce the average evolution time, but in a 
more direct manner. As noted above, JS shows little seed dependent variation in relative sensitivity, 
as measured by R’(K), thus if the above procedure of minimising  𝑀PQRS  to find an optimal schedule 
is followed the results will not be biased by variation in R’(K). 

In the 2D case we find that the implementation of JS showed much the same trends as in 1D, 
again showing significant reduction in seed dependent variation in relative sensitivity, R’(K), 
compared to RS. The consequence of these trends are demonstrated by the experimental data in Fig. 
7 where it is clear that for RS, extremes of R’(K) produce highly variable results. Where a schedule 
is chosen with the lowest R’(K) the weakest peak in the spectrum is barely detectable above the 
lowest artifact (7C), whereas noticeable line broadening is found where the schedule with the 
highest R’(K) is chosen (7A). No such variability was found for JS (Fig. 7 B and D). 

Currently, there are no standardised procedures for reporting NUS data. Often there is 
simply a statement that the data was acquired using NUS, with a reference to the reconstruction 
method used. In some cases the decay parameters as well as the algorithm used to generate the NUS 
schedule is reported. The random seed used to generate the data is never reported (to the best 
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knowledge of the author) and even if it was, the random number generators are commonly platform 
specific and therefore do not guarantee that the same random subset is select on different systems. 
The sampling schedule itself is not required to be stored in central databases, and is not commonly 
included in the published work. The work presented here shows that for commonly applied NUS 
methods the information that is reported is insufficient for accurately replicating the work, a central 
requirement of scientific reports. The strength of the jittered sampling approach, therefore, lies in 
producing random sampling schedules that result in highly reproducible data.  
 The described algorithm is here implemented for spectrometer use for up to 4D data. The JS 
approach is computationally more demanding than the RS code previously described, due to the 
requirement of generating the appropriate jittering regions. However, for the typical case of 3D 
experiments (2 indirect dimensions), the program produces a JS schedule in a few seconds. In the 
4D case (3 indirect dimensions) the JS schedules are typically generated in less than a minute. But, 
for very large 4D datasets with many regions, this procedure can take several minutes to complete 
on a spectrometer PC and may be best done “off-line”.  
 
Conclusions 
 
Here an algorithm is described for on-grid jittered sampling appropriate for any probability density 
function and dimensionality. Spectra generated from NUS data, based on the same probability 
density function and the same maximum evolution time were shown to have a significant variation 
in their relative sensitivity. The relative sensitivity of NUS schemes is known to significantly 
impact on the line shape and sensitivity of the reconstructed spectra. Here, it was shown that by 
dividing the regions of the PDF into equiprobable regions and selecting a sample from each of those 
regions, it is possible to generate random sampling schedules that have similar relative sensitivities 
whilst having the desirable properties of a random distribution. It was found that the relative 
sensitivity of a sampling schedule is correlated with several parameters used for evaluating or 
optimising the associated point spread function. Since different jittered sampling schedules 
generated based on the same PDF do not show significant variation in their relative sensitivity, it is 
expected that the described method will enable more reproducible data to be generated when using 
NUS, as well as, providing a means of NUS optimisation without sensitivity bias. 
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